Merge tag 'pinctrl-v4.1-2' of git://git.kernel.org/pub/scm/linux/kernel/git/linusw...
[deliverable/linux.git] / include / linux / sched.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_SCHED_H
2#define _LINUX_SCHED_H
3
607ca46e 4#include <uapi/linux/sched.h>
b7b3c76a 5
5c228079
DY
6#include <linux/sched/prio.h>
7
b7b3c76a
DW
8
9struct sched_param {
10 int sched_priority;
11};
12
1da177e4
LT
13#include <asm/param.h> /* for HZ */
14
1da177e4
LT
15#include <linux/capability.h>
16#include <linux/threads.h>
17#include <linux/kernel.h>
18#include <linux/types.h>
19#include <linux/timex.h>
20#include <linux/jiffies.h>
fb00aca4 21#include <linux/plist.h>
1da177e4
LT
22#include <linux/rbtree.h>
23#include <linux/thread_info.h>
24#include <linux/cpumask.h>
25#include <linux/errno.h>
26#include <linux/nodemask.h>
c92ff1bd 27#include <linux/mm_types.h>
00d1a39e 28#include <linux/preempt_mask.h>
1da177e4 29
1da177e4
LT
30#include <asm/page.h>
31#include <asm/ptrace.h>
bfc3f028 32#include <linux/cputime.h>
1da177e4
LT
33
34#include <linux/smp.h>
35#include <linux/sem.h>
ab602f79 36#include <linux/shm.h>
1da177e4 37#include <linux/signal.h>
1da177e4
LT
38#include <linux/compiler.h>
39#include <linux/completion.h>
40#include <linux/pid.h>
41#include <linux/percpu.h>
42#include <linux/topology.h>
3e26c149 43#include <linux/proportions.h>
1da177e4 44#include <linux/seccomp.h>
e56d0903 45#include <linux/rcupdate.h>
05725f7e 46#include <linux/rculist.h>
23f78d4a 47#include <linux/rtmutex.h>
1da177e4 48
a3b6714e
DW
49#include <linux/time.h>
50#include <linux/param.h>
51#include <linux/resource.h>
52#include <linux/timer.h>
53#include <linux/hrtimer.h>
7c3ab738 54#include <linux/task_io_accounting.h>
9745512c 55#include <linux/latencytop.h>
9e2b2dc4 56#include <linux/cred.h>
fa14ff4a 57#include <linux/llist.h>
7b44ab97 58#include <linux/uidgid.h>
21caf2fc 59#include <linux/gfp.h>
d4311ff1 60#include <linux/magic.h>
a3b6714e
DW
61
62#include <asm/processor.h>
36d57ac4 63
d50dde5a
DF
64#define SCHED_ATTR_SIZE_VER0 48 /* sizeof first published struct */
65
66/*
67 * Extended scheduling parameters data structure.
68 *
69 * This is needed because the original struct sched_param can not be
70 * altered without introducing ABI issues with legacy applications
71 * (e.g., in sched_getparam()).
72 *
73 * However, the possibility of specifying more than just a priority for
74 * the tasks may be useful for a wide variety of application fields, e.g.,
75 * multimedia, streaming, automation and control, and many others.
76 *
77 * This variant (sched_attr) is meant at describing a so-called
78 * sporadic time-constrained task. In such model a task is specified by:
79 * - the activation period or minimum instance inter-arrival time;
80 * - the maximum (or average, depending on the actual scheduling
81 * discipline) computation time of all instances, a.k.a. runtime;
82 * - the deadline (relative to the actual activation time) of each
83 * instance.
84 * Very briefly, a periodic (sporadic) task asks for the execution of
85 * some specific computation --which is typically called an instance--
86 * (at most) every period. Moreover, each instance typically lasts no more
87 * than the runtime and must be completed by time instant t equal to
88 * the instance activation time + the deadline.
89 *
90 * This is reflected by the actual fields of the sched_attr structure:
91 *
92 * @size size of the structure, for fwd/bwd compat.
93 *
94 * @sched_policy task's scheduling policy
95 * @sched_flags for customizing the scheduler behaviour
96 * @sched_nice task's nice value (SCHED_NORMAL/BATCH)
97 * @sched_priority task's static priority (SCHED_FIFO/RR)
98 * @sched_deadline representative of the task's deadline
99 * @sched_runtime representative of the task's runtime
100 * @sched_period representative of the task's period
101 *
102 * Given this task model, there are a multiplicity of scheduling algorithms
103 * and policies, that can be used to ensure all the tasks will make their
104 * timing constraints.
aab03e05
DF
105 *
106 * As of now, the SCHED_DEADLINE policy (sched_dl scheduling class) is the
107 * only user of this new interface. More information about the algorithm
108 * available in the scheduling class file or in Documentation/.
d50dde5a
DF
109 */
110struct sched_attr {
111 u32 size;
112
113 u32 sched_policy;
114 u64 sched_flags;
115
116 /* SCHED_NORMAL, SCHED_BATCH */
117 s32 sched_nice;
118
119 /* SCHED_FIFO, SCHED_RR */
120 u32 sched_priority;
121
122 /* SCHED_DEADLINE */
123 u64 sched_runtime;
124 u64 sched_deadline;
125 u64 sched_period;
126};
127
c87e2837 128struct futex_pi_state;
286100a6 129struct robust_list_head;
bddd87c7 130struct bio_list;
5ad4e53b 131struct fs_struct;
cdd6c482 132struct perf_event_context;
73c10101 133struct blk_plug;
c4ad8f98 134struct filename;
1da177e4 135
615d6e87
DB
136#define VMACACHE_BITS 2
137#define VMACACHE_SIZE (1U << VMACACHE_BITS)
138#define VMACACHE_MASK (VMACACHE_SIZE - 1)
139
1da177e4
LT
140/*
141 * These are the constant used to fake the fixed-point load-average
142 * counting. Some notes:
143 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
144 * a load-average precision of 10 bits integer + 11 bits fractional
145 * - if you want to count load-averages more often, you need more
146 * precision, or rounding will get you. With 2-second counting freq,
147 * the EXP_n values would be 1981, 2034 and 2043 if still using only
148 * 11 bit fractions.
149 */
150extern unsigned long avenrun[]; /* Load averages */
2d02494f 151extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
1da177e4
LT
152
153#define FSHIFT 11 /* nr of bits of precision */
154#define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
0c2043ab 155#define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
1da177e4
LT
156#define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
157#define EXP_5 2014 /* 1/exp(5sec/5min) */
158#define EXP_15 2037 /* 1/exp(5sec/15min) */
159
160#define CALC_LOAD(load,exp,n) \
161 load *= exp; \
162 load += n*(FIXED_1-exp); \
163 load >>= FSHIFT;
164
165extern unsigned long total_forks;
166extern int nr_threads;
1da177e4
LT
167DECLARE_PER_CPU(unsigned long, process_counts);
168extern int nr_processes(void);
169extern unsigned long nr_running(void);
2ee507c4 170extern bool single_task_running(void);
1da177e4 171extern unsigned long nr_iowait(void);
8c215bd3 172extern unsigned long nr_iowait_cpu(int cpu);
372ba8cb 173extern void get_iowait_load(unsigned long *nr_waiters, unsigned long *load);
69d25870 174
0f004f5a 175extern void calc_global_load(unsigned long ticks);
5aaa0b7a 176extern void update_cpu_load_nohz(void);
1da177e4 177
0a4e6be9
MT
178/* Notifier for when a task gets migrated to a new CPU */
179struct task_migration_notifier {
180 struct task_struct *task;
181 int from_cpu;
182 int to_cpu;
183};
184extern void register_task_migration_notifier(struct notifier_block *n);
185
7e49fcce
SR
186extern unsigned long get_parent_ip(unsigned long addr);
187
b637a328
PM
188extern void dump_cpu_task(int cpu);
189
43ae34cb
IM
190struct seq_file;
191struct cfs_rq;
4cf86d77 192struct task_group;
43ae34cb
IM
193#ifdef CONFIG_SCHED_DEBUG
194extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
195extern void proc_sched_set_task(struct task_struct *p);
196extern void
5cef9eca 197print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
43ae34cb 198#endif
1da177e4 199
4a8342d2
LT
200/*
201 * Task state bitmask. NOTE! These bits are also
202 * encoded in fs/proc/array.c: get_task_state().
203 *
204 * We have two separate sets of flags: task->state
205 * is about runnability, while task->exit_state are
206 * about the task exiting. Confusing, but this way
207 * modifying one set can't modify the other one by
208 * mistake.
209 */
1da177e4
LT
210#define TASK_RUNNING 0
211#define TASK_INTERRUPTIBLE 1
212#define TASK_UNINTERRUPTIBLE 2
f021a3c2
MW
213#define __TASK_STOPPED 4
214#define __TASK_TRACED 8
4a8342d2 215/* in tsk->exit_state */
ad86622b
ON
216#define EXIT_DEAD 16
217#define EXIT_ZOMBIE 32
abd50b39 218#define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
4a8342d2 219/* in tsk->state again */
af927232 220#define TASK_DEAD 64
f021a3c2 221#define TASK_WAKEKILL 128
e9c84311 222#define TASK_WAKING 256
f2530dc7
TG
223#define TASK_PARKED 512
224#define TASK_STATE_MAX 1024
f021a3c2 225
ad0f614e 226#define TASK_STATE_TO_CHAR_STR "RSDTtXZxKWP"
73342151 227
e1781538
PZ
228extern char ___assert_task_state[1 - 2*!!(
229 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
f021a3c2
MW
230
231/* Convenience macros for the sake of set_task_state */
232#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
233#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
234#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
1da177e4 235
92a1f4bc
MW
236/* Convenience macros for the sake of wake_up */
237#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
f021a3c2 238#define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
92a1f4bc
MW
239
240/* get_task_state() */
241#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
f021a3c2 242 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
74e37200 243 __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD)
92a1f4bc 244
f021a3c2
MW
245#define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
246#define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
92a1f4bc 247#define task_is_stopped_or_traced(task) \
f021a3c2 248 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
92a1f4bc 249#define task_contributes_to_load(task) \
e3c8ca83 250 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
376fede8 251 (task->flags & PF_FROZEN) == 0)
1da177e4 252
8eb23b9f
PZ
253#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
254
255#define __set_task_state(tsk, state_value) \
256 do { \
257 (tsk)->task_state_change = _THIS_IP_; \
258 (tsk)->state = (state_value); \
259 } while (0)
260#define set_task_state(tsk, state_value) \
261 do { \
262 (tsk)->task_state_change = _THIS_IP_; \
263 set_mb((tsk)->state, (state_value)); \
264 } while (0)
265
266/*
267 * set_current_state() includes a barrier so that the write of current->state
268 * is correctly serialised wrt the caller's subsequent test of whether to
269 * actually sleep:
270 *
271 * set_current_state(TASK_UNINTERRUPTIBLE);
272 * if (do_i_need_to_sleep())
273 * schedule();
274 *
275 * If the caller does not need such serialisation then use __set_current_state()
276 */
277#define __set_current_state(state_value) \
278 do { \
279 current->task_state_change = _THIS_IP_; \
280 current->state = (state_value); \
281 } while (0)
282#define set_current_state(state_value) \
283 do { \
284 current->task_state_change = _THIS_IP_; \
285 set_mb(current->state, (state_value)); \
286 } while (0)
287
288#else
289
1da177e4
LT
290#define __set_task_state(tsk, state_value) \
291 do { (tsk)->state = (state_value); } while (0)
292#define set_task_state(tsk, state_value) \
293 set_mb((tsk)->state, (state_value))
294
498d0c57
AM
295/*
296 * set_current_state() includes a barrier so that the write of current->state
297 * is correctly serialised wrt the caller's subsequent test of whether to
298 * actually sleep:
299 *
300 * set_current_state(TASK_UNINTERRUPTIBLE);
301 * if (do_i_need_to_sleep())
302 * schedule();
303 *
304 * If the caller does not need such serialisation then use __set_current_state()
305 */
8eb23b9f 306#define __set_current_state(state_value) \
1da177e4 307 do { current->state = (state_value); } while (0)
8eb23b9f 308#define set_current_state(state_value) \
1da177e4
LT
309 set_mb(current->state, (state_value))
310
8eb23b9f
PZ
311#endif
312
1da177e4
LT
313/* Task command name length */
314#define TASK_COMM_LEN 16
315
1da177e4
LT
316#include <linux/spinlock.h>
317
318/*
319 * This serializes "schedule()" and also protects
320 * the run-queue from deletions/modifications (but
321 * _adding_ to the beginning of the run-queue has
322 * a separate lock).
323 */
324extern rwlock_t tasklist_lock;
325extern spinlock_t mmlist_lock;
326
36c8b586 327struct task_struct;
1da177e4 328
db1466b3
PM
329#ifdef CONFIG_PROVE_RCU
330extern int lockdep_tasklist_lock_is_held(void);
331#endif /* #ifdef CONFIG_PROVE_RCU */
332
1da177e4
LT
333extern void sched_init(void);
334extern void sched_init_smp(void);
2d07b255 335extern asmlinkage void schedule_tail(struct task_struct *prev);
36c8b586 336extern void init_idle(struct task_struct *idle, int cpu);
1df21055 337extern void init_idle_bootup_task(struct task_struct *idle);
1da177e4 338
3fa0818b
RR
339extern cpumask_var_t cpu_isolated_map;
340
89f19f04 341extern int runqueue_is_locked(int cpu);
017730c1 342
3451d024 343#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
c1cc017c 344extern void nohz_balance_enter_idle(int cpu);
69e1e811 345extern void set_cpu_sd_state_idle(void);
6201b4d6 346extern int get_nohz_timer_target(int pinned);
46cb4b7c 347#else
c1cc017c 348static inline void nohz_balance_enter_idle(int cpu) { }
fdaabd80 349static inline void set_cpu_sd_state_idle(void) { }
6201b4d6
VK
350static inline int get_nohz_timer_target(int pinned)
351{
352 return smp_processor_id();
353}
46cb4b7c 354#endif
1da177e4 355
e59e2ae2 356/*
39bc89fd 357 * Only dump TASK_* tasks. (0 for all tasks)
e59e2ae2
IM
358 */
359extern void show_state_filter(unsigned long state_filter);
360
361static inline void show_state(void)
362{
39bc89fd 363 show_state_filter(0);
e59e2ae2
IM
364}
365
1da177e4
LT
366extern void show_regs(struct pt_regs *);
367
368/*
369 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
370 * task), SP is the stack pointer of the first frame that should be shown in the back
371 * trace (or NULL if the entire call-chain of the task should be shown).
