Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux...
[deliverable/linux.git] / include / linux / mmzone.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MMZONE_H
2#define _LINUX_MMZONE_H
3
1da177e4 4#ifndef __ASSEMBLY__
97965478 5#ifndef __GENERATING_BOUNDS_H
1da177e4 6
1da177e4
LT
7#include <linux/spinlock.h>
8#include <linux/list.h>
9#include <linux/wait.h>
e815af95 10#include <linux/bitops.h>
1da177e4
LT
11#include <linux/cache.h>
12#include <linux/threads.h>
13#include <linux/numa.h>
14#include <linux/init.h>
bdc8cb98 15#include <linux/seqlock.h>
8357f869 16#include <linux/nodemask.h>
835c134e 17#include <linux/pageblock-flags.h>
01fc0ac1 18#include <generated/bounds.h>
60063497 19#include <linux/atomic.h>
93ff66bf 20#include <asm/page.h>
1da177e4
LT
21
22/* Free memory management - zoned buddy allocator. */
23#ifndef CONFIG_FORCE_MAX_ZONEORDER
24#define MAX_ORDER 11
25#else
26#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
27#endif
e984bb43 28#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
1da177e4 29
5ad333eb
AW
30/*
31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
32 * costly to service. That is between allocation orders which should
35fca53e 33 * coalesce naturally under reasonable reclaim pressure and those which
5ad333eb
AW
34 * will not.
35 */
36#define PAGE_ALLOC_COSTLY_ORDER 3
37
47118af0
MN
38enum {
39 MIGRATE_UNMOVABLE,
40 MIGRATE_RECLAIMABLE,
41 MIGRATE_MOVABLE,
42 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */
43 MIGRATE_RESERVE = MIGRATE_PCPTYPES,
44#ifdef CONFIG_CMA
45 /*
46 * MIGRATE_CMA migration type is designed to mimic the way
47 * ZONE_MOVABLE works. Only movable pages can be allocated
48 * from MIGRATE_CMA pageblocks and page allocator never
49 * implicitly change migration type of MIGRATE_CMA pageblock.
50 *
51 * The way to use it is to change migratetype of a range of
52 * pageblocks to MIGRATE_CMA which can be done by
53 * __free_pageblock_cma() function. What is important though
54 * is that a range of pageblocks must be aligned to
55 * MAX_ORDER_NR_PAGES should biggest page be bigger then
56 * a single pageblock.
57 */
58 MIGRATE_CMA,
59#endif
60 MIGRATE_ISOLATE, /* can't allocate from here */
61 MIGRATE_TYPES
62};
63
64#ifdef CONFIG_CMA
65# define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
66#else
67# define is_migrate_cma(migratetype) false
68#endif
b2a0ac88
MG
69
70#define for_each_migratetype_order(order, type) \
71 for (order = 0; order < MAX_ORDER; order++) \
72 for (type = 0; type < MIGRATE_TYPES; type++)
73
467c996c
MG
74extern int page_group_by_mobility_disabled;
75
76static inline int get_pageblock_migratetype(struct page *page)
77{
467c996c
MG
78 return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end);
79}
80
1da177e4 81struct free_area {
b2a0ac88 82 struct list_head free_list[MIGRATE_TYPES];
1da177e4
LT
83 unsigned long nr_free;
84};
85
86struct pglist_data;
87
88/*
89 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
90 * So add a wild amount of padding here to ensure that they fall into separate
91 * cachelines. There are very few zone structures in the machine, so space
92 * consumption is not a concern here.
93 */
94#if defined(CONFIG_SMP)
95struct zone_padding {
96 char x[0];
22fc6ecc 97} ____cacheline_internodealigned_in_smp;
1da177e4
LT
98#define ZONE_PADDING(name) struct zone_padding name;
99#else
100#define ZONE_PADDING(name)
101#endif
102
2244b95a 103enum zone_stat_item {
51ed4491 104 /* First 128 byte cacheline (assuming 64 bit words) */
d23ad423 105 NR_FREE_PAGES,
b69408e8 106 NR_LRU_BASE,
4f98a2fe
RR
107 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
108 NR_ACTIVE_ANON, /* " " " " " */
109 NR_INACTIVE_FILE, /* " " " " " */
110 NR_ACTIVE_FILE, /* " " " " " */
894bc310 111 NR_UNEVICTABLE, /* " " " " " */
5344b7e6 112 NR_MLOCK, /* mlock()ed pages found and moved off LRU */
f3dbd344
CL
113 NR_ANON_PAGES, /* Mapped anonymous pages */
114 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
65ba55f5 115 only modified from process context */
347ce434 116 NR_FILE_PAGES,
b1e7a8fd 117 NR_FILE_DIRTY,
ce866b34 118 NR_WRITEBACK,
51ed4491
CL
119 NR_SLAB_RECLAIMABLE,
120 NR_SLAB_UNRECLAIMABLE,
121 NR_PAGETABLE, /* used for pagetables */
c6a7f572
KM
122 NR_KERNEL_STACK,
123 /* Second 128 byte cacheline */
fd39fc85 124 NR_UNSTABLE_NFS, /* NFS unstable pages */
d2c5e30c 125 NR_BOUNCE,
e129b5c2 126 NR_VMSCAN_WRITE,
49ea7eb6 127 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */
fc3ba692 128 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
a731286d
KM
129 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
130 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
4b02108a 131 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
ea941f0e
MR
132 NR_DIRTIED, /* page dirtyings since bootup */
133 NR_WRITTEN, /* page writings since bootup */
ca889e6c
CL
134#ifdef CONFIG_NUMA
135 NUMA_HIT, /* allocated in intended node */
136 NUMA_MISS, /* allocated in non intended node */
137 NUMA_FOREIGN, /* was intended here, hit elsewhere */
138 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
139 NUMA_LOCAL, /* allocation from local node */
140 NUMA_OTHER, /* allocation from other node */
141#endif
79134171 142 NR_ANON_TRANSPARENT_HUGEPAGES,
d1ce749a 143 NR_FREE_CMA_PAGES,
2244b95a
CL
144 NR_VM_ZONE_STAT_ITEMS };
145
4f98a2fe
RR
146/*
147 * We do arithmetic on the LRU lists in various places in the code,
148 * so it is important to keep the active lists LRU_ACTIVE higher in
149 * the array than the corresponding inactive lists, and to keep
150 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
151 *
152 * This has to be kept in sync with the statistics in zone_stat_item
153 * above and the descriptions in vmstat_text in mm/vmstat.c
154 */
155#define LRU_BASE 0
156#define LRU_ACTIVE 1
157#define LRU_FILE 2
158
b69408e8 159enum lru_list {
4f98a2fe
RR
160 LRU_INACTIVE_ANON = LRU_BASE,
161 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
162 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
163 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
894bc310 164 LRU_UNEVICTABLE,
894bc310
LS
165 NR_LRU_LISTS
166};
b69408e8 167
4111304d 168#define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
b69408e8 169
4111304d 170#define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
894bc310 171
4111304d 172static inline int is_file_lru(enum lru_list lru)
4f98a2fe 173{
4111304d 174 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
4f98a2fe
RR
175}
176
4111304d 177static inline int is_active_lru(enum lru_list lru)
b69408e8 178{
4111304d 179 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
b69408e8
CL
180}
181
4111304d 182static inline int is_unevictable_lru(enum lru_list lru)
894bc310 183{
4111304d 184 return (lru == LRU_UNEVICTABLE);
894bc310
LS
185}
186
89abfab1
HD
187struct zone_reclaim_stat {
188 /*
189 * The pageout code in vmscan.c keeps track of how many of the
59f91e5d 190 * mem/swap backed and file backed pages are referenced.
