exit_thread: accept a task parameter to be exited
[deliverable/linux.git] / include / linux / sched.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_SCHED_H
2#define _LINUX_SCHED_H
3
607ca46e 4#include <uapi/linux/sched.h>
b7b3c76a 5
5c228079
DY
6#include <linux/sched/prio.h>
7
b7b3c76a
DW
8
9struct sched_param {
10 int sched_priority;
11};
12
1da177e4
LT
13#include <asm/param.h> /* for HZ */
14
1da177e4
LT
15#include <linux/capability.h>
16#include <linux/threads.h>
17#include <linux/kernel.h>
18#include <linux/types.h>
19#include <linux/timex.h>
20#include <linux/jiffies.h>
fb00aca4 21#include <linux/plist.h>
1da177e4
LT
22#include <linux/rbtree.h>
23#include <linux/thread_info.h>
24#include <linux/cpumask.h>
25#include <linux/errno.h>
26#include <linux/nodemask.h>
c92ff1bd 27#include <linux/mm_types.h>
92cf2118 28#include <linux/preempt.h>
1da177e4 29
1da177e4
LT
30#include <asm/page.h>
31#include <asm/ptrace.h>
bfc3f028 32#include <linux/cputime.h>
1da177e4
LT
33
34#include <linux/smp.h>
35#include <linux/sem.h>
ab602f79 36#include <linux/shm.h>
1da177e4 37#include <linux/signal.h>
1da177e4
LT
38#include <linux/compiler.h>
39#include <linux/completion.h>
40#include <linux/pid.h>
41#include <linux/percpu.h>
42#include <linux/topology.h>
43#include <linux/seccomp.h>
e56d0903 44#include <linux/rcupdate.h>
05725f7e 45#include <linux/rculist.h>
23f78d4a 46#include <linux/rtmutex.h>
1da177e4 47
a3b6714e
DW
48#include <linux/time.h>
49#include <linux/param.h>
50#include <linux/resource.h>
51#include <linux/timer.h>
52#include <linux/hrtimer.h>
5c9a8750 53#include <linux/kcov.h>
7c3ab738 54#include <linux/task_io_accounting.h>
9745512c 55#include <linux/latencytop.h>
9e2b2dc4 56#include <linux/cred.h>
fa14ff4a 57#include <linux/llist.h>
7b44ab97 58#include <linux/uidgid.h>
21caf2fc 59#include <linux/gfp.h>
d4311ff1 60#include <linux/magic.h>
7d7efec3 61#include <linux/cgroup-defs.h>
a3b6714e
DW
62
63#include <asm/processor.h>
36d57ac4 64
d50dde5a
DF
65#define SCHED_ATTR_SIZE_VER0 48 /* sizeof first published struct */
66
67/*
68 * Extended scheduling parameters data structure.
69 *
70 * This is needed because the original struct sched_param can not be
71 * altered without introducing ABI issues with legacy applications
72 * (e.g., in sched_getparam()).
73 *
74 * However, the possibility of specifying more than just a priority for
75 * the tasks may be useful for a wide variety of application fields, e.g.,
76 * multimedia, streaming, automation and control, and many others.
77 *
78 * This variant (sched_attr) is meant at describing a so-called
79 * sporadic time-constrained task. In such model a task is specified by:
80 * - the activation period or minimum instance inter-arrival time;
81 * - the maximum (or average, depending on the actual scheduling
82 * discipline) computation time of all instances, a.k.a. runtime;
83 * - the deadline (relative to the actual activation time) of each
84 * instance.
85 * Very briefly, a periodic (sporadic) task asks for the execution of
86 * some specific computation --which is typically called an instance--
87 * (at most) every period. Moreover, each instance typically lasts no more
88 * than the runtime and must be completed by time instant t equal to
89 * the instance activation time + the deadline.
90 *
91 * This is reflected by the actual fields of the sched_attr structure:
92 *
93 * @size size of the structure, for fwd/bwd compat.
94 *
95 * @sched_policy task's scheduling policy
96 * @sched_flags for customizing the scheduler behaviour
97 * @sched_nice task's nice value (SCHED_NORMAL/BATCH)
98 * @sched_priority task's static priority (SCHED_FIFO/RR)
99 * @sched_deadline representative of the task's deadline
100 * @sched_runtime representative of the task's runtime
101 * @sched_period representative of the task's period
102 *
103 * Given this task model, there are a multiplicity of scheduling algorithms
104 * and policies, that can be used to ensure all the tasks will make their
105 * timing constraints.
aab03e05
DF
106 *
107 * As of now, the SCHED_DEADLINE policy (sched_dl scheduling class) is the
108 * only user of this new interface. More information about the algorithm
109 * available in the scheduling class file or in Documentation/.
d50dde5a
DF
110 */
111struct sched_attr {
112 u32 size;
113
114 u32 sched_policy;
115 u64 sched_flags;
116
117 /* SCHED_NORMAL, SCHED_BATCH */
118 s32 sched_nice;
119
120 /* SCHED_FIFO, SCHED_RR */
121 u32 sched_priority;
122
123 /* SCHED_DEADLINE */
124 u64 sched_runtime;
125 u64 sched_deadline;
126 u64 sched_period;
127};
128
c87e2837 129struct futex_pi_state;
286100a6 130struct robust_list_head;
bddd87c7 131struct bio_list;
5ad4e53b 132struct fs_struct;
cdd6c482 133struct perf_event_context;
73c10101 134struct blk_plug;
c4ad8f98 135struct filename;
89076bc3 136struct nameidata;
1da177e4 137
615d6e87
DB
138#define VMACACHE_BITS 2
139#define VMACACHE_SIZE (1U << VMACACHE_BITS)
140#define VMACACHE_MASK (VMACACHE_SIZE - 1)
141
1da177e4
LT
142/*
143 * These are the constant used to fake the fixed-point load-average
144 * counting. Some notes:
145 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
146 * a load-average precision of 10 bits integer + 11 bits fractional
147 * - if you want to count load-averages more often, you need more
148 * precision, or rounding will get you. With 2-second counting freq,
149 * the EXP_n values would be 1981, 2034 and 2043 if still using only
150 * 11 bit fractions.
151 */
152extern unsigned long avenrun[]; /* Load averages */
2d02494f 153extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
1da177e4
LT
154
155#define FSHIFT 11 /* nr of bits of precision */
156#define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
0c2043ab 157#define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
1da177e4
LT
158#define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
159#define EXP_5 2014 /* 1/exp(5sec/5min) */
160#define EXP_15 2037 /* 1/exp(5sec/15min) */
161
162#define CALC_LOAD(load,exp,n) \
163 load *= exp; \
164 load += n*(FIXED_1-exp); \
165 load >>= FSHIFT;
166
167extern unsigned long total_forks;
168extern int nr_threads;
1da177e4
LT
169DECLARE_PER_CPU(unsigned long, process_counts);
170extern int nr_processes(void);
171extern unsigned long nr_running(void);
2ee507c4 172extern bool single_task_running(void);
1da177e4 173extern unsigned long nr_iowait(void);
8c215bd3 174extern unsigned long nr_iowait_cpu(int cpu);
372ba8cb 175extern void get_iowait_load(unsigned long *nr_waiters, unsigned long *load);
69d25870 176
0f004f5a 177extern void calc_global_load(unsigned long ticks);
3289bdb4
PZ
178
179#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
1f41906a
FW
180extern void cpu_load_update_nohz_start(void);
181extern void cpu_load_update_nohz_stop(void);
3289bdb4 182#else
1f41906a
FW
183static inline void cpu_load_update_nohz_start(void) { }
184static inline void cpu_load_update_nohz_stop(void) { }
3289bdb4 185#endif
1da177e4 186
b637a328
PM
187extern void dump_cpu_task(int cpu);
188
43ae34cb
IM
189struct seq_file;
190struct cfs_rq;
4cf86d77 191struct task_group;
43ae34cb
IM
192#ifdef CONFIG_SCHED_DEBUG
193extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
194extern void proc_sched_set_task(struct task_struct *p);
43ae34cb 195#endif
1da177e4 196
4a8342d2
LT
197/*
198 * Task state bitmask. NOTE! These bits are also
199 * encoded in fs/proc/array.c: get_task_state().
200 *
201 * We have two separate sets of flags: task->state
202 * is about runnability, while task->exit_state are
203 * about the task exiting. Confusing, but this way
204 * modifying one set can't modify the other one by
205 * mistake.
206 */
1da177e4
LT
207#define TASK_RUNNING 0
208#define TASK_INTERRUPTIBLE 1
209#define TASK_UNINTERRUPTIBLE 2
f021a3c2
MW
210#define __TASK_STOPPED 4
211#define __TASK_TRACED 8
4a8342d2 212/* in tsk->exit_state */
ad86622b
ON
213#define EXIT_DEAD 16
214#define EXIT_ZOMBIE 32
abd50b39 215#define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
4a8342d2 216/* in tsk->state again */
af927232 217#define TASK_DEAD 64
f021a3c2 218#define TASK_WAKEKILL 128
e9c84311 219#define TASK_WAKING 256
f2530dc7 220#define TASK_PARKED 512
80ed87c8
PZ
221#define TASK_NOLOAD 1024
222#define TASK_STATE_MAX 2048
f021a3c2 223
80ed87c8 224#define TASK_STATE_TO_CHAR_STR "RSDTtXZxKWPN"
73342151 225
e1781538
PZ
226extern char ___assert_task_state[1 - 2*!!(
227 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
f021a3c2
MW
228
229/* Convenience macros for the sake of set_task_state */
230#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
231#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
232#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
1da177e4 233
80ed87c8
PZ
234#define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
235
92a1f4bc
MW
236/* Convenience macros for the sake of wake_up */
237#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
f021a3c2 238#define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
92a1f4bc
MW
239
240/* get_task_state() */
241#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
f021a3c2 242 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
74e37200 243 __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD)
92a1f4bc 244
f021a3c2
MW
245#define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
246#define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
92a1f4bc 247#define task_is_stopped_or_traced(task) \
f021a3c2 248 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
92a1f4bc 249#define task_contributes_to_load(task) \
e3c8ca83 250 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
80ed87c8
PZ
251 (task->flags & PF_FROZEN) == 0 && \
252 (task->state & TASK_NOLOAD) == 0)
1da177e4 253
8eb23b9f
PZ
254#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
255
256#define __set_task_state(tsk, state_value) \
257 do { \
258 (tsk)->task_state_change = _THIS_IP_; \
259 (tsk)->state = (state_value); \
260 } while (0)
261#define set_task_state(tsk, state_value) \
262 do { \
263 (tsk)->task_state_change = _THIS_IP_; \
b92b8b35 264 smp_store_mb((tsk)->state, (state_value)); \
8eb23b9f
PZ
265 } while (0)
266
267/*
268 * set_current_state() includes a barrier so that the write of current->state
269 * is correctly serialised wrt the caller's subsequent test of whether to
270 * actually sleep:
271 *
272 * set_current_state(TASK_UNINTERRUPTIBLE);
273 * if (do_i_need_to_sleep())
274 * schedule();
275 *
276 * If the caller does not need such serialisation then use __set_current_state()
277 */
278#define __set_current_state(state_value) \
279 do { \
280 current->task_state_change = _THIS_IP_; \
281 current->state = (state_value); \
282 } while (0)
283#define set_current_state(state_value) \
284 do { \
285 current->task_state_change = _THIS_IP_; \
b92b8b35 286 smp_store_mb(current->state, (state_value)); \
8eb23b9f
PZ
287 } while (0)
288
289#else
290
1da177e4
LT
291#define __set_task_state(tsk, state_value) \
292 do { (tsk)->state = (state_value); } while (0)
293#define set_task_state(tsk, state_value) \
b92b8b35 294 smp_store_mb((tsk)->state, (state_value))
1da177e4 295
498d0c57
AM
296/*
297 * set_current_state() includes a barrier so that the write of current->state
298 * is correctly serialised wrt the caller's subsequent test of whether to
299 * actually sleep:
300 *
301 * set_current_state(TASK_UNINTERRUPTIBLE);
302 * if (do_i_need_to_sleep())
303 * schedule();
304 *
305 * If the caller does not need such serialisation then use __set_current_state()
306 */
8eb23b9f 307#define __set_current_state(state_value) \
1da177e4 308 do { current->state = (state_value); } while (0)
8eb23b9f 309#define set_current_state(state_value) \
b92b8b35 310 smp_store_mb(current->state, (state_value))
1da177e4 311
8eb23b9f
PZ
312#endif
313
1da177e4
LT
314/* Task command name length */
315#define TASK_COMM_LEN 16
316
1da177e4
LT
317#include <linux/spinlock.h>
318
319/*
320 * This serializes "schedule()" and also protects
321 * the run-queue from deletions/modifications (but
322 * _adding_ to the beginning of the run-queue has
323 * a separate lock).
324 */
325extern rwlock_t tasklist_lock;
326extern spinlock_t mmlist_lock;
327
36c8b586 328struct task_struct;
1da177e4 329
db1466b3
PM
330#ifdef CONFIG_PROVE_RCU
331extern int lockdep_tasklist_lock_is_held(void);
332#endif /* #ifdef CONFIG_PROVE_RCU */
333
1da177e4
LT
334extern void sched_init(void);
335extern void sched_init_smp(void);
2d07b255 336extern asmlinkage void schedule_tail(struct task_struct *prev);
36c8b586 337extern void init_idle(struct task_struct *idle, int cpu);
1df21055 338extern void init_idle_bootup_task(struct task_struct *idle);
1da177e4 339
3fa0818b
RR
340extern cpumask_var_t cpu_isolated_map;
341
89f19f04 342extern int runqueue_is_locked(int cpu);
017730c1 343
3451d024 344#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
c1cc017c 345extern void nohz_balance_enter_idle(int cpu);
69e1e811 346extern void set_cpu_sd_state_idle(void);
bc7a34b8 347extern int get_nohz_timer_target(void);
46cb4b7c 348#else
c1cc017c 349static inline void nohz_balance_enter_idle(int cpu) { }
fdaabd80 350static inline void set_cpu_sd_state_idle(void) { }
46cb4b7c 351#endif
1da177e4 352
e59e2ae2 353/*
39bc89fd 354 * Only dump TASK_* tasks. (0 for all tasks)
e59e2ae2
IM
355 */
356extern void show_state_filter(unsigned long state_filter);
357
358static inline void show_state(void)
359{
39bc89fd 360 show_state_filter(0);
e59e2ae2
IM
361}
362
1da177e4
LT
363extern void show_regs(struct pt_regs *);
364
365/*
366 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
367 * task), SP is the stack pointer of the first frame that should be shown in the back
368 * trace (or NULL if the entire call-chain of the task should be shown).
