mm: introduce find_dev_pagemap()
[deliverable/linux.git] / include / linux / pagemap.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_PAGEMAP_H
2#define _LINUX_PAGEMAP_H
3
4/*
5 * Copyright 1995 Linus Torvalds
6 */
7#include <linux/mm.h>
8#include <linux/fs.h>
9#include <linux/list.h>
10#include <linux/highmem.h>
11#include <linux/compiler.h>
12#include <asm/uaccess.h>
13#include <linux/gfp.h>
3e9f45bd 14#include <linux/bitops.h>
e286781d 15#include <linux/hardirq.h> /* for in_interrupt() */
8edf344c 16#include <linux/hugetlb_inline.h>
1da177e4
LT
17
18/*
19 * Bits in mapping->flags. The lower __GFP_BITS_SHIFT bits are the page
20 * allocation mode flags.
21 */
9a896c9a
LS
22enum mapping_flags {
23 AS_EIO = __GFP_BITS_SHIFT + 0, /* IO error on async write */
24 AS_ENOSPC = __GFP_BITS_SHIFT + 1, /* ENOSPC on async write */
25 AS_MM_ALL_LOCKS = __GFP_BITS_SHIFT + 2, /* under mm_take_all_locks() */
9a896c9a 26 AS_UNEVICTABLE = __GFP_BITS_SHIFT + 3, /* e.g., ramdisk, SHM_LOCK */
9d1ba805 27 AS_EXITING = __GFP_BITS_SHIFT + 4, /* final truncate in progress */
9a896c9a 28};
1da177e4 29
3e9f45bd
GC
30static inline void mapping_set_error(struct address_space *mapping, int error)
31{
2185e69f 32 if (unlikely(error)) {
3e9f45bd
GC
33 if (error == -ENOSPC)
34 set_bit(AS_ENOSPC, &mapping->flags);
35 else
36 set_bit(AS_EIO, &mapping->flags);
37 }
38}
39
ba9ddf49
LS
40static inline void mapping_set_unevictable(struct address_space *mapping)
41{
42 set_bit(AS_UNEVICTABLE, &mapping->flags);
43}
44
89e004ea
LS
45static inline void mapping_clear_unevictable(struct address_space *mapping)
46{
47 clear_bit(AS_UNEVICTABLE, &mapping->flags);
48}
49
ba9ddf49
LS
50static inline int mapping_unevictable(struct address_space *mapping)
51{
088e5465 52 if (mapping)
89e004ea
LS
53 return test_bit(AS_UNEVICTABLE, &mapping->flags);
54 return !!mapping;
ba9ddf49 55}
ba9ddf49 56
91b0abe3
JW
57static inline void mapping_set_exiting(struct address_space *mapping)
58{
59 set_bit(AS_EXITING, &mapping->flags);
60}
61
62static inline int mapping_exiting(struct address_space *mapping)
63{
64 return test_bit(AS_EXITING, &mapping->flags);
65}
66
dd0fc66f 67static inline gfp_t mapping_gfp_mask(struct address_space * mapping)
1da177e4 68{
260b2367 69 return (__force gfp_t)mapping->flags & __GFP_BITS_MASK;
1da177e4
LT
70}
71
c62d2555
MH
72/* Restricts the given gfp_mask to what the mapping allows. */
73static inline gfp_t mapping_gfp_constraint(struct address_space *mapping,
74 gfp_t gfp_mask)
75{
76 return mapping_gfp_mask(mapping) & gfp_mask;
77}
78
1da177e4
LT
79/*
80 * This is non-atomic. Only to be used before the mapping is activated.
81 * Probably needs a barrier...
82 */
260b2367 83static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask)
1da177e4 84{
260b2367
AV
85 m->flags = (m->flags & ~(__force unsigned long)__GFP_BITS_MASK) |
86 (__force unsigned long)mask;
1da177e4
LT
87}
88
89/*
50d8a189 90 * The page cache can be done in larger chunks than
1da177e4
LT
91 * one page, because it allows for more efficient
92 * throughput (it can then be mapped into user
93 * space in smaller chunks for same flexibility).
