x86: Support for this_cpu_add, sub, dec, inc_return
[deliverable/linux.git] / include / linux / percpu.h
CommitLineData
1da177e4
LT
1#ifndef __LINUX_PERCPU_H
2#define __LINUX_PERCPU_H
7ff6f082 3
0a3021f4 4#include <linux/preempt.h>
1da177e4 5#include <linux/smp.h>
7ff6f082 6#include <linux/cpumask.h>
6a242909 7#include <linux/pfn.h>
de380b55 8#include <linux/init.h>
7ff6f082 9
1da177e4
LT
10#include <asm/percpu.h>
11
6a242909 12/* enough to cover all DEFINE_PER_CPUs in modules */
b00742d3 13#ifdef CONFIG_MODULES
6a242909 14#define PERCPU_MODULE_RESERVE (8 << 10)
b00742d3 15#else
6a242909 16#define PERCPU_MODULE_RESERVE 0
1da177e4
LT
17#endif
18
6a242909 19#ifndef PERCPU_ENOUGH_ROOM
b00742d3 20#define PERCPU_ENOUGH_ROOM \
6a242909
TH
21 (ALIGN(__per_cpu_end - __per_cpu_start, SMP_CACHE_BYTES) + \
22 PERCPU_MODULE_RESERVE)
23#endif
b00742d3 24
632bbfee
JB
25/*
26 * Must be an lvalue. Since @var must be a simple identifier,
27 * we force a syntax error here if it isn't.
28 */
29#define get_cpu_var(var) (*({ \
632bbfee
JB
30 preempt_disable(); \
31 &__get_cpu_var(var); }))
f7b64fe8 32
e0fdb0e0
RR
33/*
34 * The weird & is necessary because sparse considers (void)(var) to be
35 * a direct dereference of percpu variable (var).
36 */
f7b64fe8 37#define put_cpu_var(var) do { \
e0fdb0e0 38 (void)&(var); \
f7b64fe8
TH
39 preempt_enable(); \
40} while (0)
1da177e4 41
8b8e2ec1
PZ
42#define get_cpu_ptr(var) ({ \
43 preempt_disable(); \
44 this_cpu_ptr(var); })
45
46#define put_cpu_ptr(var) do { \
47 (void)(var); \
48 preempt_enable(); \
49} while (0)
50
8d408b4b 51/* minimum unit size, also is the maximum supported allocation size */
6abad5ac 52#define PCPU_MIN_UNIT_SIZE PFN_ALIGN(32 << 10)
8d408b4b 53
099a19d9
TH
54/*
55 * Percpu allocator can serve percpu allocations before slab is
56 * initialized which allows slab to depend on the percpu allocator.
57 * The following two parameters decide how much resource to
58 * preallocate for this. Keep PERCPU_DYNAMIC_RESERVE equal to or
59 * larger than PERCPU_DYNAMIC_EARLY_SIZE.
60 */
61#define PERCPU_DYNAMIC_EARLY_SLOTS 128
62#define PERCPU_DYNAMIC_EARLY_SIZE (12 << 10)
63
8d408b4b
TH
64/*
65 * PERCPU_DYNAMIC_RESERVE indicates the amount of free area to piggy
6b19b0c2
TH
66 * back on the first chunk for dynamic percpu allocation if arch is
67 * manually allocating and mapping it for faster access (as a part of
68 * large page mapping for example).
8d408b4b 69 *
6b19b0c2
TH
70 * The following values give between one and two pages of free space
71 * after typical minimal boot (2-way SMP, single disk and NIC) with
72 * both defconfig and a distro config on x86_64 and 32. More
73 * intelligent way to determine this would be nice.
