uio: mark uio.h functions __KERNEL__ only
[deliverable/linux.git] / include / linux / reiserfs_fs.h
CommitLineData
1da177e4
LT
1/*
2 * Copyright 1996, 1997, 1998 Hans Reiser, see reiserfs/README for licensing and copyright details
3 */
4
5 /* this file has an amazingly stupid
bd4c625c
LT
6 name, yura please fix it to be
7 reiserfs.h, and merge all the rest
8 of our .h files that are in this
9 directory into it. */
1da177e4
LT
10
11#ifndef _LINUX_REISER_FS_H
12#define _LINUX_REISER_FS_H
13
14#include <linux/types.h>
e18fa700
JG
15#include <linux/magic.h>
16
1da177e4
LT
17#ifdef __KERNEL__
18#include <linux/slab.h>
19#include <linux/interrupt.h>
20#include <linux/sched.h>
21#include <linux/workqueue.h>
22#include <asm/unaligned.h>
23#include <linux/bitops.h>
24#include <linux/proc_fs.h>
25#include <linux/smp_lock.h>
26#include <linux/buffer_head.h>
27#include <linux/reiserfs_fs_i.h>
28#include <linux/reiserfs_fs_sb.h>
29#endif
30
31/*
32 * include/linux/reiser_fs.h
33 *
34 * Reiser File System constants and structures
35 *
36 */
37
750e1c18
JSR
38/* ioctl's command */
39#define REISERFS_IOC_UNPACK _IOW(0xCD,1,long)
40/* define following flags to be the same as in ext2, so that chattr(1),
41 lsattr(1) will work with us. */
42#define REISERFS_IOC_GETFLAGS FS_IOC_GETFLAGS
43#define REISERFS_IOC_SETFLAGS FS_IOC_SETFLAGS
44#define REISERFS_IOC_GETVERSION FS_IOC_GETVERSION
45#define REISERFS_IOC_SETVERSION FS_IOC_SETVERSION
46
47#ifdef __KERNEL__
48/* the 32 bit compat definitions with int argument */
49#define REISERFS_IOC32_UNPACK _IOW(0xCD, 1, int)
50#define REISERFS_IOC32_GETFLAGS FS_IOC32_GETFLAGS
51#define REISERFS_IOC32_SETFLAGS FS_IOC32_SETFLAGS
52#define REISERFS_IOC32_GETVERSION FS_IOC32_GETVERSION
53#define REISERFS_IOC32_SETVERSION FS_IOC32_SETVERSION
54
55/* Locking primitives */
56/* Right now we are still falling back to (un)lock_kernel, but eventually that
57 would evolve into real per-fs locks */
58#define reiserfs_write_lock( sb ) lock_kernel()
59#define reiserfs_write_unlock( sb ) unlock_kernel()
60
750e1c18
JSR
61struct fid;
62
1da177e4
LT
63/* in reading the #defines, it may help to understand that they employ
64 the following abbreviations:
65
66 B = Buffer
67 I = Item header
68 H = Height within the tree (should be changed to LEV)
69 N = Number of the item in the node
70 STAT = stat data
71 DEH = Directory Entry Header
72 EC = Entry Count
73 E = Entry number
74 UL = Unsigned Long
75 BLKH = BLocK Header
76 UNFM = UNForMatted node
77 DC = Disk Child
78 P = Path
79
80 These #defines are named by concatenating these abbreviations,
81 where first comes the arguments, and last comes the return value,
82 of the macro.
83
84*/
85
86#define USE_INODE_GENERATION_COUNTER
87
88#define REISERFS_PREALLOCATE
89#define DISPLACE_NEW_PACKING_LOCALITIES
90#define PREALLOCATION_SIZE 9
91
92/* n must be power of 2 */
93#define _ROUND_UP(x,n) (((x)+(n)-1u) & ~((n)-1u))
94
95// to be ok for alpha and others we have to align structures to 8 byte
96// boundary.
97// FIXME: do not change 4 by anything else: there is code which relies on that
98#define ROUND_UP(x) _ROUND_UP(x,8LL)
99
100/* debug levels. Right now, CONFIG_REISERFS_CHECK means print all debug
101** messages.
102*/
bd4c625c 103#define REISERFS_DEBUG_CODE 5 /* extra messages to help find/debug errors */
1da177e4 104
45b03d5e
JM
105void __reiserfs_warning(struct super_block *s, const char *id,
106 const char *func, const char *fmt, ...);
107#define reiserfs_warning(s, id, fmt, args...) \
108 __reiserfs_warning(s, id, __func__, fmt, ##args)
1da177e4
LT
109/* assertions handling */
110
111/** always check a condition and panic if it's false. */
c3a9c210
JM
112#define __RASSERT(cond, scond, format, args...) \
113do { \
114 if (!(cond)) \
115 reiserfs_panic(NULL, "assertion failure", "(" #cond ") at " \
116 __FILE__ ":%i:%s: " format "\n", \
117 in_interrupt() ? -1 : task_pid_nr(current), \
118 __LINE__, __func__ , ##args); \
119} while (0)
1da177e4 120
2d954d06
AV
121#define RASSERT(cond, format, args...) __RASSERT(cond, #cond, format, ##args)
122
1da177e4 123#if defined( CONFIG_REISERFS_CHECK )
2d954d06 124#define RFALSE(cond, format, args...) __RASSERT(!(cond), "!(" #cond ")", format, ##args)
1da177e4
LT
125#else
126#define RFALSE( cond, format, args... ) do {;} while( 0 )
127#endif
128
129#define CONSTF __attribute_const__
130/*
131 * Disk Data Structures
132 */
133
134/***************************************************************************/
135/* SUPER BLOCK */
136/***************************************************************************/
137
138/*
139 * Structure of super block on disk, a version of which in RAM is often accessed as REISERFS_SB(s)->s_rs
140 * the version in RAM is part of a larger structure containing fields never written to disk.
141 */
bd4c625c
LT
142#define UNSET_HASH 0 // read_super will guess about, what hash names
143 // in directories were sorted with
1da177e4
LT
144#define TEA_HASH 1
145#define YURA_HASH 2
146#define R5_HASH 3
147#define DEFAULT_HASH R5_HASH
148
1da177e4 149struct journal_params {
bd4c625c
LT
150 __le32 jp_journal_1st_block; /* where does journal start from on its
151 * device */
152 __le32 jp_journal_dev; /* journal device st_rdev */
153 __le32 jp_journal_size; /* size of the journal */
154 __le32 jp_journal_trans_max; /* max number of blocks in a transaction. */
155 __le32 jp_journal_magic; /* random value made on fs creation (this
156 * was sb_journal_block_count) */
157 __le32 jp_journal_max_batch; /* max number of blocks to batch into a
158 * trans */
159 __le32 jp_journal_max_commit_age; /* in seconds, how old can an async
160 * commit be */
161 __le32 jp_journal_max_trans_age; /* in seconds, how old can a transaction
162 * be */
1da177e4
LT
163};
164
165/* this is the super from 3.5.X, where X >= 10 */
bd4c625c
LT
166struct reiserfs_super_block_v1 {
167 __le32 s_block_count; /* blocks count */
168 __le32 s_free_blocks; /* free blocks count */
169 __le32 s_root_block; /* root block number */
170 struct journal_params s_journal;
171 __le16 s_blocksize; /* block size */
172 __le16 s_oid_maxsize; /* max size of object id array, see
173 * get_objectid() commentary */
174 __le16 s_oid_cursize; /* current size of object id array */
175 __le16 s_umount_state; /* this is set to 1 when filesystem was
176 * umounted, to 2 - when not */
177 char s_magic[10]; /* reiserfs magic string indicates that
178 * file system is reiserfs:
179 * "ReIsErFs" or "ReIsEr2Fs" or "ReIsEr3Fs" */
180 __le16 s_fs_state; /* it is set to used by fsck to mark which
181 * phase of rebuilding is done */
182 __le32 s_hash_function_code; /* indicate, what hash function is being use
183 * to sort names in a directory*/
184 __le16 s_tree_height; /* height of disk tree */
185 __le16 s_bmap_nr; /* amount of bitmap blocks needed to address
186 * each block of file system */
187 __le16 s_version; /* this field is only reliable on filesystem
188 * with non-standard journal */
189 __le16 s_reserved_for_journal; /* size in blocks of journal area on main
190 * device, we need to keep after
191 * making fs with non-standard journal */
1da177e4
LT
192} __attribute__ ((__packed__));
193
194#define SB_SIZE_V1 (sizeof(struct reiserfs_super_block_v1))
195
196/* this is the on disk super block */
bd4c625c
LT
197struct reiserfs_super_block {
198 struct reiserfs_super_block_v1 s_v1;
199 __le32 s_inode_generation;
200 __le32 s_flags; /* Right now used only by inode-attributes, if enabled */
201 unsigned char s_uuid[16]; /* filesystem unique identifier */
202 unsigned char s_label[16]; /* filesystem volume label */
702d21c6
JM
203 __le16 s_mnt_count; /* Count of mounts since last fsck */
204 __le16 s_max_mnt_count; /* Maximum mounts before check */
205 __le32 s_lastcheck; /* Timestamp of last fsck */
206 __le32 s_check_interval; /* Interval between checks */
207 char s_unused[76]; /* zero filled by mkreiserfs and
bd4c625c
LT
208 * reiserfs_convert_objectid_map_v1()
209 * so any additions must be updated
210 * there as well. */
211} __attribute__ ((__packed__));
1da177e4
LT
212
213#define SB_SIZE (sizeof(struct reiserfs_super_block))
214
215#define REISERFS_VERSION_1 0
216#define REISERFS_VERSION_2 2
217
1da177e4
LT
218// on-disk super block fields converted to cpu form
219#define SB_DISK_SUPER_BLOCK(s) (REISERFS_SB(s)->s_rs)
220#define SB_V1_DISK_SUPER_BLOCK(s) (&(SB_DISK_SUPER_BLOCK(s)->s_v1))
221#define SB_BLOCKSIZE(s) \
222 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_blocksize))
223#define SB_BLOCK_COUNT(s) \
224 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_block_count))
225#define SB_FREE_BLOCKS(s) \
226 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks))
227#define SB_REISERFS_MAGIC(s) \
228 (SB_V1_DISK_SUPER_BLOCK(s)->s_magic)
229#define SB_ROOT_BLOCK(s) \
230 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_root_block))
231#define SB_TREE_HEIGHT(s) \
232 le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height))
233#define SB_REISERFS_STATE(s) \
234 le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state))
235#define SB_VERSION(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_version))
236#define SB_BMAP_NR(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr))
237
238#define PUT_SB_BLOCK_COUNT(s, val) \
239 do { SB_V1_DISK_SUPER_BLOCK(s)->s_block_count = cpu_to_le32(val); } while (0)
240#define PUT_SB_FREE_BLOCKS(s, val) \
241 do { SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks = cpu_to_le32(val); } while (0)
242#define PUT_SB_ROOT_BLOCK(s, val) \
243 do { SB_V1_DISK_SUPER_BLOCK(s)->s_root_block = cpu_to_le32(val); } while (0)
244#define PUT_SB_TREE_HEIGHT(s, val) \
245 do { SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height = cpu_to_le16(val); } while (0)
246#define PUT_SB_REISERFS_STATE(s, val) \
bd4c625c 247 do { SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state = cpu_to_le16(val); } while (0)
1da177e4
LT
248#define PUT_SB_VERSION(s, val) \
249 do { SB_V1_DISK_SUPER_BLOCK(s)->s_version = cpu_to_le16(val); } while (0)
250#define PUT_SB_BMAP_NR(s, val) \
251 do { SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr = cpu_to_le16 (val); } while (0)
252
1da177e4
LT
253#define SB_ONDISK_JP(s) (&SB_V1_DISK_SUPER_BLOCK(s)->s_journal)
254#define SB_ONDISK_JOURNAL_SIZE(s) \
255 le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_size))
256#define SB_ONDISK_JOURNAL_1st_BLOCK(s) \
257 le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_1st_block))
258#define SB_ONDISK_JOURNAL_DEVICE(s) \
259 le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_dev))
260#define SB_ONDISK_RESERVED_FOR_JOURNAL(s) \
b8cc936f 261 le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_reserved_for_journal))
1da177e4
LT
262
263#define is_block_in_log_or_reserved_area(s, block) \
264 block >= SB_JOURNAL_1st_RESERVED_BLOCK(s) \
265 && block < SB_JOURNAL_1st_RESERVED_BLOCK(s) + \
266 ((!is_reiserfs_jr(SB_DISK_SUPER_BLOCK(s)) ? \
bd4c625c 267 SB_ONDISK_JOURNAL_SIZE(s) + 1 : SB_ONDISK_RESERVED_FOR_JOURNAL(s)))
1da177e4 268
bd4c625c
LT
269int is_reiserfs_3_5(struct reiserfs_super_block *rs);
270int is_reiserfs_3_6(struct reiserfs_super_block *rs);
271int is_reiserfs_jr(struct reiserfs_super_block *rs);
1da177e4
LT
272
273/* ReiserFS leaves the first 64k unused, so that partition labels have
274 enough space. If someone wants to write a fancy bootloader that
275 needs more than 64k, let us know, and this will be increased in size.
276 This number must be larger than than the largest block size on any
277 platform, or code will break. -Hans */
278#define REISERFS_DISK_OFFSET_IN_BYTES (64 * 1024)
279#define REISERFS_FIRST_BLOCK unused_define
280#define REISERFS_JOURNAL_OFFSET_IN_BYTES REISERFS_DISK_OFFSET_IN_BYTES
281
282/* the spot for the super in versions 3.5 - 3.5.10 (inclusive) */
283#define REISERFS_OLD_DISK_OFFSET_IN_BYTES (8 * 1024)
284
285// reiserfs internal error code (used by search_by_key adn fix_nodes))
286#define CARRY_ON 0
287#define REPEAT_SEARCH -1
288#define IO_ERROR -2
289#define NO_DISK_SPACE -3
290#define NO_BALANCING_NEEDED (-4)
291#define NO_MORE_UNUSED_CONTIGUOUS_BLOCKS (-5)
292#define QUOTA_EXCEEDED -6
293
294typedef __u32 b_blocknr_t;
3e8962be 295typedef __le32 unp_t;
1da177e4
LT
296
297struct unfm_nodeinfo {
bd4c625c
LT
298 unp_t unfm_nodenum;
299 unsigned short unfm_freespace;
1da177e4
LT
300};
301
302/* there are two formats of keys: 3.5 and 3.6
303 */
304#define KEY_FORMAT_3_5 0
305#define KEY_FORMAT_3_6 1
306
307/* there are two stat datas */
308#define STAT_DATA_V1 0
309#define STAT_DATA_V2 1
310
1da177e4
LT
311static inline struct reiserfs_inode_info *REISERFS_I(const struct inode *inode)
312{
313 return container_of(inode, struct reiserfs_inode_info, vfs_inode);
314}
315
316static inline struct reiserfs_sb_info *REISERFS_SB(const struct super_block *sb)
317{
318 return sb->s_fs_info;
319}
320
cb680c1b
JM
321/* Don't trust REISERFS_SB(sb)->s_bmap_nr, it's a u16
322 * which overflows on large file systems. */
13d8bcd2 323static inline __u32 reiserfs_bmap_count(struct super_block *sb)
cb680c1b
JM
324{
325 return (SB_BLOCK_COUNT(sb) - 1) / (sb->s_blocksize * 8) + 1;
326}
327
328static inline int bmap_would_wrap(unsigned bmap_nr)
329{
330 return bmap_nr > ((1LL << 16) - 1);
331}
332
1da177e4
LT
333/** this says about version of key of all items (but stat data) the
334 object consists of */
335#define get_inode_item_key_version( inode ) \
336 ((REISERFS_I(inode)->i_flags & i_item_key_version_mask) ? KEY_FORMAT_3_6 : KEY_FORMAT_3_5)
337
338#define set_inode_item_key_version( inode, version ) \
339 ({ if((version)==KEY_FORMAT_3_6) \
340 REISERFS_I(inode)->i_flags |= i_item_key_version_mask; \
341 else \
342 REISERFS_I(inode)->i_flags &= ~i_item_key_version_mask; })
343
344#define get_inode_sd_version(inode) \
345 ((REISERFS_I(inode)->i_flags & i_stat_data_version_mask) ? STAT_DATA_V2 : STAT_DATA_V1)
346
347#define set_inode_sd_version(inode, version) \
348 ({ if((version)==STAT_DATA_V2) \
349 REISERFS_I(inode)->i_flags |= i_stat_data_version_mask; \
350 else \
351 REISERFS_I(inode)->i_flags &= ~i_stat_data_version_mask; })
352
353/* This is an aggressive tail suppression policy, I am hoping it
354 improves our benchmarks. The principle behind it is that percentage
355 space saving is what matters, not absolute space saving. This is
356 non-intuitive, but it helps to understand it if you consider that the
357 cost to access 4 blocks is not much more than the cost to access 1
358 block, if you have to do a seek and rotate. A tail risks a
359 non-linear disk access that is significant as a percentage of total
360 time cost for a 4 block file and saves an amount of space that is
361 less significant as a percentage of space, or so goes the hypothesis.