369 */
370extern void show_stack(struct task_struct *task, unsigned long *sp);
371
1da177e4
LT
372extern void cpu_init (void);
373extern void trap_init(void);
374extern void update_process_times(int user);
375extern void scheduler_tick(void);
9cf7243d 376extern int sched_cpu_starting(unsigned int cpu);
40190a78
TG
377extern int sched_cpu_activate(unsigned int cpu);
378extern int sched_cpu_deactivate(unsigned int cpu);
1da177e4 379
f2785ddb
TG
380#ifdef CONFIG_HOTPLUG_CPU
381extern int sched_cpu_dying(unsigned int cpu);
382#else
383# define sched_cpu_dying NULL
384#endif
1da177e4 385
82a1fcb9
IM
386extern void sched_show_task(struct task_struct *p);
387
19cc36c0 388#ifdef CONFIG_LOCKUP_DETECTOR
03e0d461 389extern void touch_softlockup_watchdog_sched(void);
8446f1d3 390extern void touch_softlockup_watchdog(void);
d6ad3e28 391extern void touch_softlockup_watchdog_sync(void);
04c9167f 392extern void touch_all_softlockup_watchdogs(void);
332fbdbc
DZ
393extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
394 void __user *buffer,
395 size_t *lenp, loff_t *ppos);
9c44bc03 396extern unsigned int softlockup_panic;
ac1f5912 397extern unsigned int hardlockup_panic;
004417a6 398void lockup_detector_init(void);
8446f1d3 399#else
03e0d461
TH
400static inline void touch_softlockup_watchdog_sched(void)
401{
402}
8446f1d3
IM
403static inline void touch_softlockup_watchdog(void)
404{
405}
d6ad3e28
JW
406static inline void touch_softlockup_watchdog_sync(void)
407{
408}
04c9167f
JF
409static inline void touch_all_softlockup_watchdogs(void)
410{
411}
004417a6
PZ
412static inline void lockup_detector_init(void)
413{
414}
8446f1d3
IM
415#endif
416
8b414521
MT
417#ifdef CONFIG_DETECT_HUNG_TASK
418void reset_hung_task_detector(void);
419#else
420static inline void reset_hung_task_detector(void)
421{
422}
423#endif
424
1da177e4
LT
425/* Attach to any functions which should be ignored in wchan output. */
426#define __sched __attribute__((__section__(".sched.text")))
deaf2227
IM
427
428/* Linker adds these: start and end of __sched functions */
429extern char __sched_text_start[], __sched_text_end[];
430
1da177e4
LT
431/* Is this address in the __sched functions? */
432extern int in_sched_functions(unsigned long addr);
433
434#define MAX_SCHEDULE_TIMEOUT LONG_MAX
b3c97528 435extern signed long schedule_timeout(signed long timeout);
64ed93a2 436extern signed long schedule_timeout_interruptible(signed long timeout);
294d5cc2 437extern signed long schedule_timeout_killable(signed long timeout);
64ed93a2 438extern signed long schedule_timeout_uninterruptible(signed long timeout);
69b27baf 439extern signed long schedule_timeout_idle(signed long timeout);
1da177e4 440asmlinkage void schedule(void);
c5491ea7 441extern void schedule_preempt_disabled(void);
1da177e4 442
9cff8ade
N
443extern long io_schedule_timeout(long timeout);
444
445static inline void io_schedule(void)
446{
447 io_schedule_timeout(MAX_SCHEDULE_TIMEOUT);
448}
449
ab516013 450struct nsproxy;
acce292c 451struct user_namespace;
1da177e4 452
efc1a3b1
DH
453#ifdef CONFIG_MMU
454extern void arch_pick_mmap_layout(struct mm_struct *mm);
1da177e4
LT
455extern unsigned long
456arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
457 unsigned long, unsigned long);
458extern unsigned long
459arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
460 unsigned long len, unsigned long pgoff,
461 unsigned long flags);
efc1a3b1
DH
462#else
463static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
464#endif
1da177e4 465
d049f74f
KC
466#define SUID_DUMP_DISABLE 0 /* No setuid dumping */
467#define SUID_DUMP_USER 1 /* Dump as user of process */
468#define SUID_DUMP_ROOT 2 /* Dump as root */
469
6c5d5238 470/* mm flags */
f8af4da3 471
7288e118 472/* for SUID_DUMP_* above */
3cb4a0bb 473#define MMF_DUMPABLE_BITS 2
f8af4da3 474#define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
3cb4a0bb 475
942be387
ON
476extern void set_dumpable(struct mm_struct *mm, int value);
477/*
478 * This returns the actual value of the suid_dumpable flag. For things
479 * that are using this for checking for privilege transitions, it must
480 * test against SUID_DUMP_USER rather than treating it as a boolean
481 * value.
482 */
483static inline int __get_dumpable(unsigned long mm_flags)
484{
485 return mm_flags & MMF_DUMPABLE_MASK;
486}
487
488static inline int get_dumpable(struct mm_struct *mm)
489{
490 return __get_dumpable(mm->flags);
491}
492
3cb4a0bb
KH
493/* coredump filter bits */
494#define MMF_DUMP_ANON_PRIVATE 2
495#define MMF_DUMP_ANON_SHARED 3
496#define MMF_DUMP_MAPPED_PRIVATE 4
497#define MMF_DUMP_MAPPED_SHARED 5
82df3973 498#define MMF_DUMP_ELF_HEADERS 6
e575f111
KM
499#define MMF_DUMP_HUGETLB_PRIVATE 7
500#define MMF_DUMP_HUGETLB_SHARED 8
5037835c
RZ
501#define MMF_DUMP_DAX_PRIVATE 9
502#define MMF_DUMP_DAX_SHARED 10
f8af4da3 503
3cb4a0bb 504#define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
5037835c 505#define MMF_DUMP_FILTER_BITS 9
3cb4a0bb
KH
506#define MMF_DUMP_FILTER_MASK \
507 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
508#define MMF_DUMP_FILTER_DEFAULT \
e575f111 509 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
656eb2cd
RM
510 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
511
512#ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
513# define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
514#else
515# define MMF_DUMP_MASK_DEFAULT_ELF 0
516#endif
f8af4da3
HD
517 /* leave room for more dump flags */
518#define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
ba76149f 519#define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */
bafb282d 520#define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */
f8af4da3 521
9f68f672
ON
522#define MMF_HAS_UPROBES 19 /* has uprobes */
523#define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */
bb8a4b7f 524#define MMF_OOM_REAPED 21 /* mm has been already reaped */
f8ac4ec9 525
f8af4da3 526#define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
6c5d5238 527
1da177e4
LT
528struct sighand_struct {
529 atomic_t count;
530 struct k_sigaction action[_NSIG];
531 spinlock_t siglock;
b8fceee1 532 wait_queue_head_t signalfd_wqh;
1da177e4
LT
533};
534
0e464814 535struct pacct_struct {
f6ec29a4
KK
536 int ac_flag;
537 long ac_exitcode;
0e464814 538 unsigned long ac_mem;
77787bfb
KK
539 cputime_t ac_utime, ac_stime;
540 unsigned long ac_minflt, ac_majflt;
0e464814
KK
541};
542
42c4ab41
SG
543struct cpu_itimer {
544 cputime_t expires;
545 cputime_t incr;
8356b5f9
SG
546 u32 error;
547 u32 incr_error;
42c4ab41
SG
548};
549
d37f761d 550/**
9d7fb042 551 * struct prev_cputime - snaphsot of system and user cputime
d37f761d
FW
552 * @utime: time spent in user mode
553 * @stime: time spent in system mode
9d7fb042 554 * @lock: protects the above two fields
d37f761d 555 *
9d7fb042
PZ
556 * Stores previous user/system time values such that we can guarantee
557 * monotonicity.
d37f761d 558 */
9d7fb042
PZ
559struct prev_cputime {
560#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
d37f761d
FW
561 cputime_t utime;
562 cputime_t stime;
9d7fb042
PZ
563 raw_spinlock_t lock;
564#endif
d37f761d
FW
565};
566
9d7fb042
PZ
567static inline void prev_cputime_init(struct prev_cputime *prev)
568{
569#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
570 prev->utime = prev->stime = 0;
571 raw_spin_lock_init(&prev->lock);
572#endif
573}
574
f06febc9
FM
575/**
576 * struct task_cputime - collected CPU time counts
577 * @utime: time spent in user mode, in &cputime_t units
578 * @stime: time spent in kernel mode, in &cputime_t units
579 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
5ce73a4a 580 *
9d7fb042
PZ
581 * This structure groups together three kinds of CPU time that are tracked for
582 * threads and thread groups. Most things considering CPU time want to group
583 * these counts together and treat all three of them in parallel.
f06febc9
FM
584 */
585struct task_cputime {
586 cputime_t utime;
587 cputime_t stime;
588 unsigned long long sum_exec_runtime;
589};
9d7fb042 590
f06febc9 591/* Alternate field names when used to cache expirations. */
f06febc9 592#define virt_exp utime
9d7fb042 593#define prof_exp stime
f06febc9
FM
594#define sched_exp sum_exec_runtime
595
4cd4c1b4
PZ
596#define INIT_CPUTIME \
597 (struct task_cputime) { \
64861634
MS
598 .utime = 0, \
599 .stime = 0, \
4cd4c1b4
PZ
600 .sum_exec_runtime = 0, \
601 }
602
971e8a98
JL
603/*
604 * This is the atomic variant of task_cputime, which can be used for
605 * storing and updating task_cputime statistics without locking.
606 */
607struct task_cputime_atomic {
608 atomic64_t utime;
609 atomic64_t stime;
610 atomic64_t sum_exec_runtime;
611};
612
613#define INIT_CPUTIME_ATOMIC \
614 (struct task_cputime_atomic) { \
615 .utime = ATOMIC64_INIT(0), \
616 .stime = ATOMIC64_INIT(0), \
617 .sum_exec_runtime = ATOMIC64_INIT(0), \
618 }
619
609ca066 620#define PREEMPT_DISABLED (PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
a233f112 621
c99e6efe 622/*
87dcbc06
PZ
623 * Disable preemption until the scheduler is running -- use an unconditional
624 * value so that it also works on !PREEMPT_COUNT kernels.
d86ee480 625 *
87dcbc06 626 * Reset by start_kernel()->sched_init()->init_idle()->init_idle_preempt_count().
c99e6efe 627 */
87dcbc06 628#define INIT_PREEMPT_COUNT PREEMPT_OFFSET
a233f112 629
c99e6efe 630/*
609ca066
PZ
631 * Initial preempt_count value; reflects the preempt_count schedule invariant
632 * which states that during context switches:
d86ee480 633 *
609ca066
PZ
634 * preempt_count() == 2*PREEMPT_DISABLE_OFFSET
635 *
636 * Note: PREEMPT_DISABLE_OFFSET is 0 for !PREEMPT_COUNT kernels.
637 * Note: See finish_task_switch().
c99e6efe 638 */
609ca066 639#define FORK_PREEMPT_COUNT (2*PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
c99e6efe 640
f06febc9 641/**
4cd4c1b4 642 * struct thread_group_cputimer - thread group interval timer counts
920ce39f 643 * @cputime_atomic: atomic thread group interval timers.
d5c373eb
JL
644 * @running: true when there are timers running and
645 * @cputime_atomic receives updates.
c8d75aa4
JL
646 * @checking_timer: true when a thread in the group is in the
647 * process of checking for thread group timers.
f06febc9
FM
648 *
649 * This structure contains the version of task_cputime, above, that is
4cd4c1b4 650 * used for thread group CPU timer calculations.
f06febc9 651 */
4cd4c1b4 652struct thread_group_cputimer {
71107445 653 struct task_cputime_atomic cputime_atomic;
d5c373eb 654 bool running;
c8d75aa4 655 bool checking_timer;
f06febc9 656};
f06febc9 657
4714d1d3 658#include <linux/rwsem.h>
5091faa4
MG
659struct autogroup;
660
1da177e4 661/*
e815f0a8 662 * NOTE! "signal_struct" does not have its own
1da177e4
LT
663 * locking, because a shared signal_struct always
664 * implies a shared sighand_struct, so locking
665 * sighand_struct is always a proper superset of
666 * the locking of signal_struct.
667 */
668struct signal_struct {
ea6d290c 669 atomic_t sigcnt;
1da177e4 670 atomic_t live;
b3ac022c 671 int nr_threads;
f44666b0 672 atomic_t oom_victims; /* # of TIF_MEDIE threads in this thread group */
0c740d0a 673 struct list_head thread_head;
1da177e4
LT
674
675 wait_queue_head_t wait_chldexit; /* for wait4() */
676
677 /* current thread group signal load-balancing target: */
36c8b586 678 struct task_struct *curr_target;
1da177e4
LT
679
680 /* shared signal handling: */
681 struct sigpending shared_pending;
682
683 /* thread group exit support */
684 int group_exit_code;
685 /* overloaded:
686 * - notify group_exit_task when ->count is equal to notify_count
687 * - everyone except group_exit_task is stopped during signal delivery
688 * of fatal signals, group_exit_task processes the signal.
689 */
1da177e4 690 int notify_count;
07dd20e0 691 struct task_struct *group_exit_task;
1da177e4
LT
692
693 /* thread group stop support, overloads group_exit_code too */
694 int group_stop_count;
695 unsigned int flags; /* see SIGNAL_* flags below */
696
ebec18a6
LP
697 /*
698 * PR_SET_CHILD_SUBREAPER marks a process, like a service
699 * manager, to re-parent orphan (double-forking) child processes
700 * to this process instead of 'init'. The service manager is
701 * able to receive SIGCHLD signals and is able to investigate
702 * the process until it calls wait(). All children of this
703 * process will inherit a flag if they should look for a
704 * child_subreaper process at exit.
705 */
706 unsigned int is_child_subreaper:1;
707 unsigned int has_child_subreaper:1;
708
1da177e4 709 /* POSIX.1b Interval Timers */
5ed67f05
PE
710 int posix_timer_id;
711 struct list_head posix_timers;
1da177e4
LT
712
713 /* ITIMER_REAL timer for the process */
2ff678b8 714 struct hrtimer real_timer;
fea9d175 715 struct pid *leader_pid;
2ff678b8 716 ktime_t it_real_incr;
1da177e4 717
42c4ab41
SG
718 /*
719 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
720 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
721 * values are defined to 0 and 1 respectively
722 */
723 struct cpu_itimer it[2];
1da177e4 724
f06febc9 725 /*
4cd4c1b4
PZ
726 * Thread group totals for process CPU timers.
727 * See thread_group_cputimer(), et al, for details.
f06febc9 728 */
4cd4c1b4 729 struct thread_group_cputimer cputimer;
f06febc9
FM
730
731 /* Earliest-expiration cache. */
732 struct task_cputime cputime_expires;
733
d027d45d 734#ifdef CONFIG_NO_HZ_FULL
f009a7a7 735 atomic_t tick_dep_mask;
d027d45d
FW
736#endif
737
f06febc9
FM
738 struct list_head cpu_timers[3];
739
ab521dc0 740 struct pid *tty_old_pgrp;
1ec320af 741
1da177e4
LT
742 /* boolean value for session group leader */
743 int leader;
744
745 struct tty_struct *tty; /* NULL if no tty */
746
5091faa4
MG
747#ifdef CONFIG_SCHED_AUTOGROUP
748 struct autogroup *autogroup;
749#endif
1da177e4
LT
750 /*
751 * Cumulative resource counters for dead threads in the group,
752 * and for reaped dead child processes forked by this group.
753 * Live threads maintain their own counters and add to these
754 * in __exit_signal, except for the group leader.
