mlock: make mlock error return Posixly Correct
[deliverable/linux.git] / include / linux / pagemap.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_PAGEMAP_H
2#define _LINUX_PAGEMAP_H
3
4/*
5 * Copyright 1995 Linus Torvalds
6 */
7#include <linux/mm.h>
8#include <linux/fs.h>
9#include <linux/list.h>
10#include <linux/highmem.h>
11#include <linux/compiler.h>
12#include <asm/uaccess.h>
13#include <linux/gfp.h>
3e9f45bd 14#include <linux/bitops.h>
e286781d 15#include <linux/hardirq.h> /* for in_interrupt() */
1da177e4
LT
16
17/*
18 * Bits in mapping->flags. The lower __GFP_BITS_SHIFT bits are the page
19 * allocation mode flags.
20 */
21#define AS_EIO (__GFP_BITS_SHIFT + 0) /* IO error on async write */
22#define AS_ENOSPC (__GFP_BITS_SHIFT + 1) /* ENOSPC on async write */
7906d00c 23#define AS_MM_ALL_LOCKS (__GFP_BITS_SHIFT + 2) /* under mm_take_all_locks() */
1da177e4 24
3e9f45bd
GC
25static inline void mapping_set_error(struct address_space *mapping, int error)
26{
2185e69f 27 if (unlikely(error)) {
3e9f45bd
GC
28 if (error == -ENOSPC)
29 set_bit(AS_ENOSPC, &mapping->flags);
30 else
31 set_bit(AS_EIO, &mapping->flags);
32 }
33}
34
ba9ddf49
LS
35#ifdef CONFIG_UNEVICTABLE_LRU
36#define AS_UNEVICTABLE (__GFP_BITS_SHIFT + 2) /* e.g., ramdisk, SHM_LOCK */
37
38static inline void mapping_set_unevictable(struct address_space *mapping)
39{
40 set_bit(AS_UNEVICTABLE, &mapping->flags);
41}
42
89e004ea
LS
43static inline void mapping_clear_unevictable(struct address_space *mapping)
44{
45 clear_bit(AS_UNEVICTABLE, &mapping->flags);
46}
47
ba9ddf49
LS
48static inline int mapping_unevictable(struct address_space *mapping)
49{
89e004ea
LS
50 if (likely(mapping))
51 return test_bit(AS_UNEVICTABLE, &mapping->flags);
52 return !!mapping;
ba9ddf49
LS
53}
54#else
55static inline void mapping_set_unevictable(struct address_space *mapping) { }
89e004ea 56static inline void mapping_clear_unevictable(struct address_space *mapping) { }
ba9ddf49
LS
57static inline int mapping_unevictable(struct address_space *mapping)
58{
59 return 0;
60}
61#endif
62
dd0fc66f 63static inline gfp_t mapping_gfp_mask(struct address_space * mapping)
1da177e4 64{
260b2367 65 return (__force gfp_t)mapping->flags & __GFP_BITS_MASK;
1da177e4
LT
66}
67
68/*
69 * This is non-atomic. Only to be used before the mapping is activated.
70 * Probably needs a barrier...
71 */
260b2367 72static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask)
1da177e4 73{
260b2367
AV
74 m->flags = (m->flags & ~(__force unsigned long)__GFP_BITS_MASK) |
75 (__force unsigned long)mask;
1da177e4
LT
76}
77
78/*
79 * The page cache can done in larger chunks than
80 * one page, because it allows for more efficient
81 * throughput (it can then be mapped into user
82 * space in smaller chunks for same flexibility).
83 *
84 * Or rather, it _will_ be done in larger chunks.
85 */
86#define PAGE_CACHE_SHIFT PAGE_SHIFT
87#define PAGE_CACHE_SIZE PAGE_SIZE
88#define PAGE_CACHE_MASK PAGE_MASK
89#define PAGE_CACHE_ALIGN(addr) (((addr)+PAGE_CACHE_SIZE-1)&PAGE_CACHE_MASK)
90
91#define page_cache_get(page) get_page(page)
92#define page_cache_release(page) put_page(page)
93void release_pages(struct page **pages, int nr, int cold);
94
e286781d
NP
95/*
96 * speculatively take a reference to a page.
97 * If the page is free (_count == 0), then _count is untouched, and 0
98 * is returned. Otherwise, _count is incremented by 1 and 1 is returned.