362 -Hans */
363#define STORE_TAIL_IN_UNFM_S1(n_file_size,n_tail_size,n_block_size) \
364(\
365 (!(n_tail_size)) || \
366 (((n_tail_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) || \
367 ( (n_file_size) >= (n_block_size) * 4 ) || \
368 ( ( (n_file_size) >= (n_block_size) * 3 ) && \
369 ( (n_tail_size) >= (MAX_DIRECT_ITEM_LEN(n_block_size))/4) ) || \
370 ( ( (n_file_size) >= (n_block_size) * 2 ) && \
371 ( (n_tail_size) >= (MAX_DIRECT_ITEM_LEN(n_block_size))/2) ) || \
372 ( ( (n_file_size) >= (n_block_size) ) && \
373 ( (n_tail_size) >= (MAX_DIRECT_ITEM_LEN(n_block_size) * 3)/4) ) ) \
374)
375
376/* Another strategy for tails, this one means only create a tail if all the
377 file would fit into one DIRECT item.
378 Primary intention for this one is to increase performance by decreasing
379 seeking.
bd4c625c 380*/
1da177e4
LT
381#define STORE_TAIL_IN_UNFM_S2(n_file_size,n_tail_size,n_block_size) \
382(\
383 (!(n_tail_size)) || \
384 (((n_file_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) ) \
385)
386
1da177e4
LT
387/*
388 * values for s_umount_state field
389 */
390#define REISERFS_VALID_FS 1
391#define REISERFS_ERROR_FS 2
392
393//
394// there are 5 item types currently
395//
396#define TYPE_STAT_DATA 0
397#define TYPE_INDIRECT 1
398#define TYPE_DIRECT 2
bd4c625c
LT
399#define TYPE_DIRENTRY 3
400#define TYPE_MAXTYPE 3
401#define TYPE_ANY 15 // FIXME: comment is required
1da177e4
LT
402
403/***************************************************************************/
404/* KEY & ITEM HEAD */
405/***************************************************************************/
406
407//
408// directories use this key as well as old files
409//
410struct offset_v1 {
bd4c625c
LT
411 __le32 k_offset;
412 __le32 k_uniqueness;
1da177e4
LT
413} __attribute__ ((__packed__));
414
415struct offset_v2 {
f8e08a84 416 __le64 v;
1da177e4
LT
417} __attribute__ ((__packed__));
418
bd4c625c 419static inline __u16 offset_v2_k_type(const struct offset_v2 *v2)
1da177e4 420{
f8e08a84 421 __u8 type = le64_to_cpu(v2->v) >> 60;
bd4c625c 422 return (type <= TYPE_MAXTYPE) ? type : TYPE_ANY;
1da177e4 423}
bd4c625c
LT
424
425static inline void set_offset_v2_k_type(struct offset_v2 *v2, int type)
1da177e4 426{
bd4c625c
LT
427 v2->v =
428 (v2->v & cpu_to_le64(~0ULL >> 4)) | cpu_to_le64((__u64) type << 60);
1da177e4 429}
bd4c625c
LT
430
431static inline loff_t offset_v2_k_offset(const struct offset_v2 *v2)
1da177e4 432{
bd4c625c 433 return le64_to_cpu(v2->v) & (~0ULL >> 4);
1da177e4
LT
434}
435
bd4c625c
LT
436static inline void set_offset_v2_k_offset(struct offset_v2 *v2, loff_t offset)
437{
438 offset &= (~0ULL >> 4);
439 v2->v = (v2->v & cpu_to_le64(15ULL << 60)) | cpu_to_le64(offset);
1da177e4 440}
1da177e4
LT
441
442/* Key of an item determines its location in the S+tree, and
443 is composed of 4 components */
444struct reiserfs_key {
bd4c625c
LT
445 __le32 k_dir_id; /* packing locality: by default parent
446 directory object id */
447 __le32 k_objectid; /* object identifier */
448 union {
449 struct offset_v1 k_offset_v1;
450 struct offset_v2 k_offset_v2;
451 } __attribute__ ((__packed__)) u;
1da177e4
LT
452} __attribute__ ((__packed__));
453
6a3a16f2 454struct in_core_key {
bd4c625c
LT
455 __u32 k_dir_id; /* packing locality: by default parent
456 directory object id */
457 __u32 k_objectid; /* object identifier */
458 __u64 k_offset;
459 __u8 k_type;
6b9f5829 460};
1da177e4
LT
461
462struct cpu_key {
bd4c625c
LT
463 struct in_core_key on_disk_key;
464 int version;
465 int key_length; /* 3 in all cases but direct2indirect and
466 indirect2direct conversion */
1da177e4
LT
467};
468
469/* Our function for comparing keys can compare keys of different
470 lengths. It takes as a parameter the length of the keys it is to
471 compare. These defines are used in determining what is to be passed
472 to it as that parameter. */
473#define REISERFS_FULL_KEY_LEN 4
474#define REISERFS_SHORT_KEY_LEN 2
475
476/* The result of the key compare */
477#define FIRST_GREATER 1
478#define SECOND_GREATER -1
479#define KEYS_IDENTICAL 0
480#define KEY_FOUND 1
481#define KEY_NOT_FOUND 0
482
483#define KEY_SIZE (sizeof(struct reiserfs_key))
484#define SHORT_KEY_SIZE (sizeof (__u32) + sizeof (__u32))
485
486/* return values for search_by_key and clones */
487#define ITEM_FOUND 1
488#define ITEM_NOT_FOUND 0
489#define ENTRY_FOUND 1
490#define ENTRY_NOT_FOUND 0
491#define DIRECTORY_NOT_FOUND -1
492#define REGULAR_FILE_FOUND -2
493#define DIRECTORY_FOUND -3
494#define BYTE_FOUND 1
495#define BYTE_NOT_FOUND 0
496#define FILE_NOT_FOUND -1
497
498#define POSITION_FOUND 1
499#define POSITION_NOT_FOUND 0
500
501// return values for reiserfs_find_entry and search_by_entry_key
502#define NAME_FOUND 1
503#define NAME_NOT_FOUND 0
504#define GOTO_PREVIOUS_ITEM 2
505#define NAME_FOUND_INVISIBLE 3
506
507/* Everything in the filesystem is stored as a set of items. The
508 item head contains the key of the item, its free space (for
509 indirect items) and specifies the location of the item itself
510 within the block. */
511
bd4c625c 512struct item_head {
1da177e4
LT
513 /* Everything in the tree is found by searching for it based on
514 * its key.*/
515 struct reiserfs_key ih_key;
516 union {
517 /* The free space in the last unformatted node of an
518 indirect item if this is an indirect item. This
519 equals 0xFFFF iff this is a direct item or stat data
520 item. Note that the key, not this field, is used to
521 determine the item type, and thus which field this
522 union contains. */
3e8962be 523 __le16 ih_free_space_reserved;
1da177e4
LT
524 /* Iff this is a directory item, this field equals the
525 number of directory entries in the directory item. */
3e8962be 526 __le16 ih_entry_count;
1da177e4 527 } __attribute__ ((__packed__)) u;
bd4c625c
LT
528 __le16 ih_item_len; /* total size of the item body */
529 __le16 ih_item_location; /* an offset to the item body
530 * within the block */
531 __le16 ih_version; /* 0 for all old items, 2 for new
532 ones. Highest bit is set by fsck
533 temporary, cleaned after all
534 done */
1da177e4
LT
535} __attribute__ ((__packed__));
536/* size of item header */
537#define IH_SIZE (sizeof(struct item_head))
538
539#define ih_free_space(ih) le16_to_cpu((ih)->u.ih_free_space_reserved)
540#define ih_version(ih) le16_to_cpu((ih)->ih_version)
541#define ih_entry_count(ih) le16_to_cpu((ih)->u.ih_entry_count)
542#define ih_location(ih) le16_to_cpu((ih)->ih_item_location)
543#define ih_item_len(ih) le16_to_cpu((ih)->ih_item_len)
544
545#define put_ih_free_space(ih, val) do { (ih)->u.ih_free_space_reserved = cpu_to_le16(val); } while(0)
546#define put_ih_version(ih, val) do { (ih)->ih_version = cpu_to_le16(val); } while (0)
547#define put_ih_entry_count(ih, val) do { (ih)->u.ih_entry_count = cpu_to_le16(val); } while (0)
548#define put_ih_location(ih, val) do { (ih)->ih_item_location = cpu_to_le16(val); } while (0)
549#define put_ih_item_len(ih, val) do { (ih)->ih_item_len = cpu_to_le16(val); } while (0)
550
1da177e4
LT
551#define unreachable_item(ih) (ih_version(ih) & (1 << 15))
552
553#define get_ih_free_space(ih) (ih_version (ih) == KEY_FORMAT_3_6 ? 0 : ih_free_space (ih))
554#define set_ih_free_space(ih,val) put_ih_free_space((ih), ((ih_version(ih) == KEY_FORMAT_3_6) ? 0 : (val)))
555
556/* these operate on indirect items, where you've got an array of ints
557** at a possibly unaligned location. These are a noop on ia32
558**
559** p is the array of __u32, i is the index into the array, v is the value
560** to store there.
561*/
8b5ac31e
HH
562#define get_block_num(p, i) get_unaligned_le32((p) + (i))
563#define put_block_num(p, i, v) put_unaligned_le32((v), (p) + (i))
1da177e4
LT
564
565//
566// in old version uniqueness field shows key type
567//
568#define V1_SD_UNIQUENESS 0
569#define V1_INDIRECT_UNIQUENESS 0xfffffffe
570#define V1_DIRECT_UNIQUENESS 0xffffffff
571#define V1_DIRENTRY_UNIQUENESS 500
bd4c625c 572#define V1_ANY_UNIQUENESS 555 // FIXME: comment is required
1da177e4
LT
573
574//
575// here are conversion routines
576//
bd4c625c
LT
577static inline int uniqueness2type(__u32 uniqueness) CONSTF;
578static inline int uniqueness2type(__u32 uniqueness)
1da177e4 579{
bd4c625c
LT
580 switch ((int)uniqueness) {
581 case V1_SD_UNIQUENESS:
582 return TYPE_STAT_DATA;
583 case V1_INDIRECT_UNIQUENESS:
584 return TYPE_INDIRECT;
585 case V1_DIRECT_UNIQUENESS:
586 return TYPE_DIRECT;
587 case V1_DIRENTRY_UNIQUENESS:
588 return TYPE_DIRENTRY;
1da177e4 589 case V1_ANY_UNIQUENESS:
fd7cb031 590 default:
bd4c625c
LT
591 return TYPE_ANY;
592 }
1da177e4
LT
593}
594
bd4c625c
LT
595static inline __u32 type2uniqueness(int type) CONSTF;
596static inline __u32 type2uniqueness(int type)
1da177e4 597{
bd4c625c
LT
598 switch (type) {
599 case TYPE_STAT_DATA:
600 return V1_SD_UNIQUENESS;
601 case TYPE_INDIRECT:
602 return V1_INDIRECT_UNIQUENESS;
603 case TYPE_DIRECT:
604 return V1_DIRECT_UNIQUENESS;
605 case TYPE_DIRENTRY:
606 return V1_DIRENTRY_UNIQUENESS;
1da177e4 607 case TYPE_ANY:
fd7cb031 608 default:
bd4c625c
LT
609 return V1_ANY_UNIQUENESS;
610 }
1da177e4
LT
611}
612
613//
614// key is pointer to on disk key which is stored in le, result is cpu,
615// there is no way to get version of object from key, so, provide
616// version to these defines
617//
bd4c625c
LT
618static inline loff_t le_key_k_offset(int version,
619 const struct reiserfs_key *key)
1da177e4 620{
bd4c625c
LT
621 return (version == KEY_FORMAT_3_5) ?
622 le32_to_cpu(key->u.k_offset_v1.k_offset) :
623 offset_v2_k_offset(&(key->u.k_offset_v2));
1da177e4
LT
624}
625
bd4c625c 626static inline loff_t le_ih_k_offset(const struct item_head *ih)
1da177e4 627{
bd4c625c 628 return le_key_k_offset(ih_version(ih), &(ih->ih_key));
1da177e4
LT
629}
630
bd4c625c 631static inline loff_t le_key_k_type(int version, const struct reiserfs_key *key)
1da177e4 632{
bd4c625c
LT
633 return (version == KEY_FORMAT_3_5) ?
634 uniqueness2type(le32_to_cpu(key->u.k_offset_v1.k_uniqueness)) :
635 offset_v2_k_type(&(key->u.k_offset_v2));
1da177e4
LT
636}
637
bd4c625c 638static inline loff_t le_ih_k_type(const struct item_head *ih)
1da177e4 639{
bd4c625c 640 return le_key_k_type(ih_version(ih), &(ih->ih_key));
1da177e4
LT
641}
642
bd4c625c
LT
643static inline void set_le_key_k_offset(int version, struct reiserfs_key *key,
644 loff_t offset)
1da177e4 645{
bd4c625c
LT
646 (version == KEY_FORMAT_3_5) ? (void)(key->u.k_offset_v1.k_offset = cpu_to_le32(offset)) : /* jdm check */
647 (void)(set_offset_v2_k_offset(&(key->u.k_offset_v2), offset));
1da177e4
LT
648}
649
bd4c625c 650static inline void set_le_ih_k_offset(struct item_head *ih, loff_t offset)
1da177e4 651{
bd4c625c 652 set_le_key_k_offset(ih_version(ih), &(ih->ih_key), offset);
1da177e4
LT
653}
654
bd4c625c
LT
655static inline void set_le_key_k_type(int version, struct reiserfs_key *key,
656 int type)
1da177e4 657{
bd4c625c
LT
658 (version == KEY_FORMAT_3_5) ?
