memcg: un-export __memcg_kmem_get_cache
[deliverable/linux.git] / include / linux / mmzone.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MMZONE_H
2#define _LINUX_MMZONE_H
3
1da177e4 4#ifndef __ASSEMBLY__
97965478 5#ifndef __GENERATING_BOUNDS_H
1da177e4 6
1da177e4
LT
7#include <linux/spinlock.h>
8#include <linux/list.h>
9#include <linux/wait.h>
e815af95 10#include <linux/bitops.h>
1da177e4
LT
11#include <linux/cache.h>
12#include <linux/threads.h>
13#include <linux/numa.h>
14#include <linux/init.h>
bdc8cb98 15#include <linux/seqlock.h>
8357f869 16#include <linux/nodemask.h>
835c134e 17#include <linux/pageblock-flags.h>
bbeae5b0 18#include <linux/page-flags-layout.h>
60063497 19#include <linux/atomic.h>
93ff66bf 20#include <asm/page.h>
1da177e4
LT
21
22/* Free memory management - zoned buddy allocator. */
23#ifndef CONFIG_FORCE_MAX_ZONEORDER
24#define MAX_ORDER 11
25#else
26#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
27#endif
e984bb43 28#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
1da177e4 29
5ad333eb
AW
30/*
31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
32 * costly to service. That is between allocation orders which should
35fca53e 33 * coalesce naturally under reasonable reclaim pressure and those which
5ad333eb
AW
34 * will not.
35 */
36#define PAGE_ALLOC_COSTLY_ORDER 3
37
47118af0
MN
38enum {
39 MIGRATE_UNMOVABLE,
40 MIGRATE_RECLAIMABLE,
41 MIGRATE_MOVABLE,
42 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */
43 MIGRATE_RESERVE = MIGRATE_PCPTYPES,
44#ifdef CONFIG_CMA
45 /*
46 * MIGRATE_CMA migration type is designed to mimic the way
47 * ZONE_MOVABLE works. Only movable pages can be allocated
48 * from MIGRATE_CMA pageblocks and page allocator never
49 * implicitly change migration type of MIGRATE_CMA pageblock.
50 *
51 * The way to use it is to change migratetype of a range of
52 * pageblocks to MIGRATE_CMA which can be done by
53 * __free_pageblock_cma() function. What is important though
54 * is that a range of pageblocks must be aligned to
55 * MAX_ORDER_NR_PAGES should biggest page be bigger then
56 * a single pageblock.
57 */
58 MIGRATE_CMA,
59#endif
194159fb 60#ifdef CONFIG_MEMORY_ISOLATION
47118af0 61 MIGRATE_ISOLATE, /* can't allocate from here */
194159fb 62#endif
47118af0
MN
63 MIGRATE_TYPES
64};
65
66#ifdef CONFIG_CMA
67# define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
68#else
69# define is_migrate_cma(migratetype) false
70#endif
b2a0ac88
MG
71
72#define for_each_migratetype_order(order, type) \
73 for (order = 0; order < MAX_ORDER; order++) \
74 for (type = 0; type < MIGRATE_TYPES; type++)
75
467c996c
MG
76extern int page_group_by_mobility_disabled;
77
78static inline int get_pageblock_migratetype(struct page *page)
79{
467c996c
MG
80 return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end);
81}
82
1da177e4 83struct free_area {
b2a0ac88 84 struct list_head free_list[MIGRATE_TYPES];
1da177e4
LT
85 unsigned long nr_free;
86};
87
88struct pglist_data;
89
90/*
91 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
92 * So add a wild amount of padding here to ensure that they fall into separate
93 * cachelines. There are very few zone structures in the machine, so space
94 * consumption is not a concern here.
95 */
96#if defined(CONFIG_SMP)
97struct zone_padding {
98 char x[0];
22fc6ecc 99} ____cacheline_internodealigned_in_smp;
1da177e4
LT
100#define ZONE_PADDING(name) struct zone_padding name;
101#else
102#define ZONE_PADDING(name)
103#endif
104
2244b95a 105enum zone_stat_item {
51ed4491 106 /* First 128 byte cacheline (assuming 64 bit words) */
d23ad423 107 NR_FREE_PAGES,
81c0a2bb 108 NR_ALLOC_BATCH,
b69408e8 109 NR_LRU_BASE,
4f98a2fe
RR
110 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
111 NR_ACTIVE_ANON, /* " " " " " */
112 NR_INACTIVE_FILE, /* " " " " " */
113 NR_ACTIVE_FILE, /* " " " " " */
894bc310 114 NR_UNEVICTABLE, /* " " " " " */
5344b7e6 115 NR_MLOCK, /* mlock()ed pages found and moved off LRU */
f3dbd344
CL
116 NR_ANON_PAGES, /* Mapped anonymous pages */
117 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
65ba55f5 118 only modified from process context */
347ce434 119 NR_FILE_PAGES,
b1e7a8fd 120 NR_FILE_DIRTY,
ce866b34 121 NR_WRITEBACK,
51ed4491
CL
122 NR_SLAB_RECLAIMABLE,
123 NR_SLAB_UNRECLAIMABLE,
124 NR_PAGETABLE, /* used for pagetables */
c6a7f572
KM
125 NR_KERNEL_STACK,
126 /* Second 128 byte cacheline */
fd39fc85 127 NR_UNSTABLE_NFS, /* NFS unstable pages */
d2c5e30c 128 NR_BOUNCE,
e129b5c2 129 NR_VMSCAN_WRITE,
49ea7eb6 130 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */
fc3ba692 131 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
a731286d
KM
132 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
133 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
4b02108a 134 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
ea941f0e
MR
135 NR_DIRTIED, /* page dirtyings since bootup */
136 NR_WRITTEN, /* page writings since bootup */
ca889e6c
CL
137#ifdef CONFIG_NUMA
138 NUMA_HIT, /* allocated in intended node */
139 NUMA_MISS, /* allocated in non intended node */
140 NUMA_FOREIGN, /* was intended here, hit elsewhere */
141 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
142 NUMA_LOCAL, /* allocation from local node */
143 NUMA_OTHER, /* allocation from other node */
144#endif
a528910e
JW
145 WORKINGSET_REFAULT,
146 WORKINGSET_ACTIVATE,
449dd698 147 WORKINGSET_NODERECLAIM,
79134171 148 NR_ANON_TRANSPARENT_HUGEPAGES,
d1ce749a 149 NR_FREE_CMA_PAGES,
2244b95a
CL