755 */
e78c3496 756 seqlock_t stats_lock;
32bd671d 757 cputime_t utime, stime, cutime, cstime;
9ac52315
LV
758 cputime_t gtime;
759 cputime_t cgtime;
9d7fb042 760 struct prev_cputime prev_cputime;
1da177e4
LT
761 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
762 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
6eaeeaba 763 unsigned long inblock, oublock, cinblock, coublock;
1f10206c 764 unsigned long maxrss, cmaxrss;
940389b8 765 struct task_io_accounting ioac;
1da177e4 766
32bd671d
PZ
767 /*
768 * Cumulative ns of schedule CPU time fo dead threads in the
769 * group, not including a zombie group leader, (This only differs
770 * from jiffies_to_ns(utime + stime) if sched_clock uses something
771 * other than jiffies.)
772 */
773 unsigned long long sum_sched_runtime;
774
1da177e4
LT
775 /*
776 * We don't bother to synchronize most readers of this at all,
777 * because there is no reader checking a limit that actually needs
778 * to get both rlim_cur and rlim_max atomically, and either one
779 * alone is a single word that can safely be read normally.
780 * getrlimit/setrlimit use task_lock(current->group_leader) to
781 * protect this instead of the siglock, because they really
782 * have no need to disable irqs.
783 */
784 struct rlimit rlim[RLIM_NLIMITS];
785
0e464814
KK
786#ifdef CONFIG_BSD_PROCESS_ACCT
787 struct pacct_struct pacct; /* per-process accounting information */
788#endif
ad4ecbcb 789#ifdef CONFIG_TASKSTATS
ad4ecbcb
SN
790 struct taskstats *stats;
791#endif
522ed776
MT
792#ifdef CONFIG_AUDIT
793 unsigned audit_tty;
794 struct tty_audit_buf *tty_audit_buf;
795#endif
28b83c51 796
e1e12d2f 797 oom_flags_t oom_flags;
a9c58b90
DR
798 short oom_score_adj; /* OOM kill score adjustment */
799 short oom_score_adj_min; /* OOM kill score adjustment min value.
800 * Only settable by CAP_SYS_RESOURCE. */
9b1bf12d
KM
801
802 struct mutex cred_guard_mutex; /* guard against foreign influences on
803 * credential calculations
804 * (notably. ptrace) */
1da177e4
LT
805};
806
807/*
808 * Bits in flags field of signal_struct.
809 */
810#define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
ee77f075
ON
811#define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */
812#define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */
403bad72 813#define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */
e4420551
ON
814/*
815 * Pending notifications to parent.
816 */
817#define SIGNAL_CLD_STOPPED 0x00000010
818#define SIGNAL_CLD_CONTINUED 0x00000020
819#define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
1da177e4 820
fae5fa44
ON
821#define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
822
ed5d2cac
ON
823/* If true, all threads except ->group_exit_task have pending SIGKILL */
824static inline int signal_group_exit(const struct signal_struct *sig)
825{
826 return (sig->flags & SIGNAL_GROUP_EXIT) ||
827 (sig->group_exit_task != NULL);
828}
829
1da177e4
LT
830/*
831 * Some day this will be a full-fledged user tracking system..
832 */
833struct user_struct {
834 atomic_t __count; /* reference count */
835 atomic_t processes; /* How many processes does this user have? */
1da177e4 836 atomic_t sigpending; /* How many pending signals does this user have? */
2d9048e2 837#ifdef CONFIG_INOTIFY_USER
0eeca283
RL
838 atomic_t inotify_watches; /* How many inotify watches does this user have? */
839 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
840#endif
4afeff85
EP
841#ifdef CONFIG_FANOTIFY
842 atomic_t fanotify_listeners;
843#endif
7ef9964e 844#ifdef CONFIG_EPOLL
52bd19f7 845 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
7ef9964e 846#endif
970a8645 847#ifdef CONFIG_POSIX_MQUEUE
1da177e4
LT
848 /* protected by mq_lock */
849 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
970a8645 850#endif
1da177e4 851 unsigned long locked_shm; /* How many pages of mlocked shm ? */
712f4aad 852 unsigned long unix_inflight; /* How many files in flight in unix sockets */
759c0114 853 atomic_long_t pipe_bufs; /* how many pages are allocated in pipe buffers */
1da177e4
LT
854
855#ifdef CONFIG_KEYS
856 struct key *uid_keyring; /* UID specific keyring */
857 struct key *session_keyring; /* UID's default session keyring */
858#endif
859
860 /* Hash table maintenance information */
735de223 861 struct hlist_node uidhash_node;
7b44ab97 862 kuid_t uid;
24e377a8 863
aaac3ba9 864#if defined(CONFIG_PERF_EVENTS) || defined(CONFIG_BPF_SYSCALL)
789f90fc
PZ
865 atomic_long_t locked_vm;
866#endif
1da177e4
LT
867};
868
eb41d946 869extern int uids_sysfs_init(void);
5cb350ba 870
7b44ab97 871extern struct user_struct *find_user(kuid_t);
1da177e4
LT
872
873extern struct user_struct root_user;
874#define INIT_USER (&root_user)
875
b6dff3ec 876
1da177e4
LT
877struct backing_dev_info;
878struct reclaim_state;
879
f6db8347 880#ifdef CONFIG_SCHED_INFO
1da177e4
LT
881struct sched_info {
882 /* cumulative counters */
2d72376b 883 unsigned long pcount; /* # of times run on this cpu */
9c2c4802 884 unsigned long long run_delay; /* time spent waiting on a runqueue */
1da177e4
LT
885
886 /* timestamps */
172ba844
BS
887 unsigned long long last_arrival,/* when we last ran on a cpu */
888 last_queued; /* when we were last queued to run */
1da177e4 889};
f6db8347 890#endif /* CONFIG_SCHED_INFO */
1da177e4 891
ca74e92b
SN
892#ifdef CONFIG_TASK_DELAY_ACCT
893struct task_delay_info {
894 spinlock_t lock;
895 unsigned int flags; /* Private per-task flags */
896
897 /* For each stat XXX, add following, aligned appropriately
898 *
899 * struct timespec XXX_start, XXX_end;
900 * u64 XXX_delay;
901 * u32 XXX_count;
902 *
903 * Atomicity of updates to XXX_delay, XXX_count protected by
904 * single lock above (split into XXX_lock if contention is an issue).
905 */
0ff92245
SN
906
907 /*
908 * XXX_count is incremented on every XXX operation, the delay
909 * associated with the operation is added to XXX_delay.
910 * XXX_delay contains the accumulated delay time in nanoseconds.
911 */
9667a23d 912 u64 blkio_start; /* Shared by blkio, swapin */
0ff92245
SN
913 u64 blkio_delay; /* wait for sync block io completion */
914 u64 swapin_delay; /* wait for swapin block io completion */
915 u32 blkio_count; /* total count of the number of sync block */
916 /* io operations performed */
917 u32 swapin_count; /* total count of the number of swapin block */
918 /* io operations performed */
873b4771 919
9667a23d 920 u64 freepages_start;
873b4771
KK
921 u64 freepages_delay; /* wait for memory reclaim */
922 u32 freepages_count; /* total count of memory reclaim */
ca74e92b 923};
52f17b6c
CS
924#endif /* CONFIG_TASK_DELAY_ACCT */
925
926static inline int sched_info_on(void)
927{
928#ifdef CONFIG_SCHEDSTATS
929 return 1;
930#elif defined(CONFIG_TASK_DELAY_ACCT)
931 extern int delayacct_on;
932 return delayacct_on;
933#else
934 return 0;
ca74e92b 935#endif
52f17b6c 936}
ca74e92b 937
cb251765
MG
938#ifdef CONFIG_SCHEDSTATS
939void force_schedstat_enabled(void);
940#endif
941
d15bcfdb
IM
942enum cpu_idle_type {
943 CPU_IDLE,
944 CPU_NOT_IDLE,
945 CPU_NEWLY_IDLE,
946 CPU_MAX_IDLE_TYPES
1da177e4
LT
947};
948
6ecdd749
YD
949/*
950 * Integer metrics need fixed point arithmetic, e.g., sched/fair
951 * has a few: load, load_avg, util_avg, freq, and capacity.
952 *
953 * We define a basic fixed point arithmetic range, and then formalize
954 * all these metrics based on that basic range.
955 */
956# define SCHED_FIXEDPOINT_SHIFT 10
957# define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
958
1399fa78 959/*
ca8ce3d0 960 * Increase resolution of cpu_capacity calculations
1399fa78 961 */
6ecdd749 962#define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT
ca8ce3d0 963#define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
1da177e4 964
76751049
PZ
965/*
966 * Wake-queues are lists of tasks with a pending wakeup, whose
967 * callers have already marked the task as woken internally,
968 * and can thus carry on. A common use case is being able to
969 * do the wakeups once the corresponding user lock as been
970 * released.
971 *
972 * We hold reference to each task in the list across the wakeup,
973 * thus guaranteeing that the memory is still valid by the time
974 * the actual wakeups are performed in wake_up_q().
975 *
976 * One per task suffices, because there's never a need for a task to be
977 * in two wake queues simultaneously; it is forbidden to abandon a task
978 * in a wake queue (a call to wake_up_q() _must_ follow), so if a task is
979 * already in a wake queue, the wakeup will happen soon and the second
980 * waker can just skip it.
981 *
982 * The WAKE_Q macro declares and initializes the list head.
983 * wake_up_q() does NOT reinitialize the list; it's expected to be
984 * called near the end of a function, where the fact that the queue is
985 * not used again will be easy to see by inspection.
986 *
987 * Note that this can cause spurious wakeups. schedule() callers
988 * must ensure the call is done inside a loop, confirming that the
989 * wakeup condition has in fact occurred.
990 */
991struct wake_q_node {
992 struct wake_q_node *next;
993};
994
995struct wake_q_head {
996 struct wake_q_node *first;
997 struct wake_q_node **lastp;
998};
999
1000#define WAKE_Q_TAIL ((struct wake_q_node *) 0x01)
1001
1002#define WAKE_Q(name) \
1003 struct wake_q_head name = { WAKE_Q_TAIL, &name.first }
1004
1005extern void wake_q_add(struct wake_q_head *head,
1006 struct task_struct *task);
1007extern void wake_up_q(struct wake_q_head *head);
1008
1399fa78
NR
1009/*
1010 * sched-domains (multiprocessor balancing) declarations:
1011 */
2dd73a4f 1012#ifdef CONFIG_SMP
b5d978e0
PZ
1013#define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
1014#define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
1015#define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
1016#define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
c88d5910 1017#define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
b5d978e0 1018#define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
5d4dfddd 1019#define SD_SHARE_CPUCAPACITY 0x0080 /* Domain members share cpu power */
d77b3ed5 1020#define SD_SHARE_POWERDOMAIN 0x0100 /* Domain members share power domain */
b5d978e0
PZ
1021#define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
1022#define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
532cb4c4 1023#define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
b5d978e0 1024#define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
e3589f6c 1025#define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */
3a7053b3 1026#define SD_NUMA 0x4000 /* cross-node balancing */
5c45bf27 1027
143e1e28 1028#ifdef CONFIG_SCHED_SMT
b6220ad6 1029static inline int cpu_smt_flags(void)
143e1e28 1030{
5d4dfddd 1031 return SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;
143e1e28
VG
1032}
1033#endif
1034
1035#ifdef CONFIG_SCHED_MC
b6220ad6 1036static inline int cpu_core_flags(void)
143e1e28
VG
1037{
1038 return SD_SHARE_PKG_RESOURCES;
1039}
1040#endif
1041
1042#ifdef CONFIG_NUMA
b6220ad6 1043static inline int cpu_numa_flags(void)
143e1e28
VG
1044{
1045 return SD_NUMA;
1046}
1047#endif
532cb4c4 1048
1d3504fc
HS
1049struct sched_domain_attr {
1050 int relax_domain_level;
1051};
1052
1053#define SD_ATTR_INIT (struct sched_domain_attr) { \
1054 .relax_domain_level = -1, \
1055}
1056
60495e77
PZ
1057extern int sched_domain_level_max;
1058
5e6521ea
LZ
1059struct sched_group;
1060
1da177e4
LT
1061struct sched_domain {
1062 /* These fields must be setup */
1063 struct sched_domain *parent; /* top domain must be null terminated */
1a848870 1064 struct sched_domain *child; /* bottom domain must be null terminated */
1da177e4 1065 struct sched_group *groups; /* the balancing groups of the domain */
1da177e4
LT
1066 unsigned long min_interval; /* Minimum balance interval ms */
1067 unsigned long max_interval; /* Maximum balance interval ms */
1068 unsigned int busy_factor; /* less balancing by factor if busy */
1069 unsigned int imbalance_pct; /* No balance until over watermark */
1da177e4 1070 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
7897986b
NP
1071 unsigned int busy_idx;
1072 unsigned int idle_idx;
1073 unsigned int newidle_idx;
1074 unsigned int wake_idx;
147cbb4b 1075 unsigned int forkexec_idx;
a52bfd73 1076 unsigned int smt_gain;
25f55d9d
VG
1077
1078 int nohz_idle; /* NOHZ IDLE status */
1da177e4 1079 int flags; /* See SD_* */
60495e77 1080 int level;
1da177e4
LT
1081
1082 /* Runtime fields. */
1083 unsigned long last_balance; /* init to jiffies. units in jiffies */
1084 unsigned int balance_interval; /* initialise to 1. units in ms. */
1085 unsigned int nr_balance_failed; /* initialise to 0 */
1086
f48627e6 1087 /* idle_balance() stats */
9bd721c5 1088 u64 max_newidle_lb_cost;
f48627e6 1089 unsigned long next_decay_max_lb_cost;
2398f2c6 1090
1da177e4
LT
1091#ifdef CONFIG_SCHEDSTATS
1092 /* load_balance() stats */
480b9434
KC
1093 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
1094 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
1095 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
1096 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
1097 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
1098 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
1099 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
1100 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
1da177e4
LT
1101
1102 /* Active load balancing */
480b9434
KC
1103 unsigned int alb_count;
1104 unsigned int alb_failed;
1105 unsigned int alb_pushed;
1da177e4 1106
68767a0a 1107 /* SD_BALANCE_EXEC stats */
480b9434
KC
1108 unsigned int sbe_count;
1109 unsigned int sbe_balanced;
1110 unsigned int sbe_pushed;
1da177e4 1111
68767a0a 1112 /* SD_BALANCE_FORK stats */
480b9434
KC
1113 unsigned int sbf_count;
1114 unsigned int sbf_balanced;
1115 unsigned int sbf_pushed;
68767a0a 1116
1da177e4 1117 /* try_to_wake_up() stats */
480b9434
KC
1118 unsigned int ttwu_wake_remote;
1119 unsigned int ttwu_move_affine;
1120 unsigned int ttwu_move_balance;
1da177e4 1121#endif
a5d8c348
IM
1122#ifdef CONFIG_SCHED_DEBUG
1123 char *name;
1124#endif
dce840a0
PZ
1125 union {
1126 void *private; /* used during construction */
1127 struct rcu_head rcu; /* used during destruction */
1128 };
6c99e9ad 1129
669c55e9 1130 unsigned int span_weight;
4200efd9
IM
1131 /*
1132 * Span of all CPUs in this domain.