89abfab1
HD
191 * The higher the rotated/scanned ratio, the more valuable
192 * that cache is.
193 *
194 * The anon LRU stats live in [0], file LRU stats in [1]
195 */
196 unsigned long recent_rotated[2];
197 unsigned long recent_scanned[2];
198};
199
6290df54
JW
200struct lruvec {
201 struct list_head lists[NR_LRU_LISTS];
89abfab1 202 struct zone_reclaim_stat reclaim_stat;
c255a458 203#ifdef CONFIG_MEMCG
7f5e86c2
KK
204 struct zone *zone;
205#endif
6290df54
JW
206};
207
bb2a0de9
KH
208/* Mask used at gathering information at once (see memcontrol.c) */
209#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
210#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
bb2a0de9
KH
211#define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
212
39deaf85 213/* Isolate clean file */
f3fd4a61 214#define ISOLATE_CLEAN ((__force isolate_mode_t)0x1)
f80c0673 215/* Isolate unmapped file */
f3fd4a61 216#define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2)
c8244935 217/* Isolate for asynchronous migration */
f3fd4a61 218#define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4)
e46a2879
MK
219/* Isolate unevictable pages */
220#define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8)
4356f21d
MK
221
222/* LRU Isolation modes. */
223typedef unsigned __bitwise__ isolate_mode_t;
224
41858966
MG
225enum zone_watermarks {
226 WMARK_MIN,
227 WMARK_LOW,
228 WMARK_HIGH,
229 NR_WMARK
230};
231
232#define min_wmark_pages(z) (z->watermark[WMARK_MIN])
233#define low_wmark_pages(z) (z->watermark[WMARK_LOW])
234#define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
235
1da177e4
LT
236struct per_cpu_pages {
237 int count; /* number of pages in the list */
1da177e4
LT
238 int high; /* high watermark, emptying needed */
239 int batch; /* chunk size for buddy add/remove */
5f8dcc21
MG
240
241 /* Lists of pages, one per migrate type stored on the pcp-lists */
242 struct list_head lists[MIGRATE_PCPTYPES];
1da177e4
LT
243};
244
245struct per_cpu_pageset {
3dfa5721 246 struct per_cpu_pages pcp;
4037d452
CL
247#ifdef CONFIG_NUMA
248 s8 expire;
249#endif
2244b95a 250#ifdef CONFIG_SMP
df9ecaba 251 s8 stat_threshold;
2244b95a
CL
252 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
253#endif
99dcc3e5 254};
e7c8d5c9 255
97965478
CL
256#endif /* !__GENERATING_BOUNDS.H */
257
2f1b6248 258enum zone_type {
4b51d669 259#ifdef CONFIG_ZONE_DMA
2f1b6248
CL
260 /*
261 * ZONE_DMA is used when there are devices that are not able
262 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
263 * carve out the portion of memory that is needed for these devices.
264 * The range is arch specific.
265 *
266 * Some examples
267 *
268 * Architecture Limit
269 * ---------------------------
270 * parisc, ia64, sparc <4G
271 * s390 <2G
2f1b6248
CL
272 * arm Various
273 * alpha Unlimited or 0-16MB.
274 *
275 * i386, x86_64 and multiple other arches
276 * <16M.
277 */
278 ZONE_DMA,
4b51d669 279#endif
fb0e7942 280#ifdef CONFIG_ZONE_DMA32
2f1b6248
CL
281 /*
282 * x86_64 needs two ZONE_DMAs because it supports devices that are
283 * only able to do DMA to the lower 16M but also 32 bit devices that
284 * can only do DMA areas below 4G.
285 */
286 ZONE_DMA32,
fb0e7942 287#endif
2f1b6248
CL
288 /*
289 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
290 * performed on pages in ZONE_NORMAL if the DMA devices support
291 * transfers to all addressable memory.
292 */
293 ZONE_NORMAL,
e53ef38d 294#ifdef CONFIG_HIGHMEM
2f1b6248
CL
295 /*
296 * A memory area that is only addressable by the kernel through
297 * mapping portions into its own address space. This is for example
298 * used by i386 to allow the kernel to address the memory beyond
299 * 900MB. The kernel will set up special mappings (page
300 * table entries on i386) for each page that the kernel needs to
301 * access.
