Ramfs and Ram Disk pages are unevictable
[deliverable/linux.git] / include / linux / pagemap.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_PAGEMAP_H
2#define _LINUX_PAGEMAP_H
3
4/*
5 * Copyright 1995 Linus Torvalds
6 */
7#include <linux/mm.h>
8#include <linux/fs.h>
9#include <linux/list.h>
10#include <linux/highmem.h>
11#include <linux/compiler.h>
12#include <asm/uaccess.h>
13#include <linux/gfp.h>
3e9f45bd 14#include <linux/bitops.h>
e286781d 15#include <linux/hardirq.h> /* for in_interrupt() */
1da177e4
LT
16
17/*
18 * Bits in mapping->flags. The lower __GFP_BITS_SHIFT bits are the page
19 * allocation mode flags.
20 */
21#define AS_EIO (__GFP_BITS_SHIFT + 0) /* IO error on async write */
22#define AS_ENOSPC (__GFP_BITS_SHIFT + 1) /* ENOSPC on async write */
7906d00c 23#define AS_MM_ALL_LOCKS (__GFP_BITS_SHIFT + 2) /* under mm_take_all_locks() */
1da177e4 24
3e9f45bd
GC
25static inline void mapping_set_error(struct address_space *mapping, int error)
26{
2185e69f 27 if (unlikely(error)) {
3e9f45bd
GC
28 if (error == -ENOSPC)
29 set_bit(AS_ENOSPC, &mapping->flags);
30 else
31 set_bit(AS_EIO, &mapping->flags);
32 }
33}
34
ba9ddf49
LS
35#ifdef CONFIG_UNEVICTABLE_LRU
36#define AS_UNEVICTABLE (__GFP_BITS_SHIFT + 2) /* e.g., ramdisk, SHM_LOCK */
37
38static inline void mapping_set_unevictable(struct address_space *mapping)
39{
40 set_bit(AS_UNEVICTABLE, &mapping->flags);
41}
42
43static inline int mapping_unevictable(struct address_space *mapping)
44{
45 if (mapping && (mapping->flags & AS_UNEVICTABLE))
46 return 1;
47 return 0;
48}
49#else
50static inline void mapping_set_unevictable(struct address_space *mapping) { }
51static inline int mapping_unevictable(struct address_space *mapping)
52{
53 return 0;
54}
55#endif
56
dd0fc66f 57static inline gfp_t mapping_gfp_mask(struct address_space * mapping)
1da177e4 58{
260b2367 59 return (__force gfp_t)mapping->flags & __GFP_BITS_MASK;
1da177e4
LT
60}
61
62/*
63 * This is non-atomic. Only to be used before the mapping is activated.
64 * Probably needs a barrier...
65 */
260b2367 66static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask)
1da177e4 67{
260b2367
AV
68 m->flags = (m->flags & ~(__force unsigned long)__GFP_BITS_MASK) |
69 (__force unsigned long)mask;
1da177e4
LT
70}
71
72/*
73 * The page cache can done in larger chunks than
74 * one page, because it allows for more efficient
75 * throughput (it can then be mapped into user
76 * space in smaller chunks for same flexibility).
77 *
78 * Or rather, it _will_ be done in larger chunks.
79 */
80#define PAGE_CACHE_SHIFT PAGE_SHIFT
81#define PAGE_CACHE_SIZE PAGE_SIZE
82#define PAGE_CACHE_MASK PAGE_MASK
83#define PAGE_CACHE_ALIGN(addr) (((addr)+PAGE_CACHE_SIZE-1)&PAGE_CACHE_MASK)
84
85#define page_cache_get(page) get_page(page)
86#define page_cache_release(page) put_page(page)
87void release_pages(struct page **pages, int nr, int cold);
88
e286781d
NP
89/*
90 * speculatively take a reference to a page.
91 * If the page is free (_count == 0), then _count is untouched, and 0
92 * is returned. Otherwise, _count is incremented by 1 and 1 is returned.
93 *
94 * This function must be called inside the same rcu_read_lock() section as has
95 * been used to lookup the page in the pagecache radix-tree (or page table):
96 * this allows allocators to use a synchronize_rcu() to stabilize _count.
