crypto: drivers - Fix Kconfig selects
[deliverable/linux.git] / include / linux / crypto.h
CommitLineData
1da177e4
LT
1/*
2 * Scatterlist Cryptographic API.
3 *
4 * Copyright (c) 2002 James Morris <jmorris@intercode.com.au>
5 * Copyright (c) 2002 David S. Miller (davem@redhat.com)
5cb1454b 6 * Copyright (c) 2005 Herbert Xu <herbert@gondor.apana.org.au>
1da177e4
LT
7 *
8 * Portions derived from Cryptoapi, by Alexander Kjeldaas <astor@fast.no>
18735dd8 9 * and Nettle, by Niels Möller.
1da177e4
LT
10 *
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the Free
13 * Software Foundation; either version 2 of the License, or (at your option)
14 * any later version.
15 *
16 */
17#ifndef _LINUX_CRYPTO_H
18#define _LINUX_CRYPTO_H
19
60063497 20#include <linux/atomic.h>
1da177e4 21#include <linux/kernel.h>
1da177e4 22#include <linux/list.h>
187f1882 23#include <linux/bug.h>
79911102 24#include <linux/slab.h>
1da177e4 25#include <linux/string.h>
79911102 26#include <linux/uaccess.h>
1da177e4 27
5d26a105
KC
28/*
29 * Autoloaded crypto modules should only use a prefixed name to avoid allowing
30 * arbitrary modules to be loaded. Loading from userspace may still need the
31 * unprefixed names, so retains those aliases as well.
32 * This uses __MODULE_INFO directly instead of MODULE_ALIAS because pre-4.3
33 * gcc (e.g. avr32 toolchain) uses __LINE__ for uniqueness, and this macro
34 * expands twice on the same line. Instead, use a separate base name for the
35 * alias.
36 */
37#define MODULE_ALIAS_CRYPTO(name) \
38 __MODULE_INFO(alias, alias_userspace, name); \
39 __MODULE_INFO(alias, alias_crypto, "crypto-" name)
40
1da177e4
LT
41/*
42 * Algorithm masks and types.
43 */
2825982d 44#define CRYPTO_ALG_TYPE_MASK 0x0000000f
1da177e4 45#define CRYPTO_ALG_TYPE_CIPHER 0x00000001
004a403c
LH
46#define CRYPTO_ALG_TYPE_COMPRESS 0x00000002
47#define CRYPTO_ALG_TYPE_AEAD 0x00000003
055bcee3 48#define CRYPTO_ALG_TYPE_BLKCIPHER 0x00000004
332f8840 49#define CRYPTO_ALG_TYPE_ABLKCIPHER 0x00000005
61da88e2 50#define CRYPTO_ALG_TYPE_GIVCIPHER 0x00000006
004a403c 51#define CRYPTO_ALG_TYPE_DIGEST 0x00000008
5f7082ed
HX
52#define CRYPTO_ALG_TYPE_HASH 0x00000008
53#define CRYPTO_ALG_TYPE_SHASH 0x00000009
004a403c 54#define CRYPTO_ALG_TYPE_AHASH 0x0000000a
17f0f4a4 55#define CRYPTO_ALG_TYPE_RNG 0x0000000c
3c339ab8 56#define CRYPTO_ALG_TYPE_AKCIPHER 0x0000000d
a1d2f095 57#define CRYPTO_ALG_TYPE_PCOMPRESS 0x0000000f
055bcee3
HX
58
59#define CRYPTO_ALG_TYPE_HASH_MASK 0x0000000e
004a403c 60#define CRYPTO_ALG_TYPE_AHASH_MASK 0x0000000c
332f8840 61#define CRYPTO_ALG_TYPE_BLKCIPHER_MASK 0x0000000c
1da177e4 62
2825982d 63#define CRYPTO_ALG_LARVAL 0x00000010
6bfd4809
HX
64#define CRYPTO_ALG_DEAD 0x00000020
65#define CRYPTO_ALG_DYING 0x00000040
f3f632d6 66#define CRYPTO_ALG_ASYNC 0x00000080
2825982d 67
6010439f
HX
68/*
69 * Set this bit if and only if the algorithm requires another algorithm of
70 * the same type to handle corner cases.
71 */
72#define CRYPTO_ALG_NEED_FALLBACK 0x00000100
73
ecfc4329
HX
74/*
75 * This bit is set for symmetric key ciphers that have already been wrapped
76 * with a generic IV generator to prevent them from being wrapped again.
77 */
78#define CRYPTO_ALG_GENIV 0x00000200
79
73d3864a
HX
80/*
81 * Set if the algorithm has passed automated run-time testing. Note that
82 * if there is no run-time testing for a given algorithm it is considered
83 * to have passed.
84 */
85
86#define CRYPTO_ALG_TESTED 0x00000400
87
64a947b1
SK
88/*
89 * Set if the algorithm is an instance that is build from templates.
90 */
91#define CRYPTO_ALG_INSTANCE 0x00000800
92
d912bb76
NM
93/* Set this bit if the algorithm provided is hardware accelerated but
94 * not available to userspace via instruction set or so.
95 */
96#define CRYPTO_ALG_KERN_DRIVER_ONLY 0x00001000
97
06ca7f68
SM
98/*
99 * Mark a cipher as a service implementation only usable by another
100 * cipher and never by a normal user of the kernel crypto API
101 */
102#define CRYPTO_ALG_INTERNAL 0x00002000
103
1da177e4
LT
104/*
105 * Transform masks and values (for crt_flags).
106 */
1da177e4
LT
107#define CRYPTO_TFM_REQ_MASK 0x000fff00
108#define CRYPTO_TFM_RES_MASK 0xfff00000
109
1da177e4 110#define CRYPTO_TFM_REQ_WEAK_KEY 0x00000100
64baf3cf 111#define CRYPTO_TFM_REQ_MAY_SLEEP 0x00000200
32e3983f 112#define CRYPTO_TFM_REQ_MAY_BACKLOG 0x00000400
1da177e4
LT
113#define CRYPTO_TFM_RES_WEAK_KEY 0x00100000
114#define CRYPTO_TFM_RES_BAD_KEY_LEN 0x00200000
115#define CRYPTO_TFM_RES_BAD_KEY_SCHED 0x00400000
116#define CRYPTO_TFM_RES_BAD_BLOCK_LEN 0x00800000
117#define CRYPTO_TFM_RES_BAD_FLAGS 0x01000000
118
119/*
120 * Miscellaneous stuff.
121 */
1da177e4
LT
122#define CRYPTO_MAX_ALG_NAME 64
123
79911102
HX
124/*
125 * The macro CRYPTO_MINALIGN_ATTR (along with the void * type in the actual
126 * declaration) is used to ensure that the crypto_tfm context structure is
127 * aligned correctly for the given architecture so that there are no alignment
128 * faults for C data types. In particular, this is required on platforms such
129 * as arm where pointers are 32-bit aligned but there are data types such as
130 * u64 which require 64-bit alignment.
131 */
79911102 132#define CRYPTO_MINALIGN ARCH_KMALLOC_MINALIGN
79911102 133
79911102 134#define CRYPTO_MINALIGN_ATTR __attribute__ ((__aligned__(CRYPTO_MINALIGN)))
79911102 135
1da177e4 136struct scatterlist;
32e3983f
HX
137struct crypto_ablkcipher;
138struct crypto_async_request;
1ae97820 139struct crypto_aead;
5cde0af2 140struct crypto_blkcipher;
055bcee3 141struct crypto_hash;
40725181 142struct crypto_tfm;
e853c3cf 143struct crypto_type;
5d1d65f8 144struct aead_request;
743edf57 145struct aead_givcrypt_request;
61da88e2 146struct skcipher_givcrypt_request;
40725181 147
32e3983f
HX
148typedef void (*crypto_completion_t)(struct crypto_async_request *req, int err);
149
0d7f488f
SM
150/**
151 * DOC: Block Cipher Context Data Structures
152 *
153 * These data structures define the operating context for each block cipher
154 * type.
155 */
156
32e3983f
HX
157struct crypto_async_request {
158 struct list_head list;
159 crypto_completion_t complete;
160 void *data;
161 struct crypto_tfm *tfm;
162
163 u32 flags;
164};
165
166struct ablkcipher_request {
167 struct crypto_async_request base;
168
169 unsigned int nbytes;
170
171 void *info;
172
173 struct scatterlist *src;
174 struct scatterlist *dst;
175
176 void *__ctx[] CRYPTO_MINALIGN_ATTR;
177};
178
5cde0af2
HX
179struct blkcipher_desc {
180 struct crypto_blkcipher *tfm;
181 void *info;
182 u32 flags;
183};
184
40725181
HX
185struct cipher_desc {
186 struct crypto_tfm *tfm;
6c2bb98b 187 void (*crfn)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
40725181
HX
188 unsigned int (*prfn)(const struct cipher_desc *desc, u8 *dst,
189 const u8 *src, unsigned int nbytes);
190 void *info;
191};
1da177e4 192
055bcee3
HX
193struct hash_desc {
194 struct crypto_hash *tfm;
195 u32 flags;
196};
197
0d7f488f
SM
198/**
199 * DOC: Block Cipher Algorithm Definitions
200 *
201 * These data structures define modular crypto algorithm implementations,
202 * managed via crypto_register_alg() and crypto_unregister_alg().
203 */
204
205/**
206 * struct ablkcipher_alg - asynchronous block cipher definition
207 * @min_keysize: Minimum key size supported by the transformation. This is the
208 * smallest key length supported by this transformation algorithm.
209 * This must be set to one of the pre-defined values as this is
210 * not hardware specific. Possible values for this field can be
211 * found via git grep "_MIN_KEY_SIZE" include/crypto/
212 * @max_keysize: Maximum key size supported by the transformation. This is the
213 * largest key length supported by this transformation algorithm.
214 * This must be set to one of the pre-defined values as this is
215 * not hardware specific. Possible values for this field can be
216 * found via git grep "_MAX_KEY_SIZE" include/crypto/
217 * @setkey: Set key for the transformation. This function is used to either
218 * program a supplied key into the hardware or store the key in the
219 * transformation context for programming it later. Note that this
220 * function does modify the transformation context. This function can
221 * be called multiple times during the existence of the transformation
222 * object, so one must make sure the key is properly reprogrammed into
223 * the hardware. This function is also responsible for checking the key
224 * length for validity. In case a software fallback was put in place in
225 * the @cra_init call, this function might need to use the fallback if
226 * the algorithm doesn't support all of the key sizes.