8d408b4b 74 */
6b19b0c2
TH
75#if BITS_PER_LONG > 32
76#define PERCPU_DYNAMIC_RESERVE (20 << 10)
77#else
78#define PERCPU_DYNAMIC_RESERVE (12 << 10)
79#endif
8d408b4b 80
fbf59bc9 81extern void *pcpu_base_addr;
fb435d52 82extern const unsigned long *pcpu_unit_offsets;
1da177e4 83
fd1e8a1f
TH
84struct pcpu_group_info {
85 int nr_units; /* aligned # of units */
86 unsigned long base_offset; /* base address offset */
87 unsigned int *cpu_map; /* unit->cpu map, empty
88 * entries contain NR_CPUS */
89};
90
91struct pcpu_alloc_info {
92 size_t static_size;
93 size_t reserved_size;
94 size_t dyn_size;
95 size_t unit_size;
96 size_t atom_size;
97 size_t alloc_size;
98 size_t __ai_size; /* internal, don't use */
99 int nr_groups; /* 0 if grouping unnecessary */
100 struct pcpu_group_info groups[];
101};
102
f58dc01b
TH
103enum pcpu_fc {
104 PCPU_FC_AUTO,
105 PCPU_FC_EMBED,
106 PCPU_FC_PAGE,
f58dc01b
TH
107
108 PCPU_FC_NR,
109};
110extern const char *pcpu_fc_names[PCPU_FC_NR];
111
112extern enum pcpu_fc pcpu_chosen_fc;
113
3cbc8565
TH
114typedef void * (*pcpu_fc_alloc_fn_t)(unsigned int cpu, size_t size,
115 size_t align);
d4b95f80
TH
116typedef void (*pcpu_fc_free_fn_t)(void *ptr, size_t size);
117typedef void (*pcpu_fc_populate_pte_fn_t)(unsigned long addr);
a530b795 118typedef int (pcpu_fc_cpu_distance_fn_t)(unsigned int from, unsigned int to);
fbf59bc9 119
fd1e8a1f
TH
120extern struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
121 int nr_units);
122extern void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai);
123
fb435d52
TH
124extern int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
125 void *base_addr);
8d408b4b 126
08fc4580 127#ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
4ba6ce25 128extern int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
c8826dd5
TH
129 size_t atom_size,
130 pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
131 pcpu_fc_alloc_fn_t alloc_fn,
132 pcpu_fc_free_fn_t free_fn);
08fc4580 133#endif
66c3a757 134
08fc4580 135#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
fb435d52 136extern int __init pcpu_page_first_chunk(size_t reserved_size,
d4b95f80
TH
137 pcpu_fc_alloc_fn_t alloc_fn,
138 pcpu_fc_free_fn_t free_fn,
139 pcpu_fc_populate_pte_fn_t populate_pte_fn);
08fc4580 140#endif
d4b95f80 141
f2a8205c
TH
142/*
143 * Use this to get to a cpu's version of the per-cpu object
144 * dynamically allocated. Non-atomic access to the current CPU's
145 * version should probably be combined with get_cpu()/put_cpu().
146 */
bbddff05 147#ifdef CONFIG_SMP
fbf59bc9 148#define per_cpu_ptr(ptr, cpu) SHIFT_PERCPU_PTR((ptr), per_cpu_offset((cpu)))
bbddff05
TH
149#else
150#define per_cpu_ptr(ptr, cpu) ({ (void)(cpu); VERIFY_PERCPU_PTR((ptr)); })
151#endif
fbf59bc9 152
e0fdb0e0 153extern void __percpu *__alloc_reserved_percpu(size_t size, size_t align);
10fad5e4 154extern bool is_kernel_percpu_address(unsigned long addr);
1da177e4 155
bbddff05 156#if !defined(CONFIG_SMP) || !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
e74e3962
TH
157extern void __init setup_per_cpu_areas(void);
158#endif
099a19d9 159extern void __init percpu_init_late(void);
e74e3962 160
de380b55
TH
161extern void __percpu *__alloc_percpu(size_t size, size_t align);
162extern void free_percpu(void __percpu *__pdata);
163extern phys_addr_t per_cpu_ptr_to_phys(void *addr);
164
64ef291f 165#define alloc_percpu(type) \
e0fdb0e0 166 (typeof(type) __percpu *)__alloc_percpu(sizeof(type), __alignof__(type))
1da177e4 167
066123a5
TH
168/*
169 * Optional methods for optimized non-lvalue per-cpu variable access.
170 *
171 * @var can be a percpu variable or a field of it and its size should
172 * equal char, int or long. percpu_read() evaluates to a lvalue and
173 * all others to void.
174 *
175 * These operations are guaranteed to be atomic w.r.t. preemption.
176 * The generic versions use plain get/put_cpu_var(). Archs are
177 * encouraged to implement single-instruction alternatives which don't
178 * require preemption protection.
