mm, thp: khugepaged should scan when sleep value is written
[deliverable/linux.git] / include / linux / mm.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MM_H
2#define _LINUX_MM_H
3
1da177e4
LT
4#include <linux/errno.h>
5
6#ifdef __KERNEL__
7
309381fe 8#include <linux/mmdebug.h>
1da177e4 9#include <linux/gfp.h>
187f1882 10#include <linux/bug.h>
1da177e4
LT
11#include <linux/list.h>
12#include <linux/mmzone.h>
13#include <linux/rbtree.h>
83aeeada 14#include <linux/atomic.h>
9a11b49a 15#include <linux/debug_locks.h>
5b99cd0e 16#include <linux/mm_types.h>
08677214 17#include <linux/range.h>
c6f6b596 18#include <linux/pfn.h>
3565fce3 19#include <linux/percpu-refcount.h>
e9da73d6 20#include <linux/bit_spinlock.h>
b0d40c92 21#include <linux/shrinker.h>
9c599024 22#include <linux/resource.h>
e30825f1 23#include <linux/page_ext.h>
8025e5dd 24#include <linux/err.h>
fe896d18 25#include <linux/page_ref.h>
1da177e4
LT
26
27struct mempolicy;
28struct anon_vma;
bf181b9f 29struct anon_vma_chain;
4e950f6f 30struct file_ra_state;
e8edc6e0 31struct user_struct;
4e950f6f 32struct writeback_control;
682aa8e1 33struct bdi_writeback;
1da177e4 34
fccc9987 35#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
1da177e4 36extern unsigned long max_mapnr;
fccc9987
JL
37
38static inline void set_max_mapnr(unsigned long limit)
39{
40 max_mapnr = limit;
41}
42#else
43static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
44#endif
45
4481374c 46extern unsigned long totalram_pages;
1da177e4 47extern void * high_memory;
1da177e4
LT
48extern int page_cluster;
49
50#ifdef CONFIG_SYSCTL
51extern int sysctl_legacy_va_layout;
52#else
53#define sysctl_legacy_va_layout 0
54#endif
55
d07e2259
DC
56#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
57extern const int mmap_rnd_bits_min;
58extern const int mmap_rnd_bits_max;
59extern int mmap_rnd_bits __read_mostly;
60#endif
61#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
62extern const int mmap_rnd_compat_bits_min;
63extern const int mmap_rnd_compat_bits_max;
64extern int mmap_rnd_compat_bits __read_mostly;
65#endif
66
1da177e4
LT
67#include <asm/page.h>
68#include <asm/pgtable.h>
69#include <asm/processor.h>
1da177e4 70
79442ed1
TC
71#ifndef __pa_symbol
72#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
73#endif
74
1dff8083
AB
75#ifndef page_to_virt
76#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
77#endif
78
593befa6
DD
79/*
80 * To prevent common memory management code establishing
81 * a zero page mapping on a read fault.
82 * This macro should be defined within <asm/pgtable.h>.
83 * s390 does this to prevent multiplexing of hardware bits
84 * related to the physical page in case of virtualization.
85 */
86#ifndef mm_forbids_zeropage
87#define mm_forbids_zeropage(X) (0)
88#endif
89
ea606cf5
AR
90/*
91 * Default maximum number of active map areas, this limits the number of vmas
92 * per mm struct. Users can overwrite this number by sysctl but there is a
93 * problem.
94 *
95 * When a program's coredump is generated as ELF format, a section is created
96 * per a vma. In ELF, the number of sections is represented in unsigned short.
97 * This means the number of sections should be smaller than 65535 at coredump.
98 * Because the kernel adds some informative sections to a image of program at
99 * generating coredump, we need some margin. The number of extra sections is
100 * 1-3 now and depends on arch. We use "5" as safe margin, here.
101 *
102 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
103 * not a hard limit any more. Although some userspace tools can be surprised by
104 * that.
105 */
106#define MAPCOUNT_ELF_CORE_MARGIN (5)
107#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
108
109extern int sysctl_max_map_count;
110
c9b1d098 111extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 112extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 113
49f0ce5f
JM
114extern int sysctl_overcommit_memory;
115extern int sysctl_overcommit_ratio;
116extern unsigned long sysctl_overcommit_kbytes;
117
118extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
119 size_t *, loff_t *);
120extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
121 size_t *, loff_t *);
122
1da177e4
LT
123#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
124
27ac792c
AR
125/* to align the pointer to the (next) page boundary */
126#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
127
0fa73b86
AM
128/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
129#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
130
1da177e4
LT
131/*
132 * Linux kernel virtual memory manager primitives.
133 * The idea being to have a "virtual" mm in the same way
134 * we have a virtual fs - giving a cleaner interface to the
135 * mm details, and allowing different kinds of memory mappings
136 * (from shared memory to executable loading to arbitrary
137 * mmap() functions).
138 */
139
c43692e8
CL
140extern struct kmem_cache *vm_area_cachep;
141
1da177e4 142#ifndef CONFIG_MMU
8feae131
DH
143extern struct rb_root nommu_region_tree;
144extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
145
146extern unsigned int kobjsize(const void *objp);
147#endif
148
149/*
605d9288 150 * vm_flags in vm_area_struct, see mm_types.h.
bcf66917 151 * When changing, update also include/trace/events/mmflags.h
1da177e4 152 */
cc2383ec
KK
153#define VM_NONE 0x00000000
154
1da177e4
LT
155#define VM_READ 0x00000001 /* currently active flags */
156#define VM_WRITE 0x00000002
157#define VM_EXEC 0x00000004
158#define VM_SHARED 0x00000008
159
7e2cff42 160/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
161#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
162#define VM_MAYWRITE 0x00000020
163#define VM_MAYEXEC 0x00000040
164#define VM_MAYSHARE 0x00000080
165
166#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
16ba6f81 167#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
6aab341e 168#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4 169#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
16ba6f81 170#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
1da177e4 171
1da177e4
LT
172#define VM_LOCKED 0x00002000
173#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
174
175 /* Used by sys_madvise() */
176#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
177#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
178
179#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
180#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
de60f5f1 181#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
1da177e4 182#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 183#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4 184#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
cc2383ec 185#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
4aae7e43 186#define VM_ARCH_2 0x02000000
0103bd16 187#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 188
d9104d1c
CG
189#ifdef CONFIG_MEM_SOFT_DIRTY
190# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
191#else
192# define VM_SOFTDIRTY 0
193#endif
194
b379d790 195#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
196#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
197#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 198#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 199
63c17fb8
DH
200#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
201#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
202#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
203#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
204#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
205#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
206#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
207#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
208#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
209#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
210
cc2383ec
KK
211#if defined(CONFIG_X86)
212# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
8f62c883
DH
213#if defined (CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS)
214# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
215# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
216# define VM_PKEY_BIT1 VM_HIGH_ARCH_1
217# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
218# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
219#endif
cc2383ec
KK
220#elif defined(CONFIG_PPC)
221# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
222#elif defined(CONFIG_PARISC)
223# define VM_GROWSUP VM_ARCH_1
9ca52ed9
JH
224#elif defined(CONFIG_METAG)
225# define VM_GROWSUP VM_ARCH_1
cc2383ec
KK
226#elif defined(CONFIG_IA64)
227# define VM_GROWSUP VM_ARCH_1
228#elif !defined(CONFIG_MMU)
229# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
230#endif
231
4aae7e43
QR
232#if defined(CONFIG_X86)
233/* MPX specific bounds table or bounds directory */
234# define VM_MPX VM_ARCH_2
235#endif
236
cc2383ec
KK
237#ifndef VM_GROWSUP
238# define VM_GROWSUP VM_NONE
239#endif
240
a8bef8ff
MG
241/* Bits set in the VMA until the stack is in its final location */
242#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
243
1da177e4
LT
244#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
245#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
246#endif
247
248#ifdef CONFIG_STACK_GROWSUP
30bdbb78 249#define VM_STACK VM_GROWSUP
1da177e4 250#else
30bdbb78 251#define VM_STACK VM_GROWSDOWN
1da177e4
LT
252#endif
253
30bdbb78
KK
254#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
255
b291f000 256/*
78f11a25
AA
257 * Special vmas that are non-mergable, non-mlock()able.
258 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
b291f000 259 */
9050d7eb 260#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
b291f000 261
a0715cc2
AT
262/* This mask defines which mm->def_flags a process can inherit its parent */
263#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
264
de60f5f1
EM
265/* This mask is used to clear all the VMA flags used by mlock */
266#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
267
1da177e4
LT
268/*
269 * mapping from the currently active vm_flags protection bits (the
270 * low four bits) to a page protection mask..
271 */
272extern pgprot_t protection_map[16];
273
d0217ac0 274#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
9b4bdd2f
KS
275#define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
276#define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
277#define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
278#define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
279#define FAULT_FLAG_TRIED 0x20 /* Second try */
280#define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
1b2ee126 281#define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */
d61172b4 282#define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */
d0217ac0 283
54cb8821 284/*
d0217ac0 285 * vm_fault is filled by the the pagefault handler and passed to the vma's
83c54070
NP
286 * ->fault function. The vma's ->fault is responsible for returning a bitmask
287 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 288 *
c20cd45e
MH
289 * MM layer fills up gfp_mask for page allocations but fault handler might
290 * alter it if its implementation requires a different allocation context.
291 *
9b4bdd2f 292 * pgoff should be used in favour of virtual_address, if possible.
54cb8821 293 */
d0217ac0
NP
294struct vm_fault {
295 unsigned int flags; /* FAULT_FLAG_xxx flags */
c20cd45e 296 gfp_t gfp_mask; /* gfp mask to be used for allocations */
d0217ac0
NP
297 pgoff_t pgoff; /* Logical page offset based on vma */
298 void __user *virtual_address; /* Faulting virtual address */
299
2e4cdab0 300 struct page *cow_page; /* Handler may choose to COW */
d0217ac0 301 struct page *page; /* ->fault handlers should return a
83c54070 302 * page here, unless VM_FAULT_NOPAGE
d0217ac0 303 * is set (which is also implied by
83c54070 304 * VM_FAULT_ERROR).
d0217ac0 305 */
8c6e50b0
KS
306 /* for ->map_pages() only */
307 pgoff_t max_pgoff; /* map pages for offset from pgoff till
308 * max_pgoff inclusive */
309 pte_t *pte; /* pte entry associated with ->pgoff */
54cb8821 310};
1da177e4
LT
311
312/*
313 * These are the virtual MM functions - opening of an area, closing and
314 * unmapping it (needed to keep files on disk up-to-date etc), pointer
315 * to the functions called when a no-page or a wp-page exception occurs.
