[FLS64]: generic version
[deliverable/linux.git] / include / asm-xtensa / bitops.h
CommitLineData
9a8fd558
CZ
1/*
2 * include/asm-xtensa/bitops.h
3 *
4 * Atomic operations that C can't guarantee us.Useful for resource counting etc.
5 *
6 * This file is subject to the terms and conditions of the GNU General Public
7 * License. See the file "COPYING" in the main directory of this archive
8 * for more details.
9 *
10 * Copyright (C) 2001 - 2005 Tensilica Inc.
11 */
12
13#ifndef _XTENSA_BITOPS_H
14#define _XTENSA_BITOPS_H
15
16#ifdef __KERNEL__
17
18#include <asm/processor.h>
19#include <asm/byteorder.h>
20#include <asm/system.h>
21
22#ifdef CONFIG_SMP
23# error SMP not supported on this architecture
24#endif
25
26static __inline__ void set_bit(int nr, volatile void * addr)
27{
28 unsigned long mask = 1 << (nr & 0x1f);
29 unsigned long *a = ((unsigned long *)addr) + (nr >> 5);
30 unsigned long flags;
31
32 local_irq_save(flags);
33 *a |= mask;
34 local_irq_restore(flags);
35}
36
37static __inline__ void __set_bit(int nr, volatile unsigned long * addr)
38{
39 unsigned long mask = 1 << (nr & 0x1f);
40 unsigned long *a = ((unsigned long *)addr) + (nr >> 5);
41
42 *a |= mask;
43}
44
45static __inline__ void clear_bit(int nr, volatile void * addr)
46{
47 unsigned long mask = 1 << (nr & 0x1f);
48 unsigned long *a = ((unsigned long *)addr) + (nr >> 5);
49 unsigned long flags;
50
51 local_irq_save(flags);
52 *a &= ~mask;
53 local_irq_restore(flags);
54}
55
56static __inline__ void __clear_bit(int nr, volatile unsigned long *addr)
57{
58 unsigned long mask = 1 << (nr & 0x1f);
59 unsigned long *a = ((unsigned long *)addr) + (nr >> 5);
60
61 *a &= ~mask;
62}
63
64/*
65 * clear_bit() doesn't provide any barrier for the compiler.
66 */
67
68#define smp_mb__before_clear_bit() barrier()
69#define smp_mb__after_clear_bit() barrier()
70
71static __inline__ void change_bit(int nr, volatile void * addr)
72{
73 unsigned long mask = 1 << (nr & 0x1f);
74 unsigned long *a = ((unsigned long *)addr) + (nr >> 5);
75 unsigned long flags;
76
77 local_irq_save(flags);
78 *a ^= mask;
79 local_irq_restore(flags);
80}
81
82static __inline__ void __change_bit(int nr, volatile void * addr)
83{
84 unsigned long mask = 1 << (nr & 0x1f);
85 unsigned long *a = ((unsigned long *)addr) + (nr >> 5);
86
87 *a ^= mask;
88}
89
90static __inline__ int test_and_set_bit(int nr, volatile void * addr)
91{
92 unsigned long retval;
93 unsigned long mask = 1 << (nr & 0x1f);
94 unsigned long *a = ((unsigned long *)addr) + (nr >> 5);
95 unsigned long flags;
96
97 local_irq_save(flags);
98 retval = (mask & *a) != 0;
99 *a |= mask;
100 local_irq_restore(flags);
101
102 return retval;
103}
104
105static __inline__ int __test_and_set_bit(int nr, volatile void * addr)
106{
107 unsigned long retval;
108 unsigned long mask = 1 << (nr & 0x1f);
109 unsigned long *a = ((unsigned long *)addr) + (nr >> 5);
110
111 retval = (mask & *a) != 0;
112 *a |= mask;
113
114 return retval;
115}
116
117static __inline__ int test_and_clear_bit(int nr, volatile void * addr)
118{
119 unsigned long retval;
120 unsigned long mask = 1 << (nr & 0x1f);
121 unsigned long *a = ((unsigned long *)addr) + (nr >> 5);
122 unsigned long flags;
123
124 local_irq_save(flags);
125 retval = (mask & *a) != 0;
126 *a &= ~mask;
127 local_irq_restore(flags);
128
129 return retval;
130}
131
132static __inline__ int __test_and_clear_bit(int nr, volatile void * addr)
133{
134 unsigned long mask = 1 << (nr & 0x1f);
135 unsigned long *a = ((unsigned long *)addr) + (nr >> 5);
136 unsigned long old = *a;
137
138 *a = old & ~mask;