1133 *
1134 * NOTE: this field is variable length. (Allocated dynamically
1135 * by attaching extra space to the end of the structure,
1136 * depending on how many CPUs the kernel has booted up with)
4200efd9
IM
1137 */
1138 unsigned long span[0];
1da177e4
LT
1139};
1140
758b2cdc
RR
1141static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
1142{
6c99e9ad 1143 return to_cpumask(sd->span);
758b2cdc
RR
1144}
1145
acc3f5d7 1146extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 1147 struct sched_domain_attr *dattr_new);
029190c5 1148
acc3f5d7
RR
1149/* Allocate an array of sched domains, for partition_sched_domains(). */
1150cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
1151void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
1152
39be3501
PZ
1153bool cpus_share_cache(int this_cpu, int that_cpu);
1154
143e1e28 1155typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
b6220ad6 1156typedef int (*sched_domain_flags_f)(void);
143e1e28
VG
1157
1158#define SDTL_OVERLAP 0x01
1159
1160struct sd_data {
1161 struct sched_domain **__percpu sd;
1162 struct sched_group **__percpu sg;
63b2ca30 1163 struct sched_group_capacity **__percpu sgc;
143e1e28
VG
1164};
1165
1166struct sched_domain_topology_level {
1167 sched_domain_mask_f mask;
1168 sched_domain_flags_f sd_flags;
1169 int flags;
1170 int numa_level;
1171 struct sd_data data;
1172#ifdef CONFIG_SCHED_DEBUG
1173 char *name;
1174#endif
1175};
1176
143e1e28 1177extern void set_sched_topology(struct sched_domain_topology_level *tl);
f6be8af1 1178extern void wake_up_if_idle(int cpu);
143e1e28
VG
1179
1180#ifdef CONFIG_SCHED_DEBUG
1181# define SD_INIT_NAME(type) .name = #type
1182#else
1183# define SD_INIT_NAME(type)
1184#endif
1185
1b427c15 1186#else /* CONFIG_SMP */
1da177e4 1187
1b427c15 1188struct sched_domain_attr;
d02c7a8c 1189
1b427c15 1190static inline void
acc3f5d7 1191partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1b427c15
IM
1192 struct sched_domain_attr *dattr_new)
1193{
d02c7a8c 1194}
39be3501
PZ
1195
1196static inline bool cpus_share_cache(int this_cpu, int that_cpu)
1197{
1198 return true;
1199}
1200
1b427c15 1201#endif /* !CONFIG_SMP */
1da177e4 1202
47fe38fc 1203
1da177e4 1204struct io_context; /* See blkdev.h */
1da177e4 1205
1da177e4 1206
383f2835 1207#ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
36c8b586 1208extern void prefetch_stack(struct task_struct *t);
383f2835
CK
1209#else
1210static inline void prefetch_stack(struct task_struct *t) { }
1211#endif
1da177e4
LT
1212
1213struct audit_context; /* See audit.c */
1214struct mempolicy;
b92ce558 1215struct pipe_inode_info;
4865ecf1 1216struct uts_namespace;
1da177e4 1217
20b8a59f 1218struct load_weight {
9dbdb155
PZ
1219 unsigned long weight;
1220 u32 inv_weight;
20b8a59f
IM
1221};
1222
9d89c257 1223/*
7b595334
YD
1224 * The load_avg/util_avg accumulates an infinite geometric series
1225 * (see __update_load_avg() in kernel/sched/fair.c).
1226 *
1227 * [load_avg definition]
1228 *
1229 * load_avg = runnable% * scale_load_down(load)
1230 *
1231 * where runnable% is the time ratio that a sched_entity is runnable.
1232 * For cfs_rq, it is the aggregated load_avg of all runnable and
9d89c257 1233 * blocked sched_entities.
7b595334
YD
1234 *
1235 * load_avg may also take frequency scaling into account:
1236 *
1237 * load_avg = runnable% * scale_load_down(load) * freq%
1238 *
1239 * where freq% is the CPU frequency normalized to the highest frequency.
1240 *
1241 * [util_avg definition]
1242 *
1243 * util_avg = running% * SCHED_CAPACITY_SCALE
1244 *
1245 * where running% is the time ratio that a sched_entity is running on
1246 * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable
1247 * and blocked sched_entities.
1248 *
1249 * util_avg may also factor frequency scaling and CPU capacity scaling:
1250 *
1251 * util_avg = running% * SCHED_CAPACITY_SCALE * freq% * capacity%
1252 *
1253 * where freq% is the same as above, and capacity% is the CPU capacity
1254 * normalized to the greatest capacity (due to uarch differences, etc).
1255 *
1256 * N.B., the above ratios (runnable%, running%, freq%, and capacity%)
1257 * themselves are in the range of [0, 1]. To do fixed point arithmetics,
1258 * we therefore scale them to as large a range as necessary. This is for
1259 * example reflected by util_avg's SCHED_CAPACITY_SCALE.
1260 *
1261 * [Overflow issue]
1262 *
1263 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
1264 * with the highest load (=88761), always runnable on a single cfs_rq,
1265 * and should not overflow as the number already hits PID_MAX_LIMIT.
1266 *
1267 * For all other cases (including 32-bit kernels), struct load_weight's
1268 * weight will overflow first before we do, because:
1269 *
1270 * Max(load_avg) <= Max(load.weight)
1271 *
1272 * Then it is the load_weight's responsibility to consider overflow
1273 * issues.
9d89c257 1274 */
9d85f21c 1275struct sched_avg {
9d89c257
YD
1276 u64 last_update_time, load_sum;
1277 u32 util_sum, period_contrib;
1278 unsigned long load_avg, util_avg;
9d85f21c
PT
1279};
1280
94c18227 1281#ifdef CONFIG_SCHEDSTATS
41acab88 1282struct sched_statistics {
20b8a59f 1283 u64 wait_start;
94c18227 1284 u64 wait_max;
6d082592
AV
1285 u64 wait_count;
1286 u64 wait_sum;
8f0dfc34
AV
1287 u64 iowait_count;
1288 u64 iowait_sum;
94c18227 1289
20b8a59f 1290 u64 sleep_start;
20b8a59f 1291 u64 sleep_max;
94c18227
IM
1292 s64 sum_sleep_runtime;
1293
1294 u64 block_start;
20b8a59f
IM
1295 u64 block_max;
1296 u64 exec_max;
eba1ed4b 1297 u64 slice_max;
cc367732 1298
cc367732
IM
1299 u64 nr_migrations_cold;
1300 u64 nr_failed_migrations_affine;
1301 u64 nr_failed_migrations_running;
1302 u64 nr_failed_migrations_hot;
1303 u64 nr_forced_migrations;
cc367732
IM
1304
1305 u64 nr_wakeups;
1306 u64 nr_wakeups_sync;
1307 u64 nr_wakeups_migrate;
1308 u64 nr_wakeups_local;
1309 u64 nr_wakeups_remote;
1310 u64 nr_wakeups_affine;
1311 u64 nr_wakeups_affine_attempts;
1312 u64 nr_wakeups_passive;
1313 u64 nr_wakeups_idle;
41acab88
LDM
1314};
1315#endif
1316
1317struct sched_entity {
1318 struct load_weight load; /* for load-balancing */
1319 struct rb_node run_node;
1320 struct list_head group_node;
1321 unsigned int on_rq;
1322
1323 u64 exec_start;
1324 u64 sum_exec_runtime;
1325 u64 vruntime;
1326 u64 prev_sum_exec_runtime;
1327
41acab88
LDM
1328 u64 nr_migrations;
1329
41acab88
LDM
1330#ifdef CONFIG_SCHEDSTATS
1331 struct sched_statistics statistics;
94c18227
IM
1332#endif
1333
20b8a59f 1334#ifdef CONFIG_FAIR_GROUP_SCHED
fed14d45 1335 int depth;
20b8a59f
IM
1336 struct sched_entity *parent;
1337 /* rq on which this entity is (to be) queued: */
1338 struct cfs_rq *cfs_rq;
1339 /* rq "owned" by this entity/group: */
1340 struct cfs_rq *my_q;
1341#endif
8bd75c77 1342
141965c7 1343#ifdef CONFIG_SMP
5a107804
JO
1344 /*
1345 * Per entity load average tracking.
1346 *
1347 * Put into separate cache line so it does not
1348 * collide with read-mostly values above.
1349 */
1350 struct sched_avg avg ____cacheline_aligned_in_smp;
9d85f21c 1351#endif
20b8a59f 1352};
70b97a7f 1353
fa717060
PZ
1354struct sched_rt_entity {
1355 struct list_head run_list;
78f2c7db 1356 unsigned long timeout;
57d2aa00 1357 unsigned long watchdog_stamp;
bee367ed 1358 unsigned int time_slice;
ff77e468
PZ
1359 unsigned short on_rq;
1360 unsigned short on_list;
6f505b16 1361
58d6c2d7 1362 struct sched_rt_entity *back;
052f1dc7 1363#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
1364 struct sched_rt_entity *parent;
1365 /* rq on which this entity is (to be) queued: */
1366 struct rt_rq *rt_rq;
1367 /* rq "owned" by this entity/group: */
1368 struct rt_rq *my_q;
1369#endif
fa717060
PZ
1370};
1371
aab03e05
DF
1372struct sched_dl_entity {
1373 struct rb_node rb_node;
1374
1375 /*
1376 * Original scheduling parameters. Copied here from sched_attr
4027d080 1377 * during sched_setattr(), they will remain the same until
1378 * the next sched_setattr().
aab03e05
DF
1379 */
1380 u64 dl_runtime; /* maximum runtime for each instance */
1381 u64 dl_deadline; /* relative deadline of each instance */
755378a4 1382 u64 dl_period; /* separation of two instances (period) */
332ac17e 1383 u64 dl_bw; /* dl_runtime / dl_deadline */
aab03e05
DF
1384
1385 /*
1386 * Actual scheduling parameters. Initialized with the values above,
1387 * they are continously updated during task execution. Note that
1388 * the remaining runtime could be < 0 in case we are in overrun.
1389 */
1390 s64 runtime; /* remaining runtime for this instance */
1391 u64 deadline; /* absolute deadline for this instance */
1392 unsigned int flags; /* specifying the scheduler behaviour */
1393
1394 /*
1395 * Some bool flags:
1396 *
1397 * @dl_throttled tells if we exhausted the runtime. If so, the
1398 * task has to wait for a replenishment to be performed at the
1399 * next firing of dl_timer.
1400 *
2d3d891d
DF
1401 * @dl_boosted tells if we are boosted due to DI. If so we are
1402 * outside bandwidth enforcement mechanism (but only until we
5bfd126e
JL
1403 * exit the critical section);
1404 *
1405 * @dl_yielded tells if task gave up the cpu before consuming
1406 * all its available runtime during the last job.
aab03e05 1407 */
72f9f3fd 1408 int dl_throttled, dl_boosted, dl_yielded;
aab03e05
DF
1409
1410 /*
1411 * Bandwidth enforcement timer. Each -deadline task has its
1412 * own bandwidth to be enforced, thus we need one timer per task.
1413 */
1414 struct hrtimer dl_timer;
1415};
8bd75c77 1416
1d082fd0
PM
1417union rcu_special {
1418 struct {
8203d6d0
PM
1419 u8 blocked;
1420 u8 need_qs;
1421 u8 exp_need_qs;
1422 u8 pad; /* Otherwise the compiler can store garbage here. */
1423 } b; /* Bits. */
1424 u32 s; /* Set of bits. */
1d082fd0 1425};
86848966
PM
1426struct rcu_node;
1427
8dc85d54
PZ
1428enum perf_event_task_context {
1429 perf_invalid_context = -1,
1430 perf_hw_context = 0,
89a1e187 1431 perf_sw_context,
8dc85d54
PZ
1432 perf_nr_task_contexts,
1433};
1434
72b252ae
MG
1435/* Track pages that require TLB flushes */
1436struct tlbflush_unmap_batch {
1437 /*
1438 * Each bit set is a CPU that potentially has a TLB entry for one of
1439 * the PFNs being flushed. See set_tlb_ubc_flush_pending().
1440 */
1441 struct cpumask cpumask;
1442
1443 /* True if any bit in cpumask is set */
1444 bool flush_required;
d950c947
MG
1445
1446 /*
1447 * If true then the PTE was dirty when unmapped. The entry must be
1448 * flushed before IO is initiated or a stale TLB entry potentially
1449 * allows an update without redirtying the page.
1450 */
1451 bool writable;
72b252ae
MG
1452};
1453
1da177e4
LT
1454struct task_struct {
1455 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
f7e4217b 1456 void *stack;
1da177e4 1457 atomic_t usage;
97dc32cd
WC
1458 unsigned int flags; /* per process flags, defined below */
1459 unsigned int ptrace;
1da177e4 1460
2dd73a4f 1461#ifdef CONFIG_SMP
fa14ff4a 1462 struct llist_node wake_entry;
3ca7a440 1463 int on_cpu;
63b0e9ed 1464 unsigned int wakee_flips;
62470419 1465 unsigned long wakee_flip_decay_ts;
63b0e9ed 1466 struct task_struct *last_wakee;
ac66f547
PZ
1467
1468 int wake_cpu;
2dd73a4f 1469#endif
fd2f4419 1470 int on_rq;
50e645a8 1471
b29739f9 1472 int prio, static_prio, normal_prio;
c7aceaba 1473 unsigned int rt_priority;
5522d5d5 1474 const struct sched_class *sched_class;
20b8a59f 1475 struct sched_entity se;
fa717060 1476 struct sched_rt_entity rt;
8323f26c
PZ
1477#ifdef CONFIG_CGROUP_SCHED
1478 struct task_group *sched_task_group;
1479#endif
aab03e05 1480 struct sched_dl_entity dl;
1da177e4 1481
e107be36
AK
1482#ifdef CONFIG_PREEMPT_NOTIFIERS
1483 /* list of struct preempt_notifier: */
1484 struct hlist_head preempt_notifiers;
1485#endif
1486
6c5c9341 1487#ifdef CONFIG_BLK_DEV_IO_TRACE
2056a782 1488 unsigned int btrace_seq;
6c5c9341 1489#endif
1da177e4 1490
97dc32cd 1491 unsigned int policy;
29baa747 1492 int nr_cpus_allowed;
1da177e4 1493 cpumask_t cpus_allowed;
1da177e4 1494
a57eb940 1495#ifdef CONFIG_PREEMPT_RCU
e260be67 1496 int rcu_read_lock_nesting;
1d082fd0 1497 union rcu_special rcu_read_unlock_special;
f41d911f 1498 struct list_head rcu_node_entry;
a57eb940 1499 struct rcu_node *rcu_blocked_node;
28f6569a 1500#endif /* #ifdef CONFIG_PREEMPT_RCU */
8315f422
PM
1501#ifdef CONFIG_TASKS_RCU
1502 unsigned long rcu_tasks_nvcsw;
1503 bool rcu_tasks_holdout;
1504 struct list_head rcu_tasks_holdout_list;
176f8f7a 1505 int rcu_tasks_idle_cpu;
8315f422 1506#endif /* #ifdef CONFIG_TASKS_RCU */
e260be67 1507
f6db8347 1508#ifdef CONFIG_SCHED_INFO
1da177e4
LT
1509 struct sched_info sched_info;
1510#endif
1511
1512 struct list_head tasks;
806c09a7 1513#ifdef CONFIG_SMP
917b627d 1514 struct plist_node pushable_tasks;
1baca4ce 1515 struct rb_node pushable_dl_tasks;
806c09a7 1516#endif
1da177e4
LT
1517
1518 struct mm_struct *mm, *active_mm;
615d6e87
DB
1519 /* per-thread vma caching */
1520 u32 vmacache_seqnum;
1521 struct vm_area_struct *vmacache[VMACACHE_SIZE];
34e55232
KH
1522#if defined(SPLIT_RSS_COUNTING)
1523 struct task_rss_stat rss_stat;
1524#endif
1da177e4 1525/* task state */
97dc32cd 1526 int exit_state;
1da177e4
LT
1527 int exit_code, exit_signal;
1528 int pdeath_signal; /* The signal sent when the parent dies */
e7cc4173 1529 unsigned long jobctl; /* JOBCTL_*, siglock protected */
9b89f6ba
AE
1530
1531 /* Used for emulating ABI behavior of previous Linux versions */
97dc32cd 1532 unsigned int personality;
9b89f6ba 1533
be958bdc 1534 /* scheduler bits, serialized by scheduler locks */
ca94c442 1535 unsigned sched_reset_on_fork:1;
a8e4f2ea 1536 unsigned sched_contributes_to_load:1;
ff303e66 1537 unsigned sched_migrated:1;
be958bdc
PZ
1538 unsigned :0; /* force alignment to the next boundary */
1539
1540 /* unserialized, strictly 'current' */
1541 unsigned in_execve:1; /* bit to tell LSMs we're in execve */
1542 unsigned in_iowait:1;
626ebc41
TH
1543#ifdef CONFIG_MEMCG
1544 unsigned memcg_may_oom:1;
127424c8 1545#ifndef CONFIG_SLOB
6f185c29
VD
1546 unsigned memcg_kmem_skip_account:1;
1547#endif
127424c8 1548#endif
ff303e66
PZ
1549#ifdef CONFIG_COMPAT_BRK
1550 unsigned brk_randomized:1;
1551#endif
6f185c29 1552
1d4457f9
KC
1553 unsigned long atomic_flags; /* Flags needing atomic access. */
1554
f56141e3
AL
1555 struct restart_block restart_block;
1556
1da177e4
LT
1557 pid_t pid;
1558 pid_t tgid;
0a425405 1559
1314562a 1560#ifdef CONFIG_CC_STACKPROTECTOR
0a425405
AV
1561 /* Canary value for the -fstack-protector gcc feature */
1562 unsigned long stack_canary;
1314562a 1563#endif
4d1d61a6 1564 /*
1da177e4 1565 * pointers to (original) parent process, youngest child, younger sibling,
4d1d61a6 1566 * older sibling, respectively. (p->father can be replaced with
f470021a 1567 * p->real_parent->pid)
1da177e4 1568 */
abd63bc3
KC
1569 struct task_struct __rcu *real_parent; /* real parent process */
1570 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1da177e4 1571 /*
f470021a 1572 * children/sibling forms the list of my natural children
1da177e4
LT
1573 */
1574 struct list_head children; /* list of my children */
1575 struct list_head sibling; /* linkage in my parent's children list */
1576 struct task_struct *group_leader; /* threadgroup leader */
1577
f470021a
RM
1578 /*
1579 * ptraced is the list of tasks this task is using ptrace on.