179 */
180#ifndef percpu_read
181# define percpu_read(var) \
182 ({ \
f7b64fe8
TH
183 typeof(var) *pr_ptr__ = &(var); \
184 typeof(var) pr_ret__; \
185 pr_ret__ = get_cpu_var(*pr_ptr__); \
186 put_cpu_var(*pr_ptr__); \
187 pr_ret__; \
066123a5
TH
188 })
189#endif
190
191#define __percpu_generic_to_op(var, val, op) \
192do { \
f7b64fe8
TH
193 typeof(var) *pgto_ptr__ = &(var); \
194 get_cpu_var(*pgto_ptr__) op val; \
195 put_cpu_var(*pgto_ptr__); \
066123a5
TH
196} while (0)
197
198#ifndef percpu_write
199# define percpu_write(var, val) __percpu_generic_to_op(var, (val), =)
200#endif
201
202#ifndef percpu_add
203# define percpu_add(var, val) __percpu_generic_to_op(var, (val), +=)
204#endif
205
206#ifndef percpu_sub
207# define percpu_sub(var, val) __percpu_generic_to_op(var, (val), -=)
208#endif
209
210#ifndef percpu_and
211# define percpu_and(var, val) __percpu_generic_to_op(var, (val), &=)
212#endif
213
214#ifndef percpu_or
215# define percpu_or(var, val) __percpu_generic_to_op(var, (val), |=)
216#endif
217
218#ifndef percpu_xor
219# define percpu_xor(var, val) __percpu_generic_to_op(var, (val), ^=)
220#endif
221
7340a0b1
CL
222/*
223 * Branching function to split up a function into a set of functions that
224 * are called for different scalar sizes of the objects handled.
225 */
226
227extern void __bad_size_call_parameter(void);
228
0f5e4816
TH
229#define __pcpu_size_call_return(stem, variable) \
230({ typeof(variable) pscr_ret__; \
545695fb 231 __verify_pcpu_ptr(&(variable)); \
7340a0b1 232 switch(sizeof(variable)) { \
0f5e4816
TH
233 case 1: pscr_ret__ = stem##1(variable);break; \
234 case 2: pscr_ret__ = stem##2(variable);break; \
235 case 4: pscr_ret__ = stem##4(variable);break; \
236 case 8: pscr_ret__ = stem##8(variable);break; \
7340a0b1
CL
237 default: \
238 __bad_size_call_parameter();break; \
239 } \
0f5e4816 240 pscr_ret__; \
7340a0b1
CL
241})
242
a663ffff
CL
243#define __pcpu_size_call_return2(stem, variable, ...) \
244({ \
245 typeof(variable) pscr2_ret__; \
246 __verify_pcpu_ptr(&(variable)); \
247 switch(sizeof(variable)) { \
248 case 1: pscr2_ret__ = stem##1(variable, __VA_ARGS__); break; \
249 case 2: pscr2_ret__ = stem##2(variable, __VA_ARGS__); break; \
250 case 4: pscr2_ret__ = stem##4(variable, __VA_ARGS__); break; \
251 case 8: pscr2_ret__ = stem##8(variable, __VA_ARGS__); break; \
252 default: \
253 __bad_size_call_parameter(); break; \
254 } \
255 pscr2_ret__; \
256})
257
0f5e4816 258#define __pcpu_size_call(stem, variable, ...) \
7340a0b1 259do { \
545695fb 260 __verify_pcpu_ptr(&(variable)); \
7340a0b1
CL
261 switch(sizeof(variable)) { \
262 case 1: stem##1(variable, __VA_ARGS__);break; \
263 case 2: stem##2(variable, __VA_ARGS__);break; \
264 case 4: stem##4(variable, __VA_ARGS__);break; \
265 case 8: stem##8(variable, __VA_ARGS__);break; \
266 default: \
267 __bad_size_call_parameter();break; \
268 } \
269} while (0)
270
271/*
272 * Optimized manipulation for memory allocated through the per cpu
dd17c8f7 273 * allocator or for addresses of per cpu variables.
7340a0b1
CL
274 *
275 * These operation guarantee exclusivity of access for other operations
276 * on the *same* processor. The assumption is that per cpu data is only
277 * accessed by a single processor instance (the current one).