150 NR_VM_ZONE_STAT_ITEMS };
151
4f98a2fe
RR
152/*
153 * We do arithmetic on the LRU lists in various places in the code,
154 * so it is important to keep the active lists LRU_ACTIVE higher in
155 * the array than the corresponding inactive lists, and to keep
156 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
157 *
158 * This has to be kept in sync with the statistics in zone_stat_item
159 * above and the descriptions in vmstat_text in mm/vmstat.c
160 */
161#define LRU_BASE 0
162#define LRU_ACTIVE 1
163#define LRU_FILE 2
164
b69408e8 165enum lru_list {
4f98a2fe
RR
166 LRU_INACTIVE_ANON = LRU_BASE,
167 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
168 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
169 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
894bc310 170 LRU_UNEVICTABLE,
894bc310
LS
171 NR_LRU_LISTS
172};
b69408e8 173
4111304d 174#define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
b69408e8 175
4111304d 176#define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
894bc310 177
4111304d 178static inline int is_file_lru(enum lru_list lru)
4f98a2fe 179{
4111304d 180 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
4f98a2fe
RR
181}
182
4111304d 183static inline int is_active_lru(enum lru_list lru)
b69408e8 184{
4111304d 185 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
b69408e8
CL
186}
187
4111304d 188static inline int is_unevictable_lru(enum lru_list lru)
894bc310 189{
4111304d 190 return (lru == LRU_UNEVICTABLE);
894bc310
LS
191}
192
89abfab1
HD
193struct zone_reclaim_stat {
194 /*
195 * The pageout code in vmscan.c keeps track of how many of the
59f91e5d 196 * mem/swap backed and file backed pages are referenced.
89abfab1
HD
197 * The higher the rotated/scanned ratio, the more valuable
198 * that cache is.
199 *
200 * The anon LRU stats live in [0], file LRU stats in [1]
201 */
202 unsigned long recent_rotated[2];
203 unsigned long recent_scanned[2];
204};
205
6290df54
JW
206struct lruvec {
207 struct list_head lists[NR_LRU_LISTS];
89abfab1 208 struct zone_reclaim_stat reclaim_stat;
c255a458 209#ifdef CONFIG_MEMCG
7f5e86c2
KK
210 struct zone *zone;
211#endif
6290df54
JW
212};
213
bb2a0de9
KH
214/* Mask used at gathering information at once (see memcontrol.c) */
215#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
216#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
bb2a0de9
KH
217#define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
218
39deaf85 219/* Isolate clean file */
f3fd4a61 220#define ISOLATE_CLEAN ((__force isolate_mode_t)0x1)
f80c0673 221/* Isolate unmapped file */
f3fd4a61 222#define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2)
c8244935 223/* Isolate for asynchronous migration */
f3fd4a61 224#define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4)
e46a2879
MK
225/* Isolate unevictable pages */
226#define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8)
4356f21d
MK
227
228/* LRU Isolation modes. */
229typedef unsigned __bitwise__ isolate_mode_t;
230
41858966
MG
231enum zone_watermarks {
232 WMARK_MIN,
233 WMARK_LOW,
234 WMARK_HIGH,
235 NR_WMARK
236};
237
238#define min_wmark_pages(z) (z->watermark[WMARK_MIN])
239#define low_wmark_pages(z) (z->watermark[WMARK_LOW])
240#define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
241
1da177e4
LT
242struct per_cpu_pages {
243 int count; /* number of pages in the list */
1da177e4
LT
244 int high; /* high watermark, emptying needed */
245 int batch; /* chunk size for buddy add/remove */
5f8dcc21
MG
246
247 /* Lists of pages, one per migrate type stored on the pcp-lists */
248 struct list_head lists[MIGRATE_PCPTYPES];
1da177e4
LT
249};
250
251struct per_cpu_pageset {
3dfa5721 252 struct per_cpu_pages pcp;
4037d452
CL
253#ifdef CONFIG_NUMA
254 s8 expire;
255#endif
2244b95a 256#ifdef CONFIG_SMP
df9ecaba 257 s8 stat_threshold;
2244b95a
CL
258 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
259#endif
99dcc3e5 260};
e7c8d5c9 261
97965478
CL
262#endif /* !__GENERATING_BOUNDS.H */
263
2f1b6248 264enum zone_type {
4b51d669 265#ifdef CONFIG_ZONE_DMA
2f1b6248
CL
266 /*
267 * ZONE_DMA is used when there are devices that are not able
268 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
269 * carve out the portion of memory that is needed for these devices.
270 * The range is arch specific.
271 *
272 * Some examples
273 *
274 * Architecture Limit
275 * ---------------------------
276 * parisc, ia64, sparc <4G
277 * s390 <2G
2f1b6248
CL
278 * arm Various
279 * alpha Unlimited or 0-16MB.
280 *
281 * i386, x86_64 and multiple other arches
282 * <16M.
283 */
284 ZONE_DMA,
4b51d669 285#endif
fb0e7942 286#ifdef CONFIG_ZONE_DMA32
2f1b6248
CL
287 /*
288 * x86_64 needs two ZONE_DMAs because it supports devices that are
289 * only able to do DMA to the lower 16M but also 32 bit devices that
290 * can only do DMA areas below 4G.
291 */
292 ZONE_DMA32,
fb0e7942 293#endif
2f1b6248
CL
294 /*
295 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
296 * performed on pages in ZONE_NORMAL if the DMA devices support
297 * transfers to all addressable memory.
298 */
299 ZONE_NORMAL,
e53ef38d 300#ifdef CONFIG_HIGHMEM
2f1b6248
CL
301 /*
302 * A memory area that is only addressable by the kernel through
303 * mapping portions into its own address space. This is for example
304 * used by i386 to allow the kernel to address the memory beyond
305 * 900MB. The kernel will set up special mappings (page
306 * table entries on i386) for each page that the kernel needs to
307 * access.