302 */
303 ZONE_HIGHMEM,
e53ef38d 304#endif
2a1e274a 305 ZONE_MOVABLE,
97965478 306 __MAX_NR_ZONES
2f1b6248 307};
1da177e4 308
97965478
CL
309#ifndef __GENERATING_BOUNDS_H
310
1da177e4
LT
311/*
312 * When a memory allocation must conform to specific limitations (such
313 * as being suitable for DMA) the caller will pass in hints to the
314 * allocator in the gfp_mask, in the zone modifier bits. These bits
315 * are used to select a priority ordered list of memory zones which
19655d34 316 * match the requested limits. See gfp_zone() in include/linux/gfp.h
1da177e4 317 */
fb0e7942 318
97965478 319#if MAX_NR_ZONES < 2
4b51d669 320#define ZONES_SHIFT 0
97965478 321#elif MAX_NR_ZONES <= 2
19655d34 322#define ZONES_SHIFT 1
97965478 323#elif MAX_NR_ZONES <= 4
19655d34 324#define ZONES_SHIFT 2
4b51d669
CL
325#else
326#error ZONES_SHIFT -- too many zones configured adjust calculation
fb0e7942 327#endif
1da177e4 328
1da177e4
LT
329struct zone {
330 /* Fields commonly accessed by the page allocator */
41858966
MG
331
332 /* zone watermarks, access with *_wmark_pages(zone) macros */
333 unsigned long watermark[NR_WMARK];
334
aa454840
CL
335 /*
336 * When free pages are below this point, additional steps are taken
337 * when reading the number of free pages to avoid per-cpu counter
338 * drift allowing watermarks to be breached
339 */
340 unsigned long percpu_drift_mark;
341
1da177e4
LT
342 /*
343 * We don't know if the memory that we're going to allocate will be freeable
344 * or/and it will be released eventually, so to avoid totally wasting several
345 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
346 * to run OOM on the lower zones despite there's tons of freeable ram
347 * on the higher zones). This array is recalculated at runtime if the
348 * sysctl_lowmem_reserve_ratio sysctl changes.
349 */
350 unsigned long lowmem_reserve[MAX_NR_ZONES];
351
ab8fabd4
JW
352 /*
353 * This is a per-zone reserve of pages that should not be
354 * considered dirtyable memory.
355 */
356 unsigned long dirty_balance_reserve;
357
e7c8d5c9 358#ifdef CONFIG_NUMA
d5f541ed 359 int node;
9614634f
CL
360 /*
361 * zone reclaim becomes active if more unmapped pages exist.
362 */
8417bba4 363 unsigned long min_unmapped_pages;
0ff38490 364 unsigned long min_slab_pages;
e7c8d5c9 365#endif
43cf38eb 366 struct per_cpu_pageset __percpu *pageset;
1da177e4
LT
367 /*
368 * free areas of different sizes
369 */
370 spinlock_t lock;
93e4a89a 371 int all_unreclaimable; /* All pages pinned */
bb13ffeb 372#if defined CONFIG_COMPACTION || defined CONFIG_CMA
62997027
MG
373 /* Set to true when the PG_migrate_skip bits should be cleared */
374 bool compact_blockskip_flush;
c89511ab
MG
375
376 /* pfns where compaction scanners should start */
377 unsigned long compact_cached_free_pfn;
378 unsigned long compact_cached_migrate_pfn;
bb13ffeb 379#endif
bdc8cb98
DH
380#ifdef CONFIG_MEMORY_HOTPLUG
381 /* see spanned/present_pages for more description */
382 seqlock_t span_seqlock;
383#endif
1da177e4
LT
384 struct free_area free_area[MAX_ORDER];
385
835c134e
MG
386#ifndef CONFIG_SPARSEMEM
387 /*
d9c23400 388 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
835c134e
MG
389 * In SPARSEMEM, this map is stored in struct mem_section
390 */
391 unsigned long *pageblock_flags;
392#endif /* CONFIG_SPARSEMEM */
393
4f92e258
MG
394#ifdef CONFIG_COMPACTION
395 /*
396 * On compaction failure, 1<<compact_defer_shift compactions
397 * are skipped before trying again. The number attempted since
398 * last failure is tracked with compact_considered.
399 */
400 unsigned int compact_considered;
401 unsigned int compact_defer_shift;
aff62249 402 int compact_order_failed;
4f92e258 403#endif
1da177e4
LT
404
405 ZONE_PADDING(_pad1_)
406
407 /* Fields commonly accessed by the page reclaim scanner */
6290df54
JW
408 spinlock_t lru_lock;
409 struct lruvec lruvec;
4f98a2fe 410
1da177e4 411 unsigned long pages_scanned; /* since last reclaim */
e815af95 412 unsigned long flags; /* zone flags, see below */
753ee728 413
2244b95a
CL
414 /* Zone statistics */
415 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
9eeff239 416
556adecb
RR
417 /*
418 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
419 * this zone's LRU. Maintained by the pageout code.
420 */
421 unsigned int inactive_ratio;
422
1da177e4
LT
423
424 ZONE_PADDING(_pad2_)
425 /* Rarely used or read-mostly fields */
426
427 /*
428 * wait_table -- the array holding the hash table
02b694de 429 * wait_table_hash_nr_entries -- the size of the hash table array
1da177e4
LT
430 * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
431 *
432 * The purpose of all these is to keep track of the people
433 * waiting for a page to become available and make them
434 * runnable again when possible. The trouble is that this
435 * consumes a lot of space, especially when so few things
436 * wait on pages at a given time. So instead of using
437 * per-page waitqueues, we use a waitqueue hash table.
438 *
439 * The bucket discipline is to sleep on the same queue when
440 * colliding and wake all in that wait queue when removing.
441 * When something wakes, it must check to be sure its page is
442 * truly available, a la thundering herd. The cost of a
443 * collision is great, but given the expected load of the
444 * table, they should be so rare as to be outweighed by the
445 * benefits from the saved space.
446 *
447 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
448 * primary users of these fields, and in mm/page_alloc.c
449 * free_area_init_core() performs the initialization of them.
450 */
451 wait_queue_head_t * wait_table;
02b694de 452 unsigned long wait_table_hash_nr_entries;
1da177e4
LT
453 unsigned long wait_table_bits;
454
455 /*
456 * Discontig memory support fields.