278 *
279 * The first group is used for accesses that must be done in a
280 * preemption safe way since we know that the context is not preempt
281 * safe. Interrupts may occur. If the interrupt modifies the variable
282 * too then RMW actions will not be reliable.
283 *
284 * The arch code can provide optimized functions in two ways:
285 *
286 * 1. Override the function completely. F.e. define this_cpu_add().
287 * The arch must then ensure that the various scalar format passed
288 * are handled correctly.
289 *
290 * 2. Provide functions for certain scalar sizes. F.e. provide
291 * this_cpu_add_2() to provide per cpu atomic operations for 2 byte
292 * sized RMW actions. If arch code does not provide operations for
293 * a scalar size then the fallback in the generic code will be
294 * used.
295 */
296
297#define _this_cpu_generic_read(pcp) \
298({ typeof(pcp) ret__; \
299 preempt_disable(); \
300 ret__ = *this_cpu_ptr(&(pcp)); \
301 preempt_enable(); \
302 ret__; \
303})
304
305#ifndef this_cpu_read
306# ifndef this_cpu_read_1
307# define this_cpu_read_1(pcp) _this_cpu_generic_read(pcp)
308# endif
309# ifndef this_cpu_read_2
310# define this_cpu_read_2(pcp) _this_cpu_generic_read(pcp)
311# endif
312# ifndef this_cpu_read_4
313# define this_cpu_read_4(pcp) _this_cpu_generic_read(pcp)
314# endif
315# ifndef this_cpu_read_8
316# define this_cpu_read_8(pcp) _this_cpu_generic_read(pcp)
317# endif
0f5e4816 318# define this_cpu_read(pcp) __pcpu_size_call_return(this_cpu_read_, (pcp))
7340a0b1
CL
319#endif
320
321#define _this_cpu_generic_to_op(pcp, val, op) \
322do { \
323 preempt_disable(); \
f7b64fe8 324 *__this_cpu_ptr(&(pcp)) op val; \
7340a0b1
CL
325 preempt_enable(); \
326} while (0)
327
328#ifndef this_cpu_write
329# ifndef this_cpu_write_1
330# define this_cpu_write_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), =)
331# endif
332# ifndef this_cpu_write_2
333# define this_cpu_write_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), =)
334# endif
335# ifndef this_cpu_write_4
336# define this_cpu_write_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), =)
337# endif
338# ifndef this_cpu_write_8
339# define this_cpu_write_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), =)
340# endif
0f5e4816 341# define this_cpu_write(pcp, val) __pcpu_size_call(this_cpu_write_, (pcp), (val))
7340a0b1
CL
342#endif
343
344#ifndef this_cpu_add
345# ifndef this_cpu_add_1
346# define this_cpu_add_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=)
347# endif
348# ifndef this_cpu_add_2
349# define this_cpu_add_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=)
350# endif
351# ifndef this_cpu_add_4
352# define this_cpu_add_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=)
353# endif
354# ifndef this_cpu_add_8
355# define this_cpu_add_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=)
356# endif
0f5e4816 357# define this_cpu_add(pcp, val) __pcpu_size_call(this_cpu_add_, (pcp), (val))
7340a0b1
CL
358#endif
359
360#ifndef this_cpu_sub
361# define this_cpu_sub(pcp, val) this_cpu_add((pcp), -(val))
362#endif
363
364#ifndef this_cpu_inc
365# define this_cpu_inc(pcp) this_cpu_add((pcp), 1)
366#endif
367
368#ifndef this_cpu_dec
369# define this_cpu_dec(pcp) this_cpu_sub((pcp), 1)
370#endif
371
372#ifndef this_cpu_and
373# ifndef this_cpu_and_1
374# define this_cpu_and_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=)
375# endif
376# ifndef this_cpu_and_2
377# define this_cpu_and_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=)
378# endif
379# ifndef this_cpu_and_4
380# define this_cpu_and_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=)
381# endif
382# ifndef this_cpu_and_8
383# define this_cpu_and_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=)
384# endif
0f5e4816 385# define this_cpu_and(pcp, val) __pcpu_size_call(this_cpu_and_, (pcp), (val))
7340a0b1
CL
386#endif
387
388#ifndef this_cpu_or
389# ifndef this_cpu_or_1
390# define this_cpu_or_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=)
391# endif
392# ifndef this_cpu_or_2
393# define this_cpu_or_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=)
394# endif
395# ifndef this_cpu_or_4
396# define this_cpu_or_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=)
397# endif
398# ifndef this_cpu_or_8
399# define this_cpu_or_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=)
400# endif
0f5e4816 401# define this_cpu_or(pcp, val) __pcpu_size_call(this_cpu_or_, (pcp), (val))
7340a0b1
CL
402#endif
403
404#ifndef this_cpu_xor
405# ifndef this_cpu_xor_1
406# define this_cpu_xor_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=)
407# endif
408# ifndef this_cpu_xor_2
409# define this_cpu_xor_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=)
410# endif
411# ifndef this_cpu_xor_4
412# define this_cpu_xor_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=)
413# endif
414# ifndef this_cpu_xor_8
415# define this_cpu_xor_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=)
416# endif
0f5e4816 417# define this_cpu_xor(pcp, val) __pcpu_size_call(this_cpu_or_, (pcp), (val))
7340a0b1
CL
418#endif
419
420/*
421 * Generic percpu operations that do not require preemption handling.
