[PATCH] reiserfs endianness: clone struct reiserfs_key
[deliverable/linux.git] / include / linux / reiserfs_fs.h
CommitLineData
1da177e4
LT
1/*
2 * Copyright 1996, 1997, 1998 Hans Reiser, see reiserfs/README for licensing and copyright details
3 */
4
5 /* this file has an amazingly stupid
6 name, yura please fix it to be
7 reiserfs.h, and merge all the rest
8 of our .h files that are in this
9 directory into it. */
10
11
12#ifndef _LINUX_REISER_FS_H
13#define _LINUX_REISER_FS_H
14
15#include <linux/types.h>
16#ifdef __KERNEL__
17#include <linux/slab.h>
18#include <linux/interrupt.h>
19#include <linux/sched.h>
20#include <linux/workqueue.h>
21#include <asm/unaligned.h>
22#include <linux/bitops.h>
23#include <linux/proc_fs.h>
24#include <linux/smp_lock.h>
25#include <linux/buffer_head.h>
26#include <linux/reiserfs_fs_i.h>
27#include <linux/reiserfs_fs_sb.h>
28#endif
29
30/*
31 * include/linux/reiser_fs.h
32 *
33 * Reiser File System constants and structures
34 *
35 */
36
37/* in reading the #defines, it may help to understand that they employ
38 the following abbreviations:
39
40 B = Buffer
41 I = Item header
42 H = Height within the tree (should be changed to LEV)
43 N = Number of the item in the node
44 STAT = stat data
45 DEH = Directory Entry Header
46 EC = Entry Count
47 E = Entry number
48 UL = Unsigned Long
49 BLKH = BLocK Header
50 UNFM = UNForMatted node
51 DC = Disk Child
52 P = Path
53
54 These #defines are named by concatenating these abbreviations,
55 where first comes the arguments, and last comes the return value,
56 of the macro.
57
58*/
59
60#define USE_INODE_GENERATION_COUNTER
61
62#define REISERFS_PREALLOCATE
63#define DISPLACE_NEW_PACKING_LOCALITIES
64#define PREALLOCATION_SIZE 9
65
66/* n must be power of 2 */
67#define _ROUND_UP(x,n) (((x)+(n)-1u) & ~((n)-1u))
68
69// to be ok for alpha and others we have to align structures to 8 byte
70// boundary.
71// FIXME: do not change 4 by anything else: there is code which relies on that
72#define ROUND_UP(x) _ROUND_UP(x,8LL)
73
74/* debug levels. Right now, CONFIG_REISERFS_CHECK means print all debug
75** messages.
76*/
77#define REISERFS_DEBUG_CODE 5 /* extra messages to help find/debug errors */
78
79void reiserfs_warning (struct super_block *s, const char * fmt, ...);
80/* assertions handling */
81
82/** always check a condition and panic if it's false. */
83#define RASSERT( cond, format, args... ) \
84if( !( cond ) ) \
85 reiserfs_panic( NULL, "reiserfs[%i]: assertion " #cond " failed at " \
86 __FILE__ ":%i:%s: " format "\n", \
87 in_interrupt() ? -1 : current -> pid, __LINE__ , __FUNCTION__ , ##args )
88
89#if defined( CONFIG_REISERFS_CHECK )
90#define RFALSE( cond, format, args... ) RASSERT( !( cond ), format, ##args )
91#else
92#define RFALSE( cond, format, args... ) do {;} while( 0 )
93#endif
94
95#define CONSTF __attribute_const__
96/*
97 * Disk Data Structures
98 */
99
100/***************************************************************************/
101/* SUPER BLOCK */
102/***************************************************************************/
103
104/*
105 * Structure of super block on disk, a version of which in RAM is often accessed as REISERFS_SB(s)->s_rs
106 * the version in RAM is part of a larger structure containing fields never written to disk.
107 */
108#define UNSET_HASH 0 // read_super will guess about, what hash names
109 // in directories were sorted with
110#define TEA_HASH 1
111#define YURA_HASH 2
112#define R5_HASH 3
113#define DEFAULT_HASH R5_HASH
114
115
116struct journal_params {
117 __u32 jp_journal_1st_block; /* where does journal start from on its
118 * device */
119 __u32 jp_journal_dev; /* journal device st_rdev */
120 __u32 jp_journal_size; /* size of the journal */
121 __u32 jp_journal_trans_max; /* max number of blocks in a transaction. */
122 __u32 jp_journal_magic; /* random value made on fs creation (this
123 * was sb_journal_block_count) */
124 __u32 jp_journal_max_batch; /* max number of blocks to batch into a
125 * trans */
126 __u32 jp_journal_max_commit_age; /* in seconds, how old can an async
127 * commit be */
128 __u32 jp_journal_max_trans_age; /* in seconds, how old can a transaction
129 * be */
130};
131
132/* this is the super from 3.5.X, where X >= 10 */
133struct reiserfs_super_block_v1
134{
135 __u32 s_block_count; /* blocks count */
136 __u32 s_free_blocks; /* free blocks count */
137 __u32 s_root_block; /* root block number */
138 struct journal_params s_journal;
139 __u16 s_blocksize; /* block size */
140 __u16 s_oid_maxsize; /* max size of object id array, see
141 * get_objectid() commentary */
142 __u16 s_oid_cursize; /* current size of object id array */
143 __u16 s_umount_state; /* this is set to 1 when filesystem was
144 * umounted, to 2 - when not */
145 char s_magic[10]; /* reiserfs magic string indicates that
146 * file system is reiserfs:
147 * "ReIsErFs" or "ReIsEr2Fs" or "ReIsEr3Fs" */
148 __u16 s_fs_state; /* it is set to used by fsck to mark which
149 * phase of rebuilding is done */
150 __u32 s_hash_function_code; /* indicate, what hash function is being use
151 * to sort names in a directory*/
152 __u16 s_tree_height; /* height of disk tree */
153 __u16 s_bmap_nr; /* amount of bitmap blocks needed to address
154 * each block of file system */
155 __u16 s_version; /* this field is only reliable on filesystem
156 * with non-standard journal */
157 __u16 s_reserved_for_journal; /* size in blocks of journal area on main
158 * device, we need to keep after
159 * making fs with non-standard journal */
160} __attribute__ ((__packed__));
161
162#define SB_SIZE_V1 (sizeof(struct reiserfs_super_block_v1))
163
164/* this is the on disk super block */
165struct reiserfs_super_block
166{
167 struct reiserfs_super_block_v1 s_v1;
168 __u32 s_inode_generation;
169 __u32 s_flags; /* Right now used only by inode-attributes, if enabled */
170 unsigned char s_uuid[16]; /* filesystem unique identifier */
171 unsigned char s_label[16]; /* filesystem volume label */
172 char s_unused[88] ; /* zero filled by mkreiserfs and
173 * reiserfs_convert_objectid_map_v1()
174 * so any additions must be updated
175 * there as well. */
176} __attribute__ ((__packed__));
177
178#define SB_SIZE (sizeof(struct reiserfs_super_block))
179
180#define REISERFS_VERSION_1 0
181#define REISERFS_VERSION_2 2
182
183
184// on-disk super block fields converted to cpu form
185#define SB_DISK_SUPER_BLOCK(s) (REISERFS_SB(s)->s_rs)
186#define SB_V1_DISK_SUPER_BLOCK(s) (&(SB_DISK_SUPER_BLOCK(s)->s_v1))
187#define SB_BLOCKSIZE(s) \
188 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_blocksize))
189#define SB_BLOCK_COUNT(s) \
190 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_block_count))
191#define SB_FREE_BLOCKS(s) \
192 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks))
193#define SB_REISERFS_MAGIC(s) \
194 (SB_V1_DISK_SUPER_BLOCK(s)->s_magic)
195#define SB_ROOT_BLOCK(s) \
196 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_root_block))
197#define SB_TREE_HEIGHT(s) \
198 le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height))
199#define SB_REISERFS_STATE(s) \
200 le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state))
201#define SB_VERSION(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_version))
202#define SB_BMAP_NR(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr))
203
204#define PUT_SB_BLOCK_COUNT(s, val) \
205 do { SB_V1_DISK_SUPER_BLOCK(s)->s_block_count = cpu_to_le32(val); } while (0)
206#define PUT_SB_FREE_BLOCKS(s, val) \
207 do { SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks = cpu_to_le32(val); } while (0)
208#define PUT_SB_ROOT_BLOCK(s, val) \
209 do { SB_V1_DISK_SUPER_BLOCK(s)->s_root_block = cpu_to_le32(val); } while (0)
210#define PUT_SB_TREE_HEIGHT(s, val) \
211 do { SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height = cpu_to_le16(val); } while (0)
212#define PUT_SB_REISERFS_STATE(s, val) \
213 do { SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state = cpu_to_le16(val); } while (0)
214#define PUT_SB_VERSION(s, val) \
215 do { SB_V1_DISK_SUPER_BLOCK(s)->s_version = cpu_to_le16(val); } while (0)
216#define PUT_SB_BMAP_NR(s, val) \
217 do { SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr = cpu_to_le16 (val); } while (0)
218
219
220#define SB_ONDISK_JP(s) (&SB_V1_DISK_SUPER_BLOCK(s)->s_journal)
221#define SB_ONDISK_JOURNAL_SIZE(s) \
222 le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_size))
223#define SB_ONDISK_JOURNAL_1st_BLOCK(s) \
224 le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_1st_block))
225#define SB_ONDISK_JOURNAL_DEVICE(s) \
226 le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_dev))
227#define SB_ONDISK_RESERVED_FOR_JOURNAL(s) \
228 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_reserved_for_journal))
229
230#define is_block_in_log_or_reserved_area(s, block) \
231 block >= SB_JOURNAL_1st_RESERVED_BLOCK(s) \
232 && block < SB_JOURNAL_1st_RESERVED_BLOCK(s) + \
233 ((!is_reiserfs_jr(SB_DISK_SUPER_BLOCK(s)) ? \
234 SB_ONDISK_JOURNAL_SIZE(s) + 1 : SB_ONDISK_RESERVED_FOR_JOURNAL(s)))
235
236
237
238 /* used by gcc */
239#define REISERFS_SUPER_MAGIC 0x52654973
240 /* used by file system utilities that
241 look at the superblock, etc. */
242#define REISERFS_SUPER_MAGIC_STRING "ReIsErFs"
243#define REISER2FS_SUPER_MAGIC_STRING "ReIsEr2Fs"
244#define REISER2FS_JR_SUPER_MAGIC_STRING "ReIsEr3Fs"
245
246int is_reiserfs_3_5 (struct reiserfs_super_block * rs);
247int is_reiserfs_3_6 (struct reiserfs_super_block * rs);
248int is_reiserfs_jr (struct reiserfs_super_block * rs);
249
250/* ReiserFS leaves the first 64k unused, so that partition labels have
251 enough space. If someone wants to write a fancy bootloader that
252 needs more than 64k, let us know, and this will be increased in size.
253 This number must be larger than than the largest block size on any
254 platform, or code will break. -Hans */
255#define REISERFS_DISK_OFFSET_IN_BYTES (64 * 1024)
256#define REISERFS_FIRST_BLOCK unused_define
257#define REISERFS_JOURNAL_OFFSET_IN_BYTES REISERFS_DISK_OFFSET_IN_BYTES
258
259/* the spot for the super in versions 3.5 - 3.5.10 (inclusive) */
260#define REISERFS_OLD_DISK_OFFSET_IN_BYTES (8 * 1024)
261
262// reiserfs internal error code (used by search_by_key adn fix_nodes))
263#define CARRY_ON 0
264#define REPEAT_SEARCH -1
265#define IO_ERROR -2
266#define NO_DISK_SPACE -3
267#define NO_BALANCING_NEEDED (-4)
268#define NO_MORE_UNUSED_CONTIGUOUS_BLOCKS (-5)
269#define QUOTA_EXCEEDED -6
270
271typedef __u32 b_blocknr_t;
272typedef __u32 unp_t;
273
274struct unfm_nodeinfo {
275 unp_t unfm_nodenum;
276 unsigned short unfm_freespace;
277};
278
279/* there are two formats of keys: 3.5 and 3.6
280 */
281#define KEY_FORMAT_3_5 0
282#define KEY_FORMAT_3_6 1
283
284/* there are two stat datas */
285#define STAT_DATA_V1 0
286#define STAT_DATA_V2 1
287
288
289static inline struct reiserfs_inode_info *REISERFS_I(const struct inode *inode)
290{
291 return container_of(inode, struct reiserfs_inode_info, vfs_inode);
292}
293
294static inline struct reiserfs_sb_info *REISERFS_SB(const struct super_block *sb)
295{
296 return sb->s_fs_info;
297}
298
299/** this says about version of key of all items (but stat data) the
300 object consists of */
301#define get_inode_item_key_version( inode ) \
302 ((REISERFS_I(inode)->i_flags & i_item_key_version_mask) ? KEY_FORMAT_3_6 : KEY_FORMAT_3_5)
303
304#define set_inode_item_key_version( inode, version ) \
305 ({ if((version)==KEY_FORMAT_3_6) \
306 REISERFS_I(inode)->i_flags |= i_item_key_version_mask; \
307 else \
308 REISERFS_I(inode)->i_flags &= ~i_item_key_version_mask; })
309
310#define get_inode_sd_version(inode) \
311 ((REISERFS_I(inode)->i_flags & i_stat_data_version_mask) ? STAT_DATA_V2 : STAT_DATA_V1)
312
313#define set_inode_sd_version(inode, version) \
314 ({ if((version)==STAT_DATA_V2) \
315 REISERFS_I(inode)->i_flags |= i_stat_data_version_mask; \
316 else \
317 REISERFS_I(inode)->i_flags &= ~i_stat_data_version_mask; })
318
319/* This is an aggressive tail suppression policy, I am hoping it
320 improves our benchmarks. The principle behind it is that percentage
321 space saving is what matters, not absolute space saving. This is
322 non-intuitive, but it helps to understand it if you consider that the
323 cost to access 4 blocks is not much more than the cost to access 1
324 block, if you have to do a seek and rotate. A tail risks a
325 non-linear disk access that is significant as a percentage of total
326 time cost for a 4 block file and saves an amount of space that is
327 less significant as a percentage of space, or so goes the hypothesis.
