truncate: handle file thp
[deliverable/linux.git] / include / linux / mmzone.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MMZONE_H
2#define _LINUX_MMZONE_H
3
1da177e4 4#ifndef __ASSEMBLY__
97965478 5#ifndef __GENERATING_BOUNDS_H
1da177e4 6
1da177e4
LT
7#include <linux/spinlock.h>
8#include <linux/list.h>
9#include <linux/wait.h>
e815af95 10#include <linux/bitops.h>
1da177e4
LT
11#include <linux/cache.h>
12#include <linux/threads.h>
13#include <linux/numa.h>
14#include <linux/init.h>
bdc8cb98 15#include <linux/seqlock.h>
8357f869 16#include <linux/nodemask.h>
835c134e 17#include <linux/pageblock-flags.h>
bbeae5b0 18#include <linux/page-flags-layout.h>
60063497 19#include <linux/atomic.h>
93ff66bf 20#include <asm/page.h>
1da177e4
LT
21
22/* Free memory management - zoned buddy allocator. */
23#ifndef CONFIG_FORCE_MAX_ZONEORDER
24#define MAX_ORDER 11
25#else
26#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
27#endif
e984bb43 28#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
1da177e4 29
5ad333eb
AW
30/*
31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
32 * costly to service. That is between allocation orders which should
35fca53e 33 * coalesce naturally under reasonable reclaim pressure and those which
5ad333eb
AW
34 * will not.
35 */
36#define PAGE_ALLOC_COSTLY_ORDER 3
37
47118af0
MN
38enum {
39 MIGRATE_UNMOVABLE,
47118af0 40 MIGRATE_MOVABLE,
016c13da 41 MIGRATE_RECLAIMABLE,
0aaa29a5
MG
42 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */
43 MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
47118af0
MN
44#ifdef CONFIG_CMA
45 /*
46 * MIGRATE_CMA migration type is designed to mimic the way
47 * ZONE_MOVABLE works. Only movable pages can be allocated
48 * from MIGRATE_CMA pageblocks and page allocator never
49 * implicitly change migration type of MIGRATE_CMA pageblock.
50 *
51 * The way to use it is to change migratetype of a range of
52 * pageblocks to MIGRATE_CMA which can be done by
53 * __free_pageblock_cma() function. What is important though
54 * is that a range of pageblocks must be aligned to
55 * MAX_ORDER_NR_PAGES should biggest page be bigger then
56 * a single pageblock.
57 */
58 MIGRATE_CMA,
59#endif
194159fb 60#ifdef CONFIG_MEMORY_ISOLATION
47118af0 61 MIGRATE_ISOLATE, /* can't allocate from here */
194159fb 62#endif
47118af0
MN
63 MIGRATE_TYPES
64};
65
60f30350
VB
66/* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
67extern char * const migratetype_names[MIGRATE_TYPES];
68
47118af0
MN
69#ifdef CONFIG_CMA
70# define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
71#else
72# define is_migrate_cma(migratetype) false
73#endif
b2a0ac88
MG
74
75#define for_each_migratetype_order(order, type) \
76 for (order = 0; order < MAX_ORDER; order++) \
77 for (type = 0; type < MIGRATE_TYPES; type++)
78
467c996c
MG
79extern int page_group_by_mobility_disabled;
80
e58469ba
MG
81#define NR_MIGRATETYPE_BITS (PB_migrate_end - PB_migrate + 1)
82#define MIGRATETYPE_MASK ((1UL << NR_MIGRATETYPE_BITS) - 1)
83
dc4b0caf
MG
84#define get_pageblock_migratetype(page) \
85 get_pfnblock_flags_mask(page, page_to_pfn(page), \
86 PB_migrate_end, MIGRATETYPE_MASK)
87
1da177e4 88struct free_area {
b2a0ac88 89 struct list_head free_list[MIGRATE_TYPES];
1da177e4
LT
90 unsigned long nr_free;
91};
92
93struct pglist_data;
94
95/*
96 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
97 * So add a wild amount of padding here to ensure that they fall into separate
98 * cachelines. There are very few zone structures in the machine, so space
99 * consumption is not a concern here.
100 */
101#if defined(CONFIG_SMP)
102struct zone_padding {
103 char x[0];
22fc6ecc 104} ____cacheline_internodealigned_in_smp;
1da177e4
LT
105#define ZONE_PADDING(name) struct zone_padding name;
106#else
107#define ZONE_PADDING(name)
108#endif
109
2244b95a 110enum zone_stat_item {
51ed4491 111 /* First 128 byte cacheline (assuming 64 bit words) */
d23ad423 112 NR_FREE_PAGES,
81c0a2bb 113 NR_ALLOC_BATCH,
b69408e8 114 NR_LRU_BASE,
4f98a2fe
RR
115 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
116 NR_ACTIVE_ANON, /* " " " " " */
117 NR_INACTIVE_FILE, /* " " " " " */
118 NR_ACTIVE_FILE, /* " " " " " */
894bc310 119 NR_UNEVICTABLE, /* " " " " " */
5344b7e6 120 NR_MLOCK, /* mlock()ed pages found and moved off LRU */
f3dbd344
CL
121 NR_ANON_PAGES, /* Mapped anonymous pages */
122 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
65ba55f5 123 only modified from process context */
347ce434 124 NR_FILE_PAGES,
b1e7a8fd 125 NR_FILE_DIRTY,
ce866b34 126 NR_WRITEBACK,
51ed4491
CL
127 NR_SLAB_RECLAIMABLE,
128 NR_SLAB_UNRECLAIMABLE,
129 NR_PAGETABLE, /* used for pagetables */
c6a7f572
KM
130 NR_KERNEL_STACK,
131 /* Second 128 byte cacheline */
fd39fc85 132 NR_UNSTABLE_NFS, /* NFS unstable pages */
d2c5e30c 133 NR_BOUNCE,
e129b5c2 134 NR_VMSCAN_WRITE,
49ea7eb6 135 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */
fc3ba692 136 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
a731286d
KM
137 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
138 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
4b02108a 139 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
ea941f0e
MR
140 NR_DIRTIED, /* page dirtyings since bootup */
141 NR_WRITTEN, /* page writings since bootup */