422 * Either we do not care about races or the caller has the
423 * responsibility of handling preemptions issues. Arch code can still
424 * override these instructions since the arch per cpu code may be more
425 * efficient and may actually get race freeness for free (that is the
426 * case for x86 for example).
427 *
428 * If there is no other protection through preempt disable and/or
429 * disabling interupts then one of these RMW operations can show unexpected
430 * behavior because the execution thread was rescheduled on another processor
431 * or an interrupt occurred and the same percpu variable was modified from
432 * the interrupt context.
433 */
434#ifndef __this_cpu_read
435# ifndef __this_cpu_read_1
436# define __this_cpu_read_1(pcp) (*__this_cpu_ptr(&(pcp)))
437# endif
438# ifndef __this_cpu_read_2
439# define __this_cpu_read_2(pcp) (*__this_cpu_ptr(&(pcp)))
440# endif
441# ifndef __this_cpu_read_4
442# define __this_cpu_read_4(pcp) (*__this_cpu_ptr(&(pcp)))
443# endif
444# ifndef __this_cpu_read_8
445# define __this_cpu_read_8(pcp) (*__this_cpu_ptr(&(pcp)))
446# endif
0f5e4816 447# define __this_cpu_read(pcp) __pcpu_size_call_return(__this_cpu_read_, (pcp))
7340a0b1
CL
448#endif
449
450#define __this_cpu_generic_to_op(pcp, val, op) \
451do { \
452 *__this_cpu_ptr(&(pcp)) op val; \
453} while (0)
454
455#ifndef __this_cpu_write
456# ifndef __this_cpu_write_1
457# define __this_cpu_write_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), =)
458# endif
459# ifndef __this_cpu_write_2
460# define __this_cpu_write_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), =)
461# endif
462# ifndef __this_cpu_write_4
463# define __this_cpu_write_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), =)
464# endif
465# ifndef __this_cpu_write_8
466# define __this_cpu_write_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), =)
467# endif
0f5e4816 468# define __this_cpu_write(pcp, val) __pcpu_size_call(__this_cpu_write_, (pcp), (val))
7340a0b1
CL
469#endif
470
471#ifndef __this_cpu_add
472# ifndef __this_cpu_add_1
473# define __this_cpu_add_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=)
474# endif
475# ifndef __this_cpu_add_2
476# define __this_cpu_add_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=)
477# endif
478# ifndef __this_cpu_add_4
479# define __this_cpu_add_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=)
480# endif
481# ifndef __this_cpu_add_8
482# define __this_cpu_add_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=)
483# endif
0f5e4816 484# define __this_cpu_add(pcp, val) __pcpu_size_call(__this_cpu_add_, (pcp), (val))
7340a0b1
CL
485#endif
486
487#ifndef __this_cpu_sub
488# define __this_cpu_sub(pcp, val) __this_cpu_add((pcp), -(val))
489#endif
490
491#ifndef __this_cpu_inc
492# define __this_cpu_inc(pcp) __this_cpu_add((pcp), 1)
493#endif
494
495#ifndef __this_cpu_dec
496# define __this_cpu_dec(pcp) __this_cpu_sub((pcp), 1)
497#endif
498
499#ifndef __this_cpu_and
500# ifndef __this_cpu_and_1
501# define __this_cpu_and_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=)
502# endif
503# ifndef __this_cpu_and_2
504# define __this_cpu_and_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=)
505# endif
506# ifndef __this_cpu_and_4
507# define __this_cpu_and_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=)
508# endif
509# ifndef __this_cpu_and_8
510# define __this_cpu_and_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=)
511# endif
0f5e4816 512# define __this_cpu_and(pcp, val) __pcpu_size_call(__this_cpu_and_, (pcp), (val))
7340a0b1
CL
513#endif
514
515#ifndef __this_cpu_or
516# ifndef __this_cpu_or_1