328 -Hans */
329#define STORE_TAIL_IN_UNFM_S1(n_file_size,n_tail_size,n_block_size) \
330(\
331 (!(n_tail_size)) || \
332 (((n_tail_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) || \
333 ( (n_file_size) >= (n_block_size) * 4 ) || \
334 ( ( (n_file_size) >= (n_block_size) * 3 ) && \
335 ( (n_tail_size) >= (MAX_DIRECT_ITEM_LEN(n_block_size))/4) ) || \
336 ( ( (n_file_size) >= (n_block_size) * 2 ) && \
337 ( (n_tail_size) >= (MAX_DIRECT_ITEM_LEN(n_block_size))/2) ) || \
338 ( ( (n_file_size) >= (n_block_size) ) && \
339 ( (n_tail_size) >= (MAX_DIRECT_ITEM_LEN(n_block_size) * 3)/4) ) ) \
340)
341
342/* Another strategy for tails, this one means only create a tail if all the
343 file would fit into one DIRECT item.
344 Primary intention for this one is to increase performance by decreasing
345 seeking.
346*/
347#define STORE_TAIL_IN_UNFM_S2(n_file_size,n_tail_size,n_block_size) \
348(\
349 (!(n_tail_size)) || \
350 (((n_file_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) ) \
351)
352
353
354
355/*
356 * values for s_umount_state field
357 */
358#define REISERFS_VALID_FS 1
359#define REISERFS_ERROR_FS 2
360
361//
362// there are 5 item types currently
363//
364#define TYPE_STAT_DATA 0
365#define TYPE_INDIRECT 1
366#define TYPE_DIRECT 2
367#define TYPE_DIRENTRY 3
368#define TYPE_MAXTYPE 3
369#define TYPE_ANY 15 // FIXME: comment is required
370
371/***************************************************************************/
372/* KEY & ITEM HEAD */
373/***************************************************************************/
374
375//
376// directories use this key as well as old files
377//
378struct offset_v1 {
379 __u32 k_offset;
380 __u32 k_uniqueness;
381} __attribute__ ((__packed__));
382
383struct offset_v2 {
384#ifdef __LITTLE_ENDIAN
385 /* little endian version */
386 __u64 k_offset:60;
387 __u64 k_type: 4;
388#else
389 /* big endian version */
390 __u64 k_type: 4;
391 __u64 k_offset:60;
392#endif
393} __attribute__ ((__packed__));
394
395#ifndef __LITTLE_ENDIAN
396typedef union {
397 struct offset_v2 offset_v2;
398 __u64 linear;
399} __attribute__ ((__packed__)) offset_v2_esafe_overlay;
400
401static inline __u16 offset_v2_k_type( const struct offset_v2 *v2 )
402{
403 offset_v2_esafe_overlay tmp = *(const offset_v2_esafe_overlay *)v2;
404 tmp.linear = le64_to_cpu( tmp.linear );
405 return (tmp.offset_v2.k_type <= TYPE_MAXTYPE)?tmp.offset_v2.k_type:TYPE_ANY;
406}
407
408static inline void set_offset_v2_k_type( struct offset_v2 *v2, int type )
409{
410 offset_v2_esafe_overlay *tmp = (offset_v2_esafe_overlay *)v2;
411 tmp->linear = le64_to_cpu(tmp->linear);
412 tmp->offset_v2.k_type = type;
413 tmp->linear = cpu_to_le64(tmp->linear);
414}
415
416static inline loff_t offset_v2_k_offset( const struct offset_v2 *v2 )
417{
418 offset_v2_esafe_overlay tmp = *(const offset_v2_esafe_overlay *)v2;
419 tmp.linear = le64_to_cpu( tmp.linear );
420 return tmp.offset_v2.k_offset;
421}
422
423static inline void set_offset_v2_k_offset( struct offset_v2 *v2, loff_t offset ){
424 offset_v2_esafe_overlay *tmp = (offset_v2_esafe_overlay *)v2;
425 tmp->linear = le64_to_cpu(tmp->linear);
426 tmp->offset_v2.k_offset = offset;
427 tmp->linear = cpu_to_le64(tmp->linear);
428}
429#else
430# define offset_v2_k_type(v2) ((v2)->k_type)
431# define set_offset_v2_k_type(v2,val) (offset_v2_k_type(v2) = (val))
432# define offset_v2_k_offset(v2) ((v2)->k_offset)
433# define set_offset_v2_k_offset(v2,val) (offset_v2_k_offset(v2) = (val))
434#endif
435
6a3a16f2
AV
436struct in_core_offset_v1 {
437 __u32 k_offset;
438 __u32 k_uniqueness;
439} __attribute__ ((__packed__));
440
441struct in_core_offset_v2 {
442#ifdef __LITTLE_ENDIAN
443 /* little endian version */
444 __u64 k_offset:60;
445 __u64 k_type: 4;
446#else
447 /* big endian version */
448 __u64 k_type: 4;
449 __u64 k_offset:60;
450#endif
451} __attribute__ ((__packed__));
452
1da177e4
LT
453/* Key of an item determines its location in the S+tree, and
454 is composed of 4 components */
455struct reiserfs_key {
456 __u32 k_dir_id; /* packing locality: by default parent
457 directory object id */
458 __u32 k_objectid; /* object identifier */
459 union {
460 struct offset_v1 k_offset_v1;
461 struct offset_v2 k_offset_v2;
462 } __attribute__ ((__packed__)) u;
463} __attribute__ ((__packed__));
464
6a3a16f2
AV
465struct in_core_key {
466 __u32 k_dir_id; /* packing locality: by default parent
467 directory object id */
468 __u32 k_objectid; /* object identifier */
469 union {
470 struct in_core_offset_v1 k_offset_v1;
471 struct in_core_offset_v2 k_offset_v2;
472 } __attribute__ ((__packed__)) u;
473} __attribute__ ((__packed__));
1da177e4
LT
474
475struct cpu_key {
6a3a16f2 476 struct in_core_key on_disk_key;
1da177e4
LT
477 int version;
478 int key_length; /* 3 in all cases but direct2indirect and
479 indirect2direct conversion */
480};
481
482/* Our function for comparing keys can compare keys of different
483 lengths. It takes as a parameter the length of the keys it is to
484 compare. These defines are used in determining what is to be passed
485 to it as that parameter. */
486#define REISERFS_FULL_KEY_LEN 4
487#define REISERFS_SHORT_KEY_LEN 2
488
489/* The result of the key compare */
490#define FIRST_GREATER 1
491#define SECOND_GREATER -1
492#define KEYS_IDENTICAL 0
493#define KEY_FOUND 1
494#define KEY_NOT_FOUND 0
495
496#define KEY_SIZE (sizeof(struct reiserfs_key))
497#define SHORT_KEY_SIZE (sizeof (__u32) + sizeof (__u32))
498
499/* return values for search_by_key and clones */
500#define ITEM_FOUND 1
501#define ITEM_NOT_FOUND 0
502#define ENTRY_FOUND 1
503#define ENTRY_NOT_FOUND 0
504#define DIRECTORY_NOT_FOUND -1
505#define REGULAR_FILE_FOUND -2
506#define DIRECTORY_FOUND -3
507#define BYTE_FOUND 1
508#define BYTE_NOT_FOUND 0
509#define FILE_NOT_FOUND -1
510
511#define POSITION_FOUND 1
512#define POSITION_NOT_FOUND 0
513
514// return values for reiserfs_find_entry and search_by_entry_key
515#define NAME_FOUND 1
516#define NAME_NOT_FOUND 0
517#define GOTO_PREVIOUS_ITEM 2
518#define NAME_FOUND_INVISIBLE 3
519
520/* Everything in the filesystem is stored as a set of items. The
521 item head contains the key of the item, its free space (for
522 indirect items) and specifies the location of the item itself
523 within the block. */
524
525struct item_head
526{
527 /* Everything in the tree is found by searching for it based on
528 * its key.*/
529 struct reiserfs_key ih_key;
530 union {
531 /* The free space in the last unformatted node of an
532 indirect item if this is an indirect item. This
533 equals 0xFFFF iff this is a direct item or stat data
534 item. Note that the key, not this field, is used to
535 determine the item type, and thus which field this
536 union contains. */
537 __u16 ih_free_space_reserved;
538 /* Iff this is a directory item, this field equals the
539 number of directory entries in the directory item. */
540 __u16 ih_entry_count;
541 } __attribute__ ((__packed__)) u;
542 __u16 ih_item_len; /* total size of the item body */
543 __u16 ih_item_location; /* an offset to the item body
544 * within the block */
545 __u16 ih_version; /* 0 for all old items, 2 for new
546 ones. Highest bit is set by fsck
547 temporary, cleaned after all
548 done */
549} __attribute__ ((__packed__));
550/* size of item header */
551#define IH_SIZE (sizeof(struct item_head))
552
553#define ih_free_space(ih) le16_to_cpu((ih)->u.ih_free_space_reserved)
554#define ih_version(ih) le16_to_cpu((ih)->ih_version)
555#define ih_entry_count(ih) le16_to_cpu((ih)->u.ih_entry_count)
556#define ih_location(ih) le16_to_cpu((ih)->ih_item_location)
557#define ih_item_len(ih) le16_to_cpu((ih)->ih_item_len)
558
559#define put_ih_free_space(ih, val) do { (ih)->u.ih_free_space_reserved = cpu_to_le16(val); } while(0)
560#define put_ih_version(ih, val) do { (ih)->ih_version = cpu_to_le16(val); } while (0)
561#define put_ih_entry_count(ih, val) do { (ih)->u.ih_entry_count = cpu_to_le16(val); } while (0)
562#define put_ih_location(ih, val) do { (ih)->ih_item_location = cpu_to_le16(val); } while (0)
563#define put_ih_item_len(ih, val) do { (ih)->ih_item_len = cpu_to_le16(val); } while (0)
564
565
566#define unreachable_item(ih) (ih_version(ih) & (1 << 15))
567
568#define get_ih_free_space(ih) (ih_version (ih) == KEY_FORMAT_3_6 ? 0 : ih_free_space (ih))
569#define set_ih_free_space(ih,val) put_ih_free_space((ih), ((ih_version(ih) == KEY_FORMAT_3_6) ? 0 : (val)))
570
571/* these operate on indirect items, where you've got an array of ints
572** at a possibly unaligned location. These are a noop on ia32
573**
574** p is the array of __u32, i is the index into the array, v is the value
575** to store there.
576*/
577#define get_block_num(p, i) le32_to_cpu(get_unaligned((p) + (i)))
578#define put_block_num(p, i, v) put_unaligned(cpu_to_le32(v), (p) + (i))
579
580//
581// in old version uniqueness field shows key type
582//
583#define V1_SD_UNIQUENESS 0
584#define V1_INDIRECT_UNIQUENESS 0xfffffffe
585#define V1_DIRECT_UNIQUENESS 0xffffffff
586#define V1_DIRENTRY_UNIQUENESS 500
587#define V1_ANY_UNIQUENESS 555 // FIXME: comment is required
588
589//
590// here are conversion routines
591//
592static inline int uniqueness2type (__u32 uniqueness) CONSTF;
593static inline int uniqueness2type (__u32 uniqueness)
594{
595 switch ((int)uniqueness) {
596 case V1_SD_UNIQUENESS: return TYPE_STAT_DATA;
597 case V1_INDIRECT_UNIQUENESS: return TYPE_INDIRECT;
598 case V1_DIRECT_UNIQUENESS: return TYPE_DIRECT;
599 case V1_DIRENTRY_UNIQUENESS: return TYPE_DIRENTRY;
600 default:
601 reiserfs_warning (NULL, "vs-500: unknown uniqueness %d",
602 uniqueness);
603 case V1_ANY_UNIQUENESS:
604 return TYPE_ANY;
605 }
606}
607
608static inline __u32 type2uniqueness (int type) CONSTF;
609static inline __u32 type2uniqueness (int type)
610{
611 switch (type) {
612 case TYPE_STAT_DATA: return V1_SD_UNIQUENESS;
613 case TYPE_INDIRECT: return V1_INDIRECT_UNIQUENESS;
614 case TYPE_DIRECT: return V1_DIRECT_UNIQUENESS;
615 case TYPE_DIRENTRY: return V1_DIRENTRY_UNIQUENESS;
616 default:
617 reiserfs_warning (NULL, "vs-501: unknown type %d", type);
618 case TYPE_ANY:
619 return V1_ANY_UNIQUENESS;
620 }
621}
622
623//
624// key is pointer to on disk key which is stored in le, result is cpu,
625// there is no way to get version of object from key, so, provide
626// version to these defines
627//
628static inline loff_t le_key_k_offset (int version, const struct reiserfs_key * key)
629{
630 return (version == KEY_FORMAT_3_5) ?
631 le32_to_cpu( key->u.k_offset_v1.k_offset ) :
632 offset_v2_k_offset( &(key->u.k_offset_v2) );
633}
634
635static inline loff_t le_ih_k_offset (const struct item_head * ih)
636{
637 return le_key_k_offset (ih_version (ih), &(ih->ih_key));
638}
639
640static inline loff_t le_key_k_type (int version, const struct reiserfs_key * key)
641{
642 return (version == KEY_FORMAT_3_5) ?
643 uniqueness2type( le32_to_cpu( key->u.k_offset_v1.k_uniqueness)) :
644 offset_v2_k_type( &(key->u.k_offset_v2) );
645}
646
647static inline loff_t le_ih_k_type (const struct item_head * ih)
648{
649 return le_key_k_type (ih_version (ih), &(ih->ih_key));
650}
651
652
653static inline void set_le_key_k_offset (int version, struct reiserfs_key * key, loff_t offset)
654{
655 (version == KEY_FORMAT_3_5) ?
656 (void)(key->u.k_offset_v1.k_offset = cpu_to_le32 (offset)) : /* jdm check */
657 (void)(set_offset_v2_k_offset( &(key->u.k_offset_v2), offset ));
658}
659
660
661static inline void set_le_ih_k_offset (struct item_head * ih, loff_t offset)
662{
663 set_le_key_k_offset (ih_version (ih), &(ih->ih_key), offset);
664}
665
666
667static inline void set_le_key_k_type (int version, struct reiserfs_key * key, int type)
668{
669 (version == KEY_FORMAT_3_5) ?