308 */
309 ZONE_HIGHMEM,
e53ef38d 310#endif
2a1e274a 311 ZONE_MOVABLE,
97965478 312 __MAX_NR_ZONES
2f1b6248 313};
1da177e4 314
97965478
CL
315#ifndef __GENERATING_BOUNDS_H
316
1da177e4
LT
317struct zone {
318 /* Fields commonly accessed by the page allocator */
41858966
MG
319
320 /* zone watermarks, access with *_wmark_pages(zone) macros */
321 unsigned long watermark[NR_WMARK];
322
aa454840
CL
323 /*
324 * When free pages are below this point, additional steps are taken
325 * when reading the number of free pages to avoid per-cpu counter
326 * drift allowing watermarks to be breached
327 */
328 unsigned long percpu_drift_mark;
329
1da177e4
LT
330 /*
331 * We don't know if the memory that we're going to allocate will be freeable
332 * or/and it will be released eventually, so to avoid totally wasting several
333 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
334 * to run OOM on the lower zones despite there's tons of freeable ram
335 * on the higher zones). This array is recalculated at runtime if the
336 * sysctl_lowmem_reserve_ratio sysctl changes.
337 */
338 unsigned long lowmem_reserve[MAX_NR_ZONES];
339
ab8fabd4
JW
340 /*
341 * This is a per-zone reserve of pages that should not be
342 * considered dirtyable memory.
343 */
344 unsigned long dirty_balance_reserve;
345
e7c8d5c9 346#ifdef CONFIG_NUMA
d5f541ed 347 int node;
9614634f
CL
348 /*
349 * zone reclaim becomes active if more unmapped pages exist.
350 */
8417bba4 351 unsigned long min_unmapped_pages;
0ff38490 352 unsigned long min_slab_pages;
e7c8d5c9 353#endif
43cf38eb 354 struct per_cpu_pageset __percpu *pageset;
1da177e4
LT
355 /*
356 * free areas of different sizes
357 */
358 spinlock_t lock;
bb13ffeb 359#if defined CONFIG_COMPACTION || defined CONFIG_CMA
62997027
MG
360 /* Set to true when the PG_migrate_skip bits should be cleared */
361 bool compact_blockskip_flush;
c89511ab
MG
362
363 /* pfns where compaction scanners should start */
364 unsigned long compact_cached_free_pfn;
365 unsigned long compact_cached_migrate_pfn;
bb13ffeb 366#endif
bdc8cb98
DH
367#ifdef CONFIG_MEMORY_HOTPLUG
368 /* see spanned/present_pages for more description */
369 seqlock_t span_seqlock;
370#endif
1da177e4
LT
371 struct free_area free_area[MAX_ORDER];
372
835c134e
MG
373#ifndef CONFIG_SPARSEMEM
374 /*
d9c23400 375 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
835c134e
MG
376 * In SPARSEMEM, this map is stored in struct mem_section
377 */
378 unsigned long *pageblock_flags;
379#endif /* CONFIG_SPARSEMEM */
380
4f92e258
MG
381#ifdef CONFIG_COMPACTION
382 /*
383 * On compaction failure, 1<<compact_defer_shift compactions
384 * are skipped before trying again. The number attempted since
385 * last failure is tracked with compact_considered.
386 */
387 unsigned int compact_considered;
388 unsigned int compact_defer_shift;
aff62249 389 int compact_order_failed;
4f92e258 390#endif
1da177e4
LT
391
392 ZONE_PADDING(_pad1_)
393
394 /* Fields commonly accessed by the page reclaim scanner */
6290df54
JW
395 spinlock_t lru_lock;
396 struct lruvec lruvec;
4f98a2fe 397
a528910e
JW
398 /* Evictions & activations on the inactive file list */
399 atomic_long_t inactive_age;
400
1da177e4 401 unsigned long pages_scanned; /* since last reclaim */
e815af95 402 unsigned long flags; /* zone flags, see below */
753ee728 403
2244b95a
CL
404 /* Zone statistics */
405 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
9eeff239 406
556adecb
RR
407 /*
408 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
409 * this zone's LRU. Maintained by the pageout code.
410 */
411 unsigned int inactive_ratio;
412
1da177e4
LT
413
414 ZONE_PADDING(_pad2_)
415 /* Rarely used or read-mostly fields */
416
417 /*
418 * wait_table -- the array holding the hash table
02b694de 419 * wait_table_hash_nr_entries -- the size of the hash table array
1da177e4
LT
420 * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
421 *
422 * The purpose of all these is to keep track of the people
423 * waiting for a page to become available and make them
424 * runnable again when possible. The trouble is that this
425 * consumes a lot of space, especially when so few things
426 * wait on pages at a given time. So instead of using
427 * per-page waitqueues, we use a waitqueue hash table.
428 *
429 * The bucket discipline is to sleep on the same queue when
430 * colliding and wake all in that wait queue when removing.
431 * When something wakes, it must check to be sure its page is
432 * truly available, a la thundering herd. The cost of a
433 * collision is great, but given the expected load of the
434 * table, they should be so rare as to be outweighed by the
435 * benefits from the saved space.
436 *
437 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
438 * primary users of these fields, and in mm/page_alloc.c
439 * free_area_init_core() performs the initialization of them.
440 */
441 wait_queue_head_t * wait_table;
02b694de 442 unsigned long wait_table_hash_nr_entries;
1da177e4
LT
443 unsigned long wait_table_bits;
444
445 /*
446 * Discontig memory support fields.
447 */
448 struct pglist_data *zone_pgdat;
1da177e4
LT
449 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
450 unsigned long zone_start_pfn;
451
bdc8cb98 452 /*
9feedc9d
JL
453 * spanned_pages is the total pages spanned by the zone, including
454 * holes, which is calculated as:
455 * spanned_pages = zone_end_pfn - zone_start_pfn;
bdc8cb98 456 *
9feedc9d
JL
457 * present_pages is physical pages existing within the zone, which
458 * is calculated as:
8761e31c 459 * present_pages = spanned_pages - absent_pages(pages in holes);
9feedc9d
JL
460 *
461 * managed_pages is present pages managed by the buddy system, which
462 * is calculated as (reserved_pages includes pages allocated by the
463 * bootmem allocator):
464 * managed_pages = present_pages - reserved_pages;
465 *
466 * So present_pages may be used by memory hotplug or memory power
467 * management logic to figure out unmanaged pages by checking
468 * (present_pages - managed_pages). And managed_pages should be used
469 * by page allocator and vm scanner to calculate all kinds of watermarks
470 * and thresholds.
