memcg: reduce function dereference
[deliverable/linux.git] / include / linux / memcontrol.h
CommitLineData
8cdea7c0
BS
1/* memcontrol.h - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
8cdea7c0
BS
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 */
19
20#ifndef _LINUX_MEMCONTROL_H
21#define _LINUX_MEMCONTROL_H
f8d66542 22#include <linux/cgroup.h>
456f998e 23#include <linux/vm_event_item.h>
7ae1e1d0 24#include <linux/hardirq.h>
a8964b9b 25#include <linux/jump_label.h>
456f998e 26
78fb7466
PE
27struct mem_cgroup;
28struct page_cgroup;
8697d331
BS
29struct page;
30struct mm_struct;
2633d7a0 31struct kmem_cache;
78fb7466 32
2a7106f2
GT
33/* Stats that can be updated by kernel. */
34enum mem_cgroup_page_stat_item {
35 MEMCG_NR_FILE_MAPPED, /* # of pages charged as file rss */
36};
37
5660048c
JW
38struct mem_cgroup_reclaim_cookie {
39 struct zone *zone;
40 int priority;
41 unsigned int generation;
42};
43
de57780d
MH
44enum mem_cgroup_filter_t {
45 VISIT, /* visit current node */
46 SKIP, /* skip the current node and continue traversal */
47 SKIP_TREE, /* skip the whole subtree and continue traversal */
48};
49
50/*
51 * mem_cgroup_filter_t predicate might instruct mem_cgroup_iter_cond how to
52 * iterate through the hierarchy tree. Each tree element is checked by the
53 * predicate before it is returned by the iterator. If a filter returns
54 * SKIP or SKIP_TREE then the iterator code continues traversal (with the
55 * next node down the hierarchy or the next node that doesn't belong under the
56 * memcg's subtree).
57 */
58typedef enum mem_cgroup_filter_t
59(*mem_cgroup_iter_filter)(struct mem_cgroup *memcg, struct mem_cgroup *root);
60
c255a458 61#ifdef CONFIG_MEMCG
2c26fdd7
KH
62/*
63 * All "charge" functions with gfp_mask should use GFP_KERNEL or
64 * (gfp_mask & GFP_RECLAIM_MASK). In current implementatin, memcg doesn't
65 * alloc memory but reclaims memory from all available zones. So, "where I want
66 * memory from" bits of gfp_mask has no meaning. So any bits of that field is
67 * available but adding a rule is better. charge functions' gfp_mask should
68 * be set to GFP_KERNEL or gfp_mask & GFP_RECLAIM_MASK for avoiding ambiguous
69 * codes.
70 * (Of course, if memcg does memory allocation in future, GFP_KERNEL is sane.)
71 */
78fb7466 72
7a81b88c 73extern int mem_cgroup_newpage_charge(struct page *page, struct mm_struct *mm,
e1a1cd59 74 gfp_t gfp_mask);
7a81b88c 75/* for swap handling */
8c7c6e34 76extern int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
72835c86 77 struct page *page, gfp_t mask, struct mem_cgroup **memcgp);
7a81b88c 78extern void mem_cgroup_commit_charge_swapin(struct page *page,
72835c86
JW
79 struct mem_cgroup *memcg);
80extern void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg);
7a81b88c 81
8289546e
HD
82extern int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
83 gfp_t gfp_mask);
925b7673
JW
84
85struct lruvec *mem_cgroup_zone_lruvec(struct zone *, struct mem_cgroup *);
fa9add64 86struct lruvec *mem_cgroup_page_lruvec(struct page *, struct zone *);
569b846d
KH
87
88/* For coalescing uncharge for reducing memcg' overhead*/
89extern void mem_cgroup_uncharge_start(void);
90extern void mem_cgroup_uncharge_end(void);
91
3c541e14 92extern void mem_cgroup_uncharge_page(struct page *page);
69029cd5 93extern void mem_cgroup_uncharge_cache_page(struct page *page);
c9b0ed51 94
c3ac9a8a
JW
95bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
96 struct mem_cgroup *memcg);
ffbdccf5
DR
97bool task_in_mem_cgroup(struct task_struct *task,
98 const struct mem_cgroup *memcg);
3062fc67 99
e42d9d5d 100extern struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page);
cf475ad2 101extern struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
