Merge branch 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/djbw/async_tx
[deliverable/linux.git] / include / linux / mm.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MM_H
2#define _LINUX_MM_H
3
1da177e4
LT
4#include <linux/errno.h>
5
6#ifdef __KERNEL__
7
1da177e4
LT
8#include <linux/gfp.h>
9#include <linux/list.h>
10#include <linux/mmzone.h>
11#include <linux/rbtree.h>
12#include <linux/prio_tree.h>
9a11b49a 13#include <linux/debug_locks.h>
5b99cd0e 14#include <linux/mm_types.h>
08677214 15#include <linux/range.h>
c6f6b596 16#include <linux/pfn.h>
e9da73d6 17#include <linux/bit_spinlock.h>
1da177e4
LT
18
19struct mempolicy;
20struct anon_vma;
4e950f6f 21struct file_ra_state;
e8edc6e0 22struct user_struct;
4e950f6f 23struct writeback_control;
1da177e4
LT
24
25#ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
26extern unsigned long max_mapnr;
27#endif
28
29extern unsigned long num_physpages;
4481374c 30extern unsigned long totalram_pages;
1da177e4 31extern void * high_memory;
1da177e4
LT
32extern int page_cluster;
33
34#ifdef CONFIG_SYSCTL
35extern int sysctl_legacy_va_layout;
36#else
37#define sysctl_legacy_va_layout 0
38#endif
39
40#include <asm/page.h>
41#include <asm/pgtable.h>
42#include <asm/processor.h>
1da177e4 43
1da177e4
LT
44#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
45
27ac792c
AR
46/* to align the pointer to the (next) page boundary */
47#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
48
1da177e4
LT
49/*
50 * Linux kernel virtual memory manager primitives.
51 * The idea being to have a "virtual" mm in the same way
52 * we have a virtual fs - giving a cleaner interface to the
53 * mm details, and allowing different kinds of memory mappings
54 * (from shared memory to executable loading to arbitrary
55 * mmap() functions).
56 */
57
c43692e8
CL
58extern struct kmem_cache *vm_area_cachep;
59
1da177e4 60#ifndef CONFIG_MMU
8feae131
DH
61extern struct rb_root nommu_region_tree;
62extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
63
64extern unsigned int kobjsize(const void *objp);
65#endif
66
67/*
605d9288 68 * vm_flags in vm_area_struct, see mm_types.h.
1da177e4
LT
69 */
70#define VM_READ 0x00000001 /* currently active flags */
71#define VM_WRITE 0x00000002
72#define VM_EXEC 0x00000004
73#define VM_SHARED 0x00000008
74
7e2cff42 75/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
76#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
77#define VM_MAYWRITE 0x00000020
78#define VM_MAYEXEC 0x00000040
79#define VM_MAYSHARE 0x00000080
80
81#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
8ca3eb08 82#if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1da177e4 83#define VM_GROWSUP 0x00000200
8ca3eb08
LT
84#else
85#define VM_GROWSUP 0x00000000
a664b2d8 86#define VM_NOHUGEPAGE 0x00000200 /* MADV_NOHUGEPAGE marked this vma */
8ca3eb08 87#endif
6aab341e 88#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4
LT
89#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
90
91#define VM_EXECUTABLE 0x00001000
92#define VM_LOCKED 0x00002000
93#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
94
95 /* Used by sys_madvise() */
96#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
97#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
98
99#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
100#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
0b14c179 101#define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */
1da177e4 102#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 103#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4
LT
104#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
105#define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
f2d6bfe9 106#ifndef CONFIG_TRANSPARENT_HUGEPAGE
1da177e4 107#define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */
f2d6bfe9
JW
108#else
109#define VM_HUGEPAGE 0x01000000 /* MADV_HUGEPAGE marked this vma */
110#endif
895791da 111#define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */
e5b97dde 112#define VM_ALWAYSDUMP 0x04000000 /* Always include in core dumps */
d00806b1 113
d0217ac0 114#define VM_CAN_NONLINEAR 0x08000000 /* Has ->fault & does nonlinear pages */
b379d790 115#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
aba46c50 116#define VM_SAO 0x20000000 /* Strong Access Ordering (powerpc) */
895791da 117#define VM_PFN_AT_MMAP 0x40000000 /* PFNMAP vma that is fully mapped at mmap time */
f8af4da3 118#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 119
a8bef8ff
MG
120/* Bits set in the VMA until the stack is in its final location */
121#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
122
1da177e4
LT
123#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
124#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
125#endif
126
127#ifdef CONFIG_STACK_GROWSUP
128#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
129#else
130#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
131#endif
132
133#define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
134#define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
135#define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
136#define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
137#define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
138
b291f000
NP
139/*
140 * special vmas that are non-mergable, non-mlock()able
141 */
142#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_RESERVED | VM_PFNMAP)
143
1da177e4
LT
144/*
145 * mapping from the currently active vm_flags protection bits (the
146 * low four bits) to a page protection mask..
147 */
148extern pgprot_t protection_map[16];
149
d0217ac0
NP
150#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
151#define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
c2ec175c 152#define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
d065bd81 153#define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */
318b275f 154#define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */
d0217ac0 155
6bd9cd50 156/*
157 * This interface is used by x86 PAT code to identify a pfn mapping that is
158 * linear over entire vma. This is to optimize PAT code that deals with
159 * marking the physical region with a particular prot. This is not for generic
160 * mm use. Note also that this check will not work if the pfn mapping is
161 * linear for a vma starting at physical address 0. In which case PAT code
162 * falls back to slow path of reserving physical range page by page.
163 */
3c8bb73a 164static inline int is_linear_pfn_mapping(struct vm_area_struct *vma)
165{
895791da 166 return (vma->vm_flags & VM_PFN_AT_MMAP);
3c8bb73a 167}
168
169static inline int is_pfn_mapping(struct vm_area_struct *vma)
170{
171 return (vma->vm_flags & VM_PFNMAP);
172}
d0217ac0 173
54cb8821 174/*
d0217ac0 175 * vm_fault is filled by the the pagefault handler and passed to the vma's
83c54070
NP
176 * ->fault function. The vma's ->fault is responsible for returning a bitmask
177 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 178 *
d0217ac0
NP
179 * pgoff should be used in favour of virtual_address, if possible. If pgoff
180 * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear
181 * mapping support.
54cb8821 182 */
d0217ac0
NP
183struct vm_fault {
184 unsigned int flags; /* FAULT_FLAG_xxx flags */
185 pgoff_t pgoff; /* Logical page offset based on vma */
186 void __user *virtual_address; /* Faulting virtual address */
187
188 struct page *page; /* ->fault handlers should return a
83c54070 189 * page here, unless VM_FAULT_NOPAGE
d0217ac0 190 * is set (which is also implied by
83c54070 191 * VM_FAULT_ERROR).
d0217ac0 192 */
54cb8821 193};
1da177e4
LT
194
195/*
196 * These are the virtual MM functions - opening of an area, closing and
197 * unmapping it (needed to keep files on disk up-to-date etc), pointer
198 * to the functions called when a no-page or a wp-page exception occurs.
199 */
200struct vm_operations_struct {
201 void (*open)(struct vm_area_struct * area);
202 void (*close)(struct vm_area_struct * area);
d0217ac0 203 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
9637a5ef
DH
204
205 /* notification that a previously read-only page is about to become
206 * writable, if an error is returned it will cause a SIGBUS */
c2ec175c 207 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
28b2ee20
RR
208
209 /* called by access_process_vm when get_user_pages() fails, typically
210 * for use by special VMAs that can switch between memory and hardware
211 */
212 int (*access)(struct vm_area_struct *vma, unsigned long addr,
213 void *buf, int len, int write);
1da177e4 214#ifdef CONFIG_NUMA
a6020ed7
LS
215 /*
216 * set_policy() op must add a reference to any non-NULL @new mempolicy
217 * to hold the policy upon return. Caller should pass NULL @new to
218 * remove a policy and fall back to surrounding context--i.e. do not
219 * install a MPOL_DEFAULT policy, nor the task or system default
220 * mempolicy.