94 *
95 * Or rather, it _will_ be done in larger chunks.
96 */
97#define PAGE_CACHE_SHIFT PAGE_SHIFT
98#define PAGE_CACHE_SIZE PAGE_SIZE
99#define PAGE_CACHE_MASK PAGE_MASK
100#define PAGE_CACHE_ALIGN(addr) (((addr)+PAGE_CACHE_SIZE-1)&PAGE_CACHE_MASK)
101
102#define page_cache_get(page) get_page(page)
103#define page_cache_release(page) put_page(page)
b745bc85 104void release_pages(struct page **pages, int nr, bool cold);
1da177e4 105
e286781d
NP
106/*
107 * speculatively take a reference to a page.
108 * If the page is free (_count == 0), then _count is untouched, and 0
109 * is returned. Otherwise, _count is incremented by 1 and 1 is returned.
110 *
111 * This function must be called inside the same rcu_read_lock() section as has
112 * been used to lookup the page in the pagecache radix-tree (or page table):
113 * this allows allocators to use a synchronize_rcu() to stabilize _count.
114 *
115 * Unless an RCU grace period has passed, the count of all pages coming out
116 * of the allocator must be considered unstable. page_count may return higher
117 * than expected, and put_page must be able to do the right thing when the
118 * page has been finished with, no matter what it is subsequently allocated
119 * for (because put_page is what is used here to drop an invalid speculative
120 * reference).
121 *
122 * This is the interesting part of the lockless pagecache (and lockless
123 * get_user_pages) locking protocol, where the lookup-side (eg. find_get_page)
124 * has the following pattern:
125 * 1. find page in radix tree
126 * 2. conditionally increment refcount
127 * 3. check the page is still in pagecache (if no, goto 1)
128 *
129 * Remove-side that cares about stability of _count (eg. reclaim) has the
130 * following (with tree_lock held for write):
131 * A. atomically check refcount is correct and set it to 0 (atomic_cmpxchg)
132 * B. remove page from pagecache
133 * C. free the page
134 *
135 * There are 2 critical interleavings that matter:
136 * - 2 runs before A: in this case, A sees elevated refcount and bails out
137 * - A runs before 2: in this case, 2 sees zero refcount and retries;
138 * subsequently, B will complete and 1 will find no page, causing the
139 * lookup to return NULL.
140 *
141 * It is possible that between 1 and 2, the page is removed then the exact same
142 * page is inserted into the same position in pagecache. That's OK: the
143 * old find_get_page using tree_lock could equally have run before or after
144 * such a re-insertion, depending on order that locks are granted.
145 *
146 * Lookups racing against pagecache insertion isn't a big problem: either 1
147 * will find the page or it will not. Likewise, the old find_get_page could run
148 * either before the insertion or afterwards, depending on timing.
149 */
150static inline int page_cache_get_speculative(struct page *page)
151{
152 VM_BUG_ON(in_interrupt());
153
8375ad98 154#ifdef CONFIG_TINY_RCU
bdd4e85d 155# ifdef CONFIG_PREEMPT_COUNT
e286781d
NP
156 VM_BUG_ON(!in_atomic());
157# endif
158 /*
159 * Preempt must be disabled here - we rely on rcu_read_lock doing
160 * this for us.
161 *
162 * Pagecache won't be truncated from interrupt context, so if we have
163 * found a page in the radix tree here, we have pinned its refcount by
164 * disabling preempt, and hence no need for the "speculative get" that
165 * SMP requires.
166 */
309381fe 167 VM_BUG_ON_PAGE(page_count(page) == 0, page);
e286781d
NP
168 atomic_inc(&page->_count);
169
170#else
171 if (unlikely(!get_page_unless_zero(page))) {
172 /*
173 * Either the page has been freed, or will be freed.