471 *
472 * Locking rules:
473 *
474 * zone_start_pfn and spanned_pages are protected by span_seqlock.
475 * It is a seqlock because it has to be read outside of zone->lock,
476 * and it is done in the main allocator path. But, it is written
477 * quite infrequently.
478 *
479 * The span_seq lock is declared along with zone->lock because it is
bdc8cb98
DH
480 * frequently read in proximity to zone->lock. It's good to
481 * give them a chance of being in the same cacheline.
9feedc9d 482 *
c3d5f5f0
JL
483 * Write access to present_pages at runtime should be protected by
484 * lock_memory_hotplug()/unlock_memory_hotplug(). Any reader who can't
485 * tolerant drift of present_pages should hold memory hotplug lock to
486 * get a stable value.
487 *
488 * Read access to managed_pages should be safe because it's unsigned
489 * long. Write access to zone->managed_pages and totalram_pages are
490 * protected by managed_page_count_lock at runtime. Idealy only
491 * adjust_managed_page_count() should be used instead of directly
492 * touching zone->managed_pages and totalram_pages.
bdc8cb98 493 */
9feedc9d
JL
494 unsigned long spanned_pages;
495 unsigned long present_pages;
496 unsigned long managed_pages;
1da177e4 497
943dca1a
YI
498 /*
499 * Number of MIGRATE_RESEVE page block. To maintain for just
500 * optimization. Protected by zone->lock.
501 */
502 int nr_migrate_reserve_block;
503
1da177e4
LT
504 /*
505 * rarely used fields:
506 */
15ad7cdc 507 const char *name;
22fc6ecc 508} ____cacheline_internodealigned_in_smp;
1da177e4 509
e815af95 510typedef enum {
e815af95 511 ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */
098d7f12 512 ZONE_OOM_LOCKED, /* zone is in OOM killer zonelist */
0e093d99
MG
513 ZONE_CONGESTED, /* zone has many dirty pages backed by
514 * a congested BDI
515 */
d43006d5
MG
516 ZONE_TAIL_LRU_DIRTY, /* reclaim scanning has recently found
517 * many dirty file pages at the tail
518 * of the LRU.
519 */
283aba9f
MG
520 ZONE_WRITEBACK, /* reclaim scanning has recently found
521 * many pages under writeback
522 */
e815af95
DR
523} zone_flags_t;
524
525static inline void zone_set_flag(struct zone *zone, zone_flags_t flag)
526{
527 set_bit(flag, &zone->flags);
528}
d773ed6b
DR
529
530static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag)
531{
532 return test_and_set_bit(flag, &zone->flags);
533}
534
e815af95
DR
535static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag)
536{
537 clear_bit(flag, &zone->flags);
538}
539
0e093d99
MG
540static inline int zone_is_reclaim_congested(const struct zone *zone)
541{
542 return test_bit(ZONE_CONGESTED, &zone->flags);
543}
544
d43006d5
MG
545static inline int zone_is_reclaim_dirty(const struct zone *zone)
546{
547 return test_bit(ZONE_TAIL_LRU_DIRTY, &zone->flags);
548}
549
283aba9f
MG
550static inline int zone_is_reclaim_writeback(const struct zone *zone)
551{
552 return test_bit(ZONE_WRITEBACK, &zone->flags);
553}
554
e815af95
DR
555static inline int zone_is_reclaim_locked(const struct zone *zone)
556{
557 return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
558}
d773ed6b 559
098d7f12
DR
560static inline int zone_is_oom_locked(const struct zone *zone)
561{
562 return test_bit(ZONE_OOM_LOCKED, &zone->flags);
563}
e815af95 564
f9228b20 565static inline unsigned long zone_end_pfn(const struct zone *zone)
108bcc96
CS
566{
567 return zone->zone_start_pfn + zone->spanned_pages;
568}
569
570static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
571{
572 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
573}
574
2a6e3ebe
CS
575static inline bool zone_is_initialized(struct zone *zone)
576{
577 return !!zone->wait_table;
578}
579
580static inline bool zone_is_empty(struct zone *zone)
581{
582 return zone->spanned_pages == 0;
583}
584
1da177e4
LT
585/*
586 * The "priority" of VM scanning is how much of the queues we will scan in one
587 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
588 * queues ("queue_length >> 12") during an aging round.
589 */
590#define DEF_PRIORITY 12
591
9276b1bc
PJ
592/* Maximum number of zones on a zonelist */
593#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
594
595#ifdef CONFIG_NUMA
523b9458
CL
596
597/*
25a64ec1 598 * The NUMA zonelists are doubled because we need zonelists that restrict the
e97ca8e5 599 * allocations to a single node for __GFP_THISNODE.
523b9458 600 *
54a6eb5c 601 * [0] : Zonelist with fallback
e97ca8e5 602 * [1] : No fallback (__GFP_THISNODE)
523b9458 603 */
54a6eb5c 604#define MAX_ZONELISTS 2
523b9458
CL
605
606
9276b1bc
PJ
607/*
608 * We cache key information from each zonelist for smaller cache
609 * footprint when scanning for free pages in get_page_from_freelist().
610 *
611 * 1) The BITMAP fullzones tracks which zones in a zonelist have come
612 * up short of free memory since the last time (last_fullzone_zap)
613 * we zero'd fullzones.
614 * 2) The array z_to_n[] maps each zone in the zonelist to its node
615 * id, so that we can efficiently evaluate whether that node is
616 * set in the current tasks mems_allowed.
617 *
618 * Both fullzones and z_to_n[] are one-to-one with the zonelist,
619 * indexed by a zones offset in the zonelist zones[] array.
620 *
621 * The get_page_from_freelist() routine does two scans. During the
622 * first scan, we skip zones whose corresponding bit in 'fullzones'
623 * is set or whose corresponding node in current->mems_allowed (which
624 * comes from cpusets) is not set. During the second scan, we bypass
625 * this zonelist_cache, to ensure we look methodically at each zone.