221 */
1da177e4 222 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
223
224 /*
225 * get_policy() op must add reference [mpol_get()] to any policy at
226 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
227 * in mm/mempolicy.c will do this automatically.
228 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
229 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
230 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
231 * must return NULL--i.e., do not "fallback" to task or system default
232 * policy.
233 */
1da177e4
LT
234 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
235 unsigned long addr);
7b2259b3
CL
236 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
237 const nodemask_t *to, unsigned long flags);
1da177e4
LT
238#endif
239};
240
241struct mmu_gather;
242struct inode;
243
349aef0b
AM
244#define page_private(page) ((page)->private)
245#define set_page_private(page, v) ((page)->private = (v))
4c21e2f2 246
1da177e4
LT
247/*
248 * FIXME: take this include out, include page-flags.h in
249 * files which need it (119 of them)
250 */
251#include <linux/page-flags.h>
71e3aac0 252#include <linux/huge_mm.h>
1da177e4
LT
253
254/*
255 * Methods to modify the page usage count.
256 *
257 * What counts for a page usage:
258 * - cache mapping (page->mapping)
259 * - private data (page->private)
260 * - page mapped in a task's page tables, each mapping
261 * is counted separately
262 *
263 * Also, many kernel routines increase the page count before a critical
264 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
265 */
266
267/*
da6052f7 268 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 269 */
7c8ee9a8
NP
270static inline int put_page_testzero(struct page *page)
271{
725d704e 272 VM_BUG_ON(atomic_read(&page->_count) == 0);
8dc04efb 273 return atomic_dec_and_test(&page->_count);
7c8ee9a8 274}
1da177e4
LT
275
276/*
7c8ee9a8
NP
277 * Try to grab a ref unless the page has a refcount of zero, return false if
278 * that is the case.
1da177e4 279 */
7c8ee9a8
NP
280static inline int get_page_unless_zero(struct page *page)
281{
8dc04efb 282 return atomic_inc_not_zero(&page->_count);
7c8ee9a8 283}
1da177e4 284
53df8fdc
WF
285extern int page_is_ram(unsigned long pfn);
286
48667e7a 287/* Support for virtually mapped pages */
b3bdda02
CL
288struct page *vmalloc_to_page(const void *addr);
289unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 290
0738c4bb
PM
291/*
292 * Determine if an address is within the vmalloc range
293 *
294 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
295 * is no special casing required.
296 */
9e2779fa
CL
297static inline int is_vmalloc_addr(const void *x)
298{
0738c4bb 299#ifdef CONFIG_MMU
9e2779fa
CL
300 unsigned long addr = (unsigned long)x;
301
302 return addr >= VMALLOC_START && addr < VMALLOC_END;
0738c4bb
PM
303#else
304 return 0;
8ca3ed87 305#endif
0738c4bb 306}
81ac3ad9
KH
307#ifdef CONFIG_MMU
308extern int is_vmalloc_or_module_addr(const void *x);
309#else
934831d0 310static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
311{
312 return 0;
313}
314#endif
9e2779fa 315
e9da73d6
AA
316static inline void compound_lock(struct page *page)
317{
318#ifdef CONFIG_TRANSPARENT_HUGEPAGE
319 bit_spin_lock(PG_compound_lock, &page->flags);
320#endif
321}
322
323static inline void compound_unlock(struct page *page)
324{
325#ifdef CONFIG_TRANSPARENT_HUGEPAGE
326 bit_spin_unlock(PG_compound_lock, &page->flags);
327#endif
328}
329
330static inline unsigned long compound_lock_irqsave(struct page *page)
331{
332 unsigned long uninitialized_var(flags);
333#ifdef CONFIG_TRANSPARENT_HUGEPAGE
334 local_irq_save(flags);
335 compound_lock(page);
336#endif
337 return flags;
338}
339
340static inline void compound_unlock_irqrestore(struct page *page,
341 unsigned long flags)
342{
343#ifdef CONFIG_TRANSPARENT_HUGEPAGE
344 compound_unlock(page);
345 local_irq_restore(flags);
346#endif
347}
348
d85f3385
CL
349static inline struct page *compound_head(struct page *page)
350{
6d777953 351 if (unlikely(PageTail(page)))
d85f3385
CL
352 return page->first_page;
353 return page;
354}
355
4c21e2f2 356static inline int page_count(struct page *page)
1da177e4 357{
d85f3385 358 return atomic_read(&compound_head(page)->_count);
1da177e4
LT
359}
360
361static inline void get_page(struct page *page)
362{
91807063
AA
363 /*
364 * Getting a normal page or the head of a compound page
365 * requires to already have an elevated page->_count. Only if
366 * we're getting a tail page, the elevated page->_count is
367 * required only in the head page, so for tail pages the
368 * bugcheck only verifies that the page->_count isn't
369 * negative.
370 */
371 VM_BUG_ON(atomic_read(&page->_count) < !PageTail(page));
1da177e4 372 atomic_inc(&page->_count);
91807063
AA
373 /*
374 * Getting a tail page will elevate both the head and tail
375 * page->_count(s).
376 */
377 if (unlikely(PageTail(page))) {
378 /*
379 * This is safe only because
380 * __split_huge_page_refcount can't run under
381 * get_page().
382 */
383 VM_BUG_ON(atomic_read(&page->first_page->_count) <= 0);
384 atomic_inc(&page->first_page->_count);
385 }
1da177e4
LT
386}
387
b49af68f
CL
388static inline struct page *virt_to_head_page(const void *x)
389{
390 struct page *page = virt_to_page(x);
391 return compound_head(page);
392}
393
7835e98b
NP
394/*
395 * Setup the page count before being freed into the page allocator for
396 * the first time (boot or memory hotplug)
397 */
398static inline void init_page_count(struct page *page)
399{
400 atomic_set(&page->_count, 1);
401}
402
5f24ce5f
AA
403/*
404 * PageBuddy() indicate that the page is free and in the buddy system
405 * (see mm/page_alloc.c).
ef2b4b95
AA
406 *
407 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
408 * -2 so that an underflow of the page_mapcount() won't be mistaken
409 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
410 * efficiently by most CPU architectures.
5f24ce5f 411 */
ef2b4b95
AA
412#define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
413
5f24ce5f
AA
414static inline int PageBuddy(struct page *page)
415{
ef2b4b95 416 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
5f24ce5f
AA
417}
418
419static inline void __SetPageBuddy(struct page *page)
420{
421 VM_BUG_ON(atomic_read(&page->_mapcount) != -1);
ef2b4b95 422 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
5f24ce5f
AA
423}
424
425static inline void __ClearPageBuddy(struct page *page)
426{
427 VM_BUG_ON(!PageBuddy(page));
428 atomic_set(&page->_mapcount, -1);
429}
430
1da177e4 431void put_page(struct page *page);
1d7ea732 432void put_pages_list(struct list_head *pages);
1da177e4 433
8dfcc9ba 434void split_page(struct page *page, unsigned int order);
748446bb 435int split_free_page(struct page *page);
8dfcc9ba 436
33f2ef89
AW
437/*
438 * Compound pages have a destructor function. Provide a
439 * prototype for that function and accessor functions.