227 * @encrypt: Encrypt a scatterlist of blocks. This function is used to encrypt
228 * the supplied scatterlist containing the blocks of data. The crypto
229 * API consumer is responsible for aligning the entries of the
230 * scatterlist properly and making sure the chunks are correctly
231 * sized. In case a software fallback was put in place in the
232 * @cra_init call, this function might need to use the fallback if
233 * the algorithm doesn't support all of the key sizes. In case the
234 * key was stored in transformation context, the key might need to be
235 * re-programmed into the hardware in this function. This function
236 * shall not modify the transformation context, as this function may
237 * be called in parallel with the same transformation object.
238 * @decrypt: Decrypt a single block. This is a reverse counterpart to @encrypt
239 * and the conditions are exactly the same.
240 * @givencrypt: Update the IV for encryption. With this function, a cipher
241 * implementation may provide the function on how to update the IV
242 * for encryption.
243 * @givdecrypt: Update the IV for decryption. This is the reverse of
244 * @givencrypt .
245 * @geniv: The transformation implementation may use an "IV generator" provided
246 * by the kernel crypto API. Several use cases have a predefined
247 * approach how IVs are to be updated. For such use cases, the kernel
248 * crypto API provides ready-to-use implementations that can be
249 * referenced with this variable.
250 * @ivsize: IV size applicable for transformation. The consumer must provide an
251 * IV of exactly that size to perform the encrypt or decrypt operation.
252 *
253 * All fields except @givencrypt , @givdecrypt , @geniv and @ivsize are
254 * mandatory and must be filled.
1da177e4 255 */
b5b7f088
HX
256struct ablkcipher_alg {
257 int (*setkey)(struct crypto_ablkcipher *tfm, const u8 *key,
258 unsigned int keylen);
259 int (*encrypt)(struct ablkcipher_request *req);
260 int (*decrypt)(struct ablkcipher_request *req);
61da88e2
HX
261 int (*givencrypt)(struct skcipher_givcrypt_request *req);
262 int (*givdecrypt)(struct skcipher_givcrypt_request *req);
b5b7f088 263
23508e11
HX
264 const char *geniv;
265
b5b7f088
HX
266 unsigned int min_keysize;
267 unsigned int max_keysize;
268 unsigned int ivsize;
269};
270
0d7f488f 271/**
2d0f230f 272 * struct old_aead_alg - AEAD cipher definition
0d7f488f
SM
273 * @maxauthsize: Set the maximum authentication tag size supported by the
274 * transformation. A transformation may support smaller tag sizes.
275 * As the authentication tag is a message digest to ensure the
276 * integrity of the encrypted data, a consumer typically wants the
277 * largest authentication tag possible as defined by this
278 * variable.
279 * @setauthsize: Set authentication size for the AEAD transformation. This
280 * function is used to specify the consumer requested size of the
281 * authentication tag to be either generated by the transformation
282 * during encryption or the size of the authentication tag to be
283 * supplied during the decryption operation. This function is also
284 * responsible for checking the authentication tag size for
285 * validity.
286 * @setkey: see struct ablkcipher_alg
287 * @encrypt: see struct ablkcipher_alg
288 * @decrypt: see struct ablkcipher_alg
289 * @givencrypt: see struct ablkcipher_alg
290 * @givdecrypt: see struct ablkcipher_alg
291 * @geniv: see struct ablkcipher_alg
292 * @ivsize: see struct ablkcipher_alg
293 *
294 * All fields except @givencrypt , @givdecrypt , @geniv and @ivsize are
295 * mandatory and must be filled.
296 */
2d0f230f 297struct old_aead_alg {
1ae97820
HX
298 int (*setkey)(struct crypto_aead *tfm, const u8 *key,
299 unsigned int keylen);
7ba683a6 300 int (*setauthsize)(struct crypto_aead *tfm, unsigned int authsize);
1ae97820
HX
301 int (*encrypt)(struct aead_request *req);
302 int (*decrypt)(struct aead_request *req);
743edf57
HX
303 int (*givencrypt)(struct aead_givcrypt_request *req);
304 int (*givdecrypt)(struct aead_givcrypt_request *req);
1ae97820 305
5b6d2d7f
HX
306 const char *geniv;
307
1ae97820 308 unsigned int ivsize;
7ba683a6 309 unsigned int maxauthsize;
1ae97820
HX
310};
311
0d7f488f
SM
312/**
313 * struct blkcipher_alg - synchronous block cipher definition
314 * @min_keysize: see struct ablkcipher_alg
315 * @max_keysize: see struct ablkcipher_alg
316 * @setkey: see struct ablkcipher_alg
317 * @encrypt: see struct ablkcipher_alg
318 * @decrypt: see struct ablkcipher_alg
319 * @geniv: see struct ablkcipher_alg
320 * @ivsize: see struct ablkcipher_alg
321 *
322 * All fields except @geniv and @ivsize are mandatory and must be filled.
323 */
5cde0af2
HX
324struct blkcipher_alg {
325 int (*setkey)(struct crypto_tfm *tfm, const u8 *key,
326 unsigned int keylen);
327 int (*encrypt)(struct blkcipher_desc *desc,
328 struct scatterlist *dst, struct scatterlist *src,
329 unsigned int nbytes);
330 int (*decrypt)(struct blkcipher_desc *desc,
331 struct scatterlist *dst, struct scatterlist *src,
332 unsigned int nbytes);
333
23508e11
HX
334 const char *geniv;
335
5cde0af2
HX
336 unsigned int min_keysize;
337 unsigned int max_keysize;
338 unsigned int ivsize;
339};
340
0d7f488f
SM
341/**
342 * struct cipher_alg - single-block symmetric ciphers definition
343 * @cia_min_keysize: Minimum key size supported by the transformation. This is
344 * the smallest key length supported by this transformation
345 * algorithm. This must be set to one of the pre-defined
346 * values as this is not hardware specific. Possible values
347 * for this field can be found via git grep "_MIN_KEY_SIZE"
348 * include/crypto/
349 * @cia_max_keysize: Maximum key size supported by the transformation. This is
350 * the largest key length supported by this transformation
351 * algorithm. This must be set to one of the pre-defined values
352 * as this is not hardware specific. Possible values for this
353 * field can be found via git grep "_MAX_KEY_SIZE"
354 * include/crypto/
355 * @cia_setkey: Set key for the transformation. This function is used to either
356 * program a supplied key into the hardware or store the key in the
357 * transformation context for programming it later. Note that this
358 * function does modify the transformation context. This function
359 * can be called multiple times during the existence of the
360 * transformation object, so one must make sure the key is properly
361 * reprogrammed into the hardware. This function is also
362 * responsible for checking the key length for validity.
363 * @cia_encrypt: Encrypt a single block. This function is used to encrypt a
364 * single block of data, which must be @cra_blocksize big. This
365 * always operates on a full @cra_blocksize and it is not possible
366 * to encrypt a block of smaller size. The supplied buffers must
367 * therefore also be at least of @cra_blocksize size. Both the
368 * input and output buffers are always aligned to @cra_alignmask.
369 * In case either of the input or output buffer supplied by user
370 * of the crypto API is not aligned to @cra_alignmask, the crypto
371 * API will re-align the buffers. The re-alignment means that a
372 * new buffer will be allocated, the data will be copied into the
373 * new buffer, then the processing will happen on the new buffer,
374 * then the data will be copied back into the original buffer and
375 * finally the new buffer will be freed. In case a software
376 * fallback was put in place in the @cra_init call, this function
377 * might need to use the fallback if the algorithm doesn't support
378 * all of the key sizes. In case the key was stored in
379 * transformation context, the key might need to be re-programmed
380 * into the hardware in this function. This function shall not
381 * modify the transformation context, as this function may be
382 * called in parallel with the same transformation object.
383 * @cia_decrypt: Decrypt a single block. This is a reverse counterpart to
384 * @cia_encrypt, and the conditions are exactly the same.
385 *
386 * All fields are mandatory and must be filled.
387 */
1da177e4
LT
388struct cipher_alg {
389 unsigned int cia_min_keysize;
390 unsigned int cia_max_keysize;
6c2bb98b 391 int (*cia_setkey)(struct crypto_tfm *tfm, const u8 *key,
560c06ae 392 unsigned int keylen);
6c2bb98b
HX
393 void (*cia_encrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
394 void (*cia_decrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
1da177e4
LT
395};
396
1da177e4 397struct compress_alg {
6c2bb98b
HX
398 int (*coa_compress)(struct crypto_tfm *tfm, const u8 *src,
399 unsigned int slen, u8 *dst, unsigned int *dlen);
400 int (*coa_decompress)(struct crypto_tfm *tfm, const u8 *src,
401 unsigned int slen, u8 *dst, unsigned int *dlen);
1da177e4
LT
402};
403
17f0f4a4 404
b5b7f088 405#define cra_ablkcipher cra_u.ablkcipher
1ae97820 406#define cra_aead cra_u.aead
5cde0af2 407#define cra_blkcipher cra_u.blkcipher
1da177e4 408#define cra_cipher cra_u.cipher
1da177e4
LT
409#define cra_compress cra_u.compress
410
0d7f488f
SM
411/**
412 * struct crypto_alg - definition of a cryptograpic cipher algorithm
413 * @cra_flags: Flags describing this transformation. See include/linux/crypto.h
414 * CRYPTO_ALG_* flags for the flags which go in here. Those are
415 * used for fine-tuning the description of the transformation
416 * algorithm.
417 * @cra_blocksize: Minimum block size of this transformation. The size in bytes
418 * of the smallest possible unit which can be transformed with
419 * this algorithm. The users must respect this value.
420 * In case of HASH transformation, it is possible for a smaller
421 * block than @cra_blocksize to be passed to the crypto API for
422 * transformation, in case of any other transformation type, an
423 * error will be returned upon any attempt to transform smaller
424 * than @cra_blocksize chunks.
425 * @cra_ctxsize: Size of the operational context of the transformation. This
426 * value informs the kernel crypto API about the memory size
427 * needed to be allocated for the transformation context.
428 * @cra_alignmask: Alignment mask for the input and output data buffer. The data
429 * buffer containing the input data for the algorithm must be
430 * aligned to this alignment mask. The data buffer for the
431 * output data must be aligned to this alignment mask. Note that
432 * the Crypto API will do the re-alignment in software, but
433 * only under special conditions and there is a performance hit.
434 * The re-alignment happens at these occasions for different
435 * @cra_u types: cipher -- For both input data and output data
436 * buffer; ahash -- For output hash destination buf; shash --
437 * For output hash destination buf.