457 */
458 struct pglist_data *zone_pgdat;
1da177e4
LT
459 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
460 unsigned long zone_start_pfn;
461
bdc8cb98 462 /*
9feedc9d
JL
463 * spanned_pages is the total pages spanned by the zone, including
464 * holes, which is calculated as:
465 * spanned_pages = zone_end_pfn - zone_start_pfn;
bdc8cb98 466 *
9feedc9d
JL
467 * present_pages is physical pages existing within the zone, which
468 * is calculated as:
469 * present_pages = spanned_pages - absent_pages(pags in holes);
470 *
471 * managed_pages is present pages managed by the buddy system, which
472 * is calculated as (reserved_pages includes pages allocated by the
473 * bootmem allocator):
474 * managed_pages = present_pages - reserved_pages;
475 *
476 * So present_pages may be used by memory hotplug or memory power
477 * management logic to figure out unmanaged pages by checking
478 * (present_pages - managed_pages). And managed_pages should be used
479 * by page allocator and vm scanner to calculate all kinds of watermarks
480 * and thresholds.
481 *
482 * Locking rules:
483 *
484 * zone_start_pfn and spanned_pages are protected by span_seqlock.
485 * It is a seqlock because it has to be read outside of zone->lock,
486 * and it is done in the main allocator path. But, it is written
487 * quite infrequently.
488 *
489 * The span_seq lock is declared along with zone->lock because it is
bdc8cb98
DH
490 * frequently read in proximity to zone->lock. It's good to
491 * give them a chance of being in the same cacheline.
9feedc9d
JL
492 *
493 * Write access to present_pages and managed_pages at runtime should
494 * be protected by lock_memory_hotplug()/unlock_memory_hotplug().
495 * Any reader who can't tolerant drift of present_pages and
496 * managed_pages should hold memory hotplug lock to get a stable value.
bdc8cb98 497 */
9feedc9d
JL
498 unsigned long spanned_pages;
499 unsigned long present_pages;
500 unsigned long managed_pages;
1da177e4
LT
501
502 /*
503 * rarely used fields:
504 */
15ad7cdc 505 const char *name;
702d1a6e
MK
506#ifdef CONFIG_MEMORY_ISOLATION
507 /*
508 * the number of MIGRATE_ISOLATE *pageblock*.
509 * We need this for free page counting. Look at zone_watermark_ok_safe.
510 * It's protected by zone->lock
511 */
512 int nr_pageblock_isolate;
513#endif
22fc6ecc 514} ____cacheline_internodealigned_in_smp;
1da177e4 515
e815af95 516typedef enum {
e815af95 517 ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */
098d7f12 518 ZONE_OOM_LOCKED, /* zone is in OOM killer zonelist */
0e093d99
MG
519 ZONE_CONGESTED, /* zone has many dirty pages backed by
520 * a congested BDI
521 */
e815af95
DR
522} zone_flags_t;
523
524static inline void zone_set_flag(struct zone *zone, zone_flags_t flag)
525{
526 set_bit(flag, &zone->flags);
527}
d773ed6b
DR
528
529static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag)
530{
531 return test_and_set_bit(flag, &zone->flags);
532}
533
e815af95
DR
534static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag)
535{
536 clear_bit(flag, &zone->flags);
537}
538
0e093d99
MG
539static inline int zone_is_reclaim_congested(const struct zone *zone)
540{
541 return test_bit(ZONE_CONGESTED, &zone->flags);
542}
543
e815af95
DR
544static inline int zone_is_reclaim_locked(const struct zone *zone)
545{
546 return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
547}
d773ed6b 548
098d7f12
DR
549static inline int zone_is_oom_locked(const struct zone *zone)
550{
551 return test_bit(ZONE_OOM_LOCKED, &zone->flags);
552}
e815af95 553
1da177e4
LT
554/*
555 * The "priority" of VM scanning is how much of the queues we will scan in one
556 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
557 * queues ("queue_length >> 12") during an aging round.
558 */
559#define DEF_PRIORITY 12
560
9276b1bc
PJ
561/* Maximum number of zones on a zonelist */
562#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
563
564#ifdef CONFIG_NUMA
523b9458
CL
565
566/*
25a64ec1 567 * The NUMA zonelists are doubled because we need zonelists that restrict the
523b9458
CL
568 * allocations to a single node for GFP_THISNODE.
569 *
54a6eb5c
MG
570 * [0] : Zonelist with fallback
571 * [1] : No fallback (GFP_THISNODE)
523b9458 572 */
54a6eb5c 573#define MAX_ZONELISTS 2
523b9458
CL
574
575
9276b1bc
PJ
576/*
577 * We cache key information from each zonelist for smaller cache
578 * footprint when scanning for free pages in get_page_from_freelist().
579 *
580 * 1) The BITMAP fullzones tracks which zones in a zonelist have come
581 * up short of free memory since the last time (last_fullzone_zap)
582 * we zero'd fullzones.
583 * 2) The array z_to_n[] maps each zone in the zonelist to its node
584 * id, so that we can efficiently evaluate whether that node is
585 * set in the current tasks mems_allowed.
586 *
587 * Both fullzones and z_to_n[] are one-to-one with the zonelist,
588 * indexed by a zones offset in the zonelist zones[] array.
589 *
590 * The get_page_from_freelist() routine does two scans. During the
591 * first scan, we skip zones whose corresponding bit in 'fullzones'
592 * is set or whose corresponding node in current->mems_allowed (which
593 * comes from cpusets) is not set. During the second scan, we bypass
594 * this zonelist_cache, to ensure we look methodically at each zone.
595 *
596 * Once per second, we zero out (zap) fullzones, forcing us to
597 * reconsider nodes that might have regained more free memory.
598 * The field last_full_zap is the time we last zapped fullzones.
599 *
600 * This mechanism reduces the amount of time we waste repeatedly
601 * reexaming zones for free memory when they just came up low on
602 * memory momentarilly ago.
603 *
604 * The zonelist_cache struct members logically belong in struct
605 * zonelist. However, the mempolicy zonelists constructed for
606 * MPOL_BIND are intentionally variable length (and usually much
607 * shorter). A general purpose mechanism for handling structs with
608 * multiple variable length members is more mechanism than we want
609 * here. We resort to some special case hackery instead.