440 * These are _only_ valid on the head of a PG_compound page.
441 */
442typedef void compound_page_dtor(struct page *);
443
444static inline void set_compound_page_dtor(struct page *page,
445 compound_page_dtor *dtor)
446{
447 page[1].lru.next = (void *)dtor;
448}
449
450static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
451{
452 return (compound_page_dtor *)page[1].lru.next;
453}
454
d85f3385
CL
455static inline int compound_order(struct page *page)
456{
6d777953 457 if (!PageHead(page))
d85f3385
CL
458 return 0;
459 return (unsigned long)page[1].lru.prev;
460}
461
37c2ac78
AA
462static inline int compound_trans_order(struct page *page)
463{
464 int order;
465 unsigned long flags;
466
467 if (!PageHead(page))
468 return 0;
469
470 flags = compound_lock_irqsave(page);
471 order = compound_order(page);
472 compound_unlock_irqrestore(page, flags);
473 return order;
474}
475
d85f3385
CL
476static inline void set_compound_order(struct page *page, unsigned long order)
477{
478 page[1].lru.prev = (void *)order;
479}
480
3dece370 481#ifdef CONFIG_MMU
14fd403f
AA
482/*
483 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
484 * servicing faults for write access. In the normal case, do always want
485 * pte_mkwrite. But get_user_pages can cause write faults for mappings
486 * that do not have writing enabled, when used by access_process_vm.
487 */
488static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
489{
490 if (likely(vma->vm_flags & VM_WRITE))
491 pte = pte_mkwrite(pte);
492 return pte;
493}
3dece370 494#endif
14fd403f 495
1da177e4
LT
496/*
497 * Multiple processes may "see" the same page. E.g. for untouched
498 * mappings of /dev/null, all processes see the same page full of
499 * zeroes, and text pages of executables and shared libraries have
500 * only one copy in memory, at most, normally.
501 *
502 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
503 * page_count() == 0 means the page is free. page->lru is then used for
504 * freelist management in the buddy allocator.
da6052f7 505 * page_count() > 0 means the page has been allocated.
1da177e4 506 *
da6052f7
NP
507 * Pages are allocated by the slab allocator in order to provide memory
508 * to kmalloc and kmem_cache_alloc. In this case, the management of the
509 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
510 * unless a particular usage is carefully commented. (the responsibility of
511 * freeing the kmalloc memory is the caller's, of course).
1da177e4 512 *
da6052f7
NP
513 * A page may be used by anyone else who does a __get_free_page().
514 * In this case, page_count still tracks the references, and should only
515 * be used through the normal accessor functions. The top bits of page->flags
516 * and page->virtual store page management information, but all other fields
517 * are unused and could be used privately, carefully. The management of this
518 * page is the responsibility of the one who allocated it, and those who have
519 * subsequently been given references to it.
520 *
521 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
522 * managed by the Linux memory manager: I/O, buffers, swapping etc.
523 * The following discussion applies only to them.
524 *
da6052f7
NP
525 * A pagecache page contains an opaque `private' member, which belongs to the
526 * page's address_space. Usually, this is the address of a circular list of
527 * the page's disk buffers. PG_private must be set to tell the VM to call
528 * into the filesystem to release these pages.
1da177e4 529 *
da6052f7
NP
530 * A page may belong to an inode's memory mapping. In this case, page->mapping
531 * is the pointer to the inode, and page->index is the file offset of the page,
532 * in units of PAGE_CACHE_SIZE.
1da177e4 533 *
da6052f7
NP
534 * If pagecache pages are not associated with an inode, they are said to be
535 * anonymous pages. These may become associated with the swapcache, and in that
536 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 537 *
da6052f7
NP
538 * In either case (swapcache or inode backed), the pagecache itself holds one
539 * reference to the page. Setting PG_private should also increment the
540 * refcount. The each user mapping also has a reference to the page.
1da177e4 541 *
da6052f7
NP
542 * The pagecache pages are stored in a per-mapping radix tree, which is
543 * rooted at mapping->page_tree, and indexed by offset.
544 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
545 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 546 *
da6052f7 547 * All pagecache pages may be subject to I/O:
1da177e4
LT
548 * - inode pages may need to be read from disk,
549 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
550 * to be written back to the inode on disk,
551 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
552 * modified may need to be swapped out to swap space and (later) to be read
553 * back into memory.
1da177e4
LT
554 */
555
556/*
557 * The zone field is never updated after free_area_init_core()
558 * sets it, so none of the operations on it need to be atomic.
1da177e4 559 */
348f8b6c 560
d41dee36
AW
561
562/*
563 * page->flags layout:
564 *
565 * There are three possibilities for how page->flags get
566 * laid out. The first is for the normal case, without
567 * sparsemem. The second is for sparsemem when there is
568 * plenty of space for node and section. The last is when
569 * we have run out of space and have to fall back to an
570 * alternate (slower) way of determining the node.
571 *
308c05e3
CL
572 * No sparsemem or sparsemem vmemmap: | NODE | ZONE | ... | FLAGS |
573 * classic sparse with space for node:| SECTION | NODE | ZONE | ... | FLAGS |
574 * classic sparse no space for node: | SECTION | ZONE | ... | FLAGS |
d41dee36 575 */
308c05e3 576#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
d41dee36
AW
577#define SECTIONS_WIDTH SECTIONS_SHIFT
578#else
579#define SECTIONS_WIDTH 0
580#endif
581
582#define ZONES_WIDTH ZONES_SHIFT
583
9223b419 584#if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= BITS_PER_LONG - NR_PAGEFLAGS
d41dee36
AW
585#define NODES_WIDTH NODES_SHIFT
586#else
308c05e3
CL
587#ifdef CONFIG_SPARSEMEM_VMEMMAP
588#error "Vmemmap: No space for nodes field in page flags"
589#endif
d41dee36
AW
590#define NODES_WIDTH 0
591#endif
592
593/* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
07808b74 594#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
595#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
596#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
597
598/*
599 * We are going to use the flags for the page to node mapping if its in
600 * there. This includes the case where there is no node, so it is implicit.
601 */
89689ae7
CL
602#if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
603#define NODE_NOT_IN_PAGE_FLAGS
604#endif
d41dee36
AW
605
606#ifndef PFN_SECTION_SHIFT
607#define PFN_SECTION_SHIFT 0
608#endif
348f8b6c
DH
609
610/*
611 * Define the bit shifts to access each section. For non-existant
612 * sections we define the shift as 0; that plus a 0 mask ensures
613 * the compiler will optimise away reference to them.
614 */
d41dee36
AW
615#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
616#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
617#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
348f8b6c 618
bce54bbf
WD
619/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
620#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 621#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
622#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
623 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 624#else
89689ae7 625#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
626#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
627 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
628#endif
629
bd8029b6 630#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 631
9223b419
CL
632#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
633#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
348f8b6c
DH
634#endif
635
d41dee36
AW
636#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
637#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
638#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
89689ae7 639#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 640
2f1b6248 641static inline enum zone_type page_zonenum(struct page *page)
1da177e4 642{
348f8b6c 643 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 644}
1da177e4 645
89689ae7
CL
646/*
647 * The identification function is only used by the buddy allocator for
648 * determining if two pages could be buddies. We are not really
649 * identifying a zone since we could be using a the section number
650 * id if we have not node id available in page flags.
651 * We guarantee only that it will return the same value for two
652 * combinable pages in a zone.