626 *
627 * Once per second, we zero out (zap) fullzones, forcing us to
628 * reconsider nodes that might have regained more free memory.
629 * The field last_full_zap is the time we last zapped fullzones.
630 *
631 * This mechanism reduces the amount of time we waste repeatedly
632 * reexaming zones for free memory when they just came up low on
633 * memory momentarilly ago.
634 *
635 * The zonelist_cache struct members logically belong in struct
636 * zonelist. However, the mempolicy zonelists constructed for
637 * MPOL_BIND are intentionally variable length (and usually much
638 * shorter). A general purpose mechanism for handling structs with
639 * multiple variable length members is more mechanism than we want
640 * here. We resort to some special case hackery instead.
641 *
642 * The MPOL_BIND zonelists don't need this zonelist_cache (in good
643 * part because they are shorter), so we put the fixed length stuff
644 * at the front of the zonelist struct, ending in a variable length
645 * zones[], as is needed by MPOL_BIND.
646 *
647 * Then we put the optional zonelist cache on the end of the zonelist
648 * struct. This optional stuff is found by a 'zlcache_ptr' pointer in
649 * the fixed length portion at the front of the struct. This pointer
650 * both enables us to find the zonelist cache, and in the case of
651 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
652 * to know that the zonelist cache is not there.
653 *
654 * The end result is that struct zonelists come in two flavors:
655 * 1) The full, fixed length version, shown below, and
656 * 2) The custom zonelists for MPOL_BIND.
657 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
658 *
659 * Even though there may be multiple CPU cores on a node modifying
660 * fullzones or last_full_zap in the same zonelist_cache at the same
661 * time, we don't lock it. This is just hint data - if it is wrong now
662 * and then, the allocator will still function, perhaps a bit slower.
663 */
664
665
666struct zonelist_cache {
9276b1bc 667 unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */
7253f4ef 668 DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */
9276b1bc
PJ
669 unsigned long last_full_zap; /* when last zap'd (jiffies) */
670};
671#else
54a6eb5c 672#define MAX_ZONELISTS 1
9276b1bc
PJ
673struct zonelist_cache;
674#endif
675
dd1a239f
MG
676/*
677 * This struct contains information about a zone in a zonelist. It is stored
678 * here to avoid dereferences into large structures and lookups of tables
679 */
680struct zoneref {
681 struct zone *zone; /* Pointer to actual zone */
682 int zone_idx; /* zone_idx(zoneref->zone) */
683};
684
1da177e4
LT
685/*
686 * One allocation request operates on a zonelist. A zonelist
687 * is a list of zones, the first one is the 'goal' of the
688 * allocation, the other zones are fallback zones, in decreasing
689 * priority.
690 *
9276b1bc
PJ
691 * If zlcache_ptr is not NULL, then it is just the address of zlcache,
692 * as explained above. If zlcache_ptr is NULL, there is no zlcache.
dd1a239f
MG
693 * *
694 * To speed the reading of the zonelist, the zonerefs contain the zone index
695 * of the entry being read. Helper functions to access information given
696 * a struct zoneref are
697 *
698 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
699 * zonelist_zone_idx() - Return the index of the zone for an entry
700 * zonelist_node_idx() - Return the index of the node for an entry
1da177e4
LT
701 */
702struct zonelist {
9276b1bc 703 struct zonelist_cache *zlcache_ptr; // NULL or &zlcache
dd1a239f 704 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
9276b1bc
PJ
705#ifdef CONFIG_NUMA
706 struct zonelist_cache zlcache; // optional ...
707#endif
1da177e4
LT
708};
709
0ee332c1 710#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d
MG
711struct node_active_region {
712 unsigned long start_pfn;
713 unsigned long end_pfn;
714 int nid;
715};
0ee332c1 716#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1da177e4 717
5b99cd0e
HC
718#ifndef CONFIG_DISCONTIGMEM
719/* The array of struct pages - for discontigmem use pgdat->lmem_map */
720extern struct page *mem_map;
721#endif
722
1da177e4
LT
723/*
724 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
725 * (mostly NUMA machines?) to denote a higher-level memory zone than the
726 * zone denotes.
727 *
728 * On NUMA machines, each NUMA node would have a pg_data_t to describe
729 * it's memory layout.
730 *
731 * Memory statistics and page replacement data structures are maintained on a
732 * per-zone basis.
733 */
734struct bootmem_data;
735typedef struct pglist_data {
736 struct zone node_zones[MAX_NR_ZONES];
523b9458 737 struct zonelist node_zonelists[MAX_ZONELISTS];
1da177e4 738 int nr_zones;
52d4b9ac 739#ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
1da177e4 740 struct page *node_mem_map;
c255a458 741#ifdef CONFIG_MEMCG
52d4b9ac
KH
742 struct page_cgroup *node_page_cgroup;
743#endif
d41dee36 744#endif
08677214 745#ifndef CONFIG_NO_BOOTMEM
1da177e4 746 struct bootmem_data *bdata;
08677214 747#endif
208d54e5
DH
748#ifdef CONFIG_MEMORY_HOTPLUG
749 /*
750 * Must be held any time you expect node_start_pfn, node_present_pages
751 * or node_spanned_pages stay constant. Holding this will also
752 * guarantee that any pfn_valid() stays that way.
753 *
114d4b79
CS
754 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
755 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG.