316 */
317struct vm_operations_struct {
318 void (*open)(struct vm_area_struct * area);
319 void (*close)(struct vm_area_struct * area);
5477e70a 320 int (*mremap)(struct vm_area_struct * area);
d0217ac0 321 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
b96375f7
MW
322 int (*pmd_fault)(struct vm_area_struct *, unsigned long address,
323 pmd_t *, unsigned int flags);
8c6e50b0 324 void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf);
9637a5ef
DH
325
326 /* notification that a previously read-only page is about to become
327 * writable, if an error is returned it will cause a SIGBUS */
c2ec175c 328 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
28b2ee20 329
dd906184
BH
330 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
331 int (*pfn_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
332
28b2ee20
RR
333 /* called by access_process_vm when get_user_pages() fails, typically
334 * for use by special VMAs that can switch between memory and hardware
335 */
336 int (*access)(struct vm_area_struct *vma, unsigned long addr,
337 void *buf, int len, int write);
78d683e8
AL
338
339 /* Called by the /proc/PID/maps code to ask the vma whether it
340 * has a special name. Returning non-NULL will also cause this
341 * vma to be dumped unconditionally. */
342 const char *(*name)(struct vm_area_struct *vma);
343
1da177e4 344#ifdef CONFIG_NUMA
a6020ed7
LS
345 /*
346 * set_policy() op must add a reference to any non-NULL @new mempolicy
347 * to hold the policy upon return. Caller should pass NULL @new to
348 * remove a policy and fall back to surrounding context--i.e. do not
349 * install a MPOL_DEFAULT policy, nor the task or system default
350 * mempolicy.
351 */
1da177e4 352 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
353
354 /*
355 * get_policy() op must add reference [mpol_get()] to any policy at
356 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
357 * in mm/mempolicy.c will do this automatically.
358 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
359 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
360 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
361 * must return NULL--i.e., do not "fallback" to task or system default
362 * policy.
363 */
1da177e4
LT
364 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
365 unsigned long addr);
366#endif
667a0a06
DV
367 /*
368 * Called by vm_normal_page() for special PTEs to find the
369 * page for @addr. This is useful if the default behavior
370 * (using pte_page()) would not find the correct page.
371 */
372 struct page *(*find_special_page)(struct vm_area_struct *vma,
373 unsigned long addr);
1da177e4
LT
374};
375
376struct mmu_gather;
377struct inode;
378
349aef0b
AM
379#define page_private(page) ((page)->private)
380#define set_page_private(page, v) ((page)->private = (v))
4c21e2f2 381
5c7fb56e
DW
382#if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
383static inline int pmd_devmap(pmd_t pmd)
384{
385 return 0;
386}
387#endif
388
1da177e4
LT
389/*
390 * FIXME: take this include out, include page-flags.h in
391 * files which need it (119 of them)
392 */
393#include <linux/page-flags.h>
71e3aac0 394#include <linux/huge_mm.h>
1da177e4
LT
395
396/*
397 * Methods to modify the page usage count.
398 *
399 * What counts for a page usage:
400 * - cache mapping (page->mapping)
401 * - private data (page->private)
402 * - page mapped in a task's page tables, each mapping
403 * is counted separately
404 *
405 * Also, many kernel routines increase the page count before a critical
406 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
407 */
408
409/*
da6052f7 410 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 411 */
7c8ee9a8
NP
412static inline int put_page_testzero(struct page *page)
413{
fe896d18
JK
414 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
415 return page_ref_dec_and_test(page);
7c8ee9a8 416}
1da177e4
LT
417
418/*
7c8ee9a8
NP
419 * Try to grab a ref unless the page has a refcount of zero, return false if
420 * that is the case.
8e0861fa
AK
421 * This can be called when MMU is off so it must not access
422 * any of the virtual mappings.
1da177e4 423 */
7c8ee9a8
NP
424static inline int get_page_unless_zero(struct page *page)
425{
fe896d18 426 return page_ref_add_unless(page, 1, 0);
7c8ee9a8 427}
1da177e4 428
53df8fdc 429extern int page_is_ram(unsigned long pfn);
124fe20d
DW
430
431enum {
432 REGION_INTERSECTS,
433 REGION_DISJOINT,
434 REGION_MIXED,
435};
436
1c29f25b
TK
437int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
438 unsigned long desc);
53df8fdc 439
48667e7a 440/* Support for virtually mapped pages */
b3bdda02
CL
441struct page *vmalloc_to_page(const void *addr);
442unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 443
0738c4bb
PM
444/*
445 * Determine if an address is within the vmalloc range
446 *
447 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
448 * is no special casing required.
449 */
bb00a789 450static inline bool is_vmalloc_addr(const void *x)
9e2779fa 451{
0738c4bb 452#ifdef CONFIG_MMU
9e2779fa
CL
453 unsigned long addr = (unsigned long)x;
454
455 return addr >= VMALLOC_START && addr < VMALLOC_END;
0738c4bb 456#else
bb00a789 457 return false;
8ca3ed87 458#endif
0738c4bb 459}
81ac3ad9
KH
460#ifdef CONFIG_MMU
461extern int is_vmalloc_or_module_addr(const void *x);
462#else
934831d0 463static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
464{
465 return 0;
466}
467#endif
9e2779fa 468
39f1f78d
AV
469extern void kvfree(const void *addr);
470
53f9263b
KS
471static inline atomic_t *compound_mapcount_ptr(struct page *page)
472{
473 return &page[1].compound_mapcount;
474}
475
476static inline int compound_mapcount(struct page *page)
477{
5f527c2b 478 VM_BUG_ON_PAGE(!PageCompound(page), page);
53f9263b
KS
479 page = compound_head(page);
480 return atomic_read(compound_mapcount_ptr(page)) + 1;
481}
482
70b50f94
AA
483/*
484 * The atomic page->_mapcount, starts from -1: so that transitions
485 * both from it and to it can be tracked, using atomic_inc_and_test
486 * and atomic_add_negative(-1).
487 */
22b751c3 488static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
489{
490 atomic_set(&(page)->_mapcount, -1);
491}
492
b20ce5e0
KS
493int __page_mapcount(struct page *page);
494
70b50f94
AA
495static inline int page_mapcount(struct page *page)
496{
1d148e21 497 VM_BUG_ON_PAGE(PageSlab(page), page);
53f9263b 498
b20ce5e0
KS
499 if (unlikely(PageCompound(page)))
500 return __page_mapcount(page);
501 return atomic_read(&page->_mapcount) + 1;
502}
503
504#ifdef CONFIG_TRANSPARENT_HUGEPAGE
505int total_mapcount(struct page *page);
6d0a07ed 506int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
b20ce5e0
KS
507#else
508static inline int total_mapcount(struct page *page)
509{
510 return page_mapcount(page);
70b50f94 511}
6d0a07ed
AA
512static inline int page_trans_huge_mapcount(struct page *page,
513 int *total_mapcount)
514{
515 int mapcount = page_mapcount(page);
516 if (total_mapcount)
517 *total_mapcount = mapcount;
518 return mapcount;
519}
b20ce5e0 520#endif
70b50f94 521
b49af68f
CL
522static inline struct page *virt_to_head_page(const void *x)
523{
524 struct page *page = virt_to_page(x);
ccaafd7f 525
1d798ca3 526 return compound_head(page);
b49af68f
CL
527}
528
ddc58f27
KS
529void __put_page(struct page *page);
530
1d7ea732 531void put_pages_list(struct list_head *pages);
1da177e4 532
8dfcc9ba 533void split_page(struct page *page, unsigned int order);
748446bb 534int split_free_page(struct page *page);
8dfcc9ba 535
33f2ef89
AW
536/*
537 * Compound pages have a destructor function. Provide a
538 * prototype for that function and accessor functions.
f1e61557 539 * These are _only_ valid on the head of a compound page.
33f2ef89 540 */
f1e61557
KS
541typedef void compound_page_dtor(struct page *);
542
543/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
544enum compound_dtor_id {
545 NULL_COMPOUND_DTOR,
546 COMPOUND_PAGE_DTOR,
547#ifdef CONFIG_HUGETLB_PAGE
548 HUGETLB_PAGE_DTOR,
9a982250
KS
549#endif
550#ifdef CONFIG_TRANSPARENT_HUGEPAGE
551 TRANSHUGE_PAGE_DTOR,
f1e61557
KS
552#endif
553 NR_COMPOUND_DTORS,
554};
555extern compound_page_dtor * const compound_page_dtors[];
33f2ef89
AW
556
557static inline void set_compound_page_dtor(struct page *page,
f1e61557 558 enum compound_dtor_id compound_dtor)
33f2ef89 559{
f1e61557
KS
560 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
561 page[1].compound_dtor = compound_dtor;
33f2ef89
AW
562}
563
564static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
565{
f1e61557
KS
566 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
567 return compound_page_dtors[page[1].compound_dtor];
33f2ef89
AW
568}
569
d00181b9 570static inline unsigned int compound_order(struct page *page)
d85f3385 571{
6d777953 572 if (!PageHead(page))
d85f3385 573 return 0;
e4b294c2 574 return page[1].compound_order;
d85f3385
CL
575}
576
f1e61557 577static inline void set_compound_order(struct page *page, unsigned int order)
d85f3385 578{
e4b294c2 579 page[1].compound_order = order;
d85f3385
CL
580}
581
9a982250
KS
582void free_compound_page(struct page *page);
583
3dece370 584#ifdef CONFIG_MMU
14fd403f
AA
585/*
586 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
587 * servicing faults for write access. In the normal case, do always want
588 * pte_mkwrite. But get_user_pages can cause write faults for mappings
589 * that do not have writing enabled, when used by access_process_vm.
590 */
591static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
592{
593 if (likely(vma->vm_flags & VM_WRITE))
594 pte = pte_mkwrite(pte);
595 return pte;
596}
8c6e50b0
KS
597
598void do_set_pte(struct vm_area_struct *vma, unsigned long address,
5c0a85fa 599 struct page *page, pte_t *pte, bool write, bool anon, bool old);
3dece370 600#endif
14fd403f 601
1da177e4
LT
602/*
603 * Multiple processes may "see" the same page. E.g. for untouched
604 * mappings of /dev/null, all processes see the same page full of
605 * zeroes, and text pages of executables and shared libraries have
606 * only one copy in memory, at most, normally.
607 *
608 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
609 * page_count() == 0 means the page is free. page->lru is then used for
610 * freelist management in the buddy allocator.
da6052f7 611 * page_count() > 0 means the page has been allocated.
