mm: add a pmd_fault handler
[deliverable/linux.git] / include / linux / mm.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MM_H
2#define _LINUX_MM_H
3
1da177e4
LT
4#include <linux/errno.h>
5
6#ifdef __KERNEL__
7
309381fe 8#include <linux/mmdebug.h>
1da177e4 9#include <linux/gfp.h>
187f1882 10#include <linux/bug.h>
1da177e4
LT
11#include <linux/list.h>
12#include <linux/mmzone.h>
13#include <linux/rbtree.h>
83aeeada 14#include <linux/atomic.h>
9a11b49a 15#include <linux/debug_locks.h>
5b99cd0e 16#include <linux/mm_types.h>
08677214 17#include <linux/range.h>
c6f6b596 18#include <linux/pfn.h>
e9da73d6 19#include <linux/bit_spinlock.h>
b0d40c92 20#include <linux/shrinker.h>
9c599024 21#include <linux/resource.h>
e30825f1 22#include <linux/page_ext.h>
1da177e4
LT
23
24struct mempolicy;
25struct anon_vma;
bf181b9f 26struct anon_vma_chain;
4e950f6f 27struct file_ra_state;
e8edc6e0 28struct user_struct;
4e950f6f 29struct writeback_control;
682aa8e1 30struct bdi_writeback;
1da177e4 31
fccc9987 32#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
1da177e4 33extern unsigned long max_mapnr;
fccc9987
JL
34
35static inline void set_max_mapnr(unsigned long limit)
36{
37 max_mapnr = limit;
38}
39#else
40static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
41#endif
42
4481374c 43extern unsigned long totalram_pages;
1da177e4 44extern void * high_memory;
1da177e4
LT
45extern int page_cluster;
46
47#ifdef CONFIG_SYSCTL
48extern int sysctl_legacy_va_layout;
49#else
50#define sysctl_legacy_va_layout 0
51#endif
52
53#include <asm/page.h>
54#include <asm/pgtable.h>
55#include <asm/processor.h>
1da177e4 56
79442ed1
TC
57#ifndef __pa_symbol
58#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
59#endif
60
593befa6
DD
61/*
62 * To prevent common memory management code establishing
63 * a zero page mapping on a read fault.
64 * This macro should be defined within <asm/pgtable.h>.
65 * s390 does this to prevent multiplexing of hardware bits
66 * related to the physical page in case of virtualization.
67 */
68#ifndef mm_forbids_zeropage
69#define mm_forbids_zeropage(X) (0)
70#endif
71
c9b1d098 72extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 73extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 74
49f0ce5f
JM
75extern int sysctl_overcommit_memory;
76extern int sysctl_overcommit_ratio;
77extern unsigned long sysctl_overcommit_kbytes;
78
79extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
80 size_t *, loff_t *);
81extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
82 size_t *, loff_t *);
83
1da177e4
LT
84#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
85
27ac792c
AR
86/* to align the pointer to the (next) page boundary */
87#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
88
0fa73b86
AM
89/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
90#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
91
1da177e4
LT
92/*
93 * Linux kernel virtual memory manager primitives.
94 * The idea being to have a "virtual" mm in the same way
95 * we have a virtual fs - giving a cleaner interface to the
96 * mm details, and allowing different kinds of memory mappings
97 * (from shared memory to executable loading to arbitrary
98 * mmap() functions).
99 */
100
c43692e8
CL
101extern struct kmem_cache *vm_area_cachep;
102
1da177e4 103#ifndef CONFIG_MMU
8feae131
DH
104extern struct rb_root nommu_region_tree;
105extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
106
107extern unsigned int kobjsize(const void *objp);
108#endif
109
110/*
605d9288 111 * vm_flags in vm_area_struct, see mm_types.h.
1da177e4 112 */
cc2383ec
KK
113#define VM_NONE 0x00000000
114
1da177e4
LT
115#define VM_READ 0x00000001 /* currently active flags */
116#define VM_WRITE 0x00000002
117#define VM_EXEC 0x00000004
118#define VM_SHARED 0x00000008
119
7e2cff42 120/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
121#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
122#define VM_MAYWRITE 0x00000020
123#define VM_MAYEXEC 0x00000040
124#define VM_MAYSHARE 0x00000080
125
126#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
16ba6f81 127#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
6aab341e 128#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4 129#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
16ba6f81 130#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
1da177e4 131
1da177e4
LT
132#define VM_LOCKED 0x00002000
133#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
134
135 /* Used by sys_madvise() */
136#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
137#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
138
139#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
140#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
1da177e4 141#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 142#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4 143#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
cc2383ec 144#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
4aae7e43 145#define VM_ARCH_2 0x02000000
0103bd16 146#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 147
d9104d1c
CG
148#ifdef CONFIG_MEM_SOFT_DIRTY
149# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
150#else
151# define VM_SOFTDIRTY 0
152#endif
153
b379d790 154#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
155#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
156#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 157#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 158
cc2383ec
KK
159#if defined(CONFIG_X86)
160# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
161#elif defined(CONFIG_PPC)
162# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
163#elif defined(CONFIG_PARISC)
164# define VM_GROWSUP VM_ARCH_1
9ca52ed9
JH
165#elif defined(CONFIG_METAG)
166# define VM_GROWSUP VM_ARCH_1
cc2383ec
KK
167#elif defined(CONFIG_IA64)
168# define VM_GROWSUP VM_ARCH_1
169#elif !defined(CONFIG_MMU)
170# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
171#endif
172
4aae7e43
QR
173#if defined(CONFIG_X86)
174/* MPX specific bounds table or bounds directory */
175# define VM_MPX VM_ARCH_2
176#endif
177
cc2383ec
KK
178#ifndef VM_GROWSUP
179# define VM_GROWSUP VM_NONE
180#endif
181
a8bef8ff
MG
182/* Bits set in the VMA until the stack is in its final location */
183#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
184
1da177e4
LT
185#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
186#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
187#endif
188
189#ifdef CONFIG_STACK_GROWSUP
190#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
191#else
192#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
193#endif
194
b291f000 195/*
78f11a25
AA
196 * Special vmas that are non-mergable, non-mlock()able.
197 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
b291f000 198 */
9050d7eb 199#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
b291f000 200
a0715cc2
AT
201/* This mask defines which mm->def_flags a process can inherit its parent */
202#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
203
1da177e4
LT
204/*
205 * mapping from the currently active vm_flags protection bits (the
206 * low four bits) to a page protection mask..
207 */
208extern pgprot_t protection_map[16];
209
d0217ac0 210#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
9b4bdd2f
KS
211#define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
212#define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
213#define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
214#define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
215#define FAULT_FLAG_TRIED 0x20 /* Second try */
216#define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
d0217ac0 217
54cb8821 218/*
d0217ac0 219 * vm_fault is filled by the the pagefault handler and passed to the vma's
83c54070
NP
220 * ->fault function. The vma's ->fault is responsible for returning a bitmask
221 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 222 *
9b4bdd2f 223 * pgoff should be used in favour of virtual_address, if possible.
54cb8821 224 */
d0217ac0
NP
225struct vm_fault {
226 unsigned int flags; /* FAULT_FLAG_xxx flags */
227 pgoff_t pgoff; /* Logical page offset based on vma */
228 void __user *virtual_address; /* Faulting virtual address */
229
2e4cdab0 230 struct page *cow_page; /* Handler may choose to COW */
d0217ac0 231 struct page *page; /* ->fault handlers should return a
83c54070 232 * page here, unless VM_FAULT_NOPAGE
d0217ac0 233 * is set (which is also implied by
83c54070 234 * VM_FAULT_ERROR).
d0217ac0 235 */
8c6e50b0
KS
236 /* for ->map_pages() only */
237 pgoff_t max_pgoff; /* map pages for offset from pgoff till
238 * max_pgoff inclusive */
239 pte_t *pte; /* pte entry associated with ->pgoff */
54cb8821 240};
1da177e4
LT
241
242/*
243 * These are the virtual MM functions - opening of an area, closing and
244 * unmapping it (needed to keep files on disk up-to-date etc), pointer
245 * to the functions called when a no-page or a wp-page exception occurs.
246 */
247struct vm_operations_struct {
248 void (*open)(struct vm_area_struct * area);
249 void (*close)(struct vm_area_struct * area);
5477e70a 250 int (*mremap)(struct vm_area_struct * area);
d0217ac0 251 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
b96375f7
MW
252 int (*pmd_fault)(struct vm_area_struct *, unsigned long address,
253 pmd_t *, unsigned int flags);
8c6e50b0 254 void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf);
9637a5ef
DH
255
256 /* notification that a previously read-only page is about to become
257 * writable, if an error is returned it will cause a SIGBUS */
c2ec175c 258 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
28b2ee20 259
dd906184
BH
260 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
261 int (*pfn_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
262
28b2ee20
RR
263 /* called by access_process_vm when get_user_pages() fails, typically
264 * for use by special VMAs that can switch between memory and hardware
265 */
266 int (*access)(struct vm_area_struct *vma, unsigned long addr,
267 void *buf, int len, int write);
78d683e8
AL
268
269 /* Called by the /proc/PID/maps code to ask the vma whether it
270 * has a special name. Returning non-NULL will also cause this
271 * vma to be dumped unconditionally. */
272 const char *(*name)(struct vm_area_struct *vma);
273
1da177e4 274#ifdef CONFIG_NUMA
a6020ed7
LS
275 /*
276 * set_policy() op must add a reference to any non-NULL @new mempolicy
277 * to hold the policy upon return. Caller should pass NULL @new to
278 * remove a policy and fall back to surrounding context--i.e. do not
279 * install a MPOL_DEFAULT policy, nor the task or system default
280 * mempolicy.
281 */
1da177e4 282 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
283
284 /*
285 * get_policy() op must add reference [mpol_get()] to any policy at
286 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
287 * in mm/mempolicy.c will do this automatically.
288 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
289 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
290 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
291 * must return NULL--i.e., do not "fallback" to task or system default
292 * policy.