659 (void)(key->u.k_offset_v1.k_uniqueness =
660 cpu_to_le32(type2uniqueness(type)))
661 : (void)(set_offset_v2_k_type(&(key->u.k_offset_v2), type));
1da177e4 662}
1d965fe0 663
bd4c625c 664static inline void set_le_ih_k_type(struct item_head *ih, int type)
1da177e4 665{
bd4c625c 666 set_le_key_k_type(ih_version(ih), &(ih->ih_key), type);
1da177e4
LT
667}
668
1d965fe0
JM
669static inline int is_direntry_le_key(int version, struct reiserfs_key *key)
670{
671 return le_key_k_type(version, key) == TYPE_DIRENTRY;
672}
673
674static inline int is_direct_le_key(int version, struct reiserfs_key *key)
675{
676 return le_key_k_type(version, key) == TYPE_DIRECT;
677}
678
679static inline int is_indirect_le_key(int version, struct reiserfs_key *key)
680{
681 return le_key_k_type(version, key) == TYPE_INDIRECT;
682}
683
684static inline int is_statdata_le_key(int version, struct reiserfs_key *key)
685{
686 return le_key_k_type(version, key) == TYPE_STAT_DATA;
687}
1da177e4
LT
688
689//
690// item header has version.
691//
1d965fe0
JM
692static inline int is_direntry_le_ih(struct item_head *ih)
693{
694 return is_direntry_le_key(ih_version(ih), &ih->ih_key);
695}
696
697static inline int is_direct_le_ih(struct item_head *ih)
698{
699 return is_direct_le_key(ih_version(ih), &ih->ih_key);
700}
701
702static inline int is_indirect_le_ih(struct item_head *ih)
703{
704 return is_indirect_le_key(ih_version(ih), &ih->ih_key);
705}
706
707static inline int is_statdata_le_ih(struct item_head *ih)
708{
709 return is_statdata_le_key(ih_version(ih), &ih->ih_key);
710}
1da177e4 711
1da177e4
LT
712//
713// key is pointer to cpu key, result is cpu
714//
bd4c625c 715static inline loff_t cpu_key_k_offset(const struct cpu_key *key)
1da177e4 716{
bd4c625c 717 return key->on_disk_key.k_offset;
1da177e4
LT
718}
719
bd4c625c 720static inline loff_t cpu_key_k_type(const struct cpu_key *key)
1da177e4 721{
bd4c625c 722 return key->on_disk_key.k_type;
1da177e4
LT
723}
724
bd4c625c 725static inline void set_cpu_key_k_offset(struct cpu_key *key, loff_t offset)
1da177e4 726{
6b9f5829 727 key->on_disk_key.k_offset = offset;
1da177e4
LT
728}
729
bd4c625c 730static inline void set_cpu_key_k_type(struct cpu_key *key, int type)
1da177e4 731{
6b9f5829 732 key->on_disk_key.k_type = type;
1da177e4
LT
733}
734
bd4c625c 735static inline void cpu_key_k_offset_dec(struct cpu_key *key)
1da177e4 736{
bd4c625c 737 key->on_disk_key.k_offset--;
1da177e4
LT
738}
739
1da177e4
LT
740#define is_direntry_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRENTRY)
741#define is_direct_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRECT)
742#define is_indirect_cpu_key(key) (cpu_key_k_type (key) == TYPE_INDIRECT)
743#define is_statdata_cpu_key(key) (cpu_key_k_type (key) == TYPE_STAT_DATA)
744
1da177e4
LT
745/* are these used ? */
746#define is_direntry_cpu_ih(ih) (is_direntry_cpu_key (&((ih)->ih_key)))
747#define is_direct_cpu_ih(ih) (is_direct_cpu_key (&((ih)->ih_key)))
748#define is_indirect_cpu_ih(ih) (is_indirect_cpu_key (&((ih)->ih_key)))
749#define is_statdata_cpu_ih(ih) (is_statdata_cpu_key (&((ih)->ih_key)))
750
d68caa95
JM
751#define I_K_KEY_IN_ITEM(ih, key, n_blocksize) \
752 (!COMP_SHORT_KEYS(ih, key) && \
753 I_OFF_BYTE_IN_ITEM(ih, k_offset(key), n_blocksize))
1da177e4 754
bd4c625c 755/* maximal length of item */
1da177e4
LT
756#define MAX_ITEM_LEN(block_size) (block_size - BLKH_SIZE - IH_SIZE)
757#define MIN_ITEM_LEN 1
758
1da177e4
LT
759/* object identifier for root dir */
760#define REISERFS_ROOT_OBJECTID 2
761#define REISERFS_ROOT_PARENT_OBJECTID 1
750e1c18 762
1da177e4
LT
763extern struct reiserfs_key root_key;
764
1da177e4
LT
765/*
766 * Picture represents a leaf of the S+tree
767 * ______________________________________________________
768 * | | Array of | | |
769 * |Block | Object-Item | F r e e | Objects- |
770 * | head | Headers | S p a c e | Items |
771 * |______|_______________|___________________|___________|
772 */
773
774/* Header of a disk block. More precisely, header of a formatted leaf
775 or internal node, and not the header of an unformatted node. */
bd4c625c
LT
776struct block_head {
777 __le16 blk_level; /* Level of a block in the tree. */
778 __le16 blk_nr_item; /* Number of keys/items in a block. */
779 __le16 blk_free_space; /* Block free space in bytes. */
780 __le16 blk_reserved;
781 /* dump this in v4/planA */
782 struct reiserfs_key blk_right_delim_key; /* kept only for compatibility */
1da177e4
LT
783};
784
785#define BLKH_SIZE (sizeof(struct block_head))
786#define blkh_level(p_blkh) (le16_to_cpu((p_blkh)->blk_level))
787#define blkh_nr_item(p_blkh) (le16_to_cpu((p_blkh)->blk_nr_item))
788#define blkh_free_space(p_blkh) (le16_to_cpu((p_blkh)->blk_free_space))
789#define blkh_reserved(p_blkh) (le16_to_cpu((p_blkh)->blk_reserved))
790#define set_blkh_level(p_blkh,val) ((p_blkh)->blk_level = cpu_to_le16(val))
791#define set_blkh_nr_item(p_blkh,val) ((p_blkh)->blk_nr_item = cpu_to_le16(val))
792#define set_blkh_free_space(p_blkh,val) ((p_blkh)->blk_free_space = cpu_to_le16(val))
793#define set_blkh_reserved(p_blkh,val) ((p_blkh)->blk_reserved = cpu_to_le16(val))
794#define blkh_right_delim_key(p_blkh) ((p_blkh)->blk_right_delim_key)
795#define set_blkh_right_delim_key(p_blkh,val) ((p_blkh)->blk_right_delim_key = val)
796
797/*
798 * values for blk_level field of the struct block_head
799 */
800
bd4c625c
LT
801#define FREE_LEVEL 0 /* when node gets removed from the tree its
802 blk_level is set to FREE_LEVEL. It is then
803 used to see whether the node is still in the
804 tree */
1da177e4 805
bd4c625c 806#define DISK_LEAF_NODE_LEVEL 1 /* Leaf node level. */
1da177e4
LT
807
808/* Given the buffer head of a formatted node, resolve to the block head of that node. */
ad31a4fc 809#define B_BLK_HEAD(bh) ((struct block_head *)((bh)->b_data))
1da177e4 810/* Number of items that are in buffer. */
ad31a4fc
JM
811#define B_NR_ITEMS(bh) (blkh_nr_item(B_BLK_HEAD(bh)))
812#define B_LEVEL(bh) (blkh_level(B_BLK_HEAD(bh)))
813#define B_FREE_SPACE(bh) (blkh_free_space(B_BLK_HEAD(bh)))
1da177e4 814
ad31a4fc
JM
815#define PUT_B_NR_ITEMS(bh, val) do { set_blkh_nr_item(B_BLK_HEAD(bh), val); } while (0)
816#define PUT_B_LEVEL(bh, val) do { set_blkh_level(B_BLK_HEAD(bh), val); } while (0)
817#define PUT_B_FREE_SPACE(bh, val) do { set_blkh_free_space(B_BLK_HEAD(bh), val); } while (0)
1da177e4 818
1da177e4 819/* Get right delimiting key. -- little endian */
ad31a4fc 820#define B_PRIGHT_DELIM_KEY(bh) (&(blk_right_delim_key(B_BLK_HEAD(bh))))
1da177e4
LT
821
822/* Does the buffer contain a disk leaf. */
ad31a4fc 823#define B_IS_ITEMS_LEVEL(bh) (B_LEVEL(bh) == DISK_LEAF_NODE_LEVEL)
1da177e4
LT
824
825/* Does the buffer contain a disk internal node */
ad31a4fc
JM
826#define B_IS_KEYS_LEVEL(bh) (B_LEVEL(bh) > DISK_LEAF_NODE_LEVEL \
827 && B_LEVEL(bh) <= MAX_HEIGHT)
1da177e4 828
1da177e4
LT
829/***************************************************************************/
830/* STAT DATA */
831/***************************************************************************/
832
1da177e4
LT
833//
834// old stat data is 32 bytes long. We are going to distinguish new one by
835// different size
836//
bd4c625c
LT
837struct stat_data_v1 {
838 __le16 sd_mode; /* file type, permissions */
839 __le16 sd_nlink; /* number of hard links */
840 __le16 sd_uid; /* owner */
841 __le16 sd_gid; /* group */
842 __le32 sd_size; /* file size */
843 __le32 sd_atime; /* time of last access */
844 __le32 sd_mtime; /* time file was last modified */
845 __le32 sd_ctime; /* time inode (stat data) was last changed (except changes to sd_atime and sd_mtime) */
846 union {
847 __le32 sd_rdev;
848 __le32 sd_blocks; /* number of blocks file uses */
849 } __attribute__ ((__packed__)) u;
850 __le32 sd_first_direct_byte; /* first byte of file which is stored
851 in a direct item: except that if it
852 equals 1 it is a symlink and if it
853 equals ~(__u32)0 there is no
854 direct item. The existence of this
855 field really grates on me. Let's
856 replace it with a macro based on
857 sd_size and our tail suppression
858 policy. Someday. -Hans */
1da177e4
LT
859} __attribute__ ((__packed__));
860
861#define SD_V1_SIZE (sizeof(struct stat_data_v1))
862#define stat_data_v1(ih) (ih_version (ih) == KEY_FORMAT_3_5)
863#define sd_v1_mode(sdp) (le16_to_cpu((sdp)->sd_mode))
864#define set_sd_v1_mode(sdp,v) ((sdp)->sd_mode = cpu_to_le16(v))
865#define sd_v1_nlink(sdp) (le16_to_cpu((sdp)->sd_nlink))
866#define set_sd_v1_nlink(sdp,v) ((sdp)->sd_nlink = cpu_to_le16(v))
867#define sd_v1_uid(sdp) (le16_to_cpu((sdp)->sd_uid))
868#define set_sd_v1_uid(sdp,v) ((sdp)->sd_uid = cpu_to_le16(v))
869#define sd_v1_gid(sdp) (le16_to_cpu((sdp)->sd_gid))
870#define set_sd_v1_gid(sdp,v) ((sdp)->sd_gid = cpu_to_le16(v))
871#define sd_v1_size(sdp) (le32_to_cpu((sdp)->sd_size))
872#define set_sd_v1_size(sdp,v) ((sdp)->sd_size = cpu_to_le32(v))
873#define sd_v1_atime(sdp) (le32_to_cpu((sdp)->sd_atime))
874#define set_sd_v1_atime(sdp,v) ((sdp)->sd_atime = cpu_to_le32(v))
875#define sd_v1_mtime(sdp) (le32_to_cpu((sdp)->sd_mtime))
876#define set_sd_v1_mtime(sdp,v) ((sdp)->sd_mtime = cpu_to_le32(v))
877#define sd_v1_ctime(sdp) (le32_to_cpu((sdp)->sd_ctime))
878#define set_sd_v1_ctime(sdp,v) ((sdp)->sd_ctime = cpu_to_le32(v))
879#define sd_v1_rdev(sdp) (le32_to_cpu((sdp)->u.sd_rdev))
880#define set_sd_v1_rdev(sdp,v) ((sdp)->u.sd_rdev = cpu_to_le32(v))
881#define sd_v1_blocks(sdp) (le32_to_cpu((sdp)->u.sd_blocks))
882#define set_sd_v1_blocks(sdp,v) ((sdp)->u.sd_blocks = cpu_to_le32(v))
883#define sd_v1_first_direct_byte(sdp) \
884 (le32_to_cpu((sdp)->sd_first_direct_byte))
885#define set_sd_v1_first_direct_byte(sdp,v) \
886 ((sdp)->sd_first_direct_byte = cpu_to_le32(v))
887
1da177e4
LT
888/* inode flags stored in sd_attrs (nee sd_reserved) */
889
890/* we want common flags to have the same values as in ext2,
891 so chattr(1) will work without problems */
36695673
DH
892#define REISERFS_IMMUTABLE_FL FS_IMMUTABLE_FL
893#define REISERFS_APPEND_FL FS_APPEND_FL
894#define REISERFS_SYNC_FL FS_SYNC_FL
895#define REISERFS_NOATIME_FL FS_NOATIME_FL
896#define REISERFS_NODUMP_FL FS_NODUMP_FL
897#define REISERFS_SECRM_FL FS_SECRM_FL
898#define REISERFS_UNRM_FL FS_UNRM_FL
899#define REISERFS_COMPR_FL FS_COMPR_FL
900#define REISERFS_NOTAIL_FL FS_NOTAIL_FL
1da177e4
LT
901
902/* persistent flags that file inherits from the parent directory */
903#define REISERFS_INHERIT_MASK ( REISERFS_IMMUTABLE_FL | \
904 REISERFS_SYNC_FL | \
905 REISERFS_NOATIME_FL | \
906 REISERFS_NODUMP_FL | \
907 REISERFS_SECRM_FL | \
908 REISERFS_COMPR_FL | \
909 REISERFS_NOTAIL_FL )
910
911/* Stat Data on disk (reiserfs version of UFS disk inode minus the
912 address blocks) */
913struct stat_data {
bd4c625c
LT
914 __le16 sd_mode; /* file type, permissions */
915 __le16 sd_attrs; /* persistent inode flags */
916 __le32 sd_nlink; /* number of hard links */
917 __le64 sd_size; /* file size */
918 __le32 sd_uid; /* owner */
919 __le32 sd_gid; /* group */
920 __le32 sd_atime; /* time of last access */
921 __le32 sd_mtime; /* time file was last modified */
922 __le32 sd_ctime; /* time inode (stat data) was last changed (except changes to sd_atime and sd_mtime) */
923 __le32 sd_blocks;
924 union {
925 __le32 sd_rdev;
926 __le32 sd_generation;
927 //__le32 sd_first_direct_byte;
928 /* first byte of file which is stored in a
929 direct item: except that if it equals 1
930 it is a symlink and if it equals
931 ~(__u32)0 there is no direct item. The
932 existence of this field really grates
933 on me. Let's replace it with a macro
934 based on sd_size and our tail
935 suppression policy? */
936 } __attribute__ ((__packed__)) u;
1da177e4
LT
937} __attribute__ ((__packed__));
938//
939// this is 44 bytes long
940//
941#define SD_SIZE (sizeof(struct stat_data))
942#define SD_V2_SIZE SD_SIZE
943#define stat_data_v2(ih) (ih_version (ih) == KEY_FORMAT_3_6)
944#define sd_v2_mode(sdp) (le16_to_cpu((sdp)->sd_mode))
945#define set_sd_v2_mode(sdp,v) ((sdp)->sd_mode = cpu_to_le16(v))
946/* sd_reserved */
947/* set_sd_reserved */
948#define sd_v2_nlink(sdp) (le32_to_cpu((sdp)->sd_nlink))
949#define set_sd_v2_nlink(sdp,v) ((sdp)->sd_nlink = cpu_to_le32(v))
950#define sd_v2_size(sdp) (le64_to_cpu((sdp)->sd_size))
951#define set_sd_v2_size(sdp,v) ((sdp)->sd_size = cpu_to_le64(v))
952#define sd_v2_uid(sdp) (le32_to_cpu((sdp)->sd_uid))
953#define set_sd_v2_uid(sdp,v) ((sdp)->sd_uid = cpu_to_le32(v))
954#define sd_v2_gid(sdp) (le32_to_cpu((sdp)->sd_gid))
955#define set_sd_v2_gid(sdp,v) ((sdp)->sd_gid = cpu_to_le32(v))
956#define sd_v2_atime(sdp) (le32_to_cpu((sdp)->sd_atime))
957#define set_sd_v2_atime(sdp,v) ((sdp)->sd_atime = cpu_to_le32(v))
958#define sd_v2_mtime(sdp) (le32_to_cpu((sdp)->sd_mtime))
959#define set_sd_v2_mtime(sdp,v) ((sdp)->sd_mtime = cpu_to_le32(v))
960#define sd_v2_ctime(sdp) (le32_to_cpu((sdp)->sd_ctime))
961#define set_sd_v2_ctime(sdp,v) ((sdp)->sd_ctime = cpu_to_le32(v))
962#define sd_v2_blocks(sdp) (le32_to_cpu((sdp)->sd_blocks))
963#define set_sd_v2_blocks(sdp,v) ((sdp)->sd_blocks = cpu_to_le32(v))
964#define sd_v2_rdev(sdp) (le32_to_cpu((sdp)->u.sd_rdev))
965#define set_sd_v2_rdev(sdp,v) ((sdp)->u.sd_rdev = cpu_to_le32(v))
966#define sd_v2_generation(sdp) (le32_to_cpu((sdp)->u.sd_generation))
967#define set_sd_v2_generation(sdp,v) ((sdp)->u.sd_generation = cpu_to_le32(v))
968#define sd_v2_attrs(sdp) (le16_to_cpu((sdp)->sd_attrs))
969#define set_sd_v2_attrs(sdp,v) ((sdp)->sd_attrs = cpu_to_le16(v))