0d5d823a 142 NR_PAGES_SCANNED, /* pages scanned since last reclaim */
91537fee
MK
143#if IS_ENABLED(CONFIG_ZSMALLOC)
144 NR_ZSPAGES, /* allocated in zsmalloc */
145#endif
ca889e6c
CL
146#ifdef CONFIG_NUMA
147 NUMA_HIT, /* allocated in intended node */
148 NUMA_MISS, /* allocated in non intended node */
149 NUMA_FOREIGN, /* was intended here, hit elsewhere */
150 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
151 NUMA_LOCAL, /* allocation from local node */
152 NUMA_OTHER, /* allocation from other node */
153#endif
a528910e
JW
154 WORKINGSET_REFAULT,
155 WORKINGSET_ACTIVATE,
449dd698 156 WORKINGSET_NODERECLAIM,
79134171 157 NR_ANON_TRANSPARENT_HUGEPAGES,
d1ce749a 158 NR_FREE_CMA_PAGES,
2244b95a
CL
159 NR_VM_ZONE_STAT_ITEMS };
160
4f98a2fe
RR
161/*
162 * We do arithmetic on the LRU lists in various places in the code,
163 * so it is important to keep the active lists LRU_ACTIVE higher in
164 * the array than the corresponding inactive lists, and to keep
165 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
166 *
167 * This has to be kept in sync with the statistics in zone_stat_item
168 * above and the descriptions in vmstat_text in mm/vmstat.c
169 */
170#define LRU_BASE 0
171#define LRU_ACTIVE 1
172#define LRU_FILE 2
173
b69408e8 174enum lru_list {
4f98a2fe
RR
175 LRU_INACTIVE_ANON = LRU_BASE,
176 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
177 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
178 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
894bc310 179 LRU_UNEVICTABLE,
894bc310
LS
180 NR_LRU_LISTS
181};
b69408e8 182
4111304d 183#define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
b69408e8 184
4111304d 185#define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
894bc310 186
4111304d 187static inline int is_file_lru(enum lru_list lru)
4f98a2fe 188{
4111304d 189 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
4f98a2fe
RR
190}
191
4111304d 192static inline int is_active_lru(enum lru_list lru)
b69408e8 193{
4111304d 194 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
b69408e8
CL
195}
196
89abfab1
HD
197struct zone_reclaim_stat {
198 /*
199 * The pageout code in vmscan.c keeps track of how many of the
59f91e5d 200 * mem/swap backed and file backed pages are referenced.
89abfab1
HD
201 * The higher the rotated/scanned ratio, the more valuable
202 * that cache is.
203 *
204 * The anon LRU stats live in [0], file LRU stats in [1]
205 */
206 unsigned long recent_rotated[2];
207 unsigned long recent_scanned[2];
208};
209
6290df54 210struct lruvec {
23047a96
JW
211 struct list_head lists[NR_LRU_LISTS];
212 struct zone_reclaim_stat reclaim_stat;
213 /* Evictions & activations on the inactive file list */
214 atomic_long_t inactive_age;
c255a458 215#ifdef CONFIG_MEMCG
23047a96 216 struct zone *zone;
7f5e86c2 217#endif
6290df54
JW
218};
219
bb2a0de9
KH
220/* Mask used at gathering information at once (see memcontrol.c) */
221#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
222#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
bb2a0de9
KH
223#define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
224
39deaf85 225/* Isolate clean file */
f3fd4a61 226#define ISOLATE_CLEAN ((__force isolate_mode_t)0x1)
f80c0673 227/* Isolate unmapped file */
f3fd4a61 228#define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2)
c8244935 229/* Isolate for asynchronous migration */
f3fd4a61 230#define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4)
e46a2879
MK
231/* Isolate unevictable pages */
232#define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8)
4356f21d
MK
233
234/* LRU Isolation modes. */
235typedef unsigned __bitwise__ isolate_mode_t;
236
41858966
MG
237enum zone_watermarks {
238 WMARK_MIN,
239 WMARK_LOW,
240 WMARK_HIGH,
241 NR_WMARK
242};
243
244#define min_wmark_pages(z) (z->watermark[WMARK_MIN])
245#define low_wmark_pages(z) (z->watermark[WMARK_LOW])
246#define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
247
1da177e4
LT
248struct per_cpu_pages {
249 int count; /* number of pages in the list */
1da177e4
LT
250 int high; /* high watermark, emptying needed */
251 int batch; /* chunk size for buddy add/remove */
5f8dcc21
MG
252
253 /* Lists of pages, one per migrate type stored on the pcp-lists */
254 struct list_head lists[MIGRATE_PCPTYPES];
1da177e4
LT
255};
256
257struct per_cpu_pageset {
3dfa5721 258 struct per_cpu_pages pcp;
4037d452
CL
259#ifdef CONFIG_NUMA
260 s8 expire;
261#endif
2244b95a 262#ifdef CONFIG_SMP
df9ecaba 263 s8 stat_threshold;
2244b95a
CL
264 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
265#endif
99dcc3e5 266};
e7c8d5c9 267
97965478
CL
268#endif /* !__GENERATING_BOUNDS.H */
269
2f1b6248 270enum zone_type {
4b51d669 271#ifdef CONFIG_ZONE_DMA
2f1b6248
CL
272 /*
273 * ZONE_DMA is used when there are devices that are not able
274 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
275 * carve out the portion of memory that is needed for these devices.
276 * The range is arch specific.
277 *
278 * Some examples
279 *
280 * Architecture Limit
281 * ---------------------------
282 * parisc, ia64, sparc <4G
283 * s390 <2G
2f1b6248
CL
284 * arm Various
285 * alpha Unlimited or 0-16MB.
286 *
287 * i386, x86_64 and multiple other arches
288 * <16M.