610 *
611 * The MPOL_BIND zonelists don't need this zonelist_cache (in good
612 * part because they are shorter), so we put the fixed length stuff
613 * at the front of the zonelist struct, ending in a variable length
614 * zones[], as is needed by MPOL_BIND.
615 *
616 * Then we put the optional zonelist cache on the end of the zonelist
617 * struct. This optional stuff is found by a 'zlcache_ptr' pointer in
618 * the fixed length portion at the front of the struct. This pointer
619 * both enables us to find the zonelist cache, and in the case of
620 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
621 * to know that the zonelist cache is not there.
622 *
623 * The end result is that struct zonelists come in two flavors:
624 * 1) The full, fixed length version, shown below, and
625 * 2) The custom zonelists for MPOL_BIND.
626 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
627 *
628 * Even though there may be multiple CPU cores on a node modifying
629 * fullzones or last_full_zap in the same zonelist_cache at the same
630 * time, we don't lock it. This is just hint data - if it is wrong now
631 * and then, the allocator will still function, perhaps a bit slower.
632 */
633
634
635struct zonelist_cache {
9276b1bc 636 unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */
7253f4ef 637 DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */
9276b1bc
PJ
638 unsigned long last_full_zap; /* when last zap'd (jiffies) */
639};
640#else
54a6eb5c 641#define MAX_ZONELISTS 1
9276b1bc
PJ
642struct zonelist_cache;
643#endif
644
dd1a239f
MG
645/*
646 * This struct contains information about a zone in a zonelist. It is stored
647 * here to avoid dereferences into large structures and lookups of tables
648 */
649struct zoneref {
650 struct zone *zone; /* Pointer to actual zone */
651 int zone_idx; /* zone_idx(zoneref->zone) */
652};
653
1da177e4
LT
654/*
655 * One allocation request operates on a zonelist. A zonelist
656 * is a list of zones, the first one is the 'goal' of the
657 * allocation, the other zones are fallback zones, in decreasing
658 * priority.
659 *
9276b1bc
PJ
660 * If zlcache_ptr is not NULL, then it is just the address of zlcache,
661 * as explained above. If zlcache_ptr is NULL, there is no zlcache.
dd1a239f
MG
662 * *
663 * To speed the reading of the zonelist, the zonerefs contain the zone index
664 * of the entry being read. Helper functions to access information given
665 * a struct zoneref are
666 *
667 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
668 * zonelist_zone_idx() - Return the index of the zone for an entry
669 * zonelist_node_idx() - Return the index of the node for an entry
1da177e4
LT
670 */
671struct zonelist {
9276b1bc 672 struct zonelist_cache *zlcache_ptr; // NULL or &zlcache
dd1a239f 673 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
9276b1bc
PJ
674#ifdef CONFIG_NUMA
675 struct zonelist_cache zlcache; // optional ...
676#endif
1da177e4
LT
677};
678
0ee332c1 679#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d
MG
680struct node_active_region {
681 unsigned long start_pfn;
682 unsigned long end_pfn;
683 int nid;
684};
0ee332c1 685#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1da177e4 686
5b99cd0e
HC
687#ifndef CONFIG_DISCONTIGMEM
688/* The array of struct pages - for discontigmem use pgdat->lmem_map */
689extern struct page *mem_map;
690#endif
691
1da177e4
LT
692/*
693 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
694 * (mostly NUMA machines?) to denote a higher-level memory zone than the
695 * zone denotes.
696 *
697 * On NUMA machines, each NUMA node would have a pg_data_t to describe
698 * it's memory layout.
699 *
700 * Memory statistics and page replacement data structures are maintained on a
701 * per-zone basis.
702 */
703struct bootmem_data;
704typedef struct pglist_data {
705 struct zone node_zones[MAX_NR_ZONES];
523b9458 706 struct zonelist node_zonelists[MAX_ZONELISTS];
1da177e4 707 int nr_zones;
52d4b9ac 708#ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
1da177e4 709 struct page *node_mem_map;
c255a458 710#ifdef CONFIG_MEMCG
52d4b9ac
KH
711 struct page_cgroup *node_page_cgroup;
712#endif
d41dee36 713#endif
08677214 714#ifndef CONFIG_NO_BOOTMEM
1da177e4 715 struct bootmem_data *bdata;
08677214 716#endif
208d54e5
DH
717#ifdef CONFIG_MEMORY_HOTPLUG
718 /*
719 * Must be held any time you expect node_start_pfn, node_present_pages
720 * or node_spanned_pages stay constant. Holding this will also
721 * guarantee that any pfn_valid() stays that way.
722 *
723 * Nests above zone->lock and zone->size_seqlock.
724 */
725 spinlock_t node_size_lock;
726#endif
1da177e4
LT
727 unsigned long node_start_pfn;
728 unsigned long node_present_pages; /* total number of physical pages */
729 unsigned long node_spanned_pages; /* total size of physical page
730 range, including holes */
731 int node_id;
957f822a 732 nodemask_t reclaim_nodes; /* Nodes allowed to reclaim from */
1da177e4 733 wait_queue_head_t kswapd_wait;
5515061d 734 wait_queue_head_t pfmemalloc_wait;
d8adde17 735 struct task_struct *kswapd; /* Protected by lock_memory_hotplug() */
1da177e4 736 int kswapd_max_order;
99504748 737 enum zone_type classzone_idx;
8177a420
AA
738#ifdef CONFIG_NUMA_BALANCING
739 /*
740 * Lock serializing the per destination node AutoNUMA memory
741 * migration rate limiting data.