372 */
373extern void show_stack(struct task_struct *task, unsigned long *sp);
374
1da177e4
LT
375extern void cpu_init (void);
376extern void trap_init(void);
377extern void update_process_times(int user);
378extern void scheduler_tick(void);
379
82a1fcb9
IM
380extern void sched_show_task(struct task_struct *p);
381
19cc36c0 382#ifdef CONFIG_LOCKUP_DETECTOR
8446f1d3 383extern void touch_softlockup_watchdog(void);
d6ad3e28 384extern void touch_softlockup_watchdog_sync(void);
04c9167f 385extern void touch_all_softlockup_watchdogs(void);
332fbdbc
DZ
386extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
387 void __user *buffer,
388 size_t *lenp, loff_t *ppos);
9c44bc03 389extern unsigned int softlockup_panic;
004417a6 390void lockup_detector_init(void);
8446f1d3 391#else
8446f1d3
IM
392static inline void touch_softlockup_watchdog(void)
393{
394}
d6ad3e28
JW
395static inline void touch_softlockup_watchdog_sync(void)
396{
397}
04c9167f
JF
398static inline void touch_all_softlockup_watchdogs(void)
399{
400}
004417a6
PZ
401static inline void lockup_detector_init(void)
402{
403}
8446f1d3
IM
404#endif
405
8b414521
MT
406#ifdef CONFIG_DETECT_HUNG_TASK
407void reset_hung_task_detector(void);
408#else
409static inline void reset_hung_task_detector(void)
410{
411}
412#endif
413
1da177e4
LT
414/* Attach to any functions which should be ignored in wchan output. */
415#define __sched __attribute__((__section__(".sched.text")))
deaf2227
IM
416
417/* Linker adds these: start and end of __sched functions */
418extern char __sched_text_start[], __sched_text_end[];
419
1da177e4
LT
420/* Is this address in the __sched functions? */
421extern int in_sched_functions(unsigned long addr);
422
423#define MAX_SCHEDULE_TIMEOUT LONG_MAX
b3c97528 424extern signed long schedule_timeout(signed long timeout);
64ed93a2 425extern signed long schedule_timeout_interruptible(signed long timeout);
294d5cc2 426extern signed long schedule_timeout_killable(signed long timeout);
64ed93a2 427extern signed long schedule_timeout_uninterruptible(signed long timeout);
1da177e4 428asmlinkage void schedule(void);
c5491ea7 429extern void schedule_preempt_disabled(void);
1da177e4 430
9cff8ade
N
431extern long io_schedule_timeout(long timeout);
432
433static inline void io_schedule(void)
434{
435 io_schedule_timeout(MAX_SCHEDULE_TIMEOUT);
436}
437
ab516013 438struct nsproxy;
acce292c 439struct user_namespace;
1da177e4 440
efc1a3b1
DH
441#ifdef CONFIG_MMU
442extern void arch_pick_mmap_layout(struct mm_struct *mm);
1da177e4
LT
443extern unsigned long
444arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
445 unsigned long, unsigned long);
446extern unsigned long
447arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
448 unsigned long len, unsigned long pgoff,
449 unsigned long flags);
efc1a3b1
DH
450#else
451static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
452#endif
1da177e4 453
d049f74f
KC
454#define SUID_DUMP_DISABLE 0 /* No setuid dumping */
455#define SUID_DUMP_USER 1 /* Dump as user of process */
456#define SUID_DUMP_ROOT 2 /* Dump as root */
457
6c5d5238 458/* mm flags */
f8af4da3 459
7288e118 460/* for SUID_DUMP_* above */
3cb4a0bb 461#define MMF_DUMPABLE_BITS 2
f8af4da3 462#define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
3cb4a0bb 463
942be387
ON
464extern void set_dumpable(struct mm_struct *mm, int value);
465/*
466 * This returns the actual value of the suid_dumpable flag. For things
467 * that are using this for checking for privilege transitions, it must
468 * test against SUID_DUMP_USER rather than treating it as a boolean
469 * value.
470 */
471static inline int __get_dumpable(unsigned long mm_flags)
472{
473 return mm_flags & MMF_DUMPABLE_MASK;
474}
475
476static inline int get_dumpable(struct mm_struct *mm)
477{
478 return __get_dumpable(mm->flags);
479}
480
3cb4a0bb
KH
481/* coredump filter bits */
482#define MMF_DUMP_ANON_PRIVATE 2
483#define MMF_DUMP_ANON_SHARED 3
484#define MMF_DUMP_MAPPED_PRIVATE 4
485#define MMF_DUMP_MAPPED_SHARED 5
82df3973 486#define MMF_DUMP_ELF_HEADERS 6
e575f111
KM
487#define MMF_DUMP_HUGETLB_PRIVATE 7
488#define MMF_DUMP_HUGETLB_SHARED 8
f8af4da3 489
3cb4a0bb 490#define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
e575f111 491#define MMF_DUMP_FILTER_BITS 7
3cb4a0bb
KH
492#define MMF_DUMP_FILTER_MASK \
493 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
494#define MMF_DUMP_FILTER_DEFAULT \
e575f111 495 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
656eb2cd
RM
496 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
497
498#ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
499# define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
500#else
501# define MMF_DUMP_MASK_DEFAULT_ELF 0
502#endif
f8af4da3
HD
503 /* leave room for more dump flags */
504#define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
ba76149f 505#define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */
bafb282d 506#define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */
f8af4da3 507
9f68f672
ON
508#define MMF_HAS_UPROBES 19 /* has uprobes */
509#define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */
f8ac4ec9 510
f8af4da3 511#define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
6c5d5238 512
1da177e4
LT
513struct sighand_struct {
514 atomic_t count;
515 struct k_sigaction action[_NSIG];
516 spinlock_t siglock;
b8fceee1 517 wait_queue_head_t signalfd_wqh;
1da177e4
LT
518};
519
0e464814 520struct pacct_struct {
f6ec29a4
KK
521 int ac_flag;
522 long ac_exitcode;
0e464814 523 unsigned long ac_mem;
77787bfb
KK
524 cputime_t ac_utime, ac_stime;
525 unsigned long ac_minflt, ac_majflt;
0e464814
KK
526};
527
42c4ab41
SG
528struct cpu_itimer {
529 cputime_t expires;
530 cputime_t incr;
8356b5f9
SG
531 u32 error;
532 u32 incr_error;
42c4ab41
SG
533};
534
d37f761d
FW
535/**
536 * struct cputime - snaphsot of system and user cputime
537 * @utime: time spent in user mode
538 * @stime: time spent in system mode
539 *
540 * Gathers a generic snapshot of user and system time.
541 */
542struct cputime {
543 cputime_t utime;
544 cputime_t stime;
545};
546
f06febc9
FM
547/**
548 * struct task_cputime - collected CPU time counts
549 * @utime: time spent in user mode, in &cputime_t units
550 * @stime: time spent in kernel mode, in &cputime_t units
551 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
5ce73a4a 552 *
d37f761d
FW
553 * This is an extension of struct cputime that includes the total runtime
554 * spent by the task from the scheduler point of view.
555 *
556 * As a result, this structure groups together three kinds of CPU time
557 * that are tracked for threads and thread groups. Most things considering
f06febc9
FM
558 * CPU time want to group these counts together and treat all three
559 * of them in parallel.
560 */
561struct task_cputime {
562 cputime_t utime;
563 cputime_t stime;
564 unsigned long long sum_exec_runtime;
565};
566/* Alternate field names when used to cache expirations. */
567#define prof_exp stime
568#define virt_exp utime
569#define sched_exp sum_exec_runtime
570
4cd4c1b4
PZ
571#define INIT_CPUTIME \
572 (struct task_cputime) { \
64861634
MS
573 .utime = 0, \
574 .stime = 0, \
4cd4c1b4
PZ
575 .sum_exec_runtime = 0, \
576 }
577
a233f112
PZ
578#ifdef CONFIG_PREEMPT_COUNT
579#define PREEMPT_DISABLED (1 + PREEMPT_ENABLED)
580#else
581#define PREEMPT_DISABLED PREEMPT_ENABLED
582#endif
583
c99e6efe
PZ
584/*
585 * Disable preemption until the scheduler is running.
586 * Reset by start_kernel()->sched_init()->init_idle().
d86ee480
PZ
587 *
588 * We include PREEMPT_ACTIVE to avoid cond_resched() from working
589 * before the scheduler is active -- see should_resched().
c99e6efe 590 */
a233f112 591#define INIT_PREEMPT_COUNT (PREEMPT_DISABLED + PREEMPT_ACTIVE)
c99e6efe 592
f06febc9 593/**
4cd4c1b4
PZ
594 * struct thread_group_cputimer - thread group interval timer counts
595 * @cputime: thread group interval timers.
596 * @running: non-zero when there are timers running and
597 * @cputime receives updates.
598 * @lock: lock for fields in this struct.
f06febc9
FM
599 *
600 * This structure contains the version of task_cputime, above, that is
4cd4c1b4 601 * used for thread group CPU timer calculations.
f06febc9 602 */
4cd4c1b4
PZ
603struct thread_group_cputimer {
604 struct task_cputime cputime;
605 int running;
ee30a7b2 606 raw_spinlock_t lock;
f06febc9 607};
f06febc9 608
4714d1d3 609#include <linux/rwsem.h>
5091faa4
MG
610struct autogroup;
611
1da177e4 612/*
e815f0a8 613 * NOTE! "signal_struct" does not have its own
1da177e4
LT
614 * locking, because a shared signal_struct always
615 * implies a shared sighand_struct, so locking
616 * sighand_struct is always a proper superset of
617 * the locking of signal_struct.
618 */
619struct signal_struct {
ea6d290c 620 atomic_t sigcnt;
1da177e4 621 atomic_t live;
b3ac022c 622 int nr_threads;
0c740d0a 623 struct list_head thread_head;
1da177e4
LT
624
625 wait_queue_head_t wait_chldexit; /* for wait4() */
626
627 /* current thread group signal load-balancing target: */
36c8b586 628 struct task_struct *curr_target;
1da177e4
LT
629
630 /* shared signal handling: */
631 struct sigpending shared_pending;
632
633 /* thread group exit support */
634 int group_exit_code;
635 /* overloaded:
636 * - notify group_exit_task when ->count is equal to notify_count
637 * - everyone except group_exit_task is stopped during signal delivery
638 * of fatal signals, group_exit_task processes the signal.
639 */
1da177e4 640 int notify_count;
07dd20e0 641 struct task_struct *group_exit_task;
1da177e4
LT
642
643 /* thread group stop support, overloads group_exit_code too */
644 int group_stop_count;
645 unsigned int flags; /* see SIGNAL_* flags below */
646
ebec18a6
LP
647 /*
648 * PR_SET_CHILD_SUBREAPER marks a process, like a service
649 * manager, to re-parent orphan (double-forking) child processes
650 * to this process instead of 'init'. The service manager is
651 * able to receive SIGCHLD signals and is able to investigate
652 * the process until it calls wait(). All children of this
653 * process will inherit a flag if they should look for a
654 * child_subreaper process at exit.
655 */
656 unsigned int is_child_subreaper:1;
657 unsigned int has_child_subreaper:1;
658
1da177e4 659 /* POSIX.1b Interval Timers */
5ed67f05
PE
660 int posix_timer_id;
661 struct list_head posix_timers;
1da177e4
LT
662
663 /* ITIMER_REAL timer for the process */
2ff678b8 664 struct hrtimer real_timer;
fea9d175 665 struct pid *leader_pid;
2ff678b8 666 ktime_t it_real_incr;
1da177e4 667
42c4ab41
SG
668 /*
669 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
670 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
671 * values are defined to 0 and 1 respectively
672 */
673 struct cpu_itimer it[2];
1da177e4 674
f06febc9 675 /*
4cd4c1b4
PZ
676 * Thread group totals for process CPU timers.
677 * See thread_group_cputimer(), et al, for details.
f06febc9 678 */
4cd4c1b4 679 struct thread_group_cputimer cputimer;
f06febc9
FM
680
681 /* Earliest-expiration cache. */
682 struct task_cputime cputime_expires;
683
684 struct list_head cpu_timers[3];
685
ab521dc0 686 struct pid *tty_old_pgrp;
1ec320af 687
1da177e4
LT
688 /* boolean value for session group leader */
689 int leader;
690
691 struct tty_struct *tty; /* NULL if no tty */
692
5091faa4
MG
693#ifdef CONFIG_SCHED_AUTOGROUP
694 struct autogroup *autogroup;
695#endif
1da177e4
LT
696 /*
697 * Cumulative resource counters for dead threads in the group,
698 * and for reaped dead child processes forked by this group.
699 * Live threads maintain their own counters and add to these
700 * in __exit_signal, except for the group leader.
701 */
e78c3496 702 seqlock_t stats_lock;
32bd671d 703 cputime_t utime, stime, cutime, cstime;
9ac52315
LV
704 cputime_t gtime;
705 cputime_t cgtime;
9fbc42ea 706#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
d37f761d 707 struct cputime prev_cputime;
0cf55e1e 708#endif
1da177e4
LT
709 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
710 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
6eaeeaba 711 unsigned long inblock, oublock, cinblock, coublock;
1f10206c 712 unsigned long maxrss, cmaxrss;
940389b8 713 struct task_io_accounting ioac;
1da177e4 714
32bd671d
PZ
715 /*
716 * Cumulative ns of schedule CPU time fo dead threads in the
717 * group, not including a zombie group leader, (This only differs
718 * from jiffies_to_ns(utime + stime) if sched_clock uses something
719 * other than jiffies.)
720 */
721 unsigned long long sum_sched_runtime;
722
1da177e4
LT
723 /*
724 * We don't bother to synchronize most readers of this at all,
725 * because there is no reader checking a limit that actually needs
726 * to get both rlim_cur and rlim_max atomically, and either one
727 * alone is a single word that can safely be read normally.
728 * getrlimit/setrlimit use task_lock(current->group_leader) to
729 * protect this instead of the siglock, because they really
730 * have no need to disable irqs.
731 */
732 struct rlimit rlim[RLIM_NLIMITS];
733
0e464814
KK
734#ifdef CONFIG_BSD_PROCESS_ACCT
735 struct pacct_struct pacct; /* per-process accounting information */
736#endif
ad4ecbcb 737#ifdef CONFIG_TASKSTATS
ad4ecbcb
SN
738 struct taskstats *stats;
739#endif
522ed776
MT
740#ifdef CONFIG_AUDIT
741 unsigned audit_tty;
46e959ea 742 unsigned audit_tty_log_passwd;
522ed776
MT
743 struct tty_audit_buf *tty_audit_buf;
744#endif
4714d1d3
BB
745#ifdef CONFIG_CGROUPS
746 /*
77e4ef99
TH
747 * group_rwsem prevents new tasks from entering the threadgroup and
748 * member tasks from exiting,a more specifically, setting of
749 * PF_EXITING. fork and exit paths are protected with this rwsem
750 * using threadgroup_change_begin/end(). Users which require
751 * threadgroup to remain stable should use threadgroup_[un]lock()
752 * which also takes care of exec path. Currently, cgroup is the
753 * only user.
4714d1d3 754 */
257058ae 755 struct rw_semaphore group_rwsem;
4714d1d3 756#endif
28b83c51 757
e1e12d2f 758 oom_flags_t oom_flags;
a9c58b90
DR
759 short oom_score_adj; /* OOM kill score adjustment */
760 short oom_score_adj_min; /* OOM kill score adjustment min value.
761 * Only settable by CAP_SYS_RESOURCE. */
9b1bf12d
KM
762
763 struct mutex cred_guard_mutex; /* guard against foreign influences on
764 * credential calculations
765 * (notably. ptrace) */
1da177e4
LT
766};
767
768/*
769 * Bits in flags field of signal_struct.
770 */
771#define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
ee77f075
ON
772#define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */
773#define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */
403bad72 774#define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */
e4420551
ON
775/*
776 * Pending notifications to parent.