a433658c 102extern struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm);
cf475ad2 103
e1aab161 104extern struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg);
182446d0 105extern struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css);
e1aab161 106
2e4d4091 107static inline
587af308 108bool mm_match_cgroup(const struct mm_struct *mm, const struct mem_cgroup *memcg)
2e4d4091 109{
587af308
JW
110 struct mem_cgroup *task_memcg;
111 bool match;
c3ac9a8a 112
2e4d4091 113 rcu_read_lock();
587af308
JW
114 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
115 match = __mem_cgroup_same_or_subtree(memcg, task_memcg);
2e4d4091 116 rcu_read_unlock();
c3ac9a8a 117 return match;
2e4d4091 118}
8a9f3ccd 119
c0ff4b85 120extern struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg);
d324236b 121
0030f535
JW
122extern void
123mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
124 struct mem_cgroup **memcgp);
c0ff4b85 125extern void mem_cgroup_end_migration(struct mem_cgroup *memcg,
50de1dd9 126 struct page *oldpage, struct page *newpage, bool migration_ok);
ae41be37 127
de57780d
MH
128struct mem_cgroup *mem_cgroup_iter_cond(struct mem_cgroup *root,
129 struct mem_cgroup *prev,
130 struct mem_cgroup_reclaim_cookie *reclaim,
131 mem_cgroup_iter_filter cond);
132
133static inline struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
134 struct mem_cgroup *prev,
135 struct mem_cgroup_reclaim_cookie *reclaim)
136{
137 return mem_cgroup_iter_cond(root, prev, reclaim, NULL);
138}
139
5660048c
JW
140void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
141
58ae83db
KH
142/*
143 * For memory reclaim.
144 */
c56d5c7d 145int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec);
889976db 146int mem_cgroup_select_victim_node(struct mem_cgroup *memcg);
4d7dcca2 147unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list);
fa9add64 148void mem_cgroup_update_lru_size(struct lruvec *, enum lru_list, int);
e222432b
BS
149extern void mem_cgroup_print_oom_info(struct mem_cgroup *memcg,
150 struct task_struct *p);
ab936cbc
KH
151extern void mem_cgroup_replace_page_cache(struct page *oldpage,
152 struct page *newpage);
58ae83db 153
519e5247
JW
154/**
155 * mem_cgroup_toggle_oom - toggle the memcg OOM killer for the current task
156 * @new: true to enable, false to disable
157 *
158 * Toggle whether a failed memcg charge should invoke the OOM killer
159 * or just return -ENOMEM. Returns the previous toggle state.
3812c8c8
JW
160 *
161 * NOTE: Any path that enables the OOM killer before charging must
162 * call mem_cgroup_oom_synchronize() afterward to finalize the
163 * OOM handling and clean up.
519e5247
JW
164 */
165static inline bool mem_cgroup_toggle_oom(bool new)
166{
167 bool old;
168
169 old = current->memcg_oom.may_oom;
170 current->memcg_oom.may_oom = new;
171
172 return old;
173}
174
175static inline void mem_cgroup_enable_oom(void)
176{
177 bool old = mem_cgroup_toggle_oom(true);
178
179 WARN_ON(old == true);
180}
181
182static inline void mem_cgroup_disable_oom(void)
183{
184 bool old = mem_cgroup_toggle_oom(false);
185
186 WARN_ON(old == false);
187}
188
3812c8c8
JW
189static inline bool task_in_memcg_oom(struct task_struct *p)
190{
191 return p->memcg_oom.in_memcg_oom;
192}
193
194bool mem_cgroup_oom_synchronize(void);
195
c255a458 196#ifdef CONFIG_MEMCG_SWAP
c077719b
KH
197extern int do_swap_account;
198#endif
f8d66542
HT
199
200static inline bool mem_cgroup_disabled(void)
201{
202 if (mem_cgroup_subsys.disabled)
203 return true;
204 return false;
205}
206
89c06bd5
KH
207void __mem_cgroup_begin_update_page_stat(struct page *page, bool *locked,
208 unsigned long *flags);
209
4331f7d3
KH
210extern atomic_t memcg_moving;