438 * This is needed on hardware which is flawed by design and
439 * cannot pick data from arbitrary addresses.
440 * @cra_priority: Priority of this transformation implementation. In case
441 * multiple transformations with same @cra_name are available to
442 * the Crypto API, the kernel will use the one with highest
443 * @cra_priority.
444 * @cra_name: Generic name (usable by multiple implementations) of the
445 * transformation algorithm. This is the name of the transformation
446 * itself. This field is used by the kernel when looking up the
447 * providers of particular transformation.
448 * @cra_driver_name: Unique name of the transformation provider. This is the
449 * name of the provider of the transformation. This can be any
450 * arbitrary value, but in the usual case, this contains the
451 * name of the chip or provider and the name of the
452 * transformation algorithm.
453 * @cra_type: Type of the cryptographic transformation. This is a pointer to
454 * struct crypto_type, which implements callbacks common for all
12f7c14a 455 * transformation types. There are multiple options:
0d7f488f
SM
456 * &crypto_blkcipher_type, &crypto_ablkcipher_type,
457 * &crypto_ahash_type, &crypto_aead_type, &crypto_rng_type.
458 * This field might be empty. In that case, there are no common
459 * callbacks. This is the case for: cipher, compress, shash.
460 * @cra_u: Callbacks implementing the transformation. This is a union of
461 * multiple structures. Depending on the type of transformation selected
462 * by @cra_type and @cra_flags above, the associated structure must be
463 * filled with callbacks. This field might be empty. This is the case
464 * for ahash, shash.
465 * @cra_init: Initialize the cryptographic transformation object. This function
466 * is used to initialize the cryptographic transformation object.
467 * This function is called only once at the instantiation time, right
468 * after the transformation context was allocated. In case the
469 * cryptographic hardware has some special requirements which need to
470 * be handled by software, this function shall check for the precise
471 * requirement of the transformation and put any software fallbacks
472 * in place.
473 * @cra_exit: Deinitialize the cryptographic transformation object. This is a
474 * counterpart to @cra_init, used to remove various changes set in
475 * @cra_init.
476 * @cra_module: Owner of this transformation implementation. Set to THIS_MODULE
477 * @cra_list: internally used
478 * @cra_users: internally used
479 * @cra_refcnt: internally used
480 * @cra_destroy: internally used
481 *
482 * The struct crypto_alg describes a generic Crypto API algorithm and is common
483 * for all of the transformations. Any variable not documented here shall not
484 * be used by a cipher implementation as it is internal to the Crypto API.
485 */
1da177e4
LT
486struct crypto_alg {
487 struct list_head cra_list;
6bfd4809
HX
488 struct list_head cra_users;
489
1da177e4
LT
490 u32 cra_flags;
491 unsigned int cra_blocksize;
492 unsigned int cra_ctxsize;
95477377 493 unsigned int cra_alignmask;
5cb1454b
HX
494
495 int cra_priority;
6521f302 496 atomic_t cra_refcnt;
5cb1454b 497
d913ea0d
HX
498 char cra_name[CRYPTO_MAX_ALG_NAME];
499 char cra_driver_name[CRYPTO_MAX_ALG_NAME];
1da177e4 500
e853c3cf
HX
501 const struct crypto_type *cra_type;
502
1da177e4 503 union {
b5b7f088 504 struct ablkcipher_alg ablkcipher;
2d0f230f 505 struct old_aead_alg aead;
5cde0af2 506 struct blkcipher_alg blkcipher;
1da177e4 507 struct cipher_alg cipher;
1da177e4
LT
508 struct compress_alg compress;
509 } cra_u;
c7fc0599
HX
510
511 int (*cra_init)(struct crypto_tfm *tfm);
512 void (*cra_exit)(struct crypto_tfm *tfm);
6521f302 513 void (*cra_destroy)(struct crypto_alg *alg);
1da177e4
LT
514
515 struct module *cra_module;
516};
517
518/*
519 * Algorithm registration interface.
520 */
521int crypto_register_alg(struct crypto_alg *alg);
522int crypto_unregister_alg(struct crypto_alg *alg);
4b004346
MB
523int crypto_register_algs(struct crypto_alg *algs, int count);
524int crypto_unregister_algs(struct crypto_alg *algs, int count);
1da177e4
LT
525
526/*
527 * Algorithm query interface.
528 */
fce32d70 529int crypto_has_alg(const char *name, u32 type, u32 mask);
1da177e4
LT
530
531/*
532 * Transforms: user-instantiated objects which encapsulate algorithms
6d7d684d
HX
533 * and core processing logic. Managed via crypto_alloc_*() and
534 * crypto_free_*(), as well as the various helpers below.
1da177e4 535 */
1da177e4 536
32e3983f
HX
537struct ablkcipher_tfm {
538 int (*setkey)(struct crypto_ablkcipher *tfm, const u8 *key,
539 unsigned int keylen);
540 int (*encrypt)(struct ablkcipher_request *req);
541 int (*decrypt)(struct ablkcipher_request *req);
61da88e2
HX
542 int (*givencrypt)(struct skcipher_givcrypt_request *req);
543 int (*givdecrypt)(struct skcipher_givcrypt_request *req);
544
ecfc4329
HX
545 struct crypto_ablkcipher *base;
546
32e3983f
HX
547 unsigned int ivsize;
548 unsigned int reqsize;
549};
550
5cde0af2
HX
551struct blkcipher_tfm {
552 void *iv;
553 int (*setkey)(struct crypto_tfm *tfm, const u8 *key,
554 unsigned int keylen);
555 int (*encrypt)(struct blkcipher_desc *desc, struct scatterlist *dst,
556 struct scatterlist *src, unsigned int nbytes);
557 int (*decrypt)(struct blkcipher_desc *desc, struct scatterlist *dst,
558 struct scatterlist *src, unsigned int nbytes);
559};
560
1da177e4 561struct cipher_tfm {
1da177e4
LT
562 int (*cit_setkey)(struct crypto_tfm *tfm,
563 const u8 *key, unsigned int keylen);
f28776a3
HX
564 void (*cit_encrypt_one)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
565 void (*cit_decrypt_one)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
1da177e4
LT
566};
567
055bcee3
HX
568struct hash_tfm {
569 int (*init)(struct hash_desc *desc);
570 int (*update)(struct hash_desc *desc,
571 struct scatterlist *sg, unsigned int nsg);
572 int (*final)(struct hash_desc *desc, u8 *out);
573 int (*digest)(struct hash_desc *desc, struct scatterlist *sg,
574 unsigned int nsg, u8 *out);
575 int (*setkey)(struct crypto_hash *tfm, const u8 *key,
576 unsigned int keylen);
055bcee3 577 unsigned int digestsize;
1da177e4
LT
578};
579
580struct compress_tfm {
581 int (*cot_compress)(struct crypto_tfm *tfm,
582 const u8 *src, unsigned int slen,
583 u8 *dst, unsigned int *dlen);
584 int (*cot_decompress)(struct crypto_tfm *tfm,
585 const u8 *src, unsigned int slen,
586 u8 *dst, unsigned int *dlen);
587};
588
32e3983f 589#define crt_ablkcipher crt_u.ablkcipher
5cde0af2 590#define crt_blkcipher crt_u.blkcipher
1da177e4 591#define crt_cipher crt_u.cipher
055bcee3 592#define crt_hash crt_u.hash
1da177e4
LT
593#define crt_compress crt_u.compress
594
595struct crypto_tfm {
596
597 u32 crt_flags;
598
599 union {
32e3983f 600 struct ablkcipher_tfm ablkcipher;
5cde0af2 601 struct blkcipher_tfm blkcipher;
1da177e4 602 struct cipher_tfm cipher;
055bcee3 603 struct hash_tfm hash;
1da177e4
LT
604 struct compress_tfm compress;
605 } crt_u;
4a779486
HX
606
607 void (*exit)(struct crypto_tfm *tfm);
1da177e4
LT
608
609 struct crypto_alg *__crt_alg;
f10b7897 610
79911102 611 void *__crt_ctx[] CRYPTO_MINALIGN_ATTR;
1da177e4
LT
612};
613
32e3983f
HX
614struct crypto_ablkcipher {
615 struct crypto_tfm base;
616};
617
5cde0af2
HX
618struct crypto_blkcipher {
619 struct crypto_tfm base;
620};
621
78a1fe4f
HX
622struct crypto_cipher {
623 struct crypto_tfm base;
624};
625
626struct crypto_comp {
627 struct crypto_tfm base;
628};
629
055bcee3
HX
630struct crypto_hash {
631 struct crypto_tfm base;
632};
633
2b8c19db
HX
634enum {
635 CRYPTOA_UNSPEC,
636 CRYPTOA_ALG,
ebc610e5 637 CRYPTOA_TYPE,
39e1ee01 638 CRYPTOA_U32,
ebc610e5 639 __CRYPTOA_MAX,
2b8c19db
HX
640};
641
ebc610e5
HX
642#define CRYPTOA_MAX (__CRYPTOA_MAX - 1)
643
39e1ee01
HX
644/* Maximum number of (rtattr) parameters for each template. */
645#define CRYPTO_MAX_ATTRS 32
646
2b8c19db
HX
647struct crypto_attr_alg {
648 char name[CRYPTO_MAX_ALG_NAME];
649};
650
ebc610e5
HX
651struct crypto_attr_type {
652 u32 type;
653 u32 mask;
654};
655
39e1ee01
HX
656struct crypto_attr_u32 {
657 u32 num;
658};
659
1da177e4
LT
660/*
661 * Transform user interface.
662 */
663
6d7d684d 664struct crypto_tfm *crypto_alloc_base(const char *alg_name, u32 type, u32 mask);
7b2cd92a
HX
665void crypto_destroy_tfm(void *mem, struct crypto_tfm *tfm);
666
667static inline void crypto_free_tfm(struct crypto_tfm *tfm)
668{
669 return crypto_destroy_tfm(tfm, tfm);
670}
1da177e4 671
da7f033d
HX
672int alg_test(const char *driver, const char *alg, u32 type, u32 mask);
673
1da177e4
LT
674/*
675 * Transform helpers which query the underlying algorithm.