653 */
cb2b95e1
AW
654static inline int page_zone_id(struct page *page)
655{
89689ae7 656 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
657}
658
25ba77c1 659static inline int zone_to_nid(struct zone *zone)
89fa3024 660{
d5f541ed
CL
661#ifdef CONFIG_NUMA
662 return zone->node;
663#else
664 return 0;
665#endif
89fa3024
CL
666}
667
89689ae7 668#ifdef NODE_NOT_IN_PAGE_FLAGS
25ba77c1 669extern int page_to_nid(struct page *page);
89689ae7 670#else
25ba77c1 671static inline int page_to_nid(struct page *page)
d41dee36 672{
89689ae7 673 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 674}
89689ae7
CL
675#endif
676
677static inline struct zone *page_zone(struct page *page)
678{
679 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
680}
681
308c05e3 682#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
d41dee36
AW
683static inline unsigned long page_to_section(struct page *page)
684{
685 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
686}
308c05e3 687#endif
d41dee36 688
2f1b6248 689static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
690{
691 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
692 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
693}
2f1b6248 694
348f8b6c
DH
695static inline void set_page_node(struct page *page, unsigned long node)
696{
697 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
698 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 699}
89689ae7 700
d41dee36
AW
701static inline void set_page_section(struct page *page, unsigned long section)
702{
703 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
704 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
705}
1da177e4 706
2f1b6248 707static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 708 unsigned long node, unsigned long pfn)
1da177e4 709{
348f8b6c
DH
710 set_page_zone(page, zone);
711 set_page_node(page, node);
d41dee36 712 set_page_section(page, pfn_to_section_nr(pfn));
1da177e4
LT
713}
714
f6ac2354
CL
715/*
716 * Some inline functions in vmstat.h depend on page_zone()
717 */
718#include <linux/vmstat.h>
719
652050ae 720static __always_inline void *lowmem_page_address(struct page *page)
1da177e4 721{
c6f6b596 722 return __va(PFN_PHYS(page_to_pfn(page)));
1da177e4
LT
723}
724
725#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
726#define HASHED_PAGE_VIRTUAL
727#endif
728
729#if defined(WANT_PAGE_VIRTUAL)
730#define page_address(page) ((page)->virtual)
731#define set_page_address(page, address) \
732 do { \
733 (page)->virtual = (address); \
734 } while(0)
735#define page_address_init() do { } while(0)
736#endif
737
738#if defined(HASHED_PAGE_VIRTUAL)
739void *page_address(struct page *page);
740void set_page_address(struct page *page, void *virtual);
741void page_address_init(void);
742#endif
743
744#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
745#define page_address(page) lowmem_page_address(page)
746#define set_page_address(page, address) do { } while(0)
747#define page_address_init() do { } while(0)
748#endif
749
750/*
751 * On an anonymous page mapped into a user virtual memory area,
752 * page->mapping points to its anon_vma, not to a struct address_space;
3ca7b3c5
HD
753 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
754 *
755 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
756 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
757 * and then page->mapping points, not to an anon_vma, but to a private
758 * structure which KSM associates with that merged page. See ksm.h.
759 *
760 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
1da177e4
LT
761 *
762 * Please note that, confusingly, "page_mapping" refers to the inode
763 * address_space which maps the page from disk; whereas "page_mapped"
764 * refers to user virtual address space into which the page is mapped.
765 */
766#define PAGE_MAPPING_ANON 1
3ca7b3c5
HD
767#define PAGE_MAPPING_KSM 2
768#define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
1da177e4
LT
769
770extern struct address_space swapper_space;
771static inline struct address_space *page_mapping(struct page *page)
772{
773 struct address_space *mapping = page->mapping;
774
b5fab14e 775 VM_BUG_ON(PageSlab(page));
1da177e4
LT
776 if (unlikely(PageSwapCache(page)))
777 mapping = &swapper_space;
e20e8779 778 else if ((unsigned long)mapping & PAGE_MAPPING_ANON)
1da177e4
LT
779 mapping = NULL;
780 return mapping;
781}
782
3ca7b3c5
HD
783/* Neutral page->mapping pointer to address_space or anon_vma or other */
784static inline void *page_rmapping(struct page *page)
785{
786 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
787}
788
1da177e4
LT
789static inline int PageAnon(struct page *page)
790{
791 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
792}
793
794/*
795 * Return the pagecache index of the passed page. Regular pagecache pages
796 * use ->index whereas swapcache pages use ->private
797 */
798static inline pgoff_t page_index(struct page *page)
799{
800 if (unlikely(PageSwapCache(page)))
4c21e2f2 801 return page_private(page);
1da177e4
LT
802 return page->index;
803}
804
805/*
806 * The atomic page->_mapcount, like _count, starts from -1:
807 * so that transitions both from it and to it can be tracked,
808 * using atomic_inc_and_test and atomic_add_negative(-1).
809 */
810static inline void reset_page_mapcount(struct page *page)
811{
812 atomic_set(&(page)->_mapcount, -1);
813}
814
815static inline int page_mapcount(struct page *page)
816{
817 return atomic_read(&(page)->_mapcount) + 1;
818}
819
820/*
821 * Return true if this page is mapped into pagetables.
822 */
823static inline int page_mapped(struct page *page)
824{
825 return atomic_read(&(page)->_mapcount) >= 0;
826}
827
1da177e4
LT
828/*
829 * Different kinds of faults, as returned by handle_mm_fault().
830 * Used to decide whether a process gets delivered SIGBUS or
831 * just gets major/minor fault counters bumped up.
832 */
d0217ac0 833
83c54070 834#define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
d0217ac0 835
83c54070
NP
836#define VM_FAULT_OOM 0x0001
837#define VM_FAULT_SIGBUS 0x0002
838#define VM_FAULT_MAJOR 0x0004
839#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
aa50d3a7
AK
840#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
841#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
f33ea7f4 842
83c54070
NP
843#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
844#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
d065bd81 845#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
1da177e4 846
aa50d3a7
AK
847#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
848
849#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
850 VM_FAULT_HWPOISON_LARGE)
851
852/* Encode hstate index for a hwpoisoned large page */
853#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
854#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
d0217ac0 855
1c0fe6e3
NP
856/*
857 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
858 */
859extern void pagefault_out_of_memory(void);
860
1da177e4
LT
861#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
862
ddd588b5
DR
863/*
864 * Flags passed to __show_mem() and __show_free_areas() to suppress output in
865 * various contexts.
866 */
867#define SHOW_MEM_FILTER_NODES (0x0001u) /* filter disallowed nodes */
868
1da177e4 869extern void show_free_areas(void);
ddd588b5 870extern void __show_free_areas(unsigned int flags);
1da177e4 871
3f96b79a 872int shmem_lock(struct file *file, int lock, struct user_struct *user);
168f5ac6 873struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags);
1da177e4
LT
874int shmem_zero_setup(struct vm_area_struct *);
875
b0e15190
DH
876#ifndef CONFIG_MMU
877extern unsigned long shmem_get_unmapped_area(struct file *file,
878 unsigned long addr,
879 unsigned long len,
880 unsigned long pgoff,
881 unsigned long flags);
882#endif
883
e8edc6e0 884extern int can_do_mlock(void);
1da177e4
LT
885extern int user_shm_lock(size_t, struct user_struct *);
886extern void user_shm_unlock(size_t, struct user_struct *);
887
888/*
889 * Parameter block passed down to zap_pte_range in exceptional cases.