777 */
778#define SIGNAL_CLD_STOPPED 0x00000010
779#define SIGNAL_CLD_CONTINUED 0x00000020
780#define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
1da177e4 781
fae5fa44
ON
782#define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
783
ed5d2cac
ON
784/* If true, all threads except ->group_exit_task have pending SIGKILL */
785static inline int signal_group_exit(const struct signal_struct *sig)
786{
787 return (sig->flags & SIGNAL_GROUP_EXIT) ||
788 (sig->group_exit_task != NULL);
789}
790
1da177e4
LT
791/*
792 * Some day this will be a full-fledged user tracking system..
793 */
794struct user_struct {
795 atomic_t __count; /* reference count */
796 atomic_t processes; /* How many processes does this user have? */
1da177e4 797 atomic_t sigpending; /* How many pending signals does this user have? */
2d9048e2 798#ifdef CONFIG_INOTIFY_USER
0eeca283
RL
799 atomic_t inotify_watches; /* How many inotify watches does this user have? */
800 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
801#endif
4afeff85
EP
802#ifdef CONFIG_FANOTIFY
803 atomic_t fanotify_listeners;
804#endif
7ef9964e 805#ifdef CONFIG_EPOLL
52bd19f7 806 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
7ef9964e 807#endif
970a8645 808#ifdef CONFIG_POSIX_MQUEUE
1da177e4
LT
809 /* protected by mq_lock */
810 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
970a8645 811#endif
1da177e4
LT
812 unsigned long locked_shm; /* How many pages of mlocked shm ? */
813
814#ifdef CONFIG_KEYS
815 struct key *uid_keyring; /* UID specific keyring */
816 struct key *session_keyring; /* UID's default session keyring */
817#endif
818
819 /* Hash table maintenance information */
735de223 820 struct hlist_node uidhash_node;
7b44ab97 821 kuid_t uid;
24e377a8 822
cdd6c482 823#ifdef CONFIG_PERF_EVENTS
789f90fc
PZ
824 atomic_long_t locked_vm;
825#endif
1da177e4
LT
826};
827
eb41d946 828extern int uids_sysfs_init(void);
5cb350ba 829
7b44ab97 830extern struct user_struct *find_user(kuid_t);
1da177e4
LT
831
832extern struct user_struct root_user;
833#define INIT_USER (&root_user)
834
b6dff3ec 835
1da177e4
LT
836struct backing_dev_info;
837struct reclaim_state;
838
52f17b6c 839#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1da177e4
LT
840struct sched_info {
841 /* cumulative counters */
2d72376b 842 unsigned long pcount; /* # of times run on this cpu */
9c2c4802 843 unsigned long long run_delay; /* time spent waiting on a runqueue */
1da177e4
LT
844
845 /* timestamps */
172ba844
BS
846 unsigned long long last_arrival,/* when we last ran on a cpu */
847 last_queued; /* when we were last queued to run */
1da177e4 848};
52f17b6c 849#endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
1da177e4 850
ca74e92b
SN
851#ifdef CONFIG_TASK_DELAY_ACCT
852struct task_delay_info {
853 spinlock_t lock;
854 unsigned int flags; /* Private per-task flags */
855
856 /* For each stat XXX, add following, aligned appropriately
857 *
858 * struct timespec XXX_start, XXX_end;
859 * u64 XXX_delay;
860 * u32 XXX_count;
861 *
862 * Atomicity of updates to XXX_delay, XXX_count protected by
863 * single lock above (split into XXX_lock if contention is an issue).
864 */
0ff92245
SN
865
866 /*
867 * XXX_count is incremented on every XXX operation, the delay
868 * associated with the operation is added to XXX_delay.
869 * XXX_delay contains the accumulated delay time in nanoseconds.
870 */
9667a23d 871 u64 blkio_start; /* Shared by blkio, swapin */
0ff92245
SN
872 u64 blkio_delay; /* wait for sync block io completion */
873 u64 swapin_delay; /* wait for swapin block io completion */
874 u32 blkio_count; /* total count of the number of sync block */
875 /* io operations performed */
876 u32 swapin_count; /* total count of the number of swapin block */
877 /* io operations performed */
873b4771 878
9667a23d 879 u64 freepages_start;
873b4771
KK
880 u64 freepages_delay; /* wait for memory reclaim */
881 u32 freepages_count; /* total count of memory reclaim */
ca74e92b 882};
52f17b6c
CS
883#endif /* CONFIG_TASK_DELAY_ACCT */
884
885static inline int sched_info_on(void)
886{
887#ifdef CONFIG_SCHEDSTATS
888 return 1;
889#elif defined(CONFIG_TASK_DELAY_ACCT)
890 extern int delayacct_on;
891 return delayacct_on;
892#else
893 return 0;
ca74e92b 894#endif
52f17b6c 895}
ca74e92b 896
d15bcfdb
IM
897enum cpu_idle_type {
898 CPU_IDLE,
899 CPU_NOT_IDLE,
900 CPU_NEWLY_IDLE,
901 CPU_MAX_IDLE_TYPES
1da177e4
LT
902};
903
1399fa78 904/*
ca8ce3d0 905 * Increase resolution of cpu_capacity calculations
1399fa78 906 */
ca8ce3d0
NP
907#define SCHED_CAPACITY_SHIFT 10
908#define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
1da177e4 909
1399fa78
NR
910/*
911 * sched-domains (multiprocessor balancing) declarations:
912 */
2dd73a4f 913#ifdef CONFIG_SMP
b5d978e0
PZ
914#define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
915#define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
916#define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
917#define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
c88d5910 918#define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
b5d978e0 919#define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
5d4dfddd 920#define SD_SHARE_CPUCAPACITY 0x0080 /* Domain members share cpu power */
d77b3ed5 921#define SD_SHARE_POWERDOMAIN 0x0100 /* Domain members share power domain */
b5d978e0
PZ
922#define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
923#define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
532cb4c4 924#define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
b5d978e0 925#define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
e3589f6c 926#define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */
3a7053b3 927#define SD_NUMA 0x4000 /* cross-node balancing */
5c45bf27 928
143e1e28 929#ifdef CONFIG_SCHED_SMT
b6220ad6 930static inline int cpu_smt_flags(void)
143e1e28 931{
5d4dfddd 932 return SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;
143e1e28
VG
933}
934#endif
935
936#ifdef CONFIG_SCHED_MC
b6220ad6 937static inline int cpu_core_flags(void)
143e1e28
VG
938{
939 return SD_SHARE_PKG_RESOURCES;
940}
941#endif
942
943#ifdef CONFIG_NUMA
b6220ad6 944static inline int cpu_numa_flags(void)
143e1e28
VG
945{
946 return SD_NUMA;
947}
948#endif
532cb4c4 949
1d3504fc
HS
950struct sched_domain_attr {
951 int relax_domain_level;
952};
953
954#define SD_ATTR_INIT (struct sched_domain_attr) { \
955 .relax_domain_level = -1, \
956}
957
60495e77
PZ
958extern int sched_domain_level_max;
959
5e6521ea
LZ
960struct sched_group;
961
1da177e4
LT
962struct sched_domain {
963 /* These fields must be setup */
964 struct sched_domain *parent; /* top domain must be null terminated */
1a848870 965 struct sched_domain *child; /* bottom domain must be null terminated */
1da177e4 966 struct sched_group *groups; /* the balancing groups of the domain */
1da177e4
LT
967 unsigned long min_interval; /* Minimum balance interval ms */
968 unsigned long max_interval; /* Maximum balance interval ms */
969 unsigned int busy_factor; /* less balancing by factor if busy */
970 unsigned int imbalance_pct; /* No balance until over watermark */
1da177e4 971 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
7897986b
NP
972 unsigned int busy_idx;
973 unsigned int idle_idx;
974 unsigned int newidle_idx;
975 unsigned int wake_idx;
147cbb4b 976 unsigned int forkexec_idx;
a52bfd73 977 unsigned int smt_gain;
25f55d9d
VG
978
979 int nohz_idle; /* NOHZ IDLE status */
1da177e4 980 int flags; /* See SD_* */
60495e77 981 int level;
1da177e4
LT
982
983 /* Runtime fields. */
984 unsigned long last_balance; /* init to jiffies. units in jiffies */
985 unsigned int balance_interval; /* initialise to 1. units in ms. */
986 unsigned int nr_balance_failed; /* initialise to 0 */
987
f48627e6 988 /* idle_balance() stats */
9bd721c5 989 u64 max_newidle_lb_cost;
f48627e6 990 unsigned long next_decay_max_lb_cost;
2398f2c6 991
1da177e4
LT
992#ifdef CONFIG_SCHEDSTATS
993 /* load_balance() stats */
480b9434
KC
994 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
995 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
996 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
997 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
998 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
999 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
1000 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
1001 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
1da177e4
LT
1002
1003 /* Active load balancing */
480b9434
KC
1004 unsigned int alb_count;
1005 unsigned int alb_failed;
1006 unsigned int alb_pushed;
1da177e4 1007
68767a0a 1008 /* SD_BALANCE_EXEC stats */
480b9434
KC
1009 unsigned int sbe_count;
1010 unsigned int sbe_balanced;
1011 unsigned int sbe_pushed;
1da177e4 1012
68767a0a 1013 /* SD_BALANCE_FORK stats */
480b9434
KC
1014 unsigned int sbf_count;
1015 unsigned int sbf_balanced;
1016 unsigned int sbf_pushed;
68767a0a 1017
1da177e4 1018 /* try_to_wake_up() stats */
480b9434
KC
1019 unsigned int ttwu_wake_remote;
1020 unsigned int ttwu_move_affine;
1021 unsigned int ttwu_move_balance;
1da177e4 1022#endif
a5d8c348
IM
1023#ifdef CONFIG_SCHED_DEBUG
1024 char *name;
1025#endif
dce840a0
PZ
1026 union {
1027 void *private; /* used during construction */
1028 struct rcu_head rcu; /* used during destruction */
1029 };
6c99e9ad 1030
669c55e9 1031 unsigned int span_weight;
4200efd9
IM
1032 /*
1033 * Span of all CPUs in this domain.
1034 *
1035 * NOTE: this field is variable length. (Allocated dynamically
1036 * by attaching extra space to the end of the structure,
1037 * depending on how many CPUs the kernel has booted up with)
4200efd9
IM
1038 */
1039 unsigned long span[0];
1da177e4
LT
1040};
1041
758b2cdc
RR
1042static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
1043{
6c99e9ad 1044 return to_cpumask(sd->span);
758b2cdc
RR
1045}
1046
acc3f5d7 1047extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 1048 struct sched_domain_attr *dattr_new);
029190c5 1049
acc3f5d7
RR
1050/* Allocate an array of sched domains, for partition_sched_domains(). */
1051cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
1052void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
1053
39be3501
PZ
1054bool cpus_share_cache(int this_cpu, int that_cpu);
1055
143e1e28 1056typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
b6220ad6 1057typedef int (*sched_domain_flags_f)(void);
143e1e28
VG
1058
1059#define SDTL_OVERLAP 0x01
1060
1061struct sd_data {
1062 struct sched_domain **__percpu sd;
1063 struct sched_group **__percpu sg;
63b2ca30 1064 struct sched_group_capacity **__percpu sgc;
143e1e28
VG
1065};
1066
1067struct sched_domain_topology_level {
1068 sched_domain_mask_f mask;
1069 sched_domain_flags_f sd_flags;
1070 int flags;
1071 int numa_level;
1072 struct sd_data data;
1073#ifdef CONFIG_SCHED_DEBUG
1074 char *name;
1075#endif
1076};
1077
1078extern struct sched_domain_topology_level *sched_domain_topology;
1079
1080extern void set_sched_topology(struct sched_domain_topology_level *tl);
f6be8af1 1081extern void wake_up_if_idle(int cpu);
143e1e28
VG
1082
1083#ifdef CONFIG_SCHED_DEBUG
1084# define SD_INIT_NAME(type) .name = #type
1085#else
1086# define SD_INIT_NAME(type)
1087#endif
1088
1b427c15 1089#else /* CONFIG_SMP */
1da177e4 1090
1b427c15 1091struct sched_domain_attr;
d02c7a8c 1092
1b427c15 1093static inline void
acc3f5d7 1094partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1b427c15
IM
1095 struct sched_domain_attr *dattr_new)
1096{
d02c7a8c 1097}
39be3501
PZ
1098
1099static inline bool cpus_share_cache(int this_cpu, int that_cpu)
1100{
1101 return true;
1102}
1103
1b427c15 1104#endif /* !CONFIG_SMP */
1da177e4 1105
47fe38fc 1106
1da177e4 1107struct io_context; /* See blkdev.h */
1da177e4 1108
1da177e4 1109
383f2835 1110#ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
36c8b586 1111extern void prefetch_stack(struct task_struct *t);
383f2835
CK
1112#else
1113static inline void prefetch_stack(struct task_struct *t) { }
1114#endif
1da177e4
LT
1115
1116struct audit_context; /* See audit.c */
1117struct mempolicy;
b92ce558 1118struct pipe_inode_info;
4865ecf1 1119struct uts_namespace;
1da177e4 1120
20b8a59f 1121struct load_weight {
9dbdb155
PZ
1122 unsigned long weight;
1123 u32 inv_weight;
20b8a59f
IM
1124};
1125
9d85f21c 1126struct sched_avg {
36ee28e4
VG
1127 u64 last_runnable_update;
1128 s64 decay_count;
1129 /*
1130 * utilization_avg_contrib describes the amount of time that a
1131 * sched_entity is running on a CPU. It is based on running_avg_sum
1132 * and is scaled in the range [0..SCHED_LOAD_SCALE].
1133 * load_avg_contrib described the amount of time that a sched_entity
1134 * is runnable on a rq. It is based on both runnable_avg_sum and the
1135 * weight of the task.
1136 */
1137 unsigned long load_avg_contrib, utilization_avg_contrib;
9d85f21c
PT
1138 /*
1139 * These sums represent an infinite geometric series and so are bound
239003ea 1140 * above by 1024/(1-y). Thus we only need a u32 to store them for all
9d85f21c 1141 * choices of y < 1-2^(-32)*1024.
36ee28e4
VG
1142 * running_avg_sum reflects the time that the sched_entity is
1143 * effectively running on the CPU.
1144 * runnable_avg_sum represents the amount of time a sched_entity is on
1145 * a runqueue which includes the running time that is monitored by
1146 * running_avg_sum.