970
1da177e4
LT
971/***************************************************************************/
972/* DIRECTORY STRUCTURE */
973/***************************************************************************/
974/*
975 Picture represents the structure of directory items
976 ________________________________________________
977 | Array of | | | | | |
978 | directory |N-1| N-2 | .... | 1st |0th|
979 | entry headers | | | | | |
980 |_______________|___|_____|________|_______|___|
981 <---- directory entries ------>
982
983 First directory item has k_offset component 1. We store "." and ".."
984 in one item, always, we never split "." and ".." into differing
985 items. This makes, among other things, the code for removing
986 directories simpler. */
987#define SD_OFFSET 0
988#define SD_UNIQUENESS 0
989#define DOT_OFFSET 1
990#define DOT_DOT_OFFSET 2
991#define DIRENTRY_UNIQUENESS 500
992
993/* */
994#define FIRST_ITEM_OFFSET 1
995
996/*
997 Q: How to get key of object pointed to by entry from entry?
998
999 A: Each directory entry has its header. This header has deh_dir_id and deh_objectid fields, those are key
1000 of object, entry points to */
1001
1002/* NOT IMPLEMENTED:
1003 Directory will someday contain stat data of object */
1004
bd4c625c
LT
1005struct reiserfs_de_head {
1006 __le32 deh_offset; /* third component of the directory entry key */
1007 __le32 deh_dir_id; /* objectid of the parent directory of the object, that is referenced
1008 by directory entry */
1009 __le32 deh_objectid; /* objectid of the object, that is referenced by directory entry */
1010 __le16 deh_location; /* offset of name in the whole item */
1011 __le16 deh_state; /* whether 1) entry contains stat data (for future), and 2) whether
1012 entry is hidden (unlinked) */
1da177e4
LT
1013} __attribute__ ((__packed__));
1014#define DEH_SIZE sizeof(struct reiserfs_de_head)
1015#define deh_offset(p_deh) (le32_to_cpu((p_deh)->deh_offset))
1016#define deh_dir_id(p_deh) (le32_to_cpu((p_deh)->deh_dir_id))
1017#define deh_objectid(p_deh) (le32_to_cpu((p_deh)->deh_objectid))
1018#define deh_location(p_deh) (le16_to_cpu((p_deh)->deh_location))
1019#define deh_state(p_deh) (le16_to_cpu((p_deh)->deh_state))
1020
1021#define put_deh_offset(p_deh,v) ((p_deh)->deh_offset = cpu_to_le32((v)))
1022#define put_deh_dir_id(p_deh,v) ((p_deh)->deh_dir_id = cpu_to_le32((v)))
1023#define put_deh_objectid(p_deh,v) ((p_deh)->deh_objectid = cpu_to_le32((v)))
1024#define put_deh_location(p_deh,v) ((p_deh)->deh_location = cpu_to_le16((v)))
1025#define put_deh_state(p_deh,v) ((p_deh)->deh_state = cpu_to_le16((v)))
1026
1027/* empty directory contains two entries "." and ".." and their headers */
1028#define EMPTY_DIR_SIZE \
1029(DEH_SIZE * 2 + ROUND_UP (strlen (".")) + ROUND_UP (strlen ("..")))
1030
1031/* old format directories have this size when empty */
1032#define EMPTY_DIR_SIZE_V1 (DEH_SIZE * 2 + 3)
1033
bd4c625c 1034#define DEH_Statdata 0 /* not used now */
1da177e4
LT
1035#define DEH_Visible 2
1036
1037/* 64 bit systems (and the S/390) need to be aligned explicitly -jdm */
1038#if BITS_PER_LONG == 64 || defined(__s390__) || defined(__hppa__)
1039# define ADDR_UNALIGNED_BITS (3)
1040#endif
1041
1042/* These are only used to manipulate deh_state.
1043 * Because of this, we'll use the ext2_ bit routines,
1044 * since they are little endian */
1045#ifdef ADDR_UNALIGNED_BITS
1046
1047# define aligned_address(addr) ((void *)((long)(addr) & ~((1UL << ADDR_UNALIGNED_BITS) - 1)))
1048# define unaligned_offset(addr) (((int)((long)(addr) & ((1 << ADDR_UNALIGNED_BITS) - 1))) << 3)
1049
1050# define set_bit_unaligned(nr, addr) ext2_set_bit((nr) + unaligned_offset(addr), aligned_address(addr))
1051# define clear_bit_unaligned(nr, addr) ext2_clear_bit((nr) + unaligned_offset(addr), aligned_address(addr))
1052# define test_bit_unaligned(nr, addr) ext2_test_bit((nr) + unaligned_offset(addr), aligned_address(addr))
1053
1054#else
1055
1056# define set_bit_unaligned(nr, addr) ext2_set_bit(nr, addr)
1057# define clear_bit_unaligned(nr, addr) ext2_clear_bit(nr, addr)
1058# define test_bit_unaligned(nr, addr) ext2_test_bit(nr, addr)
1059
1060#endif
1061
1062#define mark_de_with_sd(deh) set_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
1063#define mark_de_without_sd(deh) clear_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
1064#define mark_de_visible(deh) set_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1065#define mark_de_hidden(deh) clear_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1066
1067#define de_with_sd(deh) test_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
1068#define de_visible(deh) test_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1069#define de_hidden(deh) !test_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1070
bd4c625c
LT
1071extern void make_empty_dir_item_v1(char *body, __le32 dirid, __le32 objid,
1072 __le32 par_dirid, __le32 par_objid);
1073extern void make_empty_dir_item(char *body, __le32 dirid, __le32 objid,
1074 __le32 par_dirid, __le32 par_objid);
1da177e4
LT
1075
1076/* array of the entry headers */
1077 /* get item body */
1078#define B_I_PITEM(bh,ih) ( (bh)->b_data + ih_location(ih) )
1079#define B_I_DEH(bh,ih) ((struct reiserfs_de_head *)(B_I_PITEM(bh,ih)))
1080
1081/* length of the directory entry in directory item. This define
1082 calculates length of i-th directory entry using directory entry
1083 locations from dir entry head. When it calculates length of 0-th
1084 directory entry, it uses length of whole item in place of entry
1085 location of the non-existent following entry in the calculation.
1086 See picture above.*/
1087/*
1088#define I_DEH_N_ENTRY_LENGTH(ih,deh,i) \
1089((i) ? (deh_location((deh)-1) - deh_location((deh))) : (ih_item_len((ih)) - deh_location((deh))))
1090*/
bd4c625c
LT
1091static inline int entry_length(const struct buffer_head *bh,
1092 const struct item_head *ih, int pos_in_item)
1da177e4 1093{
bd4c625c 1094 struct reiserfs_de_head *deh;
1da177e4 1095
bd4c625c
LT
1096 deh = B_I_DEH(bh, ih) + pos_in_item;
1097 if (pos_in_item)
1098 return deh_location(deh - 1) - deh_location(deh);
1da177e4 1099
bd4c625c 1100 return ih_item_len(ih) - deh_location(deh);
1da177e4
LT
1101}
1102
1da177e4
LT
1103/* number of entries in the directory item, depends on ENTRY_COUNT being at the start of directory dynamic data. */
1104#define I_ENTRY_COUNT(ih) (ih_entry_count((ih)))
1105
1da177e4
LT
1106/* name by bh, ih and entry_num */
1107#define B_I_E_NAME(bh,ih,entry_num) ((char *)(bh->b_data + ih_location(ih) + deh_location(B_I_DEH(bh,ih)+(entry_num))))
1108
1109// two entries per block (at least)
1110#define REISERFS_MAX_NAME(block_size) 255
1111
1da177e4
LT
1112/* this structure is used for operations on directory entries. It is
1113 not a disk structure. */
1114/* When reiserfs_find_entry or search_by_entry_key find directory
1115 entry, they return filled reiserfs_dir_entry structure */
bd4c625c
LT
1116struct reiserfs_dir_entry {
1117 struct buffer_head *de_bh;
1118 int de_item_num;
1119 struct item_head *de_ih;
1120 int de_entry_num;
1121 struct reiserfs_de_head *de_deh;
1122 int de_entrylen;
1123 int de_namelen;
1124 char *de_name;
3af1efe8 1125 unsigned long *de_gen_number_bit_string;
bd4c625c
LT
1126
1127 __u32 de_dir_id;
1128 __u32 de_objectid;
1129
1130 struct cpu_key de_entry_key;
1da177e4 1131};
bd4c625c 1132
1da177e4
LT
1133/* these defines are useful when a particular member of a reiserfs_dir_entry is needed */
1134
1135/* pointer to file name, stored in entry */
1136#define B_I_DEH_ENTRY_FILE_NAME(bh,ih,deh) (B_I_PITEM (bh, ih) + deh_location(deh))
1137
1138/* length of name */
1139#define I_DEH_N_ENTRY_FILE_NAME_LENGTH(ih,deh,entry_num) \
1140(I_DEH_N_ENTRY_LENGTH (ih, deh, entry_num) - (de_with_sd (deh) ? SD_SIZE : 0))
1141
1da177e4
LT
1142/* hash value occupies bits from 7 up to 30 */
1143#define GET_HASH_VALUE(offset) ((offset) & 0x7fffff80LL)
1144/* generation number occupies 7 bits starting from 0 up to 6 */
1145#define GET_GENERATION_NUMBER(offset) ((offset) & 0x7fLL)
1146#define MAX_GENERATION_NUMBER 127
1147
1148#define SET_GENERATION_NUMBER(offset,gen_number) (GET_HASH_VALUE(offset)|(gen_number))
1149
1da177e4
LT
1150/*
1151 * Picture represents an internal node of the reiserfs tree
1152 * ______________________________________________________
1153 * | | Array of | Array of | Free |
1154 * |block | keys | pointers | space |
1155 * | head | N | N+1 | |
1156 * |______|_______________|___________________|___________|
1157 */
1158
1159/***************************************************************************/
1160/* DISK CHILD */
1161/***************************************************************************/
1162/* Disk child pointer: The pointer from an internal node of the tree
1163 to a node that is on disk. */
1164struct disk_child {
bd4c625c
LT
1165 __le32 dc_block_number; /* Disk child's block number. */
1166 __le16 dc_size; /* Disk child's used space. */
1167 __le16 dc_reserved;
1da177e4
LT
1168};
1169
1170#define DC_SIZE (sizeof(struct disk_child))
1171#define dc_block_number(dc_p) (le32_to_cpu((dc_p)->dc_block_number))
1172#define dc_size(dc_p) (le16_to_cpu((dc_p)->dc_size))
1173#define put_dc_block_number(dc_p, val) do { (dc_p)->dc_block_number = cpu_to_le32(val); } while(0)
1174#define put_dc_size(dc_p, val) do { (dc_p)->dc_size = cpu_to_le16(val); } while(0)
1175
1176/* Get disk child by buffer header and position in the tree node. */
ad31a4fc
JM
1177#define B_N_CHILD(bh, n_pos) ((struct disk_child *)\
1178((bh)->b_data + BLKH_SIZE + B_NR_ITEMS(bh) * KEY_SIZE + DC_SIZE * (n_pos)))
1da177e4
LT
1179
1180/* Get disk child number by buffer header and position in the tree node. */
ad31a4fc
JM
1181#define B_N_CHILD_NUM(bh, n_pos) (dc_block_number(B_N_CHILD(bh, n_pos)))
1182#define PUT_B_N_CHILD_NUM(bh, n_pos, val) \
1183 (put_dc_block_number(B_N_CHILD(bh, n_pos), val))
1da177e4 1184
bd4c625c 1185 /* maximal value of field child_size in structure disk_child */
1da177e4
LT
1186 /* child size is the combined size of all items and their headers */
1187#define MAX_CHILD_SIZE(bh) ((int)( (bh)->b_size - BLKH_SIZE ))
1188
1189/* amount of used space in buffer (not including block head) */
1190#define B_CHILD_SIZE(cur) (MAX_CHILD_SIZE(cur)-(B_FREE_SPACE(cur)))
1191
1192/* max and min number of keys in internal node */
1193#define MAX_NR_KEY(bh) ( (MAX_CHILD_SIZE(bh)-DC_SIZE)/(KEY_SIZE+DC_SIZE) )
1194#define MIN_NR_KEY(bh) (MAX_NR_KEY(bh)/2)
1195
1196/***************************************************************************/
1197/* PATH STRUCTURES AND DEFINES */
1198/***************************************************************************/
1199
1da177e4
LT
1200/* Search_by_key fills up the path from the root to the leaf as it descends the tree looking for the
1201 key. It uses reiserfs_bread to try to find buffers in the cache given their block number. If it
1202 does not find them in the cache it reads them from disk. For each node search_by_key finds using
1203 reiserfs_bread it then uses bin_search to look through that node. bin_search will find the
1204 position of the block_number of the next node if it is looking through an internal node. If it
1205 is looking through a leaf node bin_search will find the position of the item which has key either
1206 equal to given key, or which is the maximal key less than the given key. */
1207
bd4c625c
LT
1208struct path_element {
1209 struct buffer_head *pe_buffer; /* Pointer to the buffer at the path in the tree. */
1210 int pe_position; /* Position in the tree node which is placed in the */
1211 /* buffer above. */
1da177e4
LT
1212};
1213
bd4c625c
LT
1214#define MAX_HEIGHT 5 /* maximal height of a tree. don't change this without changing JOURNAL_PER_BALANCE_CNT */
1215#define EXTENDED_MAX_HEIGHT 7 /* Must be equals MAX_HEIGHT + FIRST_PATH_ELEMENT_OFFSET */
1216#define FIRST_PATH_ELEMENT_OFFSET 2 /* Must be equal to at least 2. */
1da177e4 1217
bd4c625c
LT
1218#define ILLEGAL_PATH_ELEMENT_OFFSET 1 /* Must be equal to FIRST_PATH_ELEMENT_OFFSET - 1 */
1219#define MAX_FEB_SIZE 6 /* this MUST be MAX_HEIGHT + 1. See about FEB below */
1da177e4
LT
1220
1221/* We need to keep track of who the ancestors of nodes are. When we
1222 perform a search we record which nodes were visited while
1223 descending the tree looking for the node we searched for. This list
1224 of nodes is called the path. This information is used while
1225 performing balancing. Note that this path information may become
1226 invalid, and this means we must check it when using it to see if it
1227 is still valid. You'll need to read search_by_key and the comments
1228 in it, especially about decrement_counters_in_path(), to understand
1229 this structure.