99 *
100 * This function must be called inside the same rcu_read_lock() section as has
101 * been used to lookup the page in the pagecache radix-tree (or page table):
102 * this allows allocators to use a synchronize_rcu() to stabilize _count.
103 *
104 * Unless an RCU grace period has passed, the count of all pages coming out
105 * of the allocator must be considered unstable. page_count may return higher
106 * than expected, and put_page must be able to do the right thing when the
107 * page has been finished with, no matter what it is subsequently allocated
108 * for (because put_page is what is used here to drop an invalid speculative
109 * reference).
110 *
111 * This is the interesting part of the lockless pagecache (and lockless
112 * get_user_pages) locking protocol, where the lookup-side (eg. find_get_page)
113 * has the following pattern:
114 * 1. find page in radix tree
115 * 2. conditionally increment refcount
116 * 3. check the page is still in pagecache (if no, goto 1)
117 *
118 * Remove-side that cares about stability of _count (eg. reclaim) has the
119 * following (with tree_lock held for write):
120 * A. atomically check refcount is correct and set it to 0 (atomic_cmpxchg)
121 * B. remove page from pagecache
122 * C. free the page
123 *
124 * There are 2 critical interleavings that matter:
125 * - 2 runs before A: in this case, A sees elevated refcount and bails out
126 * - A runs before 2: in this case, 2 sees zero refcount and retries;
127 * subsequently, B will complete and 1 will find no page, causing the
128 * lookup to return NULL.
129 *
130 * It is possible that between 1 and 2, the page is removed then the exact same
131 * page is inserted into the same position in pagecache. That's OK: the
132 * old find_get_page using tree_lock could equally have run before or after
133 * such a re-insertion, depending on order that locks are granted.
134 *
135 * Lookups racing against pagecache insertion isn't a big problem: either 1
136 * will find the page or it will not. Likewise, the old find_get_page could run
137 * either before the insertion or afterwards, depending on timing.
138 */
139static inline int page_cache_get_speculative(struct page *page)
140{
141 VM_BUG_ON(in_interrupt());
142
143#if !defined(CONFIG_SMP) && defined(CONFIG_CLASSIC_RCU)
144# ifdef CONFIG_PREEMPT
145 VM_BUG_ON(!in_atomic());
146# endif
147 /*
148 * Preempt must be disabled here - we rely on rcu_read_lock doing
149 * this for us.
150 *
151 * Pagecache won't be truncated from interrupt context, so if we have
152 * found a page in the radix tree here, we have pinned its refcount by
153 * disabling preempt, and hence no need for the "speculative get" that
154 * SMP requires.
155 */
156 VM_BUG_ON(page_count(page) == 0);
157 atomic_inc(&page->_count);
158
159#else
160 if (unlikely(!get_page_unless_zero(page))) {
161 /*
162 * Either the page has been freed, or will be freed.
163 * In either case, retry here and the caller should
164 * do the right thing (see comments above).
165 */
166 return 0;
167 }
168#endif
169 VM_BUG_ON(PageTail(page));
170
171 return 1;
172}
173
ce0ad7f0
NP
174/*
175 * Same as above, but add instead of inc (could just be merged)
176 */
177static inline int page_cache_add_speculative(struct page *page, int count)
178{
179 VM_BUG_ON(in_interrupt());
180
181#if !defined(CONFIG_SMP) && defined(CONFIG_CLASSIC_RCU)
182# ifdef CONFIG_PREEMPT
183 VM_BUG_ON(!in_atomic());
184# endif
185 VM_BUG_ON(page_count(page) == 0);
186 atomic_add(count, &page->_count);
187
188#else
189 if (unlikely(!atomic_add_unless(&page->_count, count, 0)))
190 return 0;
191#endif
192 VM_BUG_ON(PageCompound(page) && page != compound_head(page));
193
194 return 1;
195}
196
e286781d
NP
197static inline int page_freeze_refs(struct page *page, int count)
198{
199 return likely(atomic_cmpxchg(&page->_count, count, 0) == count);
200}
201
202static inline void page_unfreeze_refs(struct page *page, int count)
203{
204 VM_BUG_ON(page_count(page) != 0);
205 VM_BUG_ON(count == 0);
206