1da177e4 612 *
da6052f7
NP
613 * Pages are allocated by the slab allocator in order to provide memory
614 * to kmalloc and kmem_cache_alloc. In this case, the management of the
615 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
616 * unless a particular usage is carefully commented. (the responsibility of
617 * freeing the kmalloc memory is the caller's, of course).
1da177e4 618 *
da6052f7
NP
619 * A page may be used by anyone else who does a __get_free_page().
620 * In this case, page_count still tracks the references, and should only
621 * be used through the normal accessor functions. The top bits of page->flags
622 * and page->virtual store page management information, but all other fields
623 * are unused and could be used privately, carefully. The management of this
624 * page is the responsibility of the one who allocated it, and those who have
625 * subsequently been given references to it.
626 *
627 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
628 * managed by the Linux memory manager: I/O, buffers, swapping etc.
629 * The following discussion applies only to them.
630 *
da6052f7
NP
631 * A pagecache page contains an opaque `private' member, which belongs to the
632 * page's address_space. Usually, this is the address of a circular list of
633 * the page's disk buffers. PG_private must be set to tell the VM to call
634 * into the filesystem to release these pages.
1da177e4 635 *
da6052f7
NP
636 * A page may belong to an inode's memory mapping. In this case, page->mapping
637 * is the pointer to the inode, and page->index is the file offset of the page,
ea1754a0 638 * in units of PAGE_SIZE.
1da177e4 639 *
da6052f7
NP
640 * If pagecache pages are not associated with an inode, they are said to be
641 * anonymous pages. These may become associated with the swapcache, and in that
642 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 643 *
da6052f7
NP
644 * In either case (swapcache or inode backed), the pagecache itself holds one
645 * reference to the page. Setting PG_private should also increment the
646 * refcount. The each user mapping also has a reference to the page.
1da177e4 647 *
da6052f7
NP
648 * The pagecache pages are stored in a per-mapping radix tree, which is
649 * rooted at mapping->page_tree, and indexed by offset.
650 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
651 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 652 *
da6052f7 653 * All pagecache pages may be subject to I/O:
1da177e4
LT
654 * - inode pages may need to be read from disk,
655 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
656 * to be written back to the inode on disk,
657 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
658 * modified may need to be swapped out to swap space and (later) to be read
659 * back into memory.
1da177e4
LT
660 */
661
662/*
663 * The zone field is never updated after free_area_init_core()
664 * sets it, so none of the operations on it need to be atomic.
1da177e4 665 */
348f8b6c 666
90572890 667/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
07808b74 668#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
669#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
670#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
90572890 671#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
d41dee36 672
348f8b6c 673/*
25985edc 674 * Define the bit shifts to access each section. For non-existent
348f8b6c
DH
675 * sections we define the shift as 0; that plus a 0 mask ensures
676 * the compiler will optimise away reference to them.
677 */
d41dee36
AW
678#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
679#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
680#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
90572890 681#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
348f8b6c 682
bce54bbf
WD
683/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
684#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 685#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
686#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
687 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 688#else
89689ae7 689#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
690#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
691 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
692#endif
693
bd8029b6 694#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 695
9223b419
CL
696#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
697#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
348f8b6c
DH
698#endif
699
d41dee36
AW
700#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
701#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
702#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
834a964a 703#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
89689ae7 704#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 705
33dd4e0e 706static inline enum zone_type page_zonenum(const struct page *page)
1da177e4 707{
348f8b6c 708 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 709}
1da177e4 710
260ae3f7 711#ifdef CONFIG_ZONE_DEVICE
3565fce3
DW
712void get_zone_device_page(struct page *page);
713void put_zone_device_page(struct page *page);
260ae3f7
DW
714static inline bool is_zone_device_page(const struct page *page)
715{
716 return page_zonenum(page) == ZONE_DEVICE;
717}
718#else
3565fce3
DW
719static inline void get_zone_device_page(struct page *page)
720{
721}
722static inline void put_zone_device_page(struct page *page)
723{
724}
260ae3f7
DW
725static inline bool is_zone_device_page(const struct page *page)
726{
727 return false;
728}
729#endif
730
3565fce3
DW
731static inline void get_page(struct page *page)
732{
733 page = compound_head(page);
734 /*
735 * Getting a normal page or the head of a compound page
0139aa7b 736 * requires to already have an elevated page->_refcount.
3565fce3 737 */
fe896d18
JK
738 VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page);
739 page_ref_inc(page);
3565fce3
DW
740
741 if (unlikely(is_zone_device_page(page)))
742 get_zone_device_page(page);
743}
744
745static inline void put_page(struct page *page)
746{
747 page = compound_head(page);
748
749 if (put_page_testzero(page))
750 __put_page(page);
751
752 if (unlikely(is_zone_device_page(page)))
753 put_zone_device_page(page);
754}
755
9127ab4f
CS
756#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
757#define SECTION_IN_PAGE_FLAGS
758#endif
759
89689ae7 760/*
7a8010cd
VB
761 * The identification function is mainly used by the buddy allocator for
762 * determining if two pages could be buddies. We are not really identifying
763 * the zone since we could be using the section number id if we do not have
764 * node id available in page flags.
765 * We only guarantee that it will return the same value for two combinable
766 * pages in a zone.
89689ae7 767 */
cb2b95e1
AW
768static inline int page_zone_id(struct page *page)
769{
89689ae7 770 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
771}
772
25ba77c1 773static inline int zone_to_nid(struct zone *zone)
89fa3024 774{
d5f541ed
CL
775#ifdef CONFIG_NUMA
776 return zone->node;
777#else
778 return 0;
779#endif
89fa3024
CL
780}
781
89689ae7 782#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 783extern int page_to_nid(const struct page *page);
89689ae7 784#else
33dd4e0e 785static inline int page_to_nid(const struct page *page)
d41dee36 786{
89689ae7 787 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 788}
89689ae7
CL
789#endif
790
57e0a030 791#ifdef CONFIG_NUMA_BALANCING
90572890 792static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 793{
90572890 794 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
795}
796
90572890 797static inline int cpupid_to_pid(int cpupid)
57e0a030 798{
90572890 799 return cpupid & LAST__PID_MASK;
57e0a030 800}
b795854b 801
90572890 802static inline int cpupid_to_cpu(int cpupid)
b795854b 803{
90572890 804 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
805}
806
90572890 807static inline int cpupid_to_nid(int cpupid)
b795854b 808{
90572890 809 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
810}
811
90572890 812static inline bool cpupid_pid_unset(int cpupid)
57e0a030 813{
90572890 814 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
815}
816
90572890 817static inline bool cpupid_cpu_unset(int cpupid)
b795854b 818{
90572890 819 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
820}
821
8c8a743c
PZ
822static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
823{
824 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
825}
826
827#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
90572890
PZ
828#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
829static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
b795854b 830{
1ae71d03 831 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
b795854b 832}
90572890
PZ
833
834static inline int page_cpupid_last(struct page *page)
835{
836 return page->_last_cpupid;
837}
838static inline void page_cpupid_reset_last(struct page *page)
b795854b 839{
1ae71d03 840 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
57e0a030
MG
841}
842#else
90572890 843static inline int page_cpupid_last(struct page *page)
75980e97 844{
90572890 845 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
846}
847
90572890 848extern int page_cpupid_xchg_last(struct page *page, int cpupid);
75980e97 849
90572890 850static inline void page_cpupid_reset_last(struct page *page)
75980e97 851{
09940a4f 852 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
75980e97 853}
90572890
PZ
854#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
855#else /* !CONFIG_NUMA_BALANCING */
856static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
57e0a030 857{
90572890 858 return page_to_nid(page); /* XXX */
57e0a030
MG
859}
860
90572890 861static inline int page_cpupid_last(struct page *page)
57e0a030 862{
90572890 863 return page_to_nid(page); /* XXX */
57e0a030
MG
864}
865
90572890 866static inline int cpupid_to_nid(int cpupid)
b795854b
MG
867{
868 return -1;
869}
870
90572890 871static inline int cpupid_to_pid(int cpupid)
b795854b
MG
872{
873 return -1;
874}
875
90572890 876static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
877{
878 return -1;
879}
880
90572890
PZ
881static inline int cpu_pid_to_cpupid(int nid, int pid)
882{
883 return -1;
884}
885
886static inline bool cpupid_pid_unset(int cpupid)
b795854b
MG
887{
888 return 1;
889}
890
90572890 891static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
892{
893}
8c8a743c
PZ
894
895static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
896{
897 return false;
898}
90572890 899#endif /* CONFIG_NUMA_BALANCING */
57e0a030 900
33dd4e0e 901static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
902{
903 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
904}
905
9127ab4f 906#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
907static inline void set_page_section(struct page *page, unsigned long section)
908{
909 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
910 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
911}
912
aa462abe 913static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
914{
915 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
916}
308c05e3 917#endif
d41dee36 918
2f1b6248 919static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
920{
921 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
922 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
923}
2f1b6248 924
348f8b6c
DH
925static inline void set_page_node(struct page *page, unsigned long node)
926{
927 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
928 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 929}
89689ae7 930
2f1b6248 931static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 932 unsigned long node, unsigned long pfn)
1da177e4 933{
348f8b6c
DH
934 set_page_zone(page, zone);
935 set_page_node(page, node);
9127ab4f 936#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 937 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 938#endif
1da177e4
LT
939}
940
0610c25d
GT
941#ifdef CONFIG_MEMCG
942static inline struct mem_cgroup *page_memcg(struct page *page)
943{
944 return page->mem_cgroup;
945}
0610c25d
GT
946#else
947static inline struct mem_cgroup *page_memcg(struct page *page)
948{
949 return NULL;
950}
0610c25d
GT
951#endif
952
f6ac2354
CL
953/*
954 * Some inline functions in vmstat.h depend on page_zone()
955 */
956#include <linux/vmstat.h>
957
33dd4e0e 958static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 959{
1dff8083 960 return page_to_virt(page);
1da177e4
LT
961}
962
963#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
964#define HASHED_PAGE_VIRTUAL
965#endif
966
967#if defined(WANT_PAGE_VIRTUAL)
f92f455f
GU
968static inline void *page_address(const struct page *page)
969{
970 return page->virtual;
971}
972static inline void set_page_address(struct page *page, void *address)
973{
974 page->virtual = address;
975}
1da177e4
LT
976#define page_address_init() do { } while(0)
977#endif
978
979#if defined(HASHED_PAGE_VIRTUAL)
f9918794 980void *page_address(const struct page *page);
1da177e4
LT
981void set_page_address(struct page *page, void *virtual);
982void page_address_init(void);
983#endif
984
985#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
986#define page_address(page) lowmem_page_address(page)
987#define set_page_address(page, address) do { } while(0)
988#define page_address_init() do { } while(0)
989#endif
990
e39155ea
KS
991extern void *page_rmapping(struct page *page);
992extern struct anon_vma *page_anon_vma(struct page *page);
9800339b 993extern struct address_space *page_mapping(struct page *page);
1da177e4 994
f981c595
MG
995extern struct address_space *__page_file_mapping(struct page *);
996
997static inline
998struct address_space *page_file_mapping(struct page *page)
999{
1000 if (unlikely(PageSwapCache(page)))
1001 return __page_file_mapping(page);
1002
1003 return page->mapping;
1004}
1005
1da177e4
LT
1006/*
1007 * Return the pagecache index of the passed page. Regular pagecache pages
1008 * use ->index whereas swapcache pages use ->private
1009 */
1010static inline pgoff_t page_index(struct page *page)
1011{
1012 if (unlikely(PageSwapCache(page)))
4c21e2f2 1013 return page_private(page);
1da177e4
LT
1014 return page->index;
1015}
1016
f981c595
MG
1017extern pgoff_t __page_file_index(struct page *page);
1018
1019/*
1020 * Return the file index of the page. Regular pagecache pages use ->index
1021 * whereas swapcache pages use swp_offset(->private)
1022 */
1023static inline pgoff_t page_file_index(struct page *page)
1024{
1025 if (unlikely(PageSwapCache(page)))
1026 return __page_file_index(page);
1027
1028 return page->index;
1029}
1030
1aa8aea5 1031bool page_mapped(struct page *page);
1da177e4 1032
2f064f34
MH
1033/*
1034 * Return true only if the page has been allocated with
1035 * ALLOC_NO_WATERMARKS and the low watermark was not
1036 * met implying that the system is under some pressure.