289 */
290 ZONE_DMA,
4b51d669 291#endif
fb0e7942 292#ifdef CONFIG_ZONE_DMA32
2f1b6248
CL
293 /*
294 * x86_64 needs two ZONE_DMAs because it supports devices that are
295 * only able to do DMA to the lower 16M but also 32 bit devices that
296 * can only do DMA areas below 4G.
297 */
298 ZONE_DMA32,
fb0e7942 299#endif
2f1b6248
CL
300 /*
301 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
302 * performed on pages in ZONE_NORMAL if the DMA devices support
303 * transfers to all addressable memory.
304 */
305 ZONE_NORMAL,
e53ef38d 306#ifdef CONFIG_HIGHMEM
2f1b6248
CL
307 /*
308 * A memory area that is only addressable by the kernel through
309 * mapping portions into its own address space. This is for example
310 * used by i386 to allow the kernel to address the memory beyond
311 * 900MB. The kernel will set up special mappings (page
312 * table entries on i386) for each page that the kernel needs to
313 * access.
314 */
315 ZONE_HIGHMEM,
e53ef38d 316#endif
2a1e274a 317 ZONE_MOVABLE,
033fbae9
DW
318#ifdef CONFIG_ZONE_DEVICE
319 ZONE_DEVICE,
320#endif
97965478 321 __MAX_NR_ZONES
033fbae9 322
2f1b6248 323};
1da177e4 324
97965478
CL
325#ifndef __GENERATING_BOUNDS_H
326
1da177e4 327struct zone {
3484b2de 328 /* Read-mostly fields */
41858966
MG
329
330 /* zone watermarks, access with *_wmark_pages(zone) macros */
331 unsigned long watermark[NR_WMARK];
332
0aaa29a5
MG
333 unsigned long nr_reserved_highatomic;
334
1da177e4 335 /*
89903327
AM
336 * We don't know if the memory that we're going to allocate will be
337 * freeable or/and it will be released eventually, so to avoid totally
338 * wasting several GB of ram we must reserve some of the lower zone
339 * memory (otherwise we risk to run OOM on the lower zones despite
340 * there being tons of freeable ram on the higher zones). This array is
341 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
342 * changes.
1da177e4 343 */
3484b2de 344 long lowmem_reserve[MAX_NR_ZONES];
ab8fabd4 345
e7c8d5c9 346#ifdef CONFIG_NUMA
d5f541ed 347 int node;
3484b2de
MG
348#endif
349
9614634f 350 /*
3484b2de
MG
351 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
352 * this zone's LRU. Maintained by the pageout code.
9614634f 353 */
3484b2de
MG
354 unsigned int inactive_ratio;
355
356 struct pglist_data *zone_pgdat;
43cf38eb 357 struct per_cpu_pageset __percpu *pageset;
3484b2de 358
1da177e4 359 /*
a8d01437
JW
360 * This is a per-zone reserve of pages that are not available
361 * to userspace allocations.
1da177e4 362 */
a8d01437 363 unsigned long totalreserve_pages;
1da177e4 364
835c134e
MG
365#ifndef CONFIG_SPARSEMEM
366 /*
d9c23400 367 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
835c134e
MG
368 * In SPARSEMEM, this map is stored in struct mem_section
369 */
370 unsigned long *pageblock_flags;
371#endif /* CONFIG_SPARSEMEM */
372
3484b2de 373#ifdef CONFIG_NUMA
1da177e4 374 /*
3484b2de 375 * zone reclaim becomes active if more unmapped pages exist.
1da177e4 376 */
3484b2de
MG
377 unsigned long min_unmapped_pages;
378 unsigned long min_slab_pages;
379#endif /* CONFIG_NUMA */
1da177e4 380
1da177e4
LT
381 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
382 unsigned long zone_start_pfn;
383
bdc8cb98 384 /*
9feedc9d
JL
385 * spanned_pages is the total pages spanned by the zone, including
386 * holes, which is calculated as:
387 * spanned_pages = zone_end_pfn - zone_start_pfn;
bdc8cb98 388 *
9feedc9d
JL
389 * present_pages is physical pages existing within the zone, which
390 * is calculated as:
8761e31c 391 * present_pages = spanned_pages - absent_pages(pages in holes);
9feedc9d
JL
392 *
393 * managed_pages is present pages managed by the buddy system, which
394 * is calculated as (reserved_pages includes pages allocated by the
395 * bootmem allocator):
396 * managed_pages = present_pages - reserved_pages;
397 *
398 * So present_pages may be used by memory hotplug or memory power
399 * management logic to figure out unmanaged pages by checking
400 * (present_pages - managed_pages). And managed_pages should be used
401 * by page allocator and vm scanner to calculate all kinds of watermarks
402 * and thresholds.
403 *
404 * Locking rules:
405 *
406 * zone_start_pfn and spanned_pages are protected by span_seqlock.
407 * It is a seqlock because it has to be read outside of zone->lock,
408 * and it is done in the main allocator path. But, it is written
409 * quite infrequently.
410 *
411 * The span_seq lock is declared along with zone->lock because it is
bdc8cb98
DH
412 * frequently read in proximity to zone->lock. It's good to
413 * give them a chance of being in the same cacheline.
9feedc9d 414 *
c3d5f5f0 415 * Write access to present_pages at runtime should be protected by
bfc8c901
VD
416 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
417 * present_pages should get_online_mems() to get a stable value.
c3d5f5f0
JL
418 *
419 * Read access to managed_pages should be safe because it's unsigned
420 * long. Write access to zone->managed_pages and totalram_pages are
421 * protected by managed_page_count_lock at runtime. Idealy only
422 * adjust_managed_page_count() should be used instead of directly
423 * touching zone->managed_pages and totalram_pages.
bdc8cb98 424 */
3484b2de 425 unsigned long managed_pages;
9feedc9d
JL
426 unsigned long spanned_pages;
427 unsigned long present_pages;
3484b2de
MG
428
429 const char *name;
1da177e4 430
ad53f92e
JK
431#ifdef CONFIG_MEMORY_ISOLATION
432 /*
433 * Number of isolated pageblock. It is used to solve incorrect
434 * freepage counting problem due to racy retrieving migratetype
435 * of pageblock. Protected by zone->lock.