293 */
1da177e4
LT
294 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
295 unsigned long addr);
296#endif
667a0a06
DV
297 /*
298 * Called by vm_normal_page() for special PTEs to find the
299 * page for @addr. This is useful if the default behavior
300 * (using pte_page()) would not find the correct page.
301 */
302 struct page *(*find_special_page)(struct vm_area_struct *vma,
303 unsigned long addr);
1da177e4
LT
304};
305
306struct mmu_gather;
307struct inode;
308
349aef0b
AM
309#define page_private(page) ((page)->private)
310#define set_page_private(page, v) ((page)->private = (v))
4c21e2f2 311
b12c4ad1
MK
312/* It's valid only if the page is free path or free_list */
313static inline void set_freepage_migratetype(struct page *page, int migratetype)
314{
95e34412 315 page->index = migratetype;
b12c4ad1
MK
316}
317
318/* It's valid only if the page is free path or free_list */
319static inline int get_freepage_migratetype(struct page *page)
320{
95e34412 321 return page->index;
b12c4ad1
MK
322}
323
1da177e4
LT
324/*
325 * FIXME: take this include out, include page-flags.h in
326 * files which need it (119 of them)
327 */
328#include <linux/page-flags.h>
71e3aac0 329#include <linux/huge_mm.h>
1da177e4
LT
330
331/*
332 * Methods to modify the page usage count.
333 *
334 * What counts for a page usage:
335 * - cache mapping (page->mapping)
336 * - private data (page->private)
337 * - page mapped in a task's page tables, each mapping
338 * is counted separately
339 *
340 * Also, many kernel routines increase the page count before a critical
341 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
342 */
343
344/*
da6052f7 345 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 346 */
7c8ee9a8
NP
347static inline int put_page_testzero(struct page *page)
348{
309381fe 349 VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page);
8dc04efb 350 return atomic_dec_and_test(&page->_count);
7c8ee9a8 351}
1da177e4
LT
352
353/*
7c8ee9a8
NP
354 * Try to grab a ref unless the page has a refcount of zero, return false if
355 * that is the case.
8e0861fa
AK
356 * This can be called when MMU is off so it must not access
357 * any of the virtual mappings.
1da177e4 358 */
7c8ee9a8
NP
359static inline int get_page_unless_zero(struct page *page)
360{
8dc04efb 361 return atomic_inc_not_zero(&page->_count);
7c8ee9a8 362}
1da177e4 363
8e0861fa
AK
364/*
365 * Try to drop a ref unless the page has a refcount of one, return false if
366 * that is the case.
367 * This is to make sure that the refcount won't become zero after this drop.
368 * This can be called when MMU is off so it must not access
369 * any of the virtual mappings.
370 */
371static inline int put_page_unless_one(struct page *page)
372{
373 return atomic_add_unless(&page->_count, -1, 1);
374}
375
53df8fdc 376extern int page_is_ram(unsigned long pfn);
67cf13ce 377extern int region_is_ram(resource_size_t phys_addr, unsigned long size);
53df8fdc 378
48667e7a 379/* Support for virtually mapped pages */
b3bdda02
CL
380struct page *vmalloc_to_page(const void *addr);
381unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 382
0738c4bb
PM
383/*
384 * Determine if an address is within the vmalloc range
385 *
386 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
387 * is no special casing required.
388 */
9e2779fa
CL
389static inline int is_vmalloc_addr(const void *x)
390{
0738c4bb 391#ifdef CONFIG_MMU
9e2779fa
CL
392 unsigned long addr = (unsigned long)x;
393
394 return addr >= VMALLOC_START && addr < VMALLOC_END;
0738c4bb
PM
395#else
396 return 0;
8ca3ed87 397#endif
0738c4bb 398}
81ac3ad9
KH
399#ifdef CONFIG_MMU
400extern int is_vmalloc_or_module_addr(const void *x);
401#else
934831d0 402static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
403{
404 return 0;
405}
406#endif
9e2779fa 407
39f1f78d
AV
408extern void kvfree(const void *addr);
409
e9da73d6
AA
410static inline void compound_lock(struct page *page)
411{
412#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 413 VM_BUG_ON_PAGE(PageSlab(page), page);
e9da73d6
AA
414 bit_spin_lock(PG_compound_lock, &page->flags);
415#endif
416}
417
418static inline void compound_unlock(struct page *page)
419{
420#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 421 VM_BUG_ON_PAGE(PageSlab(page), page);
e9da73d6
AA
422 bit_spin_unlock(PG_compound_lock, &page->flags);
423#endif
424}
425
426static inline unsigned long compound_lock_irqsave(struct page *page)
427{
428 unsigned long uninitialized_var(flags);
429#ifdef CONFIG_TRANSPARENT_HUGEPAGE
430 local_irq_save(flags);
431 compound_lock(page);
432#endif
433 return flags;
434}
435
436static inline void compound_unlock_irqrestore(struct page *page,
437 unsigned long flags)
438{
439#ifdef CONFIG_TRANSPARENT_HUGEPAGE
440 compound_unlock(page);
441 local_irq_restore(flags);
442#endif
443}
444
d2ee40ea
JZ
445static inline struct page *compound_head_by_tail(struct page *tail)
446{
447 struct page *head = tail->first_page;
448
449 /*
450 * page->first_page may be a dangling pointer to an old
451 * compound page, so recheck that it is still a tail
452 * page before returning.
453 */
454 smp_rmb();
455 if (likely(PageTail(tail)))
456 return head;
457 return tail;
458}
459
ccaafd7f
JK
460/*
461 * Since either compound page could be dismantled asynchronously in THP
462 * or we access asynchronously arbitrary positioned struct page, there
463 * would be tail flag race. To handle this race, we should call
464 * smp_rmb() before checking tail flag. compound_head_by_tail() did it.
465 */
d85f3385
CL
466static inline struct page *compound_head(struct page *page)
467{
d2ee40ea
JZ
468 if (unlikely(PageTail(page)))
469 return compound_head_by_tail(page);
d85f3385
CL
470 return page;
471}
472
ccaafd7f
JK
473/*
474 * If we access compound page synchronously such as access to
475 * allocated page, there is no need to handle tail flag race, so we can
476 * check tail flag directly without any synchronization primitive.
477 */
478static inline struct page *compound_head_fast(struct page *page)
479{
480 if (unlikely(PageTail(page)))
481 return page->first_page;
482 return page;
483}
484
70b50f94
AA
485/*
486 * The atomic page->_mapcount, starts from -1: so that transitions
487 * both from it and to it can be tracked, using atomic_inc_and_test
488 * and atomic_add_negative(-1).
489 */
22b751c3 490static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
491{
492 atomic_set(&(page)->_mapcount, -1);
493}
494
495static inline int page_mapcount(struct page *page)
496{
1d148e21
WY
497 VM_BUG_ON_PAGE(PageSlab(page), page);
498 return atomic_read(&page->_mapcount) + 1;
70b50f94
AA
499}
500
4c21e2f2 501static inline int page_count(struct page *page)
1da177e4 502{
d85f3385 503 return atomic_read(&compound_head(page)->_count);
1da177e4
LT
504}
505
44518d2b
AA
506static inline bool __compound_tail_refcounted(struct page *page)
507{
c761471b 508 return PageAnon(page) && !PageSlab(page) && !PageHeadHuge(page);
44518d2b
AA
509}
510
511/*
512 * This takes a head page as parameter and tells if the
513 * tail page reference counting can be skipped.
514 *
515 * For this to be safe, PageSlab and PageHeadHuge must remain true on
516 * any given page where they return true here, until all tail pins
517 * have been released.
518 */
519static inline bool compound_tail_refcounted(struct page *page)
520{
309381fe 521 VM_BUG_ON_PAGE(!PageHead(page), page);
44518d2b
AA
522 return __compound_tail_refcounted(page);
523}
524
b35a35b5
AA
525static inline void get_huge_page_tail(struct page *page)
526{
527 /*
5eaf1a9e 528 * __split_huge_page_refcount() cannot run from under us.
b35a35b5 529 */
309381fe
SL
530 VM_BUG_ON_PAGE(!PageTail(page), page);
531 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
532 VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page);
5eaf1a9e 533 if (compound_tail_refcounted(page->first_page))
44518d2b 534 atomic_inc(&page->_mapcount);
b35a35b5
AA
535}
536
70b50f94
AA
537extern bool __get_page_tail(struct page *page);
538
1da177e4
LT
539static inline void get_page(struct page *page)
540{
70b50f94
AA
541 if (unlikely(PageTail(page)))
542 if (likely(__get_page_tail(page)))
543 return;
91807063
AA
544 /*
545 * Getting a normal page or the head of a compound page
70b50f94 546 * requires to already have an elevated page->_count.
91807063 547 */
309381fe 548 VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page);
1da177e4
LT
549 atomic_inc(&page->_count);
550}
551
b49af68f
CL
552static inline struct page *virt_to_head_page(const void *x)
553{
554 struct page *page = virt_to_page(x);
ccaafd7f
JK
555
556 /*
557 * We don't need to worry about synchronization of tail flag
558 * when we call virt_to_head_page() since it is only called for
559 * already allocated page and this page won't be freed until
560 * this virt_to_head_page() is finished. So use _fast variant.
561 */
562 return compound_head_fast(page);
b49af68f
CL
563}
564
7835e98b
NP
565/*
566 * Setup the page count before being freed into the page allocator for
567 * the first time (boot or memory hotplug)
568 */
569static inline void init_page_count(struct page *page)
570{
571 atomic_set(&page->_count, 1);
572}
573
1da177e4 574void put_page(struct page *page);
1d7ea732 575void put_pages_list(struct list_head *pages);
1da177e4 576
8dfcc9ba 577void split_page(struct page *page, unsigned int order);
748446bb 578int split_free_page(struct page *page);
8dfcc9ba 579
33f2ef89
AW
580/*
581 * Compound pages have a destructor function. Provide a
582 * prototype for that function and accessor functions.