211
89c06bd5
KH
212static inline void mem_cgroup_begin_update_page_stat(struct page *page,
213 bool *locked, unsigned long *flags)
214{
215 if (mem_cgroup_disabled())
216 return;
217 rcu_read_lock();
218 *locked = false;
4331f7d3
KH
219 if (atomic_read(&memcg_moving))
220 __mem_cgroup_begin_update_page_stat(page, locked, flags);
89c06bd5
KH
221}
222
223void __mem_cgroup_end_update_page_stat(struct page *page,
224 unsigned long *flags);
225static inline void mem_cgroup_end_update_page_stat(struct page *page,
226 bool *locked, unsigned long *flags)
227{
228 if (mem_cgroup_disabled())
229 return;
230 if (*locked)
231 __mem_cgroup_end_update_page_stat(page, flags);
232 rcu_read_unlock();
233}
234
2a7106f2
GT
235void mem_cgroup_update_page_stat(struct page *page,
236 enum mem_cgroup_page_stat_item idx,
237 int val);
238
239static inline void mem_cgroup_inc_page_stat(struct page *page,
240 enum mem_cgroup_page_stat_item idx)
241{
242 mem_cgroup_update_page_stat(page, idx, 1);
243}
244
245static inline void mem_cgroup_dec_page_stat(struct page *page,
246 enum mem_cgroup_page_stat_item idx)
247{
248 mem_cgroup_update_page_stat(page, idx, -1);
249}
250
de57780d
MH
251enum mem_cgroup_filter_t
252mem_cgroup_soft_reclaim_eligible(struct mem_cgroup *memcg,
a5b7c87f 253 struct mem_cgroup *root);
a63d83f4 254
68ae564b
DR
255void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx);
256static inline void mem_cgroup_count_vm_event(struct mm_struct *mm,
257 enum vm_event_item idx)
258{
259 if (mem_cgroup_disabled())
260 return;
261 __mem_cgroup_count_vm_event(mm, idx);
262}
ca3e0214 263#ifdef CONFIG_TRANSPARENT_HUGEPAGE
e94c8a9c 264void mem_cgroup_split_huge_fixup(struct page *head);
ca3e0214
KH
265#endif
266
f212ad7c
DN
267#ifdef CONFIG_DEBUG_VM
268bool mem_cgroup_bad_page_check(struct page *page);
269void mem_cgroup_print_bad_page(struct page *page);
270#endif
c255a458 271#else /* CONFIG_MEMCG */
7a81b88c
KH
272struct mem_cgroup;
273
274static inline int mem_cgroup_newpage_charge(struct page *page,
8289546e 275 struct mm_struct *mm, gfp_t gfp_mask)
8a9f3ccd
BS
276{
277 return 0;
278}
279
8289546e
HD
280static inline int mem_cgroup_cache_charge(struct page *page,
281 struct mm_struct *mm, gfp_t gfp_mask)
8a9f3ccd 282{
8289546e 283 return 0;
8a9f3ccd
BS
284}
285
8c7c6e34 286static inline int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
72835c86 287 struct page *page, gfp_t gfp_mask, struct mem_cgroup **memcgp)
7a81b88c
KH
288{
289 return 0;
290}
291
292static inline void mem_cgroup_commit_charge_swapin(struct page *page,
72835c86 293 struct mem_cgroup *memcg)
7a81b88c
KH
294{
295}
296
72835c86 297static inline void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
7a81b88c
KH
298{
299}
300
569b846d
KH
301static inline void mem_cgroup_uncharge_start(void)
302{
303}
304
305static inline void mem_cgroup_uncharge_end(void)
306{
307}
308
8a9f3ccd
BS
309static inline void mem_cgroup_uncharge_page(struct page *page)
310{
311}
312
69029cd5
KH
313static inline void mem_cgroup_uncharge_cache_page(struct page *page)
314{
315}
316
925b7673
JW
317static inline struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
318 struct mem_cgroup *memcg)
08e552c6 319{
925b7673 320 return &zone->lruvec;
08e552c6
KH
321}
322
fa9add64
HD
323static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page,
324 struct zone *zone)
66e1707b 325{
925b7673 326 return &zone->lruvec;
66e1707b
BS
327}
328
e42d9d5d
WF
329static inline struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
330{
331 return NULL;
332}
333
a433658c
KM
334static inline struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
335{
336 return NULL;
337}
338
587af308 339static inline bool mm_match_cgroup(struct mm_struct *mm,