1037 */
1038static inline bool page_is_pfmemalloc(struct page *page)
1039{
1040 /*
1041 * Page index cannot be this large so this must be
1042 * a pfmemalloc page.
1043 */
1044 return page->index == -1UL;
1045}
1046
1047/*
1048 * Only to be called by the page allocator on a freshly allocated
1049 * page.
1050 */
1051static inline void set_page_pfmemalloc(struct page *page)
1052{
1053 page->index = -1UL;
1054}
1055
1056static inline void clear_page_pfmemalloc(struct page *page)
1057{
1058 page->index = 0;
1059}
1060
1da177e4
LT
1061/*
1062 * Different kinds of faults, as returned by handle_mm_fault().
1063 * Used to decide whether a process gets delivered SIGBUS or
1064 * just gets major/minor fault counters bumped up.
1065 */
d0217ac0 1066
83c54070
NP
1067#define VM_FAULT_OOM 0x0001
1068#define VM_FAULT_SIGBUS 0x0002
1069#define VM_FAULT_MAJOR 0x0004
1070#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
aa50d3a7
AK
1071#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1072#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
33692f27 1073#define VM_FAULT_SIGSEGV 0x0040
f33ea7f4 1074
83c54070
NP
1075#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1076#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
d065bd81 1077#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
c0292554 1078#define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
1da177e4 1079
aa50d3a7
AK
1080#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1081
33692f27
LT
1082#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1083 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1084 VM_FAULT_FALLBACK)
aa50d3a7
AK
1085
1086/* Encode hstate index for a hwpoisoned large page */
1087#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1088#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
d0217ac0 1089
1c0fe6e3
NP
1090/*
1091 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1092 */
1093extern void pagefault_out_of_memory(void);
1094
1da177e4
LT
1095#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1096
ddd588b5 1097/*
7bf02ea2 1098 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
1099 * various contexts.
1100 */
4b59e6c4 1101#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
ddd588b5 1102
7bf02ea2
DR
1103extern void show_free_areas(unsigned int flags);
1104extern bool skip_free_areas_node(unsigned int flags, int nid);
1da177e4 1105
1da177e4 1106int shmem_zero_setup(struct vm_area_struct *);
0cd6144a
JW
1107#ifdef CONFIG_SHMEM
1108bool shmem_mapping(struct address_space *mapping);
1109#else
1110static inline bool shmem_mapping(struct address_space *mapping)
1111{
1112 return false;
1113}
1114#endif
1da177e4 1115
7f43add4 1116extern bool can_do_mlock(void);
1da177e4
LT
1117extern int user_shm_lock(size_t, struct user_struct *);
1118extern void user_shm_unlock(size_t, struct user_struct *);
1119
1120/*
1121 * Parameter block passed down to zap_pte_range in exceptional cases.
1122 */
1123struct zap_details {
1da177e4
LT
1124 struct address_space *check_mapping; /* Check page->mapping if set */
1125 pgoff_t first_index; /* Lowest page->index to unmap */
1126 pgoff_t last_index; /* Highest page->index to unmap */
aac45363
MH
1127 bool ignore_dirty; /* Ignore dirty pages */
1128 bool check_swap_entries; /* Check also swap entries */
1da177e4
LT
1129};
1130
7e675137
NP
1131struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1132 pte_t pte);
28093f9f
GS
1133struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1134 pmd_t pmd);
7e675137 1135
c627f9cc
JS
1136int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1137 unsigned long size);
14f5ff5d 1138void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4 1139 unsigned long size, struct zap_details *);
4f74d2c8
LT
1140void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1141 unsigned long start, unsigned long end);
e6473092
MM
1142
1143/**
1144 * mm_walk - callbacks for walk_page_range
e6473092 1145 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
03319327
DH
1146 * this handler is required to be able to handle
1147 * pmd_trans_huge() pmds. They may simply choose to
1148 * split_huge_page() instead of handling it explicitly.
e6473092
MM
1149 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1150 * @pte_hole: if set, called for each hole at all levels
5dc37642 1151 * @hugetlb_entry: if set, called for each hugetlb entry
fafaa426
NH
1152 * @test_walk: caller specific callback function to determine whether
1153 * we walk over the current vma or not. A positive returned
1154 * value means "do page table walk over the current vma,"
1155 * and a negative one means "abort current page table walk
1156 * right now." 0 means "skip the current vma."
1157 * @mm: mm_struct representing the target process of page table walk
1158 * @vma: vma currently walked (NULL if walking outside vmas)
1159 * @private: private data for callbacks' usage
e6473092 1160 *
fafaa426 1161 * (see the comment on walk_page_range() for more details)
e6473092
MM
1162 */
1163struct mm_walk {
0f157a5b
AM
1164 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1165 unsigned long next, struct mm_walk *walk);
1166 int (*pte_entry)(pte_t *pte, unsigned long addr,
1167 unsigned long next, struct mm_walk *walk);
1168 int (*pte_hole)(unsigned long addr, unsigned long next,
1169 struct mm_walk *walk);
1170 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1171 unsigned long addr, unsigned long next,
1172 struct mm_walk *walk);
fafaa426
NH
1173 int (*test_walk)(unsigned long addr, unsigned long next,
1174 struct mm_walk *walk);
2165009b 1175 struct mm_struct *mm;
fafaa426 1176 struct vm_area_struct *vma;
2165009b 1177 void *private;
e6473092
MM
1178};
1179
2165009b
DH
1180int walk_page_range(unsigned long addr, unsigned long end,
1181 struct mm_walk *walk);
900fc5f1 1182int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
42b77728 1183void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 1184 unsigned long end, unsigned long floor, unsigned long ceiling);
1da177e4
LT
1185int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1186 struct vm_area_struct *vma);
1da177e4
LT
1187void unmap_mapping_range(struct address_space *mapping,
1188 loff_t const holebegin, loff_t const holelen, int even_cows);
3b6748e2
JW
1189int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1190 unsigned long *pfn);
d87fe660 1191int follow_phys(struct vm_area_struct *vma, unsigned long address,
1192 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
1193int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1194 void *buf, int len, int write);
1da177e4
LT
1195
1196static inline void unmap_shared_mapping_range(struct address_space *mapping,
1197 loff_t const holebegin, loff_t const holelen)
1198{
1199 unmap_mapping_range(mapping, holebegin, holelen, 0);
1200}
1201
7caef267 1202extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 1203extern void truncate_setsize(struct inode *inode, loff_t newsize);
90a80202 1204void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
623e3db9 1205void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
750b4987 1206int truncate_inode_page(struct address_space *mapping, struct page *page);
25718736 1207int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668
WF
1208int invalidate_inode_page(struct page *page);
1209
7ee1dd3f 1210#ifdef CONFIG_MMU
83c54070 1211extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
d06063cc 1212 unsigned long address, unsigned int flags);
5c723ba5 1213extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
4a9e1cda
DD
1214 unsigned long address, unsigned int fault_flags,
1215 bool *unlocked);
7ee1dd3f
DH
1216#else
1217static inline int handle_mm_fault(struct mm_struct *mm,
1218 struct vm_area_struct *vma, unsigned long address,
d06063cc 1219 unsigned int flags)
7ee1dd3f
DH
1220{
1221 /* should never happen if there's no MMU */
1222 BUG();
1223 return VM_FAULT_SIGBUS;
1224}
5c723ba5
PZ
1225static inline int fixup_user_fault(struct task_struct *tsk,
1226 struct mm_struct *mm, unsigned long address,
4a9e1cda 1227 unsigned int fault_flags, bool *unlocked)
5c723ba5
PZ
1228{
1229 /* should never happen if there's no MMU */
1230 BUG();
1231 return -EFAULT;
1232}
7ee1dd3f 1233#endif
f33ea7f4 1234
1da177e4 1235extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
5ddd36b9
SW
1236extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1237 void *buf, int len, int write);
1da177e4 1238
28a35716
ML
1239long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1240 unsigned long start, unsigned long nr_pages,
1241 unsigned int foll_flags, struct page **pages,
1242 struct vm_area_struct **vmas, int *nonblocking);
1e987790
DH
1243long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1244 unsigned long start, unsigned long nr_pages,
1245 int write, int force, struct page **pages,
1246 struct vm_area_struct **vmas);
c12d2da5 1247long get_user_pages(unsigned long start, unsigned long nr_pages,
cde70140
DH
1248 int write, int force, struct page **pages,
1249 struct vm_area_struct **vmas);
c12d2da5 1250long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
cde70140 1251 int write, int force, struct page **pages, int *locked);
0fd71a56
AA
1252long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
1253 unsigned long start, unsigned long nr_pages,
1254 int write, int force, struct page **pages,
1255 unsigned int gup_flags);
c12d2da5 1256long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
f0818f47 1257 int write, int force, struct page **pages);
d2bf6be8
NP
1258int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1259 struct page **pages);
8025e5dd
JK
1260