139 return (old & mask) != 0;
140}
141
142static __inline__ int test_and_change_bit(int nr, volatile void * addr)
143{
144 unsigned long retval;
145 unsigned long mask = 1 << (nr & 0x1f);
146 unsigned long *a = ((unsigned long *)addr) + (nr >> 5);
147 unsigned long flags;
148
149 local_irq_save(flags);
150
151 retval = (mask & *a) != 0;
152 *a ^= mask;
153 local_irq_restore(flags);
154
155 return retval;
156}
157
158/*
159 * non-atomic version; can be reordered
160 */
161
162static __inline__ int __test_and_change_bit(int nr, volatile void *addr)
163{
164 unsigned long mask = 1 << (nr & 0x1f);
165 unsigned long *a = ((unsigned long *)addr) + (nr >> 5);
166 unsigned long old = *a;
167
168 *a = old ^ mask;
169 return (old & mask) != 0;
170}
171
172static __inline__ int test_bit(int nr, const volatile void *addr)
173{
174 return 1UL & (((const volatile unsigned int *)addr)[nr>>5] >> (nr&31));
175}
176
288a60cf 177#if XCHAL_HAVE_NSA
9a8fd558
CZ
178
179static __inline__ int __cntlz (unsigned long x)
180{
181 int lz;
182 asm ("nsau %0, %1" : "=r" (lz) : "r" (x));
183 return 31 - lz;
184}
185
186#else
187
188static __inline__ int __cntlz (unsigned long x)
189{
190 unsigned long sum, x1, x2, x4, x8, x16;
191 x1 = x & 0xAAAAAAAA;
192 x2 = x & 0xCCCCCCCC;
193 x4 = x & 0xF0F0F0F0;
194 x8 = x & 0xFF00FF00;
195 x16 = x & 0xFFFF0000;
196 sum = x2 ? 2 : 0;
197 sum += (x16 != 0) * 16;
198 sum += (x8 != 0) * 8;
199 sum += (x4 != 0) * 4;
200 sum += (x1 != 0);
201
202 return sum;
203}
204
205#endif
206
207/*
208 * ffz: Find first zero in word. Undefined if no zero exists.
209 * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1).
210 */
211
212static __inline__ int ffz(unsigned long x)
213{
214 if ((x = ~x) == 0)
215 return 32;
216 return __cntlz(x & -x);
217}
218
219/*
220 * __ffs: Find first bit set in word. Return 0 for bit 0
221 */
222
223static __inline__ int __ffs(unsigned long x)
224{
225 return __cntlz(x & -x);
226}
227
228/*
229 * ffs: Find first bit set in word. This is defined the same way as
230 * the libc and compiler builtin ffs routines, therefore
231 * differs in spirit from the above ffz (man ffs).
232 */
233
234static __inline__ int ffs(unsigned long x)
235{
236 return __cntlz(x & -x) + 1;
237}
238
239/*
240 * fls: Find last (most-significant) bit set in word.
241 * Note fls(0) = 0, fls(1) = 1, fls(0x80000000) = 32.
242 */
243
244static __inline__ int fls (unsigned int x)
245{
246 return __cntlz(x);
247}
3821af2f 248#define fls64(x) generic_fls64(x)
9a8fd558
CZ
249
250static __inline__ int
251find_next_bit(const unsigned long *addr, int size, int offset)
252{
253 const unsigned long *p = addr + (offset >> 5);
254 unsigned long result = offset & ~31UL;
255 unsigned long tmp;
256
257 if (offset >= size)
258 return size;
259 size -= result;
260 offset &= 31UL;
261 if (offset) {
262 tmp = *p++;
263 tmp &= ~0UL << offset;
264 if (size < 32)
265 goto found_first;
266 if (tmp)
267 goto found_middle;
268 size -= 32;
269 result += 32;
270 }
271 while (size >= 32) {
272 if ((tmp = *p++) != 0)
273 goto found_middle;
274 result += 32;
275 size -= 32;
276 }
277 if (!size)
278 return result;
279 tmp = *p;
280
281found_first:
282 tmp &= ~0UL >> (32 - size);
283 if (tmp == 0UL) /* Are any bits set? */
284 return result + size; /* Nope. */
285found_middle:
286 return result + __ffs(tmp);
287}
288
289/**
290 * find_first_bit - find the first set bit in a memory region
291 * @addr: The address to start the search at
292 * @size: The maximum size to search
293 *
294 * Returns the bit-number of the first set bit, not the number of the byte
295 * containing a bit.