c0ff4b85 340 struct mem_cgroup *memcg)
bed7161a 341{
587af308 342 return true;
bed7161a
BS
343}
344
ffbdccf5
DR
345static inline bool task_in_mem_cgroup(struct task_struct *task,
346 const struct mem_cgroup *memcg)
4c4a2214 347{
ffbdccf5 348 return true;
4c4a2214
DR
349}
350
c0ff4b85
R
351static inline struct cgroup_subsys_state
352 *mem_cgroup_css(struct mem_cgroup *memcg)
d324236b
WF
353{
354 return NULL;
355}
356
0030f535 357static inline void
ac39cf8c 358mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
0030f535 359 struct mem_cgroup **memcgp)
ae41be37 360{
ae41be37
KH
361}
362
c0ff4b85 363static inline void mem_cgroup_end_migration(struct mem_cgroup *memcg,
50de1dd9 364 struct page *oldpage, struct page *newpage, bool migration_ok)
ae41be37
KH
365{
366}
de57780d
MH
367static inline struct mem_cgroup *
368mem_cgroup_iter_cond(struct mem_cgroup *root,
369 struct mem_cgroup *prev,
370 struct mem_cgroup_reclaim_cookie *reclaim,
371 mem_cgroup_iter_filter cond)
372{
373 /* first call must return non-NULL, second return NULL */
374 return (struct mem_cgroup *)(unsigned long)!prev;
375}
ae41be37 376
5660048c
JW
377static inline struct mem_cgroup *
378mem_cgroup_iter(struct mem_cgroup *root,
379 struct mem_cgroup *prev,
380 struct mem_cgroup_reclaim_cookie *reclaim)
381{
382 return NULL;
383}
384
385static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
386 struct mem_cgroup *prev)
387{
388}
389
f8d66542
HT
390static inline bool mem_cgroup_disabled(void)
391{
392 return true;
393}
a636b327 394
14797e23 395static inline int
c56d5c7d 396mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
14797e23
KM
397{
398 return 1;
399}
400
a3d8e054 401static inline unsigned long
4d7dcca2 402mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
a3d8e054
KM
403{
404 return 0;
405}
406
fa9add64
HD
407static inline void
408mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
409 int increment)
3e2f41f1 410{
3e2f41f1
KM
411}
412
e222432b
BS
413static inline void
414mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
415{
416}
417
89c06bd5
KH
418static inline void mem_cgroup_begin_update_page_stat(struct page *page,
419 bool *locked, unsigned long *flags)
420{
421}
422
423static inline void mem_cgroup_end_update_page_stat(struct page *page,
424 bool *locked, unsigned long *flags)
425{
426}
427
519e5247
JW
428static inline bool mem_cgroup_toggle_oom(bool new)
429{
430 return false;
431}
432
433static inline void mem_cgroup_enable_oom(void)
434{
435}
436
437static inline void mem_cgroup_disable_oom(void)
438{
439}
440
3812c8c8
JW
441static inline bool task_in_memcg_oom(struct task_struct *p)
442{
443 return false;
444}
445
446static inline bool mem_cgroup_oom_synchronize(void)
447{
448 return false;
449}
450
2a7106f2
GT
451static inline void mem_cgroup_inc_page_stat(struct page *page,
452 enum mem_cgroup_page_stat_item idx)
453{
454}
455
456static inline void mem_cgroup_dec_page_stat(struct page *page,
457 enum mem_cgroup_page_stat_item idx)
d69b042f
BS
458{
459}
460
4e416953 461static inline
de57780d
MH
462enum mem_cgroup_filter_t
463mem_cgroup_soft_reclaim_eligible(struct mem_cgroup *memcg,
a5b7c87f 464 struct mem_cgroup *root)
4e416953 465{
de57780d 466 return VISIT;
4e416953
BS
467}
468
e94c8a9c 469static inline void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214
KH
470{
471}
472
456f998e
YH
473static inline
474void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
475{
476}
ab936cbc
KH
477static inline void mem_cgroup_replace_page_cache(struct page *oldpage,
478 struct page *newpage)
479{
480}
c255a458 481#endif /* CONFIG_MEMCG */
78fb7466 482
c255a458 483#if !defined(CONFIG_MEMCG) || !defined(CONFIG_DEBUG_VM)
f212ad7c
DN
484static inline bool