97 *
98 * Unless an RCU grace period has passed, the count of all pages coming out
99 * of the allocator must be considered unstable. page_count may return higher
100 * than expected, and put_page must be able to do the right thing when the
101 * page has been finished with, no matter what it is subsequently allocated
102 * for (because put_page is what is used here to drop an invalid speculative
103 * reference).
104 *
105 * This is the interesting part of the lockless pagecache (and lockless
106 * get_user_pages) locking protocol, where the lookup-side (eg. find_get_page)
107 * has the following pattern:
108 * 1. find page in radix tree
109 * 2. conditionally increment refcount
110 * 3. check the page is still in pagecache (if no, goto 1)
111 *
112 * Remove-side that cares about stability of _count (eg. reclaim) has the
113 * following (with tree_lock held for write):
114 * A. atomically check refcount is correct and set it to 0 (atomic_cmpxchg)
115 * B. remove page from pagecache
116 * C. free the page
117 *
118 * There are 2 critical interleavings that matter:
119 * - 2 runs before A: in this case, A sees elevated refcount and bails out
120 * - A runs before 2: in this case, 2 sees zero refcount and retries;
121 * subsequently, B will complete and 1 will find no page, causing the
122 * lookup to return NULL.
123 *
124 * It is possible that between 1 and 2, the page is removed then the exact same
125 * page is inserted into the same position in pagecache. That's OK: the
126 * old find_get_page using tree_lock could equally have run before or after
127 * such a re-insertion, depending on order that locks are granted.
128 *
129 * Lookups racing against pagecache insertion isn't a big problem: either 1
130 * will find the page or it will not. Likewise, the old find_get_page could run
131 * either before the insertion or afterwards, depending on timing.
132 */
133static inline int page_cache_get_speculative(struct page *page)
134{
135 VM_BUG_ON(in_interrupt());
136
137#if !defined(CONFIG_SMP) && defined(CONFIG_CLASSIC_RCU)
138# ifdef CONFIG_PREEMPT
139 VM_BUG_ON(!in_atomic());
140# endif
141 /*
142 * Preempt must be disabled here - we rely on rcu_read_lock doing
143 * this for us.
144 *
145 * Pagecache won't be truncated from interrupt context, so if we have
146 * found a page in the radix tree here, we have pinned its refcount by
147 * disabling preempt, and hence no need for the "speculative get" that
148 * SMP requires.
149 */
150 VM_BUG_ON(page_count(page) == 0);
151 atomic_inc(&page->_count);
152
153#else
154 if (unlikely(!get_page_unless_zero(page))) {
155 /*
156 * Either the page has been freed, or will be freed.
157 * In either case, retry here and the caller should
158 * do the right thing (see comments above).
159 */
160 return 0;
161 }
162#endif
163 VM_BUG_ON(PageTail(page));
164
165 return 1;
166}
167
ce0ad7f0
NP
168/*
169 * Same as above, but add instead of inc (could just be merged)
170 */
171static inline int page_cache_add_speculative(struct page *page, int count)
172{
173 VM_BUG_ON(in_interrupt());
174
175#if !defined(CONFIG_SMP) && defined(CONFIG_CLASSIC_RCU)
176# ifdef CONFIG_PREEMPT
177 VM_BUG_ON(!in_atomic());
178# endif
179 VM_BUG_ON(page_count(page) == 0);
180 atomic_add(count, &page->_count);
181
182#else
183 if (unlikely(!atomic_add_unless(&page->_count, count, 0)))
184 return 0;
185#endif
186 VM_BUG_ON(PageCompound(page) && page != compound_head(page));
187
188 return 1;
189}
190
e286781d
NP
191static inline int page_freeze_refs(struct page *page, int count)
192{
193 return likely(atomic_cmpxchg(&page->_count, count, 0) == count);
194}
195
196static inline void page_unfreeze_refs(struct page *page, int count)
197{
198 VM_BUG_ON(page_count(page) != 0);
199 VM_BUG_ON(count == 0);
200
201 atomic_set(&page->_count, count);
202}
203
44110fe3 204#ifdef CONFIG_NUMA
2ae88149 205extern struct page *__page_cache_alloc(gfp_t gfp);
44110fe3 206#else
2ae88149
NP
207static inline struct page *__page_cache_alloc(gfp_t gfp)
208{
209 return alloc_pages(gfp, 0);
210}
211#endif
212
1da177e4
LT