1580 * This includes both natural children and PTRACE_ATTACH targets.
1581 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1582 */
1583 struct list_head ptraced;
1584 struct list_head ptrace_entry;
1585
1da177e4 1586 /* PID/PID hash table linkage. */
92476d7f 1587 struct pid_link pids[PIDTYPE_MAX];
47e65328 1588 struct list_head thread_group;
0c740d0a 1589 struct list_head thread_node;
1da177e4
LT
1590
1591 struct completion *vfork_done; /* for vfork() */
1592 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1593 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1594
c66f08be 1595 cputime_t utime, stime, utimescaled, stimescaled;
9ac52315 1596 cputime_t gtime;
9d7fb042 1597 struct prev_cputime prev_cputime;
6a61671b 1598#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
b7ce2277 1599 seqcount_t vtime_seqcount;
6a61671b
FW
1600 unsigned long long vtime_snap;
1601 enum {
7098c1ea
FW
1602 /* Task is sleeping or running in a CPU with VTIME inactive */
1603 VTIME_INACTIVE = 0,
1604 /* Task runs in userspace in a CPU with VTIME active */
6a61671b 1605 VTIME_USER,
7098c1ea 1606 /* Task runs in kernelspace in a CPU with VTIME active */
6a61671b
FW
1607 VTIME_SYS,
1608 } vtime_snap_whence;
d99ca3b9 1609#endif
d027d45d
FW
1610
1611#ifdef CONFIG_NO_HZ_FULL
f009a7a7 1612 atomic_t tick_dep_mask;
d027d45d 1613#endif
1da177e4 1614 unsigned long nvcsw, nivcsw; /* context switch counts */
ccbf62d8 1615 u64 start_time; /* monotonic time in nsec */
57e0be04 1616 u64 real_start_time; /* boot based time in nsec */
1da177e4
LT
1617/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1618 unsigned long min_flt, maj_flt;
1619
f06febc9 1620 struct task_cputime cputime_expires;
1da177e4
LT
1621 struct list_head cpu_timers[3];
1622
1623/* process credentials */
1b0ba1c9 1624 const struct cred __rcu *real_cred; /* objective and real subjective task
3b11a1de 1625 * credentials (COW) */
1b0ba1c9 1626 const struct cred __rcu *cred; /* effective (overridable) subjective task
3b11a1de 1627 * credentials (COW) */
36772092
PBG
1628 char comm[TASK_COMM_LEN]; /* executable name excluding path
1629 - access with [gs]et_task_comm (which lock
1630 it with task_lock())
221af7f8 1631 - initialized normally by setup_new_exec */
1da177e4 1632/* file system info */
756daf26 1633 struct nameidata *nameidata;
3d5b6fcc 1634#ifdef CONFIG_SYSVIPC
1da177e4
LT
1635/* ipc stuff */
1636 struct sysv_sem sysvsem;
ab602f79 1637 struct sysv_shm sysvshm;
3d5b6fcc 1638#endif
e162b39a 1639#ifdef CONFIG_DETECT_HUNG_TASK
82a1fcb9 1640/* hung task detection */
82a1fcb9
IM
1641 unsigned long last_switch_count;
1642#endif
1da177e4
LT
1643/* filesystem information */
1644 struct fs_struct *fs;
1645/* open file information */
1646 struct files_struct *files;
1651e14e 1647/* namespaces */
ab516013 1648 struct nsproxy *nsproxy;
1da177e4
LT
1649/* signal handlers */
1650 struct signal_struct *signal;
1651 struct sighand_struct *sighand;
1652
1653 sigset_t blocked, real_blocked;
f3de272b 1654 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1da177e4
LT
1655 struct sigpending pending;
1656
1657 unsigned long sas_ss_sp;
1658 size_t sas_ss_size;
2a742138 1659 unsigned sas_ss_flags;
2e01fabe 1660
67d12145 1661 struct callback_head *task_works;
e73f8959 1662
1da177e4 1663 struct audit_context *audit_context;
bfef93a5 1664#ifdef CONFIG_AUDITSYSCALL
e1760bd5 1665 kuid_t loginuid;
4746ec5b 1666 unsigned int sessionid;
bfef93a5 1667#endif
932ecebb 1668 struct seccomp seccomp;
1da177e4
LT
1669
1670/* Thread group tracking */
1671 u32 parent_exec_id;
1672 u32 self_exec_id;
58568d2a
MX
1673/* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1674 * mempolicy */
1da177e4 1675 spinlock_t alloc_lock;
1da177e4 1676
b29739f9 1677 /* Protection of the PI data structures: */
1d615482 1678 raw_spinlock_t pi_lock;
b29739f9 1679
76751049
PZ
1680 struct wake_q_node wake_q;
1681
23f78d4a
IM
1682#ifdef CONFIG_RT_MUTEXES
1683 /* PI waiters blocked on a rt_mutex held by this task */
fb00aca4
PZ
1684 struct rb_root pi_waiters;
1685 struct rb_node *pi_waiters_leftmost;
23f78d4a
IM
1686 /* Deadlock detection and priority inheritance handling */
1687 struct rt_mutex_waiter *pi_blocked_on;
23f78d4a
IM
1688#endif
1689
408894ee
IM
1690#ifdef CONFIG_DEBUG_MUTEXES
1691 /* mutex deadlock detection */
1692 struct mutex_waiter *blocked_on;
1693#endif
de30a2b3
IM
1694#ifdef CONFIG_TRACE_IRQFLAGS
1695 unsigned int irq_events;
de30a2b3 1696 unsigned long hardirq_enable_ip;
de30a2b3 1697 unsigned long hardirq_disable_ip;
fa1452e8 1698 unsigned int hardirq_enable_event;
de30a2b3 1699 unsigned int hardirq_disable_event;
fa1452e8
HS
1700 int hardirqs_enabled;
1701 int hardirq_context;
de30a2b3 1702 unsigned long softirq_disable_ip;
de30a2b3 1703 unsigned long softirq_enable_ip;
fa1452e8 1704 unsigned int softirq_disable_event;
de30a2b3 1705 unsigned int softirq_enable_event;
fa1452e8 1706 int softirqs_enabled;
de30a2b3
IM
1707 int softirq_context;
1708#endif
fbb9ce95 1709#ifdef CONFIG_LOCKDEP
bdb9441e 1710# define MAX_LOCK_DEPTH 48UL
fbb9ce95
IM
1711 u64 curr_chain_key;
1712 int lockdep_depth;
fbb9ce95 1713 unsigned int lockdep_recursion;
c7aceaba 1714 struct held_lock held_locks[MAX_LOCK_DEPTH];
cf40bd16 1715 gfp_t lockdep_reclaim_gfp;
fbb9ce95 1716#endif
c6d30853
AR
1717#ifdef CONFIG_UBSAN
1718 unsigned int in_ubsan;
1719#endif
408894ee 1720
1da177e4
LT
1721/* journalling filesystem info */
1722 void *journal_info;
1723
d89d8796 1724/* stacked block device info */
bddd87c7 1725 struct bio_list *bio_list;
d89d8796 1726
73c10101
JA
1727#ifdef CONFIG_BLOCK
1728/* stack plugging */
1729 struct blk_plug *plug;
1730#endif
1731
1da177e4
LT
1732/* VM state */
1733 struct reclaim_state *reclaim_state;
1734
1da177e4
LT
1735 struct backing_dev_info *backing_dev_info;
1736
1737 struct io_context *io_context;
1738
1739 unsigned long ptrace_message;
1740 siginfo_t *last_siginfo; /* For ptrace use. */
7c3ab738 1741 struct task_io_accounting ioac;
8f0ab514 1742#if defined(CONFIG_TASK_XACCT)
1da177e4
LT
1743 u64 acct_rss_mem1; /* accumulated rss usage */
1744 u64 acct_vm_mem1; /* accumulated virtual memory usage */
49b5cf34 1745 cputime_t acct_timexpd; /* stime + utime since last update */
1da177e4
LT
1746#endif
1747#ifdef CONFIG_CPUSETS
58568d2a 1748 nodemask_t mems_allowed; /* Protected by alloc_lock */
cc9a6c87 1749 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */
825a46af 1750 int cpuset_mem_spread_rotor;
6adef3eb 1751 int cpuset_slab_spread_rotor;
1da177e4 1752#endif
ddbcc7e8 1753#ifdef CONFIG_CGROUPS
817929ec 1754 /* Control Group info protected by css_set_lock */
2c392b8c 1755 struct css_set __rcu *cgroups;
817929ec
PM
1756 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1757 struct list_head cg_list;
ddbcc7e8 1758#endif
42b2dd0a 1759#ifdef CONFIG_FUTEX
0771dfef 1760 struct robust_list_head __user *robust_list;
34f192c6
IM
1761#ifdef CONFIG_COMPAT
1762 struct compat_robust_list_head __user *compat_robust_list;
1763#endif
c87e2837
IM
1764 struct list_head pi_state_list;
1765 struct futex_pi_state *pi_state_cache;
c7aceaba 1766#endif
cdd6c482 1767#ifdef CONFIG_PERF_EVENTS
8dc85d54 1768 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
cdd6c482
IM
1769 struct mutex perf_event_mutex;
1770 struct list_head perf_event_list;
a63eaf34 1771#endif
8f47b187
TG
1772#ifdef CONFIG_DEBUG_PREEMPT
1773 unsigned long preempt_disable_ip;
1774#endif
c7aceaba 1775#ifdef CONFIG_NUMA
58568d2a 1776 struct mempolicy *mempolicy; /* Protected by alloc_lock */
c7aceaba 1777 short il_next;
207205a2 1778 short pref_node_fork;
42b2dd0a 1779#endif
cbee9f88
PZ
1780#ifdef CONFIG_NUMA_BALANCING
1781 int numa_scan_seq;
cbee9f88 1782 unsigned int numa_scan_period;
598f0ec0 1783 unsigned int numa_scan_period_max;
de1c9ce6 1784 int numa_preferred_nid;
6b9a7460 1785 unsigned long numa_migrate_retry;
cbee9f88 1786 u64 node_stamp; /* migration stamp */
7e2703e6
RR
1787 u64 last_task_numa_placement;
1788 u64 last_sum_exec_runtime;
cbee9f88 1789 struct callback_head numa_work;
f809ca9a 1790
8c8a743c
PZ
1791 struct list_head numa_entry;
1792 struct numa_group *numa_group;
1793
745d6147 1794 /*
44dba3d5
IM
1795 * numa_faults is an array split into four regions:
1796 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1797 * in this precise order.
1798 *
1799 * faults_memory: Exponential decaying average of faults on a per-node
1800 * basis. Scheduling placement decisions are made based on these
1801 * counts. The values remain static for the duration of a PTE scan.
1802 * faults_cpu: Track the nodes the process was running on when a NUMA
1803 * hinting fault was incurred.
1804 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1805 * during the current scan window. When the scan completes, the counts
1806 * in faults_memory and faults_cpu decay and these values are copied.
745d6147 1807 */
44dba3d5 1808 unsigned long *numa_faults;
83e1d2cd 1809 unsigned long total_numa_faults;
745d6147 1810
04bb2f94
RR
1811 /*
1812 * numa_faults_locality tracks if faults recorded during the last
074c2381
MG
1813 * scan window were remote/local or failed to migrate. The task scan
1814 * period is adapted based on the locality of the faults with different
1815 * weights depending on whether they were shared or private faults
04bb2f94 1816 */
074c2381 1817 unsigned long numa_faults_locality[3];
04bb2f94 1818
b32e86b4 1819 unsigned long numa_pages_migrated;
cbee9f88
PZ
1820#endif /* CONFIG_NUMA_BALANCING */
1821
72b252ae
MG
1822#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
1823 struct tlbflush_unmap_batch tlb_ubc;
1824#endif
1825
e56d0903 1826 struct rcu_head rcu;
b92ce558
JA
1827
1828 /*
1829 * cache last used pipe for splice
1830 */
1831 struct pipe_inode_info *splice_pipe;
5640f768
ED
1832
1833 struct page_frag task_frag;
1834
ca74e92b
SN
1835#ifdef CONFIG_TASK_DELAY_ACCT
1836 struct task_delay_info *delays;
f4f154fd
AM
1837#endif
1838#ifdef CONFIG_FAULT_INJECTION
1839 int make_it_fail;
ca74e92b 1840#endif
9d823e8f
WF
1841 /*
1842 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1843 * balance_dirty_pages() for some dirty throttling pause
1844 */
1845 int nr_dirtied;
1846 int nr_dirtied_pause;
83712358 1847 unsigned long dirty_paused_when; /* start of a write-and-pause period */
9d823e8f 1848
9745512c
AV
1849#ifdef CONFIG_LATENCYTOP
1850 int latency_record_count;
1851 struct latency_record latency_record[LT_SAVECOUNT];
1852#endif
6976675d
AV
1853 /*
1854 * time slack values; these are used to round up poll() and
1855 * select() etc timeout values. These are in nanoseconds.