174 * In either case, retry here and the caller should
175 * do the right thing (see comments above).
176 */
177 return 0;
178 }
179#endif
309381fe 180 VM_BUG_ON_PAGE(PageTail(page), page);
e286781d
NP
181
182 return 1;
183}
184
ce0ad7f0
NP
185/*
186 * Same as above, but add instead of inc (could just be merged)
187 */
188static inline int page_cache_add_speculative(struct page *page, int count)
189{
190 VM_BUG_ON(in_interrupt());
191
b560d8ad 192#if !defined(CONFIG_SMP) && defined(CONFIG_TREE_RCU)
bdd4e85d 193# ifdef CONFIG_PREEMPT_COUNT
ce0ad7f0
NP
194 VM_BUG_ON(!in_atomic());
195# endif
309381fe 196 VM_BUG_ON_PAGE(page_count(page) == 0, page);
ce0ad7f0
NP
197 atomic_add(count, &page->_count);
198
199#else
200 if (unlikely(!atomic_add_unless(&page->_count, count, 0)))
201 return 0;
202#endif
309381fe 203 VM_BUG_ON_PAGE(PageCompound(page) && page != compound_head(page), page);
ce0ad7f0
NP
204
205 return 1;
206}
207
e286781d
NP
208static inline int page_freeze_refs(struct page *page, int count)
209{
210 return likely(atomic_cmpxchg(&page->_count, count, 0) == count);
211}
212
213static inline void page_unfreeze_refs(struct page *page, int count)
214{
309381fe 215 VM_BUG_ON_PAGE(page_count(page) != 0, page);
e286781d
NP
216 VM_BUG_ON(count == 0);
217
218 atomic_set(&page->_count, count);
219}
220
44110fe3 221#ifdef CONFIG_NUMA
2ae88149 222extern struct page *__page_cache_alloc(gfp_t gfp);
44110fe3 223#else
2ae88149
NP
224static inline struct page *__page_cache_alloc(gfp_t gfp)
225{
226 return alloc_pages(gfp, 0);
227}
228#endif
229
1da177e4
LT
230static inline struct page *page_cache_alloc(struct address_space *x)
231{
2ae88149 232 return __page_cache_alloc(mapping_gfp_mask(x));
1da177e4
LT
233}
234
235static inline struct page *page_cache_alloc_cold(struct address_space *x)
236{
2ae88149 237 return __page_cache_alloc(mapping_gfp_mask(x)|__GFP_COLD);
1da177e4
LT
238}
239
7b1de586
WF
240static inline struct page *page_cache_alloc_readahead(struct address_space *x)
241{
242 return __page_cache_alloc(mapping_gfp_mask(x) |
243 __GFP_COLD | __GFP_NORETRY | __GFP_NOWARN);
244}
245
1da177e4
LT
246typedef int filler_t(void *, struct page *);
247
e7b563bb
JW
248pgoff_t page_cache_next_hole(struct address_space *mapping,
249 pgoff_t index, unsigned long max_scan);
250pgoff_t page_cache_prev_hole(struct address_space *mapping,
251 pgoff_t index, unsigned long max_scan);
252
2457aec6
MG
253#define FGP_ACCESSED 0x00000001
254#define FGP_LOCK 0x00000002
255#define FGP_CREAT 0x00000004
256#define FGP_WRITE 0x00000008
257#define FGP_NOFS 0x00000010
258#define FGP_NOWAIT 0x00000020
259
260struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
45f87de5 261 int fgp_flags, gfp_t cache_gfp_mask);
2457aec6
MG
262
263/**
264 * find_get_page - find and get a page reference
265 * @mapping: the address_space to search
266 * @offset: the page index
267 *
268 * Looks up the page cache slot at @mapping & @offset. If there is a
269 * page cache page, it is returned with an increased refcount.
270 *
271 * Otherwise, %NULL is returned.