213static inline struct page *page_cache_alloc(struct address_space *x)
214{
2ae88149 215 return __page_cache_alloc(mapping_gfp_mask(x));
1da177e4
LT
216}
217
218static inline struct page *page_cache_alloc_cold(struct address_space *x)
219{
2ae88149 220 return __page_cache_alloc(mapping_gfp_mask(x)|__GFP_COLD);
1da177e4
LT
221}
222
223typedef int filler_t(void *, struct page *);
224
225extern struct page * find_get_page(struct address_space *mapping,
57f6b96c 226 pgoff_t index);
1da177e4 227extern struct page * find_lock_page(struct address_space *mapping,
57f6b96c 228 pgoff_t index);
1da177e4 229extern struct page * find_or_create_page(struct address_space *mapping,
57f6b96c 230 pgoff_t index, gfp_t gfp_mask);
1da177e4
LT
231unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
232 unsigned int nr_pages, struct page **pages);
ebf43500
JA
233unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t start,
234 unsigned int nr_pages, struct page **pages);
1da177e4
LT
235unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
236 int tag, unsigned int nr_pages, struct page **pages);
237
afddba49
NP
238struct page *__grab_cache_page(struct address_space *mapping, pgoff_t index);
239
1da177e4
LT
240/*
241 * Returns locked page at given index in given cache, creating it if needed.
242 */
57f6b96c
FW
243static inline struct page *grab_cache_page(struct address_space *mapping,
244 pgoff_t index)
1da177e4
LT
245{
246 return find_or_create_page(mapping, index, mapping_gfp_mask(mapping));
247}
248
249extern struct page * grab_cache_page_nowait(struct address_space *mapping,
57f6b96c 250 pgoff_t index);
6fe6900e 251extern struct page * read_cache_page_async(struct address_space *mapping,
57f6b96c 252 pgoff_t index, filler_t *filler,
6fe6900e 253 void *data);
1da177e4 254extern struct page * read_cache_page(struct address_space *mapping,
57f6b96c 255 pgoff_t index, filler_t *filler,
1da177e4
LT
256 void *data);
257extern int read_cache_pages(struct address_space *mapping,
258 struct list_head *pages, filler_t *filler, void *data);
259
6fe6900e
NP
260static inline struct page *read_mapping_page_async(
261 struct address_space *mapping,
57f6b96c 262 pgoff_t index, void *data)
6fe6900e
NP
263{
264 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
265 return read_cache_page_async(mapping, index, filler, data);
266}
267
090d2b18 268static inline struct page *read_mapping_page(struct address_space *mapping,
57f6b96c 269 pgoff_t index, void *data)
090d2b18
PE
270{
271 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
272 return read_cache_page(mapping, index, filler, data);
273}
274
1da177e4
LT
275/*
276 * Return byte-offset into filesystem object for page.
277 */
278static inline loff_t page_offset(struct page *page)
279{
280 return ((loff_t)page->index) << PAGE_CACHE_SHIFT;
281}
282
283static inline pgoff_t linear_page_index(struct vm_area_struct *vma,
284 unsigned long address)
285{
286 pgoff_t pgoff = (address - vma->vm_start) >> PAGE_SHIFT;
287 pgoff += vma->vm_pgoff;
288 return pgoff >> (PAGE_CACHE_SHIFT - PAGE_SHIFT);
289}
290
b3c97528
HH
291extern void __lock_page(struct page *page);
292extern int __lock_page_killable(struct page *page);
293extern void __lock_page_nosync(struct page *page);
294extern void unlock_page(struct page *page);
1da177e4 295
529ae9aa
NP
296static inline void set_page_locked(struct page *page)
297{
298 set_bit(PG_locked, &page->flags);
299}
300
301static inline void clear_page_locked(struct page *page)
302{
303 clear_bit(PG_locked, &page->flags);
304}
305
306static inline int trylock_page(struct page *page)
307{
308 return !test_and_set_bit(PG_locked, &page->flags);
309}
310
db37648c
NP
311/*
312 * lock_page may only be called if we have the page's inode pinned.
313 */
1da177e4
LT
314static inline void lock_page(struct page *page)
315{
316 might_sleep();
529ae9aa 317 if (!trylock_page(page))
1da177e4
LT
318 __lock_page(page);
319}
db37648c 320
2687a356
MW
321/*
322 * lock_page_killable is like lock_page but can be interrupted by fatal
323 * signals. It returns 0 if it locked the page and -EINTR if it was
324 * killed while waiting.