436 */
437 unsigned long nr_isolate_pageblock;
438#endif
439
3484b2de
MG
440#ifdef CONFIG_MEMORY_HOTPLUG
441 /* see spanned/present_pages for more description */
442 seqlock_t span_seqlock;
443#endif
444
1da177e4 445 /*
3484b2de
MG
446 * wait_table -- the array holding the hash table
447 * wait_table_hash_nr_entries -- the size of the hash table array
448 * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
449 *
450 * The purpose of all these is to keep track of the people
451 * waiting for a page to become available and make them
452 * runnable again when possible. The trouble is that this
453 * consumes a lot of space, especially when so few things
454 * wait on pages at a given time. So instead of using
455 * per-page waitqueues, we use a waitqueue hash table.
456 *
457 * The bucket discipline is to sleep on the same queue when
458 * colliding and wake all in that wait queue when removing.
459 * When something wakes, it must check to be sure its page is
460 * truly available, a la thundering herd. The cost of a
461 * collision is great, but given the expected load of the
462 * table, they should be so rare as to be outweighed by the
463 * benefits from the saved space.
464 *
465 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
466 * primary users of these fields, and in mm/page_alloc.c
467 * free_area_init_core() performs the initialization of them.
1da177e4 468 */
3484b2de
MG
469 wait_queue_head_t *wait_table;
470 unsigned long wait_table_hash_nr_entries;
471 unsigned long wait_table_bits;
472
473 ZONE_PADDING(_pad1_)
3484b2de
MG
474 /* free areas of different sizes */
475 struct free_area free_area[MAX_ORDER];
476
477 /* zone flags, see below */
478 unsigned long flags;
479
a368ab67
MG
480 /* Write-intensive fields used from the page allocator */
481 spinlock_t lock;
482
3484b2de
MG
483 ZONE_PADDING(_pad2_)
484
485 /* Write-intensive fields used by page reclaim */
486
487 /* Fields commonly accessed by the page reclaim scanner */
488 spinlock_t lru_lock;
3484b2de
MG
489 struct lruvec lruvec;
490
3484b2de
MG
491 /*
492 * When free pages are below this point, additional steps are taken
493 * when reading the number of free pages to avoid per-cpu counter
494 * drift allowing watermarks to be breached
495 */
496 unsigned long percpu_drift_mark;
497
498#if defined CONFIG_COMPACTION || defined CONFIG_CMA
499 /* pfn where compaction free scanner should start */
500 unsigned long compact_cached_free_pfn;
501 /* pfn where async and sync compaction migration scanner should start */
502 unsigned long compact_cached_migrate_pfn[2];
503#endif
504
505#ifdef CONFIG_COMPACTION
506 /*
507 * On compaction failure, 1<<compact_defer_shift compactions
508 * are skipped before trying again. The number attempted since
509 * last failure is tracked with compact_considered.
510 */
511 unsigned int compact_considered;
512 unsigned int compact_defer_shift;
513 int compact_order_failed;
514#endif
515
516#if defined CONFIG_COMPACTION || defined CONFIG_CMA
517 /* Set to true when the PG_migrate_skip bits should be cleared */
518 bool compact_blockskip_flush;
519#endif
520
7cf91a98
JK
521 bool contiguous;
522
3484b2de
MG
523 ZONE_PADDING(_pad3_)
524 /* Zone statistics */
525 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
22fc6ecc 526} ____cacheline_internodealigned_in_smp;
1da177e4 527
57054651 528enum zone_flags {
e815af95 529 ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */
0e093d99
MG
530 ZONE_CONGESTED, /* zone has many dirty pages backed by
531 * a congested BDI
532 */
57054651 533 ZONE_DIRTY, /* reclaim scanning has recently found
d43006d5
MG
534 * many dirty file pages at the tail
535 * of the LRU.
536 */
283aba9f
MG
537 ZONE_WRITEBACK, /* reclaim scanning has recently found
538 * many pages under writeback
539 */
4ffeaf35 540 ZONE_FAIR_DEPLETED, /* fair zone policy batch depleted */
57054651 541};
e815af95 542
f9228b20 543static inline unsigned long zone_end_pfn(const struct zone *zone)
108bcc96
CS
544{
545 return zone->zone_start_pfn + zone->spanned_pages;
546}
547
548static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
549{
550 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
551}
552
2a6e3ebe
CS
553static inline bool zone_is_initialized(struct zone *zone)
554{
555 return !!zone->wait_table;
556}
557
558static inline bool zone_is_empty(struct zone *zone)
559{
560 return zone->spanned_pages == 0;
561}
562
1da177e4
LT
563/*
564 * The "priority" of VM scanning is how much of the queues we will scan in one
565 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
566 * queues ("queue_length >> 12") during an aging round.
567 */
568#define DEF_PRIORITY 12
569
9276b1bc
PJ
570/* Maximum number of zones on a zonelist */
571#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
572
c00eb15a
YB
573enum {
574 ZONELIST_FALLBACK, /* zonelist with fallback */
9276b1bc 575#ifdef CONFIG_NUMA
c00eb15a
YB
576 /*
577 * The NUMA zonelists are doubled because we need zonelists that
578 * restrict the allocations to a single node for __GFP_THISNODE.
579 */
580 ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */
9276b1bc 581#endif
c00eb15a
YB
582 MAX_ZONELISTS
583};
9276b1bc 584
dd1a239f
MG
585/*
586 * This struct contains information about a zone in a zonelist. It is stored
587 * here to avoid dereferences into large structures and lookups of tables
588 */
589struct zoneref {
590 struct zone *zone; /* Pointer to actual zone */
591 int zone_idx; /* zone_idx(zoneref->zone) */
592};
593
1da177e4
LT
594/*
595 * One allocation request operates on a zonelist. A zonelist
596 * is a list of zones, the first one is the 'goal' of the
597 * allocation, the other zones are fallback zones, in decreasing
598 * priority.