742 */
743 spinlock_t numabalancing_migrate_lock;
744
745 /* Rate limiting time interval */
746 unsigned long numabalancing_migrate_next_window;
747
748 /* Number of pages migrated during the rate limiting time interval */
749 unsigned long numabalancing_migrate_nr_pages;
750#endif
1da177e4
LT
751} pg_data_t;
752
753#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
754#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
d41dee36 755#ifdef CONFIG_FLAT_NODE_MEM_MAP
408fde81 756#define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
d41dee36
AW
757#else
758#define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
759#endif
408fde81 760#define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
1da177e4 761
c6830c22
KH
762#define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn)
763
764#define node_end_pfn(nid) ({\
765 pg_data_t *__pgdat = NODE_DATA(nid);\
766 __pgdat->node_start_pfn + __pgdat->node_spanned_pages;\
767})
768
208d54e5
DH
769#include <linux/memory_hotplug.h>
770
4eaf3f64 771extern struct mutex zonelists_mutex;
9adb62a5 772void build_all_zonelists(pg_data_t *pgdat, struct zone *zone);
99504748 773void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx);
88f5acf8
MG
774bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
775 int classzone_idx, int alloc_flags);
776bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
7fb1d9fc 777 int classzone_idx, int alloc_flags);
a2f3aa02
DH
778enum memmap_context {
779 MEMMAP_EARLY,
780 MEMMAP_HOTPLUG,
781};
718127cc 782extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
a2f3aa02
DH
783 unsigned long size,
784 enum memmap_context context);
718127cc 785
bea8c150 786extern void lruvec_init(struct lruvec *lruvec);
7f5e86c2
KK
787
788static inline struct zone *lruvec_zone(struct lruvec *lruvec)
789{
c255a458 790#ifdef CONFIG_MEMCG
7f5e86c2
KK
791 return lruvec->zone;
792#else
793 return container_of(lruvec, struct zone, lruvec);
794#endif
795}
796
1da177e4
LT
797#ifdef CONFIG_HAVE_MEMORY_PRESENT
798void memory_present(int nid, unsigned long start, unsigned long end);
799#else
800static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
801#endif
802
7aac7898
LS
803#ifdef CONFIG_HAVE_MEMORYLESS_NODES
804int local_memory_node(int node_id);
805#else
806static inline int local_memory_node(int node_id) { return node_id; };
807#endif
808
1da177e4
LT
809#ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
810unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
811#endif
812
813/*
814 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
815 */
816#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
817
f3fe6512
CK
818static inline int populated_zone(struct zone *zone)
819{
820 return (!!zone->present_pages);
821}
822
2a1e274a
MG
823extern int movable_zone;
824
825static inline int zone_movable_is_highmem(void)
826{
fe03025d 827#if defined(CONFIG_HIGHMEM) && defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
2a1e274a
MG
828 return movable_zone == ZONE_HIGHMEM;
829#else
830 return 0;
831#endif
832}
833
2f1b6248 834static inline int is_highmem_idx(enum zone_type idx)
1da177e4 835{
e53ef38d 836#ifdef CONFIG_HIGHMEM
2a1e274a
MG
837 return (idx == ZONE_HIGHMEM ||
838 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
e53ef38d
CL
839#else
840 return 0;
841#endif
1da177e4
LT
842}
843
2f1b6248 844static inline int is_normal_idx(enum zone_type idx)
1da177e4
LT
845{
846 return (idx == ZONE_NORMAL);
847}
9328b8fa 848
1da177e4
LT
849/**
850 * is_highmem - helper function to quickly check if a struct zone is a
851 * highmem zone or not. This is an attempt to keep references
852 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
853 * @zone - pointer to struct zone variable
854 */
855static inline int is_highmem(struct zone *zone)
856{
e53ef38d 857#ifdef CONFIG_HIGHMEM
ddc81ed2
HH
858 int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones;
859 return zone_off == ZONE_HIGHMEM * sizeof(*zone) ||
860 (zone_off == ZONE_MOVABLE * sizeof(*zone) &&
861 zone_movable_is_highmem());
e53ef38d
CL
862#else
863 return 0;
864#endif
1da177e4
LT
865}
866
867static inline int is_normal(struct zone *zone)
868{
869 return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
870}
871
9328b8fa
NP
872static inline int is_dma32(struct zone *zone)
873{
fb0e7942 874#ifdef CONFIG_ZONE_DMA32
9328b8fa 875 return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
fb0e7942
CL
876#else
877 return 0;
878#endif
9328b8fa
NP
879}
880
881static inline int is_dma(struct zone *zone)
882{
4b51d669 883#ifdef CONFIG_ZONE_DMA
9328b8fa 884 return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
4b51d669
CL
885#else
886 return 0;
887#endif
9328b8fa
NP
888}
889
1da177e4
LT
890/* These two functions are used to setup the per zone pages min values */
891struct ctl_table;
8d65af78 892int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
1da177e4
LT
893 void __user *, size_t *, loff_t *);
894extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
8d65af78 895int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
1da177e4 896 void __user *, size_t *, loff_t *);
8d65af78 897int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
8ad4b1fb 898 void __user *, size_t *, loff_t *);
9614634f 899int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
8d65af78 900 void __user *, size_t *, loff_t *);
0ff38490 901int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
8d65af78 902 void __user *, size_t *, loff_t *);
1da177e4 903
f0c0b2b8 904extern int numa_zonelist_order_handler(struct ctl_table *, int,
8d65af78 905 void __user *, size_t *, loff_t *);
f0c0b2b8
KH
906extern char numa_zonelist_order[];
907#define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */
908
93b7504e 909#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
910
911extern struct pglist_data contig_page_data;
912#define NODE_DATA(nid) (&contig_page_data)
913#define NODE_MEM_MAP(nid) mem_map
1da177e4 914
93b7504e 915#else /* CONFIG_NEED_MULTIPLE_NODES */
1da177e4
LT
916
917#include <asm/mmzone.h>
918
93b7504e 919#endif /* !CONFIG_NEED_MULTIPLE_NODES */
348f8b6c 920
95144c78
KH
921extern struct pglist_data *first_online_pgdat(void);
922extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
923extern struct zone *next_zone(struct zone *zone);
8357f869
KH
924
925/**
12d15f0d 926 * for_each_online_pgdat - helper macro to iterate over all online nodes
8357f869
KH
927 * @pgdat - pointer to a pg_data_t variable
928 */
929#define for_each_online_pgdat(pgdat) \
930 for (pgdat = first_online_pgdat(); \
931 pgdat; \
932 pgdat = next_online_pgdat(pgdat))
8357f869
KH
933/**
934 * for_each_zone - helper macro to iterate over all memory zones
935 * @zone - pointer to struct zone variable
936 *
937 * The user only needs to declare the zone variable, for_each_zone
938 * fills it in.