670 (void)(key->u.k_offset_v1.k_uniqueness = cpu_to_le32(type2uniqueness(type))):
671 (void)(set_offset_v2_k_type( &(key->u.k_offset_v2), type ));
672}
673static inline void set_le_ih_k_type (struct item_head * ih, int type)
674{
675 set_le_key_k_type (ih_version (ih), &(ih->ih_key), type);
676}
677
678
679#define is_direntry_le_key(version,key) (le_key_k_type (version, key) == TYPE_DIRENTRY)
680#define is_direct_le_key(version,key) (le_key_k_type (version, key) == TYPE_DIRECT)
681#define is_indirect_le_key(version,key) (le_key_k_type (version, key) == TYPE_INDIRECT)
682#define is_statdata_le_key(version,key) (le_key_k_type (version, key) == TYPE_STAT_DATA)
683
684//
685// item header has version.
686//
687#define is_direntry_le_ih(ih) is_direntry_le_key (ih_version (ih), &((ih)->ih_key))
688#define is_direct_le_ih(ih) is_direct_le_key (ih_version (ih), &((ih)->ih_key))
689#define is_indirect_le_ih(ih) is_indirect_le_key (ih_version(ih), &((ih)->ih_key))
690#define is_statdata_le_ih(ih) is_statdata_le_key (ih_version (ih), &((ih)->ih_key))
691
692
693
694//
695// key is pointer to cpu key, result is cpu
696//
697static inline loff_t cpu_key_k_offset (const struct cpu_key * key)
698{
699 return (key->version == KEY_FORMAT_3_5) ?
700 key->on_disk_key.u.k_offset_v1.k_offset :
701 key->on_disk_key.u.k_offset_v2.k_offset;
702}
703
704static inline loff_t cpu_key_k_type (const struct cpu_key * key)
705{
706 return (key->version == KEY_FORMAT_3_5) ?
707 uniqueness2type (key->on_disk_key.u.k_offset_v1.k_uniqueness) :
708 key->on_disk_key.u.k_offset_v2.k_type;
709}
710
711static inline void set_cpu_key_k_offset (struct cpu_key * key, loff_t offset)
712{
713 (key->version == KEY_FORMAT_3_5) ?
714 (key->on_disk_key.u.k_offset_v1.k_offset = offset) :
715 (key->on_disk_key.u.k_offset_v2.k_offset = offset);
716}
717
718
719static inline void set_cpu_key_k_type (struct cpu_key * key, int type)
720{
721 (key->version == KEY_FORMAT_3_5) ?
722 (key->on_disk_key.u.k_offset_v1.k_uniqueness = type2uniqueness (type)):
723 (key->on_disk_key.u.k_offset_v2.k_type = type);
724}
725
726
727static inline void cpu_key_k_offset_dec (struct cpu_key * key)
728{
729 if (key->version == KEY_FORMAT_3_5)
730 key->on_disk_key.u.k_offset_v1.k_offset --;
731 else
732 key->on_disk_key.u.k_offset_v2.k_offset --;
733}
734
735
736#define is_direntry_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRENTRY)
737#define is_direct_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRECT)
738#define is_indirect_cpu_key(key) (cpu_key_k_type (key) == TYPE_INDIRECT)
739#define is_statdata_cpu_key(key) (cpu_key_k_type (key) == TYPE_STAT_DATA)
740
741
742/* are these used ? */
743#define is_direntry_cpu_ih(ih) (is_direntry_cpu_key (&((ih)->ih_key)))
744#define is_direct_cpu_ih(ih) (is_direct_cpu_key (&((ih)->ih_key)))
745#define is_indirect_cpu_ih(ih) (is_indirect_cpu_key (&((ih)->ih_key)))
746#define is_statdata_cpu_ih(ih) (is_statdata_cpu_key (&((ih)->ih_key)))
747
748
749
750
751
752#define I_K_KEY_IN_ITEM(p_s_ih, p_s_key, n_blocksize) \
753 ( ! COMP_SHORT_KEYS(p_s_ih, p_s_key) && \
754 I_OFF_BYTE_IN_ITEM(p_s_ih, k_offset (p_s_key), n_blocksize) )
755
756/* maximal length of item */
757#define MAX_ITEM_LEN(block_size) (block_size - BLKH_SIZE - IH_SIZE)
758#define MIN_ITEM_LEN 1
759
760
761/* object identifier for root dir */
762#define REISERFS_ROOT_OBJECTID 2
763#define REISERFS_ROOT_PARENT_OBJECTID 1
764extern struct reiserfs_key root_key;
765
766
767
768
769/*
770 * Picture represents a leaf of the S+tree
771 * ______________________________________________________
772 * | | Array of | | |
773 * |Block | Object-Item | F r e e | Objects- |
774 * | head | Headers | S p a c e | Items |
775 * |______|_______________|___________________|___________|
776 */
777
778/* Header of a disk block. More precisely, header of a formatted leaf
779 or internal node, and not the header of an unformatted node. */
780struct block_head {
781 __u16 blk_level; /* Level of a block in the tree. */
782 __u16 blk_nr_item; /* Number of keys/items in a block. */
783 __u16 blk_free_space; /* Block free space in bytes. */
784 __u16 blk_reserved;
785 /* dump this in v4/planA */
786 struct reiserfs_key blk_right_delim_key; /* kept only for compatibility */
787};
788
789#define BLKH_SIZE (sizeof(struct block_head))
790#define blkh_level(p_blkh) (le16_to_cpu((p_blkh)->blk_level))
791#define blkh_nr_item(p_blkh) (le16_to_cpu((p_blkh)->blk_nr_item))
792#define blkh_free_space(p_blkh) (le16_to_cpu((p_blkh)->blk_free_space))
793#define blkh_reserved(p_blkh) (le16_to_cpu((p_blkh)->blk_reserved))
794#define set_blkh_level(p_blkh,val) ((p_blkh)->blk_level = cpu_to_le16(val))
795#define set_blkh_nr_item(p_blkh,val) ((p_blkh)->blk_nr_item = cpu_to_le16(val))
796#define set_blkh_free_space(p_blkh,val) ((p_blkh)->blk_free_space = cpu_to_le16(val))
797#define set_blkh_reserved(p_blkh,val) ((p_blkh)->blk_reserved = cpu_to_le16(val))
798#define blkh_right_delim_key(p_blkh) ((p_blkh)->blk_right_delim_key)
799#define set_blkh_right_delim_key(p_blkh,val) ((p_blkh)->blk_right_delim_key = val)
800
801/*
802 * values for blk_level field of the struct block_head
803 */
804
805#define FREE_LEVEL 0 /* when node gets removed from the tree its
806 blk_level is set to FREE_LEVEL. It is then
807 used to see whether the node is still in the
808 tree */
809
810#define DISK_LEAF_NODE_LEVEL 1 /* Leaf node level.*/
811
812/* Given the buffer head of a formatted node, resolve to the block head of that node. */
813#define B_BLK_HEAD(p_s_bh) ((struct block_head *)((p_s_bh)->b_data))
814/* Number of items that are in buffer. */
815#define B_NR_ITEMS(p_s_bh) (blkh_nr_item(B_BLK_HEAD(p_s_bh)))
816#define B_LEVEL(p_s_bh) (blkh_level(B_BLK_HEAD(p_s_bh)))
817#define B_FREE_SPACE(p_s_bh) (blkh_free_space(B_BLK_HEAD(p_s_bh)))
818
819#define PUT_B_NR_ITEMS(p_s_bh,val) do { set_blkh_nr_item(B_BLK_HEAD(p_s_bh),val); } while (0)
820#define PUT_B_LEVEL(p_s_bh,val) do { set_blkh_level(B_BLK_HEAD(p_s_bh),val); } while (0)
821#define PUT_B_FREE_SPACE(p_s_bh,val) do { set_blkh_free_space(B_BLK_HEAD(p_s_bh),val); } while (0)
822
823
824/* Get right delimiting key. -- little endian */
825#define B_PRIGHT_DELIM_KEY(p_s_bh) (&(blk_right_delim_key(B_BLK_HEAD(p_s_bh))
826
827/* Does the buffer contain a disk leaf. */
828#define B_IS_ITEMS_LEVEL(p_s_bh) (B_LEVEL(p_s_bh) == DISK_LEAF_NODE_LEVEL)
829
830/* Does the buffer contain a disk internal node */
831#define B_IS_KEYS_LEVEL(p_s_bh) (B_LEVEL(p_s_bh) > DISK_LEAF_NODE_LEVEL \
832 && B_LEVEL(p_s_bh) <= MAX_HEIGHT)
833
834
835
836
837/***************************************************************************/
838/* STAT DATA */
839/***************************************************************************/
840
841
842//
843// old stat data is 32 bytes long. We are going to distinguish new one by
844// different size
845//
846struct stat_data_v1
847{
848 __u16 sd_mode; /* file type, permissions */
849 __u16 sd_nlink; /* number of hard links */
850 __u16 sd_uid; /* owner */
851 __u16 sd_gid; /* group */
852 __u32 sd_size; /* file size */
853 __u32 sd_atime; /* time of last access */
854 __u32 sd_mtime; /* time file was last modified */
855 __u32 sd_ctime; /* time inode (stat data) was last changed (except changes to sd_atime and sd_mtime) */
856 union {
857 __u32 sd_rdev;
858 __u32 sd_blocks; /* number of blocks file uses */
859 } __attribute__ ((__packed__)) u;
860 __u32 sd_first_direct_byte; /* first byte of file which is stored
861 in a direct item: except that if it
862 equals 1 it is a symlink and if it
863 equals ~(__u32)0 there is no
864 direct item. The existence of this
865 field really grates on me. Let's
866 replace it with a macro based on
867 sd_size and our tail suppression
868 policy. Someday. -Hans */
869} __attribute__ ((__packed__));
870
871#define SD_V1_SIZE (sizeof(struct stat_data_v1))
872#define stat_data_v1(ih) (ih_version (ih) == KEY_FORMAT_3_5)
873#define sd_v1_mode(sdp) (le16_to_cpu((sdp)->sd_mode))
874#define set_sd_v1_mode(sdp,v) ((sdp)->sd_mode = cpu_to_le16(v))
875#define sd_v1_nlink(sdp) (le16_to_cpu((sdp)->sd_nlink))
876#define set_sd_v1_nlink(sdp,v) ((sdp)->sd_nlink = cpu_to_le16(v))
877#define sd_v1_uid(sdp) (le16_to_cpu((sdp)->sd_uid))
878#define set_sd_v1_uid(sdp,v) ((sdp)->sd_uid = cpu_to_le16(v))
879#define sd_v1_gid(sdp) (le16_to_cpu((sdp)->sd_gid))
880#define set_sd_v1_gid(sdp,v) ((sdp)->sd_gid = cpu_to_le16(v))
881#define sd_v1_size(sdp) (le32_to_cpu((sdp)->sd_size))
882#define set_sd_v1_size(sdp,v) ((sdp)->sd_size = cpu_to_le32(v))
883#define sd_v1_atime(sdp) (le32_to_cpu((sdp)->sd_atime))
884#define set_sd_v1_atime(sdp,v) ((sdp)->sd_atime = cpu_to_le32(v))
885#define sd_v1_mtime(sdp) (le32_to_cpu((sdp)->sd_mtime))
886#define set_sd_v1_mtime(sdp,v) ((sdp)->sd_mtime = cpu_to_le32(v))
887#define sd_v1_ctime(sdp) (le32_to_cpu((sdp)->sd_ctime))
888#define set_sd_v1_ctime(sdp,v) ((sdp)->sd_ctime = cpu_to_le32(v))
889#define sd_v1_rdev(sdp) (le32_to_cpu((sdp)->u.sd_rdev))
890#define set_sd_v1_rdev(sdp,v) ((sdp)->u.sd_rdev = cpu_to_le32(v))
891#define sd_v1_blocks(sdp) (le32_to_cpu((sdp)->u.sd_blocks))
892#define set_sd_v1_blocks(sdp,v) ((sdp)->u.sd_blocks = cpu_to_le32(v))
893#define sd_v1_first_direct_byte(sdp) \
894 (le32_to_cpu((sdp)->sd_first_direct_byte))
895#define set_sd_v1_first_direct_byte(sdp,v) \
896 ((sdp)->sd_first_direct_byte = cpu_to_le32(v))
897
898#include <linux/ext2_fs.h>
899
900/* inode flags stored in sd_attrs (nee sd_reserved) */
901
902/* we want common flags to have the same values as in ext2,
903 so chattr(1) will work without problems */
904#define REISERFS_IMMUTABLE_FL EXT2_IMMUTABLE_FL
905#define REISERFS_APPEND_FL EXT2_APPEND_FL
906#define REISERFS_SYNC_FL EXT2_SYNC_FL
907#define REISERFS_NOATIME_FL EXT2_NOATIME_FL
908#define REISERFS_NODUMP_FL EXT2_NODUMP_FL
909#define REISERFS_SECRM_FL EXT2_SECRM_FL
910#define REISERFS_UNRM_FL EXT2_UNRM_FL
911#define REISERFS_COMPR_FL EXT2_COMPR_FL
912#define REISERFS_NOTAIL_FL EXT2_NOTAIL_FL
913
914/* persistent flags that file inherits from the parent directory */
915#define REISERFS_INHERIT_MASK ( REISERFS_IMMUTABLE_FL | \
916 REISERFS_SYNC_FL | \
917 REISERFS_NOATIME_FL | \
918 REISERFS_NODUMP_FL | \
919 REISERFS_SECRM_FL | \
920 REISERFS_COMPR_FL | \
921 REISERFS_NOTAIL_FL )
922
923/* Stat Data on disk (reiserfs version of UFS disk inode minus the
924 address blocks) */
925struct stat_data {
926 __u16 sd_mode; /* file type, permissions */
927 __u16 sd_attrs; /* persistent inode flags */
928 __u32 sd_nlink; /* number of hard links */
929 __u64 sd_size; /* file size */
930 __u32 sd_uid; /* owner */
931 __u32 sd_gid; /* group */
932 __u32 sd_atime; /* time of last access */
933 __u32 sd_mtime; /* time file was last modified */
934 __u32 sd_ctime; /* time inode (stat data) was last changed (except changes to sd_atime and sd_mtime) */
935 __u32 sd_blocks;
936 union {
937 __u32 sd_rdev;
938 __u32 sd_generation;
939 //__u32 sd_first_direct_byte;
940 /* first byte of file which is stored in a
941 direct item: except that if it equals 1
942 it is a symlink and if it equals
943 ~(__u32)0 there is no direct item. The
944 existence of this field really grates
945 on me. Let's replace it with a macro
946 based on sd_size and our tail
947 suppression policy? */
948 } __attribute__ ((__packed__)) u;
949} __attribute__ ((__packed__));
950//
951// this is 44 bytes long
952//
953#define SD_SIZE (sizeof(struct stat_data))
954#define SD_V2_SIZE SD_SIZE
955#define stat_data_v2(ih) (ih_version (ih) == KEY_FORMAT_3_6)
956#define sd_v2_mode(sdp) (le16_to_cpu((sdp)->sd_mode))
957#define set_sd_v2_mode(sdp,v) ((sdp)->sd_mode = cpu_to_le16(v))
958/* sd_reserved */
959/* set_sd_reserved */
960#define sd_v2_nlink(sdp) (le32_to_cpu((sdp)->sd_nlink))
961#define set_sd_v2_nlink(sdp,v) ((sdp)->sd_nlink = cpu_to_le32(v))
962#define sd_v2_size(sdp) (le64_to_cpu((sdp)->sd_size))
963#define set_sd_v2_size(sdp,v) ((sdp)->sd_size = cpu_to_le64(v))
964#define sd_v2_uid(sdp) (le32_to_cpu((sdp)->sd_uid))
965#define set_sd_v2_uid(sdp,v) ((sdp)->sd_uid = cpu_to_le32(v))
966#define sd_v2_gid(sdp) (le32_to_cpu((sdp)->sd_gid))
967#define set_sd_v2_gid(sdp,v) ((sdp)->sd_gid = cpu_to_le32(v))
968#define sd_v2_atime(sdp) (le32_to_cpu((sdp)->sd_atime))
969#define set_sd_v2_atime(sdp,v) ((sdp)->sd_atime = cpu_to_le32(v))
970#define sd_v2_mtime(sdp) (le32_to_cpu((sdp)->sd_mtime))
971#define set_sd_v2_mtime(sdp,v) ((sdp)->sd_mtime = cpu_to_le32(v))
972#define sd_v2_ctime(sdp) (le32_to_cpu((sdp)->sd_ctime))
973#define set_sd_v2_ctime(sdp,v) ((sdp)->sd_ctime = cpu_to_le32(v))
974#define sd_v2_blocks(sdp) (le32_to_cpu((sdp)->sd_blocks))
975#define set_sd_v2_blocks(sdp,v) ((sdp)->sd_blocks = cpu_to_le32(v))
976#define sd_v2_rdev(sdp) (le32_to_cpu((sdp)->u.sd_rdev))
977#define set_sd_v2_rdev(sdp,v) ((sdp)->u.sd_rdev = cpu_to_le32(v))
978#define sd_v2_generation(sdp) (le32_to_cpu((sdp)->u.sd_generation))
979#define set_sd_v2_generation(sdp,v) ((sdp)->u.sd_generation = cpu_to_le32(v))
980#define sd_v2_attrs(sdp) (le16_to_cpu((sdp)->sd_attrs))
981#define set_sd_v2_attrs(sdp,v) ((sdp)->sd_attrs = cpu_to_le16(v))