1230
1231Paths make the code so much harder to work with and debug.... An
1232enormous number of bugs are due to them, and trying to write or modify
1233code that uses them just makes my head hurt. They are based on an
1234excessive effort to avoid disturbing the precious VFS code.:-( The
1235gods only know how we are going to SMP the code that uses them.
1236znodes are the way! */
1237
bd4c625c
LT
1238#define PATH_READA 0x1 /* do read ahead */
1239#define PATH_READA_BACK 0x2 /* read backwards */
1da177e4 1240
fec6d055 1241struct treepath {
bd4c625c
LT
1242 int path_length; /* Length of the array above. */
1243 int reada;
1244 struct path_element path_elements[EXTENDED_MAX_HEIGHT]; /* Array of the path elements. */
1245 int pos_in_item;
1da177e4
LT
1246};
1247
1248#define pos_in_item(path) ((path)->pos_in_item)
1249
1250#define INITIALIZE_PATH(var) \
fec6d055 1251struct treepath var = {.path_length = ILLEGAL_PATH_ELEMENT_OFFSET, .reada = 0,}
1da177e4
LT
1252
1253/* Get path element by path and path position. */
d68caa95 1254#define PATH_OFFSET_PELEMENT(path, n_offset) ((path)->path_elements + (n_offset))
1da177e4
LT
1255
1256/* Get buffer header at the path by path and path position. */
d68caa95 1257#define PATH_OFFSET_PBUFFER(path, n_offset) (PATH_OFFSET_PELEMENT(path, n_offset)->pe_buffer)
1da177e4
LT
1258
1259/* Get position in the element at the path by path and path position. */
d68caa95 1260#define PATH_OFFSET_POSITION(path, n_offset) (PATH_OFFSET_PELEMENT(path, n_offset)->pe_position)
1da177e4 1261
d68caa95 1262#define PATH_PLAST_BUFFER(path) (PATH_OFFSET_PBUFFER((path), (path)->path_length))
1da177e4 1263 /* you know, to the person who didn't
bd4c625c
LT
1264 write this the macro name does not
1265 at first suggest what it does.
1266 Maybe POSITION_FROM_PATH_END? Or
1267 maybe we should just focus on
1268 dumping paths... -Hans */
d68caa95 1269#define PATH_LAST_POSITION(path) (PATH_OFFSET_POSITION((path), (path)->path_length))
1da177e4 1270
d68caa95 1271#define PATH_PITEM_HEAD(path) B_N_PITEM_HEAD(PATH_PLAST_BUFFER(path), PATH_LAST_POSITION(path))
1da177e4
LT
1272
1273/* in do_balance leaf has h == 0 in contrast with path structure,
1274 where root has level == 0. That is why we need these defines */
d68caa95 1275#define PATH_H_PBUFFER(path, h) PATH_OFFSET_PBUFFER (path, path->path_length - (h)) /* tb->S[h] */
bd4c625c
LT
1276#define PATH_H_PPARENT(path, h) PATH_H_PBUFFER (path, (h) + 1) /* tb->F[h] or tb->S[0]->b_parent */
1277#define PATH_H_POSITION(path, h) PATH_OFFSET_POSITION (path, path->path_length - (h))
1278#define PATH_H_B_ITEM_ORDER(path, h) PATH_H_POSITION(path, h + 1) /* tb->S[h]->b_item_order */
1da177e4 1279
d68caa95 1280#define PATH_H_PATH_OFFSET(path, n_h) ((path)->path_length - (n_h))
1da177e4
LT
1281
1282#define get_last_bh(path) PATH_PLAST_BUFFER(path)
1283#define get_ih(path) PATH_PITEM_HEAD(path)
1284#define get_item_pos(path) PATH_LAST_POSITION(path)
1285#define get_item(path) ((void *)B_N_PITEM(PATH_PLAST_BUFFER(path), PATH_LAST_POSITION (path)))
1286#define item_moved(ih,path) comp_items(ih, path)
1287#define path_changed(ih,path) comp_items (ih, path)
1288
1da177e4
LT
1289/***************************************************************************/
1290/* MISC */
1291/***************************************************************************/
1292
1293/* Size of pointer to the unformatted node. */
1294#define UNFM_P_SIZE (sizeof(unp_t))
1295#define UNFM_P_SHIFT 2
1296
1297// in in-core inode key is stored on le form
1298#define INODE_PKEY(inode) ((struct reiserfs_key *)(REISERFS_I(inode)->i_key))
1299
1300#define MAX_UL_INT 0xffffffff
1301#define MAX_INT 0x7ffffff
1302#define MAX_US_INT 0xffff
1303
1304// reiserfs version 2 has max offset 60 bits. Version 1 - 32 bit offset
1305#define U32_MAX (~(__u32)0)
1306
bd4c625c 1307static inline loff_t max_reiserfs_offset(struct inode *inode)
1da177e4 1308{
bd4c625c
LT
1309 if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5)
1310 return (loff_t) U32_MAX;
1da177e4 1311
bd4c625c 1312 return (loff_t) ((~(__u64) 0) >> 4);
1da177e4
LT
1313}
1314
1da177e4
LT
1315/*#define MAX_KEY_UNIQUENESS MAX_UL_INT*/
1316#define MAX_KEY_OBJECTID MAX_UL_INT
1317
1da177e4
LT
1318#define MAX_B_NUM MAX_UL_INT
1319#define MAX_FC_NUM MAX_US_INT
1320
1da177e4
LT
1321/* the purpose is to detect overflow of an unsigned short */
1322#define REISERFS_LINK_MAX (MAX_US_INT - 1000)
1323
1da177e4 1324/* The following defines are used in reiserfs_insert_item and reiserfs_append_item */
bd4c625c
LT
1325#define REISERFS_KERNEL_MEM 0 /* reiserfs kernel memory mode */
1326#define REISERFS_USER_MEM 1 /* reiserfs user memory mode */
1da177e4
LT
1327
1328#define fs_generation(s) (REISERFS_SB(s)->s_generation_counter)
1329#define get_generation(s) atomic_read (&fs_generation(s))
1330#define FILESYSTEM_CHANGED_TB(tb) (get_generation((tb)->tb_sb) != (tb)->fs_gen)
1331#define __fs_changed(gen,s) (gen != get_generation (s))
1332#define fs_changed(gen,s) ({cond_resched(); __fs_changed(gen, s);})
1333
1da177e4
LT
1334/***************************************************************************/
1335/* FIXATE NODES */
1336/***************************************************************************/
1337
1338#define VI_TYPE_LEFT_MERGEABLE 1
1339#define VI_TYPE_RIGHT_MERGEABLE 2
1340
1341/* To make any changes in the tree we always first find node, that
1342 contains item to be changed/deleted or place to insert a new
1343 item. We call this node S. To do balancing we need to decide what
1344 we will shift to left/right neighbor, or to a new node, where new
1345 item will be etc. To make this analysis simpler we build virtual
1346 node. Virtual node is an array of items, that will replace items of
1347 node S. (For instance if we are going to delete an item, virtual
1348 node does not contain it). Virtual node keeps information about
1349 item sizes and types, mergeability of first and last items, sizes
1350 of all entries in directory item. We use this array of items when
1351 calculating what we can shift to neighbors and how many nodes we
1352 have to have if we do not any shiftings, if we shift to left/right
1353 neighbor or to both. */
bd4c625c
LT
1354struct virtual_item {
1355 int vi_index; // index in the array of item operations
1356 unsigned short vi_type; // left/right mergeability
1357 unsigned short vi_item_len; /* length of item that it will have after balancing */
1358 struct item_head *vi_ih;
1359 const char *vi_item; // body of item (old or new)
1360 const void *vi_new_data; // 0 always but paste mode
1361 void *vi_uarea; // item specific area
1da177e4
LT
1362};
1363
bd4c625c
LT
1364struct virtual_node {
1365 char *vn_free_ptr; /* this is a pointer to the free space in the buffer */
1366 unsigned short vn_nr_item; /* number of items in virtual node */
1367 short vn_size; /* size of node , that node would have if it has unlimited size and no balancing is performed */
1368 short vn_mode; /* mode of balancing (paste, insert, delete, cut) */
1369 short vn_affected_item_num;
1370 short vn_pos_in_item;
1371 struct item_head *vn_ins_ih; /* item header of inserted item, 0 for other modes */
1372 const void *vn_data;
1373 struct virtual_item *vn_vi; /* array of items (including a new one, excluding item to be deleted) */
1da177e4
LT
1374};
1375
1376/* used by directory items when creating virtual nodes */
1377struct direntry_uarea {
bd4c625c
LT
1378 int flags;
1379 __u16 entry_count;
1380 __u16 entry_sizes[1];
1381} __attribute__ ((__packed__));
1da177e4
LT
1382
1383/***************************************************************************/
1384/* TREE BALANCE */
1385/***************************************************************************/
1386
1387/* This temporary structure is used in tree balance algorithms, and
1388 constructed as we go to the extent that its various parts are
1389 needed. It contains arrays of nodes that can potentially be
1390 involved in the balancing of node S, and parameters that define how
1391 each of the nodes must be balanced. Note that in these algorithms
1392 for balancing the worst case is to need to balance the current node
1393 S and the left and right neighbors and all of their parents plus
1394 create a new node. We implement S1 balancing for the leaf nodes
1395 and S0 balancing for the internal nodes (S1 and S0 are defined in
1396 our papers.)*/
1397
1398#define MAX_FREE_BLOCK 7 /* size of the array of buffers to free at end of do_balance */
1399
1400/* maximum number of FEB blocknrs on a single level */
1401#define MAX_AMOUNT_NEEDED 2
1402
1403/* someday somebody will prefix every field in this struct with tb_ */
bd4c625c
LT
1404struct tree_balance {
1405 int tb_mode;
1406 int need_balance_dirty;
1407 struct super_block *tb_sb;
1408 struct reiserfs_transaction_handle *transaction_handle;
fec6d055 1409 struct treepath *tb_path;
bd4c625c
LT
1410 struct buffer_head *L[MAX_HEIGHT]; /* array of left neighbors of nodes in the path */
1411 struct buffer_head *R[MAX_HEIGHT]; /* array of right neighbors of nodes in the path */
1412 struct buffer_head *FL[MAX_HEIGHT]; /* array of fathers of the left neighbors */
1413 struct buffer_head *FR[MAX_HEIGHT]; /* array of fathers of the right neighbors */
1414 struct buffer_head *CFL[MAX_HEIGHT]; /* array of common parents of center node and its left neighbor */
1415 struct buffer_head *CFR[MAX_HEIGHT]; /* array of common parents of center node and its right neighbor */
1416
1417 struct buffer_head *FEB[MAX_FEB_SIZE]; /* array of empty buffers. Number of buffers in array equals
1418 cur_blknum. */
1419 struct buffer_head *used[MAX_FEB_SIZE];
1420 struct buffer_head *thrown[MAX_FEB_SIZE];
1421 int lnum[MAX_HEIGHT]; /* array of number of items which must be
1422 shifted to the left in order to balance the
1423 current node; for leaves includes item that
1424 will be partially shifted; for internal
1425 nodes, it is the number of child pointers
1426 rather than items. It includes the new item
1427 being created. The code sometimes subtracts
1428 one to get the number of wholly shifted
1429 items for other purposes. */
1430 int rnum[MAX_HEIGHT]; /* substitute right for left in comment above */
1431 int lkey[MAX_HEIGHT]; /* array indexed by height h mapping the key delimiting L[h] and
1432 S[h] to its item number within the node CFL[h] */
1433 int rkey[MAX_HEIGHT]; /* substitute r for l in comment above */
1434 int insert_size[MAX_HEIGHT]; /* the number of bytes by we are trying to add or remove from
1435 S[h]. A negative value means removing. */
1436 int blknum[MAX_HEIGHT]; /* number of nodes that will replace node S[h] after
1437 balancing on the level h of the tree. If 0 then S is
1438 being deleted, if 1 then S is remaining and no new nodes
1439 are being created, if 2 or 3 then 1 or 2 new nodes is
1440 being created */
1441
1442 /* fields that are used only for balancing leaves of the tree */
1443 int cur_blknum; /* number of empty blocks having been already allocated */
1444 int s0num; /* number of items that fall into left most node when S[0] splits */
1445 int s1num; /* number of items that fall into first new node when S[0] splits */
1446 int s2num; /* number of items that fall into second new node when S[0] splits */
1447 int lbytes; /* number of bytes which can flow to the left neighbor from the left */
1448 /* most liquid item that cannot be shifted from S[0] entirely */
1449 /* if -1 then nothing will be partially shifted */
1450 int rbytes; /* number of bytes which will flow to the right neighbor from the right */
1451 /* most liquid item that cannot be shifted from S[0] entirely */
1452 /* if -1 then nothing will be partially shifted */
1453 int s1bytes; /* number of bytes which flow to the first new node when S[0] splits */
1454 /* note: if S[0] splits into 3 nodes, then items do not need to be cut */
1455 int s2bytes;
1456 struct buffer_head *buf_to_free[MAX_FREE_BLOCK]; /* buffers which are to be freed after do_balance finishes by unfix_nodes */
1457 char *vn_buf; /* kmalloced memory. Used to create
1da177e4
LT
1458 virtual node and keep map of
1459 dirtied bitmap blocks */
bd4c625c
LT
1460 int vn_buf_size; /* size of the vn_buf */
1461 struct virtual_node *tb_vn; /* VN starts after bitmap of bitmap blocks */
1da177e4 1462
bd4c625c
LT
1463 int fs_gen; /* saved value of `reiserfs_generation' counter
1464 see FILESYSTEM_CHANGED() macro in reiserfs_fs.h */
1da177e4 1465#ifdef DISPLACE_NEW_PACKING_LOCALITIES
bd4c625c
LT
1466 struct in_core_key key; /* key pointer, to pass to block allocator or
1467 another low-level subsystem */
1da177e4 1468#endif
bd4c625c 1469};
1da177e4
LT
1470
1471/* These are modes of balancing */
1472
1473/* When inserting an item. */
1474#define M_INSERT 'i'
1475/* When inserting into (directories only) or appending onto an already
1476 existant item. */
1477#define M_PASTE 'p'
1478/* When deleting an item. */
1479#define M_DELETE 'd'
1480/* When truncating an item or removing an entry from a (directory) item. */
1481#define M_CUT 'c'
1482
1483/* used when balancing on leaf level skipped (in reiserfsck) */
1484#define M_INTERNAL 'n'
1485
1486/* When further balancing is not needed, then do_balance does not need
1487 to be called. */
1488#define M_SKIP_BALANCING 's'
1489#define M_CONVERT 'v'
1490
1491/* modes of leaf_move_items */
1492#define LEAF_FROM_S_TO_L 0
1493#define LEAF_FROM_S_TO_R 1
1494#define LEAF_FROM_R_TO_L 2
1495#define LEAF_FROM_L_TO_R 3
1496#define LEAF_FROM_S_TO_SNEW 4
1497
1498#define FIRST_TO_LAST 0
1499#define LAST_TO_FIRST 1
1500
1501/* used in do_balance for passing parent of node information that has
1502 been gotten from tb struct */
1503struct buffer_info {
bd4c625c
LT
1504 struct tree_balance *tb;
1505 struct buffer_head *bi_bh;
1506 struct buffer_head *bi_parent;
1507 int bi_position;
1da177e4
LT
1508};
1509
c3a9c210
JM
1510static inline struct super_block *sb_from_tb(struct tree_balance *tb)
1511{
1512 return tb ? tb->tb_sb : NULL;
1513}
1514
1515static inline struct super_block *sb_from_bi(struct buffer_info *bi)
1516{
1517 return bi ? sb_from_tb(bi->tb) : NULL;
1518}
1519
1da177e4
LT
1520/* there are 4 types of items: stat data, directory item, indirect, direct.