583 * These are _only_ valid on the head of a PG_compound page.
584 */
33f2ef89
AW
585
586static inline void set_compound_page_dtor(struct page *page,
587 compound_page_dtor *dtor)
588{
e4b294c2 589 page[1].compound_dtor = dtor;
33f2ef89
AW
590}
591
592static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
593{
e4b294c2 594 return page[1].compound_dtor;
33f2ef89
AW
595}
596
d85f3385
CL
597static inline int compound_order(struct page *page)
598{
6d777953 599 if (!PageHead(page))
d85f3385 600 return 0;
e4b294c2 601 return page[1].compound_order;
d85f3385
CL
602}
603
604static inline void set_compound_order(struct page *page, unsigned long order)
605{
e4b294c2 606 page[1].compound_order = order;
d85f3385
CL
607}
608
3dece370 609#ifdef CONFIG_MMU
14fd403f
AA
610/*
611 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
612 * servicing faults for write access. In the normal case, do always want
613 * pte_mkwrite. But get_user_pages can cause write faults for mappings
614 * that do not have writing enabled, when used by access_process_vm.
615 */
616static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
617{
618 if (likely(vma->vm_flags & VM_WRITE))
619 pte = pte_mkwrite(pte);
620 return pte;
621}
8c6e50b0
KS
622
623void do_set_pte(struct vm_area_struct *vma, unsigned long address,
624 struct page *page, pte_t *pte, bool write, bool anon);
3dece370 625#endif
14fd403f 626
1da177e4
LT
627/*
628 * Multiple processes may "see" the same page. E.g. for untouched
629 * mappings of /dev/null, all processes see the same page full of
630 * zeroes, and text pages of executables and shared libraries have
631 * only one copy in memory, at most, normally.
632 *
633 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
634 * page_count() == 0 means the page is free. page->lru is then used for
635 * freelist management in the buddy allocator.
da6052f7 636 * page_count() > 0 means the page has been allocated.
1da177e4 637 *
da6052f7
NP
638 * Pages are allocated by the slab allocator in order to provide memory
639 * to kmalloc and kmem_cache_alloc. In this case, the management of the
640 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
641 * unless a particular usage is carefully commented. (the responsibility of
642 * freeing the kmalloc memory is the caller's, of course).
1da177e4 643 *
da6052f7
NP
644 * A page may be used by anyone else who does a __get_free_page().
645 * In this case, page_count still tracks the references, and should only
646 * be used through the normal accessor functions. The top bits of page->flags
647 * and page->virtual store page management information, but all other fields
648 * are unused and could be used privately, carefully. The management of this
649 * page is the responsibility of the one who allocated it, and those who have
650 * subsequently been given references to it.
651 *
652 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
653 * managed by the Linux memory manager: I/O, buffers, swapping etc.
654 * The following discussion applies only to them.
655 *
da6052f7
NP
656 * A pagecache page contains an opaque `private' member, which belongs to the
657 * page's address_space. Usually, this is the address of a circular list of
658 * the page's disk buffers. PG_private must be set to tell the VM to call
659 * into the filesystem to release these pages.
1da177e4 660 *
da6052f7
NP
661 * A page may belong to an inode's memory mapping. In this case, page->mapping
662 * is the pointer to the inode, and page->index is the file offset of the page,
663 * in units of PAGE_CACHE_SIZE.
1da177e4 664 *
da6052f7
NP
665 * If pagecache pages are not associated with an inode, they are said to be
666 * anonymous pages. These may become associated with the swapcache, and in that
667 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 668 *
da6052f7
NP
669 * In either case (swapcache or inode backed), the pagecache itself holds one
670 * reference to the page. Setting PG_private should also increment the
671 * refcount. The each user mapping also has a reference to the page.
1da177e4 672 *
da6052f7
NP
673 * The pagecache pages are stored in a per-mapping radix tree, which is
674 * rooted at mapping->page_tree, and indexed by offset.
675 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
676 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 677 *
da6052f7 678 * All pagecache pages may be subject to I/O:
1da177e4
LT
679 * - inode pages may need to be read from disk,
680 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
681 * to be written back to the inode on disk,
682 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
683 * modified may need to be swapped out to swap space and (later) to be read
684 * back into memory.
1da177e4
LT
685 */
686
687/*
688 * The zone field is never updated after free_area_init_core()
689 * sets it, so none of the operations on it need to be atomic.
1da177e4 690 */
348f8b6c 691
90572890 692/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
07808b74 693#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
694#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
695#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
90572890 696#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
d41dee36 697
348f8b6c 698/*
25985edc 699 * Define the bit shifts to access each section. For non-existent
348f8b6c
DH
700 * sections we define the shift as 0; that plus a 0 mask ensures
701 * the compiler will optimise away reference to them.
702 */
d41dee36
AW
703#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
704#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
705#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
90572890 706#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
348f8b6c 707
bce54bbf
WD
708/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
709#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 710#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
711#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
712 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 713#else
89689ae7 714#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
715#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
716 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
717#endif
718
bd8029b6 719#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 720
9223b419
CL
721#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
722#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
348f8b6c
DH
723#endif
724
d41dee36
AW
725#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
726#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
727#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
834a964a 728#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
89689ae7 729#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 730
33dd4e0e 731static inline enum zone_type page_zonenum(const struct page *page)
1da177e4 732{
348f8b6c 733 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 734}
1da177e4 735
9127ab4f
CS
736#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
737#define SECTION_IN_PAGE_FLAGS
738#endif
739
89689ae7 740/*
7a8010cd
VB
741 * The identification function is mainly used by the buddy allocator for
742 * determining if two pages could be buddies. We are not really identifying
743 * the zone since we could be using the section number id if we do not have
744 * node id available in page flags.
745 * We only guarantee that it will return the same value for two combinable
746 * pages in a zone.
89689ae7 747 */
cb2b95e1
AW
748static inline int page_zone_id(struct page *page)
749{
89689ae7 750 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
751}
752
25ba77c1 753static inline int zone_to_nid(struct zone *zone)
89fa3024 754{
d5f541ed
CL
755#ifdef CONFIG_NUMA
756 return zone->node;
757#else
758 return 0;
759#endif
89fa3024
CL
760}
761
89689ae7 762#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 763extern int page_to_nid(const struct page *page);
89689ae7 764#else
33dd4e0e 765static inline int page_to_nid(const struct page *page)
d41dee36 766{
89689ae7 767 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 768}
89689ae7
CL
769#endif
770
57e0a030 771#ifdef CONFIG_NUMA_BALANCING
90572890 772static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 773{
90572890 774 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
775}
776
90572890 777static inline int cpupid_to_pid(int cpupid)
57e0a030 778{
90572890 779 return cpupid & LAST__PID_MASK;
57e0a030 780}
b795854b 781
90572890 782static inline int cpupid_to_cpu(int cpupid)
b795854b 783{
90572890 784 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
785}
786
90572890 787static inline int cpupid_to_nid(int cpupid)
b795854b 788{
90572890 789 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
790}
791
90572890 792static inline bool cpupid_pid_unset(int cpupid)
57e0a030 793{
90572890 794 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
795}
796
90572890 797static inline bool cpupid_cpu_unset(int cpupid)
b795854b 798{
90572890 799 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
800}
801
8c8a743c
PZ
802static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
803{
804 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
805}
806
807#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
90572890
PZ
808#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
809static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
b795854b 810{
1ae71d03 811 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
b795854b 812}
90572890
PZ
813
814static inline int page_cpupid_last(struct page *page)
815{
816 return page->_last_cpupid;
817}
818static inline void page_cpupid_reset_last(struct page *page)
b795854b 819{
1ae71d03 820 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
57e0a030
MG
821}
822#else
90572890 823static inline int page_cpupid_last(struct page *page)
75980e97 824{
90572890 825 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
826}
827
90572890 828extern int page_cpupid_xchg_last(struct page *page, int cpupid);
75980e97 829
90572890 830static inline void page_cpupid_reset_last(struct page *page)
75980e97 831{
90572890 832 int cpupid = (1 << LAST_CPUPID_SHIFT) - 1;
4468b8f1 833
90572890
PZ
834 page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);
835 page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;
75980e97 836}
90572890
PZ
837#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
838#else /* !CONFIG_NUMA_BALANCING */
839static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
57e0a030 840{
90572890 841 return page_to_nid(page); /* XXX */
57e0a030
MG
842}
843
90572890 844static inline int page_cpupid_last(struct page *page)
57e0a030 845{
90572890 846 return page_to_nid(page); /* XXX */
57e0a030
MG
847}
848
90572890 849static inline int cpupid_to_nid(int cpupid)
b795854b
MG
850{
851 return -1;
852}
853
90572890 854static inline int cpupid_to_pid(int cpupid)
b795854b
MG
855{
856 return -1;
857}
858
90572890 859static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
860{
861 return -1;
862}
863
90572890
PZ
864static inline int cpu_pid_to_cpupid(int nid, int pid)
865{
866 return -1;
867}
868
869static inline bool cpupid_pid_unset(int cpupid)
b795854b
MG
870{
871 return 1;
872}
873
90572890 874static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
875{
876}
8c8a743c
PZ
877
878static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
879{
880 return false;
881}
90572890 882#endif /* CONFIG_NUMA_BALANCING */
57e0a030 883
33dd4e0e 884static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
885{
886 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
887}
888
9127ab4f 889#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
890static inline void set_page_section(struct page *page, unsigned long section)
891{
892 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
893 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
894}
895
aa462abe 896static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
897{
898 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
899}
308c05e3 900#endif
d41dee36 901
2f1b6248 902static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
903{
904 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
905 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
906}
2f1b6248 907
348f8b6c
DH
908static inline void set_page_node(struct page *page, unsigned long node)
909{
910 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
911 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 912}
89689ae7 913
2f1b6248 914static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 915 unsigned long node, unsigned long pfn)
1da177e4 916{
348f8b6c
DH
917 set_page_zone(page, zone);
918 set_page_node(page, node);
9127ab4f 919#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 920 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 921#endif
1da177e4
LT
922}
923
f6ac2354
CL
924/*
925 * Some inline functions in vmstat.h depend on page_zone()
926 */
927#include <linux/vmstat.h>
928
33dd4e0e 929static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 930{
aa462abe 931 return __va(PFN_PHYS(page_to_pfn(page)));
1da177e4
LT
932}
933
934#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
935#define HASHED_PAGE_VIRTUAL
936#endif
937
938#if defined(WANT_PAGE_VIRTUAL)
f92f455f
GU
939static inline void *page_address(const struct page *page)
940{
941 return page->virtual;
942}
943static inline void set_page_address(struct page *page, void *address)
944{
945 page->virtual = address;
946}
1da177e4
LT
947#define page_address_init() do { } while(0)
948#endif
949
950#if defined(HASHED_PAGE_VIRTUAL)
f9918794 951void *page_address(const struct page *page);
1da177e4
LT
952void set_page_address(struct page *page, void *virtual);
953void page_address_init(void);
954#endif
955
956#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
957#define page_address(page) lowmem_page_address(page)
958#define set_page_address(page, address) do { } while(0)
959#define page_address_init() do { } while(0)
960#endif
961
e39155ea
KS
962extern void *page_rmapping(struct page *page);
963extern struct anon_vma *page_anon_vma(struct page *page);
9800339b 964extern struct address_space *page_mapping(struct page *page);
1da177e4 965
f981c595
MG
966extern struct address_space *__page_file_mapping(struct page *);
967
968static inline
969struct address_space *page_file_mapping(struct page *page)
970{
971 if (unlikely(PageSwapCache(page)))
972 return __page_file_mapping(page);
973
974 return page->mapping;
975}
976
1da177e4
LT
977/*
978 * Return the pagecache index of the passed page. Regular pagecache pages
979 * use ->index whereas swapcache pages use ->private
980 */
981static inline pgoff_t page_index(struct page *page)
982{
983 if (unlikely(PageSwapCache(page)))
4c21e2f2 984 return page_private(page);
1da177e4
LT
985 return page->index;
986}
987
f981c595
MG
988extern pgoff_t __page_file_index(struct page *page);
989
990/*
991 * Return the file index of the page. Regular pagecache pages use ->index
992 * whereas swapcache pages use swp_offset(->private)
993 */
994static inline pgoff_t page_file_index(struct page *page)
995{
996 if (unlikely(PageSwapCache(page)))
997 return __page_file_index(page);
998
999 return page->index;
1000}
1001
1da177e4
LT
1002/*
1003 * Return true if this page is mapped into pagetables.