676 */
677static inline const char *crypto_tfm_alg_name(struct crypto_tfm *tfm)
678{
679 return tfm->__crt_alg->cra_name;
680}
681
b14cdd67
ML
682static inline const char *crypto_tfm_alg_driver_name(struct crypto_tfm *tfm)
683{
684 return tfm->__crt_alg->cra_driver_name;
685}
686
687static inline int crypto_tfm_alg_priority(struct crypto_tfm *tfm)
688{
689 return tfm->__crt_alg->cra_priority;
690}
691
1da177e4
LT
692static inline u32 crypto_tfm_alg_type(struct crypto_tfm *tfm)
693{
694 return tfm->__crt_alg->cra_flags & CRYPTO_ALG_TYPE_MASK;
695}
696
1da177e4
LT
697static inline unsigned int crypto_tfm_alg_blocksize(struct crypto_tfm *tfm)
698{
699 return tfm->__crt_alg->cra_blocksize;
700}
701
fbdae9f3
HX
702static inline unsigned int crypto_tfm_alg_alignmask(struct crypto_tfm *tfm)
703{
704 return tfm->__crt_alg->cra_alignmask;
705}
706
f28776a3
HX
707static inline u32 crypto_tfm_get_flags(struct crypto_tfm *tfm)
708{
709 return tfm->crt_flags;
710}
711
712static inline void crypto_tfm_set_flags(struct crypto_tfm *tfm, u32 flags)
713{
714 tfm->crt_flags |= flags;
715}
716
717static inline void crypto_tfm_clear_flags(struct crypto_tfm *tfm, u32 flags)
718{
719 tfm->crt_flags &= ~flags;
720}
721
40725181
HX
722static inline void *crypto_tfm_ctx(struct crypto_tfm *tfm)
723{
f10b7897
HX
724 return tfm->__crt_ctx;
725}
726
727static inline unsigned int crypto_tfm_ctx_alignment(void)
728{
729 struct crypto_tfm *tfm;
730 return __alignof__(tfm->__crt_ctx);
40725181
HX
731}
732
1da177e4
LT
733/*
734 * API wrappers.
735 */
32e3983f
HX
736static inline struct crypto_ablkcipher *__crypto_ablkcipher_cast(
737 struct crypto_tfm *tfm)
738{
739 return (struct crypto_ablkcipher *)tfm;
740}
741
378f4f51 742static inline u32 crypto_skcipher_type(u32 type)
32e3983f 743{
ecfc4329 744 type &= ~(CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV);
32e3983f 745 type |= CRYPTO_ALG_TYPE_BLKCIPHER;
378f4f51
HX
746 return type;
747}
748
749static inline u32 crypto_skcipher_mask(u32 mask)
750{
ecfc4329 751 mask &= ~(CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV);
332f8840 752 mask |= CRYPTO_ALG_TYPE_BLKCIPHER_MASK;
378f4f51
HX
753 return mask;
754}
32e3983f 755
f13ec330
SM
756/**
757 * DOC: Asynchronous Block Cipher API
758 *
759 * Asynchronous block cipher API is used with the ciphers of type
760 * CRYPTO_ALG_TYPE_ABLKCIPHER (listed as type "ablkcipher" in /proc/crypto).
761 *
762 * Asynchronous cipher operations imply that the function invocation for a
763 * cipher request returns immediately before the completion of the operation.
764 * The cipher request is scheduled as a separate kernel thread and therefore
765 * load-balanced on the different CPUs via the process scheduler. To allow
766 * the kernel crypto API to inform the caller about the completion of a cipher
767 * request, the caller must provide a callback function. That function is
768 * invoked with the cipher handle when the request completes.
769 *
770 * To support the asynchronous operation, additional information than just the
771 * cipher handle must be supplied to the kernel crypto API. That additional
772 * information is given by filling in the ablkcipher_request data structure.
773 *
774 * For the asynchronous block cipher API, the state is maintained with the tfm
775 * cipher handle. A single tfm can be used across multiple calls and in
776 * parallel. For asynchronous block cipher calls, context data supplied and
777 * only used by the caller can be referenced the request data structure in
778 * addition to the IV used for the cipher request. The maintenance of such
779 * state information would be important for a crypto driver implementer to
780 * have, because when calling the callback function upon completion of the
781 * cipher operation, that callback function may need some information about
782 * which operation just finished if it invoked multiple in parallel. This
783 * state information is unused by the kernel crypto API.
784 */
785
786/**
787 * crypto_alloc_ablkcipher() - allocate asynchronous block cipher handle
788 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
789 * ablkcipher cipher
790 * @type: specifies the type of the cipher
791 * @mask: specifies the mask for the cipher
792 *
793 * Allocate a cipher handle for an ablkcipher. The returned struct
794 * crypto_ablkcipher is the cipher handle that is required for any subsequent
795 * API invocation for that ablkcipher.
796 *
797 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
798 * of an error, PTR_ERR() returns the error code.
799 */
b9c55aa4
HX
800struct crypto_ablkcipher *crypto_alloc_ablkcipher(const char *alg_name,
801 u32 type, u32 mask);
32e3983f
HX
802
803static inline struct crypto_tfm *crypto_ablkcipher_tfm(
804 struct crypto_ablkcipher *tfm)
805{
806 return &tfm->base;
807}
808
f13ec330
SM
809/**
810 * crypto_free_ablkcipher() - zeroize and free cipher handle
811 * @tfm: cipher handle to be freed
812 */
32e3983f
HX
813static inline void crypto_free_ablkcipher(struct crypto_ablkcipher *tfm)
814{
815 crypto_free_tfm(crypto_ablkcipher_tfm(tfm));
816}
817
f13ec330
SM
818/**
819 * crypto_has_ablkcipher() - Search for the availability of an ablkcipher.
820 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
821 * ablkcipher
822 * @type: specifies the type of the cipher
823 * @mask: specifies the mask for the cipher
824 *
825 * Return: true when the ablkcipher is known to the kernel crypto API; false
826 * otherwise
827 */
32e3983f
HX
828static inline int crypto_has_ablkcipher(const char *alg_name, u32 type,
829 u32 mask)
830{
378f4f51
HX
831 return crypto_has_alg(alg_name, crypto_skcipher_type(type),
832 crypto_skcipher_mask(mask));
32e3983f
HX
833}
834
835static inline struct ablkcipher_tfm *crypto_ablkcipher_crt(
836 struct crypto_ablkcipher *tfm)
837{
838 return &crypto_ablkcipher_tfm(tfm)->crt_ablkcipher;
839}
840
f13ec330
SM
841/**
842 * crypto_ablkcipher_ivsize() - obtain IV size
843 * @tfm: cipher handle
844 *
845 * The size of the IV for the ablkcipher referenced by the cipher handle is
846 * returned. This IV size may be zero if the cipher does not need an IV.
847 *
848 * Return: IV size in bytes
849 */
32e3983f
HX
850static inline unsigned int crypto_ablkcipher_ivsize(
851 struct crypto_ablkcipher *tfm)
852{
853 return crypto_ablkcipher_crt(tfm)->ivsize;
854}
855
f13ec330
SM
856/**
857 * crypto_ablkcipher_blocksize() - obtain block size of cipher
858 * @tfm: cipher handle
859 *
860 * The block size for the ablkcipher referenced with the cipher handle is
861 * returned. The caller may use that information to allocate appropriate
862 * memory for the data returned by the encryption or decryption operation
863 *
864 * Return: block size of cipher
865 */
32e3983f
HX
866static inline unsigned int crypto_ablkcipher_blocksize(
867 struct crypto_ablkcipher *tfm)
868{
869 return crypto_tfm_alg_blocksize(crypto_ablkcipher_tfm(tfm));
870}
871
872static inline unsigned int crypto_ablkcipher_alignmask(
873 struct crypto_ablkcipher *tfm)
874{
875 return crypto_tfm_alg_alignmask(crypto_ablkcipher_tfm(tfm));
876}
877
878static inline u32 crypto_ablkcipher_get_flags(struct crypto_ablkcipher *tfm)
879{
880 return crypto_tfm_get_flags(crypto_ablkcipher_tfm(tfm));
881}
882
883static inline void crypto_ablkcipher_set_flags(struct crypto_ablkcipher *tfm,
884 u32 flags)
885{
886 crypto_tfm_set_flags(crypto_ablkcipher_tfm(tfm), flags);
887}
888
889static inline void crypto_ablkcipher_clear_flags(struct crypto_ablkcipher *tfm,
890 u32 flags)
891{
892 crypto_tfm_clear_flags(crypto_ablkcipher_tfm(tfm), flags);
893}
894
f13ec330
SM
895/**
896 * crypto_ablkcipher_setkey() - set key for cipher
897 * @tfm: cipher handle
898 * @key: buffer holding the key
899 * @keylen: length of the key in bytes
900 *
901 * The caller provided key is set for the ablkcipher referenced by the cipher
902 * handle.
903 *
904 * Note, the key length determines the cipher type. Many block ciphers implement
905 * different cipher modes depending on the key size, such as AES-128 vs AES-192
906 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
907 * is performed.
908 *
909 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
910 */
32e3983f
HX
911static inline int crypto_ablkcipher_setkey(struct crypto_ablkcipher *tfm,
912 const u8 *key, unsigned int keylen)
913{
ecfc4329
HX
914 struct ablkcipher_tfm *crt = crypto_ablkcipher_crt(tfm);
915
916 return crt->setkey(crt->base, key, keylen);
32e3983f
HX
917}
918
f13ec330
SM
919/**
920 * crypto_ablkcipher_reqtfm() - obtain cipher handle from request
921 * @req: ablkcipher_request out of which the cipher handle is to be obtained
922 *
923 * Return the crypto_ablkcipher handle when furnishing an ablkcipher_request
924 * data structure.
925 *
926 * Return: crypto_ablkcipher handle
927 */
32e3983f
HX
928static inline struct crypto_ablkcipher *crypto_ablkcipher_reqtfm(
929 struct ablkcipher_request *req)
930{
931 return __crypto_ablkcipher_cast(req->base.tfm);
932}
933
f13ec330
SM
934/**
935 * crypto_ablkcipher_encrypt() - encrypt plaintext
936 * @req: reference to the ablkcipher_request handle that holds all information
937 * needed to perform the cipher operation
938 *
939 * Encrypt plaintext data using the ablkcipher_request handle. That data
940 * structure and how it is filled with data is discussed with the
941 * ablkcipher_request_* functions.