1521+-------------------+------------+--------------+------------+
1522| | k_offset | k_uniqueness | mergeable? |
1523+-------------------+------------+--------------+------------+
1524| stat data | 0 | 0 | no |
1525+-------------------+------------+--------------+------------+
1526| 1st directory item| DOT_OFFSET |DIRENTRY_UNIQUENESS| no |
1527| non 1st directory | hash value | | yes |
1528| item | | | |
1529+-------------------+------------+--------------+------------+
1530| indirect item | offset + 1 |TYPE_INDIRECT | if this is not the first indirect item of the object
1531+-------------------+------------+--------------+------------+
1532| direct item | offset + 1 |TYPE_DIRECT | if not this is not the first direct item of the object
1533+-------------------+------------+--------------+------------+
1534*/
1535
1536struct item_operations {
bd4c625c
LT
1537 int (*bytes_number) (struct item_head * ih, int block_size);
1538 void (*decrement_key) (struct cpu_key *);
1539 int (*is_left_mergeable) (struct reiserfs_key * ih,
1540 unsigned long bsize);
1541 void (*print_item) (struct item_head *, char *item);
1542 void (*check_item) (struct item_head *, char *item);
1543
1544 int (*create_vi) (struct virtual_node * vn, struct virtual_item * vi,
1545 int is_affected, int insert_size);
1546 int (*check_left) (struct virtual_item * vi, int free,
1547 int start_skip, int end_skip);
1548 int (*check_right) (struct virtual_item * vi, int free);
1549 int (*part_size) (struct virtual_item * vi, int from, int to);
1550 int (*unit_num) (struct virtual_item * vi);
1551 void (*print_vi) (struct virtual_item * vi);
1da177e4
LT
1552};
1553
bd4c625c 1554extern struct item_operations *item_ops[TYPE_ANY + 1];
1da177e4
LT
1555
1556#define op_bytes_number(ih,bsize) item_ops[le_ih_k_type (ih)]->bytes_number (ih, bsize)
1557#define op_is_left_mergeable(key,bsize) item_ops[le_key_k_type (le_key_version (key), key)]->is_left_mergeable (key, bsize)
1558#define op_print_item(ih,item) item_ops[le_ih_k_type (ih)]->print_item (ih, item)
1559#define op_check_item(ih,item) item_ops[le_ih_k_type (ih)]->check_item (ih, item)
1560#define op_create_vi(vn,vi,is_affected,insert_size) item_ops[le_ih_k_type ((vi)->vi_ih)]->create_vi (vn,vi,is_affected,insert_size)
1561#define op_check_left(vi,free,start_skip,end_skip) item_ops[(vi)->vi_index]->check_left (vi, free, start_skip, end_skip)
1562#define op_check_right(vi,free) item_ops[(vi)->vi_index]->check_right (vi, free)
1563#define op_part_size(vi,from,to) item_ops[(vi)->vi_index]->part_size (vi, from, to)
1564#define op_unit_num(vi) item_ops[(vi)->vi_index]->unit_num (vi)
1565#define op_print_vi(vi) item_ops[(vi)->vi_index]->print_vi (vi)
1566
1da177e4
LT
1567#define COMP_SHORT_KEYS comp_short_keys
1568
1569/* number of blocks pointed to by the indirect item */
d68caa95 1570#define I_UNFM_NUM(ih) (ih_item_len(ih) / UNFM_P_SIZE)
1da177e4
LT
1571
1572/* the used space within the unformatted node corresponding to pos within the item pointed to by ih */
1573#define I_POS_UNFM_SIZE(ih,pos,size) (((pos) == I_UNFM_NUM(ih) - 1 ) ? (size) - ih_free_space(ih) : (size))
1574
1575/* number of bytes contained by the direct item or the unformatted nodes the indirect item points to */
1576
bd4c625c 1577/* get the item header */
1da177e4
LT
1578#define B_N_PITEM_HEAD(bh,item_num) ( (struct item_head * )((bh)->b_data + BLKH_SIZE) + (item_num) )
1579
1580/* get key */
1581#define B_N_PDELIM_KEY(bh,item_num) ( (struct reiserfs_key * )((bh)->b_data + BLKH_SIZE) + (item_num) )
1582
1583/* get the key */
1584#define B_N_PKEY(bh,item_num) ( &(B_N_PITEM_HEAD(bh,item_num)->ih_key) )
1585
1586/* get item body */
1587#define B_N_PITEM(bh,item_num) ( (bh)->b_data + ih_location(B_N_PITEM_HEAD((bh),(item_num))))
1588
1589/* get the stat data by the buffer header and the item order */
1590#define B_N_STAT_DATA(bh,nr) \
1591( (struct stat_data *)((bh)->b_data + ih_location(B_N_PITEM_HEAD((bh),(nr))) ) )
1592
1593 /* following defines use reiserfs buffer header and item header */
1594
1595/* get stat-data */
1596#define B_I_STAT_DATA(bh, ih) ( (struct stat_data * )((bh)->b_data + ih_location(ih)) )
1597
1598// this is 3976 for size==4096
1599#define MAX_DIRECT_ITEM_LEN(size) ((size) - BLKH_SIZE - 2*IH_SIZE - SD_SIZE - UNFM_P_SIZE)
1600
1601/* indirect items consist of entries which contain blocknrs, pos
1602 indicates which entry, and B_I_POS_UNFM_POINTER resolves to the
1603 blocknr contained by the entry pos points to */
1604#define B_I_POS_UNFM_POINTER(bh,ih,pos) le32_to_cpu(*(((unp_t *)B_I_PITEM(bh,ih)) + (pos)))
1605#define PUT_B_I_POS_UNFM_POINTER(bh,ih,pos, val) do {*(((unp_t *)B_I_PITEM(bh,ih)) + (pos)) = cpu_to_le32(val); } while (0)
1606
1607struct reiserfs_iget_args {
bd4c625c
LT
1608 __u32 objectid;
1609 __u32 dirid;
1610};
1da177e4
LT
1611
1612/***************************************************************************/
1613/* FUNCTION DECLARATIONS */
1614/***************************************************************************/
1615
1da177e4
LT
1616#define get_journal_desc_magic(bh) (bh->b_data + bh->b_size - 12)
1617
1618#define journal_trans_half(blocksize) \
1619 ((blocksize - sizeof (struct reiserfs_journal_desc) + sizeof (__u32) - 12) / sizeof (__u32))
1620
1621/* journal.c see journal.c for all the comments here */
1622
1623/* first block written in a commit. */
1624struct reiserfs_journal_desc {
bd4c625c
LT
1625 __le32 j_trans_id; /* id of commit */
1626 __le32 j_len; /* length of commit. len +1 is the commit block */
1627 __le32 j_mount_id; /* mount id of this trans */
1628 __le32 j_realblock[1]; /* real locations for each block */
1629};
1da177e4
LT
1630
1631#define get_desc_trans_id(d) le32_to_cpu((d)->j_trans_id)
1632#define get_desc_trans_len(d) le32_to_cpu((d)->j_len)
1633#define get_desc_mount_id(d) le32_to_cpu((d)->j_mount_id)
1634
1635#define set_desc_trans_id(d,val) do { (d)->j_trans_id = cpu_to_le32 (val); } while (0)
1636#define set_desc_trans_len(d,val) do { (d)->j_len = cpu_to_le32 (val); } while (0)
1637#define set_desc_mount_id(d,val) do { (d)->j_mount_id = cpu_to_le32 (val); } while (0)
1638
1639/* last block written in a commit */
1640struct reiserfs_journal_commit {
bd4c625c
LT
1641 __le32 j_trans_id; /* must match j_trans_id from the desc block */
1642 __le32 j_len; /* ditto */
1643 __le32 j_realblock[1]; /* real locations for each block */
1644};
1da177e4
LT
1645
1646#define get_commit_trans_id(c) le32_to_cpu((c)->j_trans_id)
1647#define get_commit_trans_len(c) le32_to_cpu((c)->j_len)
1648#define get_commit_mount_id(c) le32_to_cpu((c)->j_mount_id)
1649
1650#define set_commit_trans_id(c,val) do { (c)->j_trans_id = cpu_to_le32 (val); } while (0)
1651#define set_commit_trans_len(c,val) do { (c)->j_len = cpu_to_le32 (val); } while (0)
1652
1653/* this header block gets written whenever a transaction is considered fully flushed, and is more recent than the
1654** last fully flushed transaction. fully flushed means all the log blocks and all the real blocks are on disk,
1655** and this transaction does not need to be replayed.
1656*/
1657struct reiserfs_journal_header {
bd4c625c
LT
1658 __le32 j_last_flush_trans_id; /* id of last fully flushed transaction */
1659 __le32 j_first_unflushed_offset; /* offset in the log of where to start replay after a crash */
1660 __le32 j_mount_id;
1661 /* 12 */ struct journal_params jh_journal;
1662};
1da177e4
LT
1663
1664/* biggest tunable defines are right here */
bd4c625c
LT
1665#define JOURNAL_BLOCK_COUNT 8192 /* number of blocks in the journal */
1666#define JOURNAL_TRANS_MAX_DEFAULT 1024 /* biggest possible single transaction, don't change for now (8/3/99) */
1da177e4 1667#define JOURNAL_TRANS_MIN_DEFAULT 256
bd4c625c 1668#define JOURNAL_MAX_BATCH_DEFAULT 900 /* max blocks to batch into one transaction, don't make this any bigger than 900 */
1da177e4 1669#define JOURNAL_MIN_RATIO 2
bd4c625c 1670#define JOURNAL_MAX_COMMIT_AGE 30
1da177e4
LT
1671#define JOURNAL_MAX_TRANS_AGE 30
1672#define JOURNAL_PER_BALANCE_CNT (3 * (MAX_HEIGHT-2) + 9)
0ab2621e
JM
1673#define JOURNAL_BLOCKS_PER_OBJECT(sb) (JOURNAL_PER_BALANCE_CNT * 3 + \
1674 2 * (REISERFS_QUOTA_INIT_BLOCKS(sb) + \
1675 REISERFS_QUOTA_TRANS_BLOCKS(sb)))
1676
1da177e4 1677#ifdef CONFIG_QUOTA
556a2a45
JK
1678/* We need to update data and inode (atime) */
1679#define REISERFS_QUOTA_TRANS_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & (1<<REISERFS_QUOTA) ? 2 : 0)
1680/* 1 balancing, 1 bitmap, 1 data per write + stat data update */
1681#define REISERFS_QUOTA_INIT_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & (1<<REISERFS_QUOTA) ? \
1682(DQUOT_INIT_ALLOC*(JOURNAL_PER_BALANCE_CNT+2)+DQUOT_INIT_REWRITE+1) : 0)
1683/* same as with INIT */
1684#define REISERFS_QUOTA_DEL_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & (1<<REISERFS_QUOTA) ? \
1685(DQUOT_DEL_ALLOC*(JOURNAL_PER_BALANCE_CNT+2)+DQUOT_DEL_REWRITE+1) : 0)
1da177e4 1686#else
556a2a45
JK
1687#define REISERFS_QUOTA_TRANS_BLOCKS(s) 0
1688#define REISERFS_QUOTA_INIT_BLOCKS(s) 0
1689#define REISERFS_QUOTA_DEL_BLOCKS(s) 0
1da177e4
LT
1690#endif
1691
1692/* both of these can be as low as 1, or as high as you want. The min is the
1693** number of 4k bitmap nodes preallocated on mount. New nodes are allocated
1694** as needed, and released when transactions are committed. On release, if
1695** the current number of nodes is > max, the node is freed, otherwise,
1696** it is put on a free list for faster use later.