1856 */
da8b44d5
JS
1857 u64 timer_slack_ns;
1858 u64 default_timer_slack_ns;
f8d570a4 1859
0b24becc
AR
1860#ifdef CONFIG_KASAN
1861 unsigned int kasan_depth;
1862#endif
fb52607a 1863#ifdef CONFIG_FUNCTION_GRAPH_TRACER
3ad2f3fb 1864 /* Index of current stored address in ret_stack */
f201ae23
FW
1865 int curr_ret_stack;
1866 /* Stack of return addresses for return function tracing */
1867 struct ftrace_ret_stack *ret_stack;
8aef2d28
SR
1868 /* time stamp for last schedule */
1869 unsigned long long ftrace_timestamp;
f201ae23
FW
1870 /*
1871 * Number of functions that haven't been traced
1872 * because of depth overrun.
1873 */
1874 atomic_t trace_overrun;
380c4b14
FW
1875 /* Pause for the tracing */
1876 atomic_t tracing_graph_pause;
f201ae23 1877#endif
ea4e2bc4
SR
1878#ifdef CONFIG_TRACING
1879 /* state flags for use by tracers */
1880 unsigned long trace;
b1cff0ad 1881 /* bitmask and counter of trace recursion */
261842b7
SR
1882 unsigned long trace_recursion;
1883#endif /* CONFIG_TRACING */
5c9a8750
DV
1884#ifdef CONFIG_KCOV
1885 /* Coverage collection mode enabled for this task (0 if disabled). */
1886 enum kcov_mode kcov_mode;
1887 /* Size of the kcov_area. */
1888 unsigned kcov_size;
1889 /* Buffer for coverage collection. */
1890 void *kcov_area;
1891 /* kcov desciptor wired with this task or NULL. */
1892 struct kcov *kcov;
1893#endif
6f185c29 1894#ifdef CONFIG_MEMCG
626ebc41
TH
1895 struct mem_cgroup *memcg_in_oom;
1896 gfp_t memcg_oom_gfp_mask;
1897 int memcg_oom_order;
b23afb93
TH
1898
1899 /* number of pages to reclaim on returning to userland */
1900 unsigned int memcg_nr_pages_over_high;
569b846d 1901#endif
0326f5a9
SD
1902#ifdef CONFIG_UPROBES
1903 struct uprobe_task *utask;
0326f5a9 1904#endif
cafe5635
KO
1905#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1906 unsigned int sequential_io;
1907 unsigned int sequential_io_avg;
1908#endif
8eb23b9f
PZ
1909#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1910 unsigned long task_state_change;
1911#endif
8bcbde54 1912 int pagefault_disabled;
03049269 1913#ifdef CONFIG_MMU
29c696e1 1914 struct task_struct *oom_reaper_list;
03049269 1915#endif
0c8c0f03
DH
1916/* CPU-specific state of this task */
1917 struct thread_struct thread;
1918/*
1919 * WARNING: on x86, 'thread_struct' contains a variable-sized
1920 * structure. It *MUST* be at the end of 'task_struct'.
1921 *
1922 * Do not put anything below here!
1923 */
1da177e4
LT
1924};
1925
5aaeb5c0
IM
1926#ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
1927extern int arch_task_struct_size __read_mostly;
1928#else
1929# define arch_task_struct_size (sizeof(struct task_struct))
1930#endif
0c8c0f03 1931
76e6eee0 1932/* Future-safe accessor for struct task_struct's cpus_allowed. */
a4636818 1933#define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
76e6eee0 1934
50605ffb
TG
1935static inline int tsk_nr_cpus_allowed(struct task_struct *p)
1936{
1937 return p->nr_cpus_allowed;
1938}
1939
6688cc05
PZ
1940#define TNF_MIGRATED 0x01
1941#define TNF_NO_GROUP 0x02
dabe1d99 1942#define TNF_SHARED 0x04
04bb2f94 1943#define TNF_FAULT_LOCAL 0x08
074c2381 1944#define TNF_MIGRATE_FAIL 0x10
6688cc05 1945
cbee9f88 1946#ifdef CONFIG_NUMA_BALANCING
6688cc05 1947extern void task_numa_fault(int last_node, int node, int pages, int flags);
e29cf08b 1948extern pid_t task_numa_group_id(struct task_struct *p);
1a687c2e 1949extern void set_numabalancing_state(bool enabled);
82727018 1950extern void task_numa_free(struct task_struct *p);
10f39042
RR
1951extern bool should_numa_migrate_memory(struct task_struct *p, struct page *page,
1952 int src_nid, int dst_cpu);
cbee9f88 1953#else
ac8e895b 1954static inline void task_numa_fault(int last_node, int node, int pages,
6688cc05 1955 int flags)
cbee9f88
PZ
1956{
1957}
e29cf08b
MG
1958static inline pid_t task_numa_group_id(struct task_struct *p)
1959{
1960 return 0;
1961}
1a687c2e
MG
1962static inline void set_numabalancing_state(bool enabled)
1963{
1964}
82727018
RR
1965static inline void task_numa_free(struct task_struct *p)
1966{
1967}
10f39042
RR
1968static inline bool should_numa_migrate_memory(struct task_struct *p,
1969 struct page *page, int src_nid, int dst_cpu)
1970{
1971 return true;
1972}
cbee9f88
PZ
1973#endif
1974
e868171a 1975static inline struct pid *task_pid(struct task_struct *task)
22c935f4
EB
1976{
1977 return task->pids[PIDTYPE_PID].pid;
1978}
1979
e868171a 1980static inline struct pid *task_tgid(struct task_struct *task)
22c935f4
EB
1981{
1982 return task->group_leader->pids[PIDTYPE_PID].pid;
1983}
1984
6dda81f4
ON
1985/*
1986 * Without tasklist or rcu lock it is not safe to dereference
1987 * the result of task_pgrp/task_session even if task == current,
1988 * we can race with another thread doing sys_setsid/sys_setpgid.
1989 */
e868171a 1990static inline struct pid *task_pgrp(struct task_struct *task)
22c935f4
EB
1991{
1992 return task->group_leader->pids[PIDTYPE_PGID].pid;
1993}
1994
e868171a 1995static inline struct pid *task_session(struct task_struct *task)
22c935f4
EB
1996{
1997 return task->group_leader->pids[PIDTYPE_SID].pid;
1998}
1999
7af57294
PE
2000struct pid_namespace;
2001
2002/*
2003 * the helpers to get the task's different pids as they are seen
2004 * from various namespaces
2005 *
2006 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
44c4e1b2
EB
2007 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
2008 * current.
7af57294
PE
2009 * task_xid_nr_ns() : id seen from the ns specified;
2010 *
2011 * set_task_vxid() : assigns a virtual id to a task;
2012 *
7af57294
PE
2013 * see also pid_nr() etc in include/linux/pid.h
2014 */
52ee2dfd
ON
2015pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
2016 struct pid_namespace *ns);
7af57294 2017
e868171a 2018static inline pid_t task_pid_nr(struct task_struct *tsk)
7af57294
PE
2019{
2020 return tsk->pid;
2021}
2022
52ee2dfd
ON
2023static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
2024 struct pid_namespace *ns)
2025{
2026 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
2027}
7af57294
PE
2028
2029static inline pid_t task_pid_vnr(struct task_struct *tsk)
2030{
52ee2dfd 2031 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
7af57294
PE
2032}
2033
2034
e868171a 2035static inline pid_t task_tgid_nr(struct task_struct *tsk)
7af57294
PE
2036{
2037 return tsk->tgid;
2038}
2039
2f2a3a46 2040pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
7af57294
PE
2041
2042static inline pid_t task_tgid_vnr(struct task_struct *tsk)
2043{
2044 return pid_vnr(task_tgid(tsk));
2045}
2046
2047
80e0b6e8 2048static inline int pid_alive(const struct task_struct *p);
ad36d282
RGB
2049static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
2050{
2051 pid_t pid = 0;
2052
2053 rcu_read_lock();
2054 if (pid_alive(tsk))
2055 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
2056 rcu_read_unlock();
2057
2058 return pid;
2059}
2060
2061static inline pid_t task_ppid_nr(const struct task_struct *tsk)
2062{
2063 return task_ppid_nr_ns(tsk, &init_pid_ns);
2064}
2065
52ee2dfd
ON
2066static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
2067 struct pid_namespace *ns)
7af57294 2068{
52ee2dfd 2069 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
7af57294
PE
2070}
2071
7af57294
PE
2072static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
2073{
52ee2dfd 2074 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
7af57294
PE
2075}
2076
2077
52ee2dfd
ON
2078static inline pid_t task_session_nr_ns(struct task_struct *tsk,
2079 struct pid_namespace *ns)
7af57294 2080{
52ee2dfd 2081 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
7af57294
PE
2082}
2083
7af57294
PE
2084static inline pid_t task_session_vnr(struct task_struct *tsk)
2085{
52ee2dfd 2086 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
7af57294
PE
2087}
2088
1b0f7ffd
ON
2089/* obsolete, do not use */
2090static inline pid_t task_pgrp_nr(struct task_struct *tsk)
2091{
2092 return task_pgrp_nr_ns(tsk, &init_pid_ns);
2093}
7af57294 2094
1da177e4
LT
2095/**
2096 * pid_alive - check that a task structure is not stale
2097 * @p: Task structure to be checked.
2098 *
2099 * Test if a process is not yet dead (at most zombie state)
2100 * If pid_alive fails, then pointers within the task structure
2101 * can be stale and must not be dereferenced.
e69f6186
YB
2102 *
2103 * Return: 1 if the process is alive. 0 otherwise.
1da177e4 2104 */
ad36d282 2105static inline int pid_alive(const struct task_struct *p)
1da177e4 2106{
92476d7f 2107 return p->pids[PIDTYPE_PID].pid != NULL;
1da177e4
LT
2108}
2109
f400e198 2110/**
570f5241
SS
2111 * is_global_init - check if a task structure is init. Since init
2112 * is free to have sub-threads we need to check tgid.
3260259f
H
2113 * @tsk: Task structure to be checked.
2114 *
2115 * Check if a task structure is the first user space task the kernel created.
e69f6186
YB
2116 *
2117 * Return: 1 if the task structure is init. 0 otherwise.
b460cbc5 2118 */
e868171a 2119static inline int is_global_init(struct task_struct *tsk)
b461cc03 2120{
570f5241 2121 return task_tgid_nr(tsk) == 1;
b461cc03 2122}
b460cbc5 2123
9ec52099
CLG
2124extern struct pid *cad_pid;
2125
1da177e4 2126extern void free_task(struct task_struct *tsk);
1da177e4 2127#define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
e56d0903 2128
158d9ebd 2129extern void __put_task_struct(struct task_struct *t);
e56d0903
IM
2130
2131static inline void put_task_struct(struct task_struct *t)
2132{
2133 if (atomic_dec_and_test(&t->usage))
8c7904a0 2134 __put_task_struct(t);
e56d0903 2135}
1da177e4 2136
6a61671b
FW
2137#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2138extern void task_cputime(struct task_struct *t,
2139 cputime_t *utime, cputime_t *stime);
2140extern void task_cputime_scaled(struct task_struct *t,
2141 cputime_t *utimescaled, cputime_t *stimescaled);
2142extern cputime_t task_gtime(struct task_struct *t);
2143#else
6fac4829
FW
2144static inline void task_cputime(struct task_struct *t,
2145 cputime_t *utime, cputime_t *stime)
2146{
2147 if (utime)
2148 *utime = t->utime;
2149 if (stime)
2150 *stime = t->stime;
2151}
2152
2153static inline void task_cputime_scaled(struct task_struct *t,
2154 cputime_t *utimescaled,
2155 cputime_t *stimescaled)
2156{
2157 if (utimescaled)
2158 *utimescaled = t->utimescaled;
2159 if (stimescaled)
2160 *stimescaled = t->stimescaled;
2161}
6a61671b
FW
2162
2163static inline cputime_t task_gtime(struct task_struct *t)
2164{
2165 return t->gtime;
2166}
2167#endif
e80d0a1a
FW
2168extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
2169extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
49048622 2170
1da177e4
LT
2171/*
2172 * Per process flags
2173 */
1da177e4 2174#define PF_EXITING 0x00000004 /* getting shut down */
778e9a9c 2175#define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
94886b84 2176#define PF_VCPU 0x00000010 /* I'm a virtual CPU */
21aa9af0 2177#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1da177e4 2178#define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
4db96cf0 2179#define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
1da177e4
LT
2180#define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
2181#define PF_DUMPCORE 0x00000200 /* dumped core */
2182#define PF_SIGNALED 0x00000400 /* killed by a signal */
2183#define PF_MEMALLOC 0x00000800 /* Allocating memory */
72fa5997 2184#define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */
1da177e4 2185#define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
774a1221 2186#define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */
1da177e4
LT
2187#define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
2188#define PF_FROZEN 0x00010000 /* frozen for system suspend */
2189#define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
2190#define PF_KSWAPD 0x00040000 /* I am kswapd */
21caf2fc 2191#define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */
1da177e4 2192#define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
246bb0b1 2193#define PF_KTHREAD 0x00200000 /* I am a kernel thread */
b31dc66a
JA
2194#define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
2195#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
14a40ffc 2196#define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
4db96cf0 2197#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
61a87122 2198#define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
58a69cb4 2199#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
2b44c4db 2200#define PF_SUSPEND_TASK 0x80000000 /* this thread called freeze_processes and should not be frozen */
1da177e4
LT
2201
2202/*
2203 * Only the _current_ task can read/write to tsk->flags, but other
2204 * tasks can access tsk->flags in readonly mode for example
2205 * with tsk_used_math (like during threaded core dumping).
2206 * There is however an exception to this rule during ptrace
2207 * or during fork: the ptracer task is allowed to write to the
2208 * child->flags of its traced child (same goes for fork, the parent
2209 * can write to the child->flags), because we're guaranteed the
2210 * child is not running and in turn not changing child->flags
2211 * at the same time the parent does it.
2212 */
2213#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
2214#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
2215#define clear_used_math() clear_stopped_child_used_math(current)
2216#define set_used_math() set_stopped_child_used_math(current)
2217#define conditional_stopped_child_used_math(condition, child) \
2218 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
2219#define conditional_used_math(condition) \
2220 conditional_stopped_child_used_math(condition, current)
2221#define copy_to_stopped_child_used_math(child) \
2222 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
2223/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
2224#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
2225#define used_math() tsk_used_math(current)
2226
934f3072
JB
2227/* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags
2228 * __GFP_FS is also cleared as it implies __GFP_IO.