1004 */
1005static inline int page_mapped(struct page *page)
1006{
1007 return atomic_read(&(page)->_mapcount) >= 0;
1008}
1009
2f064f34
MH
1010/*
1011 * Return true only if the page has been allocated with
1012 * ALLOC_NO_WATERMARKS and the low watermark was not
1013 * met implying that the system is under some pressure.
1014 */
1015static inline bool page_is_pfmemalloc(struct page *page)
1016{
1017 /*
1018 * Page index cannot be this large so this must be
1019 * a pfmemalloc page.
1020 */
1021 return page->index == -1UL;
1022}
1023
1024/*
1025 * Only to be called by the page allocator on a freshly allocated
1026 * page.
1027 */
1028static inline void set_page_pfmemalloc(struct page *page)
1029{
1030 page->index = -1UL;
1031}
1032
1033static inline void clear_page_pfmemalloc(struct page *page)
1034{
1035 page->index = 0;
1036}
1037
1da177e4
LT
1038/*
1039 * Different kinds of faults, as returned by handle_mm_fault().
1040 * Used to decide whether a process gets delivered SIGBUS or
1041 * just gets major/minor fault counters bumped up.
1042 */
d0217ac0 1043
83c54070 1044#define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
d0217ac0 1045
83c54070
NP
1046#define VM_FAULT_OOM 0x0001
1047#define VM_FAULT_SIGBUS 0x0002
1048#define VM_FAULT_MAJOR 0x0004
1049#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
aa50d3a7
AK
1050#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1051#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
33692f27 1052#define VM_FAULT_SIGSEGV 0x0040
f33ea7f4 1053
83c54070
NP
1054#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1055#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
d065bd81 1056#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
c0292554 1057#define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
1da177e4 1058
aa50d3a7
AK
1059#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1060
33692f27
LT
1061#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1062 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1063 VM_FAULT_FALLBACK)
aa50d3a7
AK
1064
1065/* Encode hstate index for a hwpoisoned large page */
1066#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1067#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
d0217ac0 1068
1c0fe6e3
NP
1069/*
1070 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1071 */
1072extern void pagefault_out_of_memory(void);
1073
1da177e4
LT
1074#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1075
ddd588b5 1076/*
7bf02ea2 1077 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
1078 * various contexts.
1079 */
4b59e6c4 1080#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
ddd588b5 1081
7bf02ea2
DR
1082extern void show_free_areas(unsigned int flags);
1083extern bool skip_free_areas_node(unsigned int flags, int nid);
1da177e4 1084
1da177e4 1085int shmem_zero_setup(struct vm_area_struct *);
0cd6144a
JW
1086#ifdef CONFIG_SHMEM
1087bool shmem_mapping(struct address_space *mapping);
1088#else
1089static inline bool shmem_mapping(struct address_space *mapping)
1090{
1091 return false;
1092}
1093#endif
1da177e4 1094
e8edc6e0 1095extern int can_do_mlock(void);
1da177e4
LT
1096extern int user_shm_lock(size_t, struct user_struct *);
1097extern void user_shm_unlock(size_t, struct user_struct *);
1098
1099/*
1100 * Parameter block passed down to zap_pte_range in exceptional cases.
1101 */
1102struct zap_details {
1da177e4
LT
1103 struct address_space *check_mapping; /* Check page->mapping if set */
1104 pgoff_t first_index; /* Lowest page->index to unmap */
1105 pgoff_t last_index; /* Highest page->index to unmap */
1da177e4
LT
1106};
1107
7e675137
NP
1108struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1109 pte_t pte);
1110
c627f9cc
JS
1111int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1112 unsigned long size);
14f5ff5d 1113void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4 1114 unsigned long size, struct zap_details *);
4f74d2c8
LT
1115void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1116 unsigned long start, unsigned long end);
e6473092
MM
1117
1118/**
1119 * mm_walk - callbacks for walk_page_range
e6473092 1120 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
03319327
DH
1121 * this handler is required to be able to handle
1122 * pmd_trans_huge() pmds. They may simply choose to
1123 * split_huge_page() instead of handling it explicitly.
e6473092
MM
1124 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1125 * @pte_hole: if set, called for each hole at all levels
5dc37642 1126 * @hugetlb_entry: if set, called for each hugetlb entry
fafaa426
NH
1127 * @test_walk: caller specific callback function to determine whether
1128 * we walk over the current vma or not. A positive returned
1129 * value means "do page table walk over the current vma,"
1130 * and a negative one means "abort current page table walk
1131 * right now." 0 means "skip the current vma."