942 *
943 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
944 */
32e3983f
HX
945static inline int crypto_ablkcipher_encrypt(struct ablkcipher_request *req)
946{
947 struct ablkcipher_tfm *crt =
948 crypto_ablkcipher_crt(crypto_ablkcipher_reqtfm(req));
949 return crt->encrypt(req);
950}
951
f13ec330
SM
952/**
953 * crypto_ablkcipher_decrypt() - decrypt ciphertext
954 * @req: reference to the ablkcipher_request handle that holds all information
955 * needed to perform the cipher operation
956 *
957 * Decrypt ciphertext data using the ablkcipher_request handle. That data
958 * structure and how it is filled with data is discussed with the
959 * ablkcipher_request_* functions.
960 *
961 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
962 */
32e3983f
HX
963static inline int crypto_ablkcipher_decrypt(struct ablkcipher_request *req)
964{
965 struct ablkcipher_tfm *crt =
966 crypto_ablkcipher_crt(crypto_ablkcipher_reqtfm(req));
967 return crt->decrypt(req);
968}
969
f13ec330
SM
970/**
971 * DOC: Asynchronous Cipher Request Handle
972 *
973 * The ablkcipher_request data structure contains all pointers to data
974 * required for the asynchronous cipher operation. This includes the cipher
975 * handle (which can be used by multiple ablkcipher_request instances), pointer
976 * to plaintext and ciphertext, asynchronous callback function, etc. It acts
977 * as a handle to the ablkcipher_request_* API calls in a similar way as
978 * ablkcipher handle to the crypto_ablkcipher_* API calls.
979 */
980
981/**
982 * crypto_ablkcipher_reqsize() - obtain size of the request data structure
983 * @tfm: cipher handle
984 *
985 * Return: number of bytes
986 */
b16c3a2e
HX
987static inline unsigned int crypto_ablkcipher_reqsize(
988 struct crypto_ablkcipher *tfm)
32e3983f
HX
989{
990 return crypto_ablkcipher_crt(tfm)->reqsize;
991}
992
f13ec330
SM
993/**
994 * ablkcipher_request_set_tfm() - update cipher handle reference in request
995 * @req: request handle to be modified
996 * @tfm: cipher handle that shall be added to the request handle
997 *
998 * Allow the caller to replace the existing ablkcipher handle in the request
999 * data structure with a different one.
1000 */
e196d625
HX
1001static inline void ablkcipher_request_set_tfm(
1002 struct ablkcipher_request *req, struct crypto_ablkcipher *tfm)
1003{
ecfc4329 1004 req->base.tfm = crypto_ablkcipher_tfm(crypto_ablkcipher_crt(tfm)->base);
e196d625
HX
1005}
1006
b5b7f088
HX
1007static inline struct ablkcipher_request *ablkcipher_request_cast(
1008 struct crypto_async_request *req)
1009{
1010 return container_of(req, struct ablkcipher_request, base);
1011}
1012
f13ec330
SM
1013/**
1014 * ablkcipher_request_alloc() - allocate request data structure
1015 * @tfm: cipher handle to be registered with the request
1016 * @gfp: memory allocation flag that is handed to kmalloc by the API call.
1017 *
1018 * Allocate the request data structure that must be used with the ablkcipher
1019 * encrypt and decrypt API calls. During the allocation, the provided ablkcipher
1020 * handle is registered in the request data structure.
1021 *
1022 * Return: allocated request handle in case of success; IS_ERR() is true in case
1023 * of an error, PTR_ERR() returns the error code.
1024 */
32e3983f
HX
1025static inline struct ablkcipher_request *ablkcipher_request_alloc(
1026 struct crypto_ablkcipher *tfm, gfp_t gfp)
1027{
1028 struct ablkcipher_request *req;
1029
1030 req = kmalloc(sizeof(struct ablkcipher_request) +
1031 crypto_ablkcipher_reqsize(tfm), gfp);
1032
1033 if (likely(req))
e196d625 1034 ablkcipher_request_set_tfm(req, tfm);
32e3983f
HX
1035
1036 return req;
1037}
1038
f13ec330
SM
1039/**
1040 * ablkcipher_request_free() - zeroize and free request data structure
1041 * @req: request data structure cipher handle to be freed
1042 */
32e3983f
HX
1043static inline void ablkcipher_request_free(struct ablkcipher_request *req)
1044{
aef73cfc 1045 kzfree(req);
32e3983f
HX
1046}
1047
f13ec330
SM
1048/**
1049 * ablkcipher_request_set_callback() - set asynchronous callback function
1050 * @req: request handle
1051 * @flags: specify zero or an ORing of the flags
1052 * CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
1053 * increase the wait queue beyond the initial maximum size;
1054 * CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
1055 * @compl: callback function pointer to be registered with the request handle
1056 * @data: The data pointer refers to memory that is not used by the kernel
1057 * crypto API, but provided to the callback function for it to use. Here,
1058 * the caller can provide a reference to memory the callback function can
1059 * operate on. As the callback function is invoked asynchronously to the
1060 * related functionality, it may need to access data structures of the
1061 * related functionality which can be referenced using this pointer. The
1062 * callback function can access the memory via the "data" field in the
1063 * crypto_async_request data structure provided to the callback function.
1064 *
1065 * This function allows setting the callback function that is triggered once the
1066 * cipher operation completes.
1067 *
1068 * The callback function is registered with the ablkcipher_request handle and
379dcfb4 1069 * must comply with the following template
f13ec330
SM
1070 *
1071 * void callback_function(struct crypto_async_request *req, int error)
1072 */
32e3983f
HX
1073static inline void ablkcipher_request_set_callback(
1074 struct ablkcipher_request *req,
3e3dc25f 1075 u32 flags, crypto_completion_t compl, void *data)
32e3983f 1076{
3e3dc25f 1077 req->base.complete = compl;
32e3983f
HX
1078 req->base.data = data;
1079 req->base.flags = flags;
1080}
1081
f13ec330
SM
1082/**
1083 * ablkcipher_request_set_crypt() - set data buffers
1084 * @req: request handle
1085 * @src: source scatter / gather list
1086 * @dst: destination scatter / gather list
1087 * @nbytes: number of bytes to process from @src
1088 * @iv: IV for the cipher operation which must comply with the IV size defined
1089 * by crypto_ablkcipher_ivsize
1090 *
1091 * This function allows setting of the source data and destination data
1092 * scatter / gather lists.
1093 *
1094 * For encryption, the source is treated as the plaintext and the
1095 * destination is the ciphertext. For a decryption operation, the use is
379dcfb4 1096 * reversed - the source is the ciphertext and the destination is the plaintext.
f13ec330 1097 */
32e3983f
HX
1098static inline void ablkcipher_request_set_crypt(
1099 struct ablkcipher_request *req,
1100 struct scatterlist *src, struct scatterlist *dst,
1101 unsigned int nbytes, void *iv)
1102{
1103 req->src = src;
1104 req->dst = dst;
1105 req->nbytes = nbytes;
1106 req->info = iv;
1107}
1108
58284f0d
SM
1109/**
1110 * DOC: Synchronous Block Cipher API
1111 *
1112 * The synchronous block cipher API is used with the ciphers of type
1113 * CRYPTO_ALG_TYPE_BLKCIPHER (listed as type "blkcipher" in /proc/crypto)
1114 *
1115 * Synchronous calls, have a context in the tfm. But since a single tfm can be
1116 * used in multiple calls and in parallel, this info should not be changeable
1117 * (unless a lock is used). This applies, for example, to the symmetric key.
1118 * However, the IV is changeable, so there is an iv field in blkcipher_tfm
1119 * structure for synchronous blkcipher api. So, its the only state info that can
1120 * be kept for synchronous calls without using a big lock across a tfm.
1121 *
1122 * The block cipher API allows the use of a complete cipher, i.e. a cipher
1123 * consisting of a template (a block chaining mode) and a single block cipher
1124 * primitive (e.g. AES).
1125 *
1126 * The plaintext data buffer and the ciphertext data buffer are pointed to
1127 * by using scatter/gather lists. The cipher operation is performed
1128 * on all segments of the provided scatter/gather lists.
1129 *
1130 * The kernel crypto API supports a cipher operation "in-place" which means that
1131 * the caller may provide the same scatter/gather list for the plaintext and
1132 * cipher text. After the completion of the cipher operation, the plaintext
1133 * data is replaced with the ciphertext data in case of an encryption and vice
1134 * versa for a decryption. The caller must ensure that the scatter/gather lists
1135 * for the output data point to sufficiently large buffers, i.e. multiples of
1136 * the block size of the cipher.
1137 */
1138
5cde0af2
HX
1139static inline struct crypto_blkcipher *__crypto_blkcipher_cast(
1140 struct crypto_tfm *tfm)
1141{
1142 return (struct crypto_blkcipher *)tfm;
1143}
1144
1145static inline struct crypto_blkcipher *crypto_blkcipher_cast(
1146 struct crypto_tfm *tfm)
1147{
1148 BUG_ON(crypto_tfm_alg_type(tfm) != CRYPTO_ALG_TYPE_BLKCIPHER);
1149 return __crypto_blkcipher_cast(tfm);
1150}
1151
58284f0d
SM
1152/**
1153 * crypto_alloc_blkcipher() - allocate synchronous block cipher handle
1154 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1155 * blkcipher cipher
1156 * @type: specifies the type of the cipher
1157 * @mask: specifies the mask for the cipher
1158 *
1159 * Allocate a cipher handle for a block cipher. The returned struct
1160 * crypto_blkcipher is the cipher handle that is required for any subsequent
1161 * API invocation for that block cipher.
1162 *
1163 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
1164 * of an error, PTR_ERR() returns the error code.