1261/* Container for pinned pfns / pages */
1262struct frame_vector {
1263 unsigned int nr_allocated; /* Number of frames we have space for */
1264 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1265 bool got_ref; /* Did we pin pages by getting page ref? */
1266 bool is_pfns; /* Does array contain pages or pfns? */
1267 void *ptrs[0]; /* Array of pinned pfns / pages. Use
1268 * pfns_vector_pages() or pfns_vector_pfns()
1269 * for access */
1270};
1271
1272struct frame_vector *frame_vector_create(unsigned int nr_frames);
1273void frame_vector_destroy(struct frame_vector *vec);
1274int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1275 bool write, bool force, struct frame_vector *vec);
1276void put_vaddr_frames(struct frame_vector *vec);
1277int frame_vector_to_pages(struct frame_vector *vec);
1278void frame_vector_to_pfns(struct frame_vector *vec);
1279
1280static inline unsigned int frame_vector_count(struct frame_vector *vec)
1281{
1282 return vec->nr_frames;
1283}
1284
1285static inline struct page **frame_vector_pages(struct frame_vector *vec)
1286{
1287 if (vec->is_pfns) {
1288 int err = frame_vector_to_pages(vec);
1289
1290 if (err)
1291 return ERR_PTR(err);
1292 }
1293 return (struct page **)(vec->ptrs);
1294}
1295
1296static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1297{
1298 if (!vec->is_pfns)
1299 frame_vector_to_pfns(vec);
1300 return (unsigned long *)(vec->ptrs);
1301}
1302
18022c5d
MG
1303struct kvec;
1304int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1305 struct page **pages);
1306int get_kernel_page(unsigned long start, int write, struct page **pages);
f3e8fccd 1307struct page *get_dump_page(unsigned long addr);
1da177e4 1308
cf9a2ae8 1309extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
d47992f8
LC
1310extern void do_invalidatepage(struct page *page, unsigned int offset,
1311 unsigned int length);
cf9a2ae8 1312
1da177e4 1313int __set_page_dirty_nobuffers(struct page *page);
76719325 1314int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
1315int redirty_page_for_writepage(struct writeback_control *wbc,
1316 struct page *page);
62cccb8c 1317void account_page_dirtied(struct page *page, struct address_space *mapping);
c4843a75 1318void account_page_cleaned(struct page *page, struct address_space *mapping,
62cccb8c 1319 struct bdi_writeback *wb);
b3c97528 1320int set_page_dirty(struct page *page);
1da177e4 1321int set_page_dirty_lock(struct page *page);
11f81bec 1322void cancel_dirty_page(struct page *page);
1da177e4 1323int clear_page_dirty_for_io(struct page *page);
b9ea2515 1324
a9090253 1325int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1da177e4 1326
39aa3cb3 1327/* Is the vma a continuation of the stack vma above it? */
a09a79f6 1328static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
39aa3cb3
SB
1329{
1330 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1331}
1332
b5330628
ON
1333static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1334{
1335 return !vma->vm_ops;
1336}
1337
a09a79f6
MP
1338static inline int stack_guard_page_start(struct vm_area_struct *vma,
1339 unsigned long addr)
1340{
1341 return (vma->vm_flags & VM_GROWSDOWN) &&
1342 (vma->vm_start == addr) &&
1343 !vma_growsdown(vma->vm_prev, addr);
1344}
1345
1346/* Is the vma a continuation of the stack vma below it? */
1347static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1348{
1349 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1350}
1351
1352static inline int stack_guard_page_end(struct vm_area_struct *vma,
1353 unsigned long addr)
1354{
1355 return (vma->vm_flags & VM_GROWSUP) &&
1356 (vma->vm_end == addr) &&
1357 !vma_growsup(vma->vm_next, addr);
1358}
1359
65376df5 1360int vma_is_stack_for_task(struct vm_area_struct *vma, struct task_struct *t);
b7643757 1361
b6a2fea3
OW
1362extern unsigned long move_page_tables(struct vm_area_struct *vma,
1363 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
1364 unsigned long new_addr, unsigned long len,
1365 bool need_rmap_locks);
7da4d641
PZ
1366extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1367 unsigned long end, pgprot_t newprot,
4b10e7d5 1368 int dirty_accountable, int prot_numa);
b6a2fea3
OW
1369extern int mprotect_fixup(struct vm_area_struct *vma,
1370 struct vm_area_struct **pprev, unsigned long start,
1371 unsigned long end, unsigned long newflags);
1da177e4 1372
465a454f
PZ
1373/*
1374 * doesn't attempt to fault and will return short.
1375 */
1376int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1377 struct page **pages);
d559db08
KH
1378/*
1379 * per-process(per-mm_struct) statistics.
1380 */
d559db08
KH
1381static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1382{
69c97823
KK
1383 long val = atomic_long_read(&mm->rss_stat.count[member]);
1384
1385#ifdef SPLIT_RSS_COUNTING
1386 /*
1387 * counter is updated in asynchronous manner and may go to minus.
1388 * But it's never be expected number for users.
1389 */
1390 if (val < 0)
1391 val = 0;
172703b0 1392#endif
69c97823
KK
1393 return (unsigned long)val;
1394}
d559db08
KH
1395
1396static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1397{
172703b0 1398 atomic_long_add(value, &mm->rss_stat.count[member]);
d559db08
KH
1399}
1400
1401static inline void inc_mm_counter(struct mm_struct *mm, int member)
1402{
172703b0 1403 atomic_long_inc(&mm->rss_stat.count[member]);
d559db08
KH
1404}
1405
1406static inline void dec_mm_counter(struct mm_struct *mm, int member)
1407{
172703b0 1408 atomic_long_dec(&mm->rss_stat.count[member]);
d559db08
KH
1409}
1410
eca56ff9
JM
1411/* Optimized variant when page is already known not to be PageAnon */
1412static inline int mm_counter_file(struct page *page)
1413{
1414 if (PageSwapBacked(page))
1415 return MM_SHMEMPAGES;
1416 return MM_FILEPAGES;
1417}
1418
1419static inline int mm_counter(struct page *page)
1420{
1421 if (PageAnon(page))
1422 return MM_ANONPAGES;
1423 return mm_counter_file(page);
1424}
1425
d559db08
KH
1426static inline unsigned long get_mm_rss(struct mm_struct *mm)
1427{
1428 return get_mm_counter(mm, MM_FILEPAGES) +
eca56ff9
JM
1429 get_mm_counter(mm, MM_ANONPAGES) +
1430 get_mm_counter(mm, MM_SHMEMPAGES);
d559db08
KH
1431}
1432
1433static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1434{
1435 return max(mm->hiwater_rss, get_mm_rss(mm));
1436}
1437
1438static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1439{
1440 return max(mm->hiwater_vm, mm->total_vm);
1441}
1442
1443static inline void update_hiwater_rss(struct mm_struct *mm)
1444{
1445 unsigned long _rss = get_mm_rss(mm);
1446
1447 if ((mm)->hiwater_rss < _rss)
1448 (mm)->hiwater_rss = _rss;
1449}
1450
1451static inline void update_hiwater_vm(struct mm_struct *mm)
1452{
1453 if (mm->hiwater_vm < mm->total_vm)
1454 mm->hiwater_vm = mm->total_vm;
1455}
1456
695f0559
PC
1457static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1458{
1459 mm->hiwater_rss = get_mm_rss(mm);
1460}
1461
d559db08
KH
1462static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1463 struct mm_struct *mm)
1464{
1465 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1466
1467 if (*maxrss < hiwater_rss)
1468 *maxrss = hiwater_rss;
1469}
1470
53bddb4e 1471#if defined(SPLIT_RSS_COUNTING)
05af2e10 1472void sync_mm_rss(struct mm_struct *mm);
53bddb4e 1473#else
05af2e10 1474static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
1475{
1476}
1477#endif
465a454f 1478
3565fce3
DW
1479#ifndef __HAVE_ARCH_PTE_DEVMAP
1480static inline int pte_devmap(pte_t pte)
1481{
1482 return 0;
1483}
1484#endif
1485
4e950f6f 1486int vma_wants_writenotify(struct vm_area_struct *vma);
d08b3851 1487
25ca1d6c
NK
1488extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1489 spinlock_t **ptl);
1490static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1491 spinlock_t **ptl)
1492{
1493 pte_t *ptep;
1494 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1495 return ptep;
1496}
c9cfcddf 1497
5f22df00
NP
1498#ifdef __PAGETABLE_PUD_FOLDED
1499static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1500 unsigned long address)
1501{
1502 return 0;
1503}
1504#else
1bb3630e 1505int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
5f22df00
NP
1506#endif
1507
2d2f5119 1508#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
5f22df00
NP
1509static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1510 unsigned long address)
1511{
1512 return 0;
1513}
dc6c9a35 1514
2d2f5119
KS
1515static inline void mm_nr_pmds_init(struct mm_struct *mm) {}
1516
dc6c9a35
KS
1517static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1518{
1519 return 0;
1520}
1521
1522static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1523static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1524
5f22df00 1525#else
1bb3630e 1526int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
dc6c9a35 1527
2d2f5119
KS
1528static inline void mm_nr_pmds_init(struct mm_struct *mm)
1529{
1530 atomic_long_set(&mm->nr_pmds, 0);
1531}
1532
dc6c9a35
KS
1533static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1534{
1535 return atomic_long_read(&mm->nr_pmds);
1536}
1537
1538static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1539{
1540 atomic_long_inc(&mm->nr_pmds);
1541}
1542
1543static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1544{
1545 atomic_long_dec(&mm->nr_pmds);
1546}
5f22df00
NP
1547#endif
1548
3ed3a4f0 1549int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
1bb3630e
HD
1550int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1551
1da177e4
LT
1552/*
1553 * The following ifdef needed to get the 4level-fixup.h header to work.
1554 * Remove it when 4level-fixup.h has been removed.