982
983
984/***************************************************************************/
985/* DIRECTORY STRUCTURE */
986/***************************************************************************/
987/*
988 Picture represents the structure of directory items
989 ________________________________________________
990 | Array of | | | | | |
991 | directory |N-1| N-2 | .... | 1st |0th|
992 | entry headers | | | | | |
993 |_______________|___|_____|________|_______|___|
994 <---- directory entries ------>
995
996 First directory item has k_offset component 1. We store "." and ".."
997 in one item, always, we never split "." and ".." into differing
998 items. This makes, among other things, the code for removing
999 directories simpler. */
1000#define SD_OFFSET 0
1001#define SD_UNIQUENESS 0
1002#define DOT_OFFSET 1
1003#define DOT_DOT_OFFSET 2
1004#define DIRENTRY_UNIQUENESS 500
1005
1006/* */
1007#define FIRST_ITEM_OFFSET 1
1008
1009/*
1010 Q: How to get key of object pointed to by entry from entry?
1011
1012 A: Each directory entry has its header. This header has deh_dir_id and deh_objectid fields, those are key
1013 of object, entry points to */
1014
1015/* NOT IMPLEMENTED:
1016 Directory will someday contain stat data of object */
1017
1018
1019
1020struct reiserfs_de_head
1021{
1022 __u32 deh_offset; /* third component of the directory entry key */
1023 __u32 deh_dir_id; /* objectid of the parent directory of the object, that is referenced
1024 by directory entry */
1025 __u32 deh_objectid; /* objectid of the object, that is referenced by directory entry */
1026 __u16 deh_location; /* offset of name in the whole item */
1027 __u16 deh_state; /* whether 1) entry contains stat data (for future), and 2) whether
1028 entry is hidden (unlinked) */
1029} __attribute__ ((__packed__));
1030#define DEH_SIZE sizeof(struct reiserfs_de_head)
1031#define deh_offset(p_deh) (le32_to_cpu((p_deh)->deh_offset))
1032#define deh_dir_id(p_deh) (le32_to_cpu((p_deh)->deh_dir_id))
1033#define deh_objectid(p_deh) (le32_to_cpu((p_deh)->deh_objectid))
1034#define deh_location(p_deh) (le16_to_cpu((p_deh)->deh_location))
1035#define deh_state(p_deh) (le16_to_cpu((p_deh)->deh_state))
1036
1037#define put_deh_offset(p_deh,v) ((p_deh)->deh_offset = cpu_to_le32((v)))
1038#define put_deh_dir_id(p_deh,v) ((p_deh)->deh_dir_id = cpu_to_le32((v)))
1039#define put_deh_objectid(p_deh,v) ((p_deh)->deh_objectid = cpu_to_le32((v)))
1040#define put_deh_location(p_deh,v) ((p_deh)->deh_location = cpu_to_le16((v)))
1041#define put_deh_state(p_deh,v) ((p_deh)->deh_state = cpu_to_le16((v)))
1042
1043/* empty directory contains two entries "." and ".." and their headers */
1044#define EMPTY_DIR_SIZE \
1045(DEH_SIZE * 2 + ROUND_UP (strlen (".")) + ROUND_UP (strlen ("..")))
1046
1047/* old format directories have this size when empty */
1048#define EMPTY_DIR_SIZE_V1 (DEH_SIZE * 2 + 3)
1049
1050#define DEH_Statdata 0 /* not used now */
1051#define DEH_Visible 2
1052
1053/* 64 bit systems (and the S/390) need to be aligned explicitly -jdm */
1054#if BITS_PER_LONG == 64 || defined(__s390__) || defined(__hppa__)
1055# define ADDR_UNALIGNED_BITS (3)
1056#endif
1057
1058/* These are only used to manipulate deh_state.
1059 * Because of this, we'll use the ext2_ bit routines,
1060 * since they are little endian */
1061#ifdef ADDR_UNALIGNED_BITS
1062
1063# define aligned_address(addr) ((void *)((long)(addr) & ~((1UL << ADDR_UNALIGNED_BITS) - 1)))
1064# define unaligned_offset(addr) (((int)((long)(addr) & ((1 << ADDR_UNALIGNED_BITS) - 1))) << 3)
1065
1066# define set_bit_unaligned(nr, addr) ext2_set_bit((nr) + unaligned_offset(addr), aligned_address(addr))
1067# define clear_bit_unaligned(nr, addr) ext2_clear_bit((nr) + unaligned_offset(addr), aligned_address(addr))
1068# define test_bit_unaligned(nr, addr) ext2_test_bit((nr) + unaligned_offset(addr), aligned_address(addr))
1069
1070#else
1071
1072# define set_bit_unaligned(nr, addr) ext2_set_bit(nr, addr)
1073# define clear_bit_unaligned(nr, addr) ext2_clear_bit(nr, addr)
1074# define test_bit_unaligned(nr, addr) ext2_test_bit(nr, addr)
1075
1076#endif
1077
1078#define mark_de_with_sd(deh) set_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
1079#define mark_de_without_sd(deh) clear_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
1080#define mark_de_visible(deh) set_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1081#define mark_de_hidden(deh) clear_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1082
1083#define de_with_sd(deh) test_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
1084#define de_visible(deh) test_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1085#define de_hidden(deh) !test_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1086
1087extern void make_empty_dir_item_v1 (char * body, __u32 dirid, __u32 objid,
1088 __u32 par_dirid, __u32 par_objid);
1089extern void make_empty_dir_item (char * body, __u32 dirid, __u32 objid,
1090 __u32 par_dirid, __u32 par_objid);
1091
1092/* array of the entry headers */
1093 /* get item body */
1094#define B_I_PITEM(bh,ih) ( (bh)->b_data + ih_location(ih) )
1095#define B_I_DEH(bh,ih) ((struct reiserfs_de_head *)(B_I_PITEM(bh,ih)))
1096
1097/* length of the directory entry in directory item. This define
1098 calculates length of i-th directory entry using directory entry
1099 locations from dir entry head. When it calculates length of 0-th
1100 directory entry, it uses length of whole item in place of entry
1101 location of the non-existent following entry in the calculation.
1102 See picture above.*/
1103/*
1104#define I_DEH_N_ENTRY_LENGTH(ih,deh,i) \
1105((i) ? (deh_location((deh)-1) - deh_location((deh))) : (ih_item_len((ih)) - deh_location((deh))))
1106*/
1107static inline int entry_length (const struct buffer_head * bh,
1108 const struct item_head * ih, int pos_in_item)
1109{
1110 struct reiserfs_de_head * deh;
1111
1112 deh = B_I_DEH (bh, ih) + pos_in_item;
1113 if (pos_in_item)
1114 return deh_location(deh-1) - deh_location(deh);
1115
1116 return ih_item_len(ih) - deh_location(deh);
1117}
1118
1119
1120
1121/* number of entries in the directory item, depends on ENTRY_COUNT being at the start of directory dynamic data. */
1122#define I_ENTRY_COUNT(ih) (ih_entry_count((ih)))
1123
1124
1125/* name by bh, ih and entry_num */
1126#define B_I_E_NAME(bh,ih,entry_num) ((char *)(bh->b_data + ih_location(ih) + deh_location(B_I_DEH(bh,ih)+(entry_num))))
1127
1128// two entries per block (at least)
1129#define REISERFS_MAX_NAME(block_size) 255
1130
1131
1132/* this structure is used for operations on directory entries. It is
1133 not a disk structure. */
1134/* When reiserfs_find_entry or search_by_entry_key find directory
1135 entry, they return filled reiserfs_dir_entry structure */
1136struct reiserfs_dir_entry
1137{
1138 struct buffer_head * de_bh;
1139 int de_item_num;
1140 struct item_head * de_ih;
1141 int de_entry_num;
1142 struct reiserfs_de_head * de_deh;
1143 int de_entrylen;
1144 int de_namelen;
1145 char * de_name;
1146 char * de_gen_number_bit_string;
1147
1148 __u32 de_dir_id;
1149 __u32 de_objectid;
1150
1151 struct cpu_key de_entry_key;
1152};
1153
1154/* these defines are useful when a particular member of a reiserfs_dir_entry is needed */
1155
1156/* pointer to file name, stored in entry */
1157#define B_I_DEH_ENTRY_FILE_NAME(bh,ih,deh) (B_I_PITEM (bh, ih) + deh_location(deh))
1158
1159/* length of name */
1160#define I_DEH_N_ENTRY_FILE_NAME_LENGTH(ih,deh,entry_num) \
1161(I_DEH_N_ENTRY_LENGTH (ih, deh, entry_num) - (de_with_sd (deh) ? SD_SIZE : 0))
1162
1163
1164
1165/* hash value occupies bits from 7 up to 30 */
1166#define GET_HASH_VALUE(offset) ((offset) & 0x7fffff80LL)
1167/* generation number occupies 7 bits starting from 0 up to 6 */
1168#define GET_GENERATION_NUMBER(offset) ((offset) & 0x7fLL)
1169#define MAX_GENERATION_NUMBER 127
1170
1171#define SET_GENERATION_NUMBER(offset,gen_number) (GET_HASH_VALUE(offset)|(gen_number))
1172
1173
1174/*
1175 * Picture represents an internal node of the reiserfs tree
1176 * ______________________________________________________
1177 * | | Array of | Array of | Free |
1178 * |block | keys | pointers | space |
1179 * | head | N | N+1 | |
1180 * |______|_______________|___________________|___________|
1181 */
1182
1183/***************************************************************************/
1184/* DISK CHILD */
1185/***************************************************************************/
1186/* Disk child pointer: The pointer from an internal node of the tree
1187 to a node that is on disk. */
1188struct disk_child {
1189 __u32 dc_block_number; /* Disk child's block number. */
1190 __u16 dc_size; /* Disk child's used space. */
1191 __u16 dc_reserved;
1192};
1193
1194#define DC_SIZE (sizeof(struct disk_child))
1195#define dc_block_number(dc_p) (le32_to_cpu((dc_p)->dc_block_number))
1196#define dc_size(dc_p) (le16_to_cpu((dc_p)->dc_size))
1197#define put_dc_block_number(dc_p, val) do { (dc_p)->dc_block_number = cpu_to_le32(val); } while(0)
1198#define put_dc_size(dc_p, val) do { (dc_p)->dc_size = cpu_to_le16(val); } while(0)
1199
1200/* Get disk child by buffer header and position in the tree node. */
1201#define B_N_CHILD(p_s_bh,n_pos) ((struct disk_child *)\
1202((p_s_bh)->b_data+BLKH_SIZE+B_NR_ITEMS(p_s_bh)*KEY_SIZE+DC_SIZE*(n_pos)))
1203
1204/* Get disk child number by buffer header and position in the tree node. */
1205#define B_N_CHILD_NUM(p_s_bh,n_pos) (dc_block_number(B_N_CHILD(p_s_bh,n_pos)))
1206#define PUT_B_N_CHILD_NUM(p_s_bh,n_pos, val) (put_dc_block_number(B_N_CHILD(p_s_bh,n_pos), val ))
1207
1208 /* maximal value of field child_size in structure disk_child */
1209 /* child size is the combined size of all items and their headers */
1210#define MAX_CHILD_SIZE(bh) ((int)( (bh)->b_size - BLKH_SIZE ))
1211
1212/* amount of used space in buffer (not including block head) */
1213#define B_CHILD_SIZE(cur) (MAX_CHILD_SIZE(cur)-(B_FREE_SPACE(cur)))
1214
1215/* max and min number of keys in internal node */
1216#define MAX_NR_KEY(bh) ( (MAX_CHILD_SIZE(bh)-DC_SIZE)/(KEY_SIZE+DC_SIZE) )
1217#define MIN_NR_KEY(bh) (MAX_NR_KEY(bh)/2)
1218
1219/***************************************************************************/
1220/* PATH STRUCTURES AND DEFINES */
1221/***************************************************************************/
1222
1223
1224/* Search_by_key fills up the path from the root to the leaf as it descends the tree looking for the
1225 key. It uses reiserfs_bread to try to find buffers in the cache given their block number. If it
1226 does not find them in the cache it reads them from disk. For each node search_by_key finds using
1227 reiserfs_bread it then uses bin_search to look through that node. bin_search will find the
1228 position of the block_number of the next node if it is looking through an internal node. If it
1229 is looking through a leaf node bin_search will find the position of the item which has key either
1230 equal to given key, or which is the maximal key less than the given key. */
1231
1232struct path_element {
1233 struct buffer_head * pe_buffer; /* Pointer to the buffer at the path in the tree. */
1234 int pe_position; /* Position in the tree node which is placed in the */
1235 /* buffer above. */
1236};
1237
1238#define MAX_HEIGHT 5 /* maximal height of a tree. don't change this without changing JOURNAL_PER_BALANCE_CNT */
1239#define EXTENDED_MAX_HEIGHT 7 /* Must be equals MAX_HEIGHT + FIRST_PATH_ELEMENT_OFFSET */
1240#define FIRST_PATH_ELEMENT_OFFSET 2 /* Must be equal to at least 2. */
1241
1242#define ILLEGAL_PATH_ELEMENT_OFFSET 1 /* Must be equal to FIRST_PATH_ELEMENT_OFFSET - 1 */
1243#define MAX_FEB_SIZE 6 /* this MUST be MAX_HEIGHT + 1. See about FEB below */
1244
1245
1246
1247/* We need to keep track of who the ancestors of nodes are. When we
1248 perform a search we record which nodes were visited while
1249 descending the tree looking for the node we searched for. This list
1250 of nodes is called the path. This information is used while
1251 performing balancing. Note that this path information may become
1252 invalid, and this means we must check it when using it to see if it
1253 is still valid. You'll need to read search_by_key and the comments
1254 in it, especially about decrement_counters_in_path(), to understand
1255 this structure.