599 *
dd1a239f
MG
600 * To speed the reading of the zonelist, the zonerefs contain the zone index
601 * of the entry being read. Helper functions to access information given
602 * a struct zoneref are
603 *
604 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
605 * zonelist_zone_idx() - Return the index of the zone for an entry
606 * zonelist_node_idx() - Return the index of the node for an entry
1da177e4
LT
607 */
608struct zonelist {
dd1a239f 609 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
1da177e4
LT
610};
611
5b99cd0e
HC
612#ifndef CONFIG_DISCONTIGMEM
613/* The array of struct pages - for discontigmem use pgdat->lmem_map */
614extern struct page *mem_map;
615#endif
616
1da177e4
LT
617/*
618 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
619 * (mostly NUMA machines?) to denote a higher-level memory zone than the
620 * zone denotes.
621 *
622 * On NUMA machines, each NUMA node would have a pg_data_t to describe
623 * it's memory layout.
624 *
625 * Memory statistics and page replacement data structures are maintained on a
626 * per-zone basis.
627 */
628struct bootmem_data;
629typedef struct pglist_data {
630 struct zone node_zones[MAX_NR_ZONES];
523b9458 631 struct zonelist node_zonelists[MAX_ZONELISTS];
1da177e4 632 int nr_zones;
52d4b9ac 633#ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
1da177e4 634 struct page *node_mem_map;
eefa864b
JK
635#ifdef CONFIG_PAGE_EXTENSION
636 struct page_ext *node_page_ext;
637#endif
d41dee36 638#endif
08677214 639#ifndef CONFIG_NO_BOOTMEM
1da177e4 640 struct bootmem_data *bdata;
08677214 641#endif
208d54e5
DH
642#ifdef CONFIG_MEMORY_HOTPLUG
643 /*
644 * Must be held any time you expect node_start_pfn, node_present_pages
645 * or node_spanned_pages stay constant. Holding this will also
646 * guarantee that any pfn_valid() stays that way.
647 *
114d4b79
CS
648 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
649 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG.
650 *
72c3b51b 651 * Nests above zone->lock and zone->span_seqlock
208d54e5
DH
652 */
653 spinlock_t node_size_lock;
654#endif
1da177e4
LT
655 unsigned long node_start_pfn;
656 unsigned long node_present_pages; /* total number of physical pages */
657 unsigned long node_spanned_pages; /* total size of physical page
658 range, including holes */
659 int node_id;
1da177e4 660 wait_queue_head_t kswapd_wait;
5515061d 661 wait_queue_head_t pfmemalloc_wait;
bfc8c901
VD
662 struct task_struct *kswapd; /* Protected by
663 mem_hotplug_begin/end() */
1da177e4 664 int kswapd_max_order;
99504748 665 enum zone_type classzone_idx;
698b1b30
VB
666#ifdef CONFIG_COMPACTION
667 int kcompactd_max_order;
668 enum zone_type kcompactd_classzone_idx;
669 wait_queue_head_t kcompactd_wait;
670 struct task_struct *kcompactd;
671#endif
8177a420 672#ifdef CONFIG_NUMA_BALANCING
1c5e9c27 673 /* Lock serializing the migrate rate limiting window */
8177a420
AA
674 spinlock_t numabalancing_migrate_lock;
675
676 /* Rate limiting time interval */
677 unsigned long numabalancing_migrate_next_window;
678
679 /* Number of pages migrated during the rate limiting time interval */
680 unsigned long numabalancing_migrate_nr_pages;
681#endif
3a80a7fa
MG
682
683#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
684 /*
685 * If memory initialisation on large machines is deferred then this
686 * is the first PFN that needs to be initialised.
687 */
688 unsigned long first_deferred_pfn;
689#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
a3d0a918
KS
690
691#ifdef CONFIG_TRANSPARENT_HUGEPAGE
692 spinlock_t split_queue_lock;
693 struct list_head split_queue;
694 unsigned long split_queue_len;
695#endif
1da177e4
LT
696} pg_data_t;
697
698#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
699#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
d41dee36 700#ifdef CONFIG_FLAT_NODE_MEM_MAP
408fde81 701#define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
d41dee36
AW
702#else
703#define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
704#endif
408fde81 705#define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
1da177e4 706
c6830c22 707#define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn)
da3649e1 708#define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
c6830c22 709
da3649e1
CS
710static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
711{
712 return pgdat->node_start_pfn + pgdat->node_spanned_pages;
713}
714
715static inline bool pgdat_is_empty(pg_data_t *pgdat)
716{
717 return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
718}
c6830c22 719
033fbae9
DW
720static inline int zone_id(const struct zone *zone)
721{
722 struct pglist_data *pgdat = zone->zone_pgdat;
723
724 return zone - pgdat->node_zones;
725}
726
727#ifdef CONFIG_ZONE_DEVICE
728static inline bool is_dev_zone(const struct zone *zone)
729{
730 return zone_id(zone) == ZONE_DEVICE;
731}
732#else
733static inline bool is_dev_zone(const struct zone *zone)
734{
735 return false;
736}
737#endif
738
208d54e5
DH
739#include <linux/memory_hotplug.h>
740
4eaf3f64 741extern struct mutex zonelists_mutex;
9adb62a5 742void build_all_zonelists(pg_data_t *pgdat, struct zone *zone);
99504748 743void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx);
86a294a8
MH
744bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
745 int classzone_idx, unsigned int alloc_flags,
746 long free_pages);
7aeb09f9 747bool zone_watermark_ok(struct zone *z, unsigned int order,
c603844b
MG
748 unsigned long mark, int classzone_idx,
749 unsigned int alloc_flags);
7aeb09f9 750bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
e2b19197 751 unsigned long mark, int classzone_idx);
a2f3aa02
DH
752enum memmap_context {
753 MEMMAP_EARLY,
754 MEMMAP_HOTPLUG,
755};
718127cc 756extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
b171e409 757 unsigned long size);
718127cc 758
bea8c150 759extern void lruvec_init(struct lruvec *lruvec);
7f5e86c2
KK
760
761static inline struct zone *lruvec_zone(struct lruvec *lruvec)
762{
c255a458 763#ifdef CONFIG_MEMCG