272 */
273static inline struct page *find_get_page(struct address_space *mapping,
274 pgoff_t offset)
275{
45f87de5 276 return pagecache_get_page(mapping, offset, 0, 0);
2457aec6
MG
277}
278
279static inline struct page *find_get_page_flags(struct address_space *mapping,
280 pgoff_t offset, int fgp_flags)
281{
45f87de5 282 return pagecache_get_page(mapping, offset, fgp_flags, 0);
2457aec6
MG
283}
284
285/**
286 * find_lock_page - locate, pin and lock a pagecache page
287 * pagecache_get_page - find and get a page reference
288 * @mapping: the address_space to search
289 * @offset: the page index
290 *
291 * Looks up the page cache slot at @mapping & @offset. If there is a
292 * page cache page, it is returned locked and with an increased
293 * refcount.
294 *
295 * Otherwise, %NULL is returned.
296 *
297 * find_lock_page() may sleep.
298 */
299static inline struct page *find_lock_page(struct address_space *mapping,
300 pgoff_t offset)
301{
45f87de5 302 return pagecache_get_page(mapping, offset, FGP_LOCK, 0);
2457aec6
MG
303}
304
305/**
306 * find_or_create_page - locate or add a pagecache page
307 * @mapping: the page's address_space
308 * @index: the page's index into the mapping
309 * @gfp_mask: page allocation mode
310 *
311 * Looks up the page cache slot at @mapping & @offset. If there is a
312 * page cache page, it is returned locked and with an increased
313 * refcount.
314 *
315 * If the page is not present, a new page is allocated using @gfp_mask
316 * and added to the page cache and the VM's LRU list. The page is
317 * returned locked and with an increased refcount.
318 *
319 * On memory exhaustion, %NULL is returned.
320 *
321 * find_or_create_page() may sleep, even if @gfp_flags specifies an
322 * atomic allocation!
323 */
324static inline struct page *find_or_create_page(struct address_space *mapping,
325 pgoff_t offset, gfp_t gfp_mask)
326{
327 return pagecache_get_page(mapping, offset,
328 FGP_LOCK|FGP_ACCESSED|FGP_CREAT,
45f87de5 329 gfp_mask);
2457aec6
MG
330}
331
332/**
333 * grab_cache_page_nowait - returns locked page at given index in given cache
334 * @mapping: target address_space
335 * @index: the page index
336 *
337 * Same as grab_cache_page(), but do not wait if the page is unavailable.
338 * This is intended for speculative data generators, where the data can
339 * be regenerated if the page couldn't be grabbed. This routine should
340 * be safe to call while holding the lock for another page.
341 *
342 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
343 * and deadlock against the caller's locked page.
344 */
345static inline struct page *grab_cache_page_nowait(struct address_space *mapping,
346 pgoff_t index)
347{
348 return pagecache_get_page(mapping, index,
349 FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT,
45f87de5 350 mapping_gfp_mask(mapping));
2457aec6
MG
351}
352
0cd6144a 353struct page *find_get_entry(struct address_space *mapping, pgoff_t offset);
0cd6144a 354struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset);
0cd6144a
JW
355unsigned find_get_entries(struct address_space *mapping, pgoff_t start,
356 unsigned int nr_entries, struct page **entries,
357 pgoff_t *indices);
1da177e4
LT
358unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
359 unsigned int nr_pages, struct page **pages);
ebf43500
JA
360unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t start,
361 unsigned int nr_pages, struct page **pages);
1da177e4
LT
362unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
363 int tag, unsigned int nr_pages, struct page **pages);
364
54566b2c
NP
365struct page *grab_cache_page_write_begin(struct address_space *mapping,
366 pgoff_t index, unsigned flags);
afddba49 367
1da177e4
LT
368/*
369 * Returns locked page at given index in given cache, creating it if needed.