9d85f21c 1147 */
36ee28e4 1148 u32 runnable_avg_sum, avg_period, running_avg_sum;
9d85f21c
PT
1149};
1150
94c18227 1151#ifdef CONFIG_SCHEDSTATS
41acab88 1152struct sched_statistics {
20b8a59f 1153 u64 wait_start;
94c18227 1154 u64 wait_max;
6d082592
AV
1155 u64 wait_count;
1156 u64 wait_sum;
8f0dfc34
AV
1157 u64 iowait_count;
1158 u64 iowait_sum;
94c18227 1159
20b8a59f 1160 u64 sleep_start;
20b8a59f 1161 u64 sleep_max;
94c18227
IM
1162 s64 sum_sleep_runtime;
1163
1164 u64 block_start;
20b8a59f
IM
1165 u64 block_max;
1166 u64 exec_max;
eba1ed4b 1167 u64 slice_max;
cc367732 1168
cc367732
IM
1169 u64 nr_migrations_cold;
1170 u64 nr_failed_migrations_affine;
1171 u64 nr_failed_migrations_running;
1172 u64 nr_failed_migrations_hot;
1173 u64 nr_forced_migrations;
cc367732
IM
1174
1175 u64 nr_wakeups;
1176 u64 nr_wakeups_sync;
1177 u64 nr_wakeups_migrate;
1178 u64 nr_wakeups_local;
1179 u64 nr_wakeups_remote;
1180 u64 nr_wakeups_affine;
1181 u64 nr_wakeups_affine_attempts;
1182 u64 nr_wakeups_passive;
1183 u64 nr_wakeups_idle;
41acab88
LDM
1184};
1185#endif
1186
1187struct sched_entity {
1188 struct load_weight load; /* for load-balancing */
1189 struct rb_node run_node;
1190 struct list_head group_node;
1191 unsigned int on_rq;
1192
1193 u64 exec_start;
1194 u64 sum_exec_runtime;
1195 u64 vruntime;
1196 u64 prev_sum_exec_runtime;
1197
41acab88
LDM
1198 u64 nr_migrations;
1199
41acab88
LDM
1200#ifdef CONFIG_SCHEDSTATS
1201 struct sched_statistics statistics;
94c18227
IM
1202#endif
1203
20b8a59f 1204#ifdef CONFIG_FAIR_GROUP_SCHED
fed14d45 1205 int depth;
20b8a59f
IM
1206 struct sched_entity *parent;
1207 /* rq on which this entity is (to be) queued: */
1208 struct cfs_rq *cfs_rq;
1209 /* rq "owned" by this entity/group: */
1210 struct cfs_rq *my_q;
1211#endif
8bd75c77 1212
141965c7 1213#ifdef CONFIG_SMP
f4e26b12 1214 /* Per-entity load-tracking */
9d85f21c
PT
1215 struct sched_avg avg;
1216#endif
20b8a59f 1217};
70b97a7f 1218
fa717060
PZ
1219struct sched_rt_entity {
1220 struct list_head run_list;
78f2c7db 1221 unsigned long timeout;
57d2aa00 1222 unsigned long watchdog_stamp;
bee367ed 1223 unsigned int time_slice;
6f505b16 1224
58d6c2d7 1225 struct sched_rt_entity *back;
052f1dc7 1226#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
1227 struct sched_rt_entity *parent;
1228 /* rq on which this entity is (to be) queued: */
1229 struct rt_rq *rt_rq;
1230 /* rq "owned" by this entity/group: */
1231 struct rt_rq *my_q;
1232#endif
fa717060
PZ
1233};
1234
aab03e05
DF
1235struct sched_dl_entity {
1236 struct rb_node rb_node;
1237
1238 /*
1239 * Original scheduling parameters. Copied here from sched_attr
4027d080 1240 * during sched_setattr(), they will remain the same until
1241 * the next sched_setattr().
aab03e05
DF
1242 */
1243 u64 dl_runtime; /* maximum runtime for each instance */
1244 u64 dl_deadline; /* relative deadline of each instance */
755378a4 1245 u64 dl_period; /* separation of two instances (period) */
332ac17e 1246 u64 dl_bw; /* dl_runtime / dl_deadline */
aab03e05
DF
1247
1248 /*
1249 * Actual scheduling parameters. Initialized with the values above,
1250 * they are continously updated during task execution. Note that
1251 * the remaining runtime could be < 0 in case we are in overrun.
1252 */
1253 s64 runtime; /* remaining runtime for this instance */
1254 u64 deadline; /* absolute deadline for this instance */
1255 unsigned int flags; /* specifying the scheduler behaviour */
1256
1257 /*
1258 * Some bool flags:
1259 *
1260 * @dl_throttled tells if we exhausted the runtime. If so, the
1261 * task has to wait for a replenishment to be performed at the
1262 * next firing of dl_timer.
1263 *
1264 * @dl_new tells if a new instance arrived. If so we must
1265 * start executing it with full runtime and reset its absolute
1266 * deadline;
2d3d891d
DF
1267 *
1268 * @dl_boosted tells if we are boosted due to DI. If so we are
1269 * outside bandwidth enforcement mechanism (but only until we
5bfd126e
JL
1270 * exit the critical section);
1271 *
1272 * @dl_yielded tells if task gave up the cpu before consuming
1273 * all its available runtime during the last job.
aab03e05 1274 */
5bfd126e 1275 int dl_throttled, dl_new, dl_boosted, dl_yielded;
aab03e05
DF
1276
1277 /*
1278 * Bandwidth enforcement timer. Each -deadline task has its
1279 * own bandwidth to be enforced, thus we need one timer per task.
1280 */
1281 struct hrtimer dl_timer;
1282};
8bd75c77 1283
1d082fd0
PM
1284union rcu_special {
1285 struct {
1286 bool blocked;
1287 bool need_qs;
1288 } b;
1289 short s;
1290};
86848966
PM
1291struct rcu_node;
1292
8dc85d54
PZ
1293enum perf_event_task_context {
1294 perf_invalid_context = -1,
1295 perf_hw_context = 0,
89a1e187 1296 perf_sw_context,
8dc85d54
PZ
1297 perf_nr_task_contexts,
1298};
1299
1da177e4
LT
1300struct task_struct {
1301 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
f7e4217b 1302 void *stack;
1da177e4 1303 atomic_t usage;
97dc32cd
WC
1304 unsigned int flags; /* per process flags, defined below */
1305 unsigned int ptrace;
1da177e4 1306
2dd73a4f 1307#ifdef CONFIG_SMP
fa14ff4a 1308 struct llist_node wake_entry;
3ca7a440 1309 int on_cpu;
62470419
MW
1310 struct task_struct *last_wakee;
1311 unsigned long wakee_flips;
1312 unsigned long wakee_flip_decay_ts;
ac66f547
PZ
1313
1314 int wake_cpu;
2dd73a4f 1315#endif
fd2f4419 1316 int on_rq;
50e645a8 1317
b29739f9 1318 int prio, static_prio, normal_prio;
c7aceaba 1319 unsigned int rt_priority;
5522d5d5 1320 const struct sched_class *sched_class;
20b8a59f 1321 struct sched_entity se;
fa717060 1322 struct sched_rt_entity rt;
8323f26c
PZ
1323#ifdef CONFIG_CGROUP_SCHED
1324 struct task_group *sched_task_group;
1325#endif
aab03e05 1326 struct sched_dl_entity dl;
1da177e4 1327
e107be36
AK
1328#ifdef CONFIG_PREEMPT_NOTIFIERS
1329 /* list of struct preempt_notifier: */
1330 struct hlist_head preempt_notifiers;
1331#endif
1332
6c5c9341 1333#ifdef CONFIG_BLK_DEV_IO_TRACE
2056a782 1334 unsigned int btrace_seq;
6c5c9341 1335#endif
1da177e4 1336
97dc32cd 1337 unsigned int policy;
29baa747 1338 int nr_cpus_allowed;
1da177e4 1339 cpumask_t cpus_allowed;
1da177e4 1340
a57eb940 1341#ifdef CONFIG_PREEMPT_RCU
e260be67 1342 int rcu_read_lock_nesting;
1d082fd0 1343 union rcu_special rcu_read_unlock_special;
f41d911f 1344 struct list_head rcu_node_entry;
a57eb940 1345#endif /* #ifdef CONFIG_PREEMPT_RCU */
28f6569a 1346#ifdef CONFIG_PREEMPT_RCU
a57eb940 1347 struct rcu_node *rcu_blocked_node;
28f6569a 1348#endif /* #ifdef CONFIG_PREEMPT_RCU */
8315f422
PM
1349#ifdef CONFIG_TASKS_RCU
1350 unsigned long rcu_tasks_nvcsw;
1351 bool rcu_tasks_holdout;
1352 struct list_head rcu_tasks_holdout_list;
176f8f7a 1353 int rcu_tasks_idle_cpu;
8315f422 1354#endif /* #ifdef CONFIG_TASKS_RCU */
e260be67 1355
52f17b6c 1356#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1da177e4
LT
1357 struct sched_info sched_info;
1358#endif
1359
1360 struct list_head tasks;
806c09a7 1361#ifdef CONFIG_SMP
917b627d 1362 struct plist_node pushable_tasks;
1baca4ce 1363 struct rb_node pushable_dl_tasks;
806c09a7 1364#endif
1da177e4
LT
1365
1366 struct mm_struct *mm, *active_mm;
4471a675
JK
1367#ifdef CONFIG_COMPAT_BRK
1368 unsigned brk_randomized:1;
1369#endif
615d6e87
DB
1370 /* per-thread vma caching */
1371 u32 vmacache_seqnum;
1372 struct vm_area_struct *vmacache[VMACACHE_SIZE];
34e55232
KH
1373#if defined(SPLIT_RSS_COUNTING)
1374 struct task_rss_stat rss_stat;
1375#endif
1da177e4 1376/* task state */
97dc32cd 1377 int exit_state;
1da177e4
LT
1378 int exit_code, exit_signal;
1379 int pdeath_signal; /* The signal sent when the parent dies */
a8f072c1 1380 unsigned int jobctl; /* JOBCTL_*, siglock protected */
9b89f6ba
AE
1381
1382 /* Used for emulating ABI behavior of previous Linux versions */
97dc32cd 1383 unsigned int personality;
9b89f6ba 1384
f9ce1f1c
KT
1385 unsigned in_execve:1; /* Tell the LSMs that the process is doing an
1386 * execve */
8f0dfc34
AV
1387 unsigned in_iowait:1;
1388
ca94c442
LP
1389 /* Revert to default priority/policy when forking */
1390 unsigned sched_reset_on_fork:1;
a8e4f2ea 1391 unsigned sched_contributes_to_load:1;
ca94c442 1392
6f185c29
VD
1393#ifdef CONFIG_MEMCG_KMEM
1394 unsigned memcg_kmem_skip_account:1;
1395#endif
1396
1d4457f9
KC
1397 unsigned long atomic_flags; /* Flags needing atomic access. */
1398
f56141e3
AL
1399 struct restart_block restart_block;
1400
1da177e4
LT
1401 pid_t pid;
1402 pid_t tgid;
0a425405 1403
1314562a 1404#ifdef CONFIG_CC_STACKPROTECTOR
0a425405
AV
1405 /* Canary value for the -fstack-protector gcc feature */
1406 unsigned long stack_canary;
1314562a 1407#endif
4d1d61a6 1408 /*
1da177e4 1409 * pointers to (original) parent process, youngest child, younger sibling,
4d1d61a6 1410 * older sibling, respectively. (p->father can be replaced with
f470021a 1411 * p->real_parent->pid)
1da177e4 1412 */
abd63bc3
KC
1413 struct task_struct __rcu *real_parent; /* real parent process */
1414 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1da177e4 1415 /*
f470021a 1416 * children/sibling forms the list of my natural children
1da177e4
LT
1417 */
1418 struct list_head children; /* list of my children */
1419 struct list_head sibling; /* linkage in my parent's children list */
1420 struct task_struct *group_leader; /* threadgroup leader */
1421
f470021a
RM
1422 /*
1423 * ptraced is the list of tasks this task is using ptrace on.
1424 * This includes both natural children and PTRACE_ATTACH targets.