939 */
940#define for_each_zone(zone) \
941 for (zone = (first_online_pgdat())->node_zones; \
942 zone; \
943 zone = next_zone(zone))
944
ee99c71c
KM
945#define for_each_populated_zone(zone) \
946 for (zone = (first_online_pgdat())->node_zones; \
947 zone; \
948 zone = next_zone(zone)) \
949 if (!populated_zone(zone)) \
950 ; /* do nothing */ \
951 else
952
dd1a239f
MG
953static inline struct zone *zonelist_zone(struct zoneref *zoneref)
954{
955 return zoneref->zone;
956}
957
958static inline int zonelist_zone_idx(struct zoneref *zoneref)
959{
960 return zoneref->zone_idx;
961}
962
963static inline int zonelist_node_idx(struct zoneref *zoneref)
964{
965#ifdef CONFIG_NUMA
966 /* zone_to_nid not available in this context */
967 return zoneref->zone->node;
968#else
969 return 0;
970#endif /* CONFIG_NUMA */
971}
972
19770b32
MG
973/**
974 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
975 * @z - The cursor used as a starting point for the search
976 * @highest_zoneidx - The zone index of the highest zone to return
977 * @nodes - An optional nodemask to filter the zonelist with
978 * @zone - The first suitable zone found is returned via this parameter
979 *
980 * This function returns the next zone at or below a given zone index that is
981 * within the allowed nodemask using a cursor as the starting point for the
5bead2a0
MG
982 * search. The zoneref returned is a cursor that represents the current zone
983 * being examined. It should be advanced by one before calling
984 * next_zones_zonelist again.
19770b32
MG
985 */
986struct zoneref *next_zones_zonelist(struct zoneref *z,
987 enum zone_type highest_zoneidx,
988 nodemask_t *nodes,
989 struct zone **zone);
dd1a239f 990
19770b32
MG
991/**
992 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
993 * @zonelist - The zonelist to search for a suitable zone
994 * @highest_zoneidx - The zone index of the highest zone to return
995 * @nodes - An optional nodemask to filter the zonelist with
996 * @zone - The first suitable zone found is returned via this parameter
997 *
998 * This function returns the first zone at or below a given zone index that is
999 * within the allowed nodemask. The zoneref returned is a cursor that can be
5bead2a0
MG
1000 * used to iterate the zonelist with next_zones_zonelist by advancing it by
1001 * one before calling.
19770b32 1002 */
dd1a239f 1003static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
19770b32
MG
1004 enum zone_type highest_zoneidx,
1005 nodemask_t *nodes,
1006 struct zone **zone)
54a6eb5c 1007{
19770b32
MG
1008 return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes,
1009 zone);
54a6eb5c
MG
1010}
1011
19770b32
MG
1012/**
1013 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1014 * @zone - The current zone in the iterator
1015 * @z - The current pointer within zonelist->zones being iterated
1016 * @zlist - The zonelist being iterated
1017 * @highidx - The zone index of the highest zone to return
1018 * @nodemask - Nodemask allowed by the allocator
1019 *
1020 * This iterator iterates though all zones at or below a given zone index and
1021 * within a given nodemask
1022 */
1023#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1024 for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \
1025 zone; \
5bead2a0 1026 z = next_zones_zonelist(++z, highidx, nodemask, &zone)) \
54a6eb5c
MG
1027
1028/**
1029 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1030 * @zone - The current zone in the iterator
1031 * @z - The current pointer within zonelist->zones being iterated
1032 * @zlist - The zonelist being iterated
1033 * @highidx - The zone index of the highest zone to return
1034 *
1035 * This iterator iterates though all zones at or below a given zone index.
1036 */
1037#define for_each_zone_zonelist(zone, z, zlist, highidx) \
19770b32 1038 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
54a6eb5c 1039
d41dee36
AW
1040#ifdef CONFIG_SPARSEMEM
1041#include <asm/sparsemem.h>
1042#endif
1043
c713216d 1044#if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
0ee332c1 1045 !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
b4544568
AM
1046static inline unsigned long early_pfn_to_nid(unsigned long pfn)
1047{
1048 return 0;
1049}
b159d43f
AW
1050#endif
1051
2bdaf115
AW
1052#ifdef CONFIG_FLATMEM
1053#define pfn_to_nid(pfn) (0)
1054#endif
1055
d41dee36
AW
1056#ifdef CONFIG_SPARSEMEM
1057
1058/*
1059 * SECTION_SHIFT #bits space required to store a section #
1060 *
1061 * PA_SECTION_SHIFT physical address to/from section number
1062 * PFN_SECTION_SHIFT pfn to/from section number
1063 */
1064#define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
1065
1066#define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
1067#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
1068
1069#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
1070
1071#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
1072#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
1073
835c134e 1074#define SECTION_BLOCKFLAGS_BITS \
d9c23400 1075 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
835c134e 1076
d41dee36
AW
1077#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1078#error Allocator MAX_ORDER exceeds SECTION_SIZE
1079#endif
1080
e3c40f37
DK
1081#define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
1082#define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
1083
a539f353
DK
1084#define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1085#define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
1086
d41dee36 1087struct page;
52d4b9ac 1088struct page_cgroup;
d41dee36 1089struct mem_section {
29751f69
AW
1090 /*
1091 * This is, logically, a pointer to an array of struct
1092 * pages. However, it is stored with some other magic.
1093 * (see sparse.c::sparse_init_one_section())
1094 *
30c253e6
AW
1095 * Additionally during early boot we encode node id of
1096 * the location of the section here to guide allocation.
1097 * (see sparse.c::memory_present())
1098 *
29751f69
AW
1099 * Making it a UL at least makes someone do a cast
1100 * before using it wrong.
1101 */
1102 unsigned long section_mem_map;
5c0e3066
MG
1103
1104 /* See declaration of similar field in struct zone */
1105 unsigned long *pageblock_flags;
c255a458 1106#ifdef CONFIG_MEMCG
52d4b9ac
KH
1107 /*
1108 * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use
1109 * section. (see memcontrol.h/page_cgroup.h about this.)