370 */
57f6b96c
FW
371static inline struct page *grab_cache_page(struct address_space *mapping,
372 pgoff_t index)
1da177e4
LT
373{
374 return find_or_create_page(mapping, index, mapping_gfp_mask(mapping));
375}
376
1da177e4 377extern struct page * read_cache_page(struct address_space *mapping,
5e5358e7 378 pgoff_t index, filler_t *filler, void *data);
0531b2aa
LT
379extern struct page * read_cache_page_gfp(struct address_space *mapping,
380 pgoff_t index, gfp_t gfp_mask);
1da177e4
LT
381extern int read_cache_pages(struct address_space *mapping,
382 struct list_head *pages, filler_t *filler, void *data);
383
090d2b18 384static inline struct page *read_mapping_page(struct address_space *mapping,
5e5358e7 385 pgoff_t index, void *data)
090d2b18
PE
386{
387 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
388 return read_cache_page(mapping, index, filler, data);
389}
390
a0f7a756
NH
391/*
392 * Get the offset in PAGE_SIZE.
393 * (TODO: hugepage should have ->index in PAGE_SIZE)
394 */
395static inline pgoff_t page_to_pgoff(struct page *page)
396{
e9b61f19
KS
397 pgoff_t pgoff;
398
a0f7a756
NH
399 if (unlikely(PageHeadHuge(page)))
400 return page->index << compound_order(page);
e9b61f19
KS
401
402 if (likely(!PageTransTail(page)))
a0f7a756 403 return page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
e9b61f19
KS
404
405 /*
406 * We don't initialize ->index for tail pages: calculate based on
407 * head page
408 */
409 pgoff = compound_head(page)->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
410 pgoff += page - compound_head(page);
411 return pgoff;
a0f7a756
NH
412}
413
1da177e4
LT
414/*
415 * Return byte-offset into filesystem object for page.
416 */
417static inline loff_t page_offset(struct page *page)
418{
419 return ((loff_t)page->index) << PAGE_CACHE_SHIFT;
420}
421
f981c595
MG
422static inline loff_t page_file_offset(struct page *page)
423{
424 return ((loff_t)page_file_index(page)) << PAGE_CACHE_SHIFT;
425}
426
0fe6e20b
NH
427extern pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
428 unsigned long address);
429
1da177e4
LT
430static inline pgoff_t linear_page_index(struct vm_area_struct *vma,
431 unsigned long address)
432{
0fe6e20b
NH
433 pgoff_t pgoff;
434 if (unlikely(is_vm_hugetlb_page(vma)))
435 return linear_hugepage_index(vma, address);
436 pgoff = (address - vma->vm_start) >> PAGE_SHIFT;
1da177e4
LT
437 pgoff += vma->vm_pgoff;
438 return pgoff >> (PAGE_CACHE_SHIFT - PAGE_SHIFT);
439}
440
b3c97528
HH
441extern void __lock_page(struct page *page);
442extern int __lock_page_killable(struct page *page);
d065bd81
ML
443extern int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
444 unsigned int flags);
b3c97528 445extern void unlock_page(struct page *page);
1da177e4 446
529ae9aa
NP
447static inline int trylock_page(struct page *page)
448{
48c935ad 449 page = compound_head(page);
8413ac9d 450 return (likely(!test_and_set_bit_lock(PG_locked, &page->flags)));
529ae9aa
NP
451}
452
db37648c
NP
453/*
454 * lock_page may only be called if we have the page's inode pinned.
455 */
1da177e4
LT
456static inline void lock_page(struct page *page)
457{
458 might_sleep();
529ae9aa 459 if (!trylock_page(page))
1da177e4
LT
460 __lock_page(page);
461}
db37648c 462
2687a356
MW
463/*
464 * lock_page_killable is like lock_page but can be interrupted by fatal
465 * signals. It returns 0 if it locked the page and -EINTR if it was
466 * killed while waiting.
467 */
468static inline int lock_page_killable(struct page *page)
469{
470 might_sleep();
529ae9aa 471 if (!trylock_page(page))
2687a356
MW
472 return __lock_page_killable(page);
473 return 0;
474}
475
d065bd81
ML
476/*
477 * lock_page_or_retry - Lock the page, unless this would block and the
478 * caller indicated that it can handle a retry.