1132 * @mm: mm_struct representing the target process of page table walk
1133 * @vma: vma currently walked (NULL if walking outside vmas)
1134 * @private: private data for callbacks' usage
e6473092 1135 *
fafaa426 1136 * (see the comment on walk_page_range() for more details)
e6473092
MM
1137 */
1138struct mm_walk {
0f157a5b
AM
1139 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1140 unsigned long next, struct mm_walk *walk);
1141 int (*pte_entry)(pte_t *pte, unsigned long addr,
1142 unsigned long next, struct mm_walk *walk);
1143 int (*pte_hole)(unsigned long addr, unsigned long next,
1144 struct mm_walk *walk);
1145 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1146 unsigned long addr, unsigned long next,
1147 struct mm_walk *walk);
fafaa426
NH
1148 int (*test_walk)(unsigned long addr, unsigned long next,
1149 struct mm_walk *walk);
2165009b 1150 struct mm_struct *mm;
fafaa426 1151 struct vm_area_struct *vma;
2165009b 1152 void *private;
e6473092
MM
1153};
1154
2165009b
DH
1155int walk_page_range(unsigned long addr, unsigned long end,
1156 struct mm_walk *walk);
900fc5f1 1157int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
42b77728 1158void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 1159 unsigned long end, unsigned long floor, unsigned long ceiling);
1da177e4
LT
1160int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1161 struct vm_area_struct *vma);
1da177e4
LT
1162void unmap_mapping_range(struct address_space *mapping,
1163 loff_t const holebegin, loff_t const holelen, int even_cows);
3b6748e2
JW
1164int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1165 unsigned long *pfn);
d87fe660 1166int follow_phys(struct vm_area_struct *vma, unsigned long address,
1167 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
1168int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1169 void *buf, int len, int write);
1da177e4
LT
1170
1171static inline void unmap_shared_mapping_range(struct address_space *mapping,
1172 loff_t const holebegin, loff_t const holelen)
1173{
1174 unmap_mapping_range(mapping, holebegin, holelen, 0);
1175}
1176
7caef267 1177extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 1178extern void truncate_setsize(struct inode *inode, loff_t newsize);
90a80202 1179void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
623e3db9 1180void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
750b4987 1181int truncate_inode_page(struct address_space *mapping, struct page *page);
25718736 1182int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668
WF
1183int invalidate_inode_page(struct page *page);
1184
7ee1dd3f 1185#ifdef CONFIG_MMU
83c54070 1186extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
d06063cc 1187 unsigned long address, unsigned int flags);
5c723ba5
PZ
1188extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1189 unsigned long address, unsigned int fault_flags);
7ee1dd3f
DH
1190#else
1191static inline int handle_mm_fault(struct mm_struct *mm,
1192 struct vm_area_struct *vma, unsigned long address,
d06063cc 1193 unsigned int flags)
7ee1dd3f
DH
1194{
1195 /* should never happen if there's no MMU */
1196 BUG();
1197 return VM_FAULT_SIGBUS;
1198}
5c723ba5
PZ
1199static inline int fixup_user_fault(struct task_struct *tsk,
1200 struct mm_struct *mm, unsigned long address,
1201 unsigned int fault_flags)
1202{
1203 /* should never happen if there's no MMU */
1204 BUG();
1205 return -EFAULT;
1206}
7ee1dd3f 1207#endif
f33ea7f4 1208
1da177e4 1209extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
5ddd36b9
SW
1210extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1211 void *buf, int len, int write);
1da177e4 1212
28a35716
ML
1213long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1214 unsigned long start, unsigned long nr_pages,
1215 unsigned int foll_flags, struct page **pages,
1216 struct vm_area_struct **vmas, int *nonblocking);
1217long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1218 unsigned long start, unsigned long nr_pages,
1219 int write, int force, struct page **pages,
1220 struct vm_area_struct **vmas);
f0818f47
AA
1221long get_user_pages_locked(struct task_struct *tsk, struct mm_struct *mm,
1222 unsigned long start, unsigned long nr_pages,
1223 int write, int force, struct page **pages,
1224 int *locked);
0fd71a56
AA
1225long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
1226 unsigned long start, unsigned long nr_pages,
1227 int write, int force, struct page **pages,
1228 unsigned int gup_flags);
f0818f47
AA
1229long get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
1230 unsigned long start, unsigned long nr_pages,
1231 int write, int force, struct page **pages);
d2bf6be8
NP
1232int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1233 struct page **pages);
18022c5d
MG
1234struct kvec;
1235int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1236 struct page **pages);
1237int get_kernel_page(unsigned long start, int write, struct page **pages);
f3e8fccd 1238struct page *get_dump_page(unsigned long addr);
1da177e4 1239
cf9a2ae8 1240extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
d47992f8
LC
1241extern void do_invalidatepage(struct page *page, unsigned int offset,
1242 unsigned int length);
cf9a2ae8 1243
1da177e4 1244int __set_page_dirty_nobuffers(struct page *page);
76719325 1245int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
1246int redirty_page_for_writepage(struct writeback_control *wbc,
1247 struct page *page);
c4843a75
GT
1248void account_page_dirtied(struct page *page, struct address_space *mapping,
1249 struct mem_cgroup *memcg);
1250void account_page_cleaned(struct page *page, struct address_space *mapping,
682aa8e1 1251 struct mem_cgroup *memcg, struct bdi_writeback *wb);
b3c97528 1252int set_page_dirty(struct page *page);
1da177e4 1253int set_page_dirty_lock(struct page *page);
11f81bec 1254void cancel_dirty_page(struct page *page);
1da177e4 1255int clear_page_dirty_for_io(struct page *page);
b9ea2515 1256
a9090253 1257int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1da177e4 1258
39aa3cb3 1259/* Is the vma a continuation of the stack vma above it? */
a09a79f6 1260static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
39aa3cb3
SB
1261{
1262 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1263}
1264
b5330628
ON
1265static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1266{
1267 return !vma->vm_ops;
1268}
1269
a09a79f6
MP
1270static inline int stack_guard_page_start(struct vm_area_struct *vma,
1271 unsigned long addr)
1272{
1273 return (vma->vm_flags & VM_GROWSDOWN) &&
1274 (vma->vm_start == addr) &&
1275 !vma_growsdown(vma->vm_prev, addr);
1276}
1277
1278/* Is the vma a continuation of the stack vma below it? */
1279static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1280{
1281 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1282}
1283
1284static inline int stack_guard_page_end(struct vm_area_struct *vma,
1285 unsigned long addr)
1286{
1287 return (vma->vm_flags & VM_GROWSUP) &&
1288 (vma->vm_end == addr) &&
1289 !vma_growsup(vma->vm_next, addr);
1290}
1291
58cb6548
ON
1292extern struct task_struct *task_of_stack(struct task_struct *task,
1293 struct vm_area_struct *vma, bool in_group);
b7643757 1294
b6a2fea3
OW
1295extern unsigned long move_page_tables(struct vm_area_struct *vma,
1296 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
1297 unsigned long new_addr, unsigned long len,
1298 bool need_rmap_locks);
7da4d641
PZ
1299extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1300 unsigned long end, pgprot_t newprot,
4b10e7d5 1301 int dirty_accountable, int prot_numa);
b6a2fea3
OW
1302extern int mprotect_fixup(struct vm_area_struct *vma,
1303 struct vm_area_struct **pprev, unsigned long start,
1304 unsigned long end, unsigned long newflags);
1da177e4 1305
465a454f
PZ
1306/*
1307 * doesn't attempt to fault and will return short.
1308 */
1309int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1310 struct page **pages);
d559db08
KH
1311/*
1312 * per-process(per-mm_struct) statistics.
1313 */
d559db08
KH
1314static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1315{
69c97823
KK
1316 long val = atomic_long_read(&mm->rss_stat.count[member]);
1317
1318#ifdef SPLIT_RSS_COUNTING
1319 /*
1320 * counter is updated in asynchronous manner and may go to minus.
1321 * But it's never be expected number for users.
1322 */
1323 if (val < 0)
1324 val = 0;
172703b0 1325#endif
69c97823
KK
1326 return (unsigned long)val;
1327}
d559db08
KH
1328
1329static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1330{
172703b0 1331 atomic_long_add(value, &mm->rss_stat.count[member]);
d559db08
KH
1332}
1333
1334static inline void inc_mm_counter(struct mm_struct *mm, int member)
1335{
172703b0 1336 atomic_long_inc(&mm->rss_stat.count[member]);
d559db08
KH
1337}
1338
1339static inline void dec_mm_counter(struct mm_struct *mm, int member)
1340{
172703b0 1341 atomic_long_dec(&mm->rss_stat.count[member]);
d559db08
KH
1342}
1343
d559db08
KH
1344static inline unsigned long get_mm_rss(struct mm_struct *mm)
1345{
1346 return get_mm_counter(mm, MM_FILEPAGES) +
1347 get_mm_counter(mm, MM_ANONPAGES);
1348}
1349
1350static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1351{
1352 return max(mm->hiwater_rss, get_mm_rss(mm));
1353}
1354
1355static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1356{
1357 return max(mm->hiwater_vm, mm->total_vm);
1358}
1359
1360static inline void update_hiwater_rss(struct mm_struct *mm)
1361{
1362 unsigned long _rss = get_mm_rss(mm);
1363
1364 if ((mm)->hiwater_rss < _rss)
1365 (mm)->hiwater_rss = _rss;
1366}
1367
1368static inline void update_hiwater_vm(struct mm_struct *mm)
1369{
1370 if (mm->hiwater_vm < mm->total_vm)
1371 mm->hiwater_vm = mm->total_vm;
1372}
1373
695f0559
PC
1374static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1375{
1376 mm->hiwater_rss = get_mm_rss(mm);
1377}
1378
d559db08
KH
1379static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1380 struct mm_struct *mm)
1381{
1382 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1383
1384 if (*maxrss < hiwater_rss)
1385 *maxrss = hiwater_rss;
1386}
1387
53bddb4e 1388#if defined(SPLIT_RSS_COUNTING)
05af2e10 1389void sync_mm_rss(struct mm_struct *mm);
53bddb4e 1390#else
05af2e10 1391static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
1392{
1393}
1394#endif
465a454f 1395
4e950f6f 1396int vma_wants_writenotify(struct vm_area_struct *vma);
d08b3851 1397
25ca1d6c
NK
1398extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1399 spinlock_t **ptl);
1400static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1401 spinlock_t **ptl)
1402{
1403 pte_t *ptep;
1404 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1405 return ptep;
1406}
c9cfcddf 1407
5f22df00
NP
1408#ifdef __PAGETABLE_PUD_FOLDED
1409static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1410 unsigned long address)
1411{
1412 return 0;
1413}
1414#else
1bb3630e 1415int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
5f22df00
NP
1416#endif
1417
2d2f5119 1418#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
5f22df00
NP
1419static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1420 unsigned long address)
1421{
1422 return 0;
1423}
dc6c9a35 1424
2d2f5119
KS
1425static inline void mm_nr_pmds_init(struct mm_struct *mm) {}
1426
dc6c9a35
KS
1427static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1428{
1429 return 0;
1430}
1431
1432static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1433static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1434
5f22df00 1435#else
1bb3630e 1436int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
dc6c9a35 1437
2d2f5119
KS
1438static inline void mm_nr_pmds_init(struct mm_struct *mm)
1439{
1440 atomic_long_set(&mm->nr_pmds, 0);
1441}
1442
dc6c9a35
KS
1443static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1444{
1445 return atomic_long_read(&mm->nr_pmds);
1446}
1447
1448static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1449{
1450 atomic_long_inc(&mm->nr_pmds);
1451}
1452
1453static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1454{
1455 atomic_long_dec(&mm->nr_pmds);
1456}
5f22df00
NP
1457#endif
1458
8ac1f832
AA
1459int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1460 pmd_t *pmd, unsigned long address);
1bb3630e
HD
1461int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1462
1da177e4
LT
1463/*
1464 * The following ifdef needed to get the 4level-fixup.h header to work.
1465 * Remove it when 4level-fixup.h has been removed.