325 */
326static inline int lock_page_killable(struct page *page)
327{
328 might_sleep();
529ae9aa 329 if (!trylock_page(page))
2687a356
MW
330 return __lock_page_killable(page);
331 return 0;
332}
333
db37648c
NP
334/*
335 * lock_page_nosync should only be used if we can't pin the page's inode.
336 * Doesn't play quite so well with block device plugging.
337 */
338static inline void lock_page_nosync(struct page *page)
339{
340 might_sleep();
529ae9aa 341 if (!trylock_page(page))
db37648c
NP
342 __lock_page_nosync(page);
343}
1da177e4
LT
344
345/*
346 * This is exported only for wait_on_page_locked/wait_on_page_writeback.
347 * Never use this directly!
348 */
b3c97528 349extern void wait_on_page_bit(struct page *page, int bit_nr);
1da177e4
LT
350
351/*
352 * Wait for a page to be unlocked.
353 *
354 * This must be called with the caller "holding" the page,
355 * ie with increased "page->count" so that the page won't
356 * go away during the wait..
357 */
358static inline void wait_on_page_locked(struct page *page)
359{
360 if (PageLocked(page))
361 wait_on_page_bit(page, PG_locked);
362}
363
364/*
365 * Wait for a page to complete writeback
366 */
367static inline void wait_on_page_writeback(struct page *page)
368{
369 if (PageWriteback(page))
370 wait_on_page_bit(page, PG_writeback);
371}
372
373extern void end_page_writeback(struct page *page);
374
375/*
376 * Fault a userspace page into pagetables. Return non-zero on a fault.
377 *
378 * This assumes that two userspace pages are always sufficient. That's
379 * not true if PAGE_CACHE_SIZE > PAGE_SIZE.
380 */
381static inline int fault_in_pages_writeable(char __user *uaddr, int size)
382{
383 int ret;
384
08291429
NP
385 if (unlikely(size == 0))
386 return 0;
387
1da177e4
LT
388 /*
389 * Writing zeroes into userspace here is OK, because we know that if
390 * the zero gets there, we'll be overwriting it.
391 */
392 ret = __put_user(0, uaddr);
393 if (ret == 0) {
394 char __user *end = uaddr + size - 1;
395
396 /*
397 * If the page was already mapped, this will get a cache miss
398 * for sure, so try to avoid doing it.
399 */
400 if (((unsigned long)uaddr & PAGE_MASK) !=
401 ((unsigned long)end & PAGE_MASK))
402 ret = __put_user(0, end);
403 }
404 return ret;
405}
406
08291429 407static inline int fault_in_pages_readable(const char __user *uaddr, int size)
1da177e4
LT
408{
409 volatile char c;
410 int ret;
411
08291429
NP
412 if (unlikely(size == 0))
413 return 0;
414
1da177e4
LT
415 ret = __get_user(c, uaddr);
416 if (ret == 0) {
417 const char __user *end = uaddr + size - 1;
418
419 if (((unsigned long)uaddr & PAGE_MASK) !=
420 ((unsigned long)end & PAGE_MASK))
08291429 421 ret = __get_user(c, end);
1da177e4 422 }
08291429 423 return ret;
1da177e4
LT
424}
425
529ae9aa
NP
426int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
427 pgoff_t index, gfp_t gfp_mask);
428int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
429 pgoff_t index, gfp_t gfp_mask);
430extern void remove_from_page_cache(struct page *page);
431extern void __remove_from_page_cache(struct page *page);
432
433/*
434 * Like add_to_page_cache_locked, but used to add newly allocated pages:
435 * the page is new, so we can just run set_page_locked() against it.
436 */
437static inline int add_to_page_cache(struct page *page,
438 struct address_space *mapping, pgoff_t offset, gfp_t gfp_mask)
439{
440 int error;
441
442 set_page_locked(page);
443 error = add_to_page_cache_locked(page, mapping, offset, gfp_mask);
444 if (unlikely(error))
445 clear_page_locked(page);
446 return error;
447}
448
1da177e4 449#endif /* _LINUX_PAGEMAP_H */
This page took 0.591064 seconds and 5 git commands to generate.