890 */
891struct zap_details {
892 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
893 struct address_space *check_mapping; /* Check page->mapping if set */
894 pgoff_t first_index; /* Lowest page->index to unmap */
895 pgoff_t last_index; /* Highest page->index to unmap */
896 spinlock_t *i_mmap_lock; /* For unmap_mapping_range: */
1da177e4
LT
897 unsigned long truncate_count; /* Compare vm_truncate_count */
898};
899
7e675137
NP
900struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
901 pte_t pte);
902
c627f9cc
JS
903int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
904 unsigned long size);
ee39b37b 905unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4 906 unsigned long size, struct zap_details *);
508034a3 907unsigned long unmap_vmas(struct mmu_gather **tlb,
1da177e4
LT
908 struct vm_area_struct *start_vma, unsigned long start_addr,
909 unsigned long end_addr, unsigned long *nr_accounted,
910 struct zap_details *);
e6473092
MM
911
912/**
913 * mm_walk - callbacks for walk_page_range
914 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
915 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
916 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
03319327
DH
917 * this handler is required to be able to handle
918 * pmd_trans_huge() pmds. They may simply choose to
919 * split_huge_page() instead of handling it explicitly.
e6473092
MM
920 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
921 * @pte_hole: if set, called for each hole at all levels
5dc37642 922 * @hugetlb_entry: if set, called for each hugetlb entry
e6473092
MM
923 *
924 * (see walk_page_range for more details)
925 */
926struct mm_walk {
2165009b
DH
927 int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *);
928 int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *);
929 int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *);
930 int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *);
931 int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *);
116354d1
NH
932 int (*hugetlb_entry)(pte_t *, unsigned long,
933 unsigned long, unsigned long, struct mm_walk *);
2165009b
DH
934 struct mm_struct *mm;
935 void *private;
e6473092
MM
936};
937
2165009b
DH
938int walk_page_range(unsigned long addr, unsigned long end,
939 struct mm_walk *walk);
42b77728 940void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 941 unsigned long end, unsigned long floor, unsigned long ceiling);
1da177e4
LT
942int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
943 struct vm_area_struct *vma);
1da177e4
LT
944void unmap_mapping_range(struct address_space *mapping,
945 loff_t const holebegin, loff_t const holelen, int even_cows);
3b6748e2
JW
946int follow_pfn(struct vm_area_struct *vma, unsigned long address,
947 unsigned long *pfn);
d87fe660 948int follow_phys(struct vm_area_struct *vma, unsigned long address,
949 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
950int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
951 void *buf, int len, int write);
1da177e4
LT
952
953static inline void unmap_shared_mapping_range(struct address_space *mapping,
954 loff_t const holebegin, loff_t const holelen)
955{
956 unmap_mapping_range(mapping, holebegin, holelen, 0);
957}
958
25d9e2d1 959extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new);
2c27c65e 960extern void truncate_setsize(struct inode *inode, loff_t newsize);
25d9e2d1 961extern int vmtruncate(struct inode *inode, loff_t offset);
962extern int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end);
f33ea7f4 963
750b4987 964int truncate_inode_page(struct address_space *mapping, struct page *page);
25718736 965int generic_error_remove_page(struct address_space *mapping, struct page *page);
750b4987 966
83f78668
WF
967int invalidate_inode_page(struct page *page);
968
7ee1dd3f 969#ifdef CONFIG_MMU
83c54070 970extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
d06063cc 971 unsigned long address, unsigned int flags);
7ee1dd3f
DH
972#else
973static inline int handle_mm_fault(struct mm_struct *mm,
974 struct vm_area_struct *vma, unsigned long address,
d06063cc 975 unsigned int flags)
7ee1dd3f
DH
976{
977 /* should never happen if there's no MMU */
978 BUG();
979 return VM_FAULT_SIGBUS;
980}
981#endif
f33ea7f4 982
1da177e4
LT
983extern int make_pages_present(unsigned long addr, unsigned long end);
984extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
1da177e4 985
0014bd99
HY
986int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
987 unsigned long start, int len, unsigned int foll_flags,
988 struct page **pages, struct vm_area_struct **vmas,
989 int *nonblocking);
d2bf6be8 990int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
9d73777e 991 unsigned long start, int nr_pages, int write, int force,
d2bf6be8
NP
992 struct page **pages, struct vm_area_struct **vmas);
993int get_user_pages_fast(unsigned long start, int nr_pages, int write,
994 struct page **pages);
f3e8fccd 995struct page *get_dump_page(unsigned long addr);
1da177e4 996
cf9a2ae8
DH
997extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
998extern void do_invalidatepage(struct page *page, unsigned long offset);
999
1da177e4 1000int __set_page_dirty_nobuffers(struct page *page);
76719325 1001int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
1002int redirty_page_for_writepage(struct writeback_control *wbc,
1003 struct page *page);
e3a7cca1 1004void account_page_dirtied(struct page *page, struct address_space *mapping);
f629d1c9 1005void account_page_writeback(struct page *page);
b3c97528 1006int set_page_dirty(struct page *page);
1da177e4
LT
1007int set_page_dirty_lock(struct page *page);
1008int clear_page_dirty_for_io(struct page *page);
1009
39aa3cb3
SB
1010/* Is the vma a continuation of the stack vma above it? */
1011static inline int vma_stack_continue(struct vm_area_struct *vma, unsigned long addr)
1012{
1013 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1014}
1015
b6a2fea3
OW
1016extern unsigned long move_page_tables(struct vm_area_struct *vma,
1017 unsigned long old_addr, struct vm_area_struct *new_vma,
1018 unsigned long new_addr, unsigned long len);
1da177e4
LT
1019extern unsigned long do_mremap(unsigned long addr,
1020 unsigned long old_len, unsigned long new_len,
1021 unsigned long flags, unsigned long new_addr);
b6a2fea3
OW
1022extern int mprotect_fixup(struct vm_area_struct *vma,
1023 struct vm_area_struct **pprev, unsigned long start,
1024 unsigned long end, unsigned long newflags);
1da177e4 1025
465a454f
PZ
1026/*
1027 * doesn't attempt to fault and will return short.
1028 */
1029int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1030 struct page **pages);
d559db08
KH
1031/*
1032 * per-process(per-mm_struct) statistics.
1033 */
34e55232 1034#if defined(SPLIT_RSS_COUNTING)
d559db08
KH
1035/*
1036 * The mm counters are not protected by its page_table_lock,
1037 * so must be incremented atomically.
1038 */
1039static inline void set_mm_counter(struct mm_struct *mm, int member, long value)
1040{
1041 atomic_long_set(&mm->rss_stat.count[member], value);
1042}
1043
34e55232 1044unsigned long get_mm_counter(struct mm_struct *mm, int member);
d559db08
KH
1045
1046static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1047{
1048 atomic_long_add(value, &mm->rss_stat.count[member]);
1049}
1050
1051static inline void inc_mm_counter(struct mm_struct *mm, int member)
1052{
1053 atomic_long_inc(&mm->rss_stat.count[member]);
1054}
1055
1056static inline void dec_mm_counter(struct mm_struct *mm, int member)
1057{
1058 atomic_long_dec(&mm->rss_stat.count[member]);
1059}
1060
1061#else /* !USE_SPLIT_PTLOCKS */
1062/*
1063 * The mm counters are protected by its page_table_lock,
1064 * so can be incremented directly.