1425 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1426 */
1427 struct list_head ptraced;
1428 struct list_head ptrace_entry;
1429
1da177e4 1430 /* PID/PID hash table linkage. */
92476d7f 1431 struct pid_link pids[PIDTYPE_MAX];
47e65328 1432 struct list_head thread_group;
0c740d0a 1433 struct list_head thread_node;
1da177e4
LT
1434
1435 struct completion *vfork_done; /* for vfork() */
1436 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1437 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1438
c66f08be 1439 cputime_t utime, stime, utimescaled, stimescaled;
9ac52315 1440 cputime_t gtime;
9fbc42ea 1441#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
d37f761d 1442 struct cputime prev_cputime;
6a61671b
FW
1443#endif
1444#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1445 seqlock_t vtime_seqlock;
1446 unsigned long long vtime_snap;
1447 enum {
1448 VTIME_SLEEPING = 0,
1449 VTIME_USER,
1450 VTIME_SYS,
1451 } vtime_snap_whence;
d99ca3b9 1452#endif
1da177e4 1453 unsigned long nvcsw, nivcsw; /* context switch counts */
ccbf62d8 1454 u64 start_time; /* monotonic time in nsec */
57e0be04 1455 u64 real_start_time; /* boot based time in nsec */
1da177e4
LT
1456/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1457 unsigned long min_flt, maj_flt;
1458
f06febc9 1459 struct task_cputime cputime_expires;
1da177e4
LT
1460 struct list_head cpu_timers[3];
1461
1462/* process credentials */
1b0ba1c9 1463 const struct cred __rcu *real_cred; /* objective and real subjective task
3b11a1de 1464 * credentials (COW) */
1b0ba1c9 1465 const struct cred __rcu *cred; /* effective (overridable) subjective task
3b11a1de 1466 * credentials (COW) */
36772092
PBG
1467 char comm[TASK_COMM_LEN]; /* executable name excluding path
1468 - access with [gs]et_task_comm (which lock
1469 it with task_lock())
221af7f8 1470 - initialized normally by setup_new_exec */
1da177e4
LT
1471/* file system info */
1472 int link_count, total_link_count;
3d5b6fcc 1473#ifdef CONFIG_SYSVIPC
1da177e4
LT
1474/* ipc stuff */
1475 struct sysv_sem sysvsem;
ab602f79 1476 struct sysv_shm sysvshm;
3d5b6fcc 1477#endif
e162b39a 1478#ifdef CONFIG_DETECT_HUNG_TASK
82a1fcb9 1479/* hung task detection */
82a1fcb9
IM
1480 unsigned long last_switch_count;
1481#endif
1da177e4
LT
1482/* CPU-specific state of this task */
1483 struct thread_struct thread;
1484/* filesystem information */
1485 struct fs_struct *fs;
1486/* open file information */
1487 struct files_struct *files;
1651e14e 1488/* namespaces */
ab516013 1489 struct nsproxy *nsproxy;
1da177e4
LT
1490/* signal handlers */
1491 struct signal_struct *signal;
1492 struct sighand_struct *sighand;
1493
1494 sigset_t blocked, real_blocked;
f3de272b 1495 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1da177e4
LT
1496 struct sigpending pending;
1497
1498 unsigned long sas_ss_sp;
1499 size_t sas_ss_size;
1500 int (*notifier)(void *priv);
1501 void *notifier_data;
1502 sigset_t *notifier_mask;
67d12145 1503 struct callback_head *task_works;
e73f8959 1504
1da177e4 1505 struct audit_context *audit_context;
bfef93a5 1506#ifdef CONFIG_AUDITSYSCALL
e1760bd5 1507 kuid_t loginuid;
4746ec5b 1508 unsigned int sessionid;
bfef93a5 1509#endif
932ecebb 1510 struct seccomp seccomp;
1da177e4
LT
1511
1512/* Thread group tracking */
1513 u32 parent_exec_id;
1514 u32 self_exec_id;
58568d2a
MX
1515/* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1516 * mempolicy */
1da177e4 1517 spinlock_t alloc_lock;
1da177e4 1518
b29739f9 1519 /* Protection of the PI data structures: */
1d615482 1520 raw_spinlock_t pi_lock;
b29739f9 1521
23f78d4a
IM
1522#ifdef CONFIG_RT_MUTEXES
1523 /* PI waiters blocked on a rt_mutex held by this task */
fb00aca4
PZ
1524 struct rb_root pi_waiters;
1525 struct rb_node *pi_waiters_leftmost;
23f78d4a
IM
1526 /* Deadlock detection and priority inheritance handling */
1527 struct rt_mutex_waiter *pi_blocked_on;
23f78d4a
IM
1528#endif
1529
408894ee
IM
1530#ifdef CONFIG_DEBUG_MUTEXES
1531 /* mutex deadlock detection */
1532 struct mutex_waiter *blocked_on;
1533#endif
de30a2b3
IM
1534#ifdef CONFIG_TRACE_IRQFLAGS
1535 unsigned int irq_events;
de30a2b3 1536 unsigned long hardirq_enable_ip;
de30a2b3 1537 unsigned long hardirq_disable_ip;
fa1452e8 1538 unsigned int hardirq_enable_event;
de30a2b3 1539 unsigned int hardirq_disable_event;
fa1452e8
HS
1540 int hardirqs_enabled;
1541 int hardirq_context;
de30a2b3 1542 unsigned long softirq_disable_ip;
de30a2b3 1543 unsigned long softirq_enable_ip;
fa1452e8 1544 unsigned int softirq_disable_event;
de30a2b3 1545 unsigned int softirq_enable_event;
fa1452e8 1546 int softirqs_enabled;
de30a2b3
IM
1547 int softirq_context;
1548#endif
fbb9ce95 1549#ifdef CONFIG_LOCKDEP
bdb9441e 1550# define MAX_LOCK_DEPTH 48UL
fbb9ce95
IM
1551 u64 curr_chain_key;
1552 int lockdep_depth;
fbb9ce95 1553 unsigned int lockdep_recursion;
c7aceaba 1554 struct held_lock held_locks[MAX_LOCK_DEPTH];
cf40bd16 1555 gfp_t lockdep_reclaim_gfp;
fbb9ce95 1556#endif
408894ee 1557
1da177e4
LT
1558/* journalling filesystem info */
1559 void *journal_info;
1560
d89d8796 1561/* stacked block device info */
bddd87c7 1562 struct bio_list *bio_list;
d89d8796 1563
73c10101
JA
1564#ifdef CONFIG_BLOCK
1565/* stack plugging */
1566 struct blk_plug *plug;
1567#endif
1568
1da177e4
LT
1569/* VM state */
1570 struct reclaim_state *reclaim_state;
1571
1da177e4
LT
1572 struct backing_dev_info *backing_dev_info;
1573
1574 struct io_context *io_context;
1575
1576 unsigned long ptrace_message;
1577 siginfo_t *last_siginfo; /* For ptrace use. */
7c3ab738 1578 struct task_io_accounting ioac;
8f0ab514 1579#if defined(CONFIG_TASK_XACCT)
1da177e4
LT
1580 u64 acct_rss_mem1; /* accumulated rss usage */
1581 u64 acct_vm_mem1; /* accumulated virtual memory usage */
49b5cf34 1582 cputime_t acct_timexpd; /* stime + utime since last update */
1da177e4
LT
1583#endif
1584#ifdef CONFIG_CPUSETS
58568d2a 1585 nodemask_t mems_allowed; /* Protected by alloc_lock */
cc9a6c87 1586 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */
825a46af 1587 int cpuset_mem_spread_rotor;
6adef3eb 1588 int cpuset_slab_spread_rotor;
1da177e4 1589#endif
ddbcc7e8 1590#ifdef CONFIG_CGROUPS
817929ec 1591 /* Control Group info protected by css_set_lock */
2c392b8c 1592 struct css_set __rcu *cgroups;
817929ec
PM
1593 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1594 struct list_head cg_list;
ddbcc7e8 1595#endif
42b2dd0a 1596#ifdef CONFIG_FUTEX
0771dfef 1597 struct robust_list_head __user *robust_list;
34f192c6
IM
1598#ifdef CONFIG_COMPAT
1599 struct compat_robust_list_head __user *compat_robust_list;
1600#endif
c87e2837
IM
1601 struct list_head pi_state_list;
1602 struct futex_pi_state *pi_state_cache;
c7aceaba 1603#endif
cdd6c482 1604#ifdef CONFIG_PERF_EVENTS
8dc85d54 1605 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
cdd6c482
IM
1606 struct mutex perf_event_mutex;
1607 struct list_head perf_event_list;
a63eaf34 1608#endif
8f47b187
TG
1609#ifdef CONFIG_DEBUG_PREEMPT
1610 unsigned long preempt_disable_ip;
1611#endif
c7aceaba 1612#ifdef CONFIG_NUMA
58568d2a 1613 struct mempolicy *mempolicy; /* Protected by alloc_lock */
c7aceaba 1614 short il_next;
207205a2 1615 short pref_node_fork;
42b2dd0a 1616#endif
cbee9f88
PZ
1617#ifdef CONFIG_NUMA_BALANCING
1618 int numa_scan_seq;
cbee9f88 1619 unsigned int numa_scan_period;
598f0ec0 1620 unsigned int numa_scan_period_max;
de1c9ce6 1621 int numa_preferred_nid;
6b9a7460 1622 unsigned long numa_migrate_retry;
cbee9f88 1623 u64 node_stamp; /* migration stamp */
7e2703e6
RR
1624 u64 last_task_numa_placement;
1625 u64 last_sum_exec_runtime;
cbee9f88 1626 struct callback_head numa_work;
f809ca9a 1627
8c8a743c
PZ
1628 struct list_head numa_entry;
1629 struct numa_group *numa_group;
1630
745d6147 1631 /*
44dba3d5
IM
1632 * numa_faults is an array split into four regions:
1633 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1634 * in this precise order.
1635 *
1636 * faults_memory: Exponential decaying average of faults on a per-node
1637 * basis. Scheduling placement decisions are made based on these
1638 * counts. The values remain static for the duration of a PTE scan.
1639 * faults_cpu: Track the nodes the process was running on when a NUMA
1640 * hinting fault was incurred.
1641 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1642 * during the current scan window. When the scan completes, the counts
1643 * in faults_memory and faults_cpu decay and these values are copied.
745d6147 1644 */
44dba3d5 1645 unsigned long *numa_faults;
83e1d2cd 1646 unsigned long total_numa_faults;
745d6147 1647
04bb2f94
RR
1648 /*
1649 * numa_faults_locality tracks if faults recorded during the last
074c2381
MG
1650 * scan window were remote/local or failed to migrate. The task scan
1651 * period is adapted based on the locality of the faults with different
1652 * weights depending on whether they were shared or private faults
04bb2f94 1653 */
074c2381 1654 unsigned long numa_faults_locality[3];
04bb2f94 1655
b32e86b4 1656 unsigned long numa_pages_migrated;
cbee9f88
PZ
1657#endif /* CONFIG_NUMA_BALANCING */
1658
e56d0903 1659 struct rcu_head rcu;
b92ce558
JA
1660
1661 /*
1662 * cache last used pipe for splice
1663 */
1664 struct pipe_inode_info *splice_pipe;
5640f768
ED
1665
1666 struct page_frag task_frag;
1667
ca74e92b
SN
1668#ifdef CONFIG_TASK_DELAY_ACCT
1669 struct task_delay_info *delays;
f4f154fd
AM
1670#endif
1671#ifdef CONFIG_FAULT_INJECTION
1672 int make_it_fail;
ca74e92b 1673#endif
9d823e8f
WF
1674 /*
1675 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1676 * balance_dirty_pages() for some dirty throttling pause
1677 */
1678 int nr_dirtied;
1679 int nr_dirtied_pause;
83712358 1680 unsigned long dirty_paused_when; /* start of a write-and-pause period */
9d823e8f 1681
9745512c
AV
1682#ifdef CONFIG_LATENCYTOP
1683 int latency_record_count;
1684 struct latency_record latency_record[LT_SAVECOUNT];
1685#endif
6976675d
AV
1686 /*
1687 * time slack values; these are used to round up poll() and
1688 * select() etc timeout values. These are in nanoseconds.
1689 */
1690 unsigned long timer_slack_ns;
1691 unsigned long default_timer_slack_ns;
f8d570a4 1692
0b24becc
AR
1693#ifdef CONFIG_KASAN
1694 unsigned int kasan_depth;
1695#endif
fb52607a 1696#ifdef CONFIG_FUNCTION_GRAPH_TRACER
3ad2f3fb 1697 /* Index of current stored address in ret_stack */
f201ae23
FW
1698 int curr_ret_stack;
1699 /* Stack of return addresses for return function tracing */
1700 struct ftrace_ret_stack *ret_stack;
8aef2d28
SR
1701 /* time stamp for last schedule */
1702 unsigned long long ftrace_timestamp;
f201ae23
FW
1703 /*
1704 * Number of functions that haven't been traced
1705 * because of depth overrun.
1706 */
1707 atomic_t trace_overrun;
380c4b14
FW
1708 /* Pause for the tracing */
1709 atomic_t tracing_graph_pause;
f201ae23 1710#endif
ea4e2bc4
SR
1711#ifdef CONFIG_TRACING
1712 /* state flags for use by tracers */
1713 unsigned long trace;
b1cff0ad 1714 /* bitmask and counter of trace recursion */
261842b7
SR
1715 unsigned long trace_recursion;
1716#endif /* CONFIG_TRACING */
6f185c29 1717#ifdef CONFIG_MEMCG
519e5247 1718 struct memcg_oom_info {
49426420
JW
1719 struct mem_cgroup *memcg;
1720 gfp_t gfp_mask;
1721 int order;
519e5247
JW
1722 unsigned int may_oom:1;
1723 } memcg_oom;
569b846d 1724#endif
0326f5a9
SD
1725#ifdef CONFIG_UPROBES
1726 struct uprobe_task *utask;
0326f5a9 1727#endif
cafe5635
KO
1728#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1729 unsigned int sequential_io;
1730 unsigned int sequential_io_avg;
1731#endif
8eb23b9f
PZ
1732#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1733 unsigned long task_state_change;
1734#endif
1da177e4
LT
1735};
1736
76e6eee0 1737/* Future-safe accessor for struct task_struct's cpus_allowed. */
a4636818 1738#define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
76e6eee0 1739
6688cc05
PZ
1740#define TNF_MIGRATED 0x01
1741#define TNF_NO_GROUP 0x02
dabe1d99 1742#define TNF_SHARED 0x04
04bb2f94 1743#define TNF_FAULT_LOCAL 0x08
074c2381 1744#define TNF_MIGRATE_FAIL 0x10
6688cc05 1745
cbee9f88 1746#ifdef CONFIG_NUMA_BALANCING
6688cc05 1747extern void task_numa_fault(int last_node, int node, int pages, int flags);
e29cf08b 1748extern pid_t task_numa_group_id(struct task_struct *p);
1a687c2e 1749extern void set_numabalancing_state(bool enabled);
82727018 1750extern void task_numa_free(struct task_struct *p);
10f39042
RR
1751extern bool should_numa_migrate_memory(struct task_struct *p, struct page *page,
1752 int src_nid, int dst_cpu);
cbee9f88 1753#else
ac8e895b 1754static inline void task_numa_fault(int last_node, int node, int pages,
6688cc05 1755 int flags)
cbee9f88
PZ
1756{
1757}
e29cf08b
MG
1758static inline pid_t task_numa_group_id(struct task_struct *p)
1759{
1760 return 0;
1761}
1a687c2e
MG
1762static inline void set_numabalancing_state(bool enabled)
1763{
1764}
82727018
RR
1765static inline void task_numa_free(struct task_struct *p)
1766{
1767}
10f39042
RR
1768static inline bool should_numa_migrate_memory(struct task_struct *p,
1769 struct page *page, int src_nid, int dst_cpu)
1770{
1771 return true;
1772}
cbee9f88
PZ
1773#endif
1774
e868171a 1775static inline struct pid *task_pid(struct task_struct *task)
22c935f4
EB
1776{
1777 return task->pids[PIDTYPE_PID].pid;
1778}
1779
e868171a 1780static inline struct pid *task_tgid(struct task_struct *task)
22c935f4
EB
1781{
1782 return task->group_leader->pids[PIDTYPE_PID].pid;
1783}
1784
6dda81f4
ON
1785/*
1786 * Without tasklist or rcu lock it is not safe to dereference
1787 * the result of task_pgrp/task_session even if task == current,
1788 * we can race with another thread doing sys_setsid/sys_setpgid.
1789 */
e868171a 1790static inline struct pid *task_pgrp(struct task_struct *task)
22c935f4
EB
1791{
1792 return task->group_leader->pids[PIDTYPE_PGID].pid;
1793}
1794
e868171a 1795static inline struct pid *task_session(struct task_struct *task)
22c935f4
EB
1796{
1797 return task->group_leader->pids[PIDTYPE_SID].pid;
1798}
1799
7af57294
PE
1800struct pid_namespace;
1801
1802/*
1803 * the helpers to get the task's different pids as they are seen
1804 * from various namespaces
1805 *
1806 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
44c4e1b2
EB
1807 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1808 * current.
7af57294
PE
1809 * task_xid_nr_ns() : id seen from the ns specified;
1810 *
1811 * set_task_vxid() : assigns a virtual id to a task;
1812 *
7af57294
PE
1813 * see also pid_nr() etc in include/linux/pid.h
1814 */
52ee2dfd
ON
1815pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1816 struct pid_namespace *ns);
7af57294 1817
e868171a 1818static inline pid_t task_pid_nr(struct task_struct *tsk)
7af57294
PE
1819{
1820 return tsk->pid;
1821}
1822
52ee2dfd
ON
1823static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1824 struct pid_namespace *ns)
1825{
1826 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1827}
7af57294
PE
1828
1829static inline pid_t task_pid_vnr(struct task_struct *tsk)
1830{
52ee2dfd 1831 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
7af57294
PE
1832}
1833
1834
e868171a 1835static inline pid_t task_tgid_nr(struct task_struct *tsk)
7af57294
PE
1836{
1837 return tsk->tgid;
1838}
1839
2f2a3a46 1840pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
7af57294
PE
1841
1842static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1843{
1844 return pid_vnr(task_tgid(tsk));
1845}
1846
1847
80e0b6e8 1848static inline int pid_alive(const struct task_struct *p);
ad36d282
RGB
1849static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1850{
1851 pid_t pid = 0;
1852
1853 rcu_read_lock();
1854 if (pid_alive(tsk))
1855 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1856 rcu_read_unlock();
1857
1858 return pid;
1859}
1860
1861static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1862{
1863 return task_ppid_nr_ns(tsk, &init_pid_ns);
1864}
1865
52ee2dfd
ON
1866static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1867 struct pid_namespace *ns)
7af57294 1868{
52ee2dfd 1869 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
7af57294
PE
1870}
1871
7af57294
PE
1872static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1873{
52ee2dfd 1874 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
7af57294
PE
1875}
1876
1877
52ee2dfd
ON
1878static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1879 struct pid_namespace *ns)
7af57294 1880{
52ee2dfd 1881 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
7af57294
PE
1882}
1883
7af57294
PE
1884static inline pid_t task_session_vnr(struct task_struct *tsk)
1885{
52ee2dfd 1886 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
7af57294
PE
1887}
1888
1b0f7ffd
ON
1889/* obsolete, do not use */
1890static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1891{
1892 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1893}
7af57294 1894
1da177e4
LT
1895/**
1896 * pid_alive - check that a task structure is not stale
1897 * @p: Task structure to be checked.
1898 *
1899 * Test if a process is not yet dead (at most zombie state)
1900 * If pid_alive fails, then pointers within the task structure
1901 * can be stale and must not be dereferenced.
e69f6186
YB
1902 *
1903 * Return: 1 if the process is alive. 0 otherwise.