1256
1257Paths make the code so much harder to work with and debug.... An
1258enormous number of bugs are due to them, and trying to write or modify
1259code that uses them just makes my head hurt. They are based on an
1260excessive effort to avoid disturbing the precious VFS code.:-( The
1261gods only know how we are going to SMP the code that uses them.
1262znodes are the way! */
1263
1264#define PATH_READA 0x1 /* do read ahead */
1265#define PATH_READA_BACK 0x2 /* read backwards */
1266
1267struct path {
1268 int path_length; /* Length of the array above. */
1269 int reada;
1270 struct path_element path_elements[EXTENDED_MAX_HEIGHT]; /* Array of the path elements. */
1271 int pos_in_item;
1272};
1273
1274#define pos_in_item(path) ((path)->pos_in_item)
1275
1276#define INITIALIZE_PATH(var) \
1277struct path var = {.path_length = ILLEGAL_PATH_ELEMENT_OFFSET, .reada = 0,}
1278
1279/* Get path element by path and path position. */
1280#define PATH_OFFSET_PELEMENT(p_s_path,n_offset) ((p_s_path)->path_elements +(n_offset))
1281
1282/* Get buffer header at the path by path and path position. */
1283#define PATH_OFFSET_PBUFFER(p_s_path,n_offset) (PATH_OFFSET_PELEMENT(p_s_path,n_offset)->pe_buffer)
1284
1285/* Get position in the element at the path by path and path position. */
1286#define PATH_OFFSET_POSITION(p_s_path,n_offset) (PATH_OFFSET_PELEMENT(p_s_path,n_offset)->pe_position)
1287
1288
1289#define PATH_PLAST_BUFFER(p_s_path) (PATH_OFFSET_PBUFFER((p_s_path), (p_s_path)->path_length))
1290 /* you know, to the person who didn't
1291 write this the macro name does not
1292 at first suggest what it does.
1293 Maybe POSITION_FROM_PATH_END? Or
1294 maybe we should just focus on
1295 dumping paths... -Hans */
1296#define PATH_LAST_POSITION(p_s_path) (PATH_OFFSET_POSITION((p_s_path), (p_s_path)->path_length))
1297
1298
1299#define PATH_PITEM_HEAD(p_s_path) B_N_PITEM_HEAD(PATH_PLAST_BUFFER(p_s_path),PATH_LAST_POSITION(p_s_path))
1300
1301/* in do_balance leaf has h == 0 in contrast with path structure,
1302 where root has level == 0. That is why we need these defines */
1303#define PATH_H_PBUFFER(p_s_path, h) PATH_OFFSET_PBUFFER (p_s_path, p_s_path->path_length - (h)) /* tb->S[h] */
1304#define PATH_H_PPARENT(path, h) PATH_H_PBUFFER (path, (h) + 1) /* tb->F[h] or tb->S[0]->b_parent */
1305#define PATH_H_POSITION(path, h) PATH_OFFSET_POSITION (path, path->path_length - (h))
1306#define PATH_H_B_ITEM_ORDER(path, h) PATH_H_POSITION(path, h + 1) /* tb->S[h]->b_item_order */
1307
1308#define PATH_H_PATH_OFFSET(p_s_path, n_h) ((p_s_path)->path_length - (n_h))
1309
1310#define get_last_bh(path) PATH_PLAST_BUFFER(path)
1311#define get_ih(path) PATH_PITEM_HEAD(path)
1312#define get_item_pos(path) PATH_LAST_POSITION(path)
1313#define get_item(path) ((void *)B_N_PITEM(PATH_PLAST_BUFFER(path), PATH_LAST_POSITION (path)))
1314#define item_moved(ih,path) comp_items(ih, path)
1315#define path_changed(ih,path) comp_items (ih, path)
1316
1317
1318/***************************************************************************/
1319/* MISC */
1320/***************************************************************************/
1321
1322/* Size of pointer to the unformatted node. */
1323#define UNFM_P_SIZE (sizeof(unp_t))
1324#define UNFM_P_SHIFT 2
1325
1326// in in-core inode key is stored on le form
1327#define INODE_PKEY(inode) ((struct reiserfs_key *)(REISERFS_I(inode)->i_key))
1328
1329#define MAX_UL_INT 0xffffffff
1330#define MAX_INT 0x7ffffff
1331#define MAX_US_INT 0xffff
1332
1333// reiserfs version 2 has max offset 60 bits. Version 1 - 32 bit offset
1334#define U32_MAX (~(__u32)0)
1335
1336static inline loff_t max_reiserfs_offset (struct inode * inode)
1337{
1338 if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5)
1339 return (loff_t)U32_MAX;
1340
1341 return (loff_t)((~(__u64)0) >> 4);
1342}
1343
1344
1345/*#define MAX_KEY_UNIQUENESS MAX_UL_INT*/
1346#define MAX_KEY_OBJECTID MAX_UL_INT
1347
1348
1349#define MAX_B_NUM MAX_UL_INT
1350#define MAX_FC_NUM MAX_US_INT
1351
1352
1353/* the purpose is to detect overflow of an unsigned short */
1354#define REISERFS_LINK_MAX (MAX_US_INT - 1000)
1355
1356
1357/* The following defines are used in reiserfs_insert_item and reiserfs_append_item */
1358#define REISERFS_KERNEL_MEM 0 /* reiserfs kernel memory mode */
1359#define REISERFS_USER_MEM 1 /* reiserfs user memory mode */
1360
1361#define fs_generation(s) (REISERFS_SB(s)->s_generation_counter)
1362#define get_generation(s) atomic_read (&fs_generation(s))
1363#define FILESYSTEM_CHANGED_TB(tb) (get_generation((tb)->tb_sb) != (tb)->fs_gen)
1364#define __fs_changed(gen,s) (gen != get_generation (s))
1365#define fs_changed(gen,s) ({cond_resched(); __fs_changed(gen, s);})
1366
1367
1368/***************************************************************************/
1369/* FIXATE NODES */
1370/***************************************************************************/
1371
1372#define VI_TYPE_LEFT_MERGEABLE 1
1373#define VI_TYPE_RIGHT_MERGEABLE 2
1374
1375/* To make any changes in the tree we always first find node, that
1376 contains item to be changed/deleted or place to insert a new
1377 item. We call this node S. To do balancing we need to decide what
1378 we will shift to left/right neighbor, or to a new node, where new
1379 item will be etc. To make this analysis simpler we build virtual
1380 node. Virtual node is an array of items, that will replace items of
1381 node S. (For instance if we are going to delete an item, virtual
1382 node does not contain it). Virtual node keeps information about
1383 item sizes and types, mergeability of first and last items, sizes
1384 of all entries in directory item. We use this array of items when
1385 calculating what we can shift to neighbors and how many nodes we
1386 have to have if we do not any shiftings, if we shift to left/right
1387 neighbor or to both. */
1388struct virtual_item
1389{
1390 int vi_index; // index in the array of item operations
1391 unsigned short vi_type; // left/right mergeability
1392 unsigned short vi_item_len; /* length of item that it will have after balancing */
1393 struct item_head * vi_ih;
1394 const char * vi_item; // body of item (old or new)
1395 const void * vi_new_data; // 0 always but paste mode
1396 void * vi_uarea; // item specific area
1397};
1398
1399
1400struct virtual_node
1401{
1402 char * vn_free_ptr; /* this is a pointer to the free space in the buffer */
1403 unsigned short vn_nr_item; /* number of items in virtual node */
1404 short vn_size; /* size of node , that node would have if it has unlimited size and no balancing is performed */
1405 short vn_mode; /* mode of balancing (paste, insert, delete, cut) */
1406 short vn_affected_item_num;
1407 short vn_pos_in_item;
1408 struct item_head * vn_ins_ih; /* item header of inserted item, 0 for other modes */
1409 const void * vn_data;
1410 struct virtual_item * vn_vi; /* array of items (including a new one, excluding item to be deleted) */
1411};
1412
1413/* used by directory items when creating virtual nodes */
1414struct direntry_uarea {
1415 int flags;
1416 __u16 entry_count;
1417 __u16 entry_sizes[1];
1418} __attribute__ ((__packed__)) ;
1419
1420
1421/***************************************************************************/
1422/* TREE BALANCE */
1423/***************************************************************************/
1424
1425/* This temporary structure is used in tree balance algorithms, and
1426 constructed as we go to the extent that its various parts are
1427 needed. It contains arrays of nodes that can potentially be
1428 involved in the balancing of node S, and parameters that define how
1429 each of the nodes must be balanced. Note that in these algorithms
1430 for balancing the worst case is to need to balance the current node
1431 S and the left and right neighbors and all of their parents plus
1432 create a new node. We implement S1 balancing for the leaf nodes
1433 and S0 balancing for the internal nodes (S1 and S0 are defined in
1434 our papers.)*/
1435
1436#define MAX_FREE_BLOCK 7 /* size of the array of buffers to free at end of do_balance */
1437
1438/* maximum number of FEB blocknrs on a single level */
1439#define MAX_AMOUNT_NEEDED 2
1440
1441/* someday somebody will prefix every field in this struct with tb_ */
1442struct tree_balance
1443{
1444 int tb_mode;
1445 int need_balance_dirty;
1446 struct super_block * tb_sb;
1447 struct reiserfs_transaction_handle *transaction_handle ;
1448 struct path * tb_path;
1449 struct buffer_head * L[MAX_HEIGHT]; /* array of left neighbors of nodes in the path */
1450 struct buffer_head * R[MAX_HEIGHT]; /* array of right neighbors of nodes in the path*/
1451 struct buffer_head * FL[MAX_HEIGHT]; /* array of fathers of the left neighbors */
1452 struct buffer_head * FR[MAX_HEIGHT]; /* array of fathers of the right neighbors */
1453 struct buffer_head * CFL[MAX_HEIGHT]; /* array of common parents of center node and its left neighbor */
1454 struct buffer_head * CFR[MAX_HEIGHT]; /* array of common parents of center node and its right neighbor */
1455
1456 struct buffer_head * FEB[MAX_FEB_SIZE]; /* array of empty buffers. Number of buffers in array equals
1457 cur_blknum. */
1458 struct buffer_head * used[MAX_FEB_SIZE];
1459 struct buffer_head * thrown[MAX_FEB_SIZE];
1460 int lnum[MAX_HEIGHT]; /* array of number of items which must be
1461 shifted to the left in order to balance the
1462 current node; for leaves includes item that
1463 will be partially shifted; for internal
1464 nodes, it is the number of child pointers
1465 rather than items. It includes the new item
1466 being created. The code sometimes subtracts
1467 one to get the number of wholly shifted
1468 items for other purposes. */
1469 int rnum[MAX_HEIGHT]; /* substitute right for left in comment above */
1470 int lkey[MAX_HEIGHT]; /* array indexed by height h mapping the key delimiting L[h] and
1471 S[h] to its item number within the node CFL[h] */
1472 int rkey[MAX_HEIGHT]; /* substitute r for l in comment above */
1473 int insert_size[MAX_HEIGHT]; /* the number of bytes by we are trying to add or remove from
1474 S[h]. A negative value means removing. */
1475 int blknum[MAX_HEIGHT]; /* number of nodes that will replace node S[h] after
1476 balancing on the level h of the tree. If 0 then S is
1477 being deleted, if 1 then S is remaining and no new nodes
1478 are being created, if 2 or 3 then 1 or 2 new nodes is
1479 being created */
1480
1481 /* fields that are used only for balancing leaves of the tree */
1482 int cur_blknum; /* number of empty blocks having been already allocated */
1483 int s0num; /* number of items that fall into left most node when S[0] splits */
1484 int s1num; /* number of items that fall into first new node when S[0] splits */
1485 int s2num; /* number of items that fall into second new node when S[0] splits */
1486 int lbytes; /* number of bytes which can flow to the left neighbor from the left */
1487 /* most liquid item that cannot be shifted from S[0] entirely */
1488 /* if -1 then nothing will be partially shifted */
1489 int rbytes; /* number of bytes which will flow to the right neighbor from the right */
1490 /* most liquid item that cannot be shifted from S[0] entirely */
1491 /* if -1 then nothing will be partially shifted */
1492 int s1bytes; /* number of bytes which flow to the first new node when S[0] splits */
1493 /* note: if S[0] splits into 3 nodes, then items do not need to be cut */
1494 int s2bytes;
1495 struct buffer_head * buf_to_free[MAX_FREE_BLOCK]; /* buffers which are to be freed after do_balance finishes by unfix_nodes */
1496 char * vn_buf; /* kmalloced memory. Used to create
1497 virtual node and keep map of
1498 dirtied bitmap blocks */
1499 int vn_buf_size; /* size of the vn_buf */
1500 struct virtual_node * tb_vn; /* VN starts after bitmap of bitmap blocks */
1501
1502 int fs_gen; /* saved value of `reiserfs_generation' counter
1503 see FILESYSTEM_CHANGED() macro in reiserfs_fs.h */
1504#ifdef DISPLACE_NEW_PACKING_LOCALITIES
6a3a16f2 1505 struct in_core_key key; /* key pointer, to pass to block allocator or
1da177e4
LT
1506 another low-level subsystem */
1507#endif
1508} ;
1509
1510/* These are modes of balancing */
1511
1512/* When inserting an item. */
1513#define M_INSERT 'i'
1514/* When inserting into (directories only) or appending onto an already
1515 existant item. */
1516#define M_PASTE 'p'
1517/* When deleting an item. */
1518#define M_DELETE 'd'
1519/* When truncating an item or removing an entry from a (directory) item. */
1520#define M_CUT 'c'
1521
1522/* used when balancing on leaf level skipped (in reiserfsck) */
1523#define M_INTERNAL 'n'
1524
1525/* When further balancing is not needed, then do_balance does not need
1526 to be called. */
1527#define M_SKIP_BALANCING 's'
1528#define M_CONVERT 'v'
1529
1530/* modes of leaf_move_items */
1531#define LEAF_FROM_S_TO_L 0
1532#define LEAF_FROM_S_TO_R 1
1533#define LEAF_FROM_R_TO_L 2
1534#define LEAF_FROM_L_TO_R 3
1535#define LEAF_FROM_S_TO_SNEW 4
1536
1537#define FIRST_TO_LAST 0
1538#define LAST_TO_FIRST 1
1539
1540/* used in do_balance for passing parent of node information that has
1541 been gotten from tb struct */
1542struct buffer_info {
1543 struct tree_balance * tb;
1544 struct buffer_head * bi_bh;
1545 struct buffer_head * bi_parent;
1546 int bi_position;
1547};
1548
1549
1550/* there are 4 types of items: stat data, directory item, indirect, direct.