1555 */
1bb3630e 1556#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1da177e4
LT
1557static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1558{
1bb3630e
HD
1559 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1560 NULL: pud_offset(pgd, address);
1da177e4
LT
1561}
1562
1563static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1564{
1bb3630e
HD
1565 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1566 NULL: pmd_offset(pud, address);
1da177e4 1567}
1bb3630e
HD
1568#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1569
57c1ffce 1570#if USE_SPLIT_PTE_PTLOCKS
597d795a 1571#if ALLOC_SPLIT_PTLOCKS
b35f1819 1572void __init ptlock_cache_init(void);
539edb58
PZ
1573extern bool ptlock_alloc(struct page *page);
1574extern void ptlock_free(struct page *page);
1575
1576static inline spinlock_t *ptlock_ptr(struct page *page)
1577{
1578 return page->ptl;
1579}
597d795a 1580#else /* ALLOC_SPLIT_PTLOCKS */
b35f1819
KS
1581static inline void ptlock_cache_init(void)
1582{
1583}
1584
49076ec2
KS
1585static inline bool ptlock_alloc(struct page *page)
1586{
49076ec2
KS
1587 return true;
1588}
539edb58 1589
49076ec2
KS
1590static inline void ptlock_free(struct page *page)
1591{
49076ec2
KS
1592}
1593
1594static inline spinlock_t *ptlock_ptr(struct page *page)
1595{
539edb58 1596 return &page->ptl;
49076ec2 1597}
597d795a 1598#endif /* ALLOC_SPLIT_PTLOCKS */
49076ec2
KS
1599
1600static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1601{
1602 return ptlock_ptr(pmd_page(*pmd));
1603}
1604
1605static inline bool ptlock_init(struct page *page)
1606{
1607 /*
1608 * prep_new_page() initialize page->private (and therefore page->ptl)
1609 * with 0. Make sure nobody took it in use in between.
1610 *
1611 * It can happen if arch try to use slab for page table allocation:
1d798ca3 1612 * slab code uses page->slab_cache, which share storage with page->ptl.
49076ec2 1613 */
309381fe 1614 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
49076ec2
KS
1615 if (!ptlock_alloc(page))
1616 return false;
1617 spin_lock_init(ptlock_ptr(page));
1618 return true;
1619}
1620
1621/* Reset page->mapping so free_pages_check won't complain. */
1622static inline void pte_lock_deinit(struct page *page)
1623{
1624 page->mapping = NULL;
1625 ptlock_free(page);
1626}
1627
57c1ffce 1628#else /* !USE_SPLIT_PTE_PTLOCKS */
4c21e2f2
HD
1629/*
1630 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1631 */
49076ec2
KS
1632static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1633{
1634 return &mm->page_table_lock;
1635}
b35f1819 1636static inline void ptlock_cache_init(void) {}
49076ec2
KS
1637static inline bool ptlock_init(struct page *page) { return true; }
1638static inline void pte_lock_deinit(struct page *page) {}
57c1ffce 1639#endif /* USE_SPLIT_PTE_PTLOCKS */
4c21e2f2 1640
b35f1819
KS
1641static inline void pgtable_init(void)
1642{
1643 ptlock_cache_init();
1644 pgtable_cache_init();
1645}
1646
390f44e2 1647static inline bool pgtable_page_ctor(struct page *page)
2f569afd 1648{
706874e9
VD
1649 if (!ptlock_init(page))
1650 return false;
2f569afd 1651 inc_zone_page_state(page, NR_PAGETABLE);
706874e9 1652 return true;
2f569afd
MS
1653}
1654
1655static inline void pgtable_page_dtor(struct page *page)
1656{
1657 pte_lock_deinit(page);
1658 dec_zone_page_state(page, NR_PAGETABLE);
1659}
1660
c74df32c
HD
1661#define pte_offset_map_lock(mm, pmd, address, ptlp) \
1662({ \
4c21e2f2 1663 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
1664 pte_t *__pte = pte_offset_map(pmd, address); \
1665 *(ptlp) = __ptl; \
1666 spin_lock(__ptl); \
1667 __pte; \
1668})
1669
1670#define pte_unmap_unlock(pte, ptl) do { \
1671 spin_unlock(ptl); \
1672 pte_unmap(pte); \
1673} while (0)
1674
3ed3a4f0
KS
1675#define pte_alloc(mm, pmd, address) \
1676 (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address))
1677
1678#define pte_alloc_map(mm, pmd, address) \
1679 (pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address))
1bb3630e 1680
c74df32c 1681#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
3ed3a4f0
KS
1682 (pte_alloc(mm, pmd, address) ? \
1683 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
c74df32c 1684
1bb3630e 1685#define pte_alloc_kernel(pmd, address) \
8ac1f832 1686 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1bb3630e 1687 NULL: pte_offset_kernel(pmd, address))
1da177e4 1688
e009bb30
KS
1689#if USE_SPLIT_PMD_PTLOCKS
1690
634391ac
MS
1691static struct page *pmd_to_page(pmd_t *pmd)
1692{
1693 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1694 return virt_to_page((void *)((unsigned long) pmd & mask));
1695}
1696
e009bb30
KS
1697static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1698{
634391ac 1699 return ptlock_ptr(pmd_to_page(pmd));
e009bb30
KS
1700}
1701
1702static inline bool pgtable_pmd_page_ctor(struct page *page)
1703{
e009bb30
KS
1704#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1705 page->pmd_huge_pte = NULL;
1706#endif
49076ec2 1707 return ptlock_init(page);
e009bb30
KS
1708}
1709
1710static inline void pgtable_pmd_page_dtor(struct page *page)
1711{
1712#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 1713 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
e009bb30 1714#endif
49076ec2 1715 ptlock_free(page);
e009bb30
KS
1716}
1717
634391ac 1718#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
e009bb30
KS
1719
1720#else
1721
9a86cb7b
KS
1722static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1723{
1724 return &mm->page_table_lock;
1725}
1726
e009bb30
KS
1727static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1728static inline void pgtable_pmd_page_dtor(struct page *page) {}
1729
c389a250 1730#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
9a86cb7b 1731
e009bb30
KS
1732#endif
1733
9a86cb7b
KS
1734static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1735{
1736 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1737 spin_lock(ptl);
1738 return ptl;
1739}
1740
1da177e4 1741extern void free_area_init(unsigned long * zones_size);
9109fb7b
JW
1742extern void free_area_init_node(int nid, unsigned long * zones_size,
1743 unsigned long zone_start_pfn, unsigned long *zholes_size);
49a7f04a
DH
1744extern void free_initmem(void);
1745
69afade7
JL
1746/*
1747 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1748 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 1749 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
1750 * Return pages freed into the buddy system.
1751 */
11199692 1752extern unsigned long free_reserved_area(void *start, void *end,
69afade7 1753 int poison, char *s);
c3d5f5f0 1754
cfa11e08
JL
1755#ifdef CONFIG_HIGHMEM
1756/*
1757 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1758 * and totalram_pages.
1759 */
1760extern void free_highmem_page(struct page *page);
1761#endif
69afade7 1762
c3d5f5f0 1763extern void adjust_managed_page_count(struct page *page, long count);
7ee3d4e8 1764extern void mem_init_print_info(const char *str);
69afade7 1765
4b50bcc7 1766extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
92923ca3 1767
69afade7
JL
1768/* Free the reserved page into the buddy system, so it gets managed. */
1769static inline void __free_reserved_page(struct page *page)
1770{
1771 ClearPageReserved(page);
1772 init_page_count(page);
1773 __free_page(page);
1774}
1775
1776static inline void free_reserved_page(struct page *page)
1777{
1778 __free_reserved_page(page);
1779 adjust_managed_page_count(page, 1);
1780}
1781
1782static inline void mark_page_reserved(struct page *page)
1783{
1784 SetPageReserved(page);
1785 adjust_managed_page_count(page, -1);
1786}
1787
1788/*
1789 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
1790 * The freed pages will be poisoned with pattern "poison" if it's within
1791 * range [0, UCHAR_MAX].
1792 * Return pages freed into the buddy system.
69afade7
JL
1793 */
1794static inline unsigned long free_initmem_default(int poison)
1795{
1796 extern char __init_begin[], __init_end[];
1797
11199692 1798 return free_reserved_area(&__init_begin, &__init_end,
69afade7
JL
1799 poison, "unused kernel");
1800}
1801
7ee3d4e8
JL
1802static inline unsigned long get_num_physpages(void)
1803{
1804 int nid;
1805 unsigned long phys_pages = 0;
1806
1807 for_each_online_node(nid)
1808 phys_pages += node_present_pages(nid);
1809
1810 return phys_pages;
1811}
1812
0ee332c1 1813#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 1814/*
0ee332c1 1815 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
c713216d
MG
1816 * zones, allocate the backing mem_map and account for memory holes in a more
1817 * architecture independent manner. This is a substitute for creating the
1818 * zone_sizes[] and zholes_size[] arrays and passing them to
1819 * free_area_init_node()
1820 *
1821 * An architecture is expected to register range of page frames backed by
0ee332c1 1822 * physical memory with memblock_add[_node]() before calling
c713216d
MG
1823 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1824 * usage, an architecture is expected to do something like
1825 *
1826 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1827 * max_highmem_pfn};
1828 * for_each_valid_physical_page_range()
0ee332c1 1829 * memblock_add_node(base, size, nid)
c713216d
MG
1830 * free_area_init_nodes(max_zone_pfns);
1831 *
0ee332c1
TH
1832 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1833 * registered physical page range. Similarly
1834 * sparse_memory_present_with_active_regions() calls memory_present() for
1835 * each range when SPARSEMEM is enabled.