1da177e4 1904 */
ad36d282 1905static inline int pid_alive(const struct task_struct *p)
1da177e4 1906{
92476d7f 1907 return p->pids[PIDTYPE_PID].pid != NULL;
1da177e4
LT
1908}
1909
f400e198 1910/**
b460cbc5 1911 * is_global_init - check if a task structure is init
3260259f
H
1912 * @tsk: Task structure to be checked.
1913 *
1914 * Check if a task structure is the first user space task the kernel created.
e69f6186
YB
1915 *
1916 * Return: 1 if the task structure is init. 0 otherwise.
b460cbc5 1917 */
e868171a 1918static inline int is_global_init(struct task_struct *tsk)
b461cc03
PE
1919{
1920 return tsk->pid == 1;
1921}
b460cbc5 1922
9ec52099
CLG
1923extern struct pid *cad_pid;
1924
1da177e4 1925extern void free_task(struct task_struct *tsk);
1da177e4 1926#define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
e56d0903 1927
158d9ebd 1928extern void __put_task_struct(struct task_struct *t);
e56d0903
IM
1929
1930static inline void put_task_struct(struct task_struct *t)
1931{
1932 if (atomic_dec_and_test(&t->usage))
8c7904a0 1933 __put_task_struct(t);
e56d0903 1934}
1da177e4 1935
6a61671b
FW
1936#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1937extern void task_cputime(struct task_struct *t,
1938 cputime_t *utime, cputime_t *stime);
1939extern void task_cputime_scaled(struct task_struct *t,
1940 cputime_t *utimescaled, cputime_t *stimescaled);
1941extern cputime_t task_gtime(struct task_struct *t);
1942#else
6fac4829
FW
1943static inline void task_cputime(struct task_struct *t,
1944 cputime_t *utime, cputime_t *stime)
1945{
1946 if (utime)
1947 *utime = t->utime;
1948 if (stime)
1949 *stime = t->stime;
1950}
1951
1952static inline void task_cputime_scaled(struct task_struct *t,
1953 cputime_t *utimescaled,
1954 cputime_t *stimescaled)
1955{
1956 if (utimescaled)
1957 *utimescaled = t->utimescaled;
1958 if (stimescaled)
1959 *stimescaled = t->stimescaled;
1960}
6a61671b
FW
1961
1962static inline cputime_t task_gtime(struct task_struct *t)
1963{
1964 return t->gtime;
1965}
1966#endif
e80d0a1a
FW
1967extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1968extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
49048622 1969
1da177e4
LT
1970/*
1971 * Per process flags
1972 */
1da177e4 1973#define PF_EXITING 0x00000004 /* getting shut down */
778e9a9c 1974#define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
94886b84 1975#define PF_VCPU 0x00000010 /* I'm a virtual CPU */
21aa9af0 1976#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1da177e4 1977#define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
4db96cf0 1978#define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
1da177e4
LT
1979#define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1980#define PF_DUMPCORE 0x00000200 /* dumped core */
1981#define PF_SIGNALED 0x00000400 /* killed by a signal */
1982#define PF_MEMALLOC 0x00000800 /* Allocating memory */
72fa5997 1983#define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */
1da177e4 1984#define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
774a1221 1985#define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */
1da177e4
LT
1986#define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1987#define PF_FROZEN 0x00010000 /* frozen for system suspend */
1988#define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1989#define PF_KSWAPD 0x00040000 /* I am kswapd */
21caf2fc 1990#define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */
1da177e4 1991#define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
246bb0b1 1992#define PF_KTHREAD 0x00200000 /* I am a kernel thread */
b31dc66a
JA
1993#define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1994#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
14a40ffc 1995#define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
4db96cf0 1996#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
61a87122 1997#define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
58a69cb4 1998#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
2b44c4db 1999#define PF_SUSPEND_TASK 0x80000000 /* this thread called freeze_processes and should not be frozen */
1da177e4
LT
2000
2001/*
2002 * Only the _current_ task can read/write to tsk->flags, but other
2003 * tasks can access tsk->flags in readonly mode for example
2004 * with tsk_used_math (like during threaded core dumping).
2005 * There is however an exception to this rule during ptrace
2006 * or during fork: the ptracer task is allowed to write to the
2007 * child->flags of its traced child (same goes for fork, the parent
2008 * can write to the child->flags), because we're guaranteed the
2009 * child is not running and in turn not changing child->flags
2010 * at the same time the parent does it.
2011 */
2012#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
2013#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
2014#define clear_used_math() clear_stopped_child_used_math(current)
2015#define set_used_math() set_stopped_child_used_math(current)
2016#define conditional_stopped_child_used_math(condition, child) \
2017 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
2018#define conditional_used_math(condition) \
2019 conditional_stopped_child_used_math(condition, current)
2020#define copy_to_stopped_child_used_math(child) \
2021 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
2022/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
2023#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
2024#define used_math() tsk_used_math(current)
2025
934f3072
JB
2026/* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags
2027 * __GFP_FS is also cleared as it implies __GFP_IO.
2028 */
21caf2fc
ML
2029static inline gfp_t memalloc_noio_flags(gfp_t flags)
2030{
2031 if (unlikely(current->flags & PF_MEMALLOC_NOIO))
934f3072 2032 flags &= ~(__GFP_IO | __GFP_FS);
21caf2fc
ML
2033 return flags;
2034}
2035
2036static inline unsigned int memalloc_noio_save(void)
2037{
2038 unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
2039 current->flags |= PF_MEMALLOC_NOIO;
2040 return flags;
2041}
2042
2043static inline void memalloc_noio_restore(unsigned int flags)
2044{
2045 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
2046}
2047
1d4457f9 2048/* Per-process atomic flags. */
a2b86f77 2049#define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
2ad654bc
ZL
2050#define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
2051#define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
2052
1d4457f9 2053
e0e5070b
ZL
2054#define TASK_PFA_TEST(name, func) \
2055 static inline bool task_##func(struct task_struct *p) \
2056 { return test_bit(PFA_##name, &p->atomic_flags); }
2057#define TASK_PFA_SET(name, func) \
2058 static inline void task_set_##func(struct task_struct *p) \
2059 { set_bit(PFA_##name, &p->atomic_flags); }
2060#define TASK_PFA_CLEAR(name, func) \
2061 static inline void task_clear_##func(struct task_struct *p) \
2062 { clear_bit(PFA_##name, &p->atomic_flags); }
2063
2064TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
2065TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1d4457f9 2066
2ad654bc
ZL
2067TASK_PFA_TEST(SPREAD_PAGE, spread_page)
2068TASK_PFA_SET(SPREAD_PAGE, spread_page)
2069TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
2070
2071TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
2072TASK_PFA_SET(SPREAD_SLAB, spread_slab)
2073TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1d4457f9 2074
e5c1902e 2075/*
a8f072c1 2076 * task->jobctl flags
e5c1902e 2077 */
a8f072c1 2078#define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */
e5c1902e 2079
a8f072c1
TH
2080#define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */
2081#define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */
2082#define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */
73ddff2b 2083#define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */
fb1d910c 2084#define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */
a8f072c1 2085#define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */
544b2c91 2086#define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */
a8f072c1
TH
2087
2088#define JOBCTL_STOP_DEQUEUED (1 << JOBCTL_STOP_DEQUEUED_BIT)
2089#define JOBCTL_STOP_PENDING (1 << JOBCTL_STOP_PENDING_BIT)
2090#define JOBCTL_STOP_CONSUME (1 << JOBCTL_STOP_CONSUME_BIT)
73ddff2b 2091#define JOBCTL_TRAP_STOP (1 << JOBCTL_TRAP_STOP_BIT)
fb1d910c 2092#define JOBCTL_TRAP_NOTIFY (1 << JOBCTL_TRAP_NOTIFY_BIT)
a8f072c1 2093#define JOBCTL_TRAPPING (1 << JOBCTL_TRAPPING_BIT)
544b2c91 2094#define JOBCTL_LISTENING (1 << JOBCTL_LISTENING_BIT)
a8f072c1 2095
fb1d910c 2096#define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
73ddff2b 2097#define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
3759a0d9 2098
7dd3db54
TH
2099extern bool task_set_jobctl_pending(struct task_struct *task,
2100 unsigned int mask);
73ddff2b 2101extern void task_clear_jobctl_trapping(struct task_struct *task);
3759a0d9
TH
2102extern void task_clear_jobctl_pending(struct task_struct *task,
2103 unsigned int mask);
39efa3ef 2104
f41d911f
PM
2105static inline void rcu_copy_process(struct task_struct *p)
2106{
8315f422 2107#ifdef CONFIG_PREEMPT_RCU
f41d911f 2108 p->rcu_read_lock_nesting = 0;
1d082fd0 2109 p->rcu_read_unlock_special.s = 0;
dd5d19ba 2110 p->rcu_blocked_node = NULL;
f41d911f 2111 INIT_LIST_HEAD(&p->rcu_node_entry);
8315f422
PM
2112#endif /* #ifdef CONFIG_PREEMPT_RCU */
2113#ifdef CONFIG_TASKS_RCU
2114 p->rcu_tasks_holdout = false;
2115 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
176f8f7a 2116 p->rcu_tasks_idle_cpu = -1;
8315f422 2117#endif /* #ifdef CONFIG_TASKS_RCU */
f41d911f
PM
2118}
2119
907aed48
MG
2120static inline void tsk_restore_flags(struct task_struct *task,
2121 unsigned long orig_flags, unsigned long flags)
2122{
2123 task->flags &= ~flags;
2124 task->flags |= orig_flags & flags;
2125}
2126
f82f8042
JL
2127extern int cpuset_cpumask_can_shrink(const struct cpumask *cur,
2128 const struct cpumask *trial);
7f51412a
JL
2129extern int task_can_attach(struct task_struct *p,
2130 const struct cpumask *cs_cpus_allowed);
1da177e4 2131#ifdef CONFIG_SMP
1e1b6c51
KM
2132extern void do_set_cpus_allowed(struct task_struct *p,
2133 const struct cpumask *new_mask);
2134
cd8ba7cd 2135extern int set_cpus_allowed_ptr(struct task_struct *p,
96f874e2 2136 const struct cpumask *new_mask);
1da177e4 2137#else
1e1b6c51
KM
2138static inline void do_set_cpus_allowed(struct task_struct *p,
2139 const struct cpumask *new_mask)
2140{
2141}
cd8ba7cd 2142static inline int set_cpus_allowed_ptr(struct task_struct *p,
96f874e2 2143 const struct cpumask *new_mask)
1da177e4 2144{
96f874e2 2145 if (!cpumask_test_cpu(0, new_mask))
1da177e4
LT
2146 return -EINVAL;
2147 return 0;
2148}
2149#endif
e0ad9556 2150
3451d024 2151#ifdef CONFIG_NO_HZ_COMMON
5167e8d5
PZ
2152void calc_load_enter_idle(void);
2153void calc_load_exit_idle(void);
2154#else
2155static inline void calc_load_enter_idle(void) { }
2156static inline void calc_load_exit_idle(void) { }
3451d024 2157#endif /* CONFIG_NO_HZ_COMMON */
5167e8d5 2158
e0ad9556 2159#ifndef CONFIG_CPUMASK_OFFSTACK
cd8ba7cd
MT
2160static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
2161{
2162 return set_cpus_allowed_ptr(p, &new_mask);
2163}
e0ad9556 2164#endif
1da177e4 2165
b342501c 2166/*
c676329a
PZ
2167 * Do not use outside of architecture code which knows its limitations.
2168 *
2169 * sched_clock() has no promise of monotonicity or bounded drift between
2170 * CPUs, use (which you should not) requires disabling IRQs.
2171 *
2172 * Please use one of the three interfaces below.
b342501c 2173 */
1bbfa6f2 2174extern unsigned long long notrace sched_clock(void);
c676329a 2175/*
489a71b0 2176 * See the comment in kernel/sched/clock.c
c676329a
PZ
2177 */
2178extern u64 cpu_clock(int cpu);
2179extern u64 local_clock(void);
545a2bf7 2180extern u64 running_clock(void);
c676329a
PZ
2181extern u64 sched_clock_cpu(int cpu);
2182
e436d800 2183
c1955a3d 2184extern void sched_clock_init(void);
3e51f33f 2185
c1955a3d 2186#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
3e51f33f
PZ
2187static inline void sched_clock_tick(void)
2188{
2189}
2190
2191static inline void sched_clock_idle_sleep_event(void)
2192{
2193}
2194
2195static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
2196{
2197}
2198#else
c676329a
PZ
2199/*
2200 * Architectures can set this to 1 if they have specified
2201 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
2202 * but then during bootup it turns out that sched_clock()
2203 * is reliable after all:
2204 */
35af99e6
PZ
2205extern int sched_clock_stable(void);
2206extern void set_sched_clock_stable(void);
2207extern void clear_sched_clock_stable(void);
c676329a 2208
3e51f33f
PZ
2209extern void sched_clock_tick(void);
2210extern void sched_clock_idle_sleep_event(void);
2211extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2212#endif
2213
b52bfee4
VP
2214#ifdef CONFIG_IRQ_TIME_ACCOUNTING
2215/*
2216 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
2217 * The reason for this explicit opt-in is not to have perf penalty with
2218 * slow sched_clocks.
2219 */
2220extern void enable_sched_clock_irqtime(void);
2221extern void disable_sched_clock_irqtime(void);
2222#else
2223static inline void enable_sched_clock_irqtime(void) {}
2224static inline void disable_sched_clock_irqtime(void) {}
2225#endif
2226
36c8b586 2227extern unsigned long long
41b86e9c 2228task_sched_runtime(struct task_struct *task);
1da177e4
LT
2229
2230/* sched_exec is called by processes performing an exec */
2231#ifdef CONFIG_SMP
2232extern void sched_exec(void);
2233#else
2234#define sched_exec() {}
2235#endif
2236
2aa44d05
IM
2237extern void sched_clock_idle_sleep_event(void);
2238extern void sched_clock_idle_wakeup_event(u64 delta_ns);
bb29ab26 2239
1da177e4
LT
2240#ifdef CONFIG_HOTPLUG_CPU
2241extern void idle_task_exit(void);
2242#else
2243static inline void idle_task_exit(void) {}
2244#endif
2245
3451d024 2246#if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
1c20091e 2247extern void wake_up_nohz_cpu(int cpu);
06d8308c 2248#else
1c20091e 2249static inline void wake_up_nohz_cpu(int cpu) { }
06d8308c
TG
2250#endif
2251
ce831b38
FW
2252#ifdef CONFIG_NO_HZ_FULL
2253extern bool sched_can_stop_tick(void);
265f22a9 2254extern u64 scheduler_tick_max_deferment(void);
ce831b38
FW
2255#else
2256static inline bool sched_can_stop_tick(void) { return false; }
06d8308c
TG
2257#endif
2258
5091faa4 2259#ifdef CONFIG_SCHED_AUTOGROUP
5091faa4
MG
2260extern void sched_autogroup_create_attach(struct task_struct *p);
2261extern void sched_autogroup_detach(struct task_struct *p);
2262extern void sched_autogroup_fork(struct signal_struct *sig);
2263extern void sched_autogroup_exit(struct signal_struct *sig);
2264#ifdef CONFIG_PROC_FS
2265extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
2e5b5b3a 2266extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
5091faa4
MG
2267#endif
2268#else
2269static inline void sched_autogroup_create_attach(struct task_struct *p) { }
2270static inline void sched_autogroup_detach(struct task_struct *p) { }
2271static inline void sched_autogroup_fork(struct signal_struct *sig) { }
2272static inline void sched_autogroup_exit(struct signal_struct *sig) { }
2273#endif
2274
fa93384f 2275extern int yield_to(struct task_struct *p, bool preempt);
36c8b586
IM
2276extern void set_user_nice(struct task_struct *p, long nice);
2277extern int task_prio(const struct task_struct *p);
d0ea0268
DY
2278/**
2279 * task_nice - return the nice value of a given task.
