mm, rmap: account shmem thp pages
[deliverable/linux.git] / include / linux / mmzone.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MMZONE_H
2#define _LINUX_MMZONE_H
3
1da177e4 4#ifndef __ASSEMBLY__
97965478 5#ifndef __GENERATING_BOUNDS_H
1da177e4 6
1da177e4
LT
7#include <linux/spinlock.h>
8#include <linux/list.h>
9#include <linux/wait.h>
e815af95 10#include <linux/bitops.h>
1da177e4
LT
11#include <linux/cache.h>
12#include <linux/threads.h>
13#include <linux/numa.h>
14#include <linux/init.h>
bdc8cb98 15#include <linux/seqlock.h>
8357f869 16#include <linux/nodemask.h>
835c134e 17#include <linux/pageblock-flags.h>
bbeae5b0 18#include <linux/page-flags-layout.h>
60063497 19#include <linux/atomic.h>
93ff66bf 20#include <asm/page.h>
1da177e4
LT
21
22/* Free memory management - zoned buddy allocator. */
23#ifndef CONFIG_FORCE_MAX_ZONEORDER
24#define MAX_ORDER 11
25#else
26#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
27#endif
e984bb43 28#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
1da177e4 29
5ad333eb
AW
30/*
31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
32 * costly to service. That is between allocation orders which should
35fca53e 33 * coalesce naturally under reasonable reclaim pressure and those which
5ad333eb
AW
34 * will not.
35 */
36#define PAGE_ALLOC_COSTLY_ORDER 3
37
47118af0
MN
38enum {
39 MIGRATE_UNMOVABLE,
47118af0 40 MIGRATE_MOVABLE,
016c13da 41 MIGRATE_RECLAIMABLE,
0aaa29a5
MG
42 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */
43 MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
47118af0
MN
44#ifdef CONFIG_CMA
45 /*
46 * MIGRATE_CMA migration type is designed to mimic the way
47 * ZONE_MOVABLE works. Only movable pages can be allocated
48 * from MIGRATE_CMA pageblocks and page allocator never
49 * implicitly change migration type of MIGRATE_CMA pageblock.
50 *
51 * The way to use it is to change migratetype of a range of
52 * pageblocks to MIGRATE_CMA which can be done by
53 * __free_pageblock_cma() function. What is important though
54 * is that a range of pageblocks must be aligned to
55 * MAX_ORDER_NR_PAGES should biggest page be bigger then
56 * a single pageblock.
57 */
58 MIGRATE_CMA,
59#endif
194159fb 60#ifdef CONFIG_MEMORY_ISOLATION
47118af0 61 MIGRATE_ISOLATE, /* can't allocate from here */
194159fb 62#endif
47118af0
MN
63 MIGRATE_TYPES
64};
65
60f30350
VB
66/* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
67extern char * const migratetype_names[MIGRATE_TYPES];
68
47118af0
MN
69#ifdef CONFIG_CMA
70# define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
71#else
72# define is_migrate_cma(migratetype) false
73#endif
b2a0ac88
MG
74
75#define for_each_migratetype_order(order, type) \
76 for (order = 0; order < MAX_ORDER; order++) \
77 for (type = 0; type < MIGRATE_TYPES; type++)
78
467c996c
MG
79extern int page_group_by_mobility_disabled;
80
e58469ba
MG
81#define NR_MIGRATETYPE_BITS (PB_migrate_end - PB_migrate + 1)
82#define MIGRATETYPE_MASK ((1UL << NR_MIGRATETYPE_BITS) - 1)
83
dc4b0caf
MG
84#define get_pageblock_migratetype(page) \
85 get_pfnblock_flags_mask(page, page_to_pfn(page), \
86 PB_migrate_end, MIGRATETYPE_MASK)
87
1da177e4 88struct free_area {
b2a0ac88 89 struct list_head free_list[MIGRATE_TYPES];
1da177e4
LT
90 unsigned long nr_free;
91};
92
93struct pglist_data;
94
95/*
96 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
97 * So add a wild amount of padding here to ensure that they fall into separate
98 * cachelines. There are very few zone structures in the machine, so space
99 * consumption is not a concern here.
100 */
101#if defined(CONFIG_SMP)
102struct zone_padding {
103 char x[0];
22fc6ecc 104} ____cacheline_internodealigned_in_smp;
1da177e4
LT
105#define ZONE_PADDING(name) struct zone_padding name;
106#else
107#define ZONE_PADDING(name)
108#endif
109
2244b95a 110enum zone_stat_item {
51ed4491 111 /* First 128 byte cacheline (assuming 64 bit words) */
d23ad423 112 NR_FREE_PAGES,
81c0a2bb 113 NR_ALLOC_BATCH,
b69408e8 114 NR_LRU_BASE,
4f98a2fe
RR
115 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
116 NR_ACTIVE_ANON, /* " " " " " */
117 NR_INACTIVE_FILE, /* " " " " " */
118 NR_ACTIVE_FILE, /* " " " " " */
894bc310 119 NR_UNEVICTABLE, /* " " " " " */
5344b7e6 120 NR_MLOCK, /* mlock()ed pages found and moved off LRU */
f3dbd344
CL
121 NR_ANON_PAGES, /* Mapped anonymous pages */
122 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
65ba55f5 123 only modified from process context */
347ce434 124 NR_FILE_PAGES,
b1e7a8fd 125 NR_FILE_DIRTY,
ce866b34 126 NR_WRITEBACK,
51ed4491
CL
127 NR_SLAB_RECLAIMABLE,
128 NR_SLAB_UNRECLAIMABLE,
129 NR_PAGETABLE, /* used for pagetables */
c6a7f572
KM
130 NR_KERNEL_STACK,
131 /* Second 128 byte cacheline */
fd39fc85 132 NR_UNSTABLE_NFS, /* NFS unstable pages */
d2c5e30c 133 NR_BOUNCE,
e129b5c2 134 NR_VMSCAN_WRITE,
49ea7eb6 135 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */
fc3ba692 136 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
a731286d
KM
137 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
138 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
4b02108a 139 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
ea941f0e
MR
140 NR_DIRTIED, /* page dirtyings since bootup */