c713216d
MG
1836 *
1837 * See mm/page_alloc.c for more information on each function exposed by
0ee332c1 1838 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
c713216d
MG
1839 */
1840extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1e01979c 1841unsigned long node_map_pfn_alignment(void);
32996250
YL
1842unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1843 unsigned long end_pfn);
c713216d
MG
1844extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1845 unsigned long end_pfn);
1846extern void get_pfn_range_for_nid(unsigned int nid,
1847 unsigned long *start_pfn, unsigned long *end_pfn);
1848extern unsigned long find_min_pfn_with_active_regions(void);
c713216d
MG
1849extern void free_bootmem_with_active_regions(int nid,
1850 unsigned long max_low_pfn);
1851extern void sparse_memory_present_with_active_regions(int nid);
f2dbcfa7 1852
0ee332c1 1853#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
f2dbcfa7 1854
0ee332c1 1855#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
f2dbcfa7 1856 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
8a942fde
MG
1857static inline int __early_pfn_to_nid(unsigned long pfn,
1858 struct mminit_pfnnid_cache *state)
f2dbcfa7
KH
1859{
1860 return 0;
1861}
1862#else
1863/* please see mm/page_alloc.c */
1864extern int __meminit early_pfn_to_nid(unsigned long pfn);
f2dbcfa7 1865/* there is a per-arch backend function. */
8a942fde
MG
1866extern int __meminit __early_pfn_to_nid(unsigned long pfn,
1867 struct mminit_pfnnid_cache *state);
f2dbcfa7
KH
1868#endif
1869
0e0b864e 1870extern void set_dma_reserve(unsigned long new_dma_reserve);
a2f3aa02
DH
1871extern void memmap_init_zone(unsigned long, int, unsigned long,
1872 unsigned long, enum memmap_context);
bc75d33f 1873extern void setup_per_zone_wmarks(void);
1b79acc9 1874extern int __meminit init_per_zone_wmark_min(void);
1da177e4 1875extern void mem_init(void);
8feae131 1876extern void __init mmap_init(void);
b2b755b5 1877extern void show_mem(unsigned int flags);
d02bd27b 1878extern long si_mem_available(void);
1da177e4
LT
1879extern void si_meminfo(struct sysinfo * val);
1880extern void si_meminfo_node(struct sysinfo *val, int nid);
1881
3ee9a4f0 1882extern __printf(3, 4)
d00181b9
KS
1883void warn_alloc_failed(gfp_t gfp_mask, unsigned int order,
1884 const char *fmt, ...);
a238ab5b 1885
e7c8d5c9 1886extern void setup_per_cpu_pageset(void);
e7c8d5c9 1887
112067f0 1888extern void zone_pcp_update(struct zone *zone);
340175b7 1889extern void zone_pcp_reset(struct zone *zone);
112067f0 1890
75f7ad8e
PS
1891/* page_alloc.c */
1892extern int min_free_kbytes;
795ae7a0 1893extern int watermark_scale_factor;
75f7ad8e 1894
8feae131 1895/* nommu.c */
33e5d769 1896extern atomic_long_t mmap_pages_allocated;
7e660872 1897extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 1898
6b2dbba8 1899/* interval_tree.c */
6b2dbba8
ML
1900void vma_interval_tree_insert(struct vm_area_struct *node,
1901 struct rb_root *root);
9826a516
ML
1902void vma_interval_tree_insert_after(struct vm_area_struct *node,
1903 struct vm_area_struct *prev,
1904 struct rb_root *root);
6b2dbba8
ML
1905void vma_interval_tree_remove(struct vm_area_struct *node,
1906 struct rb_root *root);
1907struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1908 unsigned long start, unsigned long last);
1909struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1910 unsigned long start, unsigned long last);
1911
1912#define vma_interval_tree_foreach(vma, root, start, last) \
1913 for (vma = vma_interval_tree_iter_first(root, start, last); \
1914 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4 1915
bf181b9f
ML
1916void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1917 struct rb_root *root);
1918void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1919 struct rb_root *root);
1920struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1921 struct rb_root *root, unsigned long start, unsigned long last);
1922struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1923 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
1924#ifdef CONFIG_DEBUG_VM_RB
1925void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1926#endif
bf181b9f
ML
1927
1928#define anon_vma_interval_tree_foreach(avc, root, start, last) \
1929 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1930 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1931
1da177e4 1932/* mmap.c */
34b4e4aa 1933extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
5beb4930 1934extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1da177e4
LT
1935 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1936extern struct vm_area_struct *vma_merge(struct mm_struct *,
1937 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1938 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
19a809af 1939 struct mempolicy *, struct vm_userfaultfd_ctx);
1da177e4
LT
1940extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1941extern int split_vma(struct mm_struct *,
1942 struct vm_area_struct *, unsigned long addr, int new_below);
1943extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1944extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1945 struct rb_node **, struct rb_node *);
a8fb5618 1946extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 1947extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
1948 unsigned long addr, unsigned long len, pgoff_t pgoff,
1949 bool *need_rmap_locks);
1da177e4 1950extern void exit_mmap(struct mm_struct *);
925d1c40 1951
9c599024
CG
1952static inline int check_data_rlimit(unsigned long rlim,
1953 unsigned long new,
1954 unsigned long start,
1955 unsigned long end_data,
1956 unsigned long start_data)
1957{
1958 if (rlim < RLIM_INFINITY) {
1959 if (((new - start) + (end_data - start_data)) > rlim)
1960 return -ENOSPC;
1961 }
1962
1963 return 0;
1964}
1965
7906d00c
AA
1966extern int mm_take_all_locks(struct mm_struct *mm);
1967extern void mm_drop_all_locks(struct mm_struct *mm);
1968
38646013
JS
1969extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1970extern struct file *get_mm_exe_file(struct mm_struct *mm);
925d1c40 1971
84638335
KK
1972extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
1973extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
1974
3935ed6a
SS
1975extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
1976 unsigned long addr, unsigned long len,
a62c34bd
AL
1977 unsigned long flags,
1978 const struct vm_special_mapping *spec);
1979/* This is an obsolete alternative to _install_special_mapping. */
fa5dc22f
RM
1980extern int install_special_mapping(struct mm_struct *mm,
1981 unsigned long addr, unsigned long len,
1982 unsigned long flags, struct page **pages);
1da177e4
LT
1983
1984extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1985
0165ab44 1986extern unsigned long mmap_region(struct file *file, unsigned long addr,
c22c0d63 1987 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
1fcfd8db 1988extern unsigned long do_mmap(struct file *file, unsigned long addr,
bebeb3d6 1989 unsigned long len, unsigned long prot, unsigned long flags,
1fcfd8db 1990 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate);
1da177e4
LT
1991extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1992
1fcfd8db
ON
1993static inline unsigned long
1994do_mmap_pgoff(struct file *file, unsigned long addr,
1995 unsigned long len, unsigned long prot, unsigned long flags,
1996 unsigned long pgoff, unsigned long *populate)
1997{
1998 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate);
1999}
2000
bebeb3d6
ML
2001#ifdef CONFIG_MMU
2002extern int __mm_populate(unsigned long addr, unsigned long len,
2003 int ignore_errors);
2004static inline void mm_populate(unsigned long addr, unsigned long len)
2005{
2006 /* Ignore errors */
2007 (void) __mm_populate(addr, len, 1);
2008}
2009#else
2010static inline void mm_populate(unsigned long addr, unsigned long len) {}
2011#endif
2012
e4eb1ff6
LT
2013/* These take the mm semaphore themselves */
2014extern unsigned long vm_brk(unsigned long, unsigned long);
bfce281c 2015extern int vm_munmap(unsigned long, size_t);
6be5ceb0
LT
2016extern unsigned long vm_mmap(struct file *, unsigned long,
2017 unsigned long, unsigned long,
2018 unsigned long, unsigned long);
1da177e4 2019
db4fbfb9
ML
2020struct vm_unmapped_area_info {
2021#define VM_UNMAPPED_AREA_TOPDOWN 1
2022 unsigned long flags;
2023 unsigned long length;
2024 unsigned long low_limit;
2025 unsigned long high_limit;
2026 unsigned long align_mask;
2027 unsigned long align_offset;
2028};
2029
2030extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2031extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2032
2033/*
2034 * Search for an unmapped address range.
2035 *
2036 * We are looking for a range that:
2037 * - does not intersect with any VMA;
2038 * - is contained within the [low_limit, high_limit) interval;
2039 * - is at least the desired size.
2040 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2041 */
2042static inline unsigned long
2043vm_unmapped_area(struct vm_unmapped_area_info *info)
2044{
cdd7875e 2045 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
db4fbfb9 2046 return unmapped_area_topdown(info);
cdd7875e
BP
2047 else
2048 return unmapped_area(info);
db4fbfb9
ML
2049}
2050
85821aab 2051/* truncate.c */
1da177e4 2052extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
2053extern void truncate_inode_pages_range(struct address_space *,
2054 loff_t lstart, loff_t lend);
91b0abe3 2055extern void truncate_inode_pages_final(struct address_space *);
1da177e4
LT
2056
2057/* generic vm_area_ops exported for stackable file systems */
d0217ac0 2058extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
f1820361 2059extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf);
4fcf1c62 2060extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1da177e4
LT
2061
2062/* mm/page-writeback.c */
2063int write_one_page(struct page *page, int wait);
1cf6e7d8 2064void task_dirty_inc(struct task_struct *tsk);
1da177e4
LT
2065
2066/* readahead.c */
2067#define VM_MAX_READAHEAD 128 /* kbytes */
2068#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1da177e4 2069
1da177e4 2070int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 2071 pgoff_t offset, unsigned long nr_to_read);
cf914a7d
RR
2072
2073void page_cache_sync_readahead(struct address_space *mapping,
2074 struct file_ra_state *ra,
2075 struct file *filp,
2076 pgoff_t offset,
2077 unsigned long size);
2078
2079void page_cache_async_readahead(struct address_space *mapping,
2080 struct file_ra_state *ra,
2081 struct file *filp,
2082 struct page *pg,
2083 pgoff_t offset,
2084 unsigned long size);
2085
d05f3169 2086/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 2087extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169
MH
2088
2089/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2090extern int expand_downwards(struct vm_area_struct *vma,
2091 unsigned long address);
8ca3eb08 2092#if VM_GROWSUP
46dea3d0 2093extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08 2094#else
fee7e49d 2095 #define expand_upwards(vma, address) (0)
9ab88515 2096#endif
1da177e4
LT
2097
2098/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2099extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2100extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2101 struct vm_area_struct **pprev);
2102
2103/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2104 NULL if none. Assume start_addr < end_addr. */