1551+-------------------+------------+--------------+------------+
1552| | k_offset | k_uniqueness | mergeable? |
1553+-------------------+------------+--------------+------------+
1554| stat data | 0 | 0 | no |
1555+-------------------+------------+--------------+------------+
1556| 1st directory item| DOT_OFFSET |DIRENTRY_UNIQUENESS| no |
1557| non 1st directory | hash value | | yes |
1558| item | | | |
1559+-------------------+------------+--------------+------------+
1560| indirect item | offset + 1 |TYPE_INDIRECT | if this is not the first indirect item of the object
1561+-------------------+------------+--------------+------------+
1562| direct item | offset + 1 |TYPE_DIRECT | if not this is not the first direct item of the object
1563+-------------------+------------+--------------+------------+
1564*/
1565
1566struct item_operations {
1567 int (*bytes_number) (struct item_head * ih, int block_size);
1568 void (*decrement_key) (struct cpu_key *);
1569 int (*is_left_mergeable) (struct reiserfs_key * ih, unsigned long bsize);
1570 void (*print_item) (struct item_head *, char * item);
1571 void (*check_item) (struct item_head *, char * item);
1572
1573 int (*create_vi) (struct virtual_node * vn, struct virtual_item * vi,
1574 int is_affected, int insert_size);
1575 int (*check_left) (struct virtual_item * vi, int free,
1576 int start_skip, int end_skip);
1577 int (*check_right) (struct virtual_item * vi, int free);
1578 int (*part_size) (struct virtual_item * vi, int from, int to);
1579 int (*unit_num) (struct virtual_item * vi);
1580 void (*print_vi) (struct virtual_item * vi);
1581};
1582
1583
1584extern struct item_operations * item_ops [TYPE_ANY + 1];
1585
1586#define op_bytes_number(ih,bsize) item_ops[le_ih_k_type (ih)]->bytes_number (ih, bsize)
1587#define op_is_left_mergeable(key,bsize) item_ops[le_key_k_type (le_key_version (key), key)]->is_left_mergeable (key, bsize)
1588#define op_print_item(ih,item) item_ops[le_ih_k_type (ih)]->print_item (ih, item)
1589#define op_check_item(ih,item) item_ops[le_ih_k_type (ih)]->check_item (ih, item)
1590#define op_create_vi(vn,vi,is_affected,insert_size) item_ops[le_ih_k_type ((vi)->vi_ih)]->create_vi (vn,vi,is_affected,insert_size)
1591#define op_check_left(vi,free,start_skip,end_skip) item_ops[(vi)->vi_index]->check_left (vi, free, start_skip, end_skip)
1592#define op_check_right(vi,free) item_ops[(vi)->vi_index]->check_right (vi, free)
1593#define op_part_size(vi,from,to) item_ops[(vi)->vi_index]->part_size (vi, from, to)
1594#define op_unit_num(vi) item_ops[(vi)->vi_index]->unit_num (vi)
1595#define op_print_vi(vi) item_ops[(vi)->vi_index]->print_vi (vi)
1596
1597
1598
1599#define COMP_SHORT_KEYS comp_short_keys
1600
1601/* number of blocks pointed to by the indirect item */
1602#define I_UNFM_NUM(p_s_ih) ( ih_item_len(p_s_ih) / UNFM_P_SIZE )
1603
1604/* the used space within the unformatted node corresponding to pos within the item pointed to by ih */
1605#define I_POS_UNFM_SIZE(ih,pos,size) (((pos) == I_UNFM_NUM(ih) - 1 ) ? (size) - ih_free_space(ih) : (size))
1606
1607/* number of bytes contained by the direct item or the unformatted nodes the indirect item points to */
1608
1609
1610/* get the item header */
1611#define B_N_PITEM_HEAD(bh,item_num) ( (struct item_head * )((bh)->b_data + BLKH_SIZE) + (item_num) )
1612
1613/* get key */
1614#define B_N_PDELIM_KEY(bh,item_num) ( (struct reiserfs_key * )((bh)->b_data + BLKH_SIZE) + (item_num) )
1615
1616/* get the key */
1617#define B_N_PKEY(bh,item_num) ( &(B_N_PITEM_HEAD(bh,item_num)->ih_key) )
1618
1619/* get item body */
1620#define B_N_PITEM(bh,item_num) ( (bh)->b_data + ih_location(B_N_PITEM_HEAD((bh),(item_num))))
1621
1622/* get the stat data by the buffer header and the item order */
1623#define B_N_STAT_DATA(bh,nr) \
1624( (struct stat_data *)((bh)->b_data + ih_location(B_N_PITEM_HEAD((bh),(nr))) ) )
1625
1626 /* following defines use reiserfs buffer header and item header */
1627
1628/* get stat-data */
1629#define B_I_STAT_DATA(bh, ih) ( (struct stat_data * )((bh)->b_data + ih_location(ih)) )
1630
1631// this is 3976 for size==4096
1632#define MAX_DIRECT_ITEM_LEN(size) ((size) - BLKH_SIZE - 2*IH_SIZE - SD_SIZE - UNFM_P_SIZE)
1633
1634/* indirect items consist of entries which contain blocknrs, pos
1635 indicates which entry, and B_I_POS_UNFM_POINTER resolves to the
1636 blocknr contained by the entry pos points to */
1637#define B_I_POS_UNFM_POINTER(bh,ih,pos) le32_to_cpu(*(((unp_t *)B_I_PITEM(bh,ih)) + (pos)))
1638#define PUT_B_I_POS_UNFM_POINTER(bh,ih,pos, val) do {*(((unp_t *)B_I_PITEM(bh,ih)) + (pos)) = cpu_to_le32(val); } while (0)
1639
1640struct reiserfs_iget_args {
1641 __u32 objectid ;
1642 __u32 dirid ;
1643} ;
1644
1645/***************************************************************************/
1646/* FUNCTION DECLARATIONS */
1647/***************************************************************************/
1648
1649/*#ifdef __KERNEL__*/
1650#define get_journal_desc_magic(bh) (bh->b_data + bh->b_size - 12)
1651
1652#define journal_trans_half(blocksize) \
1653 ((blocksize - sizeof (struct reiserfs_journal_desc) + sizeof (__u32) - 12) / sizeof (__u32))
1654
1655/* journal.c see journal.c for all the comments here */
1656
1657/* first block written in a commit. */
1658struct reiserfs_journal_desc {
1659 __u32 j_trans_id ; /* id of commit */
1660 __u32 j_len ; /* length of commit. len +1 is the commit block */
1661 __u32 j_mount_id ; /* mount id of this trans*/
1662 __u32 j_realblock[1] ; /* real locations for each block */
1663} ;
1664
1665#define get_desc_trans_id(d) le32_to_cpu((d)->j_trans_id)
1666#define get_desc_trans_len(d) le32_to_cpu((d)->j_len)
1667#define get_desc_mount_id(d) le32_to_cpu((d)->j_mount_id)
1668
1669#define set_desc_trans_id(d,val) do { (d)->j_trans_id = cpu_to_le32 (val); } while (0)
1670#define set_desc_trans_len(d,val) do { (d)->j_len = cpu_to_le32 (val); } while (0)
1671#define set_desc_mount_id(d,val) do { (d)->j_mount_id = cpu_to_le32 (val); } while (0)
1672
1673/* last block written in a commit */
1674struct reiserfs_journal_commit {
1675 __u32 j_trans_id ; /* must match j_trans_id from the desc block */
1676 __u32 j_len ; /* ditto */
1677 __u32 j_realblock[1] ; /* real locations for each block */
1678} ;
1679
1680#define get_commit_trans_id(c) le32_to_cpu((c)->j_trans_id)
1681#define get_commit_trans_len(c) le32_to_cpu((c)->j_len)
1682#define get_commit_mount_id(c) le32_to_cpu((c)->j_mount_id)
1683
1684#define set_commit_trans_id(c,val) do { (c)->j_trans_id = cpu_to_le32 (val); } while (0)
1685#define set_commit_trans_len(c,val) do { (c)->j_len = cpu_to_le32 (val); } while (0)
1686
1687/* this header block gets written whenever a transaction is considered fully flushed, and is more recent than the
1688** last fully flushed transaction. fully flushed means all the log blocks and all the real blocks are on disk,
1689** and this transaction does not need to be replayed.
1690*/
1691struct reiserfs_journal_header {
1692 __u32 j_last_flush_trans_id ; /* id of last fully flushed transaction */
1693 __u32 j_first_unflushed_offset ; /* offset in the log of where to start replay after a crash */
1694 __u32 j_mount_id ;
1695 /* 12 */ struct journal_params jh_journal;
1696} ;
1697
1698/* biggest tunable defines are right here */
1699#define JOURNAL_BLOCK_COUNT 8192 /* number of blocks in the journal */
1700#define JOURNAL_TRANS_MAX_DEFAULT 1024 /* biggest possible single transaction, don't change for now (8/3/99) */
1701#define JOURNAL_TRANS_MIN_DEFAULT 256
1702#define JOURNAL_MAX_BATCH_DEFAULT 900 /* max blocks to batch into one transaction, don't make this any bigger than 900 */
1703#define JOURNAL_MIN_RATIO 2
1704#define JOURNAL_MAX_COMMIT_AGE 30
1705#define JOURNAL_MAX_TRANS_AGE 30
1706#define JOURNAL_PER_BALANCE_CNT (3 * (MAX_HEIGHT-2) + 9)
1707#ifdef CONFIG_QUOTA
1708#define REISERFS_QUOTA_TRANS_BLOCKS 2 /* We need to update data and inode (atime) */
1709#define REISERFS_QUOTA_INIT_BLOCKS (DQUOT_MAX_WRITES*(JOURNAL_PER_BALANCE_CNT+2)+1) /* 1 balancing, 1 bitmap, 1 data per write + stat data update */
1710#else
1711#define REISERFS_QUOTA_TRANS_BLOCKS 0
1712#define REISERFS_QUOTA_INIT_BLOCKS 0
1713#endif
1714
1715/* both of these can be as low as 1, or as high as you want. The min is the
1716** number of 4k bitmap nodes preallocated on mount. New nodes are allocated
1717** as needed, and released when transactions are committed. On release, if
1718** the current number of nodes is > max, the node is freed, otherwise,
1719** it is put on a free list for faster use later.