1165 */
5cde0af2
HX
1166static inline struct crypto_blkcipher *crypto_alloc_blkcipher(
1167 const char *alg_name, u32 type, u32 mask)
1168{
332f8840 1169 type &= ~CRYPTO_ALG_TYPE_MASK;
5cde0af2 1170 type |= CRYPTO_ALG_TYPE_BLKCIPHER;
332f8840 1171 mask |= CRYPTO_ALG_TYPE_MASK;
5cde0af2
HX
1172
1173 return __crypto_blkcipher_cast(crypto_alloc_base(alg_name, type, mask));
1174}
1175
1176static inline struct crypto_tfm *crypto_blkcipher_tfm(
1177 struct crypto_blkcipher *tfm)
1178{
1179 return &tfm->base;
1180}
1181
58284f0d
SM
1182/**
1183 * crypto_free_blkcipher() - zeroize and free the block cipher handle
1184 * @tfm: cipher handle to be freed
1185 */
5cde0af2
HX
1186static inline void crypto_free_blkcipher(struct crypto_blkcipher *tfm)
1187{
1188 crypto_free_tfm(crypto_blkcipher_tfm(tfm));
1189}
1190
58284f0d
SM
1191/**
1192 * crypto_has_blkcipher() - Search for the availability of a block cipher
1193 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1194 * block cipher
1195 * @type: specifies the type of the cipher
1196 * @mask: specifies the mask for the cipher
1197 *
1198 * Return: true when the block cipher is known to the kernel crypto API; false
1199 * otherwise
1200 */
fce32d70
HX
1201static inline int crypto_has_blkcipher(const char *alg_name, u32 type, u32 mask)
1202{
332f8840 1203 type &= ~CRYPTO_ALG_TYPE_MASK;
fce32d70 1204 type |= CRYPTO_ALG_TYPE_BLKCIPHER;
332f8840 1205 mask |= CRYPTO_ALG_TYPE_MASK;
fce32d70
HX
1206
1207 return crypto_has_alg(alg_name, type, mask);
1208}
1209
58284f0d
SM
1210/**
1211 * crypto_blkcipher_name() - return the name / cra_name from the cipher handle
1212 * @tfm: cipher handle
1213 *
1214 * Return: The character string holding the name of the cipher
1215 */
5cde0af2
HX
1216static inline const char *crypto_blkcipher_name(struct crypto_blkcipher *tfm)
1217{
1218 return crypto_tfm_alg_name(crypto_blkcipher_tfm(tfm));
1219}
1220
1221static inline struct blkcipher_tfm *crypto_blkcipher_crt(
1222 struct crypto_blkcipher *tfm)
1223{
1224 return &crypto_blkcipher_tfm(tfm)->crt_blkcipher;
1225}
1226
1227static inline struct blkcipher_alg *crypto_blkcipher_alg(
1228 struct crypto_blkcipher *tfm)
1229{
1230 return &crypto_blkcipher_tfm(tfm)->__crt_alg->cra_blkcipher;
1231}
1232
58284f0d
SM
1233/**
1234 * crypto_blkcipher_ivsize() - obtain IV size
1235 * @tfm: cipher handle
1236 *
1237 * The size of the IV for the block cipher referenced by the cipher handle is
1238 * returned. This IV size may be zero if the cipher does not need an IV.
1239 *
1240 * Return: IV size in bytes
1241 */
5cde0af2
HX
1242static inline unsigned int crypto_blkcipher_ivsize(struct crypto_blkcipher *tfm)
1243{
1244 return crypto_blkcipher_alg(tfm)->ivsize;
1245}
1246
58284f0d
SM
1247/**
1248 * crypto_blkcipher_blocksize() - obtain block size of cipher
1249 * @tfm: cipher handle
1250 *
1251 * The block size for the block cipher referenced with the cipher handle is
1252 * returned. The caller may use that information to allocate appropriate
1253 * memory for the data returned by the encryption or decryption operation.
1254 *
1255 * Return: block size of cipher
1256 */
5cde0af2
HX
1257static inline unsigned int crypto_blkcipher_blocksize(
1258 struct crypto_blkcipher *tfm)
1259{
1260 return crypto_tfm_alg_blocksize(crypto_blkcipher_tfm(tfm));
1261}
1262
1263static inline unsigned int crypto_blkcipher_alignmask(
1264 struct crypto_blkcipher *tfm)
1265{
1266 return crypto_tfm_alg_alignmask(crypto_blkcipher_tfm(tfm));
1267}
1268
1269static inline u32 crypto_blkcipher_get_flags(struct crypto_blkcipher *tfm)
1270{
1271 return crypto_tfm_get_flags(crypto_blkcipher_tfm(tfm));
1272}
1273
1274static inline void crypto_blkcipher_set_flags(struct crypto_blkcipher *tfm,
1275 u32 flags)
1276{
1277 crypto_tfm_set_flags(crypto_blkcipher_tfm(tfm), flags);
1278}
1279
1280static inline void crypto_blkcipher_clear_flags(struct crypto_blkcipher *tfm,
1281 u32 flags)
1282{
1283 crypto_tfm_clear_flags(crypto_blkcipher_tfm(tfm), flags);
1284}
1285
58284f0d
SM
1286/**
1287 * crypto_blkcipher_setkey() - set key for cipher
1288 * @tfm: cipher handle
1289 * @key: buffer holding the key
1290 * @keylen: length of the key in bytes
1291 *
1292 * The caller provided key is set for the block cipher referenced by the cipher
1293 * handle.
1294 *
1295 * Note, the key length determines the cipher type. Many block ciphers implement
1296 * different cipher modes depending on the key size, such as AES-128 vs AES-192
1297 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
1298 * is performed.
1299 *
1300 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
1301 */
5cde0af2
HX
1302static inline int crypto_blkcipher_setkey(struct crypto_blkcipher *tfm,
1303 const u8 *key, unsigned int keylen)
1304{
1305 return crypto_blkcipher_crt(tfm)->setkey(crypto_blkcipher_tfm(tfm),
1306 key, keylen);
1307}
1308
58284f0d
SM
1309/**
1310 * crypto_blkcipher_encrypt() - encrypt plaintext
1311 * @desc: reference to the block cipher handle with meta data
1312 * @dst: scatter/gather list that is filled by the cipher operation with the
1313 * ciphertext
1314 * @src: scatter/gather list that holds the plaintext
1315 * @nbytes: number of bytes of the plaintext to encrypt.
1316 *
1317 * Encrypt plaintext data using the IV set by the caller with a preceding
1318 * call of crypto_blkcipher_set_iv.
1319 *
1320 * The blkcipher_desc data structure must be filled by the caller and can
1321 * reside on the stack. The caller must fill desc as follows: desc.tfm is filled
1322 * with the block cipher handle; desc.flags is filled with either
1323 * CRYPTO_TFM_REQ_MAY_SLEEP or 0.
1324 *
1325 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1326 */
5cde0af2
HX
1327static inline int crypto_blkcipher_encrypt(struct blkcipher_desc *desc,
1328 struct scatterlist *dst,
1329 struct scatterlist *src,
1330 unsigned int nbytes)
1331{
1332 desc->info = crypto_blkcipher_crt(desc->tfm)->iv;
1333 return crypto_blkcipher_crt(desc->tfm)->encrypt(desc, dst, src, nbytes);
1334}
1335
58284f0d
SM
1336/**
1337 * crypto_blkcipher_encrypt_iv() - encrypt plaintext with dedicated IV
1338 * @desc: reference to the block cipher handle with meta data
1339 * @dst: scatter/gather list that is filled by the cipher operation with the
1340 * ciphertext
1341 * @src: scatter/gather list that holds the plaintext
1342 * @nbytes: number of bytes of the plaintext to encrypt.
1343 *
1344 * Encrypt plaintext data with the use of an IV that is solely used for this
1345 * cipher operation. Any previously set IV is not used.
1346 *
1347 * The blkcipher_desc data structure must be filled by the caller and can
1348 * reside on the stack. The caller must fill desc as follows: desc.tfm is filled
1349 * with the block cipher handle; desc.info is filled with the IV to be used for
1350 * the current operation; desc.flags is filled with either
1351 * CRYPTO_TFM_REQ_MAY_SLEEP or 0.
1352 *
1353 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1354 */
5cde0af2
HX
1355static inline int crypto_blkcipher_encrypt_iv(struct blkcipher_desc *desc,
1356 struct scatterlist *dst,
1357 struct scatterlist *src,
1358 unsigned int nbytes)
1359{
1360 return crypto_blkcipher_crt(desc->tfm)->encrypt(desc, dst, src, nbytes);
1361}
1362
58284f0d
SM
1363/**
1364 * crypto_blkcipher_decrypt() - decrypt ciphertext
1365 * @desc: reference to the block cipher handle with meta data
1366 * @dst: scatter/gather list that is filled by the cipher operation with the
1367 * plaintext
1368 * @src: scatter/gather list that holds the ciphertext
1369 * @nbytes: number of bytes of the ciphertext to decrypt.
1370 *
1371 * Decrypt ciphertext data using the IV set by the caller with a preceding
1372 * call of crypto_blkcipher_set_iv.
1373 *
1374 * The blkcipher_desc data structure must be filled by the caller as documented
1375 * for the crypto_blkcipher_encrypt call above.
1376 *
1377 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1378 *
1379 */
5cde0af2
HX
1380static inline int crypto_blkcipher_decrypt(struct blkcipher_desc *desc,
1381 struct scatterlist *dst,
1382 struct scatterlist *src,
1383 unsigned int nbytes)
1384{
1385 desc->info = crypto_blkcipher_crt(desc->tfm)->iv;
1386 return crypto_blkcipher_crt(desc->tfm)->decrypt(desc, dst, src, nbytes);
1387}
1388
58284f0d
SM
1389/**
1390 * crypto_blkcipher_decrypt_iv() - decrypt ciphertext with dedicated IV
1391 * @desc: reference to the block cipher handle with meta data
1392 * @dst: scatter/gather list that is filled by the cipher operation with the
1393 * plaintext
1394 * @src: scatter/gather list that holds the ciphertext
1395 * @nbytes: number of bytes of the ciphertext to decrypt.
1396 *
1397 * Decrypt ciphertext data with the use of an IV that is solely used for this
1398 * cipher operation. Any previously set IV is not used.
1399 *
1400 * The blkcipher_desc data structure must be filled by the caller as documented
1401 * for the crypto_blkcipher_encrypt_iv call above.
1402 *
1403 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1404 */
5cde0af2
HX
1405static inline int crypto_blkcipher_decrypt_iv(struct blkcipher_desc *desc,
1406 struct scatterlist *dst,
1407 struct scatterlist *src,
1408 unsigned int nbytes)
1409{
1410 return crypto_blkcipher_crt(desc->tfm)->decrypt(desc, dst, src, nbytes);
1411}
1412
58284f0d
SM
1413/**
1414 * crypto_blkcipher_set_iv() - set IV for cipher
1415 * @tfm: cipher handle
1416 * @src: buffer holding the IV
1417 * @len: length of the IV in bytes
1418 *
1419 * The caller provided IV is set for the block cipher referenced by the cipher
1420 * handle.
1421 */
5cde0af2
HX
1422static inline void crypto_blkcipher_set_iv(struct crypto_blkcipher *tfm,
1423 const u8 *src, unsigned int len)
1424{
1425 memcpy(crypto_blkcipher_crt(tfm)->iv, src, len);
1426}
1427
58284f0d
SM
1428/**
1429 * crypto_blkcipher_get_iv() - obtain IV from cipher
1430 * @tfm: cipher handle
1431 * @dst: buffer filled with the IV
1432 * @len: length of the buffer dst
1433 *
1434 * The caller can obtain the IV set for the block cipher referenced by the
1435 * cipher handle and store it into the user-provided buffer. If the buffer
1436 * has an insufficient space, the IV is truncated to fit the buffer.