7f5e86c2
KK
764 return lruvec->zone;
765#else
766 return container_of(lruvec, struct zone, lruvec);
767#endif
768}
769
23047a96
JW
770extern unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru);
771
1da177e4
LT
772#ifdef CONFIG_HAVE_MEMORY_PRESENT
773void memory_present(int nid, unsigned long start, unsigned long end);
774#else
775static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
776#endif
777
7aac7898
LS
778#ifdef CONFIG_HAVE_MEMORYLESS_NODES
779int local_memory_node(int node_id);
780#else
781static inline int local_memory_node(int node_id) { return node_id; };
782#endif
783
1da177e4
LT
784#ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
785unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
786#endif
787
788/*
789 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
790 */
791#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
792
f3fe6512
CK
793static inline int populated_zone(struct zone *zone)
794{
795 return (!!zone->present_pages);
796}
797
2a1e274a
MG
798extern int movable_zone;
799
d7e4a2ea 800#ifdef CONFIG_HIGHMEM
2a1e274a
MG
801static inline int zone_movable_is_highmem(void)
802{
d7e4a2ea 803#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
2a1e274a
MG
804 return movable_zone == ZONE_HIGHMEM;
805#else
d7e4a2ea 806 return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM;
2a1e274a
MG
807#endif
808}
d7e4a2ea 809#endif
2a1e274a 810
2f1b6248 811static inline int is_highmem_idx(enum zone_type idx)
1da177e4 812{
e53ef38d 813#ifdef CONFIG_HIGHMEM
2a1e274a
MG
814 return (idx == ZONE_HIGHMEM ||
815 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
e53ef38d
CL
816#else
817 return 0;
818#endif
1da177e4
LT
819}
820
1da177e4
LT
821/**
822 * is_highmem - helper function to quickly check if a struct zone is a
823 * highmem zone or not. This is an attempt to keep references
824 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
825 * @zone - pointer to struct zone variable
826 */
827static inline int is_highmem(struct zone *zone)
828{
e53ef38d 829#ifdef CONFIG_HIGHMEM
29f9cb53 830 return is_highmem_idx(zone_idx(zone));
e53ef38d
CL
831#else
832 return 0;
833#endif
1da177e4
LT
834}
835
1da177e4
LT
836/* These two functions are used to setup the per zone pages min values */
837struct ctl_table;
8d65af78 838int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
1da177e4 839 void __user *, size_t *, loff_t *);
795ae7a0
JW
840int watermark_scale_factor_sysctl_handler(struct ctl_table *, int,
841 void __user *, size_t *, loff_t *);
1da177e4 842extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
8d65af78 843int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
1da177e4 844 void __user *, size_t *, loff_t *);
8d65af78 845int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
8ad4b1fb 846 void __user *, size_t *, loff_t *);
9614634f 847int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
8d65af78 848 void __user *, size_t *, loff_t *);
0ff38490 849int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
8d65af78 850 void __user *, size_t *, loff_t *);
1da177e4 851
f0c0b2b8 852extern int numa_zonelist_order_handler(struct ctl_table *, int,
8d65af78 853 void __user *, size_t *, loff_t *);
f0c0b2b8
KH
854extern char numa_zonelist_order[];
855#define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */
856
93b7504e 857#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
858
859extern struct pglist_data contig_page_data;
860#define NODE_DATA(nid) (&contig_page_data)
861#define NODE_MEM_MAP(nid) mem_map
1da177e4 862
93b7504e 863#else /* CONFIG_NEED_MULTIPLE_NODES */
1da177e4
LT
864
865#include <asm/mmzone.h>
866
93b7504e 867#endif /* !CONFIG_NEED_MULTIPLE_NODES */
348f8b6c 868
95144c78
KH
869extern struct pglist_data *first_online_pgdat(void);
870extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
871extern struct zone *next_zone(struct zone *zone);
8357f869
KH
872
873/**
12d15f0d 874 * for_each_online_pgdat - helper macro to iterate over all online nodes
8357f869
KH
875 * @pgdat - pointer to a pg_data_t variable
876 */
877#define for_each_online_pgdat(pgdat) \
878 for (pgdat = first_online_pgdat(); \
879 pgdat; \
880 pgdat = next_online_pgdat(pgdat))
8357f869
KH
881/**
882 * for_each_zone - helper macro to iterate over all memory zones
883 * @zone - pointer to struct zone variable
884 *
885 * The user only needs to declare the zone variable, for_each_zone
886 * fills it in.
887 */
888#define for_each_zone(zone) \
889 for (zone = (first_online_pgdat())->node_zones; \
890 zone; \
891 zone = next_zone(zone))
892
ee99c71c
KM
893#define for_each_populated_zone(zone) \
894 for (zone = (first_online_pgdat())->node_zones; \
895 zone; \
896 zone = next_zone(zone)) \
897 if (!populated_zone(zone)) \
898 ; /* do nothing */ \
899 else
900
dd1a239f
MG
901static inline struct zone *zonelist_zone(struct zoneref *zoneref)
902{
903 return zoneref->zone;
904}
905
906static inline int zonelist_zone_idx(struct zoneref *zoneref)
907{
908 return zoneref->zone_idx;
909}
910
911static inline int zonelist_node_idx(struct zoneref *zoneref)
912{
913#ifdef CONFIG_NUMA
914 /* zone_to_nid not available in this context */
915 return zoneref->zone->node;
916#else
917 return 0;
918#endif /* CONFIG_NUMA */
919}
920
682a3385
MG
921struct zoneref *__next_zones_zonelist(struct zoneref *z,
922 enum zone_type highest_zoneidx,
923 nodemask_t *nodes);
924
19770b32
MG
925/**
926 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
927 * @z - The cursor used as a starting point for the search
928 * @highest_zoneidx - The zone index of the highest zone to return
929 * @nodes - An optional nodemask to filter the zonelist with
19770b32
MG
930 *
931 * This function returns the next zone at or below a given zone index that is
932 * within the allowed nodemask using a cursor as the starting point for the
5bead2a0
MG
933 * search. The zoneref returned is a cursor that represents the current zone
934 * being examined. It should be advanced by one before calling
935 * next_zones_zonelist again.