2229 */
21caf2fc
ML
2230static inline gfp_t memalloc_noio_flags(gfp_t flags)
2231{
2232 if (unlikely(current->flags & PF_MEMALLOC_NOIO))
934f3072 2233 flags &= ~(__GFP_IO | __GFP_FS);
21caf2fc
ML
2234 return flags;
2235}
2236
2237static inline unsigned int memalloc_noio_save(void)
2238{
2239 unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
2240 current->flags |= PF_MEMALLOC_NOIO;
2241 return flags;
2242}
2243
2244static inline void memalloc_noio_restore(unsigned int flags)
2245{
2246 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
2247}
2248
1d4457f9 2249/* Per-process atomic flags. */
a2b86f77 2250#define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
2ad654bc
ZL
2251#define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
2252#define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
2253
1d4457f9 2254
e0e5070b
ZL
2255#define TASK_PFA_TEST(name, func) \
2256 static inline bool task_##func(struct task_struct *p) \
2257 { return test_bit(PFA_##name, &p->atomic_flags); }
2258#define TASK_PFA_SET(name, func) \
2259 static inline void task_set_##func(struct task_struct *p) \
2260 { set_bit(PFA_##name, &p->atomic_flags); }
2261#define TASK_PFA_CLEAR(name, func) \
2262 static inline void task_clear_##func(struct task_struct *p) \
2263 { clear_bit(PFA_##name, &p->atomic_flags); }
2264
2265TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
2266TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1d4457f9 2267
2ad654bc
ZL
2268TASK_PFA_TEST(SPREAD_PAGE, spread_page)
2269TASK_PFA_SET(SPREAD_PAGE, spread_page)
2270TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
2271
2272TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
2273TASK_PFA_SET(SPREAD_SLAB, spread_slab)
2274TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1d4457f9 2275
e5c1902e 2276/*
a8f072c1 2277 * task->jobctl flags
e5c1902e 2278 */
a8f072c1 2279#define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */
e5c1902e 2280
a8f072c1
TH
2281#define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */
2282#define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */
2283#define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */
73ddff2b 2284#define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */
fb1d910c 2285#define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */
a8f072c1 2286#define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */
544b2c91 2287#define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */
a8f072c1 2288
b76808e6
PD
2289#define JOBCTL_STOP_DEQUEUED (1UL << JOBCTL_STOP_DEQUEUED_BIT)
2290#define JOBCTL_STOP_PENDING (1UL << JOBCTL_STOP_PENDING_BIT)
2291#define JOBCTL_STOP_CONSUME (1UL << JOBCTL_STOP_CONSUME_BIT)
2292#define JOBCTL_TRAP_STOP (1UL << JOBCTL_TRAP_STOP_BIT)
2293#define JOBCTL_TRAP_NOTIFY (1UL << JOBCTL_TRAP_NOTIFY_BIT)
2294#define JOBCTL_TRAPPING (1UL << JOBCTL_TRAPPING_BIT)
2295#define JOBCTL_LISTENING (1UL << JOBCTL_LISTENING_BIT)
a8f072c1 2296
fb1d910c 2297#define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
73ddff2b 2298#define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
3759a0d9 2299
7dd3db54 2300extern bool task_set_jobctl_pending(struct task_struct *task,
b76808e6 2301 unsigned long mask);
73ddff2b 2302extern void task_clear_jobctl_trapping(struct task_struct *task);
3759a0d9 2303extern void task_clear_jobctl_pending(struct task_struct *task,
b76808e6 2304 unsigned long mask);
39efa3ef 2305
f41d911f
PM
2306static inline void rcu_copy_process(struct task_struct *p)
2307{
8315f422 2308#ifdef CONFIG_PREEMPT_RCU
f41d911f 2309 p->rcu_read_lock_nesting = 0;
1d082fd0 2310 p->rcu_read_unlock_special.s = 0;
dd5d19ba 2311 p->rcu_blocked_node = NULL;
f41d911f 2312 INIT_LIST_HEAD(&p->rcu_node_entry);
8315f422
PM
2313#endif /* #ifdef CONFIG_PREEMPT_RCU */
2314#ifdef CONFIG_TASKS_RCU
2315 p->rcu_tasks_holdout = false;
2316 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
176f8f7a 2317 p->rcu_tasks_idle_cpu = -1;
8315f422 2318#endif /* #ifdef CONFIG_TASKS_RCU */
f41d911f
PM
2319}
2320
907aed48
MG
2321static inline void tsk_restore_flags(struct task_struct *task,
2322 unsigned long orig_flags, unsigned long flags)
2323{
2324 task->flags &= ~flags;
2325 task->flags |= orig_flags & flags;
2326}
2327
f82f8042
JL
2328extern int cpuset_cpumask_can_shrink(const struct cpumask *cur,
2329 const struct cpumask *trial);
7f51412a
JL
2330extern int task_can_attach(struct task_struct *p,
2331 const struct cpumask *cs_cpus_allowed);
1da177e4 2332#ifdef CONFIG_SMP
1e1b6c51
KM
2333extern void do_set_cpus_allowed(struct task_struct *p,
2334 const struct cpumask *new_mask);
2335
cd8ba7cd 2336extern int set_cpus_allowed_ptr(struct task_struct *p,
96f874e2 2337 const struct cpumask *new_mask);
1da177e4 2338#else
1e1b6c51
KM
2339static inline void do_set_cpus_allowed(struct task_struct *p,
2340 const struct cpumask *new_mask)
2341{
2342}
cd8ba7cd 2343static inline int set_cpus_allowed_ptr(struct task_struct *p,
96f874e2 2344 const struct cpumask *new_mask)
1da177e4 2345{
96f874e2 2346 if (!cpumask_test_cpu(0, new_mask))
1da177e4
LT
2347 return -EINVAL;
2348 return 0;
2349}
2350#endif
e0ad9556 2351
3451d024 2352#ifdef CONFIG_NO_HZ_COMMON
5167e8d5
PZ
2353void calc_load_enter_idle(void);
2354void calc_load_exit_idle(void);
2355#else
2356static inline void calc_load_enter_idle(void) { }
2357static inline void calc_load_exit_idle(void) { }
3451d024 2358#endif /* CONFIG_NO_HZ_COMMON */
5167e8d5 2359
b342501c 2360/*
c676329a
PZ
2361 * Do not use outside of architecture code which knows its limitations.
2362 *
2363 * sched_clock() has no promise of monotonicity or bounded drift between
2364 * CPUs, use (which you should not) requires disabling IRQs.
2365 *
2366 * Please use one of the three interfaces below.
b342501c 2367 */
1bbfa6f2 2368extern unsigned long long notrace sched_clock(void);
c676329a 2369/*
489a71b0 2370 * See the comment in kernel/sched/clock.c
c676329a 2371 */
545a2bf7 2372extern u64 running_clock(void);
c676329a
PZ
2373extern u64 sched_clock_cpu(int cpu);
2374
e436d800 2375
c1955a3d 2376extern void sched_clock_init(void);
3e51f33f 2377
c1955a3d 2378#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
3e51f33f
PZ
2379static inline void sched_clock_tick(void)
2380{
2381}
2382
2383static inline void sched_clock_idle_sleep_event(void)
2384{
2385}
2386
2387static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
2388{
2389}
2c923e94
DL
2390
2391static inline u64 cpu_clock(int cpu)
2392{
2393 return sched_clock();
2394}
2395
2396static inline u64 local_clock(void)
2397{
2398 return sched_clock();
2399}
3e51f33f 2400#else
c676329a
PZ
2401/*
2402 * Architectures can set this to 1 if they have specified
2403 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
2404 * but then during bootup it turns out that sched_clock()
2405 * is reliable after all:
2406 */
35af99e6
PZ
2407extern int sched_clock_stable(void);
2408extern void set_sched_clock_stable(void);
2409extern void clear_sched_clock_stable(void);
c676329a 2410
3e51f33f
PZ
2411extern void sched_clock_tick(void);
2412extern void sched_clock_idle_sleep_event(void);
2413extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2c923e94
DL
2414
2415/*
2416 * As outlined in clock.c, provides a fast, high resolution, nanosecond
2417 * time source that is monotonic per cpu argument and has bounded drift
2418 * between cpus.
2419 *
2420 * ######################### BIG FAT WARNING ##########################
2421 * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can #
2422 * # go backwards !! #
2423 * ####################################################################
2424 */
2425static inline u64 cpu_clock(int cpu)
2426{
2427 return sched_clock_cpu(cpu);
2428}
2429
2430static inline u64 local_clock(void)
2431{
2432 return sched_clock_cpu(raw_smp_processor_id());
2433}
3e51f33f
PZ
2434#endif
2435
b52bfee4
VP
2436#ifdef CONFIG_IRQ_TIME_ACCOUNTING
2437/*
2438 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
2439 * The reason for this explicit opt-in is not to have perf penalty with
2440 * slow sched_clocks.
2441 */
2442extern void enable_sched_clock_irqtime(void);
2443extern void disable_sched_clock_irqtime(void);
2444#else
2445static inline void enable_sched_clock_irqtime(void) {}
2446static inline void disable_sched_clock_irqtime(void) {}
2447#endif
2448
36c8b586 2449extern unsigned long long
41b86e9c 2450task_sched_runtime(struct task_struct *task);
1da177e4
LT
2451
2452/* sched_exec is called by processes performing an exec */
2453#ifdef CONFIG_SMP
2454extern void sched_exec(void);
2455#else
2456#define sched_exec() {}
2457#endif
2458
2aa44d05
IM
2459extern void sched_clock_idle_sleep_event(void);
2460extern void sched_clock_idle_wakeup_event(u64 delta_ns);
bb29ab26 2461
1da177e4
LT
2462#ifdef CONFIG_HOTPLUG_CPU
2463extern void idle_task_exit(void);
2464#else
2465static inline void idle_task_exit(void) {}
2466#endif
2467
3451d024 2468#if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
1c20091e 2469extern void wake_up_nohz_cpu(int cpu);
06d8308c 2470#else
1c20091e 2471static inline void wake_up_nohz_cpu(int cpu) { }
06d8308c
TG
2472#endif
2473
ce831b38 2474#ifdef CONFIG_NO_HZ_FULL
265f22a9 2475extern u64 scheduler_tick_max_deferment(void);
06d8308c
TG
2476#endif
2477
5091faa4 2478#ifdef CONFIG_SCHED_AUTOGROUP
5091faa4
MG
2479extern void sched_autogroup_create_attach(struct task_struct *p);
2480extern void sched_autogroup_detach(struct task_struct *p);
2481extern void sched_autogroup_fork(struct signal_struct *sig);
2482extern void sched_autogroup_exit(struct signal_struct *sig);
2483#ifdef CONFIG_PROC_FS
2484extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
2e5b5b3a 2485extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
5091faa4
MG
2486#endif
2487#else
2488static inline void sched_autogroup_create_attach(struct task_struct *p) { }
2489static inline void sched_autogroup_detach(struct task_struct *p) { }
2490static inline void sched_autogroup_fork(struct signal_struct *sig) { }
2491static inline void sched_autogroup_exit(struct signal_struct *sig) { }
2492#endif
2493
fa93384f 2494extern int yield_to(struct task_struct *p, bool preempt);
36c8b586
IM
2495extern void set_user_nice(struct task_struct *p, long nice);
2496extern int task_prio(const struct task_struct *p);
d0ea0268
DY
2497/**
2498 * task_nice - return the nice value of a given task.
2499 * @p: the task in question.
2500 *
2501 * Return: The nice value [ -20 ... 0 ... 19 ].
2502 */
2503static inline int task_nice(const struct task_struct *p)
2504{
2505 return PRIO_TO_NICE((p)->static_prio);
2506}
36c8b586
IM
2507extern int can_nice(const struct task_struct *p, const int nice);
2508extern int task_curr(const struct task_struct *p);
1da177e4 2509extern int idle_cpu(int cpu);
fe7de49f
KM
2510extern int sched_setscheduler(struct task_struct *, int,
2511 const struct sched_param *);
961ccddd 2512extern int sched_setscheduler_nocheck(struct task_struct *, int,
fe7de49f 2513 const struct sched_param *);
d50dde5a
DF
2514extern int sched_setattr(struct task_struct *,
2515 const struct sched_attr *);
36c8b586 2516extern struct task_struct *idle_task(int cpu);
c4f30608
PM
2517/**
2518 * is_idle_task - is the specified task an idle task?
fa757281 2519 * @p: the task in question.
e69f6186
YB
2520 *
2521 * Return: 1 if @p is an idle task. 0 otherwise.