9a95f3cf
PC
479 *
480 * Return value and mmap_sem implications depend on flags; see
481 * __lock_page_or_retry().
d065bd81
ML
482 */
483static inline int lock_page_or_retry(struct page *page, struct mm_struct *mm,
484 unsigned int flags)
485{
486 might_sleep();
487 return trylock_page(page) || __lock_page_or_retry(page, mm, flags);
488}
489
1da177e4 490/*
a4796e37
N
491 * This is exported only for wait_on_page_locked/wait_on_page_writeback,
492 * and for filesystems which need to wait on PG_private.
1da177e4 493 */
b3c97528 494extern void wait_on_page_bit(struct page *page, int bit_nr);
1da177e4 495
f62e00cc 496extern int wait_on_page_bit_killable(struct page *page, int bit_nr);
cbbce822
N
497extern int wait_on_page_bit_killable_timeout(struct page *page,
498 int bit_nr, unsigned long timeout);
f62e00cc
KM
499
500static inline int wait_on_page_locked_killable(struct page *page)
501{
48c935ad
KS
502 if (!PageLocked(page))
503 return 0;
504 return wait_on_page_bit_killable(compound_head(page), PG_locked);
f62e00cc
KM
505}
506
a4796e37
N
507extern wait_queue_head_t *page_waitqueue(struct page *page);
508static inline void wake_up_page(struct page *page, int bit)
509{
510 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
511}
512
1da177e4
LT
513/*
514 * Wait for a page to be unlocked.
515 *
516 * This must be called with the caller "holding" the page,
517 * ie with increased "page->count" so that the page won't
518 * go away during the wait..
519 */
520static inline void wait_on_page_locked(struct page *page)
521{
522 if (PageLocked(page))
48c935ad 523 wait_on_page_bit(compound_head(page), PG_locked);
1da177e4
LT
524}
525
526/*
527 * Wait for a page to complete writeback
528 */
529static inline void wait_on_page_writeback(struct page *page)
530{
531 if (PageWriteback(page))
532 wait_on_page_bit(page, PG_writeback);
533}
534
535extern void end_page_writeback(struct page *page);
1d1d1a76 536void wait_for_stable_page(struct page *page);
1da177e4 537
57d99845
MW
538void page_endio(struct page *page, int rw, int err);
539
385e1ca5
DH
540/*
541 * Add an arbitrary waiter to a page's wait queue
542 */
543extern void add_page_wait_queue(struct page *page, wait_queue_t *waiter);
544
1da177e4
LT
545/*
546 * Fault a userspace page into pagetables. Return non-zero on a fault.
547 *
548 * This assumes that two userspace pages are always sufficient. That's
549 * not true if PAGE_CACHE_SIZE > PAGE_SIZE.
550 */
551static inline int fault_in_pages_writeable(char __user *uaddr, int size)
552{
553 int ret;
554
08291429
NP
555 if (unlikely(size == 0))
556 return 0;
557
1da177e4
LT
558 /*
559 * Writing zeroes into userspace here is OK, because we know that if
560 * the zero gets there, we'll be overwriting it.
561 */
562 ret = __put_user(0, uaddr);
563 if (ret == 0) {
564 char __user *end = uaddr + size - 1;
565
566 /*
567 * If the page was already mapped, this will get a cache miss
568 * for sure, so try to avoid doing it.