19770b32 936 */
682a3385 937static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
19770b32 938 enum zone_type highest_zoneidx,
682a3385
MG
939 nodemask_t *nodes)
940{
941 if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
942 return z;
943 return __next_zones_zonelist(z, highest_zoneidx, nodes);
944}
dd1a239f 945
19770b32
MG
946/**
947 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
948 * @zonelist - The zonelist to search for a suitable zone
949 * @highest_zoneidx - The zone index of the highest zone to return
950 * @nodes - An optional nodemask to filter the zonelist with
951 * @zone - The first suitable zone found is returned via this parameter
952 *
953 * This function returns the first zone at or below a given zone index that is
954 * within the allowed nodemask. The zoneref returned is a cursor that can be
5bead2a0
MG
955 * used to iterate the zonelist with next_zones_zonelist by advancing it by
956 * one before calling.
19770b32 957 */
dd1a239f 958static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
19770b32 959 enum zone_type highest_zoneidx,
c33d6c06 960 nodemask_t *nodes)
54a6eb5c 961{
c33d6c06 962 return next_zones_zonelist(zonelist->_zonerefs,
05891fb0 963 highest_zoneidx, nodes);
54a6eb5c
MG
964}
965
19770b32
MG
966/**
967 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
968 * @zone - The current zone in the iterator
969 * @z - The current pointer within zonelist->zones being iterated
970 * @zlist - The zonelist being iterated
971 * @highidx - The zone index of the highest zone to return
972 * @nodemask - Nodemask allowed by the allocator
973 *
974 * This iterator iterates though all zones at or below a given zone index and
975 * within a given nodemask
976 */
977#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
c33d6c06 978 for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z); \
19770b32 979 zone; \
05891fb0 980 z = next_zones_zonelist(++z, highidx, nodemask), \
c33d6c06
MG
981 zone = zonelist_zone(z))
982
983#define for_next_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
984 for (zone = z->zone; \
985 zone; \
986 z = next_zones_zonelist(++z, highidx, nodemask), \
987 zone = zonelist_zone(z))
988
54a6eb5c
MG
989
990/**
991 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
992 * @zone - The current zone in the iterator
993 * @z - The current pointer within zonelist->zones being iterated
994 * @zlist - The zonelist being iterated
995 * @highidx - The zone index of the highest zone to return
996 *
997 * This iterator iterates though all zones at or below a given zone index.
998 */
999#define for_each_zone_zonelist(zone, z, zlist, highidx) \
19770b32 1000 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
54a6eb5c 1001
d41dee36
AW
1002#ifdef CONFIG_SPARSEMEM
1003#include <asm/sparsemem.h>
1004#endif
1005
c713216d 1006#if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
0ee332c1 1007 !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
b4544568
AM
1008static inline unsigned long early_pfn_to_nid(unsigned long pfn)
1009{
1010 return 0;
1011}
b159d43f
AW
1012#endif
1013
2bdaf115
AW
1014#ifdef CONFIG_FLATMEM
1015#define pfn_to_nid(pfn) (0)
1016#endif
1017
d41dee36
AW
1018#ifdef CONFIG_SPARSEMEM
1019
1020/*
1021 * SECTION_SHIFT #bits space required to store a section #
1022 *
1023 * PA_SECTION_SHIFT physical address to/from section number
1024 * PFN_SECTION_SHIFT pfn to/from section number
1025 */
d41dee36
AW
1026#define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
1027#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
1028
1029#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
1030
1031#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
1032#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
1033
835c134e 1034#define SECTION_BLOCKFLAGS_BITS \
d9c23400 1035 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
835c134e 1036
d41dee36
AW
1037#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1038#error Allocator MAX_ORDER exceeds SECTION_SIZE
1039#endif
1040
e3c40f37
DK
1041#define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
1042#define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
1043
a539f353
DK
1044#define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1045#define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
1046
d41dee36 1047struct page;
eefa864b 1048struct page_ext;
d41dee36 1049struct mem_section {
29751f69
AW
1050 /*
1051 * This is, logically, a pointer to an array of struct
1052 * pages. However, it is stored with some other magic.
1053 * (see sparse.c::sparse_init_one_section())
1054 *
30c253e6
AW
1055 * Additionally during early boot we encode node id of
1056 * the location of the section here to guide allocation.
1057 * (see sparse.c::memory_present())
1058 *
29751f69
AW
1059 * Making it a UL at least makes someone do a cast
1060 * before using it wrong.
1061 */
1062 unsigned long section_mem_map;
5c0e3066
MG
1063
1064 /* See declaration of similar field in struct zone */
1065 unsigned long *pageblock_flags;
eefa864b
JK
1066#ifdef CONFIG_PAGE_EXTENSION
1067 /*
0c9ad804 1068 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
eefa864b
JK
1069 * section. (see page_ext.h about this.)
1070 */
1071 struct page_ext *page_ext;
1072 unsigned long pad;
1073#endif
55878e88
CS
1074 /*
1075 * WARNING: mem_section must be a power-of-2 in size for the
1076 * calculation and use of SECTION_ROOT_MASK to make sense.