207 atomic_set(&page->_count, count);
208}
209
44110fe3 210#ifdef CONFIG_NUMA
2ae88149 211extern struct page *__page_cache_alloc(gfp_t gfp);
44110fe3 212#else
2ae88149
NP
213static inline struct page *__page_cache_alloc(gfp_t gfp)
214{
215 return alloc_pages(gfp, 0);
216}
217#endif
218
1da177e4
LT
219static inline struct page *page_cache_alloc(struct address_space *x)
220{
2ae88149 221 return __page_cache_alloc(mapping_gfp_mask(x));
1da177e4
LT
222}
223
224static inline struct page *page_cache_alloc_cold(struct address_space *x)
225{
2ae88149 226 return __page_cache_alloc(mapping_gfp_mask(x)|__GFP_COLD);
1da177e4
LT
227}
228
229typedef int filler_t(void *, struct page *);
230
231extern struct page * find_get_page(struct address_space *mapping,
57f6b96c 232 pgoff_t index);
1da177e4 233extern struct page * find_lock_page(struct address_space *mapping,
57f6b96c 234 pgoff_t index);
1da177e4 235extern struct page * find_or_create_page(struct address_space *mapping,
57f6b96c 236 pgoff_t index, gfp_t gfp_mask);
1da177e4
LT
237unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
238 unsigned int nr_pages, struct page **pages);
ebf43500
JA
239unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t start,
240 unsigned int nr_pages, struct page **pages);
1da177e4
LT
241unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
242 int tag, unsigned int nr_pages, struct page **pages);
243
afddba49
NP
244struct page *__grab_cache_page(struct address_space *mapping, pgoff_t index);
245
1da177e4
LT
246/*
247 * Returns locked page at given index in given cache, creating it if needed.
248 */
57f6b96c
FW
249static inline struct page *grab_cache_page(struct address_space *mapping,
250 pgoff_t index)
1da177e4
LT
251{
252 return find_or_create_page(mapping, index, mapping_gfp_mask(mapping));
253}
254
255extern struct page * grab_cache_page_nowait(struct address_space *mapping,
57f6b96c 256 pgoff_t index);
6fe6900e 257extern struct page * read_cache_page_async(struct address_space *mapping,
57f6b96c 258 pgoff_t index, filler_t *filler,
6fe6900e 259 void *data);
1da177e4 260extern struct page * read_cache_page(struct address_space *mapping,
57f6b96c 261 pgoff_t index, filler_t *filler,
1da177e4
LT
262 void *data);
263extern int read_cache_pages(struct address_space *mapping,
264 struct list_head *pages, filler_t *filler, void *data);
265
6fe6900e
NP
266static inline struct page *read_mapping_page_async(
267 struct address_space *mapping,
57f6b96c 268 pgoff_t index, void *data)
6fe6900e
NP
269{
270 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
271 return read_cache_page_async(mapping, index, filler, data);
272}
273
090d2b18 274static inline struct page *read_mapping_page(struct address_space *mapping,
57f6b96c 275 pgoff_t index, void *data)
090d2b18
PE
276{
277 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
278 return read_cache_page(mapping, index, filler, data);
279}
280
1da177e4
LT
281/*
282 * Return byte-offset into filesystem object for page.
283 */
284static inline loff_t page_offset(struct page *page)
285{
286 return ((loff_t)page->index) << PAGE_CACHE_SHIFT;
287}
288
289static inline pgoff_t linear_page_index(struct vm_area_struct *vma,
290 unsigned long address)
291{
292 pgoff_t pgoff = (address - vma->vm_start) >> PAGE_SHIFT;
293 pgoff += vma->vm_pgoff;
294 return pgoff >> (PAGE_CACHE_SHIFT - PAGE_SHIFT);
295}
296
b3c97528
HH
297extern void __lock_page(struct page *page);
298extern int __lock_page_killable(struct page *page);
299extern void __lock_page_nosync(struct page *page);
300extern void unlock_page(struct page *page);
1da177e4 301
529ae9aa
NP
302static inline void set_page_locked(struct page *page)
303{
304 set_bit(PG_locked, &page->flags);
305}
306
307static inline void clear_page_locked(struct page *page)
308{
309 clear_bit(PG_locked, &page->flags);
310}
311
312static inline int trylock_page(struct page *page)
313{
314 return !test_and_set_bit(PG_locked, &page->flags);
315}
316
db37648c
NP
317/*
318 * lock_page may only be called if we have the page's inode pinned.