1065 */
1066static inline void set_mm_counter(struct mm_struct *mm, int member, long value)
1067{
1068 mm->rss_stat.count[member] = value;
1069}
1070
1071static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1072{
1073 return mm->rss_stat.count[member];
1074}
1075
1076static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1077{
1078 mm->rss_stat.count[member] += value;
1079}
1080
1081static inline void inc_mm_counter(struct mm_struct *mm, int member)
1082{
1083 mm->rss_stat.count[member]++;
1084}
1085
1086static inline void dec_mm_counter(struct mm_struct *mm, int member)
1087{
1088 mm->rss_stat.count[member]--;
1089}
1090
1091#endif /* !USE_SPLIT_PTLOCKS */
1092
1093static inline unsigned long get_mm_rss(struct mm_struct *mm)
1094{
1095 return get_mm_counter(mm, MM_FILEPAGES) +
1096 get_mm_counter(mm, MM_ANONPAGES);
1097}
1098
1099static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1100{
1101 return max(mm->hiwater_rss, get_mm_rss(mm));
1102}
1103
1104static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1105{
1106 return max(mm->hiwater_vm, mm->total_vm);
1107}
1108
1109static inline void update_hiwater_rss(struct mm_struct *mm)
1110{
1111 unsigned long _rss = get_mm_rss(mm);
1112
1113 if ((mm)->hiwater_rss < _rss)
1114 (mm)->hiwater_rss = _rss;
1115}
1116
1117static inline void update_hiwater_vm(struct mm_struct *mm)
1118{
1119 if (mm->hiwater_vm < mm->total_vm)
1120 mm->hiwater_vm = mm->total_vm;
1121}
1122
1123static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1124 struct mm_struct *mm)
1125{
1126 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1127
1128 if (*maxrss < hiwater_rss)
1129 *maxrss = hiwater_rss;
1130}
1131
53bddb4e 1132#if defined(SPLIT_RSS_COUNTING)
34e55232 1133void sync_mm_rss(struct task_struct *task, struct mm_struct *mm);
53bddb4e
KH
1134#else
1135static inline void sync_mm_rss(struct task_struct *task, struct mm_struct *mm)
1136{
1137}
1138#endif
465a454f 1139
1da177e4 1140/*
8e1f936b 1141 * A callback you can register to apply pressure to ageable caches.
1da177e4 1142 *
8e1f936b
RR
1143 * 'shrink' is passed a count 'nr_to_scan' and a 'gfpmask'. It should
1144 * look through the least-recently-used 'nr_to_scan' entries and
1145 * attempt to free them up. It should return the number of objects
1146 * which remain in the cache. If it returns -1, it means it cannot do
1147 * any scanning at this time (eg. there is a risk of deadlock).
1da177e4 1148 *
8e1f936b
RR
1149 * The 'gfpmask' refers to the allocation we are currently trying to
1150 * fulfil.
1151 *
1152 * Note that 'shrink' will be passed nr_to_scan == 0 when the VM is
1153 * querying the cache size, so a fastpath for that case is appropriate.
1da177e4 1154 */
8e1f936b 1155struct shrinker {
7f8275d0 1156 int (*shrink)(struct shrinker *, int nr_to_scan, gfp_t gfp_mask);
8e1f936b 1157 int seeks; /* seeks to recreate an obj */
1da177e4 1158
8e1f936b
RR
1159 /* These are for internal use */
1160 struct list_head list;
1161 long nr; /* objs pending delete */
1162};
1163#define DEFAULT_SEEKS 2 /* A good number if you don't know better. */
1164extern void register_shrinker(struct shrinker *);
1165extern void unregister_shrinker(struct shrinker *);
1da177e4 1166
4e950f6f 1167int vma_wants_writenotify(struct vm_area_struct *vma);
d08b3851 1168
25ca1d6c
NK
1169extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1170 spinlock_t **ptl);
1171static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1172 spinlock_t **ptl)
1173{
1174 pte_t *ptep;
1175 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1176 return ptep;
1177}
c9cfcddf 1178
5f22df00
NP
1179#ifdef __PAGETABLE_PUD_FOLDED
1180static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1181 unsigned long address)
1182{
1183 return 0;
1184}
1185#else
1bb3630e 1186int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
5f22df00
NP
1187#endif
1188
1189#ifdef __PAGETABLE_PMD_FOLDED
1190static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1191 unsigned long address)
1192{
1193 return 0;
1194}
1195#else
1bb3630e 1196int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
5f22df00
NP
1197#endif
1198
8ac1f832
AA
1199int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1200 pmd_t *pmd, unsigned long address);
1bb3630e
HD
1201int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1202
1da177e4
LT
1203/*
1204 * The following ifdef needed to get the 4level-fixup.h header to work.
1205 * Remove it when 4level-fixup.h has been removed.
1206 */
1bb3630e 1207#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1da177e4
LT
1208static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1209{
1bb3630e
HD
1210 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1211 NULL: pud_offset(pgd, address);
1da177e4
LT
1212}
1213
1214static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1215{
1bb3630e
HD
1216 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1217 NULL: pmd_offset(pud, address);
1da177e4 1218}
1bb3630e
HD
1219#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1220
f7d0b926 1221#if USE_SPLIT_PTLOCKS
4c21e2f2
HD
1222/*
1223 * We tuck a spinlock to guard each pagetable page into its struct page,
1224 * at page->private, with BUILD_BUG_ON to make sure that this will not
1225 * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
1226 * When freeing, reset page->mapping so free_pages_check won't complain.
1227 */
349aef0b 1228#define __pte_lockptr(page) &((page)->ptl)
4c21e2f2
HD
1229#define pte_lock_init(_page) do { \
1230 spin_lock_init(__pte_lockptr(_page)); \
1231} while (0)
1232#define pte_lock_deinit(page) ((page)->mapping = NULL)
1233#define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
f7d0b926 1234#else /* !USE_SPLIT_PTLOCKS */
4c21e2f2
HD
1235/*
1236 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1237 */
1238#define pte_lock_init(page) do {} while (0)
1239#define pte_lock_deinit(page) do {} while (0)
1240#define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
f7d0b926 1241#endif /* USE_SPLIT_PTLOCKS */
4c21e2f2 1242
2f569afd
MS
1243static inline void pgtable_page_ctor(struct page *page)
1244{
1245 pte_lock_init(page);
1246 inc_zone_page_state(page, NR_PAGETABLE);
1247}
1248
1249static inline void pgtable_page_dtor(struct page *page)
1250{
1251 pte_lock_deinit(page);
1252 dec_zone_page_state(page, NR_PAGETABLE);
1253}
1254
c74df32c
HD
1255#define pte_offset_map_lock(mm, pmd, address, ptlp) \
1256({ \
4c21e2f2 1257 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
1258 pte_t *__pte = pte_offset_map(pmd, address); \
1259 *(ptlp) = __ptl; \
1260 spin_lock(__ptl); \
1261 __pte; \
1262})
1263
1264#define pte_unmap_unlock(pte, ptl) do { \
1265 spin_unlock(ptl); \
1266 pte_unmap(pte); \
1267} while (0)
1268
8ac1f832
AA
1269#define pte_alloc_map(mm, vma, pmd, address) \
1270 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1271 pmd, address))? \
1272 NULL: pte_offset_map(pmd, address))
1bb3630e 1273
c74df32c 1274#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
8ac1f832
AA
1275 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1276 pmd, address))? \
c74df32c
HD
1277 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1278
1bb3630e 1279#define pte_alloc_kernel(pmd, address) \
8ac1f832 1280 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1bb3630e 1281 NULL: pte_offset_kernel(pmd, address))
1da177e4
LT
1282
1283extern void free_area_init(unsigned long * zones_size);
9109fb7b
JW
1284extern void free_area_init_node(int nid, unsigned long * zones_size,
1285 unsigned long zone_start_pfn, unsigned long *zholes_size);
c713216d
MG
1286#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
1287/*
1288 * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its
1289 * zones, allocate the backing mem_map and account for memory holes in a more
1290 * architecture independent manner. This is a substitute for creating the
1291 * zone_sizes[] and zholes_size[] arrays and passing them to
1292 * free_area_init_node()
1293 *
1294 * An architecture is expected to register range of page frames backed by
1295 * physical memory with add_active_range() before calling
1296 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1297 * usage, an architecture is expected to do something like
1298 *
1299 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1300 * max_highmem_pfn};
1301 * for_each_valid_physical_page_range()
1302 * add_active_range(node_id, start_pfn, end_pfn)
1303 * free_area_init_nodes(max_zone_pfns);
1304 *
1305 * If the architecture guarantees that there are no holes in the ranges
1306 * registered with add_active_range(), free_bootmem_active_regions()
1307 * will call free_bootmem_node() for each registered physical page range.