141 NR_WRITTEN, /* page writings since bootup */
0d5d823a 142 NR_PAGES_SCANNED, /* pages scanned since last reclaim */
91537fee
MK
143#if IS_ENABLED(CONFIG_ZSMALLOC)
144 NR_ZSPAGES, /* allocated in zsmalloc */
145#endif
ca889e6c
CL
146#ifdef CONFIG_NUMA
147 NUMA_HIT, /* allocated in intended node */
148 NUMA_MISS, /* allocated in non intended node */
149 NUMA_FOREIGN, /* was intended here, hit elsewhere */
150 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
151 NUMA_LOCAL, /* allocation from local node */
152 NUMA_OTHER, /* allocation from other node */
153#endif
a528910e
JW
154 WORKINGSET_REFAULT,
155 WORKINGSET_ACTIVATE,
449dd698 156 WORKINGSET_NODERECLAIM,
65c45377
KS
157 NR_ANON_THPS,
158 NR_SHMEM_THPS,
159 NR_SHMEM_PMDMAPPED,
d1ce749a 160 NR_FREE_CMA_PAGES,
2244b95a
CL
161 NR_VM_ZONE_STAT_ITEMS };
162
4f98a2fe
RR
163/*
164 * We do arithmetic on the LRU lists in various places in the code,
165 * so it is important to keep the active lists LRU_ACTIVE higher in
166 * the array than the corresponding inactive lists, and to keep
167 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
168 *
169 * This has to be kept in sync with the statistics in zone_stat_item
170 * above and the descriptions in vmstat_text in mm/vmstat.c
171 */
172#define LRU_BASE 0
173#define LRU_ACTIVE 1
174#define LRU_FILE 2
175
b69408e8 176enum lru_list {
4f98a2fe
RR
177 LRU_INACTIVE_ANON = LRU_BASE,
178 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
179 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
180 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
894bc310 181 LRU_UNEVICTABLE,
894bc310
LS
182 NR_LRU_LISTS
183};
b69408e8 184
4111304d 185#define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
b69408e8 186
4111304d 187#define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
894bc310 188
4111304d 189static inline int is_file_lru(enum lru_list lru)
4f98a2fe 190{
4111304d 191 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
4f98a2fe
RR
192}
193
4111304d 194static inline int is_active_lru(enum lru_list lru)
b69408e8 195{
4111304d 196 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
b69408e8
CL
197}
198
89abfab1
HD
199struct zone_reclaim_stat {
200 /*
201 * The pageout code in vmscan.c keeps track of how many of the
59f91e5d 202 * mem/swap backed and file backed pages are referenced.
89abfab1
HD
203 * The higher the rotated/scanned ratio, the more valuable
204 * that cache is.
205 *
206 * The anon LRU stats live in [0], file LRU stats in [1]
207 */
208 unsigned long recent_rotated[2];
209 unsigned long recent_scanned[2];
210};
211
6290df54 212struct lruvec {
23047a96
JW
213 struct list_head lists[NR_LRU_LISTS];
214 struct zone_reclaim_stat reclaim_stat;
215 /* Evictions & activations on the inactive file list */
216 atomic_long_t inactive_age;
c255a458 217#ifdef CONFIG_MEMCG
23047a96 218 struct zone *zone;
7f5e86c2 219#endif
6290df54
JW
220};
221
bb2a0de9
KH
222/* Mask used at gathering information at once (see memcontrol.c) */
223#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
224#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
bb2a0de9
KH
225#define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
226
39deaf85 227/* Isolate clean file */
f3fd4a61 228#define ISOLATE_CLEAN ((__force isolate_mode_t)0x1)
f80c0673 229/* Isolate unmapped file */
f3fd4a61 230#define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2)
c8244935 231/* Isolate for asynchronous migration */
f3fd4a61 232#define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4)
e46a2879
MK
233/* Isolate unevictable pages */
234#define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8)
4356f21d
MK
235
236/* LRU Isolation modes. */
237typedef unsigned __bitwise__ isolate_mode_t;
238
41858966
MG
239enum zone_watermarks {
240 WMARK_MIN,
241 WMARK_LOW,
242 WMARK_HIGH,
243 NR_WMARK
244};
245
246#define min_wmark_pages(z) (z->watermark[WMARK_MIN])
247#define low_wmark_pages(z) (z->watermark[WMARK_LOW])
248#define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
249
1da177e4
LT
250struct per_cpu_pages {
251 int count; /* number of pages in the list */
1da177e4
LT
252 int high; /* high watermark, emptying needed */
253 int batch; /* chunk size for buddy add/remove */
5f8dcc21
MG
254
255 /* Lists of pages, one per migrate type stored on the pcp-lists */
256 struct list_head lists[MIGRATE_PCPTYPES];
1da177e4
LT
257};
258
259struct per_cpu_pageset {
3dfa5721 260 struct per_cpu_pages pcp;
4037d452
CL
261#ifdef CONFIG_NUMA
262 s8 expire;
263#endif
2244b95a 264#ifdef CONFIG_SMP
df9ecaba 265 s8 stat_threshold;
2244b95a
CL
266 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
267#endif
99dcc3e5 268};
e7c8d5c9 269
97965478
CL
270#endif /* !__GENERATING_BOUNDS.H */
271
2f1b6248 272enum zone_type {
4b51d669 273#ifdef CONFIG_ZONE_DMA
2f1b6248
CL
274 /*
275 * ZONE_DMA is used when there are devices that are not able
276 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
277 * carve out the portion of memory that is needed for these devices.
278 * The range is arch specific.
279 *
280 * Some examples
281 *
282 * Architecture Limit
283 * ---------------------------
284 * parisc, ia64, sparc <4G
285 * s390 <2G
2f1b6248
CL
286 * arm Various
287 * alpha Unlimited or 0-16MB.