319 */
1da177e4
LT
320static inline void lock_page(struct page *page)
321{
322 might_sleep();
529ae9aa 323 if (!trylock_page(page))
1da177e4
LT
324 __lock_page(page);
325}
db37648c 326
2687a356
MW
327/*
328 * lock_page_killable is like lock_page but can be interrupted by fatal
329 * signals. It returns 0 if it locked the page and -EINTR if it was
330 * killed while waiting.
331 */
332static inline int lock_page_killable(struct page *page)
333{
334 might_sleep();
529ae9aa 335 if (!trylock_page(page))
2687a356
MW
336 return __lock_page_killable(page);
337 return 0;
338}
339
db37648c
NP
340/*
341 * lock_page_nosync should only be used if we can't pin the page's inode.
342 * Doesn't play quite so well with block device plugging.
343 */
344static inline void lock_page_nosync(struct page *page)
345{
346 might_sleep();
529ae9aa 347 if (!trylock_page(page))
db37648c
NP
348 __lock_page_nosync(page);
349}
1da177e4
LT
350
351/*
352 * This is exported only for wait_on_page_locked/wait_on_page_writeback.
353 * Never use this directly!
354 */
b3c97528 355extern void wait_on_page_bit(struct page *page, int bit_nr);
1da177e4
LT
356
357/*
358 * Wait for a page to be unlocked.
359 *
360 * This must be called with the caller "holding" the page,
361 * ie with increased "page->count" so that the page won't
362 * go away during the wait..
363 */
364static inline void wait_on_page_locked(struct page *page)
365{
366 if (PageLocked(page))
367 wait_on_page_bit(page, PG_locked);
368}
369
370/*
371 * Wait for a page to complete writeback
372 */
373static inline void wait_on_page_writeback(struct page *page)
374{
375 if (PageWriteback(page))
376 wait_on_page_bit(page, PG_writeback);
377}
378
379extern void end_page_writeback(struct page *page);
380
381/*
382 * Fault a userspace page into pagetables. Return non-zero on a fault.
383 *
384 * This assumes that two userspace pages are always sufficient. That's
385 * not true if PAGE_CACHE_SIZE > PAGE_SIZE.
386 */
387static inline int fault_in_pages_writeable(char __user *uaddr, int size)
388{
389 int ret;
390
08291429
NP
391 if (unlikely(size == 0))
392 return 0;
393
1da177e4
LT
394 /*
395 * Writing zeroes into userspace here is OK, because we know that if
396 * the zero gets there, we'll be overwriting it.
397 */
398 ret = __put_user(0, uaddr);
399 if (ret == 0) {
400 char __user *end = uaddr + size - 1;
401
402 /*
403 * If the page was already mapped, this will get a cache miss
404 * for sure, so try to avoid doing it.
405 */
406 if (((unsigned long)uaddr & PAGE_MASK) !=
407 ((unsigned long)end & PAGE_MASK))
408 ret = __put_user(0, end);
409 }
410 return ret;
411}
412
08291429 413static inline int fault_in_pages_readable(const char __user *uaddr, int size)
1da177e4
LT
414{
415 volatile char c;
416 int ret;
417
08291429
NP
418 if (unlikely(size == 0))
419 return 0;
420
1da177e4
LT
421 ret = __get_user(c, uaddr);
422 if (ret == 0) {
423 const char __user *end = uaddr + size - 1;
424
425 if (((unsigned long)uaddr & PAGE_MASK) !=
426 ((unsigned long)end & PAGE_MASK))
08291429 427 ret = __get_user(c, end);
1da177e4 428 }
08291429 429 return ret;
1da177e4
LT
430}
431
529ae9aa
NP
432int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
433 pgoff_t index, gfp_t gfp_mask);
434int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
435 pgoff_t index, gfp_t gfp_mask);
436extern void remove_from_page_cache(struct page *page);
437extern void __remove_from_page_cache(struct page *page);
438
439/*
440 * Like add_to_page_cache_locked, but used to add newly allocated pages:
441 * the page is new, so we can just run set_page_locked() against it.
442 */
443static inline int add_to_page_cache(struct page *page,
444 struct address_space *mapping, pgoff_t offset, gfp_t gfp_mask)
445{
446 int error;
447
448 set_page_locked(page);
449 error = add_to_page_cache_locked(page, mapping, offset, gfp_mask);
450 if (unlikely(error))
451 clear_page_locked(page);
452 return error;
453}
454
1da177e4 455#endif /* _LINUX_PAGEMAP_H */
This page took 0.572032 seconds and 5 git commands to generate.