517# define __this_cpu_or_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=)
518# endif
519# ifndef __this_cpu_or_2
520# define __this_cpu_or_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=)
521# endif
522# ifndef __this_cpu_or_4
523# define __this_cpu_or_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=)
524# endif
525# ifndef __this_cpu_or_8
526# define __this_cpu_or_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=)
527# endif
0f5e4816 528# define __this_cpu_or(pcp, val) __pcpu_size_call(__this_cpu_or_, (pcp), (val))
7340a0b1
CL
529#endif
530
531#ifndef __this_cpu_xor
532# ifndef __this_cpu_xor_1
533# define __this_cpu_xor_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=)
534# endif
535# ifndef __this_cpu_xor_2
536# define __this_cpu_xor_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=)
537# endif
538# ifndef __this_cpu_xor_4
539# define __this_cpu_xor_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=)
540# endif
541# ifndef __this_cpu_xor_8
542# define __this_cpu_xor_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=)
543# endif
0f5e4816 544# define __this_cpu_xor(pcp, val) __pcpu_size_call(__this_cpu_xor_, (pcp), (val))
7340a0b1
CL
545#endif
546
a663ffff
CL
547#define _this_cpu_generic_add_return(pcp, val) \
548({ \
549 typeof(pcp) ret__; \
550 preempt_disable(); \
551 __this_cpu_add(pcp, val); \
552 ret__ = __this_cpu_read(pcp); \
553 preempt_enable(); \
554 ret__; \
555})
556
557#ifndef this_cpu_add_return
558# ifndef this_cpu_add_return_1
559# define this_cpu_add_return_1(pcp, val) _this_cpu_generic_add_return(pcp, val)
560# endif
561# ifndef this_cpu_add_return_2
562# define this_cpu_add_return_2(pcp, val) _this_cpu_generic_add_return(pcp, val)
563# endif
564# ifndef this_cpu_add_return_4
565# define this_cpu_add_return_4(pcp, val) _this_cpu_generic_add_return(pcp, val)
566# endif
567# ifndef this_cpu_add_return_8
568# define this_cpu_add_return_8(pcp, val) _this_cpu_generic_add_return(pcp, val)
569# endif
570# define this_cpu_add_return(pcp, val) __pcpu_size_call_return2(this_cpu_add_return_, pcp, val)
571#endif
572
573#define this_cpu_sub_return(pcp, val) this_cpu_add_return(pcp, -(val))
574#define this_cpu_inc_return(pcp) this_cpu_add_return(pcp, 1)
575#define this_cpu_dec_return(pcp) this_cpu_add_return(pcp, -1)
576
577#define __this_cpu_generic_add_return(pcp, val) \
578({ \
579 __this_cpu_add(pcp, val); \
580 __this_cpu_read(pcp); \
581})
582
583#ifndef __this_cpu_add_return
584# ifndef __this_cpu_add_return_1
585# define __this_cpu_add_return_1(pcp, val) __this_cpu_generic_add_return(pcp, val)
586# endif
587# ifndef __this_cpu_add_return_2
588# define __this_cpu_add_return_2(pcp, val) __this_cpu_generic_add_return(pcp, val)
589# endif
590# ifndef __this_cpu_add_return_4
591# define __this_cpu_add_return_4(pcp, val) __this_cpu_generic_add_return(pcp, val)
592# endif
593# ifndef __this_cpu_add_return_8
594# define __this_cpu_add_return_8(pcp, val) __this_cpu_generic_add_return(pcp, val)
595# endif
596# define __this_cpu_add_return(pcp, val) __pcpu_size_call_return2(this_cpu_add_return_, pcp, val)
597#endif
598
599#define __this_cpu_sub_return(pcp, val) this_cpu_add_return(pcp, -(val))
600#define __this_cpu_inc_return(pcp) this_cpu_add_return(pcp, 1)
601#define __this_cpu_dec_return(pcp) this_cpu_add_return(pcp, -1)
602
7340a0b1
CL
603/*
604 * IRQ safe versions of the per cpu RMW operations. Note that these operations
605 * are *not* safe against modification of the same variable from another
606 * processors (which one gets when using regular atomic operations)
607 . They are guaranteed to be atomic vs. local interrupts and
608 * preemption only.