288 *
289 * i386, x86_64 and multiple other arches
290 * <16M.
291 */
292 ZONE_DMA,
4b51d669 293#endif
fb0e7942 294#ifdef CONFIG_ZONE_DMA32
2f1b6248
CL
295 /*
296 * x86_64 needs two ZONE_DMAs because it supports devices that are
297 * only able to do DMA to the lower 16M but also 32 bit devices that
298 * can only do DMA areas below 4G.
299 */
300 ZONE_DMA32,
fb0e7942 301#endif
2f1b6248
CL
302 /*
303 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
304 * performed on pages in ZONE_NORMAL if the DMA devices support
305 * transfers to all addressable memory.
306 */
307 ZONE_NORMAL,
e53ef38d 308#ifdef CONFIG_HIGHMEM
2f1b6248
CL
309 /*
310 * A memory area that is only addressable by the kernel through
311 * mapping portions into its own address space. This is for example
312 * used by i386 to allow the kernel to address the memory beyond
313 * 900MB. The kernel will set up special mappings (page
314 * table entries on i386) for each page that the kernel needs to
315 * access.
316 */
317 ZONE_HIGHMEM,
e53ef38d 318#endif
2a1e274a 319 ZONE_MOVABLE,
033fbae9
DW
320#ifdef CONFIG_ZONE_DEVICE
321 ZONE_DEVICE,
322#endif
97965478 323 __MAX_NR_ZONES
033fbae9 324
2f1b6248 325};
1da177e4 326
97965478
CL
327#ifndef __GENERATING_BOUNDS_H
328
1da177e4 329struct zone {
3484b2de 330 /* Read-mostly fields */
41858966
MG
331
332 /* zone watermarks, access with *_wmark_pages(zone) macros */
333 unsigned long watermark[NR_WMARK];
334
0aaa29a5
MG
335 unsigned long nr_reserved_highatomic;
336
1da177e4 337 /*
89903327
AM
338 * We don't know if the memory that we're going to allocate will be
339 * freeable or/and it will be released eventually, so to avoid totally
340 * wasting several GB of ram we must reserve some of the lower zone
341 * memory (otherwise we risk to run OOM on the lower zones despite
342 * there being tons of freeable ram on the higher zones). This array is
343 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
344 * changes.
1da177e4 345 */
3484b2de 346 long lowmem_reserve[MAX_NR_ZONES];
ab8fabd4 347
e7c8d5c9 348#ifdef CONFIG_NUMA
d5f541ed 349 int node;
3484b2de
MG
350#endif
351
9614634f 352 /*
3484b2de
MG
353 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
354 * this zone's LRU. Maintained by the pageout code.
9614634f 355 */
3484b2de
MG
356 unsigned int inactive_ratio;
357
358 struct pglist_data *zone_pgdat;
43cf38eb 359 struct per_cpu_pageset __percpu *pageset;
3484b2de 360
1da177e4 361 /*
a8d01437
JW
362 * This is a per-zone reserve of pages that are not available
363 * to userspace allocations.
1da177e4 364 */
a8d01437 365 unsigned long totalreserve_pages;
1da177e4 366
835c134e
MG
367#ifndef CONFIG_SPARSEMEM
368 /*
d9c23400 369 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
835c134e
MG
370 * In SPARSEMEM, this map is stored in struct mem_section
371 */
372 unsigned long *pageblock_flags;
373#endif /* CONFIG_SPARSEMEM */
374
3484b2de 375#ifdef CONFIG_NUMA
1da177e4 376 /*
3484b2de 377 * zone reclaim becomes active if more unmapped pages exist.
1da177e4 378 */
3484b2de
MG
379 unsigned long min_unmapped_pages;
380 unsigned long min_slab_pages;
381#endif /* CONFIG_NUMA */
1da177e4 382
1da177e4
LT
383 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
384 unsigned long zone_start_pfn;
385
bdc8cb98 386 /*
9feedc9d
JL
387 * spanned_pages is the total pages spanned by the zone, including
388 * holes, which is calculated as:
389 * spanned_pages = zone_end_pfn - zone_start_pfn;
bdc8cb98 390 *
9feedc9d
JL
391 * present_pages is physical pages existing within the zone, which
392 * is calculated as:
8761e31c 393 * present_pages = spanned_pages - absent_pages(pages in holes);
9feedc9d
JL
394 *
395 * managed_pages is present pages managed by the buddy system, which
396 * is calculated as (reserved_pages includes pages allocated by the
397 * bootmem allocator):
398 * managed_pages = present_pages - reserved_pages;
399 *
400 * So present_pages may be used by memory hotplug or memory power
401 * management logic to figure out unmanaged pages by checking
402 * (present_pages - managed_pages). And managed_pages should be used
403 * by page allocator and vm scanner to calculate all kinds of watermarks
404 * and thresholds.
405 *
406 * Locking rules:
407 *
408 * zone_start_pfn and spanned_pages are protected by span_seqlock.
409 * It is a seqlock because it has to be read outside of zone->lock,
410 * and it is done in the main allocator path. But, it is written
411 * quite infrequently.
412 *
413 * The span_seq lock is declared along with zone->lock because it is
bdc8cb98
DH
414 * frequently read in proximity to zone->lock. It's good to
415 * give them a chance of being in the same cacheline.
9feedc9d 416 *
c3d5f5f0 417 * Write access to present_pages at runtime should be protected by
bfc8c901
VD
418 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
419 * present_pages should get_online_mems() to get a stable value.
c3d5f5f0
JL
420 *
421 * Read access to managed_pages should be safe because it's unsigned
422 * long. Write access to zone->managed_pages and totalram_pages are
423 * protected by managed_page_count_lock at runtime. Idealy only
424 * adjust_managed_page_count() should be used instead of directly
425 * touching zone->managed_pages and totalram_pages.
bdc8cb98 426 */
3484b2de 427 unsigned long managed_pages;
9feedc9d
JL
428 unsigned long spanned_pages;
429 unsigned long present_pages;
3484b2de
MG
430
431 const char *name;
1da177e4 432
ad53f92e
JK
433#ifdef CONFIG_MEMORY_ISOLATION
434 /*
435 * Number of isolated pageblock. It is used to solve incorrect
436 * freepage counting problem due to racy retrieving migratetype
437 * of pageblock. Protected by zone->lock.