1466 */
1bb3630e 1467#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1da177e4
LT
1468static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1469{
1bb3630e
HD
1470 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1471 NULL: pud_offset(pgd, address);
1da177e4
LT
1472}
1473
1474static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1475{
1bb3630e
HD
1476 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1477 NULL: pmd_offset(pud, address);
1da177e4 1478}
1bb3630e
HD
1479#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1480
57c1ffce 1481#if USE_SPLIT_PTE_PTLOCKS
597d795a 1482#if ALLOC_SPLIT_PTLOCKS
b35f1819 1483void __init ptlock_cache_init(void);
539edb58
PZ
1484extern bool ptlock_alloc(struct page *page);
1485extern void ptlock_free(struct page *page);
1486
1487static inline spinlock_t *ptlock_ptr(struct page *page)
1488{
1489 return page->ptl;
1490}
597d795a 1491#else /* ALLOC_SPLIT_PTLOCKS */
b35f1819
KS
1492static inline void ptlock_cache_init(void)
1493{
1494}
1495
49076ec2
KS
1496static inline bool ptlock_alloc(struct page *page)
1497{
49076ec2
KS
1498 return true;
1499}
539edb58 1500
49076ec2
KS
1501static inline void ptlock_free(struct page *page)
1502{
49076ec2
KS
1503}
1504
1505static inline spinlock_t *ptlock_ptr(struct page *page)
1506{
539edb58 1507 return &page->ptl;
49076ec2 1508}
597d795a 1509#endif /* ALLOC_SPLIT_PTLOCKS */
49076ec2
KS
1510
1511static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1512{
1513 return ptlock_ptr(pmd_page(*pmd));
1514}
1515
1516static inline bool ptlock_init(struct page *page)
1517{
1518 /*
1519 * prep_new_page() initialize page->private (and therefore page->ptl)
1520 * with 0. Make sure nobody took it in use in between.
1521 *
1522 * It can happen if arch try to use slab for page table allocation:
1523 * slab code uses page->slab_cache and page->first_page (for tail
1524 * pages), which share storage with page->ptl.
1525 */
309381fe 1526 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
49076ec2
KS
1527 if (!ptlock_alloc(page))
1528 return false;
1529 spin_lock_init(ptlock_ptr(page));
1530 return true;
1531}
1532
1533/* Reset page->mapping so free_pages_check won't complain. */
1534static inline void pte_lock_deinit(struct page *page)
1535{
1536 page->mapping = NULL;
1537 ptlock_free(page);
1538}
1539
57c1ffce 1540#else /* !USE_SPLIT_PTE_PTLOCKS */
4c21e2f2
HD
1541/*
1542 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1543 */
49076ec2
KS
1544static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1545{
1546 return &mm->page_table_lock;
1547}
b35f1819 1548static inline void ptlock_cache_init(void) {}
49076ec2
KS
1549static inline bool ptlock_init(struct page *page) { return true; }
1550static inline void pte_lock_deinit(struct page *page) {}
57c1ffce 1551#endif /* USE_SPLIT_PTE_PTLOCKS */
4c21e2f2 1552
b35f1819
KS
1553static inline void pgtable_init(void)
1554{
1555 ptlock_cache_init();
1556 pgtable_cache_init();
1557}
1558
390f44e2 1559static inline bool pgtable_page_ctor(struct page *page)
2f569afd 1560{
2f569afd 1561 inc_zone_page_state(page, NR_PAGETABLE);
49076ec2 1562 return ptlock_init(page);
2f569afd
MS
1563}
1564
1565static inline void pgtable_page_dtor(struct page *page)
1566{
1567 pte_lock_deinit(page);
1568 dec_zone_page_state(page, NR_PAGETABLE);
1569}
1570
c74df32c
HD
1571#define pte_offset_map_lock(mm, pmd, address, ptlp) \
1572({ \
4c21e2f2 1573 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
1574 pte_t *__pte = pte_offset_map(pmd, address); \
1575 *(ptlp) = __ptl; \
1576 spin_lock(__ptl); \
1577 __pte; \
1578})
1579
1580#define pte_unmap_unlock(pte, ptl) do { \
1581 spin_unlock(ptl); \
1582 pte_unmap(pte); \
1583} while (0)
1584
8ac1f832
AA
1585#define pte_alloc_map(mm, vma, pmd, address) \
1586 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1587 pmd, address))? \
1588 NULL: pte_offset_map(pmd, address))
1bb3630e 1589
c74df32c 1590#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
8ac1f832
AA
1591 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1592 pmd, address))? \
c74df32c
HD
1593 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1594
1bb3630e 1595#define pte_alloc_kernel(pmd, address) \
8ac1f832 1596 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1bb3630e 1597 NULL: pte_offset_kernel(pmd, address))
1da177e4 1598
e009bb30
KS
1599#if USE_SPLIT_PMD_PTLOCKS
1600
634391ac
MS
1601static struct page *pmd_to_page(pmd_t *pmd)
1602{
1603 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1604 return virt_to_page((void *)((unsigned long) pmd & mask));
1605}
1606
e009bb30
KS
1607static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1608{
634391ac 1609 return ptlock_ptr(pmd_to_page(pmd));
e009bb30
KS
1610}
1611
1612static inline bool pgtable_pmd_page_ctor(struct page *page)
1613{
e009bb30
KS
1614#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1615 page->pmd_huge_pte = NULL;
1616#endif
49076ec2 1617 return ptlock_init(page);
e009bb30
KS
1618}
1619
1620static inline void pgtable_pmd_page_dtor(struct page *page)
1621{
1622#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 1623 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
e009bb30 1624#endif
49076ec2 1625 ptlock_free(page);
e009bb30
KS
1626}
1627
634391ac 1628#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
e009bb30
KS
1629
1630#else
1631
9a86cb7b
KS
1632static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1633{
1634 return &mm->page_table_lock;
1635}
1636
e009bb30
KS
1637static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1638static inline void pgtable_pmd_page_dtor(struct page *page) {}
1639
c389a250 1640#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
9a86cb7b 1641
e009bb30
KS
1642#endif
1643
9a86cb7b
KS
1644static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1645{
1646 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1647 spin_lock(ptl);
1648 return ptl;
1649}
1650
1da177e4 1651extern void free_area_init(unsigned long * zones_size);
9109fb7b
JW
1652extern void free_area_init_node(int nid, unsigned long * zones_size,
1653 unsigned long zone_start_pfn, unsigned long *zholes_size);
49a7f04a
DH
1654extern void free_initmem(void);
1655
69afade7
JL
1656/*
1657 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1658 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 1659 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
1660 * Return pages freed into the buddy system.
1661 */
11199692 1662extern unsigned long free_reserved_area(void *start, void *end,
69afade7 1663 int poison, char *s);
c3d5f5f0 1664
cfa11e08
JL
1665#ifdef CONFIG_HIGHMEM
1666/*
1667 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1668 * and totalram_pages.
1669 */
1670extern void free_highmem_page(struct page *page);
1671#endif
69afade7 1672
c3d5f5f0 1673extern void adjust_managed_page_count(struct page *page, long count);
7ee3d4e8 1674extern void mem_init_print_info(const char *str);
69afade7 1675
92923ca3
NZ
1676extern void reserve_bootmem_region(unsigned long start, unsigned long end);
1677
69afade7
JL
1678/* Free the reserved page into the buddy system, so it gets managed. */
1679static inline void __free_reserved_page(struct page *page)
1680{
1681 ClearPageReserved(page);
1682 init_page_count(page);
1683 __free_page(page);
1684}
1685
1686static inline void free_reserved_page(struct page *page)
1687{
1688 __free_reserved_page(page);
1689 adjust_managed_page_count(page, 1);
1690}
1691
1692static inline void mark_page_reserved(struct page *page)
1693{
1694 SetPageReserved(page);
1695 adjust_managed_page_count(page, -1);
1696}
1697
1698/*
1699 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
1700 * The freed pages will be poisoned with pattern "poison" if it's within
1701 * range [0, UCHAR_MAX].
1702 * Return pages freed into the buddy system.
69afade7
JL
1703 */
1704static inline unsigned long free_initmem_default(int poison)
1705{
1706 extern char __init_begin[], __init_end[];
1707
11199692 1708 return free_reserved_area(&__init_begin, &__init_end,
69afade7
JL
1709 poison, "unused kernel");
1710}
1711
7ee3d4e8
JL
1712static inline unsigned long get_num_physpages(void)
1713{
1714 int nid;
1715 unsigned long phys_pages = 0;
1716
1717 for_each_online_node(nid)
1718 phys_pages += node_present_pages(nid);
1719
1720 return phys_pages;
1721}
1722
0ee332c1 1723#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 1724/*
0ee332c1 1725 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
c713216d
MG
1726 * zones, allocate the backing mem_map and account for memory holes in a more
1727 * architecture independent manner. This is a substitute for creating the
1728 * zone_sizes[] and zholes_size[] arrays and passing them to
1729 * free_area_init_node()
1730 *
1731 * An architecture is expected to register range of page frames backed by
0ee332c1 1732 * physical memory with memblock_add[_node]() before calling
c713216d
MG
1733 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1734 * usage, an architecture is expected to do something like
1735 *
1736 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1737 * max_highmem_pfn};
1738 * for_each_valid_physical_page_range()
0ee332c1 1739 * memblock_add_node(base, size, nid)
c713216d
MG
1740 * free_area_init_nodes(max_zone_pfns);
1741 *
0ee332c1
TH
1742 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1743 * registered physical page range. Similarly
1744 * sparse_memory_present_with_active_regions() calls memory_present() for
1745 * each range when SPARSEMEM is enabled.