1110 */
1111 struct page_cgroup *page_cgroup;
1112 unsigned long pad;
1113#endif
d41dee36
AW
1114};
1115
3e347261
BP
1116#ifdef CONFIG_SPARSEMEM_EXTREME
1117#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
1118#else
1119#define SECTIONS_PER_ROOT 1
1120#endif
802f192e 1121
3e347261 1122#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
0faa5638 1123#define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
3e347261 1124#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
802f192e 1125
3e347261
BP
1126#ifdef CONFIG_SPARSEMEM_EXTREME
1127extern struct mem_section *mem_section[NR_SECTION_ROOTS];
802f192e 1128#else
3e347261
BP
1129extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1130#endif
d41dee36 1131
29751f69
AW
1132static inline struct mem_section *__nr_to_section(unsigned long nr)
1133{
3e347261
BP
1134 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1135 return NULL;
1136 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
29751f69 1137}
4ca644d9 1138extern int __section_nr(struct mem_section* ms);
04753278 1139extern unsigned long usemap_size(void);
29751f69
AW
1140
1141/*
1142 * We use the lower bits of the mem_map pointer to store
1143 * a little bit of information. There should be at least
1144 * 3 bits here due to 32-bit alignment.
1145 */
1146#define SECTION_MARKED_PRESENT (1UL<<0)
1147#define SECTION_HAS_MEM_MAP (1UL<<1)
1148#define SECTION_MAP_LAST_BIT (1UL<<2)
1149#define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
30c253e6 1150#define SECTION_NID_SHIFT 2
29751f69
AW
1151
1152static inline struct page *__section_mem_map_addr(struct mem_section *section)
1153{
1154 unsigned long map = section->section_mem_map;
1155 map &= SECTION_MAP_MASK;
1156 return (struct page *)map;
1157}
1158
540557b9 1159static inline int present_section(struct mem_section *section)
29751f69 1160{
802f192e 1161 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
29751f69
AW
1162}
1163
540557b9
AW
1164static inline int present_section_nr(unsigned long nr)
1165{
1166 return present_section(__nr_to_section(nr));
1167}
1168
1169static inline int valid_section(struct mem_section *section)
29751f69 1170{
802f192e 1171 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
29751f69
AW
1172}
1173
1174static inline int valid_section_nr(unsigned long nr)
1175{
1176 return valid_section(__nr_to_section(nr));
1177}
1178
d41dee36
AW
1179static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1180{
29751f69 1181 return __nr_to_section(pfn_to_section_nr(pfn));
d41dee36
AW
1182}
1183
7b7bf499 1184#ifndef CONFIG_HAVE_ARCH_PFN_VALID
d41dee36
AW
1185static inline int pfn_valid(unsigned long pfn)
1186{
1187 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1188 return 0;
29751f69 1189 return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
d41dee36 1190}
7b7bf499 1191#endif
d41dee36 1192
540557b9
AW
1193static inline int pfn_present(unsigned long pfn)
1194{
1195 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1196 return 0;
1197 return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1198}
1199
d41dee36
AW
1200/*
1201 * These are _only_ used during initialisation, therefore they
1202 * can use __initdata ... They could have names to indicate
1203 * this restriction.
1204 */
1205#ifdef CONFIG_NUMA
161599ff
AW
1206#define pfn_to_nid(pfn) \
1207({ \
1208 unsigned long __pfn_to_nid_pfn = (pfn); \
1209 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
1210})
2bdaf115
AW
1211#else
1212#define pfn_to_nid(pfn) (0)
d41dee36
AW
1213#endif
1214
d41dee36
AW
1215#define early_pfn_valid(pfn) pfn_valid(pfn)
1216void sparse_init(void);
1217#else
1218#define sparse_init() do {} while (0)
28ae55c9 1219#define sparse_index_init(_sec, _nid) do {} while (0)
d41dee36
AW
1220#endif /* CONFIG_SPARSEMEM */
1221
75167957 1222#ifdef CONFIG_NODES_SPAN_OTHER_NODES
cc2559bc 1223bool early_pfn_in_nid(unsigned long pfn, int nid);
75167957
AW
1224#else
1225#define early_pfn_in_nid(pfn, nid) (1)
1226#endif
1227
d41dee36
AW
1228#ifndef early_pfn_valid
1229#define early_pfn_valid(pfn) (1)
1230#endif
1231
1232void memory_present(int nid, unsigned long start, unsigned long end);
1233unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
1234
14e07298
AW
1235/*
1236 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1237 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1238 * pfn_valid_within() should be used in this case; we optimise this away
1239 * when we have no holes within a MAX_ORDER_NR_PAGES block.
1240 */
1241#ifdef CONFIG_HOLES_IN_ZONE
1242#define pfn_valid_within(pfn) pfn_valid(pfn)
1243#else
1244#define pfn_valid_within(pfn) (1)
1245#endif
1246
eb33575c
MG
1247#ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1248/*
1249 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1250 * associated with it or not. In FLATMEM, it is expected that holes always
1251 * have valid memmap as long as there is valid PFNs either side of the hole.
1252 * In SPARSEMEM, it is assumed that a valid section has a memmap for the
1253 * entire section.
1254 *
1255 * However, an ARM, and maybe other embedded architectures in the future
1256 * free memmap backing holes to save memory on the assumption the memmap is
1257 * never used. The page_zone linkages are then broken even though pfn_valid()
1258 * returns true. A walker of the full memmap must then do this additional
1259 * check to ensure the memmap they are looking at is sane by making sure
1260 * the zone and PFN linkages are still valid. This is expensive, but walkers
1261 * of the full memmap are extremely rare.
1262 */
1263int memmap_valid_within(unsigned long pfn,
1264 struct page *page, struct zone *zone);
1265#else
1266static inline int memmap_valid_within(unsigned long pfn,
1267 struct page *page, struct zone *zone)
1268{
1269 return 1;
1270}
1271#endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1272
97965478 1273#endif /* !__GENERATING_BOUNDS.H */
1da177e4 1274#endif /* !__ASSEMBLY__ */
1da177e4 1275#endif /* _LINUX_MMZONE_H */
This page took 1.588411 seconds and 5 git commands to generate.