1437 */
5cde0af2
HX
1438static inline void crypto_blkcipher_get_iv(struct crypto_blkcipher *tfm,
1439 u8 *dst, unsigned int len)
1440{
1441 memcpy(dst, crypto_blkcipher_crt(tfm)->iv, len);
1442}
1443
16e61030
SM
1444/**
1445 * DOC: Single Block Cipher API
1446 *
1447 * The single block cipher API is used with the ciphers of type
1448 * CRYPTO_ALG_TYPE_CIPHER (listed as type "cipher" in /proc/crypto).
1449 *
1450 * Using the single block cipher API calls, operations with the basic cipher
1451 * primitive can be implemented. These cipher primitives exclude any block
1452 * chaining operations including IV handling.
1453 *
1454 * The purpose of this single block cipher API is to support the implementation
1455 * of templates or other concepts that only need to perform the cipher operation
1456 * on one block at a time. Templates invoke the underlying cipher primitive
1457 * block-wise and process either the input or the output data of these cipher
1458 * operations.
1459 */
1460
f28776a3
HX
1461static inline struct crypto_cipher *__crypto_cipher_cast(struct crypto_tfm *tfm)
1462{
1463 return (struct crypto_cipher *)tfm;
1464}
1465
1466static inline struct crypto_cipher *crypto_cipher_cast(struct crypto_tfm *tfm)
1467{
1468 BUG_ON(crypto_tfm_alg_type(tfm) != CRYPTO_ALG_TYPE_CIPHER);
1469 return __crypto_cipher_cast(tfm);
1470}
1471
16e61030
SM
1472/**
1473 * crypto_alloc_cipher() - allocate single block cipher handle
1474 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1475 * single block cipher
1476 * @type: specifies the type of the cipher
1477 * @mask: specifies the mask for the cipher
1478 *
1479 * Allocate a cipher handle for a single block cipher. The returned struct
1480 * crypto_cipher is the cipher handle that is required for any subsequent API
1481 * invocation for that single block cipher.
1482 *
1483 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
1484 * of an error, PTR_ERR() returns the error code.
1485 */
f28776a3
HX
1486static inline struct crypto_cipher *crypto_alloc_cipher(const char *alg_name,
1487 u32 type, u32 mask)
1488{
1489 type &= ~CRYPTO_ALG_TYPE_MASK;
1490 type |= CRYPTO_ALG_TYPE_CIPHER;
1491 mask |= CRYPTO_ALG_TYPE_MASK;
1492
1493 return __crypto_cipher_cast(crypto_alloc_base(alg_name, type, mask));
1494}
1495
1496static inline struct crypto_tfm *crypto_cipher_tfm(struct crypto_cipher *tfm)
1497{
78a1fe4f 1498 return &tfm->base;
f28776a3
HX
1499}
1500
16e61030
SM
1501/**
1502 * crypto_free_cipher() - zeroize and free the single block cipher handle
1503 * @tfm: cipher handle to be freed
1504 */
f28776a3
HX
1505static inline void crypto_free_cipher(struct crypto_cipher *tfm)
1506{
1507 crypto_free_tfm(crypto_cipher_tfm(tfm));
1508}
1509
16e61030
SM
1510/**
1511 * crypto_has_cipher() - Search for the availability of a single block cipher
1512 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1513 * single block cipher
1514 * @type: specifies the type of the cipher
1515 * @mask: specifies the mask for the cipher
1516 *
1517 * Return: true when the single block cipher is known to the kernel crypto API;
1518 * false otherwise
1519 */
fce32d70
HX
1520static inline int crypto_has_cipher(const char *alg_name, u32 type, u32 mask)
1521{
1522 type &= ~CRYPTO_ALG_TYPE_MASK;
1523 type |= CRYPTO_ALG_TYPE_CIPHER;
1524 mask |= CRYPTO_ALG_TYPE_MASK;
1525
1526 return crypto_has_alg(alg_name, type, mask);
1527}
1528
f28776a3
HX
1529static inline struct cipher_tfm *crypto_cipher_crt(struct crypto_cipher *tfm)
1530{
1531 return &crypto_cipher_tfm(tfm)->crt_cipher;
1532}
1533
16e61030
SM
1534/**
1535 * crypto_cipher_blocksize() - obtain block size for cipher
1536 * @tfm: cipher handle
1537 *
1538 * The block size for the single block cipher referenced with the cipher handle
1539 * tfm is returned. The caller may use that information to allocate appropriate
1540 * memory for the data returned by the encryption or decryption operation
1541 *
1542 * Return: block size of cipher
1543 */
f28776a3
HX
1544static inline unsigned int crypto_cipher_blocksize(struct crypto_cipher *tfm)
1545{
1546 return crypto_tfm_alg_blocksize(crypto_cipher_tfm(tfm));
1547}
1548
1549static inline unsigned int crypto_cipher_alignmask(struct crypto_cipher *tfm)
1550{
1551 return crypto_tfm_alg_alignmask(crypto_cipher_tfm(tfm));
1552}
1553
1554static inline u32 crypto_cipher_get_flags(struct crypto_cipher *tfm)
1555{
1556 return crypto_tfm_get_flags(crypto_cipher_tfm(tfm));
1557}
1558
1559static inline void crypto_cipher_set_flags(struct crypto_cipher *tfm,
1560 u32 flags)
1561{
1562 crypto_tfm_set_flags(crypto_cipher_tfm(tfm), flags);
1563}
1564
1565static inline void crypto_cipher_clear_flags(struct crypto_cipher *tfm,
1566 u32 flags)
1567{
1568 crypto_tfm_clear_flags(crypto_cipher_tfm(tfm), flags);
1569}
1570
16e61030
SM
1571/**
1572 * crypto_cipher_setkey() - set key for cipher
1573 * @tfm: cipher handle
1574 * @key: buffer holding the key
1575 * @keylen: length of the key in bytes
1576 *
1577 * The caller provided key is set for the single block cipher referenced by the
1578 * cipher handle.
1579 *
1580 * Note, the key length determines the cipher type. Many block ciphers implement
1581 * different cipher modes depending on the key size, such as AES-128 vs AES-192
1582 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
1583 * is performed.
1584 *
1585 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
1586 */
7226bc87
HX
1587static inline int crypto_cipher_setkey(struct crypto_cipher *tfm,
1588 const u8 *key, unsigned int keylen)
1589{
1590 return crypto_cipher_crt(tfm)->cit_setkey(crypto_cipher_tfm(tfm),
1591 key, keylen);
1592}
1593
16e61030
SM
1594/**
1595 * crypto_cipher_encrypt_one() - encrypt one block of plaintext
1596 * @tfm: cipher handle
1597 * @dst: points to the buffer that will be filled with the ciphertext
1598 * @src: buffer holding the plaintext to be encrypted
1599 *
1600 * Invoke the encryption operation of one block. The caller must ensure that
1601 * the plaintext and ciphertext buffers are at least one block in size.
1602 */
f28776a3
HX
1603static inline void crypto_cipher_encrypt_one(struct crypto_cipher *tfm,
1604 u8 *dst, const u8 *src)
1605{
1606 crypto_cipher_crt(tfm)->cit_encrypt_one(crypto_cipher_tfm(tfm),
1607 dst, src);
1608}
1609
16e61030
SM
1610/**
1611 * crypto_cipher_decrypt_one() - decrypt one block of ciphertext
1612 * @tfm: cipher handle
1613 * @dst: points to the buffer that will be filled with the plaintext
1614 * @src: buffer holding the ciphertext to be decrypted
1615 *
1616 * Invoke the decryption operation of one block. The caller must ensure that
1617 * the plaintext and ciphertext buffers are at least one block in size.
1618 */
f28776a3
HX
1619static inline void crypto_cipher_decrypt_one(struct crypto_cipher *tfm,
1620 u8 *dst, const u8 *src)
1621{
1622 crypto_cipher_crt(tfm)->cit_decrypt_one(crypto_cipher_tfm(tfm),
1623 dst, src);
1624}
1625
47ca5be9
SM
1626/**
1627 * DOC: Synchronous Message Digest API
1628 *
1629 * The synchronous message digest API is used with the ciphers of type
1630 * CRYPTO_ALG_TYPE_HASH (listed as type "hash" in /proc/crypto)
1631 */
1632
055bcee3 1633static inline struct crypto_hash *__crypto_hash_cast(struct crypto_tfm *tfm)
1da177e4 1634{
055bcee3 1635 return (struct crypto_hash *)tfm;
1da177e4
LT
1636}
1637
055bcee3 1638static inline struct crypto_hash *crypto_hash_cast(struct crypto_tfm *tfm)
1da177e4 1639{
055bcee3
HX
1640 BUG_ON((crypto_tfm_alg_type(tfm) ^ CRYPTO_ALG_TYPE_HASH) &
1641 CRYPTO_ALG_TYPE_HASH_MASK);
1642 return __crypto_hash_cast(tfm);
1da177e4
LT
1643}
1644
47ca5be9
SM
1645/**
1646 * crypto_alloc_hash() - allocate synchronous message digest handle
1647 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1648 * message digest cipher
1649 * @type: specifies the type of the cipher
1650 * @mask: specifies the mask for the cipher
1651 *
1652 * Allocate a cipher handle for a message digest. The returned struct
1653 * crypto_hash is the cipher handle that is required for any subsequent
1654 * API invocation for that message digest.
1655 *
1656 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
1657 * of an error, PTR_ERR() returns the error code.