756 *
72c3b51b 757 * Nests above zone->lock and zone->span_seqlock
208d54e5
DH
758 */
759 spinlock_t node_size_lock;
760#endif
1da177e4
LT
761 unsigned long node_start_pfn;
762 unsigned long node_present_pages; /* total number of physical pages */
763 unsigned long node_spanned_pages; /* total size of physical page
764 range, including holes */
765 int node_id;
1da177e4 766 wait_queue_head_t kswapd_wait;
5515061d 767 wait_queue_head_t pfmemalloc_wait;
d8adde17 768 struct task_struct *kswapd; /* Protected by lock_memory_hotplug() */
1da177e4 769 int kswapd_max_order;
99504748 770 enum zone_type classzone_idx;
8177a420 771#ifdef CONFIG_NUMA_BALANCING
1c5e9c27 772 /* Lock serializing the migrate rate limiting window */
8177a420
AA
773 spinlock_t numabalancing_migrate_lock;
774
775 /* Rate limiting time interval */
776 unsigned long numabalancing_migrate_next_window;
777
778 /* Number of pages migrated during the rate limiting time interval */
779 unsigned long numabalancing_migrate_nr_pages;
780#endif
1da177e4
LT
781} pg_data_t;
782
783#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
784#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
d41dee36 785#ifdef CONFIG_FLAT_NODE_MEM_MAP
408fde81 786#define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
d41dee36
AW
787#else
788#define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
789#endif
408fde81 790#define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
1da177e4 791
c6830c22 792#define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn)
da3649e1 793#define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
c6830c22 794
da3649e1
CS
795static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
796{
797 return pgdat->node_start_pfn + pgdat->node_spanned_pages;
798}
799
800static inline bool pgdat_is_empty(pg_data_t *pgdat)
801{
802 return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
803}
c6830c22 804
208d54e5
DH
805#include <linux/memory_hotplug.h>
806
4eaf3f64 807extern struct mutex zonelists_mutex;
9adb62a5 808void build_all_zonelists(pg_data_t *pgdat, struct zone *zone);
99504748 809void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx);
88f5acf8
MG
810bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
811 int classzone_idx, int alloc_flags);
812bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
7fb1d9fc 813 int classzone_idx, int alloc_flags);
a2f3aa02
DH
814enum memmap_context {
815 MEMMAP_EARLY,
816 MEMMAP_HOTPLUG,
817};
718127cc 818extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
a2f3aa02
DH
819 unsigned long size,
820 enum memmap_context context);
718127cc 821
bea8c150 822extern void lruvec_init(struct lruvec *lruvec);
7f5e86c2
KK
823
824static inline struct zone *lruvec_zone(struct lruvec *lruvec)
825{
c255a458 826#ifdef CONFIG_MEMCG
7f5e86c2
KK
827 return lruvec->zone;
828#else
829 return container_of(lruvec, struct zone, lruvec);
830#endif
831}
832
1da177e4
LT
833#ifdef CONFIG_HAVE_MEMORY_PRESENT
834void memory_present(int nid, unsigned long start, unsigned long end);
835#else
836static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
837#endif
838
7aac7898
LS
839#ifdef CONFIG_HAVE_MEMORYLESS_NODES
840int local_memory_node(int node_id);
841#else
842static inline int local_memory_node(int node_id) { return node_id; };
843#endif
844
1da177e4
LT
845#ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
846unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
847#endif
848
849/*
850 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
851 */
852#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
853
f3fe6512
CK
854static inline int populated_zone(struct zone *zone)
855{
856 return (!!zone->present_pages);
857}
858
2a1e274a
MG
859extern int movable_zone;
860
861static inline int zone_movable_is_highmem(void)
862{
fe03025d 863#if defined(CONFIG_HIGHMEM) && defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
2a1e274a
MG
864 return movable_zone == ZONE_HIGHMEM;
865#else
866 return 0;
867#endif
868}
869
2f1b6248 870static inline int is_highmem_idx(enum zone_type idx)
1da177e4 871{
e53ef38d 872#ifdef CONFIG_HIGHMEM
2a1e274a
MG
873 return (idx == ZONE_HIGHMEM ||
874 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
e53ef38d
CL
875#else
876 return 0;
877#endif
1da177e4
LT
878}
879
1da177e4
LT
880/**
881 * is_highmem - helper function to quickly check if a struct zone is a
882 * highmem zone or not. This is an attempt to keep references
883 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
884 * @zone - pointer to struct zone variable
885 */
886static inline int is_highmem(struct zone *zone)
887{
e53ef38d 888#ifdef CONFIG_HIGHMEM
ddc81ed2
HH
889 int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones;
890 return zone_off == ZONE_HIGHMEM * sizeof(*zone) ||
891 (zone_off == ZONE_MOVABLE * sizeof(*zone) &&
892 zone_movable_is_highmem());
e53ef38d
CL
893#else
894 return 0;
895#endif
1da177e4
LT
896}
897
1da177e4
LT
898/* These two functions are used to setup the per zone pages min values */
899struct ctl_table;
8d65af78 900int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
1da177e4
LT
901 void __user *, size_t *, loff_t *);
902extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
8d65af78 903int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
1da177e4 904 void __user *, size_t *, loff_t *);
8d65af78 905int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
8ad4b1fb 906 void __user *, size_t *, loff_t *);
9614634f 907int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
8d65af78 908 void __user *, size_t *, loff_t *);
0ff38490 909int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
8d65af78 910 void __user *, size_t *, loff_t *);
1da177e4 911
f0c0b2b8 912extern int numa_zonelist_order_handler(struct ctl_table *, int,
8d65af78 913 void __user *, size_t *, loff_t *);
f0c0b2b8
KH
914extern char numa_zonelist_order[];
915#define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */
916
93b7504e 917#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
918
919extern struct pglist_data contig_page_data;
920#define NODE_DATA(nid) (&contig_page_data)
921#define NODE_MEM_MAP(nid) mem_map
1da177e4 922
93b7504e 923#else /* CONFIG_NEED_MULTIPLE_NODES */
1da177e4
LT
924
925#include <asm/mmzone.h>
926
93b7504e 927#endif /* !CONFIG_NEED_MULTIPLE_NODES */
348f8b6c 928
95144c78
KH
929extern struct pglist_data *first_online_pgdat(void);
930extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
931extern struct zone *next_zone(struct zone *zone);
8357f869
KH
932
933/**
12d15f0d 934 * for_each_online_pgdat - helper macro to iterate over all online nodes
8357f869
KH
935 * @pgdat - pointer to a pg_data_t variable
936 */
937#define for_each_online_pgdat(pgdat) \
938 for (pgdat = first_online_pgdat(); \
939 pgdat; \
940 pgdat = next_online_pgdat(pgdat))
8357f869
KH
941/**
942 * for_each_zone - helper macro to iterate over all memory zones
943 * @zone - pointer to struct zone variable
944 *
945 * The user only needs to declare the zone variable, for_each_zone
946 * fills it in.