438 */
439 unsigned long nr_isolate_pageblock;
440#endif
441
3484b2de
MG
442#ifdef CONFIG_MEMORY_HOTPLUG
443 /* see spanned/present_pages for more description */
444 seqlock_t span_seqlock;
445#endif
446
1da177e4 447 /*
3484b2de
MG
448 * wait_table -- the array holding the hash table
449 * wait_table_hash_nr_entries -- the size of the hash table array
450 * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
451 *
452 * The purpose of all these is to keep track of the people
453 * waiting for a page to become available and make them
454 * runnable again when possible. The trouble is that this
455 * consumes a lot of space, especially when so few things
456 * wait on pages at a given time. So instead of using
457 * per-page waitqueues, we use a waitqueue hash table.
458 *
459 * The bucket discipline is to sleep on the same queue when
460 * colliding and wake all in that wait queue when removing.
461 * When something wakes, it must check to be sure its page is
462 * truly available, a la thundering herd. The cost of a
463 * collision is great, but given the expected load of the
464 * table, they should be so rare as to be outweighed by the
465 * benefits from the saved space.
466 *
467 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
468 * primary users of these fields, and in mm/page_alloc.c
469 * free_area_init_core() performs the initialization of them.
1da177e4 470 */
3484b2de
MG
471 wait_queue_head_t *wait_table;
472 unsigned long wait_table_hash_nr_entries;
473 unsigned long wait_table_bits;
474
475 ZONE_PADDING(_pad1_)
3484b2de
MG
476 /* free areas of different sizes */
477 struct free_area free_area[MAX_ORDER];
478
479 /* zone flags, see below */
480 unsigned long flags;
481
a368ab67
MG
482 /* Write-intensive fields used from the page allocator */
483 spinlock_t lock;
484
3484b2de
MG
485 ZONE_PADDING(_pad2_)
486
487 /* Write-intensive fields used by page reclaim */
488
489 /* Fields commonly accessed by the page reclaim scanner */
490 spinlock_t lru_lock;
3484b2de
MG
491 struct lruvec lruvec;
492
3484b2de
MG
493 /*
494 * When free pages are below this point, additional steps are taken
495 * when reading the number of free pages to avoid per-cpu counter
496 * drift allowing watermarks to be breached
497 */
498 unsigned long percpu_drift_mark;
499
500#if defined CONFIG_COMPACTION || defined CONFIG_CMA
501 /* pfn where compaction free scanner should start */
502 unsigned long compact_cached_free_pfn;
503 /* pfn where async and sync compaction migration scanner should start */
504 unsigned long compact_cached_migrate_pfn[2];
505#endif
506
507#ifdef CONFIG_COMPACTION
508 /*
509 * On compaction failure, 1<<compact_defer_shift compactions
510 * are skipped before trying again. The number attempted since
511 * last failure is tracked with compact_considered.
512 */
513 unsigned int compact_considered;
514 unsigned int compact_defer_shift;
515 int compact_order_failed;
516#endif
517
518#if defined CONFIG_COMPACTION || defined CONFIG_CMA
519 /* Set to true when the PG_migrate_skip bits should be cleared */
520 bool compact_blockskip_flush;
521#endif
522
7cf91a98
JK
523 bool contiguous;
524
3484b2de
MG
525 ZONE_PADDING(_pad3_)
526 /* Zone statistics */
527 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
22fc6ecc 528} ____cacheline_internodealigned_in_smp;
1da177e4 529
57054651 530enum zone_flags {
e815af95 531 ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */
0e093d99
MG
532 ZONE_CONGESTED, /* zone has many dirty pages backed by
533 * a congested BDI
534 */
57054651 535 ZONE_DIRTY, /* reclaim scanning has recently found
d43006d5
MG
536 * many dirty file pages at the tail
537 * of the LRU.
538 */
283aba9f
MG
539 ZONE_WRITEBACK, /* reclaim scanning has recently found
540 * many pages under writeback
541 */
4ffeaf35 542 ZONE_FAIR_DEPLETED, /* fair zone policy batch depleted */
57054651 543};
e815af95 544
f9228b20 545static inline unsigned long zone_end_pfn(const struct zone *zone)
108bcc96
CS
546{
547 return zone->zone_start_pfn + zone->spanned_pages;
548}
549
550static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
551{
552 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
553}
554
2a6e3ebe
CS
555static inline bool zone_is_initialized(struct zone *zone)
556{
557 return !!zone->wait_table;
558}
559
560static inline bool zone_is_empty(struct zone *zone)
561{
562 return zone->spanned_pages == 0;
563}
564
1da177e4
LT
565/*
566 * The "priority" of VM scanning is how much of the queues we will scan in one
567 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
568 * queues ("queue_length >> 12") during an aging round.
569 */
570#define DEF_PRIORITY 12
571
9276b1bc
PJ
572/* Maximum number of zones on a zonelist */
573#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
574
c00eb15a
YB
575enum {
576 ZONELIST_FALLBACK, /* zonelist with fallback */
9276b1bc 577#ifdef CONFIG_NUMA
c00eb15a
YB
578 /*
579 * The NUMA zonelists are doubled because we need zonelists that
580 * restrict the allocations to a single node for __GFP_THISNODE.
581 */
582 ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */
9276b1bc 583#endif
c00eb15a
YB
584 MAX_ZONELISTS
585};
9276b1bc 586
dd1a239f
MG
587/*
588 * This struct contains information about a zone in a zonelist. It is stored
589 * here to avoid dereferences into large structures and lookups of tables
590 */
591struct zoneref {
592 struct zone *zone; /* Pointer to actual zone */
593 int zone_idx; /* zone_idx(zoneref->zone) */
594};
595
1da177e4
LT
596/*
597 * One allocation request operates on a zonelist. A zonelist
598 * is a list of zones, the first one is the 'goal' of the
599 * allocation, the other zones are fallback zones, in decreasing
600 * priority.