1658 */
055bcee3
HX
1659static inline struct crypto_hash *crypto_alloc_hash(const char *alg_name,
1660 u32 type, u32 mask)
1da177e4 1661{
055bcee3 1662 type &= ~CRYPTO_ALG_TYPE_MASK;
551a09a7 1663 mask &= ~CRYPTO_ALG_TYPE_MASK;
055bcee3
HX
1664 type |= CRYPTO_ALG_TYPE_HASH;
1665 mask |= CRYPTO_ALG_TYPE_HASH_MASK;
1666
1667 return __crypto_hash_cast(crypto_alloc_base(alg_name, type, mask));
1da177e4
LT
1668}
1669
055bcee3 1670static inline struct crypto_tfm *crypto_hash_tfm(struct crypto_hash *tfm)
1da177e4 1671{
055bcee3
HX
1672 return &tfm->base;
1673}
1674
47ca5be9
SM
1675/**
1676 * crypto_free_hash() - zeroize and free message digest handle
1677 * @tfm: cipher handle to be freed
1678 */
055bcee3
HX
1679static inline void crypto_free_hash(struct crypto_hash *tfm)
1680{
1681 crypto_free_tfm(crypto_hash_tfm(tfm));
1682}
1683
47ca5be9
SM
1684/**
1685 * crypto_has_hash() - Search for the availability of a message digest
1686 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1687 * message digest cipher
1688 * @type: specifies the type of the cipher
1689 * @mask: specifies the mask for the cipher
1690 *
1691 * Return: true when the message digest cipher is known to the kernel crypto
1692 * API; false otherwise
1693 */
fce32d70
HX
1694static inline int crypto_has_hash(const char *alg_name, u32 type, u32 mask)
1695{
1696 type &= ~CRYPTO_ALG_TYPE_MASK;
551a09a7 1697 mask &= ~CRYPTO_ALG_TYPE_MASK;
fce32d70
HX
1698 type |= CRYPTO_ALG_TYPE_HASH;
1699 mask |= CRYPTO_ALG_TYPE_HASH_MASK;
1700
1701 return crypto_has_alg(alg_name, type, mask);
1702}
1703
055bcee3
HX
1704static inline struct hash_tfm *crypto_hash_crt(struct crypto_hash *tfm)
1705{
1706 return &crypto_hash_tfm(tfm)->crt_hash;
1707}
1708
47ca5be9
SM
1709/**
1710 * crypto_hash_blocksize() - obtain block size for message digest
1711 * @tfm: cipher handle
1712 *
1713 * The block size for the message digest cipher referenced with the cipher
1714 * handle is returned.
1715 *
1716 * Return: block size of cipher
1717 */
055bcee3
HX
1718static inline unsigned int crypto_hash_blocksize(struct crypto_hash *tfm)
1719{
1720 return crypto_tfm_alg_blocksize(crypto_hash_tfm(tfm));
1721}
1722
1723static inline unsigned int crypto_hash_alignmask(struct crypto_hash *tfm)
1724{
1725 return crypto_tfm_alg_alignmask(crypto_hash_tfm(tfm));
1726}
1727
47ca5be9
SM
1728/**
1729 * crypto_hash_digestsize() - obtain message digest size
1730 * @tfm: cipher handle
1731 *
1732 * The size for the message digest created by the message digest cipher
1733 * referenced with the cipher handle is returned.
1734 *
1735 * Return: message digest size
1736 */
055bcee3
HX
1737static inline unsigned int crypto_hash_digestsize(struct crypto_hash *tfm)
1738{
1739 return crypto_hash_crt(tfm)->digestsize;
1740}
1741
1742static inline u32 crypto_hash_get_flags(struct crypto_hash *tfm)
1743{
1744 return crypto_tfm_get_flags(crypto_hash_tfm(tfm));
1745}
1746
1747static inline void crypto_hash_set_flags(struct crypto_hash *tfm, u32 flags)
1748{
1749 crypto_tfm_set_flags(crypto_hash_tfm(tfm), flags);
1750}
1751
1752static inline void crypto_hash_clear_flags(struct crypto_hash *tfm, u32 flags)
1753{
1754 crypto_tfm_clear_flags(crypto_hash_tfm(tfm), flags);
1755}
1756
47ca5be9
SM
1757/**
1758 * crypto_hash_init() - (re)initialize message digest handle
1759 * @desc: cipher request handle that to be filled by caller --
1760 * desc.tfm is filled with the hash cipher handle;
1761 * desc.flags is filled with either CRYPTO_TFM_REQ_MAY_SLEEP or 0.
1762 *
1763 * The call (re-)initializes the message digest referenced by the hash cipher
1764 * request handle. Any potentially existing state created by previous
1765 * operations is discarded.
1766 *
1767 * Return: 0 if the message digest initialization was successful; < 0 if an
1768 * error occurred
1769 */
055bcee3
HX
1770static inline int crypto_hash_init(struct hash_desc *desc)
1771{
1772 return crypto_hash_crt(desc->tfm)->init(desc);
1773}
1774
47ca5be9
SM
1775/**
1776 * crypto_hash_update() - add data to message digest for processing
1777 * @desc: cipher request handle
1778 * @sg: scatter / gather list pointing to the data to be added to the message
1779 * digest
1780 * @nbytes: number of bytes to be processed from @sg
1781 *
1782 * Updates the message digest state of the cipher handle pointed to by the
1783 * hash cipher request handle with the input data pointed to by the
1784 * scatter/gather list.
1785 *
1786 * Return: 0 if the message digest update was successful; < 0 if an error
1787 * occurred
1788 */
055bcee3
HX
1789static inline int crypto_hash_update(struct hash_desc *desc,
1790 struct scatterlist *sg,
1791 unsigned int nbytes)
1792{
1793 return crypto_hash_crt(desc->tfm)->update(desc, sg, nbytes);
1794}
1795
47ca5be9
SM
1796/**
1797 * crypto_hash_final() - calculate message digest
1798 * @desc: cipher request handle
1799 * @out: message digest output buffer -- The caller must ensure that the out
1800 * buffer has a sufficient size (e.g. by using the crypto_hash_digestsize
1801 * function).
1802 *
1803 * Finalize the message digest operation and create the message digest
1804 * based on all data added to the cipher handle. The message digest is placed
1805 * into the output buffer.
1806 *
1807 * Return: 0 if the message digest creation was successful; < 0 if an error
1808 * occurred
1809 */
055bcee3
HX
1810static inline int crypto_hash_final(struct hash_desc *desc, u8 *out)
1811{
1812 return crypto_hash_crt(desc->tfm)->final(desc, out);
1813}
1814
47ca5be9
SM
1815/**
1816 * crypto_hash_digest() - calculate message digest for a buffer
1817 * @desc: see crypto_hash_final()
1818 * @sg: see crypto_hash_update()
1819 * @nbytes: see crypto_hash_update()
1820 * @out: see crypto_hash_final()
1821 *
1822 * This function is a "short-hand" for the function calls of crypto_hash_init,
1823 * crypto_hash_update and crypto_hash_final. The parameters have the same
1824 * meaning as discussed for those separate three functions.
1825 *
1826 * Return: 0 if the message digest creation was successful; < 0 if an error
1827 * occurred
1828 */
055bcee3
HX
1829static inline int crypto_hash_digest(struct hash_desc *desc,
1830 struct scatterlist *sg,
1831 unsigned int nbytes, u8 *out)
1832{
1833 return crypto_hash_crt(desc->tfm)->digest(desc, sg, nbytes, out);
1834}
1835
47ca5be9
SM
1836/**
1837 * crypto_hash_setkey() - set key for message digest
1838 * @hash: cipher handle
1839 * @key: buffer holding the key
1840 * @keylen: length of the key in bytes
1841 *
1842 * The caller provided key is set for the message digest cipher. The cipher
1843 * handle must point to a keyed hash in order for this function to succeed.
1844 *
1845 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
1846 */
055bcee3
HX
1847static inline int crypto_hash_setkey(struct crypto_hash *hash,
1848 const u8 *key, unsigned int keylen)
1849{
1850 return crypto_hash_crt(hash)->setkey(hash, key, keylen);
1da177e4
LT
1851}
1852
fce32d70
HX
1853static inline struct crypto_comp *__crypto_comp_cast(struct crypto_tfm *tfm)
1854{
1855 return (struct crypto_comp *)tfm;
1856}
1857
1858static inline struct crypto_comp *crypto_comp_cast(struct crypto_tfm *tfm)
1859{
1860 BUG_ON((crypto_tfm_alg_type(tfm) ^ CRYPTO_ALG_TYPE_COMPRESS) &
1861 CRYPTO_ALG_TYPE_MASK);
1862 return __crypto_comp_cast(tfm);
1863}
1864
1865static inline struct crypto_comp *crypto_alloc_comp(const char *alg_name,
1866 u32 type, u32 mask)
1867{
1868 type &= ~CRYPTO_ALG_TYPE_MASK;
1869 type |= CRYPTO_ALG_TYPE_COMPRESS;
1870 mask |= CRYPTO_ALG_TYPE_MASK;
1871
1872 return __crypto_comp_cast(crypto_alloc_base(alg_name, type, mask));
1873}
1874
1875static inline struct crypto_tfm *crypto_comp_tfm(struct crypto_comp *tfm)
1876{
78a1fe4f 1877 return &tfm->base;
fce32d70
HX
1878}
1879
1880static inline void crypto_free_comp(struct crypto_comp *tfm)
1881{
1882 crypto_free_tfm(crypto_comp_tfm(tfm));
1883}
1884
1885static inline int crypto_has_comp(const char *alg_name, u32 type, u32 mask)
1886{
1887 type &= ~CRYPTO_ALG_TYPE_MASK;
1888 type |= CRYPTO_ALG_TYPE_COMPRESS;
1889 mask |= CRYPTO_ALG_TYPE_MASK;
1890
1891 return crypto_has_alg(alg_name, type, mask);
1892}
1893
e4d5b79c
HX
1894static inline const char *crypto_comp_name(struct crypto_comp *tfm)
1895{
1896 return crypto_tfm_alg_name(crypto_comp_tfm(tfm));
1897}
1898
fce32d70
HX
1899static inline struct compress_tfm *crypto_comp_crt(struct crypto_comp *tfm)
1900{
1901 return &crypto_comp_tfm(tfm)->crt_compress;
1902}
1903
1904static inline int crypto_comp_compress(struct crypto_comp *tfm,
1da177e4
LT
1905 const u8 *src, unsigned int slen,
1906 u8 *dst, unsigned int *dlen)
1907{
78a1fe4f
HX
1908 return crypto_comp_crt(tfm)->cot_compress(crypto_comp_tfm(tfm),
1909 src, slen, dst, dlen);
1da177e4
LT
1910}
1911
fce32d70 1912static inline int crypto_comp_decompress(struct crypto_comp *tfm,
1da177e4
LT
1913 const u8 *src, unsigned int slen,
1914 u8 *dst, unsigned int *dlen)
1915{
78a1fe4f
HX
1916 return crypto_comp_crt(tfm)->cot_decompress(crypto_comp_tfm(tfm),
1917 src, slen, dst, dlen);
1da177e4
LT
1918}
1919
1da177e4
LT
1920#endif /* _LINUX_CRYPTO_H */
1921
This page took 0.935746 seconds and 5 git commands to generate.