485mem_cgroup_bad_page_check(struct page *page)
486{
487 return false;
488}
489
490static inline void
491mem_cgroup_print_bad_page(struct page *page)
492{
493}
494#endif
495
e1aab161
GC
496enum {
497 UNDER_LIMIT,
498 SOFT_LIMIT,
499 OVER_LIMIT,
500};
501
502struct sock;
cd59085a 503#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
e1aab161
GC
504void sock_update_memcg(struct sock *sk);
505void sock_release_memcg(struct sock *sk);
506#else
507static inline void sock_update_memcg(struct sock *sk)
508{
509}
510static inline void sock_release_memcg(struct sock *sk)
511{
512}
cd59085a 513#endif /* CONFIG_INET && CONFIG_MEMCG_KMEM */
7ae1e1d0
GC
514
515#ifdef CONFIG_MEMCG_KMEM
a8964b9b 516extern struct static_key memcg_kmem_enabled_key;
749c5415
GC
517
518extern int memcg_limited_groups_array_size;
ebe945c2
GC
519
520/*
521 * Helper macro to loop through all memcg-specific caches. Callers must still
522 * check if the cache is valid (it is either valid or NULL).
523 * the slab_mutex must be held when looping through those caches
524 */
749c5415 525#define for_each_memcg_cache_index(_idx) \
91c777d8 526 for ((_idx) = 0; (_idx) < memcg_limited_groups_array_size; (_idx)++)
749c5415 527
7ae1e1d0
GC
528static inline bool memcg_kmem_enabled(void)
529{
a8964b9b 530 return static_key_false(&memcg_kmem_enabled_key);
7ae1e1d0
GC
531}
532
533/*
534 * In general, we'll do everything in our power to not incur in any overhead
535 * for non-memcg users for the kmem functions. Not even a function call, if we
536 * can avoid it.
537 *
538 * Therefore, we'll inline all those functions so that in the best case, we'll
539 * see that kmemcg is off for everybody and proceed quickly. If it is on,
540 * we'll still do most of the flag checking inline. We check a lot of
541 * conditions, but because they are pretty simple, they are expected to be
542 * fast.
543 */
544bool __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg,
545 int order);
546void __memcg_kmem_commit_charge(struct page *page,
547 struct mem_cgroup *memcg, int order);
548void __memcg_kmem_uncharge_pages(struct page *page, int order);
549
2633d7a0 550int memcg_cache_id(struct mem_cgroup *memcg);
943a451a
GC
551int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
552 struct kmem_cache *root_cache);
2633d7a0
GC
553void memcg_release_cache(struct kmem_cache *cachep);
554void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep);
555
55007d84
GC
556int memcg_update_cache_size(struct kmem_cache *s, int num_groups);
557void memcg_update_array_size(int num_groups);
d7f25f8a
GC
558
559struct kmem_cache *
560__memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp);
561
1f458cbf 562void mem_cgroup_destroy_cache(struct kmem_cache *cachep);
7cf27982 563void kmem_cache_destroy_memcg_children(struct kmem_cache *s);
1f458cbf 564
7ae1e1d0
GC
565/**
566 * memcg_kmem_newpage_charge: verify if a new kmem allocation is allowed.
567 * @gfp: the gfp allocation flags.
568 * @memcg: a pointer to the memcg this was charged against.
569 * @order: allocation order.
570 *
571 * returns true if the memcg where the current task belongs can hold this
572 * allocation.
573 *
574 * We return true automatically if this allocation is not to be accounted to
575 * any memcg.
576 */
577static inline bool
578memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg, int order)
579{
580 if (!memcg_kmem_enabled())
581 return true;
582
583 /*
584 * __GFP_NOFAIL allocations will move on even if charging is not
585 * possible. Therefore we don't even try, and have this allocation
586 * unaccounted. We could in theory charge it with
587 * res_counter_charge_nofail, but we hope those allocations are rare,
588 * and won't be worth the trouble.