601 *
dd1a239f
MG
602 * To speed the reading of the zonelist, the zonerefs contain the zone index
603 * of the entry being read. Helper functions to access information given
604 * a struct zoneref are
605 *
606 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
607 * zonelist_zone_idx() - Return the index of the zone for an entry
608 * zonelist_node_idx() - Return the index of the node for an entry
1da177e4
LT
609 */
610struct zonelist {
dd1a239f 611 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
1da177e4
LT
612};
613
5b99cd0e
HC
614#ifndef CONFIG_DISCONTIGMEM
615/* The array of struct pages - for discontigmem use pgdat->lmem_map */
616extern struct page *mem_map;
617#endif
618
1da177e4
LT
619/*
620 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
621 * (mostly NUMA machines?) to denote a higher-level memory zone than the
622 * zone denotes.
623 *
624 * On NUMA machines, each NUMA node would have a pg_data_t to describe
625 * it's memory layout.
626 *
627 * Memory statistics and page replacement data structures are maintained on a
628 * per-zone basis.
629 */
630struct bootmem_data;
631typedef struct pglist_data {
632 struct zone node_zones[MAX_NR_ZONES];
523b9458 633 struct zonelist node_zonelists[MAX_ZONELISTS];
1da177e4 634 int nr_zones;
52d4b9ac 635#ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
1da177e4 636 struct page *node_mem_map;
eefa864b
JK
637#ifdef CONFIG_PAGE_EXTENSION
638 struct page_ext *node_page_ext;
639#endif
d41dee36 640#endif
08677214 641#ifndef CONFIG_NO_BOOTMEM
1da177e4 642 struct bootmem_data *bdata;
08677214 643#endif
208d54e5
DH
644#ifdef CONFIG_MEMORY_HOTPLUG
645 /*
646 * Must be held any time you expect node_start_pfn, node_present_pages
647 * or node_spanned_pages stay constant. Holding this will also
648 * guarantee that any pfn_valid() stays that way.
649 *
114d4b79
CS
650 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
651 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG.
652 *
72c3b51b 653 * Nests above zone->lock and zone->span_seqlock
208d54e5
DH
654 */
655 spinlock_t node_size_lock;
656#endif
1da177e4
LT
657 unsigned long node_start_pfn;
658 unsigned long node_present_pages; /* total number of physical pages */
659 unsigned long node_spanned_pages; /* total size of physical page
660 range, including holes */
661 int node_id;
1da177e4 662 wait_queue_head_t kswapd_wait;
5515061d 663 wait_queue_head_t pfmemalloc_wait;
bfc8c901
VD
664 struct task_struct *kswapd; /* Protected by
665 mem_hotplug_begin/end() */
1da177e4 666 int kswapd_max_order;
99504748 667 enum zone_type classzone_idx;
698b1b30
VB
668#ifdef CONFIG_COMPACTION
669 int kcompactd_max_order;
670 enum zone_type kcompactd_classzone_idx;
671 wait_queue_head_t kcompactd_wait;
672 struct task_struct *kcompactd;
673#endif
8177a420 674#ifdef CONFIG_NUMA_BALANCING
1c5e9c27 675 /* Lock serializing the migrate rate limiting window */
8177a420
AA
676 spinlock_t numabalancing_migrate_lock;
677
678 /* Rate limiting time interval */
679 unsigned long numabalancing_migrate_next_window;
680
681 /* Number of pages migrated during the rate limiting time interval */
682 unsigned long numabalancing_migrate_nr_pages;
683#endif
3a80a7fa
MG
684
685#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
686 /*
687 * If memory initialisation on large machines is deferred then this
688 * is the first PFN that needs to be initialised.
689 */
690 unsigned long first_deferred_pfn;
691#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
a3d0a918
KS
692
693#ifdef CONFIG_TRANSPARENT_HUGEPAGE
694 spinlock_t split_queue_lock;
695 struct list_head split_queue;
696 unsigned long split_queue_len;
697#endif
1da177e4
LT
698} pg_data_t;
699
700#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
701#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
d41dee36 702#ifdef CONFIG_FLAT_NODE_MEM_MAP
408fde81 703#define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
d41dee36
AW
704#else
705#define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
706#endif
408fde81 707#define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
1da177e4 708
c6830c22 709#define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn)
da3649e1 710#define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
c6830c22 711
da3649e1
CS
712static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
713{
714 return pgdat->node_start_pfn + pgdat->node_spanned_pages;
715}
716
717static inline bool pgdat_is_empty(pg_data_t *pgdat)
718{
719 return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
720}
c6830c22 721
033fbae9
DW
722static inline int zone_id(const struct zone *zone)
723{
724 struct pglist_data *pgdat = zone->zone_pgdat;
725
726 return zone - pgdat->node_zones;
727}
728
729#ifdef CONFIG_ZONE_DEVICE
730static inline bool is_dev_zone(const struct zone *zone)
731{
732 return zone_id(zone) == ZONE_DEVICE;
733}
734#else
735static inline bool is_dev_zone(const struct zone *zone)
736{
737 return false;
738}
739#endif
740
208d54e5
DH
741#include <linux/memory_hotplug.h>
742
4eaf3f64 743extern struct mutex zonelists_mutex;
9adb62a5 744void build_all_zonelists(pg_data_t *pgdat, struct zone *zone);
99504748 745void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx);
86a294a8
MH
746bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
747 int classzone_idx, unsigned int alloc_flags,
748 long free_pages);
7aeb09f9 749bool zone_watermark_ok(struct zone *z, unsigned int order,
c603844b
MG
750 unsigned long mark, int classzone_idx,
751 unsigned int alloc_flags);
7aeb09f9 752bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
e2b19197 753 unsigned long mark, int classzone_idx);
a2f3aa02
DH
754enum memmap_context {
755 MEMMAP_EARLY,
756 MEMMAP_HOTPLUG,
757};
718127cc 758extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
b171e409 759 unsigned long size);
718127cc 760
bea8c150 761extern void lruvec_init(struct lruvec *lruvec);
7f5e86c2
KK
762
763static inline struct zone *lruvec_zone(struct lruvec *lruvec)
764{
c255a458 765#ifdef CONFIG_MEMCG