2280 * @p: the task in question.
2281 *
2282 * Return: The nice value [ -20 ... 0 ... 19 ].
2283 */
2284static inline int task_nice(const struct task_struct *p)
2285{
2286 return PRIO_TO_NICE((p)->static_prio);
2287}
36c8b586
IM
2288extern int can_nice(const struct task_struct *p, const int nice);
2289extern int task_curr(const struct task_struct *p);
1da177e4 2290extern int idle_cpu(int cpu);
fe7de49f
KM
2291extern int sched_setscheduler(struct task_struct *, int,
2292 const struct sched_param *);
961ccddd 2293extern int sched_setscheduler_nocheck(struct task_struct *, int,
fe7de49f 2294 const struct sched_param *);
d50dde5a
DF
2295extern int sched_setattr(struct task_struct *,
2296 const struct sched_attr *);
36c8b586 2297extern struct task_struct *idle_task(int cpu);
c4f30608
PM
2298/**
2299 * is_idle_task - is the specified task an idle task?
fa757281 2300 * @p: the task in question.
e69f6186
YB
2301 *
2302 * Return: 1 if @p is an idle task. 0 otherwise.
c4f30608 2303 */
7061ca3b 2304static inline bool is_idle_task(const struct task_struct *p)
c4f30608
PM
2305{
2306 return p->pid == 0;
2307}
36c8b586
IM
2308extern struct task_struct *curr_task(int cpu);
2309extern void set_curr_task(int cpu, struct task_struct *p);
1da177e4
LT
2310
2311void yield(void);
2312
1da177e4
LT
2313union thread_union {
2314 struct thread_info thread_info;
2315 unsigned long stack[THREAD_SIZE/sizeof(long)];
2316};
2317
2318#ifndef __HAVE_ARCH_KSTACK_END
2319static inline int kstack_end(void *addr)
2320{
2321 /* Reliable end of stack detection:
2322 * Some APM bios versions misalign the stack
2323 */
2324 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2325}
2326#endif
2327
2328extern union thread_union init_thread_union;
2329extern struct task_struct init_task;
2330
2331extern struct mm_struct init_mm;
2332
198fe21b
PE
2333extern struct pid_namespace init_pid_ns;
2334
2335/*
2336 * find a task by one of its numerical ids
2337 *
198fe21b
PE
2338 * find_task_by_pid_ns():
2339 * finds a task by its pid in the specified namespace
228ebcbe
PE
2340 * find_task_by_vpid():
2341 * finds a task by its virtual pid
198fe21b 2342 *
e49859e7 2343 * see also find_vpid() etc in include/linux/pid.h
198fe21b
PE
2344 */
2345
228ebcbe
PE
2346extern struct task_struct *find_task_by_vpid(pid_t nr);
2347extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2348 struct pid_namespace *ns);
198fe21b 2349
1da177e4 2350/* per-UID process charging. */
7b44ab97 2351extern struct user_struct * alloc_uid(kuid_t);
1da177e4
LT
2352static inline struct user_struct *get_uid(struct user_struct *u)
2353{
2354 atomic_inc(&u->__count);
2355 return u;
2356}
2357extern void free_uid(struct user_struct *);
1da177e4
LT
2358
2359#include <asm/current.h>
2360
f0af911a 2361extern void xtime_update(unsigned long ticks);
1da177e4 2362
b3c97528
HH
2363extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2364extern int wake_up_process(struct task_struct *tsk);
3e51e3ed 2365extern void wake_up_new_task(struct task_struct *tsk);
1da177e4
LT
2366#ifdef CONFIG_SMP
2367 extern void kick_process(struct task_struct *tsk);
2368#else
2369 static inline void kick_process(struct task_struct *tsk) { }
2370#endif
aab03e05 2371extern int sched_fork(unsigned long clone_flags, struct task_struct *p);
ad46c2c4 2372extern void sched_dead(struct task_struct *p);
1da177e4 2373
1da177e4
LT
2374extern void proc_caches_init(void);
2375extern void flush_signals(struct task_struct *);
3bcac026 2376extern void __flush_signals(struct task_struct *);
10ab825b 2377extern void ignore_signals(struct task_struct *);
1da177e4
LT
2378extern void flush_signal_handlers(struct task_struct *, int force_default);
2379extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2380
2381static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2382{
2383 unsigned long flags;
2384 int ret;
2385
2386 spin_lock_irqsave(&tsk->sighand->siglock, flags);
2387 ret = dequeue_signal(tsk, mask, info);
2388 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2389
2390 return ret;
53c8f9f1 2391}
1da177e4
LT
2392
2393extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2394 sigset_t *mask);
2395extern void unblock_all_signals(void);
2396extern void release_task(struct task_struct * p);
2397extern int send_sig_info(int, struct siginfo *, struct task_struct *);
1da177e4
LT
2398extern int force_sigsegv(int, struct task_struct *);
2399extern int force_sig_info(int, struct siginfo *, struct task_struct *);
c4b92fc1 2400extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
c4b92fc1 2401extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
d178bc3a
SH
2402extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2403 const struct cred *, u32);
c4b92fc1
EB
2404extern int kill_pgrp(struct pid *pid, int sig, int priv);
2405extern int kill_pid(struct pid *pid, int sig, int priv);
c3de4b38 2406extern int kill_proc_info(int, struct siginfo *, pid_t);
86773473 2407extern __must_check bool do_notify_parent(struct task_struct *, int);
a7f0765e 2408extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
1da177e4 2409extern void force_sig(int, struct task_struct *);
1da177e4 2410extern int send_sig(int, struct task_struct *, int);
09faef11 2411extern int zap_other_threads(struct task_struct *p);
1da177e4
LT
2412extern struct sigqueue *sigqueue_alloc(void);
2413extern void sigqueue_free(struct sigqueue *);
ac5c2153 2414extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
9ac95f2f 2415extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
1da177e4 2416
51a7b448
AV
2417static inline void restore_saved_sigmask(void)
2418{
2419 if (test_and_clear_restore_sigmask())
77097ae5 2420 __set_current_blocked(&current->saved_sigmask);
51a7b448
AV
2421}
2422
b7f9a11a
AV
2423static inline sigset_t *sigmask_to_save(void)
2424{
2425 sigset_t *res = &current->blocked;
2426 if (unlikely(test_restore_sigmask()))
2427 res = &current->saved_sigmask;
2428 return res;
2429}
2430
9ec52099
CLG
2431static inline int kill_cad_pid(int sig, int priv)
2432{
2433 return kill_pid(cad_pid, sig, priv);
2434}
2435
1da177e4
LT
2436/* These can be the second arg to send_sig_info/send_group_sig_info. */
2437#define SEND_SIG_NOINFO ((struct siginfo *) 0)
2438#define SEND_SIG_PRIV ((struct siginfo *) 1)
2439#define SEND_SIG_FORCED ((struct siginfo *) 2)
2440
2a855dd0
SAS
2441/*
2442 * True if we are on the alternate signal stack.
2443 */
1da177e4
LT
2444static inline int on_sig_stack(unsigned long sp)
2445{
2a855dd0
SAS
2446#ifdef CONFIG_STACK_GROWSUP
2447 return sp >= current->sas_ss_sp &&
2448 sp - current->sas_ss_sp < current->sas_ss_size;
2449#else
2450 return sp > current->sas_ss_sp &&
2451 sp - current->sas_ss_sp <= current->sas_ss_size;
2452#endif
1da177e4
LT
2453}
2454
2455static inline int sas_ss_flags(unsigned long sp)
2456{
72f15c03
RW
2457 if (!current->sas_ss_size)
2458 return SS_DISABLE;
2459
2460 return on_sig_stack(sp) ? SS_ONSTACK : 0;
1da177e4
LT
2461}
2462
5a1b98d3
AV
2463static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
2464{
2465 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
2466#ifdef CONFIG_STACK_GROWSUP
2467 return current->sas_ss_sp;
2468#else
2469 return current->sas_ss_sp + current->sas_ss_size;
2470#endif
2471 return sp;
2472}
2473
1da177e4
LT
2474/*
2475 * Routines for handling mm_structs
2476 */
2477extern struct mm_struct * mm_alloc(void);
2478
2479/* mmdrop drops the mm and the page tables */
b3c97528 2480extern void __mmdrop(struct mm_struct *);
1da177e4
LT
2481static inline void mmdrop(struct mm_struct * mm)
2482{
6fb43d7b 2483 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
1da177e4
LT
2484 __mmdrop(mm);
2485}
2486
2487/* mmput gets rid of the mappings and all user-space */
2488extern void mmput(struct mm_struct *);
2489/* Grab a reference to a task's mm, if it is not already going away */
2490extern struct mm_struct *get_task_mm(struct task_struct *task);
8cdb878d
CY
2491/*
2492 * Grab a reference to a task's mm, if it is not already going away
2493 * and ptrace_may_access with the mode parameter passed to it
2494 * succeeds.
2495 */
2496extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
1da177e4
LT
2497/* Remove the current tasks stale references to the old mm_struct */
2498extern void mm_release(struct task_struct *, struct mm_struct *);
2499
6f2c55b8 2500extern int copy_thread(unsigned long, unsigned long, unsigned long,
afa86fc4 2501 struct task_struct *);
1da177e4
LT
2502extern void flush_thread(void);
2503extern void exit_thread(void);
2504
1da177e4 2505extern void exit_files(struct task_struct *);
a7e5328a 2506extern void __cleanup_sighand(struct sighand_struct *);
cbaffba1 2507
1da177e4 2508extern void exit_itimers(struct signal_struct *);
cbaffba1 2509extern void flush_itimer_signals(void);
1da177e4 2510
9402c95f 2511extern void do_group_exit(int);
1da177e4 2512
c4ad8f98 2513extern int do_execve(struct filename *,
d7627467 2514 const char __user * const __user *,
da3d4c5f 2515 const char __user * const __user *);
51f39a1f
DD
2516extern int do_execveat(int, struct filename *,
2517 const char __user * const __user *,
2518 const char __user * const __user *,
2519 int);
e80d6661 2520extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
36c8b586 2521struct task_struct *fork_idle(int);
2aa3a7f8 2522extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
1da177e4 2523
82b89778
AH
2524extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
2525static inline void set_task_comm(struct task_struct *tsk, const char *from)
2526{
2527 __set_task_comm(tsk, from, false);
2528}
59714d65 2529extern char *get_task_comm(char *to, struct task_struct *tsk);
1da177e4
LT
2530
2531#ifdef CONFIG_SMP
317f3941 2532void scheduler_ipi(void);
85ba2d86 2533extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1da177e4 2534#else
184748cc 2535static inline void scheduler_ipi(void) { }
85ba2d86
RM
2536static inline unsigned long wait_task_inactive(struct task_struct *p,
2537 long match_state)
2538{
2539 return 1;
2540}
1da177e4
LT
2541#endif
2542
05725f7e
JP
2543#define next_task(p) \
2544 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
1da177e4
LT
2545
2546#define for_each_process(p) \
2547 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2548
5bb459bb 2549extern bool current_is_single_threaded(void);
d84f4f99 2550
1da177e4
LT
2551/*
2552 * Careful: do_each_thread/while_each_thread is a double loop so
2553 * 'break' will not work as expected - use goto instead.
2554 */
2555#define do_each_thread(g, t) \
2556 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2557
2558#define while_each_thread(g, t) \
2559 while ((t = next_thread(t)) != g)
2560
0c740d0a
ON
2561#define __for_each_thread(signal, t) \
2562 list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
2563
2564#define for_each_thread(p, t) \
2565 __for_each_thread((p)->signal, t)
2566
2567/* Careful: this is a double loop, 'break' won't work as expected. */
2568#define for_each_process_thread(p, t) \
2569 for_each_process(p) for_each_thread(p, t)
2570
7e49827c
ON
2571static inline int get_nr_threads(struct task_struct *tsk)
2572{
b3ac022c 2573 return tsk->signal->nr_threads;
7e49827c
ON
2574}
2575
087806b1
ON
2576static inline bool thread_group_leader(struct task_struct *p)
2577{
2578 return p->exit_signal >= 0;
2579}
1da177e4 2580
0804ef4b
EB
2581/* Do to the insanities of de_thread it is possible for a process
2582 * to have the pid of the thread group leader without actually being
2583 * the thread group leader. For iteration through the pids in proc
2584 * all we care about is that we have a task with the appropriate
2585 * pid, we don't actually care if we have the right task.
2586 */
e1403b8e 2587static inline bool has_group_leader_pid(struct task_struct *p)
0804ef4b 2588{
e1403b8e 2589 return task_pid(p) == p->signal->leader_pid;
0804ef4b
EB
2590}
2591
bac0abd6 2592static inline
e1403b8e 2593bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
bac0abd6 2594{
e1403b8e 2595 return p1->signal == p2->signal;
bac0abd6
PE
2596}
2597
36c8b586 2598static inline struct task_struct *next_thread(const struct task_struct *p)
47e65328 2599{
05725f7e
JP
2600 return list_entry_rcu(p->thread_group.next,
2601 struct task_struct, thread_group);
47e65328
ON
2602}
2603
e868171a 2604static inline int thread_group_empty(struct task_struct *p)
1da177e4 2605{
47e65328 2606 return list_empty(&p->thread_group);
1da177e4
LT
2607}
2608
2609#define delay_group_leader(p) \
2610 (thread_group_leader(p) && !thread_group_empty(p))
2611
1da177e4 2612/*
260ea101 2613 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
22e2c507 2614 * subscriptions and synchronises with wait4(). Also used in procfs. Also
ddbcc7e8 2615 * pins the final release of task.io_context. Also protects ->cpuset and
d68b46fe 2616 * ->cgroup.subsys[]. And ->vfork_done.
1da177e4
LT
2617 *
2618 * Nests both inside and outside of read_lock(&tasklist_lock).
2619 * It must not be nested with write_lock_irq(&tasklist_lock),
2620 * neither inside nor outside.
2621 */
2622static inline void task_lock(struct task_struct *p)
2623{
2624 spin_lock(&p->alloc_lock);
2625}
2626
2627static inline void task_unlock(struct task_struct *p)
2628{
2629 spin_unlock(&p->alloc_lock);
2630}
2631
b8ed374e 2632extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
f63ee72e
ON
2633 unsigned long *flags);
2634
9388dc30
AV
2635static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2636 unsigned long *flags)
2637{
2638 struct sighand_struct *ret;
2639
2640 ret = __lock_task_sighand(tsk, flags);
2641 (void)__cond_lock(&tsk->sighand->siglock, ret);
2642 return ret;
2643}
b8ed374e 2644
f63ee72e
ON
2645static inline void unlock_task_sighand(struct task_struct *tsk,
2646 unsigned long *flags)
2647{
2648 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2649}
2650
4714d1d3 2651#ifdef CONFIG_CGROUPS
257058ae 2652static inline void threadgroup_change_begin(struct task_struct *tsk)
4714d1d3 2653{
257058ae 2654 down_read(&tsk->signal->group_rwsem);
4714d1d3 2655}
257058ae 2656static inline void threadgroup_change_end(struct task_struct *tsk)
4714d1d3 2657{
257058ae 2658 up_read(&tsk->signal->group_rwsem);
4714d1d3 2659}
77e4ef99
TH
2660
2661/**
2662 * threadgroup_lock - lock threadgroup
2663 * @tsk: member task of the threadgroup to lock
2664 *
2665 * Lock the threadgroup @tsk belongs to. No new task is allowed to enter
2666 * and member tasks aren't allowed to exit (as indicated by PF_EXITING) or
e56fb287
ON
2667 * change ->group_leader/pid. This is useful for cases where the threadgroup
2668 * needs to stay stable across blockable operations.