569 */
570 if (((unsigned long)uaddr & PAGE_MASK) !=
571 ((unsigned long)end & PAGE_MASK))
f56f821f 572 ret = __put_user(0, end);
1da177e4
LT
573 }
574 return ret;
575}
576
08291429 577static inline int fault_in_pages_readable(const char __user *uaddr, int size)
1da177e4
LT
578{
579 volatile char c;
580 int ret;
581
08291429
NP
582 if (unlikely(size == 0))
583 return 0;
584
1da177e4
LT
585 ret = __get_user(c, uaddr);
586 if (ret == 0) {
587 const char __user *end = uaddr + size - 1;
588
589 if (((unsigned long)uaddr & PAGE_MASK) !=
627295e4 590 ((unsigned long)end & PAGE_MASK)) {
f56f821f 591 ret = __get_user(c, end);
627295e4
AK
592 (void)c;
593 }
1da177e4 594 }
08291429 595 return ret;
1da177e4
LT
596}
597
f56f821f
DV
598/*
599 * Multipage variants of the above prefault helpers, useful if more than
600 * PAGE_SIZE of data needs to be prefaulted. These are separate from the above
601 * functions (which only handle up to PAGE_SIZE) to avoid clobbering the
602 * filemap.c hotpaths.
603 */
604static inline int fault_in_multipages_writeable(char __user *uaddr, int size)
605{
af2e8409 606 int ret = 0;
9923777d 607 char __user *end = uaddr + size - 1;
f56f821f
DV
608
609 if (unlikely(size == 0))
af2e8409 610 return ret;
f56f821f
DV
611
612 /*
613 * Writing zeroes into userspace here is OK, because we know that if
614 * the zero gets there, we'll be overwriting it.
615 */
616 while (uaddr <= end) {
617 ret = __put_user(0, uaddr);
618 if (ret != 0)
619 return ret;
620 uaddr += PAGE_SIZE;
621 }
622
623 /* Check whether the range spilled into the next page. */
624 if (((unsigned long)uaddr & PAGE_MASK) ==
625 ((unsigned long)end & PAGE_MASK))
626 ret = __put_user(0, end);
627
628 return ret;
629}
630
631static inline int fault_in_multipages_readable(const char __user *uaddr,
632 int size)
633{
634 volatile char c;
af2e8409 635 int ret = 0;
f56f821f
DV
636 const char __user *end = uaddr + size - 1;
637
638 if (unlikely(size == 0))
af2e8409 639 return ret;
f56f821f
DV
640
641 while (uaddr <= end) {
642 ret = __get_user(c, uaddr);
643 if (ret != 0)
644 return ret;
645 uaddr += PAGE_SIZE;
646 }
647
648 /* Check whether the range spilled into the next page. */
649 if (((unsigned long)uaddr & PAGE_MASK) ==
650 ((unsigned long)end & PAGE_MASK)) {
651 ret = __get_user(c, end);
652 (void)c;
653 }
654
655 return ret;
656}
657
529ae9aa
NP
658int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
659 pgoff_t index, gfp_t gfp_mask);
660int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
661 pgoff_t index, gfp_t gfp_mask);
97cecb5a 662extern void delete_from_page_cache(struct page *page);
c4843a75
GT
663extern void __delete_from_page_cache(struct page *page, void *shadow,
664 struct mem_cgroup *memcg);
ef6a3c63 665int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask);
529ae9aa
NP
666
667/*
668 * Like add_to_page_cache_locked, but used to add newly allocated pages:
48c935ad 669 * the page is new, so we can just run __SetPageLocked() against it.
529ae9aa
NP
670 */
671static inline int add_to_page_cache(struct page *page,
672 struct address_space *mapping, pgoff_t offset, gfp_t gfp_mask)
673{
674 int error;
675
48c935ad 676 __SetPageLocked(page);
529ae9aa
NP
677 error = add_to_page_cache_locked(page, mapping, offset, gfp_mask);
678 if (unlikely(error))
48c935ad 679 __ClearPageLocked(page);
529ae9aa
NP
680 return error;
681}
682
b57c2cb9
FF
683static inline unsigned long dir_pages(struct inode *inode)
684{
685 return (unsigned long)(inode->i_size + PAGE_CACHE_SIZE - 1) >>
686 PAGE_CACHE_SHIFT;
687}
688
1da177e4 689#endif /* _LINUX_PAGEMAP_H */
This page took 1.535669 seconds and 5 git commands to generate.