1697*/
bd4c625c
LT
1698#define REISERFS_MIN_BITMAP_NODES 10
1699#define REISERFS_MAX_BITMAP_NODES 100
1da177e4 1700
bd4c625c 1701#define JBH_HASH_SHIFT 13 /* these are based on journal hash size of 8192 */
1da177e4
LT
1702#define JBH_HASH_MASK 8191
1703
1704#define _jhashfn(sb,block) \
1705 (((unsigned long)sb>>L1_CACHE_SHIFT) ^ \
1706 (((block)<<(JBH_HASH_SHIFT - 6)) ^ ((block) >> 13) ^ ((block) << (JBH_HASH_SHIFT - 12))))
1707#define journal_hash(t,sb,block) ((t)[_jhashfn((sb),(block)) & JBH_HASH_MASK])
1708
1709// We need these to make journal.c code more readable
1710#define journal_find_get_block(s, block) __find_get_block(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
1711#define journal_getblk(s, block) __getblk(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
1712#define journal_bread(s, block) __bread(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
1713
1714enum reiserfs_bh_state_bits {
bd4c625c
LT
1715 BH_JDirty = BH_PrivateStart, /* buffer is in current transaction */
1716 BH_JDirty_wait,
1717 BH_JNew, /* disk block was taken off free list before
1718 * being in a finished transaction, or
1719 * written to disk. Can be reused immed. */
1720 BH_JPrepared,
1721 BH_JRestore_dirty,
1722 BH_JTest, // debugging only will go away
1da177e4
LT
1723};
1724
1725BUFFER_FNS(JDirty, journaled);
1726TAS_BUFFER_FNS(JDirty, journaled);
1727BUFFER_FNS(JDirty_wait, journal_dirty);
1728TAS_BUFFER_FNS(JDirty_wait, journal_dirty);
1729BUFFER_FNS(JNew, journal_new);
1730TAS_BUFFER_FNS(JNew, journal_new);
1731BUFFER_FNS(JPrepared, journal_prepared);
1732TAS_BUFFER_FNS(JPrepared, journal_prepared);
1733BUFFER_FNS(JRestore_dirty, journal_restore_dirty);
1734TAS_BUFFER_FNS(JRestore_dirty, journal_restore_dirty);
1735BUFFER_FNS(JTest, journal_test);
1736TAS_BUFFER_FNS(JTest, journal_test);
1737
1738/*
1739** transaction handle which is passed around for all journal calls
1740*/
1741struct reiserfs_transaction_handle {
bd4c625c
LT
1742 struct super_block *t_super; /* super for this FS when journal_begin was
1743 called. saves calls to reiserfs_get_super
1744 also used by nested transactions to make
1745 sure they are nesting on the right FS
1746 _must_ be first in the handle
1747 */
1748 int t_refcount;
1749 int t_blocks_logged; /* number of blocks this writer has logged */
1750 int t_blocks_allocated; /* number of blocks this writer allocated */
600ed416 1751 unsigned int t_trans_id; /* sanity check, equals the current trans id */
bd4c625c
LT
1752 void *t_handle_save; /* save existing current->journal_info */
1753 unsigned displace_new_blocks:1; /* if new block allocation occurres, that block
1754 should be displaced from others */
1755 struct list_head t_list;
1756};
1da177e4
LT
1757
1758/* used to keep track of ordered and tail writes, attached to the buffer
1759 * head through b_journal_head.
1760 */
1761struct reiserfs_jh {
bd4c625c
LT
1762 struct reiserfs_journal_list *jl;
1763 struct buffer_head *bh;
1764 struct list_head list;
1da177e4
LT
1765};
1766
1767void reiserfs_free_jh(struct buffer_head *bh);
1768int reiserfs_add_tail_list(struct inode *inode, struct buffer_head *bh);
1769int reiserfs_add_ordered_list(struct inode *inode, struct buffer_head *bh);
bd4c625c
LT
1770int journal_mark_dirty(struct reiserfs_transaction_handle *,
1771 struct super_block *, struct buffer_head *bh);
1772
1773static inline int reiserfs_file_data_log(struct inode *inode)
1774{
1775 if (reiserfs_data_log(inode->i_sb) ||
1776 (REISERFS_I(inode)->i_flags & i_data_log))
1777 return 1;
1778 return 0;
1da177e4
LT
1779}
1780
bd4c625c
LT
1781static inline int reiserfs_transaction_running(struct super_block *s)
1782{
1783 struct reiserfs_transaction_handle *th = current->journal_info;
1784 if (th && th->t_super == s)
1785 return 1;
1786 if (th && th->t_super == NULL)
1787 BUG();
1788 return 0;
1da177e4
LT
1789}
1790
23f9e0f8
AZ
1791static inline int reiserfs_transaction_free_space(struct reiserfs_transaction_handle *th)
1792{
1793 return th->t_blocks_allocated - th->t_blocks_logged;
1794}
1795
bd4c625c
LT
1796struct reiserfs_transaction_handle *reiserfs_persistent_transaction(struct
1797 super_block
1798 *,
1799 int count);
1da177e4
LT
1800int reiserfs_end_persistent_transaction(struct reiserfs_transaction_handle *);
1801int reiserfs_commit_page(struct inode *inode, struct page *page,
bd4c625c 1802 unsigned from, unsigned to);
1da177e4 1803int reiserfs_flush_old_commits(struct super_block *);
bd4c625c
LT
1804int reiserfs_commit_for_inode(struct inode *);
1805int reiserfs_inode_needs_commit(struct inode *);
1806void reiserfs_update_inode_transaction(struct inode *);
1807void reiserfs_wait_on_write_block(struct super_block *s);
1808void reiserfs_block_writes(struct reiserfs_transaction_handle *th);
1809void reiserfs_allow_writes(struct super_block *s);
1810void reiserfs_check_lock_depth(struct super_block *s, char *caller);
1811int reiserfs_prepare_for_journal(struct super_block *, struct buffer_head *bh,
1812 int wait);
1813void reiserfs_restore_prepared_buffer(struct super_block *,
1814 struct buffer_head *bh);
1815int journal_init(struct super_block *, const char *j_dev_name, int old_format,
1816 unsigned int);
1817int journal_release(struct reiserfs_transaction_handle *, struct super_block *);
1818int journal_release_error(struct reiserfs_transaction_handle *,
1819 struct super_block *);
1820int journal_end(struct reiserfs_transaction_handle *, struct super_block *,
1821 unsigned long);
1822int journal_end_sync(struct reiserfs_transaction_handle *, struct super_block *,
1823 unsigned long);
1824int journal_mark_freed(struct reiserfs_transaction_handle *,
1825 struct super_block *, b_blocknr_t blocknr);
1826int journal_transaction_should_end(struct reiserfs_transaction_handle *, int);
a9dd3643
JM
1827int reiserfs_in_journal(struct super_block *sb, unsigned int bmap_nr,
1828 int bit_nr, int searchall, b_blocknr_t *next);
bd4c625c 1829int journal_begin(struct reiserfs_transaction_handle *,
a9dd3643 1830 struct super_block *sb, unsigned long);
bd4c625c 1831int journal_join_abort(struct reiserfs_transaction_handle *,
a9dd3643 1832 struct super_block *sb, unsigned long);
32e8b106 1833void reiserfs_abort_journal(struct super_block *sb, int errno);
bd4c625c
LT
1834void reiserfs_abort(struct super_block *sb, int errno, const char *fmt, ...);
1835int reiserfs_allocate_list_bitmaps(struct super_block *s,
3ee16670 1836 struct reiserfs_list_bitmap *, unsigned int);
bd4c625c
LT
1837
1838void add_save_link(struct reiserfs_transaction_handle *th,
1839 struct inode *inode, int truncate);
1840int remove_save_link(struct inode *inode, int truncate);
1da177e4
LT
1841
1842/* objectid.c */
bd4c625c
LT
1843__u32 reiserfs_get_unused_objectid(struct reiserfs_transaction_handle *th);
1844void reiserfs_release_objectid(struct reiserfs_transaction_handle *th,
1845 __u32 objectid_to_release);
1846int reiserfs_convert_objectid_map_v1(struct super_block *);
1da177e4
LT
1847
1848/* stree.c */
1849int B_IS_IN_TREE(const struct buffer_head *);
d68caa95
JM
1850extern void copy_item_head(struct item_head *to,
1851 const struct item_head *from);
1da177e4
LT
1852
1853// first key is in cpu form, second - le
bd4c625c
LT
1854extern int comp_short_keys(const struct reiserfs_key *le_key,
1855 const struct cpu_key *cpu_key);
1856extern void le_key2cpu_key(struct cpu_key *to, const struct reiserfs_key *from);
1da177e4
LT
1857
1858// both are in le form
bd4c625c
LT
1859extern int comp_le_keys(const struct reiserfs_key *,
1860 const struct reiserfs_key *);
1861extern int comp_short_le_keys(const struct reiserfs_key *,
1862 const struct reiserfs_key *);
1da177e4
LT
1863
1864//
1865// get key version from on disk key - kludge
1866//
bd4c625c 1867static inline int le_key_version(const struct reiserfs_key *key)
1da177e4 1868{
bd4c625c 1869 int type;
1da177e4 1870
bd4c625c
LT
1871 type = offset_v2_k_type(&(key->u.k_offset_v2));
1872 if (type != TYPE_DIRECT && type != TYPE_INDIRECT
1873 && type != TYPE_DIRENTRY)
1874 return KEY_FORMAT_3_5;
1875
1876 return KEY_FORMAT_3_6;
1da177e4 1877
1da177e4
LT
1878}
1879
bd4c625c
LT
1880static inline void copy_key(struct reiserfs_key *to,
1881 const struct reiserfs_key *from)
1882{
1883 memcpy(to, from, KEY_SIZE);
1884}
1da177e4 1885
d68caa95
JM
1886int comp_items(const struct item_head *stored_ih, const struct treepath *path);
1887const struct reiserfs_key *get_rkey(const struct treepath *chk_path,
a9dd3643 1888 const struct super_block *sb);
bd4c625c 1889int search_by_key(struct super_block *, const struct cpu_key *,
fec6d055 1890 struct treepath *, int);
1da177e4 1891#define search_item(s,key,path) search_by_key (s, key, path, DISK_LEAF_NODE_LEVEL)
a9dd3643 1892int search_for_position_by_key(struct super_block *sb,
d68caa95
JM
1893 const struct cpu_key *cpu_key,
1894 struct treepath *search_path);
ad31a4fc 1895extern void decrement_bcount(struct buffer_head *bh);
d68caa95
JM
1896void decrement_counters_in_path(struct treepath *search_path);
1897void pathrelse(struct treepath *search_path);
fec6d055 1898int reiserfs_check_path(struct treepath *p);
d68caa95 1899void pathrelse_and_restore(struct super_block *s, struct treepath *search_path);
bd4c625c
LT
1900
1901int reiserfs_insert_item(struct reiserfs_transaction_handle *th,
fec6d055 1902 struct treepath *path,
bd4c625c
LT
1903 const struct cpu_key *key,
1904 struct item_head *ih,
1905 struct inode *inode, const char *body);
1906
1907int reiserfs_paste_into_item(struct reiserfs_transaction_handle *th,
fec6d055 1908 struct treepath *path,
bd4c625c
LT
1909 const struct cpu_key *key,
1910 struct inode *inode,
1911 const char *body, int paste_size);
1912
1913int reiserfs_cut_from_item(struct reiserfs_transaction_handle *th,
fec6d055 1914 struct treepath *path,
bd4c625c
LT
1915 struct cpu_key *key,
1916 struct inode *inode,
1917 struct page *page, loff_t new_file_size);
1918
1919int reiserfs_delete_item(struct reiserfs_transaction_handle *th,
fec6d055 1920 struct treepath *path,
bd4c625c 1921 const struct cpu_key *key,
d68caa95 1922 struct inode *inode, struct buffer_head *un_bh);
bd4c625c
LT
1923
1924void reiserfs_delete_solid_item(struct reiserfs_transaction_handle *th,
1925 struct inode *inode, struct reiserfs_key *key);
1926int reiserfs_delete_object(struct reiserfs_transaction_handle *th,
995c762e 1927 struct inode *inode);
bd4c625c 1928int reiserfs_do_truncate(struct reiserfs_transaction_handle *th,
995c762e 1929 struct inode *inode, struct page *,
bd4c625c 1930 int update_timestamps);
1da177e4
LT
1931
1932#define i_block_size(inode) ((inode)->i_sb->s_blocksize)
1933#define file_size(inode) ((inode)->i_size)
1934#define tail_size(inode) (file_size (inode) & (i_block_size (inode) - 1))
1935
1936#define tail_has_to_be_packed(inode) (have_large_tails ((inode)->i_sb)?\
1937!STORE_TAIL_IN_UNFM_S1(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):have_small_tails ((inode)->i_sb)?!STORE_TAIL_IN_UNFM_S2(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):0 )
1938
bd4c625c 1939void padd_item(char *item, int total_length, int length);
1da177e4
LT
1940
1941/* inode.c */
1942/* args for the create parameter of reiserfs_get_block */
bd4c625c
LT
1943#define GET_BLOCK_NO_CREATE 0 /* don't create new blocks or convert tails */
1944#define GET_BLOCK_CREATE 1 /* add anything you need to find block */
1945#define GET_BLOCK_NO_HOLE 2 /* return -ENOENT for file holes */
1946#define GET_BLOCK_READ_DIRECT 4 /* read the tail if indirect item not found */
1b1dcc1b 1947#define GET_BLOCK_NO_IMUX 8 /* i_mutex is not held, don't preallocate */
bd4c625c
LT
1948#define GET_BLOCK_NO_DANGLE 16 /* don't leave any transactions running */
1949
bd4c625c
LT
1950void reiserfs_read_locked_inode(struct inode *inode,
1951 struct reiserfs_iget_args *args);
1952int reiserfs_find_actor(struct inode *inode, void *p);
1953int reiserfs_init_locked_inode(struct inode *inode, void *p);
1954void reiserfs_delete_inode(struct inode *inode);
1955int reiserfs_write_inode(struct inode *inode, int);
1956int reiserfs_get_block(struct inode *inode, sector_t block,
1957 struct buffer_head *bh_result, int create);
be55caf1
CH
1958struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid,
1959 int fh_len, int fh_type);
1960struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid,
1961 int fh_len, int fh_type);
bd4c625c
LT
1962int reiserfs_encode_fh(struct dentry *dentry, __u32 * data, int *lenp,
1963 int connectable);
1964
1965int reiserfs_truncate_file(struct inode *, int update_timestamps);
1966void make_cpu_key(struct cpu_key *cpu_key, struct inode *inode, loff_t offset,
1967 int type, int key_length);
1968void make_le_item_head(struct item_head *ih, const struct cpu_key *key,
1969 int version,
1970 loff_t offset, int type, int length, int entry_count);
1971struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key);
1972
57fe60df 1973struct reiserfs_security_handle;
bd4c625c
LT
1974int reiserfs_new_inode(struct reiserfs_transaction_handle *th,
1975 struct inode *dir, int mode,
1976 const char *symname, loff_t i_size,
57fe60df
JM
1977 struct dentry *dentry, struct inode *inode,
1978 struct reiserfs_security_handle *security);
bd4c625c
LT
1979
1980void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th,
1981 struct inode *inode, loff_t size);
1da177e4
LT
1982
1983static inline void reiserfs_update_sd(struct reiserfs_transaction_handle *th,
bd4c625c 1984 struct inode *inode)
1da177e4 1985{
bd4c625c 1986 reiserfs_update_sd_size(th, inode, inode->i_size);
1da177e4
LT
1987}
1988
bd4c625c
LT
1989void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode);
1990void i_attrs_to_sd_attrs(struct inode *inode, __u16 * sd_attrs);
1da177e4
LT
1991int reiserfs_setattr(struct dentry *dentry, struct iattr *attr);
1992
1993/* namei.c */
bd4c625c
LT
1994void set_de_name_and_namelen(struct reiserfs_dir_entry *de);
1995int search_by_entry_key(struct super_block *sb, const struct cpu_key *key,
fec6d055 1996 struct treepath *path, struct reiserfs_dir_entry *de);
bd4c625c 1997struct dentry *reiserfs_get_parent(struct dentry *);
1da177e4
LT
1998/* procfs.c */
1999
2000#if defined( CONFIG_PROC_FS ) && defined( CONFIG_REISERFS_PROC_INFO )
2001#define REISERFS_PROC_INFO
2002#else
2003#undef REISERFS_PROC_INFO
2004#endif
2005
bd4c625c
LT
2006int reiserfs_proc_info_init(struct super_block *sb);
2007int reiserfs_proc_info_done(struct super_block *sb);
2008struct proc_dir_entry *reiserfs_proc_register_global(char *name,
2009 read_proc_t * func);
2010void reiserfs_proc_unregister_global(const char *name);
2011int reiserfs_proc_info_global_init(void);
2012int reiserfs_proc_info_global_done(void);
2013int reiserfs_global_version_in_proc(char *buffer, char **start, off_t offset,
2014 int count, int *eof, void *data);
1da177e4
LT
2015
2016#if defined( REISERFS_PROC_INFO )
2017
2018#define PROC_EXP( e ) e
2019
2020#define __PINFO( sb ) REISERFS_SB(sb) -> s_proc_info_data
2021#define PROC_INFO_MAX( sb, field, value ) \
2022 __PINFO( sb ).field = \
2023 max( REISERFS_SB( sb ) -> s_proc_info_data.field, value )
2024#define PROC_INFO_INC( sb, field ) ( ++ ( __PINFO( sb ).field ) )
2025#define PROC_INFO_ADD( sb, field, val ) ( __PINFO( sb ).field += ( val ) )
2026#define PROC_INFO_BH_STAT( sb, bh, level ) \
2027 PROC_INFO_INC( sb, sbk_read_at[ ( level ) ] ); \
2028 PROC_INFO_ADD( sb, free_at[ ( level ) ], B_FREE_SPACE( bh ) ); \
2029 PROC_INFO_ADD( sb, items_at[ ( level ) ], B_NR_ITEMS( bh ) )
2030#else
2031#define PROC_EXP( e )
2032#define VOID_V ( ( void ) 0 )
2033#define PROC_INFO_MAX( sb, field, value ) VOID_V
2034#define PROC_INFO_INC( sb, field ) VOID_V
2035#define PROC_INFO_ADD( sb, field, val ) VOID_V
ad31a4fc 2036#define PROC_INFO_BH_STAT(sb, bh, n_node_level) VOID_V
1da177e4
LT
2037#endif
2038
2039/* dir.c */
c5ef1c42
AV
2040extern const struct inode_operations reiserfs_dir_inode_operations;
2041extern const struct inode_operations reiserfs_symlink_inode_operations;
2042extern const struct inode_operations reiserfs_special_inode_operations;
4b6f5d20 2043extern const struct file_operations reiserfs_dir_operations;
a41f1a47 2044int reiserfs_readdir_dentry(struct dentry *, void *, filldir_t, loff_t *);
1da177e4
LT
2045
2046/* tail_conversion.c */
bd4c625c 2047int direct2indirect(struct reiserfs_transaction_handle *, struct inode *,
fec6d055 2048 struct treepath *, struct buffer_head *, loff_t);
bd4c625c 2049int indirect2direct(struct reiserfs_transaction_handle *, struct inode *,
fec6d055 2050 struct page *, struct treepath *, const struct cpu_key *,
bd4c625c
LT
2051 loff_t, char *);
2052void reiserfs_unmap_buffer(struct buffer_head *);
1da177e4
LT
2053
2054/* file.c */
c5ef1c42 2055extern const struct inode_operations reiserfs_file_inode_operations;
4b6f5d20 2056extern const struct file_operations reiserfs_file_operations;
f5e54d6e 2057extern const struct address_space_operations reiserfs_address_space_operations;
1da177e4
LT
2058
2059/* fix_nodes.c */
1da177e4 2060
a063ae17 2061int fix_nodes(int n_op_mode, struct tree_balance *tb,
d68caa95 2062 struct item_head *ins_ih, const void *);
bd4c625c 2063void unfix_nodes(struct tree_balance *);
1da177e4
LT
2064
2065/* prints.c */
c3a9c210
JM
2066void __reiserfs_panic(struct super_block *s, const char *id,
2067 const char *function, const char *fmt, ...)