1720*/
1721#define REISERFS_MIN_BITMAP_NODES 10
1722#define REISERFS_MAX_BITMAP_NODES 100
1723
1724#define JBH_HASH_SHIFT 13 /* these are based on journal hash size of 8192 */
1725#define JBH_HASH_MASK 8191
1726
1727#define _jhashfn(sb,block) \
1728 (((unsigned long)sb>>L1_CACHE_SHIFT) ^ \
1729 (((block)<<(JBH_HASH_SHIFT - 6)) ^ ((block) >> 13) ^ ((block) << (JBH_HASH_SHIFT - 12))))
1730#define journal_hash(t,sb,block) ((t)[_jhashfn((sb),(block)) & JBH_HASH_MASK])
1731
1732// We need these to make journal.c code more readable
1733#define journal_find_get_block(s, block) __find_get_block(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
1734#define journal_getblk(s, block) __getblk(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
1735#define journal_bread(s, block) __bread(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
1736
1737enum reiserfs_bh_state_bits {
1738 BH_JDirty = BH_PrivateStart, /* buffer is in current transaction */
1739 BH_JDirty_wait,
1740 BH_JNew, /* disk block was taken off free list before
1741 * being in a finished transaction, or
1742 * written to disk. Can be reused immed. */
1743 BH_JPrepared,
1744 BH_JRestore_dirty,
1745 BH_JTest, // debugging only will go away
1746};
1747
1748BUFFER_FNS(JDirty, journaled);
1749TAS_BUFFER_FNS(JDirty, journaled);
1750BUFFER_FNS(JDirty_wait, journal_dirty);
1751TAS_BUFFER_FNS(JDirty_wait, journal_dirty);
1752BUFFER_FNS(JNew, journal_new);
1753TAS_BUFFER_FNS(JNew, journal_new);
1754BUFFER_FNS(JPrepared, journal_prepared);
1755TAS_BUFFER_FNS(JPrepared, journal_prepared);
1756BUFFER_FNS(JRestore_dirty, journal_restore_dirty);
1757TAS_BUFFER_FNS(JRestore_dirty, journal_restore_dirty);
1758BUFFER_FNS(JTest, journal_test);
1759TAS_BUFFER_FNS(JTest, journal_test);
1760
1761/*
1762** transaction handle which is passed around for all journal calls
1763*/
1764struct reiserfs_transaction_handle {
1765 struct super_block *t_super ; /* super for this FS when journal_begin was
1766 called. saves calls to reiserfs_get_super
1767 also used by nested transactions to make
1768 sure they are nesting on the right FS
1769 _must_ be first in the handle
1770 */
1771 int t_refcount;
1772 int t_blocks_logged ; /* number of blocks this writer has logged */
1773 int t_blocks_allocated ; /* number of blocks this writer allocated */
1774 unsigned long t_trans_id ; /* sanity check, equals the current trans id */
1775 void *t_handle_save ; /* save existing current->journal_info */
1776 unsigned displace_new_blocks:1; /* if new block allocation occurres, that block
1777 should be displaced from others */
1778 struct list_head t_list;
1779} ;
1780
1781/* used to keep track of ordered and tail writes, attached to the buffer
1782 * head through b_journal_head.
1783 */
1784struct reiserfs_jh {
1785 struct reiserfs_journal_list *jl;
1786 struct buffer_head *bh;
1787 struct list_head list;
1788};
1789
1790void reiserfs_free_jh(struct buffer_head *bh);
1791int reiserfs_add_tail_list(struct inode *inode, struct buffer_head *bh);
1792int reiserfs_add_ordered_list(struct inode *inode, struct buffer_head *bh);
1793int journal_mark_dirty(struct reiserfs_transaction_handle *, struct super_block *, struct buffer_head *bh) ;
1794
1795static inline int
1796reiserfs_file_data_log(struct inode *inode) {
1797 if (reiserfs_data_log(inode->i_sb) ||
1798 (REISERFS_I(inode)->i_flags & i_data_log))
1799 return 1 ;
1800 return 0 ;
1801}
1802
1803static inline int reiserfs_transaction_running(struct super_block *s) {
1804 struct reiserfs_transaction_handle *th = current->journal_info ;
1805 if (th && th->t_super == s)
1806 return 1 ;
1807 if (th && th->t_super == NULL)
1808 BUG();
1809 return 0 ;
1810}
1811
1812int reiserfs_async_progress_wait(struct super_block *s);
1813
1814struct reiserfs_transaction_handle *
1815reiserfs_persistent_transaction(struct super_block *, int count);
1816int reiserfs_end_persistent_transaction(struct reiserfs_transaction_handle *);
1817int reiserfs_commit_page(struct inode *inode, struct page *page,
1818 unsigned from, unsigned to);
1819int reiserfs_flush_old_commits(struct super_block *);
1820int reiserfs_commit_for_inode(struct inode *) ;
1821int reiserfs_inode_needs_commit(struct inode *) ;
1822void reiserfs_update_inode_transaction(struct inode *) ;
1823void reiserfs_wait_on_write_block(struct super_block *s) ;
1824void reiserfs_block_writes(struct reiserfs_transaction_handle *th) ;
1825void reiserfs_allow_writes(struct super_block *s) ;
1826void reiserfs_check_lock_depth(struct super_block *s, char *caller) ;
1827int reiserfs_prepare_for_journal(struct super_block *, struct buffer_head *bh, int wait) ;
1828void reiserfs_restore_prepared_buffer(struct super_block *, struct buffer_head *bh) ;
1829int journal_init(struct super_block *, const char * j_dev_name, int old_format, unsigned int) ;
1830int journal_release(struct reiserfs_transaction_handle*, struct super_block *) ;
1831int journal_release_error(struct reiserfs_transaction_handle*, struct super_block *) ;
1832int journal_end(struct reiserfs_transaction_handle *, struct super_block *, unsigned long) ;
1833int journal_end_sync(struct reiserfs_transaction_handle *, struct super_block *, unsigned long) ;
1834int journal_mark_freed(struct reiserfs_transaction_handle *, struct super_block *, b_blocknr_t blocknr) ;
1835int journal_transaction_should_end(struct reiserfs_transaction_handle *, int) ;
1836int reiserfs_in_journal(struct super_block *p_s_sb, int bmap_nr, int bit_nr, int searchall, b_blocknr_t *next) ;
1837int journal_begin(struct reiserfs_transaction_handle *, struct super_block *p_s_sb, unsigned long) ;
1838int journal_join_abort(struct reiserfs_transaction_handle *, struct super_block *p_s_sb, unsigned long) ;
1839void reiserfs_journal_abort (struct super_block *sb, int errno);
1840void reiserfs_abort (struct super_block *sb, int errno, const char *fmt, ...);
1841int reiserfs_allocate_list_bitmaps(struct super_block *s, struct reiserfs_list_bitmap *, int) ;
1842
1843void add_save_link (struct reiserfs_transaction_handle * th,
1844 struct inode * inode, int truncate);
1845int remove_save_link (struct inode * inode, int truncate);
1846
1847/* objectid.c */
1848__u32 reiserfs_get_unused_objectid (struct reiserfs_transaction_handle *th);
1849void reiserfs_release_objectid (struct reiserfs_transaction_handle *th, __u32 objectid_to_release);
1850int reiserfs_convert_objectid_map_v1(struct super_block *) ;
1851
1852/* stree.c */
1853int B_IS_IN_TREE(const struct buffer_head *);
1854extern void copy_item_head(struct item_head * p_v_to,
1855 const struct item_head * p_v_from);
1856
1857// first key is in cpu form, second - le
1858extern int comp_short_keys (const struct reiserfs_key * le_key,
1859 const struct cpu_key * cpu_key);
1860extern void le_key2cpu_key (struct cpu_key * to, const struct reiserfs_key * from);
1861
1862// both are in le form
1863extern int comp_le_keys (const struct reiserfs_key *, const struct reiserfs_key *);
1864extern int comp_short_le_keys (const struct reiserfs_key *, const struct reiserfs_key *);
1865
1866//
1867// get key version from on disk key - kludge
1868//
1869static inline int le_key_version (const struct reiserfs_key * key)
1870{
1871 int type;
1872
1873 type = offset_v2_k_type( &(key->u.k_offset_v2));
1874 if (type != TYPE_DIRECT && type != TYPE_INDIRECT && type != TYPE_DIRENTRY)
1875 return KEY_FORMAT_3_5;
1876
1877 return KEY_FORMAT_3_6;
1878
1879}
1880
1881
1882static inline void copy_key (struct reiserfs_key *to, const struct reiserfs_key *from)
1883{
1884 memcpy (to, from, KEY_SIZE);
1885}
1886
1887
1888int comp_items (const struct item_head * stored_ih, const struct path * p_s_path);
1889const struct reiserfs_key * get_rkey (const struct path * p_s_chk_path,
1890 const struct super_block * p_s_sb);
1891int search_by_key (struct super_block *, const struct cpu_key *,
1892 struct path *, int);
1893#define search_item(s,key,path) search_by_key (s, key, path, DISK_LEAF_NODE_LEVEL)
1894int search_for_position_by_key (struct super_block * p_s_sb,
1895 const struct cpu_key * p_s_cpu_key,
1896 struct path * p_s_search_path);
1897extern void decrement_bcount (struct buffer_head * p_s_bh);
1898void decrement_counters_in_path (struct path * p_s_search_path);
1899void pathrelse (struct path * p_s_search_path);
1900int reiserfs_check_path(struct path *p) ;
1901void pathrelse_and_restore (struct super_block *s, struct path * p_s_search_path);
1902
1903int reiserfs_insert_item (struct reiserfs_transaction_handle *th,
1904 struct path * path,
1905 const struct cpu_key * key,
1906 struct item_head * ih,
1907 struct inode *inode, const char * body);
1908
1909int reiserfs_paste_into_item (struct reiserfs_transaction_handle *th,
1910 struct path * path,
1911 const struct cpu_key * key,
1912 struct inode *inode,
1913 const char * body, int paste_size);
1914
1915int reiserfs_cut_from_item (struct reiserfs_transaction_handle *th,
1916 struct path * path,
1917 struct cpu_key * key,
1918 struct inode * inode,
1919 struct page *page,
1920 loff_t new_file_size);
1921
1922int reiserfs_delete_item (struct reiserfs_transaction_handle *th,
1923 struct path * path,
1924 const struct cpu_key * key,
1925 struct inode * inode,
1926 struct buffer_head * p_s_un_bh);
1927
1928void reiserfs_delete_solid_item (struct reiserfs_transaction_handle *th,
1929 struct inode *inode, struct reiserfs_key * key);
1930int reiserfs_delete_object (struct reiserfs_transaction_handle *th, struct inode * p_s_inode);
1931int reiserfs_do_truncate (struct reiserfs_transaction_handle *th,
1932 struct inode * p_s_inode, struct page *,
1933 int update_timestamps);
1934
1935#define i_block_size(inode) ((inode)->i_sb->s_blocksize)
1936#define file_size(inode) ((inode)->i_size)
1937#define tail_size(inode) (file_size (inode) & (i_block_size (inode) - 1))
1938
1939#define tail_has_to_be_packed(inode) (have_large_tails ((inode)->i_sb)?\
1940!STORE_TAIL_IN_UNFM_S1(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):have_small_tails ((inode)->i_sb)?!STORE_TAIL_IN_UNFM_S2(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):0 )
1941
1942void padd_item (char * item, int total_length, int length);
1943
1944/* inode.c */
1945/* args for the create parameter of reiserfs_get_block */
1946#define GET_BLOCK_NO_CREATE 0 /* don't create new blocks or convert tails */
1947#define GET_BLOCK_CREATE 1 /* add anything you need to find block */
1948#define GET_BLOCK_NO_HOLE 2 /* return -ENOENT for file holes */
1949#define GET_BLOCK_READ_DIRECT 4 /* read the tail if indirect item not found */
1950#define GET_BLOCK_NO_ISEM 8 /* i_sem is not held, don't preallocate */
1951#define GET_BLOCK_NO_DANGLE 16 /* don't leave any transactions running */
1952
1953int restart_transaction(struct reiserfs_transaction_handle *th, struct inode *inode, struct path *path);
1954void reiserfs_read_locked_inode(struct inode * inode, struct reiserfs_iget_args *args) ;
1955int reiserfs_find_actor(struct inode * inode, void *p) ;
1956int reiserfs_init_locked_inode(struct inode * inode, void *p) ;
1957void reiserfs_delete_inode (struct inode * inode);
1958int reiserfs_write_inode (struct inode * inode, int) ;
1959int reiserfs_get_block (struct inode * inode, sector_t block, struct buffer_head * bh_result, int create);
1960struct dentry *reiserfs_get_dentry(struct super_block *, void *) ;
1961struct dentry *reiserfs_decode_fh(struct super_block *sb, __u32 *data,
1962 int len, int fhtype,
1963 int (*acceptable)(void *contect, struct dentry *de),
1964 void *context) ;
1965int reiserfs_encode_fh( struct dentry *dentry, __u32 *data, int *lenp,
1966 int connectable );
1967
1968int reiserfs_truncate_file(struct inode *, int update_timestamps) ;
1969void make_cpu_key (struct cpu_key * cpu_key, struct inode * inode, loff_t offset,
1970 int type, int key_length);
1971void make_le_item_head (struct item_head * ih, const struct cpu_key * key,
1972 int version,
1973 loff_t offset, int type, int length, int entry_count);
1974struct inode * reiserfs_iget (struct super_block * s,
1975 const struct cpu_key * key);
1976
1977
1978int reiserfs_new_inode (struct reiserfs_transaction_handle *th,
1979 struct inode * dir, int mode,
1980 const char * symname, loff_t i_size,
1981 struct dentry *dentry, struct inode *inode);
1982
1983void reiserfs_update_sd_size (struct reiserfs_transaction_handle *th,
1984 struct inode * inode, loff_t size);
1985
1986static inline void reiserfs_update_sd(struct reiserfs_transaction_handle *th,
1987 struct inode *inode)
1988{
1989 reiserfs_update_sd_size(th, inode, inode->i_size) ;
1990}
1991
1992void sd_attrs_to_i_attrs( __u16 sd_attrs, struct inode *inode );
1993void i_attrs_to_sd_attrs( struct inode *inode, __u16 *sd_attrs );