609 */
610#define irqsafe_cpu_generic_to_op(pcp, val, op) \
611do { \
612 unsigned long flags; \
613 local_irq_save(flags); \
614 *__this_cpu_ptr(&(pcp)) op val; \
615 local_irq_restore(flags); \
616} while (0)
617
618#ifndef irqsafe_cpu_add
619# ifndef irqsafe_cpu_add_1
620# define irqsafe_cpu_add_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=)
621# endif
622# ifndef irqsafe_cpu_add_2
623# define irqsafe_cpu_add_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=)
624# endif
625# ifndef irqsafe_cpu_add_4
626# define irqsafe_cpu_add_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=)
627# endif
628# ifndef irqsafe_cpu_add_8
629# define irqsafe_cpu_add_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), +=)
630# endif
0f5e4816 631# define irqsafe_cpu_add(pcp, val) __pcpu_size_call(irqsafe_cpu_add_, (pcp), (val))
7340a0b1
CL
632#endif
633
634#ifndef irqsafe_cpu_sub
635# define irqsafe_cpu_sub(pcp, val) irqsafe_cpu_add((pcp), -(val))
636#endif
637
638#ifndef irqsafe_cpu_inc
639# define irqsafe_cpu_inc(pcp) irqsafe_cpu_add((pcp), 1)
640#endif
641
642#ifndef irqsafe_cpu_dec
643# define irqsafe_cpu_dec(pcp) irqsafe_cpu_sub((pcp), 1)
644#endif
645
646#ifndef irqsafe_cpu_and
647# ifndef irqsafe_cpu_and_1
648# define irqsafe_cpu_and_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=)
649# endif
650# ifndef irqsafe_cpu_and_2
651# define irqsafe_cpu_and_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=)
652# endif
653# ifndef irqsafe_cpu_and_4
654# define irqsafe_cpu_and_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=)
655# endif
656# ifndef irqsafe_cpu_and_8
657# define irqsafe_cpu_and_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), &=)
658# endif
0f5e4816 659# define irqsafe_cpu_and(pcp, val) __pcpu_size_call(irqsafe_cpu_and_, (val))
7340a0b1
CL
660#endif
661
662#ifndef irqsafe_cpu_or
663# ifndef irqsafe_cpu_or_1
664# define irqsafe_cpu_or_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=)
665# endif
666# ifndef irqsafe_cpu_or_2
667# define irqsafe_cpu_or_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=)
668# endif
669# ifndef irqsafe_cpu_or_4
670# define irqsafe_cpu_or_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=)
671# endif
672# ifndef irqsafe_cpu_or_8
673# define irqsafe_cpu_or_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), |=)
674# endif
0f5e4816 675# define irqsafe_cpu_or(pcp, val) __pcpu_size_call(irqsafe_cpu_or_, (val))
7340a0b1
CL
676#endif
677
678#ifndef irqsafe_cpu_xor
679# ifndef irqsafe_cpu_xor_1
680# define irqsafe_cpu_xor_1(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=)
681# endif
682# ifndef irqsafe_cpu_xor_2
683# define irqsafe_cpu_xor_2(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=)
684# endif
685# ifndef irqsafe_cpu_xor_4
686# define irqsafe_cpu_xor_4(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=)
687# endif
688# ifndef irqsafe_cpu_xor_8
689# define irqsafe_cpu_xor_8(pcp, val) irqsafe_cpu_generic_to_op((pcp), (val), ^=)
690# endif
0f5e4816 691# define irqsafe_cpu_xor(pcp, val) __pcpu_size_call(irqsafe_cpu_xor_, (val))
7340a0b1
CL
692#endif
693
1da177e4 694#endif /* __LINUX_PERCPU_H */
This page took 1.21341 seconds and 5 git commands to generate.