947 */
948#define for_each_zone(zone) \
949 for (zone = (first_online_pgdat())->node_zones; \
950 zone; \
951 zone = next_zone(zone))
952
ee99c71c
KM
953#define for_each_populated_zone(zone) \
954 for (zone = (first_online_pgdat())->node_zones; \
955 zone; \
956 zone = next_zone(zone)) \
957 if (!populated_zone(zone)) \
958 ; /* do nothing */ \
959 else
960
dd1a239f
MG
961static inline struct zone *zonelist_zone(struct zoneref *zoneref)
962{
963 return zoneref->zone;
964}
965
966static inline int zonelist_zone_idx(struct zoneref *zoneref)
967{
968 return zoneref->zone_idx;
969}
970
971static inline int zonelist_node_idx(struct zoneref *zoneref)
972{
973#ifdef CONFIG_NUMA
974 /* zone_to_nid not available in this context */
975 return zoneref->zone->node;
976#else
977 return 0;
978#endif /* CONFIG_NUMA */
979}
980
19770b32
MG
981/**
982 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
983 * @z - The cursor used as a starting point for the search
984 * @highest_zoneidx - The zone index of the highest zone to return
985 * @nodes - An optional nodemask to filter the zonelist with
986 * @zone - The first suitable zone found is returned via this parameter
987 *
988 * This function returns the next zone at or below a given zone index that is
989 * within the allowed nodemask using a cursor as the starting point for the
5bead2a0
MG
990 * search. The zoneref returned is a cursor that represents the current zone
991 * being examined. It should be advanced by one before calling
992 * next_zones_zonelist again.
19770b32
MG
993 */
994struct zoneref *next_zones_zonelist(struct zoneref *z,
995 enum zone_type highest_zoneidx,
996 nodemask_t *nodes,
997 struct zone **zone);
dd1a239f 998
19770b32
MG
999/**
1000 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
1001 * @zonelist - The zonelist to search for a suitable zone
1002 * @highest_zoneidx - The zone index of the highest zone to return
1003 * @nodes - An optional nodemask to filter the zonelist with
1004 * @zone - The first suitable zone found is returned via this parameter
1005 *
1006 * This function returns the first zone at or below a given zone index that is
1007 * within the allowed nodemask. The zoneref returned is a cursor that can be
5bead2a0
MG
1008 * used to iterate the zonelist with next_zones_zonelist by advancing it by
1009 * one before calling.
19770b32 1010 */
dd1a239f 1011static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
19770b32
MG
1012 enum zone_type highest_zoneidx,
1013 nodemask_t *nodes,
1014 struct zone **zone)
54a6eb5c 1015{
19770b32
MG
1016 return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes,
1017 zone);
54a6eb5c
MG
1018}
1019
19770b32
MG
1020/**
1021 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1022 * @zone - The current zone in the iterator
1023 * @z - The current pointer within zonelist->zones being iterated
1024 * @zlist - The zonelist being iterated
1025 * @highidx - The zone index of the highest zone to return
1026 * @nodemask - Nodemask allowed by the allocator
1027 *
1028 * This iterator iterates though all zones at or below a given zone index and
1029 * within a given nodemask
1030 */
1031#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1032 for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \
1033 zone; \
5bead2a0 1034 z = next_zones_zonelist(++z, highidx, nodemask, &zone)) \
54a6eb5c
MG
1035
1036/**
1037 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1038 * @zone - The current zone in the iterator
1039 * @z - The current pointer within zonelist->zones being iterated
1040 * @zlist - The zonelist being iterated
1041 * @highidx - The zone index of the highest zone to return
1042 *
1043 * This iterator iterates though all zones at or below a given zone index.
1044 */
1045#define for_each_zone_zonelist(zone, z, zlist, highidx) \
19770b32 1046 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
54a6eb5c 1047
d41dee36
AW
1048#ifdef CONFIG_SPARSEMEM
1049#include <asm/sparsemem.h>
1050#endif
1051
c713216d 1052#if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
0ee332c1 1053 !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
b4544568
AM
1054static inline unsigned long early_pfn_to_nid(unsigned long pfn)
1055{
1056 return 0;
1057}
b159d43f
AW
1058#endif
1059
2bdaf115
AW
1060#ifdef CONFIG_FLATMEM
1061#define pfn_to_nid(pfn) (0)
1062#endif
1063
d41dee36
AW
1064#ifdef CONFIG_SPARSEMEM
1065
1066/*
1067 * SECTION_SHIFT #bits space required to store a section #
1068 *
1069 * PA_SECTION_SHIFT physical address to/from section number
1070 * PFN_SECTION_SHIFT pfn to/from section number
1071 */
d41dee36
AW
1072#define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
1073#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
1074
1075#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
1076
1077#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
1078#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
1079
835c134e 1080#define SECTION_BLOCKFLAGS_BITS \
d9c23400 1081 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
835c134e 1082
d41dee36
AW
1083#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1084#error Allocator MAX_ORDER exceeds SECTION_SIZE
1085#endif
1086
e3c40f37
DK
1087#define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
1088#define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
1089
a539f353
DK
1090#define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1091#define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
1092
d41dee36 1093struct page;
52d4b9ac 1094struct page_cgroup;
d41dee36 1095struct mem_section {
29751f69
AW
1096 /*
1097 * This is, logically, a pointer to an array of struct
1098 * pages. However, it is stored with some other magic.
1099 * (see sparse.c::sparse_init_one_section())
1100 *
30c253e6
AW
1101 * Additionally during early boot we encode node id of
1102 * the location of the section here to guide allocation.
1103 * (see sparse.c::memory_present())
1104 *
29751f69
AW
1105 * Making it a UL at least makes someone do a cast
1106 * before using it wrong.
1107 */
1108 unsigned long section_mem_map;
5c0e3066
MG
1109
1110 /* See declaration of similar field in struct zone */
1111 unsigned long *pageblock_flags;
c255a458 1112#ifdef CONFIG_MEMCG
52d4b9ac
KH
1113 /*
1114 * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use
1115 * section. (see memcontrol.h/page_cgroup.h about this.)
1116 */
1117 struct page_cgroup *page_cgroup;
1118 unsigned long pad;
1119#endif
55878e88
CS
1120 /*
1121 * WARNING: mem_section must be a power-of-2 in size for the
1122 * calculation and use of SECTION_ROOT_MASK to make sense.