c713216d
MG
1746 *
1747 * See mm/page_alloc.c for more information on each function exposed by
0ee332c1 1748 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
c713216d
MG
1749 */
1750extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1e01979c 1751unsigned long node_map_pfn_alignment(void);
32996250
YL
1752unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1753 unsigned long end_pfn);
c713216d
MG
1754extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1755 unsigned long end_pfn);
1756extern void get_pfn_range_for_nid(unsigned int nid,
1757 unsigned long *start_pfn, unsigned long *end_pfn);
1758extern unsigned long find_min_pfn_with_active_regions(void);
c713216d
MG
1759extern void free_bootmem_with_active_regions(int nid,
1760 unsigned long max_low_pfn);
1761extern void sparse_memory_present_with_active_regions(int nid);
f2dbcfa7 1762
0ee332c1 1763#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
f2dbcfa7 1764
0ee332c1 1765#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
f2dbcfa7 1766 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
8a942fde
MG
1767static inline int __early_pfn_to_nid(unsigned long pfn,
1768 struct mminit_pfnnid_cache *state)
f2dbcfa7
KH
1769{
1770 return 0;
1771}
1772#else
1773/* please see mm/page_alloc.c */
1774extern int __meminit early_pfn_to_nid(unsigned long pfn);
f2dbcfa7 1775/* there is a per-arch backend function. */
8a942fde
MG
1776extern int __meminit __early_pfn_to_nid(unsigned long pfn,
1777 struct mminit_pfnnid_cache *state);
f2dbcfa7
KH
1778#endif
1779
0e0b864e 1780extern void set_dma_reserve(unsigned long new_dma_reserve);
a2f3aa02
DH
1781extern void memmap_init_zone(unsigned long, int, unsigned long,
1782 unsigned long, enum memmap_context);
bc75d33f 1783extern void setup_per_zone_wmarks(void);
1b79acc9 1784extern int __meminit init_per_zone_wmark_min(void);
1da177e4 1785extern void mem_init(void);
8feae131 1786extern void __init mmap_init(void);
b2b755b5 1787extern void show_mem(unsigned int flags);
1da177e4
LT
1788extern void si_meminfo(struct sysinfo * val);
1789extern void si_meminfo_node(struct sysinfo *val, int nid);
1790
3ee9a4f0
JP
1791extern __printf(3, 4)
1792void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
a238ab5b 1793
e7c8d5c9 1794extern void setup_per_cpu_pageset(void);
e7c8d5c9 1795
112067f0 1796extern void zone_pcp_update(struct zone *zone);
340175b7 1797extern void zone_pcp_reset(struct zone *zone);
112067f0 1798
75f7ad8e
PS
1799/* page_alloc.c */
1800extern int min_free_kbytes;
1801
8feae131 1802/* nommu.c */
33e5d769 1803extern atomic_long_t mmap_pages_allocated;
7e660872 1804extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 1805
6b2dbba8 1806/* interval_tree.c */
6b2dbba8
ML
1807void vma_interval_tree_insert(struct vm_area_struct *node,
1808 struct rb_root *root);
9826a516
ML
1809void vma_interval_tree_insert_after(struct vm_area_struct *node,
1810 struct vm_area_struct *prev,
1811 struct rb_root *root);
6b2dbba8
ML
1812void vma_interval_tree_remove(struct vm_area_struct *node,
1813 struct rb_root *root);
1814struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1815 unsigned long start, unsigned long last);
1816struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1817 unsigned long start, unsigned long last);
1818
1819#define vma_interval_tree_foreach(vma, root, start, last) \
1820 for (vma = vma_interval_tree_iter_first(root, start, last); \
1821 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4 1822
bf181b9f
ML
1823void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1824 struct rb_root *root);
1825void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1826 struct rb_root *root);
1827struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1828 struct rb_root *root, unsigned long start, unsigned long last);
1829struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1830 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
1831#ifdef CONFIG_DEBUG_VM_RB
1832void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1833#endif
bf181b9f
ML
1834
1835#define anon_vma_interval_tree_foreach(avc, root, start, last) \
1836 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1837 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1838
1da177e4 1839/* mmap.c */
34b4e4aa 1840extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
5beb4930 1841extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1da177e4
LT
1842 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1843extern struct vm_area_struct *vma_merge(struct mm_struct *,
1844 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1845 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
19a809af 1846 struct mempolicy *, struct vm_userfaultfd_ctx);
1da177e4
LT
1847extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1848extern int split_vma(struct mm_struct *,
1849 struct vm_area_struct *, unsigned long addr, int new_below);
1850extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1851extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1852 struct rb_node **, struct rb_node *);
a8fb5618 1853extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 1854extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
1855 unsigned long addr, unsigned long len, pgoff_t pgoff,
1856 bool *need_rmap_locks);
1da177e4 1857extern void exit_mmap(struct mm_struct *);
925d1c40 1858
9c599024
CG
1859static inline int check_data_rlimit(unsigned long rlim,
1860 unsigned long new,
1861 unsigned long start,
1862 unsigned long end_data,
1863 unsigned long start_data)
1864{
1865 if (rlim < RLIM_INFINITY) {
1866 if (((new - start) + (end_data - start_data)) > rlim)
1867 return -ENOSPC;
1868 }
1869
1870 return 0;
1871}
1872
7906d00c
AA
1873extern int mm_take_all_locks(struct mm_struct *mm);
1874extern void mm_drop_all_locks(struct mm_struct *mm);
1875
38646013
JS
1876extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1877extern struct file *get_mm_exe_file(struct mm_struct *mm);
925d1c40 1878
119f657c 1879extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
3935ed6a
SS
1880extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
1881 unsigned long addr, unsigned long len,
a62c34bd
AL
1882 unsigned long flags,
1883 const struct vm_special_mapping *spec);
1884/* This is an obsolete alternative to _install_special_mapping. */
fa5dc22f
RM
1885extern int install_special_mapping(struct mm_struct *mm,
1886 unsigned long addr, unsigned long len,
1887 unsigned long flags, struct page **pages);
1da177e4
LT
1888
1889extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1890
0165ab44 1891extern unsigned long mmap_region(struct file *file, unsigned long addr,
c22c0d63 1892 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
bebeb3d6
ML
1893extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1894 unsigned long len, unsigned long prot, unsigned long flags,
41badc15 1895 unsigned long pgoff, unsigned long *populate);
1da177e4
LT
1896extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1897
bebeb3d6
ML
1898#ifdef CONFIG_MMU
1899extern int __mm_populate(unsigned long addr, unsigned long len,
1900 int ignore_errors);
1901static inline void mm_populate(unsigned long addr, unsigned long len)
1902{
1903 /* Ignore errors */
1904 (void) __mm_populate(addr, len, 1);
1905}
1906#else
1907static inline void mm_populate(unsigned long addr, unsigned long len) {}
1908#endif
1909
e4eb1ff6
LT
1910/* These take the mm semaphore themselves */
1911extern unsigned long vm_brk(unsigned long, unsigned long);
bfce281c 1912extern int vm_munmap(unsigned long, size_t);
6be5ceb0
LT
1913extern unsigned long vm_mmap(struct file *, unsigned long,
1914 unsigned long, unsigned long,
1915 unsigned long, unsigned long);
1da177e4 1916
db4fbfb9
ML
1917struct vm_unmapped_area_info {
1918#define VM_UNMAPPED_AREA_TOPDOWN 1
1919 unsigned long flags;
1920 unsigned long length;
1921 unsigned long low_limit;
1922 unsigned long high_limit;
1923 unsigned long align_mask;
1924 unsigned long align_offset;
1925};
1926
1927extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
1928extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
1929
1930/*
1931 * Search for an unmapped address range.
1932 *
1933 * We are looking for a range that:
1934 * - does not intersect with any VMA;
1935 * - is contained within the [low_limit, high_limit) interval;
1936 * - is at least the desired size.
1937 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1938 */
1939static inline unsigned long
1940vm_unmapped_area(struct vm_unmapped_area_info *info)
1941{
cdd7875e 1942 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
db4fbfb9 1943 return unmapped_area_topdown(info);
cdd7875e
BP
1944 else
1945 return unmapped_area(info);
db4fbfb9
ML
1946}
1947
85821aab 1948/* truncate.c */
1da177e4 1949extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
1950extern void truncate_inode_pages_range(struct address_space *,
1951 loff_t lstart, loff_t lend);
91b0abe3 1952extern void truncate_inode_pages_final(struct address_space *);
1da177e4
LT
1953
1954/* generic vm_area_ops exported for stackable file systems */
d0217ac0 1955extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
f1820361 1956extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf);
4fcf1c62 1957extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1da177e4
LT
1958
1959/* mm/page-writeback.c */
1960int write_one_page(struct page *page, int wait);
1cf6e7d8 1961void task_dirty_inc(struct task_struct *tsk);
1da177e4
LT
1962
1963/* readahead.c */
1964#define VM_MAX_READAHEAD 128 /* kbytes */
1965#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1da177e4 1966
1da177e4 1967int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 1968 pgoff_t offset, unsigned long nr_to_read);
cf914a7d
RR
1969
1970void page_cache_sync_readahead(struct address_space *mapping,
1971 struct file_ra_state *ra,
1972 struct file *filp,
1973 pgoff_t offset,
1974 unsigned long size);
1975
1976void page_cache_async_readahead(struct address_space *mapping,
1977 struct file_ra_state *ra,
1978 struct file *filp,
1979 struct page *pg,
1980 pgoff_t offset,
1981 unsigned long size);
1982
1da177e4
LT
1983unsigned long max_sane_readahead(unsigned long nr);
1984
d05f3169 1985/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 1986extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169
MH
1987
1988/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1989extern int expand_downwards(struct vm_area_struct *vma,
1990 unsigned long address);
8ca3eb08 1991#if VM_GROWSUP
46dea3d0 1992extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08 1993#else
fee7e49d 1994 #define expand_upwards(vma, address) (0)
9ab88515 1995#endif
1da177e4
LT
1996