7f5e86c2
KK
766 return lruvec->zone;
767#else
768 return container_of(lruvec, struct zone, lruvec);
769#endif
770}
771
23047a96
JW
772extern unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru);
773
1da177e4
LT
774#ifdef CONFIG_HAVE_MEMORY_PRESENT
775void memory_present(int nid, unsigned long start, unsigned long end);
776#else
777static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
778#endif
779
7aac7898
LS
780#ifdef CONFIG_HAVE_MEMORYLESS_NODES
781int local_memory_node(int node_id);
782#else
783static inline int local_memory_node(int node_id) { return node_id; };
784#endif
785
1da177e4
LT
786#ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
787unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
788#endif
789
790/*
791 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
792 */
793#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
794
f3fe6512
CK
795static inline int populated_zone(struct zone *zone)
796{
797 return (!!zone->present_pages);
798}
799
2a1e274a
MG
800extern int movable_zone;
801
d7e4a2ea 802#ifdef CONFIG_HIGHMEM
2a1e274a
MG
803static inline int zone_movable_is_highmem(void)
804{
d7e4a2ea 805#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
2a1e274a
MG
806 return movable_zone == ZONE_HIGHMEM;
807#else
d7e4a2ea 808 return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM;
2a1e274a
MG
809#endif
810}
d7e4a2ea 811#endif
2a1e274a 812
2f1b6248 813static inline int is_highmem_idx(enum zone_type idx)
1da177e4 814{
e53ef38d 815#ifdef CONFIG_HIGHMEM
2a1e274a
MG
816 return (idx == ZONE_HIGHMEM ||
817 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
e53ef38d
CL
818#else
819 return 0;
820#endif
1da177e4
LT
821}
822
1da177e4
LT
823/**
824 * is_highmem - helper function to quickly check if a struct zone is a
825 * highmem zone or not. This is an attempt to keep references
826 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
827 * @zone - pointer to struct zone variable
828 */
829static inline int is_highmem(struct zone *zone)
830{
e53ef38d 831#ifdef CONFIG_HIGHMEM
29f9cb53 832 return is_highmem_idx(zone_idx(zone));
e53ef38d
CL
833#else
834 return 0;
835#endif
1da177e4
LT
836}
837
1da177e4
LT
838/* These two functions are used to setup the per zone pages min values */
839struct ctl_table;
8d65af78 840int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
1da177e4 841 void __user *, size_t *, loff_t *);
795ae7a0
JW
842int watermark_scale_factor_sysctl_handler(struct ctl_table *, int,
843 void __user *, size_t *, loff_t *);
1da177e4 844extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
8d65af78 845int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
1da177e4 846 void __user *, size_t *, loff_t *);
8d65af78 847int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
8ad4b1fb 848 void __user *, size_t *, loff_t *);
9614634f 849int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
8d65af78 850 void __user *, size_t *, loff_t *);
0ff38490 851int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
8d65af78 852 void __user *, size_t *, loff_t *);
1da177e4 853
f0c0b2b8 854extern int numa_zonelist_order_handler(struct ctl_table *, int,
8d65af78 855 void __user *, size_t *, loff_t *);
f0c0b2b8
KH
856extern char numa_zonelist_order[];
857#define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */
858
93b7504e 859#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
860
861extern struct pglist_data contig_page_data;
862#define NODE_DATA(nid) (&contig_page_data)
863#define NODE_MEM_MAP(nid) mem_map
1da177e4 864
93b7504e 865#else /* CONFIG_NEED_MULTIPLE_NODES */
1da177e4
LT
866
867#include <asm/mmzone.h>
868
93b7504e 869#endif /* !CONFIG_NEED_MULTIPLE_NODES */
348f8b6c 870
95144c78
KH
871extern struct pglist_data *first_online_pgdat(void);
872extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
873extern struct zone *next_zone(struct zone *zone);
8357f869
KH
874
875/**
12d15f0d 876 * for_each_online_pgdat - helper macro to iterate over all online nodes
8357f869
KH
877 * @pgdat - pointer to a pg_data_t variable
878 */
879#define for_each_online_pgdat(pgdat) \
880 for (pgdat = first_online_pgdat(); \
881 pgdat; \
882 pgdat = next_online_pgdat(pgdat))
8357f869
KH
883/**
884 * for_each_zone - helper macro to iterate over all memory zones
885 * @zone - pointer to struct zone variable
886 *
887 * The user only needs to declare the zone variable, for_each_zone
888 * fills it in.
889 */
890#define for_each_zone(zone) \
891 for (zone = (first_online_pgdat())->node_zones; \
892 zone; \
893 zone = next_zone(zone))
894
ee99c71c
KM
895#define for_each_populated_zone(zone) \
896 for (zone = (first_online_pgdat())->node_zones; \
897 zone; \
898 zone = next_zone(zone)) \
899 if (!populated_zone(zone)) \
900 ; /* do nothing */ \
901 else
902
dd1a239f
MG
903static inline struct zone *zonelist_zone(struct zoneref *zoneref)
904{
905 return zoneref->zone;
906}
907
908static inline int zonelist_zone_idx(struct zoneref *zoneref)
909{
910 return zoneref->zone_idx;
911}
912
913static inline int zonelist_node_idx(struct zoneref *zoneref)
914{
915#ifdef CONFIG_NUMA
916 /* zone_to_nid not available in this context */
917 return zoneref->zone->node;
918#else
919 return 0;
920#endif /* CONFIG_NUMA */
921}
922
682a3385
MG
923struct zoneref *__next_zones_zonelist(struct zoneref *z,
924 enum zone_type highest_zoneidx,
925 nodemask_t *nodes);
926
19770b32
MG
927/**
928 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
929 * @z - The cursor used as a starting point for the search
930 * @highest_zoneidx - The zone index of the highest zone to return
931 * @nodes - An optional nodemask to filter the zonelist with
19770b32
MG
932 *
933 * This function returns the next zone at or below a given zone index that is
934 * within the allowed nodemask using a cursor as the starting point for the
5bead2a0
MG
935 * search. The zoneref returned is a cursor that represents the current zone
936 * being examined. It should be advanced by one before calling
937 * next_zones_zonelist again.