1077 */
d41dee36
AW
1078};
1079
3e347261
BP
1080#ifdef CONFIG_SPARSEMEM_EXTREME
1081#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
1082#else
1083#define SECTIONS_PER_ROOT 1
1084#endif
802f192e 1085
3e347261 1086#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
0faa5638 1087#define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
3e347261 1088#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
802f192e 1089
3e347261
BP
1090#ifdef CONFIG_SPARSEMEM_EXTREME
1091extern struct mem_section *mem_section[NR_SECTION_ROOTS];
802f192e 1092#else
3e347261
BP
1093extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1094#endif
d41dee36 1095
29751f69
AW
1096static inline struct mem_section *__nr_to_section(unsigned long nr)
1097{
3e347261
BP
1098 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1099 return NULL;
1100 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
29751f69 1101}
4ca644d9 1102extern int __section_nr(struct mem_section* ms);
04753278 1103extern unsigned long usemap_size(void);
29751f69
AW
1104
1105/*
1106 * We use the lower bits of the mem_map pointer to store
1107 * a little bit of information. There should be at least
1108 * 3 bits here due to 32-bit alignment.
1109 */
1110#define SECTION_MARKED_PRESENT (1UL<<0)
1111#define SECTION_HAS_MEM_MAP (1UL<<1)
1112#define SECTION_MAP_LAST_BIT (1UL<<2)
1113#define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
30c253e6 1114#define SECTION_NID_SHIFT 2
29751f69
AW
1115
1116static inline struct page *__section_mem_map_addr(struct mem_section *section)
1117{
1118 unsigned long map = section->section_mem_map;
1119 map &= SECTION_MAP_MASK;
1120 return (struct page *)map;
1121}
1122
540557b9 1123static inline int present_section(struct mem_section *section)
29751f69 1124{
802f192e 1125 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
29751f69
AW
1126}
1127
540557b9
AW
1128static inline int present_section_nr(unsigned long nr)
1129{
1130 return present_section(__nr_to_section(nr));
1131}
1132
1133static inline int valid_section(struct mem_section *section)
29751f69 1134{
802f192e 1135 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
29751f69
AW
1136}
1137
1138static inline int valid_section_nr(unsigned long nr)
1139{
1140 return valid_section(__nr_to_section(nr));
1141}
1142
d41dee36
AW
1143static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1144{
29751f69 1145 return __nr_to_section(pfn_to_section_nr(pfn));
d41dee36
AW
1146}
1147
7b7bf499 1148#ifndef CONFIG_HAVE_ARCH_PFN_VALID
d41dee36
AW
1149static inline int pfn_valid(unsigned long pfn)
1150{
1151 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1152 return 0;
29751f69 1153 return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
d41dee36 1154}
7b7bf499 1155#endif
d41dee36 1156
540557b9
AW
1157static inline int pfn_present(unsigned long pfn)
1158{
1159 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1160 return 0;
1161 return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1162}
1163
d41dee36
AW
1164/*
1165 * These are _only_ used during initialisation, therefore they
1166 * can use __initdata ... They could have names to indicate
1167 * this restriction.
1168 */
1169#ifdef CONFIG_NUMA
161599ff
AW
1170#define pfn_to_nid(pfn) \
1171({ \
1172 unsigned long __pfn_to_nid_pfn = (pfn); \
1173 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
1174})
2bdaf115
AW
1175#else
1176#define pfn_to_nid(pfn) (0)
d41dee36
AW
1177#endif
1178
d41dee36
AW
1179#define early_pfn_valid(pfn) pfn_valid(pfn)
1180void sparse_init(void);
1181#else
1182#define sparse_init() do {} while (0)
28ae55c9 1183#define sparse_index_init(_sec, _nid) do {} while (0)
d41dee36
AW
1184#endif /* CONFIG_SPARSEMEM */
1185
8a942fde
MG
1186/*
1187 * During memory init memblocks map pfns to nids. The search is expensive and
1188 * this caches recent lookups. The implementation of __early_pfn_to_nid
1189 * may treat start/end as pfns or sections.
1190 */
1191struct mminit_pfnnid_cache {
1192 unsigned long last_start;
1193 unsigned long last_end;
1194 int last_nid;
1195};
1196
d41dee36
AW
1197#ifndef early_pfn_valid
1198#define early_pfn_valid(pfn) (1)
1199#endif
1200
1201void memory_present(int nid, unsigned long start, unsigned long end);
1202unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
1203
14e07298
AW
1204/*
1205 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1206 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1207 * pfn_valid_within() should be used in this case; we optimise this away
1208 * when we have no holes within a MAX_ORDER_NR_PAGES block.
1209 */
1210#ifdef CONFIG_HOLES_IN_ZONE
1211#define pfn_valid_within(pfn) pfn_valid(pfn)
1212#else
1213#define pfn_valid_within(pfn) (1)
1214#endif
1215
eb33575c
MG
1216#ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1217/*
1218 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1219 * associated with it or not. In FLATMEM, it is expected that holes always
1220 * have valid memmap as long as there is valid PFNs either side of the hole.
1221 * In SPARSEMEM, it is assumed that a valid section has a memmap for the
1222 * entire section.
1223 *
1224 * However, an ARM, and maybe other embedded architectures in the future
1225 * free memmap backing holes to save memory on the assumption the memmap is
1226 * never used. The page_zone linkages are then broken even though pfn_valid()
1227 * returns true. A walker of the full memmap must then do this additional
1228 * check to ensure the memmap they are looking at is sane by making sure
1229 * the zone and PFN linkages are still valid. This is expensive, but walkers
1230 * of the full memmap are extremely rare.
1231 */
5b80287a 1232bool memmap_valid_within(unsigned long pfn,
eb33575c
MG
1233 struct page *page, struct zone *zone);
1234#else
5b80287a 1235static inline bool memmap_valid_within(unsigned long pfn,
eb33575c
MG
1236 struct page *page, struct zone *zone)
1237{
5b80287a 1238 return true;
eb33575c
MG
1239}
1240#endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1241
97965478 1242#endif /* !__GENERATING_BOUNDS.H */
1da177e4 1243#endif /* !__ASSEMBLY__ */
1da177e4 1244#endif /* _LINUX_MMZONE_H */
This page took 3.84696 seconds and 5 git commands to generate.