1308 * Similarly sparse_memory_present_with_active_regions() calls
1309 * memory_present() for each range when SPARSEMEM is enabled.
1310 *
1311 * See mm/page_alloc.c for more information on each function exposed by
1312 * CONFIG_ARCH_POPULATES_NODE_MAP
1313 */
1314extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1315extern void add_active_range(unsigned int nid, unsigned long start_pfn,
1316 unsigned long end_pfn);
cc1050ba
YL
1317extern void remove_active_range(unsigned int nid, unsigned long start_pfn,
1318 unsigned long end_pfn);
c713216d 1319extern void remove_all_active_ranges(void);
32996250
YL
1320void sort_node_map(void);
1321unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1322 unsigned long end_pfn);
c713216d
MG
1323extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1324 unsigned long end_pfn);
1325extern void get_pfn_range_for_nid(unsigned int nid,
1326 unsigned long *start_pfn, unsigned long *end_pfn);
1327extern unsigned long find_min_pfn_with_active_regions(void);
c713216d
MG
1328extern void free_bootmem_with_active_regions(int nid,
1329 unsigned long max_low_pfn);
08677214
YL
1330int add_from_early_node_map(struct range *range, int az,
1331 int nr_range, int nid);
edbe7d23
YL
1332u64 __init find_memory_core_early(int nid, u64 size, u64 align,
1333 u64 goal, u64 limit);
d52d53b8 1334typedef int (*work_fn_t)(unsigned long, unsigned long, void *);
b5bc6c0e 1335extern void work_with_active_regions(int nid, work_fn_t work_fn, void *data);
c713216d 1336extern void sparse_memory_present_with_active_regions(int nid);
c713216d 1337#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
f2dbcfa7
KH
1338
1339#if !defined(CONFIG_ARCH_POPULATES_NODE_MAP) && \
1340 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1341static inline int __early_pfn_to_nid(unsigned long pfn)
1342{
1343 return 0;
1344}
1345#else
1346/* please see mm/page_alloc.c */
1347extern int __meminit early_pfn_to_nid(unsigned long pfn);
1348#ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1349/* there is a per-arch backend function. */
1350extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1351#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1352#endif
1353
0e0b864e 1354extern void set_dma_reserve(unsigned long new_dma_reserve);
a2f3aa02
DH
1355extern void memmap_init_zone(unsigned long, int, unsigned long,
1356 unsigned long, enum memmap_context);
bc75d33f 1357extern void setup_per_zone_wmarks(void);
96cb4df5 1358extern void calculate_zone_inactive_ratio(struct zone *zone);
1da177e4 1359extern void mem_init(void);
8feae131 1360extern void __init mmap_init(void);
1da177e4 1361extern void show_mem(void);
ddd588b5 1362extern void __show_mem(unsigned int flags);
1da177e4
LT
1363extern void si_meminfo(struct sysinfo * val);
1364extern void si_meminfo_node(struct sysinfo *val, int nid);
3461b0af 1365extern int after_bootmem;
1da177e4 1366
e7c8d5c9 1367extern void setup_per_cpu_pageset(void);
e7c8d5c9 1368
112067f0
SL
1369extern void zone_pcp_update(struct zone *zone);
1370
8feae131 1371/* nommu.c */
33e5d769 1372extern atomic_long_t mmap_pages_allocated;
7e660872 1373extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 1374
1da177e4
LT
1375/* prio_tree.c */
1376void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old);
1377void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *);
1378void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *);
1379struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma,
1380 struct prio_tree_iter *iter);
1381
1382#define vma_prio_tree_foreach(vma, iter, root, begin, end) \
1383 for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \
1384 (vma = vma_prio_tree_next(vma, iter)); )
1385
1386static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1387 struct list_head *list)
1388{
1389 vma->shared.vm_set.parent = NULL;
1390 list_add_tail(&vma->shared.vm_set.list, list);
1391}
1392
1393/* mmap.c */
34b4e4aa 1394extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
5beb4930 1395extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1da177e4
LT
1396 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1397extern struct vm_area_struct *vma_merge(struct mm_struct *,
1398 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1399 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1400 struct mempolicy *);
1401extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1402extern int split_vma(struct mm_struct *,
1403 struct vm_area_struct *, unsigned long addr, int new_below);
1404extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1405extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1406 struct rb_node **, struct rb_node *);
a8fb5618 1407extern void unlink_file_vma(struct vm_area_struct *);
1da177e4
LT
1408extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1409 unsigned long addr, unsigned long len, pgoff_t pgoff);
1410extern void exit_mmap(struct mm_struct *);
925d1c40 1411
7906d00c
AA
1412extern int mm_take_all_locks(struct mm_struct *mm);
1413extern void mm_drop_all_locks(struct mm_struct *mm);
1414
925d1c40
MH
1415#ifdef CONFIG_PROC_FS
1416/* From fs/proc/base.c. callers must _not_ hold the mm's exe_file_lock */
1417extern void added_exe_file_vma(struct mm_struct *mm);
1418extern void removed_exe_file_vma(struct mm_struct *mm);
1419#else
1420static inline void added_exe_file_vma(struct mm_struct *mm)
1421{}
1422
1423static inline void removed_exe_file_vma(struct mm_struct *mm)
1424{}
1425#endif /* CONFIG_PROC_FS */
1426
119f657c 1427extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
fa5dc22f
RM
1428extern int install_special_mapping(struct mm_struct *mm,
1429 unsigned long addr, unsigned long len,
1430 unsigned long flags, struct page **pages);
1da177e4
LT
1431
1432extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1433
1434extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1435 unsigned long len, unsigned long prot,
1436 unsigned long flag, unsigned long pgoff);
0165ab44
MS
1437extern unsigned long mmap_region(struct file *file, unsigned long addr,
1438 unsigned long len, unsigned long flags,
5a6fe125 1439 unsigned int vm_flags, unsigned long pgoff);
1da177e4
LT
1440
1441static inline unsigned long do_mmap(struct file *file, unsigned long addr,
1442 unsigned long len, unsigned long prot,
1443 unsigned long flag, unsigned long offset)
1444{
1445 unsigned long ret = -EINVAL;
1446 if ((offset + PAGE_ALIGN(len)) < offset)
1447 goto out;
1448 if (!(offset & ~PAGE_MASK))
1449 ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
1450out:
1451 return ret;
1452}
1453
1454extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1455
1456extern unsigned long do_brk(unsigned long, unsigned long);
1457
1458/* filemap.c */
1459extern unsigned long page_unuse(struct page *);
1460extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
1461extern void truncate_inode_pages_range(struct address_space *,
1462 loff_t lstart, loff_t lend);
1da177e4
LT
1463
1464/* generic vm_area_ops exported for stackable file systems */
d0217ac0 1465extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1da177e4
LT
1466
1467/* mm/page-writeback.c */
1468int write_one_page(struct page *page, int wait);
1cf6e7d8 1469void task_dirty_inc(struct task_struct *tsk);
1da177e4
LT
1470
1471/* readahead.c */
1472#define VM_MAX_READAHEAD 128 /* kbytes */
1473#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1da177e4 1474
1da177e4 1475int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 1476 pgoff_t offset, unsigned long nr_to_read);
cf914a7d
RR
1477