19770b32 938 */
682a3385 939static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
19770b32 940 enum zone_type highest_zoneidx,
682a3385
MG
941 nodemask_t *nodes)
942{
943 if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
944 return z;
945 return __next_zones_zonelist(z, highest_zoneidx, nodes);
946}
dd1a239f 947
19770b32
MG
948/**
949 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
950 * @zonelist - The zonelist to search for a suitable zone
951 * @highest_zoneidx - The zone index of the highest zone to return
952 * @nodes - An optional nodemask to filter the zonelist with
953 * @zone - The first suitable zone found is returned via this parameter
954 *
955 * This function returns the first zone at or below a given zone index that is
956 * within the allowed nodemask. The zoneref returned is a cursor that can be
5bead2a0
MG
957 * used to iterate the zonelist with next_zones_zonelist by advancing it by
958 * one before calling.
19770b32 959 */
dd1a239f 960static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
19770b32 961 enum zone_type highest_zoneidx,
c33d6c06 962 nodemask_t *nodes)
54a6eb5c 963{
c33d6c06 964 return next_zones_zonelist(zonelist->_zonerefs,
05891fb0 965 highest_zoneidx, nodes);
54a6eb5c
MG
966}
967
19770b32
MG
968/**
969 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
970 * @zone - The current zone in the iterator
971 * @z - The current pointer within zonelist->zones being iterated
972 * @zlist - The zonelist being iterated
973 * @highidx - The zone index of the highest zone to return
974 * @nodemask - Nodemask allowed by the allocator
975 *
976 * This iterator iterates though all zones at or below a given zone index and
977 * within a given nodemask
978 */
979#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
c33d6c06 980 for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z); \
19770b32 981 zone; \
05891fb0 982 z = next_zones_zonelist(++z, highidx, nodemask), \
c33d6c06
MG
983 zone = zonelist_zone(z))
984
985#define for_next_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
986 for (zone = z->zone; \
987 zone; \
988 z = next_zones_zonelist(++z, highidx, nodemask), \
989 zone = zonelist_zone(z))
990
54a6eb5c
MG
991
992/**
993 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
994 * @zone - The current zone in the iterator
995 * @z - The current pointer within zonelist->zones being iterated
996 * @zlist - The zonelist being iterated
997 * @highidx - The zone index of the highest zone to return
998 *
999 * This iterator iterates though all zones at or below a given zone index.
1000 */
1001#define for_each_zone_zonelist(zone, z, zlist, highidx) \
19770b32 1002 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
54a6eb5c 1003
d41dee36
AW
1004#ifdef CONFIG_SPARSEMEM
1005#include <asm/sparsemem.h>
1006#endif
1007
c713216d 1008#if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
0ee332c1 1009 !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
b4544568
AM
1010static inline unsigned long early_pfn_to_nid(unsigned long pfn)
1011{
1012 return 0;
1013}
b159d43f
AW
1014#endif
1015
2bdaf115
AW
1016#ifdef CONFIG_FLATMEM
1017#define pfn_to_nid(pfn) (0)
1018#endif
1019
d41dee36
AW
1020#ifdef CONFIG_SPARSEMEM
1021
1022/*
1023 * SECTION_SHIFT #bits space required to store a section #
1024 *
1025 * PA_SECTION_SHIFT physical address to/from section number
1026 * PFN_SECTION_SHIFT pfn to/from section number
1027 */
d41dee36
AW
1028#define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
1029#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
1030
1031#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
1032
1033#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
1034#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
1035
835c134e 1036#define SECTION_BLOCKFLAGS_BITS \
d9c23400 1037 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
835c134e 1038
d41dee36
AW
1039#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1040#error Allocator MAX_ORDER exceeds SECTION_SIZE
1041#endif
1042
e3c40f37
DK
1043#define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
1044#define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
1045
a539f353
DK
1046#define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1047#define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
1048
d41dee36 1049struct page;
eefa864b 1050struct page_ext;
d41dee36 1051struct mem_section {
29751f69
AW
1052 /*
1053 * This is, logically, a pointer to an array of struct
1054 * pages. However, it is stored with some other magic.
1055 * (see sparse.c::sparse_init_one_section())
1056 *
30c253e6
AW
1057 * Additionally during early boot we encode node id of
1058 * the location of the section here to guide allocation.
1059 * (see sparse.c::memory_present())
1060 *
29751f69
AW
1061 * Making it a UL at least makes someone do a cast
1062 * before using it wrong.
1063 */
1064 unsigned long section_mem_map;
5c0e3066
MG
1065
1066 /* See declaration of similar field in struct zone */
1067 unsigned long *pageblock_flags;
eefa864b
JK
1068#ifdef CONFIG_PAGE_EXTENSION
1069 /*
0c9ad804 1070 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
eefa864b
JK
1071 * section. (see page_ext.h about this.)
1072 */
1073 struct page_ext *page_ext;
1074 unsigned long pad;
1075#endif
55878e88
CS
1076 /*
1077 * WARNING: mem_section must be a power-of-2 in size for the
1078 * calculation and use of SECTION_ROOT_MASK to make sense.