296 */
297
298#define find_first_bit(addr, size) \
299 find_next_bit((addr), (size), 0)
300
301static __inline__ int
302find_next_zero_bit(const unsigned long *addr, int size, int offset)
303{
304 const unsigned long *p = addr + (offset >> 5);
305 unsigned long result = offset & ~31UL;
306 unsigned long tmp;
307
308 if (offset >= size)
309 return size;
310 size -= result;
311 offset &= 31UL;
312 if (offset) {
313 tmp = *p++;
314 tmp |= ~0UL >> (32-offset);
315 if (size < 32)
316 goto found_first;
317 if (~tmp)
318 goto found_middle;
319 size -= 32;
320 result += 32;
321 }
322 while (size & ~31UL) {
323 if (~(tmp = *p++))
324 goto found_middle;
325 result += 32;
326 size -= 32;
327 }
328 if (!size)
329 return result;
330 tmp = *p;
331
332found_first:
333 tmp |= ~0UL << size;
334found_middle:
335 return result + ffz(tmp);
336}
337
338#define find_first_zero_bit(addr, size) \
339 find_next_zero_bit((addr), (size), 0)
340
341#ifdef __XTENSA_EL__
342# define ext2_set_bit(nr,addr) __test_and_set_bit((nr), (addr))
343# define ext2_set_bit_atomic(lock,nr,addr) test_and_set_bit((nr),(addr))
344# define ext2_clear_bit(nr,addr) __test_and_clear_bit((nr), (addr))
345# define ext2_clear_bit_atomic(lock,nr,addr) test_and_clear_bit((nr),(addr))
346# define ext2_test_bit(nr,addr) test_bit((nr), (addr))
347# define ext2_find_first_zero_bit(addr, size) find_first_zero_bit((addr),(size))
348# define ext2_find_next_zero_bit(addr, size, offset) \
349 find_next_zero_bit((addr), (size), (offset))
350#elif defined(__XTENSA_EB__)
351# define ext2_set_bit(nr,addr) __test_and_set_bit((nr) ^ 0x18, (addr))
352# define ext2_set_bit_atomic(lock,nr,addr) test_and_set_bit((nr) ^ 0x18, (addr))
353# define ext2_clear_bit(nr,addr) __test_and_clear_bit((nr) ^ 18, (addr))
354# define ext2_clear_bit_atomic(lock,nr,addr) test_and_clear_bit((nr)^0x18,(addr))
355# define ext2_test_bit(nr,addr) test_bit((nr) ^ 0x18, (addr))
356# define ext2_find_first_zero_bit(addr, size) \
357 ext2_find_next_zero_bit((addr), (size), 0)
358
359static __inline__ unsigned long ext2_find_next_zero_bit(void *addr, unsigned long size, unsigned long offset)
360{
361 unsigned long *p = ((unsigned long *) addr) + (offset >> 5);
362 unsigned long result = offset & ~31UL;
363 unsigned long tmp;
364
365 if (offset >= size)
366 return size;
367 size -= result;
368 offset &= 31UL;
369 if(offset) {
370 /* We hold the little endian value in tmp, but then the
371 * shift is illegal. So we could keep a big endian value
372 * in tmp, like this:
373 *
374 * tmp = __swab32(*(p++));
375 * tmp |= ~0UL >> (32-offset);
376 *
377 * but this would decrease preformance, so we change the
378 * shift:
379 */
380 tmp = *(p++);
381 tmp |= __swab32(~0UL >> (32-offset));
382 if(size < 32)
383 goto found_first;
384 if(~tmp)
385 goto found_middle;
386 size -= 32;
387 result += 32;
388 }
389 while(size & ~31UL) {
390 if(~(tmp = *(p++)))
391 goto found_middle;
392 result += 32;
393 size -= 32;
394 }
395 if(!size)
396 return result;
397 tmp = *p;
398
399found_first:
400 /* tmp is little endian, so we would have to swab the shift,
401 * see above. But then we have to swab tmp below for ffz, so
402 * we might as well do this here.
403 */
404 return result + ffz(__swab32(tmp) | (~0UL << size));
405found_middle:
406 return result + ffz(__swab32(tmp));
407}
408
409#else
410# error processor byte order undefined!
411#endif
412
413
414#define hweight32(x) generic_hweight32(x)
415#define hweight16(x) generic_hweight16(x)
416#define hweight8(x) generic_hweight8(x)
417
418/*
419 * Find the first bit set in a 140-bit bitmap.
420 * The first 100 bits are unlikely to be set.
421 */
422
423static inline int sched_find_first_bit(const unsigned long *b)
424{
425 if (unlikely(b[0]))
426 return __ffs(b[0]);
427 if (unlikely(b[1]))
428 return __ffs(b[1]) + 32;
429 if (unlikely(b[2]))
430 return __ffs(b[2]) + 64;
431 if (b[3])
432 return __ffs(b[3]) + 96;
433 return __ffs(b[4]) + 128;
434}
435
436
437/* Bitmap functions for the minix filesystem. */
438
439#define minix_test_and_set_bit(nr,addr) test_and_set_bit(nr,addr)
440#define minix_set_bit(nr,addr) set_bit(nr,addr)
441#define minix_test_and_clear_bit(nr,addr) test_and_clear_bit(nr,addr)
442#define minix_test_bit(nr,addr) test_bit(nr,addr)
443#define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size)
444
445#endif /* __KERNEL__ */
446
447#endif /* _XTENSA_BITOPS_H */
This page took 0.086762 seconds and 5 git commands to generate.