2105static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2106{
2107 struct vm_area_struct * vma = find_vma(mm,start_addr);
2108
2109 if (vma && end_addr <= vma->vm_start)
2110 vma = NULL;
2111 return vma;
2112}
2113
2114static inline unsigned long vma_pages(struct vm_area_struct *vma)
2115{
2116 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2117}
2118
640708a2
PE
2119/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2120static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2121 unsigned long vm_start, unsigned long vm_end)
2122{
2123 struct vm_area_struct *vma = find_vma(mm, vm_start);
2124
2125 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2126 vma = NULL;
2127
2128 return vma;
2129}
2130
bad849b3 2131#ifdef CONFIG_MMU
804af2cf 2132pgprot_t vm_get_page_prot(unsigned long vm_flags);
64e45507 2133void vma_set_page_prot(struct vm_area_struct *vma);
bad849b3
DH
2134#else
2135static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2136{
2137 return __pgprot(0);
2138}
64e45507
PF
2139static inline void vma_set_page_prot(struct vm_area_struct *vma)
2140{
2141 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2142}
bad849b3
DH
2143#endif
2144
5877231f 2145#ifdef CONFIG_NUMA_BALANCING
4b10e7d5 2146unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
2147 unsigned long start, unsigned long end);
2148#endif
2149
deceb6cd 2150struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
2151int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2152 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 2153int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
e0dc0d8f
NP
2154int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2155 unsigned long pfn);
1745cbc5
AL
2156int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2157 unsigned long pfn, pgprot_t pgprot);
423bad60 2158int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
01c8f1c4 2159 pfn_t pfn);
b4cbb197
LT
2160int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2161
deceb6cd 2162
240aadee
ML
2163struct page *follow_page_mask(struct vm_area_struct *vma,
2164 unsigned long address, unsigned int foll_flags,
2165 unsigned int *page_mask);
2166
2167static inline struct page *follow_page(struct vm_area_struct *vma,
2168 unsigned long address, unsigned int foll_flags)
2169{
2170 unsigned int unused_page_mask;
2171 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2172}
2173
deceb6cd
HD
2174#define FOLL_WRITE 0x01 /* check pte is writable */
2175#define FOLL_TOUCH 0x02 /* mark page accessed */
2176#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 2177#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 2178#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
2179#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2180 * and return without waiting upon it */
84d33df2 2181#define FOLL_POPULATE 0x40 /* fault in page */
500d65d4 2182#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
69ebb83e 2183#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
0b9d7052 2184#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
5117b3b8 2185#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
234b239b 2186#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
de60f5f1 2187#define FOLL_MLOCK 0x1000 /* lock present pages */
1e987790 2188#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
1da177e4 2189
2f569afd 2190typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
aee16b3c
JF
2191 void *data);
2192extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2193 unsigned long size, pte_fn_t fn, void *data);
2194
1da177e4 2195
8823b1db
LA
2196#ifdef CONFIG_PAGE_POISONING
2197extern bool page_poisoning_enabled(void);
2198extern void kernel_poison_pages(struct page *page, int numpages, int enable);
1414c7f4 2199extern bool page_is_poisoned(struct page *page);
8823b1db
LA
2200#else
2201static inline bool page_poisoning_enabled(void) { return false; }
2202static inline void kernel_poison_pages(struct page *page, int numpages,
2203 int enable) { }
1414c7f4 2204static inline bool page_is_poisoned(struct page *page) { return false; }
8823b1db
LA
2205#endif
2206
12d6f21e 2207#ifdef CONFIG_DEBUG_PAGEALLOC
031bc574
JK
2208extern bool _debug_pagealloc_enabled;
2209extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2210
2211static inline bool debug_pagealloc_enabled(void)
2212{
2213 return _debug_pagealloc_enabled;
2214}
2215
2216static inline void
2217kernel_map_pages(struct page *page, int numpages, int enable)
2218{
2219 if (!debug_pagealloc_enabled())
2220 return;
2221
2222 __kernel_map_pages(page, numpages, enable);
2223}
8a235efa
RW
2224#ifdef CONFIG_HIBERNATION
2225extern bool kernel_page_present(struct page *page);
40b44137
JK
2226#endif /* CONFIG_HIBERNATION */
2227#else /* CONFIG_DEBUG_PAGEALLOC */
1da177e4 2228static inline void
9858db50 2229kernel_map_pages(struct page *page, int numpages, int enable) {}
8a235efa
RW
2230#ifdef CONFIG_HIBERNATION
2231static inline bool kernel_page_present(struct page *page) { return true; }
40b44137
JK
2232#endif /* CONFIG_HIBERNATION */
2233static inline bool debug_pagealloc_enabled(void)
2234{
2235 return false;
2236}
2237#endif /* CONFIG_DEBUG_PAGEALLOC */
1da177e4 2238
a6c19dfe 2239#ifdef __HAVE_ARCH_GATE_AREA
31db58b3 2240extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
a6c19dfe
AL
2241extern int in_gate_area_no_mm(unsigned long addr);
2242extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 2243#else
a6c19dfe
AL
2244static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2245{
2246 return NULL;
2247}
2248static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2249static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2250{
2251 return 0;
2252}
1da177e4
LT
2253#endif /* __HAVE_ARCH_GATE_AREA */
2254
146732ce
JT
2255#ifdef CONFIG_SYSCTL
2256extern int sysctl_drop_caches;
8d65af78 2257int drop_caches_sysctl_handler(struct ctl_table *, int,
9d0243bc 2258 void __user *, size_t *, loff_t *);
146732ce
JT
2259#endif
2260
cb731d6c
VD
2261void drop_slab(void);
2262void drop_slab_node(int nid);
9d0243bc 2263
7a9166e3
LY
2264#ifndef CONFIG_MMU
2265#define randomize_va_space 0
2266#else
a62eaf15 2267extern int randomize_va_space;
7a9166e3 2268#endif
a62eaf15 2269
045e72ac 2270const char * arch_vma_name(struct vm_area_struct *vma);
03252919 2271void print_vma_addr(char *prefix, unsigned long rip);
e6e5494c 2272
9bdac914
YL
2273void sparse_mem_maps_populate_node(struct page **map_map,
2274 unsigned long pnum_begin,
2275 unsigned long pnum_end,
2276 unsigned long map_count,
2277 int nodeid);
2278
98f3cfc1 2279struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
29c71111
AW
2280pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2281pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
2282pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2283pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
8f6aac41 2284void *vmemmap_alloc_block(unsigned long size, int node);
4b94ffdc
DW
2285struct vmem_altmap;
2286void *__vmemmap_alloc_block_buf(unsigned long size, int node,
2287 struct vmem_altmap *altmap);
2288static inline void *vmemmap_alloc_block_buf(unsigned long size, int node)
2289{
2290 return __vmemmap_alloc_block_buf(size, node, NULL);
2291}
2292
8f6aac41 2293void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
0aad818b
JW
2294int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2295 int node);
2296int vmemmap_populate(unsigned long start, unsigned long end, int node);
c2b91e2e 2297void vmemmap_populate_print_last(void);
0197518c 2298#ifdef CONFIG_MEMORY_HOTPLUG
0aad818b 2299void vmemmap_free(unsigned long start, unsigned long end);
0197518c 2300#endif
46723bfa
YI
2301void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2302 unsigned long size);
6a46079c 2303
82ba011b
AK
2304enum mf_flags {
2305 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 2306 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 2307 MF_MUST_KILL = 1 << 2,
cf870c70 2308 MF_SOFT_OFFLINE = 1 << 3,
82ba011b 2309};
cd42f4a3 2310extern int memory_failure(unsigned long pfn, int trapno, int flags);
ea8f5fb8 2311extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
847ce401 2312extern int unpoison_memory(unsigned long pfn);
ead07f6a 2313extern int get_hwpoison_page(struct page *page);
4e41a30c 2314#define put_hwpoison_page(page) put_page(page)
6a46079c
AK
2315extern int sysctl_memory_failure_early_kill;
2316extern int sysctl_memory_failure_recovery;
facb6011 2317extern void shake_page(struct page *p, int access);
293c07e3 2318extern atomic_long_t num_poisoned_pages;
facb6011 2319extern int soft_offline_page(struct page *page, int flags);
6a46079c 2320
cc637b17
XX
2321
2322/*
2323 * Error handlers for various types of pages.
2324 */
cc3e2af4 2325enum mf_result {
cc637b17
XX
2326 MF_IGNORED, /* Error: cannot be handled */
2327 MF_FAILED, /* Error: handling failed */
2328 MF_DELAYED, /* Will be handled later */
2329 MF_RECOVERED, /* Successfully recovered */
2330};
2331
2332enum mf_action_page_type {
2333 MF_MSG_KERNEL,
2334 MF_MSG_KERNEL_HIGH_ORDER,
2335 MF_MSG_SLAB,
2336 MF_MSG_DIFFERENT_COMPOUND,
2337 MF_MSG_POISONED_HUGE,
2338 MF_MSG_HUGE,
2339 MF_MSG_FREE_HUGE,
2340 MF_MSG_UNMAP_FAILED,
2341 MF_MSG_DIRTY_SWAPCACHE,
2342 MF_MSG_CLEAN_SWAPCACHE,
2343 MF_MSG_DIRTY_MLOCKED_LRU,
2344 MF_MSG_CLEAN_MLOCKED_LRU,
2345 MF_MSG_DIRTY_UNEVICTABLE_LRU,
2346 MF_MSG_CLEAN_UNEVICTABLE_LRU,
2347 MF_MSG_DIRTY_LRU,
2348 MF_MSG_CLEAN_LRU,
2349 MF_MSG_TRUNCATED_LRU,
2350 MF_MSG_BUDDY,
2351 MF_MSG_BUDDY_2ND,
2352 MF_MSG_UNKNOWN,
2353};
2354
47ad8475
AA
2355#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2356extern void clear_huge_page(struct page *page,
2357 unsigned long addr,
2358 unsigned int pages_per_huge_page);
2359extern void copy_user_huge_page(struct page *dst, struct page *src,
2360 unsigned long addr, struct vm_area_struct *vma,
2361 unsigned int pages_per_huge_page);
2362#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2363
e30825f1
JK
2364extern struct page_ext_operations debug_guardpage_ops;
2365extern struct page_ext_operations page_poisoning_ops;
2366
c0a32fc5
SG
2367#ifdef CONFIG_DEBUG_PAGEALLOC
2368extern unsigned int _debug_guardpage_minorder;
e30825f1 2369extern bool _debug_guardpage_enabled;
c0a32fc5
SG
2370
2371static inline unsigned int debug_guardpage_minorder(void)
2372{
2373 return _debug_guardpage_minorder;
2374}
2375
e30825f1
JK
2376static inline bool debug_guardpage_enabled(void)
2377{
2378 return _debug_guardpage_enabled;
2379}
2380
c0a32fc5
SG
2381static inline bool page_is_guard(struct page *page)
2382{
e30825f1
JK
2383 struct page_ext *page_ext;
2384
2385 if (!debug_guardpage_enabled())
2386 return false;
2387
2388 page_ext = lookup_page_ext(page);
2389 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
c0a32fc5
SG
2390}
2391#else
2392static inline unsigned int debug_guardpage_minorder(void) { return 0; }
e30825f1 2393static inline bool debug_guardpage_enabled(void) { return false; }
c0a32fc5
SG
2394static inline bool page_is_guard(struct page *page) { return false; }
2395#endif /* CONFIG_DEBUG_PAGEALLOC */
2396
f9872caf
CS
2397#if MAX_NUMNODES > 1
2398void __init setup_nr_node_ids(void);
2399#else
2400static inline void setup_nr_node_ids(void) {}
2401#endif
2402
1da177e4
LT
2403#endif /* __KERNEL__ */
2404#endif /* _LINUX_MM_H */
This page took 1.539148 seconds and 5 git commands to generate.