1079 */
d41dee36
AW
1080};
1081
3e347261
BP
1082#ifdef CONFIG_SPARSEMEM_EXTREME
1083#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
1084#else
1085#define SECTIONS_PER_ROOT 1
1086#endif
802f192e 1087
3e347261 1088#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
0faa5638 1089#define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
3e347261 1090#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
802f192e 1091
3e347261
BP
1092#ifdef CONFIG_SPARSEMEM_EXTREME
1093extern struct mem_section *mem_section[NR_SECTION_ROOTS];
802f192e 1094#else
3e347261
BP
1095extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1096#endif
d41dee36 1097
29751f69
AW
1098static inline struct mem_section *__nr_to_section(unsigned long nr)
1099{
3e347261
BP
1100 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1101 return NULL;
1102 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
29751f69 1103}
4ca644d9 1104extern int __section_nr(struct mem_section* ms);
04753278 1105extern unsigned long usemap_size(void);
29751f69
AW
1106
1107/*
1108 * We use the lower bits of the mem_map pointer to store
1109 * a little bit of information. There should be at least
1110 * 3 bits here due to 32-bit alignment.
1111 */
1112#define SECTION_MARKED_PRESENT (1UL<<0)
1113#define SECTION_HAS_MEM_MAP (1UL<<1)
1114#define SECTION_MAP_LAST_BIT (1UL<<2)
1115#define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
30c253e6 1116#define SECTION_NID_SHIFT 2
29751f69
AW
1117
1118static inline struct page *__section_mem_map_addr(struct mem_section *section)
1119{
1120 unsigned long map = section->section_mem_map;
1121 map &= SECTION_MAP_MASK;
1122 return (struct page *)map;
1123}
1124
540557b9 1125static inline int present_section(struct mem_section *section)
29751f69 1126{
802f192e 1127 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
29751f69
AW
1128}
1129
540557b9
AW
1130static inline int present_section_nr(unsigned long nr)
1131{
1132 return present_section(__nr_to_section(nr));
1133}
1134
1135static inline int valid_section(struct mem_section *section)
29751f69 1136{
802f192e 1137 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
29751f69
AW
1138}
1139
1140static inline int valid_section_nr(unsigned long nr)
1141{
1142 return valid_section(__nr_to_section(nr));
1143}
1144
d41dee36
AW
1145static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1146{
29751f69 1147 return __nr_to_section(pfn_to_section_nr(pfn));
d41dee36
AW
1148}
1149
7b7bf499 1150#ifndef CONFIG_HAVE_ARCH_PFN_VALID
d41dee36
AW
1151static inline int pfn_valid(unsigned long pfn)
1152{
1153 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1154 return 0;
29751f69 1155 return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
d41dee36 1156}
7b7bf499 1157#endif
d41dee36 1158
540557b9
AW
1159static inline int pfn_present(unsigned long pfn)
1160{
1161 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1162 return 0;
1163 return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1164}
1165
d41dee36
AW
1166/*
1167 * These are _only_ used during initialisation, therefore they
1168 * can use __initdata ... They could have names to indicate
1169 * this restriction.
1170 */
1171#ifdef CONFIG_NUMA
161599ff
AW
1172#define pfn_to_nid(pfn) \
1173({ \
1174 unsigned long __pfn_to_nid_pfn = (pfn); \
1175 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
1176})
2bdaf115
AW
1177#else
1178#define pfn_to_nid(pfn) (0)
d41dee36
AW
1179#endif
1180
d41dee36
AW
1181#define early_pfn_valid(pfn) pfn_valid(pfn)
1182void sparse_init(void);
1183#else
1184#define sparse_init() do {} while (0)
28ae55c9 1185#define sparse_index_init(_sec, _nid) do {} while (0)
d41dee36
AW
1186#endif /* CONFIG_SPARSEMEM */
1187
8a942fde
MG
1188/*
1189 * During memory init memblocks map pfns to nids. The search is expensive and
1190 * this caches recent lookups. The implementation of __early_pfn_to_nid
1191 * may treat start/end as pfns or sections.
1192 */
1193struct mminit_pfnnid_cache {
1194 unsigned long last_start;
1195 unsigned long last_end;
1196 int last_nid;
1197};
1198
d41dee36
AW
1199#ifndef early_pfn_valid
1200#define early_pfn_valid(pfn) (1)
1201#endif
1202
1203void memory_present(int nid, unsigned long start, unsigned long end);
1204unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
1205
14e07298
AW
1206/*
1207 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1208 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1209 * pfn_valid_within() should be used in this case; we optimise this away
1210 * when we have no holes within a MAX_ORDER_NR_PAGES block.
1211 */
1212#ifdef CONFIG_HOLES_IN_ZONE
1213#define pfn_valid_within(pfn) pfn_valid(pfn)
1214#else
1215#define pfn_valid_within(pfn) (1)
1216#endif
1217
eb33575c
MG
1218#ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1219/*
1220 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1221 * associated with it or not. In FLATMEM, it is expected that holes always
1222 * have valid memmap as long as there is valid PFNs either side of the hole.
1223 * In SPARSEMEM, it is assumed that a valid section has a memmap for the
1224 * entire section.
1225 *
1226 * However, an ARM, and maybe other embedded architectures in the future
1227 * free memmap backing holes to save memory on the assumption the memmap is
1228 * never used. The page_zone linkages are then broken even though pfn_valid()
1229 * returns true. A walker of the full memmap must then do this additional
1230 * check to ensure the memmap they are looking at is sane by making sure
1231 * the zone and PFN linkages are still valid. This is expensive, but walkers
1232 * of the full memmap are extremely rare.
1233 */
5b80287a 1234bool memmap_valid_within(unsigned long pfn,
eb33575c
MG
1235 struct page *page, struct zone *zone);
1236#else
5b80287a 1237static inline bool memmap_valid_within(unsigned long pfn,
eb33575c
MG
1238 struct page *page, struct zone *zone)
1239{
5b80287a 1240 return true;
eb33575c
MG
1241}
1242#endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1243
97965478 1244#endif /* !__GENERATING_BOUNDS.H */
1da177e4 1245#endif /* !__ASSEMBLY__ */
1da177e4 1246#endif /* _LINUX_MMZONE_H */
This page took 1.416379 seconds and 5 git commands to generate.