1123 */
d41dee36
AW
1124};
1125
3e347261
BP
1126#ifdef CONFIG_SPARSEMEM_EXTREME
1127#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
1128#else
1129#define SECTIONS_PER_ROOT 1
1130#endif
802f192e 1131
3e347261 1132#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
0faa5638 1133#define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
3e347261 1134#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
802f192e 1135
3e347261
BP
1136#ifdef CONFIG_SPARSEMEM_EXTREME
1137extern struct mem_section *mem_section[NR_SECTION_ROOTS];
802f192e 1138#else
3e347261
BP
1139extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1140#endif
d41dee36 1141
29751f69
AW
1142static inline struct mem_section *__nr_to_section(unsigned long nr)
1143{
3e347261
BP
1144 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1145 return NULL;
1146 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
29751f69 1147}
4ca644d9 1148extern int __section_nr(struct mem_section* ms);
04753278 1149extern unsigned long usemap_size(void);
29751f69
AW
1150
1151/*
1152 * We use the lower bits of the mem_map pointer to store
1153 * a little bit of information. There should be at least
1154 * 3 bits here due to 32-bit alignment.
1155 */
1156#define SECTION_MARKED_PRESENT (1UL<<0)
1157#define SECTION_HAS_MEM_MAP (1UL<<1)
1158#define SECTION_MAP_LAST_BIT (1UL<<2)
1159#define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
30c253e6 1160#define SECTION_NID_SHIFT 2
29751f69
AW
1161
1162static inline struct page *__section_mem_map_addr(struct mem_section *section)
1163{
1164 unsigned long map = section->section_mem_map;
1165 map &= SECTION_MAP_MASK;
1166 return (struct page *)map;
1167}
1168
540557b9 1169static inline int present_section(struct mem_section *section)
29751f69 1170{
802f192e 1171 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
29751f69
AW
1172}
1173
540557b9
AW
1174static inline int present_section_nr(unsigned long nr)
1175{
1176 return present_section(__nr_to_section(nr));
1177}
1178
1179static inline int valid_section(struct mem_section *section)
29751f69 1180{
802f192e 1181 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
29751f69
AW
1182}
1183
1184static inline int valid_section_nr(unsigned long nr)
1185{
1186 return valid_section(__nr_to_section(nr));
1187}
1188
d41dee36
AW
1189static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1190{
29751f69 1191 return __nr_to_section(pfn_to_section_nr(pfn));
d41dee36
AW
1192}
1193
7b7bf499 1194#ifndef CONFIG_HAVE_ARCH_PFN_VALID
d41dee36
AW
1195static inline int pfn_valid(unsigned long pfn)
1196{
1197 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1198 return 0;
29751f69 1199 return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
d41dee36 1200}
7b7bf499 1201#endif
d41dee36 1202
540557b9
AW
1203static inline int pfn_present(unsigned long pfn)
1204{
1205 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1206 return 0;
1207 return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1208}
1209
d41dee36
AW
1210/*
1211 * These are _only_ used during initialisation, therefore they
1212 * can use __initdata ... They could have names to indicate
1213 * this restriction.
1214 */
1215#ifdef CONFIG_NUMA
161599ff
AW
1216#define pfn_to_nid(pfn) \
1217({ \
1218 unsigned long __pfn_to_nid_pfn = (pfn); \
1219 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
1220})
2bdaf115
AW
1221#else
1222#define pfn_to_nid(pfn) (0)
d41dee36
AW
1223#endif
1224
d41dee36
AW
1225#define early_pfn_valid(pfn) pfn_valid(pfn)
1226void sparse_init(void);
1227#else
1228#define sparse_init() do {} while (0)
28ae55c9 1229#define sparse_index_init(_sec, _nid) do {} while (0)
d41dee36
AW
1230#endif /* CONFIG_SPARSEMEM */
1231
75167957 1232#ifdef CONFIG_NODES_SPAN_OTHER_NODES
cc2559bc 1233bool early_pfn_in_nid(unsigned long pfn, int nid);
75167957
AW
1234#else
1235#define early_pfn_in_nid(pfn, nid) (1)
1236#endif
1237
d41dee36
AW
1238#ifndef early_pfn_valid
1239#define early_pfn_valid(pfn) (1)
1240#endif
1241
1242void memory_present(int nid, unsigned long start, unsigned long end);
1243unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
1244
14e07298
AW
1245/*
1246 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1247 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1248 * pfn_valid_within() should be used in this case; we optimise this away
1249 * when we have no holes within a MAX_ORDER_NR_PAGES block.
1250 */
1251#ifdef CONFIG_HOLES_IN_ZONE
1252#define pfn_valid_within(pfn) pfn_valid(pfn)
1253#else
1254#define pfn_valid_within(pfn) (1)
1255#endif
1256
eb33575c
MG
1257#ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1258/*
1259 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1260 * associated with it or not. In FLATMEM, it is expected that holes always
1261 * have valid memmap as long as there is valid PFNs either side of the hole.
1262 * In SPARSEMEM, it is assumed that a valid section has a memmap for the
1263 * entire section.
1264 *
1265 * However, an ARM, and maybe other embedded architectures in the future
1266 * free memmap backing holes to save memory on the assumption the memmap is
1267 * never used. The page_zone linkages are then broken even though pfn_valid()
1268 * returns true. A walker of the full memmap must then do this additional
1269 * check to ensure the memmap they are looking at is sane by making sure
1270 * the zone and PFN linkages are still valid. This is expensive, but walkers
1271 * of the full memmap are extremely rare.
1272 */
1273int memmap_valid_within(unsigned long pfn,
1274 struct page *page, struct zone *zone);
1275#else
1276static inline int memmap_valid_within(unsigned long pfn,
1277 struct page *page, struct zone *zone)
1278{
1279 return 1;
1280}
1281#endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1282
97965478 1283#endif /* !__GENERATING_BOUNDS.H */
1da177e4 1284#endif /* !__ASSEMBLY__ */
1da177e4 1285#endif /* _LINUX_MMZONE_H */
This page took 1.561569 seconds and 5 git commands to generate.