1478void page_cache_sync_readahead(struct address_space *mapping,
1479 struct file_ra_state *ra,
1480 struct file *filp,
1481 pgoff_t offset,
1482 unsigned long size);
1483
1484void page_cache_async_readahead(struct address_space *mapping,
1485 struct file_ra_state *ra,
1486 struct file *filp,
1487 struct page *pg,
1488 pgoff_t offset,
1489 unsigned long size);
1490
1da177e4 1491unsigned long max_sane_readahead(unsigned long nr);
d30a1100
WF
1492unsigned long ra_submit(struct file_ra_state *ra,
1493 struct address_space *mapping,
1494 struct file *filp);
1da177e4
LT
1495
1496/* Do stack extension */
46dea3d0 1497extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
8ca3eb08 1498#if VM_GROWSUP
46dea3d0 1499extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08
LT
1500#else
1501 #define expand_upwards(vma, address) do { } while (0)
9ab88515 1502#endif
b6a2fea3
OW
1503extern int expand_stack_downwards(struct vm_area_struct *vma,
1504 unsigned long address);
1da177e4
LT
1505
1506/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1507extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1508extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1509 struct vm_area_struct **pprev);
1510
1511/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1512 NULL if none. Assume start_addr < end_addr. */
1513static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1514{
1515 struct vm_area_struct * vma = find_vma(mm,start_addr);
1516
1517 if (vma && end_addr <= vma->vm_start)
1518 vma = NULL;
1519 return vma;
1520}
1521
1522static inline unsigned long vma_pages(struct vm_area_struct *vma)
1523{
1524 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1525}
1526
bad849b3 1527#ifdef CONFIG_MMU
804af2cf 1528pgprot_t vm_get_page_prot(unsigned long vm_flags);
bad849b3
DH
1529#else
1530static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1531{
1532 return __pgprot(0);
1533}
1534#endif
1535
deceb6cd 1536struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
1537int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1538 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 1539int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
e0dc0d8f
NP
1540int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1541 unsigned long pfn);
423bad60
NP
1542int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1543 unsigned long pfn);
deceb6cd 1544
6aab341e 1545struct page *follow_page(struct vm_area_struct *, unsigned long address,
deceb6cd
HD
1546 unsigned int foll_flags);
1547#define FOLL_WRITE 0x01 /* check pte is writable */
1548#define FOLL_TOUCH 0x02 /* mark page accessed */
1549#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 1550#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 1551#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
1552#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
1553 * and return without waiting upon it */
110d74a9 1554#define FOLL_MLOCK 0x40 /* mark page as mlocked */
500d65d4 1555#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
69ebb83e 1556#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
1da177e4 1557
2f569afd 1558typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
aee16b3c
JF
1559 void *data);
1560extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1561 unsigned long size, pte_fn_t fn, void *data);
1562
1da177e4 1563#ifdef CONFIG_PROC_FS
ab50b8ed 1564void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1da177e4 1565#else
ab50b8ed 1566static inline void vm_stat_account(struct mm_struct *mm,
1da177e4
LT
1567 unsigned long flags, struct file *file, long pages)
1568{
1569}
1570#endif /* CONFIG_PROC_FS */
1571
12d6f21e
IM
1572#ifdef CONFIG_DEBUG_PAGEALLOC
1573extern int debug_pagealloc_enabled;
1574
1575extern void kernel_map_pages(struct page *page, int numpages, int enable);
1576
1577static inline void enable_debug_pagealloc(void)
1578{
1579 debug_pagealloc_enabled = 1;
1580}
8a235efa
RW
1581#ifdef CONFIG_HIBERNATION
1582extern bool kernel_page_present(struct page *page);
1583#endif /* CONFIG_HIBERNATION */
12d6f21e 1584#else
1da177e4 1585static inline void
9858db50 1586kernel_map_pages(struct page *page, int numpages, int enable) {}
12d6f21e
IM
1587static inline void enable_debug_pagealloc(void)
1588{
1589}
8a235efa
RW
1590#ifdef CONFIG_HIBERNATION
1591static inline bool kernel_page_present(struct page *page) { return true; }
1592#endif /* CONFIG_HIBERNATION */
1da177e4
LT
1593#endif
1594
1595extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk);
1596#ifdef __HAVE_ARCH_GATE_AREA
1597int in_gate_area_no_task(unsigned long addr);
1598int in_gate_area(struct task_struct *task, unsigned long addr);
1599#else
1600int in_gate_area_no_task(unsigned long addr);
1601#define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);})
1602#endif /* __HAVE_ARCH_GATE_AREA */
1603
8d65af78 1604int drop_caches_sysctl_handler(struct ctl_table *, int,
9d0243bc 1605 void __user *, size_t *, loff_t *);
69e05944 1606unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
9d0243bc 1607 unsigned long lru_pages);
9d0243bc 1608
7a9166e3
LY
1609#ifndef CONFIG_MMU
1610#define randomize_va_space 0
1611#else
a62eaf15 1612extern int randomize_va_space;
7a9166e3 1613#endif
a62eaf15 1614
045e72ac 1615const char * arch_vma_name(struct vm_area_struct *vma);
03252919 1616void print_vma_addr(char *prefix, unsigned long rip);
e6e5494c 1617
9bdac914
YL
1618void sparse_mem_maps_populate_node(struct page **map_map,
1619 unsigned long pnum_begin,
1620 unsigned long pnum_end,
1621 unsigned long map_count,
1622 int nodeid);
1623
98f3cfc1 1624struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
29c71111
AW
1625pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
1626pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
1627pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1628pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
8f6aac41 1629void *vmemmap_alloc_block(unsigned long size, int node);
9bdac914 1630void *vmemmap_alloc_block_buf(unsigned long size, int node);
8f6aac41 1631void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
29c71111
AW
1632int vmemmap_populate_basepages(struct page *start_page,
1633 unsigned long pages, int node);
1634int vmemmap_populate(struct page *start_page, unsigned long pages, int node);
c2b91e2e 1635void vmemmap_populate_print_last(void);
8f6aac41 1636
6a46079c 1637
82ba011b
AK
1638enum mf_flags {
1639 MF_COUNT_INCREASED = 1 << 0,
1640};
6a46079c 1641extern void memory_failure(unsigned long pfn, int trapno);
82ba011b 1642extern int __memory_failure(unsigned long pfn, int trapno, int flags);
847ce401 1643extern int unpoison_memory(unsigned long pfn);
6a46079c
AK
1644extern int sysctl_memory_failure_early_kill;
1645extern int sysctl_memory_failure_recovery;
facb6011 1646extern void shake_page(struct page *p, int access);
6a46079c 1647extern atomic_long_t mce_bad_pages;
facb6011 1648extern int soft_offline_page(struct page *page, int flags);
6a46079c 1649
718a3821
WF
1650extern void dump_page(struct page *page);
1651
47ad8475
AA
1652#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
1653extern void clear_huge_page(struct page *page,
1654 unsigned long addr,
1655 unsigned int pages_per_huge_page);
1656extern void copy_user_huge_page(struct page *dst, struct page *src,
1657 unsigned long addr, struct vm_area_struct *vma,
1658 unsigned int pages_per_huge_page);
1659#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
1660
1da177e4
LT
1661#endif /* __KERNEL__ */
1662#endif /* _LINUX_MM_H */
This page took 1.051572 seconds and 5 git commands to generate.