bd4c625c 2068 __attribute__ ((noreturn));
c3a9c210
JM
2069#define reiserfs_panic(s, id, fmt, args...) \
2070 __reiserfs_panic(s, id, __func__, fmt, ##args)
1e5e59d4
JM
2071void __reiserfs_error(struct super_block *s, const char *id,
2072 const char *function, const char *fmt, ...);
2073#define reiserfs_error(s, id, fmt, args...) \
2074 __reiserfs_error(s, id, __func__, fmt, ##args)
bd4c625c
LT
2075void reiserfs_info(struct super_block *s, const char *fmt, ...);
2076void reiserfs_debug(struct super_block *s, int level, const char *fmt, ...);
2077void print_indirect_item(struct buffer_head *bh, int item_num);
2078void store_print_tb(struct tree_balance *tb);
2079void print_cur_tb(char *mes);
2080void print_de(struct reiserfs_dir_entry *de);
2081void print_bi(struct buffer_info *bi, char *mes);
2082#define PRINT_LEAF_ITEMS 1 /* print all items */
2083#define PRINT_DIRECTORY_ITEMS 2 /* print directory items */
2084#define PRINT_DIRECT_ITEMS 4 /* print contents of direct items */
2085void print_block(struct buffer_head *bh, ...);
2086void print_bmap(struct super_block *s, int silent);
2087void print_bmap_block(int i, char *data, int size, int silent);
1da177e4 2088/*void print_super_block (struct super_block * s, char * mes);*/
bd4c625c
LT
2089void print_objectid_map(struct super_block *s);
2090void print_block_head(struct buffer_head *bh, char *mes);
2091void check_leaf(struct buffer_head *bh);
2092void check_internal(struct buffer_head *bh);
2093void print_statistics(struct super_block *s);
2094char *reiserfs_hashname(int code);
1da177e4
LT
2095
2096/* lbalance.c */
bd4c625c
LT
2097int leaf_move_items(int shift_mode, struct tree_balance *tb, int mov_num,
2098 int mov_bytes, struct buffer_head *Snew);
2099int leaf_shift_left(struct tree_balance *tb, int shift_num, int shift_bytes);
2100int leaf_shift_right(struct tree_balance *tb, int shift_num, int shift_bytes);
2101void leaf_delete_items(struct buffer_info *cur_bi, int last_first, int first,
2102 int del_num, int del_bytes);
2103void leaf_insert_into_buf(struct buffer_info *bi, int before,
2104 struct item_head *inserted_item_ih,
2105 const char *inserted_item_body, int zeros_number);
2106void leaf_paste_in_buffer(struct buffer_info *bi, int pasted_item_num,
2107 int pos_in_item, int paste_size, const char *body,
2108 int zeros_number);
2109void leaf_cut_from_buffer(struct buffer_info *bi, int cut_item_num,
2110 int pos_in_item, int cut_size);
eba00305 2111void leaf_paste_entries(struct buffer_info *bi, int item_num, int before,
bd4c625c
LT
2112 int new_entry_count, struct reiserfs_de_head *new_dehs,
2113 const char *records, int paste_size);
1da177e4 2114/* ibalance.c */
bd4c625c
LT
2115int balance_internal(struct tree_balance *, int, int, struct item_head *,
2116 struct buffer_head **);
1da177e4
LT
2117
2118/* do_balance.c */
bd4c625c
LT
2119void do_balance_mark_leaf_dirty(struct tree_balance *tb,
2120 struct buffer_head *bh, int flag);
1da177e4
LT
2121#define do_balance_mark_internal_dirty do_balance_mark_leaf_dirty
2122#define do_balance_mark_sb_dirty do_balance_mark_leaf_dirty
2123
bd4c625c
LT
2124void do_balance(struct tree_balance *tb, struct item_head *ih,
2125 const char *body, int flag);
2126void reiserfs_invalidate_buffer(struct tree_balance *tb,
2127 struct buffer_head *bh);
1da177e4 2128
bd4c625c
LT
2129int get_left_neighbor_position(struct tree_balance *tb, int h);
2130int get_right_neighbor_position(struct tree_balance *tb, int h);
2131void replace_key(struct tree_balance *tb, struct buffer_head *, int,
2132 struct buffer_head *, int);
2133void make_empty_node(struct buffer_info *);
2134struct buffer_head *get_FEB(struct tree_balance *);
1da177e4
LT
2135
2136/* bitmap.c */
2137
2138/* structure contains hints for block allocator, and it is a container for
2139 * arguments, such as node, search path, transaction_handle, etc. */
bd4c625c
LT
2140struct __reiserfs_blocknr_hint {
2141 struct inode *inode; /* inode passed to allocator, if we allocate unf. nodes */
3ee16670 2142 sector_t block; /* file offset, in blocks */
bd4c625c 2143 struct in_core_key key;
fec6d055 2144 struct treepath *path; /* search path, used by allocator to deternine search_start by
bd4c625c
LT
2145 * various ways */
2146 struct reiserfs_transaction_handle *th; /* transaction handle is needed to log super blocks and
2147 * bitmap blocks changes */
2148 b_blocknr_t beg, end;
2149 b_blocknr_t search_start; /* a field used to transfer search start value (block number)
1da177e4
LT
2150 * between different block allocator procedures
2151 * (determine_search_start() and others) */
bd4c625c
LT
2152 int prealloc_size; /* is set in determine_prealloc_size() function, used by underlayed
2153 * function that do actual allocation */
1da177e4 2154
bd4c625c 2155 unsigned formatted_node:1; /* the allocator uses different polices for getting disk space for
1da177e4 2156 * formatted/unformatted blocks with/without preallocation */
bd4c625c 2157 unsigned preallocate:1;
1da177e4
LT
2158};
2159
2160typedef struct __reiserfs_blocknr_hint reiserfs_blocknr_hint_t;
2161
bd4c625c
LT
2162int reiserfs_parse_alloc_options(struct super_block *, char *);
2163void reiserfs_init_alloc_options(struct super_block *s);
1da177e4
LT
2164
2165/*
2166 * given a directory, this will tell you what packing locality
2167 * to use for a new object underneat it. The locality is returned
2168 * in disk byte order (le).
2169 */
3e8962be 2170__le32 reiserfs_choose_packing(struct inode *dir);
1da177e4 2171
6f01046b
JM
2172int reiserfs_init_bitmap_cache(struct super_block *sb);
2173void reiserfs_free_bitmap_cache(struct super_block *sb);
2174void reiserfs_cache_bitmap_metadata(struct super_block *sb, struct buffer_head *bh, struct reiserfs_bitmap_info *info);
2175struct buffer_head *reiserfs_read_bitmap_block(struct super_block *sb, unsigned int bitmap);
bd4c625c
LT
2176int is_reusable(struct super_block *s, b_blocknr_t block, int bit_value);
2177void reiserfs_free_block(struct reiserfs_transaction_handle *th, struct inode *,
2178 b_blocknr_t, int for_unformatted);
2179int reiserfs_allocate_blocknrs(reiserfs_blocknr_hint_t *, b_blocknr_t *, int,
2180 int);
9adeb1b4 2181static inline int reiserfs_new_form_blocknrs(struct tree_balance *tb,
bd4c625c
LT
2182 b_blocknr_t * new_blocknrs,
2183 int amount_needed)
1da177e4 2184{
bd4c625c
LT
2185 reiserfs_blocknr_hint_t hint = {
2186 .th = tb->transaction_handle,
2187 .path = tb->tb_path,
2188 .inode = NULL,
2189 .key = tb->key,
2190 .block = 0,
2191 .formatted_node = 1
2192 };
2193 return reiserfs_allocate_blocknrs(&hint, new_blocknrs, amount_needed,
2194 0);
1da177e4
LT
2195}
2196
9adeb1b4 2197static inline int reiserfs_new_unf_blocknrs(struct reiserfs_transaction_handle
bd4c625c
LT
2198 *th, struct inode *inode,
2199 b_blocknr_t * new_blocknrs,
3ee16670
JM
2200 struct treepath *path,
2201 sector_t block)
1da177e4 2202{
bd4c625c
LT
2203 reiserfs_blocknr_hint_t hint = {
2204 .th = th,
2205 .path = path,
2206 .inode = inode,
2207 .block = block,
2208 .formatted_node = 0,
2209 .preallocate = 0
2210 };
2211 return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0);
1da177e4
LT
2212}
2213
2214#ifdef REISERFS_PREALLOCATE
9adeb1b4 2215static inline int reiserfs_new_unf_blocknrs2(struct reiserfs_transaction_handle
bd4c625c
LT
2216 *th, struct inode *inode,
2217 b_blocknr_t * new_blocknrs,
3ee16670
JM
2218 struct treepath *path,
2219 sector_t block)
1da177e4 2220{
bd4c625c
LT
2221 reiserfs_blocknr_hint_t hint = {
2222 .th = th,
2223 .path = path,
2224 .inode = inode,
2225 .block = block,
2226 .formatted_node = 0,
2227 .preallocate = 1
2228 };
2229 return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0);
1da177e4
LT
2230}
2231
bd4c625c
LT
2232void reiserfs_discard_prealloc(struct reiserfs_transaction_handle *th,
2233 struct inode *inode);
2234void reiserfs_discard_all_prealloc(struct reiserfs_transaction_handle *th);
1da177e4 2235#endif
1da177e4
LT
2236
2237/* hashes.c */
bd4c625c
LT
2238__u32 keyed_hash(const signed char *msg, int len);
2239__u32 yura_hash(const signed char *msg, int len);
2240__u32 r5_hash(const signed char *msg, int len);
1da177e4
LT
2241
2242/* the ext2 bit routines adjust for big or little endian as
2243** appropriate for the arch, so in our laziness we use them rather
2244** than using the bit routines they call more directly. These
2245** routines must be used when changing on disk bitmaps. */
2246#define reiserfs_test_and_set_le_bit ext2_set_bit
2247#define reiserfs_test_and_clear_le_bit ext2_clear_bit
2248#define reiserfs_test_le_bit ext2_test_bit
2249#define reiserfs_find_next_zero_le_bit ext2_find_next_zero_bit
2250
2251/* sometimes reiserfs_truncate may require to allocate few new blocks
2252 to perform indirect2direct conversion. People probably used to
2253 think, that truncate should work without problems on a filesystem
2254 without free disk space. They may complain that they can not
2255 truncate due to lack of free disk space. This spare space allows us
2256 to not worry about it. 500 is probably too much, but it should be
2257 absolutely safe */
2258#define SPARE_SPACE 500
2259
1da177e4 2260/* prototypes from ioctl.c */
bd4c625c
LT
2261int reiserfs_ioctl(struct inode *inode, struct file *filp,
2262 unsigned int cmd, unsigned long arg);
52b499c4
DH
2263long reiserfs_compat_ioctl(struct file *filp,
2264 unsigned int cmd, unsigned long arg);
d5dee5c3 2265int reiserfs_unpack(struct inode *inode, struct file *filp);
bd4c625c 2266
11d9f653 2267#endif /* __KERNEL__ */
bd4c625c 2268
bd4c625c 2269#endif /* _LINUX_REISER_FS_H */
This page took 1.08781 seconds and 5 git commands to generate.