1997/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1998extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1999extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2000 struct vm_area_struct **pprev);
2001
2002/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2003 NULL if none. Assume start_addr < end_addr. */
2004static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2005{
2006 struct vm_area_struct * vma = find_vma(mm,start_addr);
2007
2008 if (vma && end_addr <= vma->vm_start)
2009 vma = NULL;
2010 return vma;
2011}
2012
2013static inline unsigned long vma_pages(struct vm_area_struct *vma)
2014{
2015 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2016}
2017
640708a2
PE
2018/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2019static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2020 unsigned long vm_start, unsigned long vm_end)
2021{
2022 struct vm_area_struct *vma = find_vma(mm, vm_start);
2023
2024 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2025 vma = NULL;
2026
2027 return vma;
2028}
2029
bad849b3 2030#ifdef CONFIG_MMU
804af2cf 2031pgprot_t vm_get_page_prot(unsigned long vm_flags);
64e45507 2032void vma_set_page_prot(struct vm_area_struct *vma);
bad849b3
DH
2033#else
2034static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2035{
2036 return __pgprot(0);
2037}
64e45507
PF
2038static inline void vma_set_page_prot(struct vm_area_struct *vma)
2039{
2040 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2041}
bad849b3
DH
2042#endif
2043
5877231f 2044#ifdef CONFIG_NUMA_BALANCING
4b10e7d5 2045unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
2046 unsigned long start, unsigned long end);
2047#endif
2048
deceb6cd 2049struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
2050int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2051 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 2052int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
e0dc0d8f
NP
2053int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2054 unsigned long pfn);
423bad60
NP
2055int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2056 unsigned long pfn);
b4cbb197
LT
2057int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2058
deceb6cd 2059
240aadee
ML
2060struct page *follow_page_mask(struct vm_area_struct *vma,
2061 unsigned long address, unsigned int foll_flags,
2062 unsigned int *page_mask);
2063
2064static inline struct page *follow_page(struct vm_area_struct *vma,
2065 unsigned long address, unsigned int foll_flags)
2066{
2067 unsigned int unused_page_mask;
2068 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2069}
2070
deceb6cd
HD
2071#define FOLL_WRITE 0x01 /* check pte is writable */
2072#define FOLL_TOUCH 0x02 /* mark page accessed */
2073#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 2074#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 2075#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
2076#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2077 * and return without waiting upon it */
84d33df2 2078#define FOLL_POPULATE 0x40 /* fault in page */
500d65d4 2079#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
69ebb83e 2080#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
0b9d7052 2081#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
5117b3b8 2082#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
234b239b 2083#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
1da177e4 2084
2f569afd 2085typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
aee16b3c
JF
2086 void *data);
2087extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2088 unsigned long size, pte_fn_t fn, void *data);
2089
1da177e4 2090#ifdef CONFIG_PROC_FS
ab50b8ed 2091void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1da177e4 2092#else
ab50b8ed 2093static inline void vm_stat_account(struct mm_struct *mm,
1da177e4
LT
2094 unsigned long flags, struct file *file, long pages)
2095{
44de9d0c 2096 mm->total_vm += pages;
1da177e4
LT
2097}
2098#endif /* CONFIG_PROC_FS */
2099
12d6f21e 2100#ifdef CONFIG_DEBUG_PAGEALLOC
031bc574
JK
2101extern bool _debug_pagealloc_enabled;
2102extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2103
2104static inline bool debug_pagealloc_enabled(void)
2105{
2106 return _debug_pagealloc_enabled;
2107}
2108
2109static inline void
2110kernel_map_pages(struct page *page, int numpages, int enable)
2111{
2112 if (!debug_pagealloc_enabled())
2113 return;
2114
2115 __kernel_map_pages(page, numpages, enable);
2116}
8a235efa
RW
2117#ifdef CONFIG_HIBERNATION
2118extern bool kernel_page_present(struct page *page);
2119#endif /* CONFIG_HIBERNATION */
12d6f21e 2120#else
1da177e4 2121static inline void
9858db50 2122kernel_map_pages(struct page *page, int numpages, int enable) {}
8a235efa
RW
2123#ifdef CONFIG_HIBERNATION
2124static inline bool kernel_page_present(struct page *page) { return true; }
2125#endif /* CONFIG_HIBERNATION */
1da177e4
LT
2126#endif
2127
a6c19dfe 2128#ifdef __HAVE_ARCH_GATE_AREA
31db58b3 2129extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
a6c19dfe
AL
2130extern int in_gate_area_no_mm(unsigned long addr);
2131extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 2132#else
a6c19dfe
AL
2133static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2134{
2135 return NULL;
2136}
2137static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2138static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2139{
2140 return 0;
2141}
1da177e4
LT
2142#endif /* __HAVE_ARCH_GATE_AREA */
2143
146732ce
JT
2144#ifdef CONFIG_SYSCTL
2145extern int sysctl_drop_caches;
8d65af78 2146int drop_caches_sysctl_handler(struct ctl_table *, int,
9d0243bc 2147 void __user *, size_t *, loff_t *);
146732ce
JT
2148#endif
2149
cb731d6c
VD
2150void drop_slab(void);
2151void drop_slab_node(int nid);
9d0243bc 2152
7a9166e3
LY
2153#ifndef CONFIG_MMU
2154#define randomize_va_space 0
2155#else
a62eaf15 2156extern int randomize_va_space;
7a9166e3 2157#endif
a62eaf15 2158
045e72ac 2159const char * arch_vma_name(struct vm_area_struct *vma);
03252919 2160void print_vma_addr(char *prefix, unsigned long rip);
e6e5494c 2161
9bdac914
YL
2162void sparse_mem_maps_populate_node(struct page **map_map,
2163 unsigned long pnum_begin,
2164 unsigned long pnum_end,
2165 unsigned long map_count,
2166 int nodeid);
2167
98f3cfc1 2168struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
29c71111
AW
2169pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2170pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
2171pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2172pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
8f6aac41 2173void *vmemmap_alloc_block(unsigned long size, int node);
9bdac914 2174void *vmemmap_alloc_block_buf(unsigned long size, int node);
8f6aac41 2175void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
0aad818b
JW
2176int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2177 int node);
2178int vmemmap_populate(unsigned long start, unsigned long end, int node);
c2b91e2e 2179void vmemmap_populate_print_last(void);
0197518c 2180#ifdef CONFIG_MEMORY_HOTPLUG
0aad818b 2181void vmemmap_free(unsigned long start, unsigned long end);
0197518c 2182#endif
46723bfa
YI
2183void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2184 unsigned long size);
6a46079c 2185
82ba011b
AK
2186enum mf_flags {
2187 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 2188 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 2189 MF_MUST_KILL = 1 << 2,
cf870c70 2190 MF_SOFT_OFFLINE = 1 << 3,
82ba011b 2191};
cd42f4a3 2192extern int memory_failure(unsigned long pfn, int trapno, int flags);
ea8f5fb8 2193extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
847ce401 2194extern int unpoison_memory(unsigned long pfn);
ead07f6a 2195extern int get_hwpoison_page(struct page *page);
6a46079c
AK
2196extern int sysctl_memory_failure_early_kill;
2197extern int sysctl_memory_failure_recovery;
facb6011 2198extern void shake_page(struct page *p, int access);
293c07e3 2199extern atomic_long_t num_poisoned_pages;
facb6011 2200extern int soft_offline_page(struct page *page, int flags);
6a46079c 2201
cc637b17
XX
2202
2203/*
2204 * Error handlers for various types of pages.
2205 */
cc3e2af4 2206enum mf_result {
cc637b17
XX
2207 MF_IGNORED, /* Error: cannot be handled */
2208 MF_FAILED, /* Error: handling failed */
2209 MF_DELAYED, /* Will be handled later */
2210 MF_RECOVERED, /* Successfully recovered */
2211};
2212
2213enum mf_action_page_type {
2214 MF_MSG_KERNEL,
2215 MF_MSG_KERNEL_HIGH_ORDER,
2216 MF_MSG_SLAB,
2217 MF_MSG_DIFFERENT_COMPOUND,
2218 MF_MSG_POISONED_HUGE,
2219 MF_MSG_HUGE,
2220 MF_MSG_FREE_HUGE,
2221 MF_MSG_UNMAP_FAILED,
2222 MF_MSG_DIRTY_SWAPCACHE,
2223 MF_MSG_CLEAN_SWAPCACHE,
2224 MF_MSG_DIRTY_MLOCKED_LRU,
2225 MF_MSG_CLEAN_MLOCKED_LRU,
2226 MF_MSG_DIRTY_UNEVICTABLE_LRU,
2227 MF_MSG_CLEAN_UNEVICTABLE_LRU,
2228 MF_MSG_DIRTY_LRU,
2229 MF_MSG_CLEAN_LRU,
2230 MF_MSG_TRUNCATED_LRU,
2231 MF_MSG_BUDDY,
2232 MF_MSG_BUDDY_2ND,
2233 MF_MSG_UNKNOWN,
2234};
2235
47ad8475
AA
2236#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2237extern void clear_huge_page(struct page *page,
2238 unsigned long addr,
2239 unsigned int pages_per_huge_page);
2240extern void copy_user_huge_page(struct page *dst, struct page *src,
2241 unsigned long addr, struct vm_area_struct *vma,
2242 unsigned int pages_per_huge_page);
2243#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2244
e30825f1
JK
2245extern struct page_ext_operations debug_guardpage_ops;
2246extern struct page_ext_operations page_poisoning_ops;
2247
c0a32fc5
SG
2248#ifdef CONFIG_DEBUG_PAGEALLOC
2249extern unsigned int _debug_guardpage_minorder;
e30825f1 2250extern bool _debug_guardpage_enabled;
c0a32fc5
SG
2251
2252static inline unsigned int debug_guardpage_minorder(void)
2253{
2254 return _debug_guardpage_minorder;
2255}
2256
e30825f1
JK
2257static inline bool debug_guardpage_enabled(void)
2258{
2259 return _debug_guardpage_enabled;
2260}
2261
c0a32fc5
SG
2262static inline bool page_is_guard(struct page *page)
2263{
e30825f1
JK
2264 struct page_ext *page_ext;
2265
2266 if (!debug_guardpage_enabled())
2267 return false;
2268
2269 page_ext = lookup_page_ext(page);
2270 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
c0a32fc5
SG
2271}
2272#else
2273static inline unsigned int debug_guardpage_minorder(void) { return 0; }
e30825f1 2274static inline bool debug_guardpage_enabled(void) { return false; }
c0a32fc5
SG
2275static inline bool page_is_guard(struct page *page) { return false; }
2276#endif /* CONFIG_DEBUG_PAGEALLOC */
2277
f9872caf
CS
2278#if MAX_NUMNODES > 1
2279void __init setup_nr_node_ids(void);
2280#else
2281static inline void setup_nr_node_ids(void) {}
2282#endif
2283
1da177e4
LT
2284#endif /* __KERNEL__ */
2285#endif /* _LINUX_MM_H */
This page took 2.769894 seconds and 5 git commands to generate.