1994int reiserfs_setattr(struct dentry *dentry, struct iattr *attr);
1995
1996/* namei.c */
1997void set_de_name_and_namelen (struct reiserfs_dir_entry * de);
1998int search_by_entry_key (struct super_block * sb, const struct cpu_key * key,
1999 struct path * path,
2000 struct reiserfs_dir_entry * de);
2001struct dentry *reiserfs_get_parent(struct dentry *) ;
2002/* procfs.c */
2003
2004#if defined( CONFIG_PROC_FS ) && defined( CONFIG_REISERFS_PROC_INFO )
2005#define REISERFS_PROC_INFO
2006#else
2007#undef REISERFS_PROC_INFO
2008#endif
2009
2010int reiserfs_proc_info_init( struct super_block *sb );
2011int reiserfs_proc_info_done( struct super_block *sb );
2012struct proc_dir_entry *reiserfs_proc_register_global( char *name,
2013 read_proc_t *func );
2014void reiserfs_proc_unregister_global( const char *name );
2015int reiserfs_proc_info_global_init( void );
2016int reiserfs_proc_info_global_done( void );
2017int reiserfs_global_version_in_proc( char *buffer, char **start, off_t offset,
2018 int count, int *eof, void *data );
2019
2020#if defined( REISERFS_PROC_INFO )
2021
2022#define PROC_EXP( e ) e
2023
2024#define __PINFO( sb ) REISERFS_SB(sb) -> s_proc_info_data
2025#define PROC_INFO_MAX( sb, field, value ) \
2026 __PINFO( sb ).field = \
2027 max( REISERFS_SB( sb ) -> s_proc_info_data.field, value )
2028#define PROC_INFO_INC( sb, field ) ( ++ ( __PINFO( sb ).field ) )
2029#define PROC_INFO_ADD( sb, field, val ) ( __PINFO( sb ).field += ( val ) )
2030#define PROC_INFO_BH_STAT( sb, bh, level ) \
2031 PROC_INFO_INC( sb, sbk_read_at[ ( level ) ] ); \
2032 PROC_INFO_ADD( sb, free_at[ ( level ) ], B_FREE_SPACE( bh ) ); \
2033 PROC_INFO_ADD( sb, items_at[ ( level ) ], B_NR_ITEMS( bh ) )
2034#else
2035#define PROC_EXP( e )
2036#define VOID_V ( ( void ) 0 )
2037#define PROC_INFO_MAX( sb, field, value ) VOID_V
2038#define PROC_INFO_INC( sb, field ) VOID_V
2039#define PROC_INFO_ADD( sb, field, val ) VOID_V
2040#define PROC_INFO_BH_STAT( p_s_sb, p_s_bh, n_node_level ) VOID_V
2041#endif
2042
2043/* dir.c */
2044extern struct inode_operations reiserfs_dir_inode_operations;
2045extern struct inode_operations reiserfs_symlink_inode_operations;
2046extern struct inode_operations reiserfs_special_inode_operations;
2047extern struct file_operations reiserfs_dir_operations;
2048
2049/* tail_conversion.c */
2050int direct2indirect (struct reiserfs_transaction_handle *, struct inode *, struct path *, struct buffer_head *, loff_t);
2051int indirect2direct (struct reiserfs_transaction_handle *, struct inode *, struct page *, struct path *, const struct cpu_key *, loff_t, char *);
2052void reiserfs_unmap_buffer(struct buffer_head *) ;
2053
2054
2055/* file.c */
2056extern struct inode_operations reiserfs_file_inode_operations;
2057extern struct file_operations reiserfs_file_operations;
2058extern struct address_space_operations reiserfs_address_space_operations ;
2059
2060/* fix_nodes.c */
2061#ifdef CONFIG_REISERFS_CHECK
2062void * reiserfs_kmalloc (size_t size, int flags, struct super_block * s);
2063void reiserfs_kfree (const void * vp, size_t size, struct super_block * s);
2064#else
2065static inline void *reiserfs_kmalloc(size_t size, int flags,
2066 struct super_block *s)
2067{
2068 return kmalloc(size, flags);
2069}
2070
2071static inline void reiserfs_kfree(const void *vp, size_t size,
2072 struct super_block *s)
2073{
2074 kfree(vp);
2075}
2076#endif
2077
2078int fix_nodes (int n_op_mode, struct tree_balance * p_s_tb,
2079 struct item_head * p_s_ins_ih, const void *);
2080void unfix_nodes (struct tree_balance *);
2081
2082
2083/* prints.c */
2084void reiserfs_panic (struct super_block * s, const char * fmt, ...) __attribute__ ( ( noreturn ) );
2085void reiserfs_info (struct super_block *s, const char * fmt, ...);
2086void reiserfs_debug (struct super_block *s, int level, const char * fmt, ...);
2087void print_indirect_item (struct buffer_head * bh, int item_num);
2088void store_print_tb (struct tree_balance * tb);
2089void print_cur_tb (char * mes);
2090void print_de (struct reiserfs_dir_entry * de);
2091void print_bi (struct buffer_info * bi, char * mes);
2092#define PRINT_LEAF_ITEMS 1 /* print all items */
2093#define PRINT_DIRECTORY_ITEMS 2 /* print directory items */
2094#define PRINT_DIRECT_ITEMS 4 /* print contents of direct items */
2095void print_block (struct buffer_head * bh, ...);
2096void print_bmap (struct super_block * s, int silent);
2097void print_bmap_block (int i, char * data, int size, int silent);
2098/*void print_super_block (struct super_block * s, char * mes);*/
2099void print_objectid_map (struct super_block * s);
2100void print_block_head (struct buffer_head * bh, char * mes);
2101void check_leaf (struct buffer_head * bh);
2102void check_internal (struct buffer_head * bh);
2103void print_statistics (struct super_block * s);
2104char * reiserfs_hashname(int code);
2105
2106/* lbalance.c */
2107int leaf_move_items (int shift_mode, struct tree_balance * tb, int mov_num, int mov_bytes, struct buffer_head * Snew);
2108int leaf_shift_left (struct tree_balance * tb, int shift_num, int shift_bytes);
2109int leaf_shift_right (struct tree_balance * tb, int shift_num, int shift_bytes);
2110void leaf_delete_items (struct buffer_info * cur_bi, int last_first, int first, int del_num, int del_bytes);
2111void leaf_insert_into_buf (struct buffer_info * bi, int before,
2112 struct item_head * inserted_item_ih, const char * inserted_item_body, int zeros_number);
2113void leaf_paste_in_buffer (struct buffer_info * bi, int pasted_item_num,
2114 int pos_in_item, int paste_size, const char * body, int zeros_number);
2115void leaf_cut_from_buffer (struct buffer_info * bi, int cut_item_num, int pos_in_item,
2116 int cut_size);
2117void leaf_paste_entries (struct buffer_head * bh, int item_num, int before,
2118 int new_entry_count, struct reiserfs_de_head * new_dehs, const char * records, int paste_size);
2119/* ibalance.c */
2120int balance_internal (struct tree_balance * , int, int, struct item_head * ,
2121 struct buffer_head **);
2122
2123/* do_balance.c */
2124void do_balance_mark_leaf_dirty (struct tree_balance * tb,
2125 struct buffer_head * bh, int flag);
2126#define do_balance_mark_internal_dirty do_balance_mark_leaf_dirty
2127#define do_balance_mark_sb_dirty do_balance_mark_leaf_dirty
2128
2129void do_balance (struct tree_balance * tb, struct item_head * ih,
2130 const char * body, int flag);
2131void reiserfs_invalidate_buffer (struct tree_balance * tb, struct buffer_head * bh);
2132
2133int get_left_neighbor_position (struct tree_balance * tb, int h);
2134int get_right_neighbor_position (struct tree_balance * tb, int h);
2135void replace_key (struct tree_balance * tb, struct buffer_head *, int, struct buffer_head *, int);
2136void make_empty_node (struct buffer_info *);
2137struct buffer_head * get_FEB (struct tree_balance *);
2138
2139/* bitmap.c */
2140
2141/* structure contains hints for block allocator, and it is a container for
2142 * arguments, such as node, search path, transaction_handle, etc. */
2143 struct __reiserfs_blocknr_hint {
2144 struct inode * inode; /* inode passed to allocator, if we allocate unf. nodes */
2145 long block; /* file offset, in blocks */
6a3a16f2 2146 struct in_core_key key;
1da177e4
LT
2147 struct path * path; /* search path, used by allocator to deternine search_start by
2148 * various ways */
2149 struct reiserfs_transaction_handle * th; /* transaction handle is needed to log super blocks and
2150 * bitmap blocks changes */
2151 b_blocknr_t beg, end;
2152 b_blocknr_t search_start; /* a field used to transfer search start value (block number)
2153 * between different block allocator procedures
2154 * (determine_search_start() and others) */
2155 int prealloc_size; /* is set in determine_prealloc_size() function, used by underlayed
2156 * function that do actual allocation */
2157
2158 unsigned formatted_node:1; /* the allocator uses different polices for getting disk space for
2159 * formatted/unformatted blocks with/without preallocation */
2160 unsigned preallocate:1;
2161};
2162
2163typedef struct __reiserfs_blocknr_hint reiserfs_blocknr_hint_t;
2164
2165int reiserfs_parse_alloc_options (struct super_block *, char *);
2166void reiserfs_init_alloc_options (struct super_block *s);
2167
2168/*
2169 * given a directory, this will tell you what packing locality
2170 * to use for a new object underneat it. The locality is returned
2171 * in disk byte order (le).
2172 */
2173u32 reiserfs_choose_packing(struct inode *dir);
2174
2175int is_reusable (struct super_block * s, b_blocknr_t block, int bit_value);
2176void reiserfs_free_block (struct reiserfs_transaction_handle *th, struct inode *, b_blocknr_t, int for_unformatted);
2177int reiserfs_allocate_blocknrs(reiserfs_blocknr_hint_t *, b_blocknr_t * , int, int);
2178extern inline int reiserfs_new_form_blocknrs (struct tree_balance * tb,
2179 b_blocknr_t *new_blocknrs, int amount_needed)
2180{
2181 reiserfs_blocknr_hint_t hint = {
2182 .th = tb->transaction_handle,
2183 .path = tb->tb_path,
2184 .inode = NULL,
2185 .key = tb->key,
2186 .block = 0,
2187 .formatted_node = 1
2188 };
2189 return reiserfs_allocate_blocknrs(&hint, new_blocknrs, amount_needed, 0);
2190}
2191
2192extern inline int reiserfs_new_unf_blocknrs (struct reiserfs_transaction_handle *th,
2193 struct inode *inode,
2194 b_blocknr_t *new_blocknrs,
2195 struct path * path, long block)
2196{
2197 reiserfs_blocknr_hint_t hint = {
2198 .th = th,
2199 .path = path,
2200 .inode = inode,
2201 .block = block,
2202 .formatted_node = 0,
2203 .preallocate = 0
2204 };
2205 return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0);
2206}
2207
2208#ifdef REISERFS_PREALLOCATE
2209extern inline int reiserfs_new_unf_blocknrs2(struct reiserfs_transaction_handle *th,
2210 struct inode * inode,
2211 b_blocknr_t *new_blocknrs,
2212 struct path * path, long block)
2213{
2214 reiserfs_blocknr_hint_t hint = {
2215 .th = th,
2216 .path = path,
2217 .inode = inode,
2218 .block = block,
2219 .formatted_node = 0,
2220 .preallocate = 1
2221 };
2222 return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0);
2223}
2224
2225void reiserfs_discard_prealloc (struct reiserfs_transaction_handle *th,
2226 struct inode * inode);
2227void reiserfs_discard_all_prealloc (struct reiserfs_transaction_handle *th);
2228#endif
2229void reiserfs_claim_blocks_to_be_allocated( struct super_block *sb, int blocks);
2230void reiserfs_release_claimed_blocks( struct super_block *sb, int blocks);
2231int reiserfs_can_fit_pages(struct super_block *sb);
2232
2233/* hashes.c */
2234__u32 keyed_hash (const signed char *msg, int len);
2235__u32 yura_hash (const signed char *msg, int len);
2236__u32 r5_hash (const signed char *msg, int len);
2237
2238/* the ext2 bit routines adjust for big or little endian as
2239** appropriate for the arch, so in our laziness we use them rather
2240** than using the bit routines they call more directly. These
2241** routines must be used when changing on disk bitmaps. */
2242#define reiserfs_test_and_set_le_bit ext2_set_bit
2243#define reiserfs_test_and_clear_le_bit ext2_clear_bit
2244#define reiserfs_test_le_bit ext2_test_bit
2245#define reiserfs_find_next_zero_le_bit ext2_find_next_zero_bit
2246
2247/* sometimes reiserfs_truncate may require to allocate few new blocks
2248 to perform indirect2direct conversion. People probably used to
2249 think, that truncate should work without problems on a filesystem
2250 without free disk space. They may complain that they can not
2251 truncate due to lack of free disk space. This spare space allows us
2252 to not worry about it. 500 is probably too much, but it should be
2253 absolutely safe */
2254#define SPARE_SPACE 500
2255
2256
2257/* prototypes from ioctl.c */
2258int reiserfs_ioctl (struct inode * inode, struct file * filp,
2259 unsigned int cmd, unsigned long arg);
2260
2261/* ioctl's command */
2262#define REISERFS_IOC_UNPACK _IOW(0xCD,1,long)
2263/* define following flags to be the same as in ext2, so that chattr(1),
2264 lsattr(1) will work with us. */
2265#define REISERFS_IOC_GETFLAGS EXT2_IOC_GETFLAGS
2266#define REISERFS_IOC_SETFLAGS EXT2_IOC_SETFLAGS
2267#define REISERFS_IOC_GETVERSION EXT2_IOC_GETVERSION
2268#define REISERFS_IOC_SETVERSION EXT2_IOC_SETVERSION
2269
2270/* Locking primitives */
2271/* Right now we are still falling back to (un)lock_kernel, but eventually that
2272 would evolve into real per-fs locks */
2273#define reiserfs_write_lock( sb ) lock_kernel()
2274#define reiserfs_write_unlock( sb ) unlock_kernel()
2275
2276/* xattr stuff */
2277#define REISERFS_XATTR_DIR_SEM(s) (REISERFS_SB(s)->xattr_dir_sem)
2278
2279#endif /* _LINUX_REISER_FS_H */
2280
2281
This page took 0.119978 seconds and 5 git commands to generate.