77e4ef99
TH
2669 *
2670 * fork and exit paths explicitly call threadgroup_change_{begin|end}() for
2671 * synchronization. While held, no new task will be added to threadgroup
2672 * and no existing live task will have its PF_EXITING set.
2673 *
e56fb287
ON
2674 * de_thread() does threadgroup_change_{begin|end}() when a non-leader
2675 * sub-thread becomes a new leader.
77e4ef99 2676 */
257058ae 2677static inline void threadgroup_lock(struct task_struct *tsk)
4714d1d3 2678{
257058ae 2679 down_write(&tsk->signal->group_rwsem);
4714d1d3 2680}
77e4ef99
TH
2681
2682/**
2683 * threadgroup_unlock - unlock threadgroup
2684 * @tsk: member task of the threadgroup to unlock
2685 *
2686 * Reverse threadgroup_lock().
2687 */
257058ae 2688static inline void threadgroup_unlock(struct task_struct *tsk)
4714d1d3 2689{
257058ae 2690 up_write(&tsk->signal->group_rwsem);
4714d1d3
BB
2691}
2692#else
257058ae
TH
2693static inline void threadgroup_change_begin(struct task_struct *tsk) {}
2694static inline void threadgroup_change_end(struct task_struct *tsk) {}
2695static inline void threadgroup_lock(struct task_struct *tsk) {}
2696static inline void threadgroup_unlock(struct task_struct *tsk) {}
4714d1d3
BB
2697#endif
2698
f037360f
AV
2699#ifndef __HAVE_THREAD_FUNCTIONS
2700
f7e4217b
RZ
2701#define task_thread_info(task) ((struct thread_info *)(task)->stack)
2702#define task_stack_page(task) ((task)->stack)
a1261f54 2703
10ebffde
AV
2704static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2705{
2706 *task_thread_info(p) = *task_thread_info(org);
2707 task_thread_info(p)->task = p;
2708}
2709
6a40281a
CE
2710/*
2711 * Return the address of the last usable long on the stack.
2712 *
2713 * When the stack grows down, this is just above the thread
2714 * info struct. Going any lower will corrupt the threadinfo.
2715 *
2716 * When the stack grows up, this is the highest address.
2717 * Beyond that position, we corrupt data on the next page.
2718 */
10ebffde
AV
2719static inline unsigned long *end_of_stack(struct task_struct *p)
2720{
6a40281a
CE
2721#ifdef CONFIG_STACK_GROWSUP
2722 return (unsigned long *)((unsigned long)task_thread_info(p) + THREAD_SIZE) - 1;
2723#else
f7e4217b 2724 return (unsigned long *)(task_thread_info(p) + 1);
6a40281a 2725#endif
10ebffde
AV
2726}
2727
f037360f 2728#endif
a70857e4
AT
2729#define task_stack_end_corrupted(task) \
2730 (*(end_of_stack(task)) != STACK_END_MAGIC)
f037360f 2731
8b05c7e6
FT
2732static inline int object_is_on_stack(void *obj)
2733{
2734 void *stack = task_stack_page(current);
2735
2736 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2737}
2738
8c9843e5
BH
2739extern void thread_info_cache_init(void);
2740
7c9f8861
ES
2741#ifdef CONFIG_DEBUG_STACK_USAGE
2742static inline unsigned long stack_not_used(struct task_struct *p)
2743{
2744 unsigned long *n = end_of_stack(p);
2745
2746 do { /* Skip over canary */
2747 n++;
2748 } while (!*n);
2749
2750 return (unsigned long)n - (unsigned long)end_of_stack(p);
2751}
2752#endif
d4311ff1 2753extern void set_task_stack_end_magic(struct task_struct *tsk);
7c9f8861 2754
1da177e4
LT
2755/* set thread flags in other task's structures
2756 * - see asm/thread_info.h for TIF_xxxx flags available
2757 */
2758static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2759{
a1261f54 2760 set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
2761}
2762
2763static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2764{
a1261f54 2765 clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
2766}
2767
2768static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2769{
a1261f54 2770 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
2771}
2772
2773static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2774{
a1261f54 2775 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
2776}
2777
2778static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2779{
a1261f54 2780 return test_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
2781}
2782
2783static inline void set_tsk_need_resched(struct task_struct *tsk)
2784{
2785 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2786}
2787
2788static inline void clear_tsk_need_resched(struct task_struct *tsk)
2789{
2790 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2791}
2792
8ae121ac
GH
2793static inline int test_tsk_need_resched(struct task_struct *tsk)
2794{
2795 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2796}
2797
690cc3ff
EB
2798static inline int restart_syscall(void)
2799{
2800 set_tsk_thread_flag(current, TIF_SIGPENDING);
2801 return -ERESTARTNOINTR;
2802}
2803
1da177e4
LT
2804static inline int signal_pending(struct task_struct *p)
2805{
2806 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2807}
f776d12d 2808
d9588725
RM
2809static inline int __fatal_signal_pending(struct task_struct *p)
2810{
2811 return unlikely(sigismember(&p->pending.signal, SIGKILL));
2812}
f776d12d
MW
2813
2814static inline int fatal_signal_pending(struct task_struct *p)
2815{
2816 return signal_pending(p) && __fatal_signal_pending(p);
2817}
2818
16882c1e
ON
2819static inline int signal_pending_state(long state, struct task_struct *p)
2820{
2821 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2822 return 0;
2823 if (!signal_pending(p))
2824 return 0;
2825
16882c1e
ON
2826 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2827}
2828
1da177e4
LT
2829/*
2830 * cond_resched() and cond_resched_lock(): latency reduction via
2831 * explicit rescheduling in places that are safe. The return
2832 * value indicates whether a reschedule was done in fact.
2833 * cond_resched_lock() will drop the spinlock before scheduling,
2834 * cond_resched_softirq() will enable bhs before scheduling.
2835 */
c3921ab7 2836extern int _cond_resched(void);
6f80bd98 2837
613afbf8 2838#define cond_resched() ({ \
3427445a 2839 ___might_sleep(__FILE__, __LINE__, 0); \
613afbf8
FW
2840 _cond_resched(); \
2841})
6f80bd98 2842
613afbf8
FW
2843extern int __cond_resched_lock(spinlock_t *lock);
2844
bdd4e85d 2845#ifdef CONFIG_PREEMPT_COUNT
716a4234 2846#define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET
02b67cc3 2847#else
716a4234 2848#define PREEMPT_LOCK_OFFSET 0
02b67cc3 2849#endif
716a4234 2850
613afbf8 2851#define cond_resched_lock(lock) ({ \
3427445a 2852 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
613afbf8
FW
2853 __cond_resched_lock(lock); \
2854})
2855
2856extern int __cond_resched_softirq(void);
2857
75e1056f 2858#define cond_resched_softirq() ({ \
3427445a 2859 ___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
75e1056f 2860 __cond_resched_softirq(); \
613afbf8 2861})
1da177e4 2862
f6f3c437
SH
2863static inline void cond_resched_rcu(void)
2864{
2865#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
2866 rcu_read_unlock();
2867 cond_resched();
2868 rcu_read_lock();
2869#endif
2870}
2871
1da177e4
LT
2872/*
2873 * Does a critical section need to be broken due to another
95c354fe
NP
2874 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2875 * but a general need for low latency)
1da177e4 2876 */
95c354fe 2877static inline int spin_needbreak(spinlock_t *lock)
1da177e4 2878{
95c354fe
NP
2879#ifdef CONFIG_PREEMPT
2880 return spin_is_contended(lock);
2881#else
1da177e4 2882 return 0;
95c354fe 2883#endif
1da177e4
LT
2884}
2885
ee761f62
TG
2886/*
2887 * Idle thread specific functions to determine the need_resched
69dd0f84 2888 * polling state.
ee761f62 2889 */
69dd0f84 2890#ifdef TIF_POLLING_NRFLAG
ee761f62
TG
2891static inline int tsk_is_polling(struct task_struct *p)
2892{
2893 return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG);
2894}
ea811747
PZ
2895
2896static inline void __current_set_polling(void)
3a98f871
TG
2897{
2898 set_thread_flag(TIF_POLLING_NRFLAG);
2899}
2900
ea811747
PZ
2901static inline bool __must_check current_set_polling_and_test(void)
2902{
2903 __current_set_polling();
2904
2905 /*
2906 * Polling state must be visible before we test NEED_RESCHED,
8875125e 2907 * paired by resched_curr()
ea811747 2908 */
4e857c58 2909 smp_mb__after_atomic();
ea811747
PZ
2910
2911 return unlikely(tif_need_resched());
2912}
2913
2914static inline void __current_clr_polling(void)
3a98f871
TG
2915{
2916 clear_thread_flag(TIF_POLLING_NRFLAG);
2917}
ea811747
PZ
2918
2919static inline bool __must_check current_clr_polling_and_test(void)
2920{
2921 __current_clr_polling();
2922
2923 /*
2924 * Polling state must be visible before we test NEED_RESCHED,
8875125e 2925 * paired by resched_curr()
ea811747 2926 */
4e857c58 2927 smp_mb__after_atomic();
ea811747
PZ
2928
2929 return unlikely(tif_need_resched());
2930}
2931
ee761f62
TG
2932#else
2933static inline int tsk_is_polling(struct task_struct *p) { return 0; }
ea811747
PZ
2934static inline void __current_set_polling(void) { }
2935static inline void __current_clr_polling(void) { }
2936
2937static inline bool __must_check current_set_polling_and_test(void)
2938{
2939 return unlikely(tif_need_resched());
2940}
2941static inline bool __must_check current_clr_polling_and_test(void)
2942{
2943 return unlikely(tif_need_resched());
2944}
ee761f62
TG
2945#endif
2946
8cb75e0c
PZ
2947static inline void current_clr_polling(void)
2948{
2949 __current_clr_polling();
2950
2951 /*
2952 * Ensure we check TIF_NEED_RESCHED after we clear the polling bit.
2953 * Once the bit is cleared, we'll get IPIs with every new
2954 * TIF_NEED_RESCHED and the IPI handler, scheduler_ipi(), will also
2955 * fold.
2956 */
8875125e 2957 smp_mb(); /* paired with resched_curr() */
8cb75e0c
PZ
2958
2959 preempt_fold_need_resched();
2960}
2961
75f93fed
PZ
2962static __always_inline bool need_resched(void)
2963{
2964 return unlikely(tif_need_resched());
2965}
2966
f06febc9
FM
2967/*
2968 * Thread group CPU time accounting.
2969 */
4cd4c1b4 2970void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
4da94d49 2971void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
f06febc9 2972
490dea45 2973static inline void thread_group_cputime_init(struct signal_struct *sig)
f06febc9 2974{
ee30a7b2 2975 raw_spin_lock_init(&sig->cputimer.lock);
f06febc9
FM
2976}
2977
7bb44ade
RM
2978/*
2979 * Reevaluate whether the task has signals pending delivery.
2980 * Wake the task if so.
2981 * This is required every time the blocked sigset_t changes.
2982 * callers must hold sighand->siglock.
2983 */
2984extern void recalc_sigpending_and_wake(struct task_struct *t);
1da177e4
LT
2985extern void recalc_sigpending(void);
2986
910ffdb1
ON
2987extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
2988
2989static inline void signal_wake_up(struct task_struct *t, bool resume)
2990{
2991 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
2992}
2993static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
2994{
2995 signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
2996}
1da177e4
LT
2997
2998/*
2999 * Wrappers for p->thread_info->cpu access. No-op on UP.
3000 */
3001#ifdef CONFIG_SMP
3002
3003static inline unsigned int task_cpu(const struct task_struct *p)
3004{
a1261f54 3005 return task_thread_info(p)->cpu;
1da177e4
LT
3006}
3007
b32e86b4
IM
3008static inline int task_node(const struct task_struct *p)
3009{
3010 return cpu_to_node(task_cpu(p));
3011}
3012
c65cc870 3013extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1da177e4
LT
3014
3015#else
3016
3017static inline unsigned int task_cpu(const struct task_struct *p)
3018{
3019 return 0;
3020}
3021
3022static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
3023{
3024}
3025
3026#endif /* CONFIG_SMP */
3027
96f874e2
RR
3028extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
3029extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
5c45bf27 3030
7c941438 3031#ifdef CONFIG_CGROUP_SCHED
07e06b01 3032extern struct task_group root_task_group;
8323f26c 3033#endif /* CONFIG_CGROUP_SCHED */
9b5b7751 3034
54e99124
DG
3035extern int task_can_switch_user(struct user_struct *up,
3036 struct task_struct *tsk);
3037
4b98d11b
AD
3038#ifdef CONFIG_TASK_XACCT
3039static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3040{
940389b8 3041 tsk->ioac.rchar += amt;
4b98d11b
AD
3042}
3043
3044static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3045{
940389b8 3046 tsk->ioac.wchar += amt;
4b98d11b
AD
3047}
3048
3049static inline void inc_syscr(struct task_struct *tsk)
3050{
940389b8 3051 tsk->ioac.syscr++;
4b98d11b
AD
3052}
3053
3054static inline void inc_syscw(struct task_struct *tsk)
3055{
940389b8 3056 tsk->ioac.syscw++;
4b98d11b
AD
3057}
3058#else
3059static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3060{
3061}
3062
3063static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3064{
3065}
3066
3067static inline void inc_syscr(struct task_struct *tsk)
3068{
3069}
3070
3071static inline void inc_syscw(struct task_struct *tsk)
3072{
3073}
3074#endif
3075
82455257
DH
3076#ifndef TASK_SIZE_OF
3077#define TASK_SIZE_OF(tsk) TASK_SIZE
3078#endif
3079
f98bafa0 3080#ifdef CONFIG_MEMCG
cf475ad2 3081extern void mm_update_next_owner(struct mm_struct *mm);
cf475ad2
BS
3082#else
3083static inline void mm_update_next_owner(struct mm_struct *mm)
3084{
3085}
f98bafa0 3086#endif /* CONFIG_MEMCG */
cf475ad2 3087
3e10e716
JS
3088static inline unsigned long task_rlimit(const struct task_struct *tsk,
3089 unsigned int limit)
3090{
3091 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
3092}
3093
3094static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
3095 unsigned int limit)
3096{
3097 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
3098}
3099
3100static inline unsigned long rlimit(unsigned int limit)
3101{
3102 return task_rlimit(current, limit);
3103}
3104
3105static inline unsigned long rlimit_max(unsigned int limit)
3106{
3107 return task_rlimit_max(current, limit);
3108}
3109
1da177e4 3110#endif
This page took 5.819042 seconds and 5 git commands to generate.