589 */
590 if (!(gfp & __GFP_KMEMCG) || (gfp & __GFP_NOFAIL))
591 return true;
592 if (in_interrupt() || (!current->mm) || (current->flags & PF_KTHREAD))
593 return true;
594
595 /* If the test is dying, just let it go. */
596 if (unlikely(fatal_signal_pending(current)))
597 return true;
598
599 return __memcg_kmem_newpage_charge(gfp, memcg, order);
600}
601
602/**
603 * memcg_kmem_uncharge_pages: uncharge pages from memcg
604 * @page: pointer to struct page being freed
605 * @order: allocation order.
606 *
607 * there is no need to specify memcg here, since it is embedded in page_cgroup
608 */
609static inline void
610memcg_kmem_uncharge_pages(struct page *page, int order)
611{
612 if (memcg_kmem_enabled())
613 __memcg_kmem_uncharge_pages(page, order);
614}
615
616/**
617 * memcg_kmem_commit_charge: embeds correct memcg in a page
618 * @page: pointer to struct page recently allocated
619 * @memcg: the memcg structure we charged against
620 * @order: allocation order.
621 *
622 * Needs to be called after memcg_kmem_newpage_charge, regardless of success or
623 * failure of the allocation. if @page is NULL, this function will revert the
624 * charges. Otherwise, it will commit the memcg given by @memcg to the
625 * corresponding page_cgroup.
626 */
627static inline void
628memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg, int order)
629{
630 if (memcg_kmem_enabled() && memcg)
631 __memcg_kmem_commit_charge(page, memcg, order);
632}
633
d7f25f8a
GC
634/**
635 * memcg_kmem_get_cache: selects the correct per-memcg cache for allocation
636 * @cachep: the original global kmem cache
637 * @gfp: allocation flags.
638 *
639 * This function assumes that the task allocating, which determines the memcg
640 * in the page allocator, belongs to the same cgroup throughout the whole
641 * process. Misacounting can happen if the task calls memcg_kmem_get_cache()
642 * while belonging to a cgroup, and later on changes. This is considered
643 * acceptable, and should only happen upon task migration.
644 *
645 * Before the cache is created by the memcg core, there is also a possible
646 * imbalance: the task belongs to a memcg, but the cache being allocated from
647 * is the global cache, since the child cache is not yet guaranteed to be
648 * ready. This case is also fine, since in this case the GFP_KMEMCG will not be
649 * passed and the page allocator will not attempt any cgroup accounting.
650 */
651static __always_inline struct kmem_cache *
652memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
653{
654 if (!memcg_kmem_enabled())
655 return cachep;
656 if (gfp & __GFP_NOFAIL)
657 return cachep;
658 if (in_interrupt() || (!current->mm) || (current->flags & PF_KTHREAD))
659 return cachep;
660 if (unlikely(fatal_signal_pending(current)))
661 return cachep;
662
663 return __memcg_kmem_get_cache(cachep, gfp);
664}
7ae1e1d0 665#else
749c5415
GC
666#define for_each_memcg_cache_index(_idx) \
667 for (; NULL; )
668
b9ce5ef4
GC
669static inline bool memcg_kmem_enabled(void)
670{
671 return false;
672}
673
7ae1e1d0
GC
674static inline bool
675memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg, int order)
676{
677 return true;
678}
679
680static inline void memcg_kmem_uncharge_pages(struct page *page, int order)
681{
682}
683
684static inline void
685memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg, int order)
686{
687}
2633d7a0
GC
688
689static inline int memcg_cache_id(struct mem_cgroup *memcg)
690{
691 return -1;
692}
693
943a451a
GC
694static inline int
695memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
696 struct kmem_cache *root_cache)
2633d7a0
GC
697{
698 return 0;
699}
700
701static inline void memcg_release_cache(struct kmem_cache *cachep)
702{
703}
704
705static inline void memcg_cache_list_add(struct mem_cgroup *memcg,
706 struct kmem_cache *s)
707{
708}
d7f25f8a
GC
709
710static inline struct kmem_cache *
711memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
712{
713 return cachep;
714}
7cf27982
GC
715
716static inline void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
717{
718}
7ae1e1d0 719#endif /* CONFIG_MEMCG_KMEM */
8cdea7c0
BS
720#endif /* _LINUX_MEMCONTROL_H */
721
This page took 0.72782 seconds and 5 git commands to generate.