c4f30608 2522 */
7061ca3b 2523static inline bool is_idle_task(const struct task_struct *p)
c4f30608
PM
2524{
2525 return p->pid == 0;
2526}
36c8b586
IM
2527extern struct task_struct *curr_task(int cpu);
2528extern void set_curr_task(int cpu, struct task_struct *p);
1da177e4
LT
2529
2530void yield(void);
2531
1da177e4
LT
2532union thread_union {
2533 struct thread_info thread_info;
2534 unsigned long stack[THREAD_SIZE/sizeof(long)];
2535};
2536
2537#ifndef __HAVE_ARCH_KSTACK_END
2538static inline int kstack_end(void *addr)
2539{
2540 /* Reliable end of stack detection:
2541 * Some APM bios versions misalign the stack
2542 */
2543 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2544}
2545#endif
2546
2547extern union thread_union init_thread_union;
2548extern struct task_struct init_task;
2549
2550extern struct mm_struct init_mm;
2551
198fe21b
PE
2552extern struct pid_namespace init_pid_ns;
2553
2554/*
2555 * find a task by one of its numerical ids
2556 *
198fe21b
PE
2557 * find_task_by_pid_ns():
2558 * finds a task by its pid in the specified namespace
228ebcbe
PE
2559 * find_task_by_vpid():
2560 * finds a task by its virtual pid
198fe21b 2561 *
e49859e7 2562 * see also find_vpid() etc in include/linux/pid.h
198fe21b
PE
2563 */
2564
228ebcbe
PE
2565extern struct task_struct *find_task_by_vpid(pid_t nr);
2566extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2567 struct pid_namespace *ns);
198fe21b 2568
1da177e4 2569/* per-UID process charging. */
7b44ab97 2570extern struct user_struct * alloc_uid(kuid_t);
1da177e4
LT
2571static inline struct user_struct *get_uid(struct user_struct *u)
2572{
2573 atomic_inc(&u->__count);
2574 return u;
2575}
2576extern void free_uid(struct user_struct *);
1da177e4
LT
2577
2578#include <asm/current.h>
2579
f0af911a 2580extern void xtime_update(unsigned long ticks);
1da177e4 2581
b3c97528
HH
2582extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2583extern int wake_up_process(struct task_struct *tsk);
3e51e3ed 2584extern void wake_up_new_task(struct task_struct *tsk);
1da177e4
LT
2585#ifdef CONFIG_SMP
2586 extern void kick_process(struct task_struct *tsk);
2587#else
2588 static inline void kick_process(struct task_struct *tsk) { }
2589#endif
aab03e05 2590extern int sched_fork(unsigned long clone_flags, struct task_struct *p);
ad46c2c4 2591extern void sched_dead(struct task_struct *p);
1da177e4 2592
1da177e4
LT
2593extern void proc_caches_init(void);
2594extern void flush_signals(struct task_struct *);
10ab825b 2595extern void ignore_signals(struct task_struct *);
1da177e4
LT
2596extern void flush_signal_handlers(struct task_struct *, int force_default);
2597extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2598
be0e6f29 2599static inline int kernel_dequeue_signal(siginfo_t *info)
1da177e4 2600{
be0e6f29
ON
2601 struct task_struct *tsk = current;
2602 siginfo_t __info;
1da177e4
LT
2603 int ret;
2604
be0e6f29
ON
2605 spin_lock_irq(&tsk->sighand->siglock);
2606 ret = dequeue_signal(tsk, &tsk->blocked, info ?: &__info);
2607 spin_unlock_irq(&tsk->sighand->siglock);
1da177e4
LT
2608
2609 return ret;
53c8f9f1 2610}
1da177e4 2611
9a13049e
ON
2612static inline void kernel_signal_stop(void)
2613{
2614 spin_lock_irq(&current->sighand->siglock);
2615 if (current->jobctl & JOBCTL_STOP_DEQUEUED)
2616 __set_current_state(TASK_STOPPED);
2617 spin_unlock_irq(&current->sighand->siglock);
2618
2619 schedule();
2620}
2621
1da177e4
LT
2622extern void release_task(struct task_struct * p);
2623extern int send_sig_info(int, struct siginfo *, struct task_struct *);
1da177e4
LT
2624extern int force_sigsegv(int, struct task_struct *);
2625extern int force_sig_info(int, struct siginfo *, struct task_struct *);
c4b92fc1 2626extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
c4b92fc1 2627extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
d178bc3a
SH
2628extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2629 const struct cred *, u32);
c4b92fc1
EB
2630extern int kill_pgrp(struct pid *pid, int sig, int priv);
2631extern int kill_pid(struct pid *pid, int sig, int priv);
c3de4b38 2632extern int kill_proc_info(int, struct siginfo *, pid_t);
86773473 2633extern __must_check bool do_notify_parent(struct task_struct *, int);
a7f0765e 2634extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
1da177e4 2635extern void force_sig(int, struct task_struct *);
1da177e4 2636extern int send_sig(int, struct task_struct *, int);
09faef11 2637extern int zap_other_threads(struct task_struct *p);
1da177e4
LT
2638extern struct sigqueue *sigqueue_alloc(void);
2639extern void sigqueue_free(struct sigqueue *);
ac5c2153 2640extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
9ac95f2f 2641extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
1da177e4 2642
51a7b448
AV
2643static inline void restore_saved_sigmask(void)
2644{
2645 if (test_and_clear_restore_sigmask())
77097ae5 2646 __set_current_blocked(&current->saved_sigmask);
51a7b448
AV
2647}
2648
b7f9a11a
AV
2649static inline sigset_t *sigmask_to_save(void)
2650{
2651 sigset_t *res = &current->blocked;
2652 if (unlikely(test_restore_sigmask()))
2653 res = &current->saved_sigmask;
2654 return res;
2655}
2656
9ec52099
CLG
2657static inline int kill_cad_pid(int sig, int priv)
2658{
2659 return kill_pid(cad_pid, sig, priv);
2660}
2661
1da177e4
LT
2662/* These can be the second arg to send_sig_info/send_group_sig_info. */
2663#define SEND_SIG_NOINFO ((struct siginfo *) 0)
2664#define SEND_SIG_PRIV ((struct siginfo *) 1)
2665#define SEND_SIG_FORCED ((struct siginfo *) 2)
2666
2a855dd0
SAS
2667/*
2668 * True if we are on the alternate signal stack.
2669 */
1da177e4
LT
2670static inline int on_sig_stack(unsigned long sp)
2671{
c876eeab
AL
2672 /*
2673 * If the signal stack is SS_AUTODISARM then, by construction, we
2674 * can't be on the signal stack unless user code deliberately set
2675 * SS_AUTODISARM when we were already on it.
2676 *
2677 * This improves reliability: if user state gets corrupted such that
2678 * the stack pointer points very close to the end of the signal stack,
2679 * then this check will enable the signal to be handled anyway.
2680 */
2681 if (current->sas_ss_flags & SS_AUTODISARM)
2682 return 0;
2683
2a855dd0
SAS
2684#ifdef CONFIG_STACK_GROWSUP
2685 return sp >= current->sas_ss_sp &&
2686 sp - current->sas_ss_sp < current->sas_ss_size;
2687#else
2688 return sp > current->sas_ss_sp &&
2689 sp - current->sas_ss_sp <= current->sas_ss_size;
2690#endif
1da177e4
LT
2691}
2692
2693static inline int sas_ss_flags(unsigned long sp)
2694{
72f15c03
RW
2695 if (!current->sas_ss_size)
2696 return SS_DISABLE;
2697
2698 return on_sig_stack(sp) ? SS_ONSTACK : 0;
1da177e4
LT
2699}
2700
2a742138
SS
2701static inline void sas_ss_reset(struct task_struct *p)
2702{
2703 p->sas_ss_sp = 0;
2704 p->sas_ss_size = 0;
2705 p->sas_ss_flags = SS_DISABLE;
2706}
2707
5a1b98d3
AV
2708static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
2709{
2710 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
2711#ifdef CONFIG_STACK_GROWSUP
2712 return current->sas_ss_sp;
2713#else
2714 return current->sas_ss_sp + current->sas_ss_size;
2715#endif
2716 return sp;
2717}
2718
1da177e4
LT
2719/*
2720 * Routines for handling mm_structs
2721 */
2722extern struct mm_struct * mm_alloc(void);
2723
2724/* mmdrop drops the mm and the page tables */
b3c97528 2725extern void __mmdrop(struct mm_struct *);
d2005e3f 2726static inline void mmdrop(struct mm_struct *mm)
1da177e4 2727{
6fb43d7b 2728 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
1da177e4
LT
2729 __mmdrop(mm);
2730}
2731
d2005e3f
ON
2732static inline bool mmget_not_zero(struct mm_struct *mm)
2733{
2734 return atomic_inc_not_zero(&mm->mm_users);
2735}
2736
1da177e4
LT
2737/* mmput gets rid of the mappings and all user-space */
2738extern void mmput(struct mm_struct *);
ec8d7c14
MH
2739/* same as above but performs the slow path from the async kontext. Can
2740 * be called from the atomic context as well
2741 */
2742extern void mmput_async(struct mm_struct *);
2743
1da177e4
LT
2744/* Grab a reference to a task's mm, if it is not already going away */
2745extern struct mm_struct *get_task_mm(struct task_struct *task);
8cdb878d
CY
2746/*
2747 * Grab a reference to a task's mm, if it is not already going away
2748 * and ptrace_may_access with the mode parameter passed to it
2749 * succeeds.
2750 */
2751extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
1da177e4
LT
2752/* Remove the current tasks stale references to the old mm_struct */
2753extern void mm_release(struct task_struct *, struct mm_struct *);
2754
3033f14a
JT
2755#ifdef CONFIG_HAVE_COPY_THREAD_TLS
2756extern int copy_thread_tls(unsigned long, unsigned long, unsigned long,
2757 struct task_struct *, unsigned long);
2758#else
6f2c55b8 2759extern int copy_thread(unsigned long, unsigned long, unsigned long,
afa86fc4 2760 struct task_struct *);
3033f14a
JT
2761
2762/* Architectures that haven't opted into copy_thread_tls get the tls argument
2763 * via pt_regs, so ignore the tls argument passed via C. */
2764static inline int copy_thread_tls(
2765 unsigned long clone_flags, unsigned long sp, unsigned long arg,
2766 struct task_struct *p, unsigned long tls)
2767{
2768 return copy_thread(clone_flags, sp, arg, p);
2769}
2770#endif
1da177e4 2771extern void flush_thread(void);
5f56a5df
JS
2772
2773#ifdef CONFIG_HAVE_EXIT_THREAD
e6464694 2774extern void exit_thread(struct task_struct *tsk);
5f56a5df 2775#else
e6464694 2776static inline void exit_thread(struct task_struct *tsk)
5f56a5df
JS
2777{
2778}
2779#endif
1da177e4 2780
1da177e4 2781extern void exit_files(struct task_struct *);
a7e5328a 2782extern void __cleanup_sighand(struct sighand_struct *);
cbaffba1 2783
1da177e4 2784extern void exit_itimers(struct signal_struct *);
cbaffba1 2785extern void flush_itimer_signals(void);
1da177e4 2786
9402c95f 2787extern void do_group_exit(int);
1da177e4 2788
c4ad8f98 2789extern int do_execve(struct filename *,
d7627467 2790 const char __user * const __user *,
da3d4c5f 2791 const char __user * const __user *);
51f39a1f
DD
2792extern int do_execveat(int, struct filename *,
2793 const char __user * const __user *,
2794 const char __user * const __user *,
2795 int);
3033f14a 2796extern long _do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *, unsigned long);
e80d6661 2797extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
36c8b586 2798struct task_struct *fork_idle(int);
2aa3a7f8 2799extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
1da177e4 2800
82b89778
AH
2801extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
2802static inline void set_task_comm(struct task_struct *tsk, const char *from)
2803{
2804 __set_task_comm(tsk, from, false);
2805}
59714d65 2806extern char *get_task_comm(char *to, struct task_struct *tsk);
1da177e4
LT
2807
2808#ifdef CONFIG_SMP
317f3941 2809void scheduler_ipi(void);
85ba2d86 2810extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1da177e4 2811#else
184748cc 2812static inline void scheduler_ipi(void) { }
85ba2d86
RM
2813static inline unsigned long wait_task_inactive(struct task_struct *p,
2814 long match_state)
2815{
2816 return 1;
2817}
1da177e4
LT
2818#endif
2819
fafe870f
FW
2820#define tasklist_empty() \
2821 list_empty(&init_task.tasks)
2822
05725f7e
JP
2823#define next_task(p) \
2824 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
1da177e4
LT
2825
2826#define for_each_process(p) \
2827 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2828
5bb459bb 2829extern bool current_is_single_threaded(void);
d84f4f99 2830
1da177e4
LT
2831/*
2832 * Careful: do_each_thread/while_each_thread is a double loop so
2833 * 'break' will not work as expected - use goto instead.
2834 */
2835#define do_each_thread(g, t) \
2836 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2837
2838#define while_each_thread(g, t) \
2839 while ((t = next_thread(t)) != g)
2840
0c740d0a
ON
2841#define __for_each_thread(signal, t) \
2842 list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
2843
2844#define for_each_thread(p, t) \
2845 __for_each_thread((p)->signal, t)
2846
2847/* Careful: this is a double loop, 'break' won't work as expected. */
2848#define for_each_process_thread(p, t) \
2849 for_each_process(p) for_each_thread(p, t)
2850
7e49827c
ON
2851static inline int get_nr_threads(struct task_struct *tsk)
2852{
b3ac022c 2853 return tsk->signal->nr_threads;
7e49827c
ON
2854}
2855
087806b1
ON
2856static inline bool thread_group_leader(struct task_struct *p)
2857{
2858 return p->exit_signal >= 0;
2859}
1da177e4 2860
0804ef4b
EB
2861/* Do to the insanities of de_thread it is possible for a process
2862 * to have the pid of the thread group leader without actually being
2863 * the thread group leader. For iteration through the pids in proc
2864 * all we care about is that we have a task with the appropriate
2865 * pid, we don't actually care if we have the right task.
2866 */
e1403b8e 2867static inline bool has_group_leader_pid(struct task_struct *p)
0804ef4b 2868{
e1403b8e 2869 return task_pid(p) == p->signal->leader_pid;
0804ef4b
EB
2870}
2871
bac0abd6 2872static inline
e1403b8e 2873bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
bac0abd6 2874{
e1403b8e 2875 return p1->signal == p2->signal;
bac0abd6
PE
2876}
2877
36c8b586 2878static inline struct task_struct *next_thread(const struct task_struct *p)
47e65328 2879{
05725f7e
JP
2880 return list_entry_rcu(p->thread_group.next,
2881 struct task_struct, thread_group);
47e65328
ON
2882}
2883
e868171a 2884static inline int thread_group_empty(struct task_struct *p)
1da177e4 2885{
47e65328 2886 return list_empty(&p->thread_group);
1da177e4
LT
2887}
2888
2889#define delay_group_leader(p) \
2890 (thread_group_leader(p) && !thread_group_empty(p))
2891
1da177e4 2892/*
260ea101 2893 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
22e2c507 2894 * subscriptions and synchronises with wait4(). Also used in procfs. Also
ddbcc7e8 2895 * pins the final release of task.io_context. Also protects ->cpuset and
d68b46fe 2896 * ->cgroup.subsys[]. And ->vfork_done.
1da177e4
LT
2897 *
2898 * Nests both inside and outside of read_lock(&tasklist_lock).
2899 * It must not be nested with write_lock_irq(&tasklist_lock),
2900 * neither inside nor outside.
2901 */
2902static inline void task_lock(struct task_struct *p)
2903{
2904 spin_lock(&p->alloc_lock);
2905}
2906
2907static inline void task_unlock(struct task_struct *p)
2908{
2909 spin_unlock(&p->alloc_lock);
2910}
2911
b8ed374e 2912extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
f63ee72e
ON
2913 unsigned long *flags);
2914
9388dc30
AV
2915static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2916 unsigned long *flags)
2917{
2918 struct sighand_struct *ret;
2919
2920 ret = __lock_task_sighand(tsk, flags);
2921 (void)__cond_lock(&tsk->sighand->siglock, ret);
2922 return ret;
2923}
b8ed374e 2924
f63ee72e
ON
2925static inline void unlock_task_sighand(struct task_struct *tsk,
2926 unsigned long *flags)
2927{
2928 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2929}
2930
77e4ef99 2931/**
7d7efec3
TH
2932 * threadgroup_change_begin - mark the beginning of changes to a threadgroup
2933 * @tsk: task causing the changes
77e4ef99 2934 *
7d7efec3
TH
2935 * All operations which modify a threadgroup - a new thread joining the
2936 * group, death of a member thread (the assertion of PF_EXITING) and
2937 * exec(2) dethreading the process and replacing the leader - are wrapped
2938 * by threadgroup_change_{begin|end}(). This is to provide a place which
2939 * subsystems needing threadgroup stability can hook into for
2940 * synchronization.
77e4ef99 2941 */
7d7efec3 2942static inline void threadgroup_change_begin(struct task_struct *tsk)
4714d1d3 2943{
7d7efec3
TH
2944 might_sleep();
2945 cgroup_threadgroup_change_begin(tsk);
4714d1d3 2946}
77e4ef99
TH
2947
2948/**
7d7efec3
TH
2949 * threadgroup_change_end - mark the end of changes to a threadgroup
2950 * @tsk: task causing the changes
77e4ef99 2951 *
7d7efec3 2952 * See threadgroup_change_begin().
77e4ef99 2953 */
7d7efec3 2954static inline void threadgroup_change_end(struct task_struct *tsk)
4714d1d3 2955{
7d7efec3 2956 cgroup_threadgroup_change_end(tsk);
4714d1d3 2957}
4714d1d3 2958
f037360f
AV
2959#ifndef __HAVE_THREAD_FUNCTIONS
2960
f7e4217b
RZ
2961#define task_thread_info(task) ((struct thread_info *)(task)->stack)
2962#define task_stack_page(task) ((task)->stack)
a1261f54 2963
10ebffde
AV
2964static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2965{
2966 *task_thread_info(p) = *task_thread_info(org);
2967 task_thread_info(p)->task = p;
2968}
2969
6a40281a
CE
2970/*
2971 * Return the address of the last usable long on the stack.
2972 *
2973 * When the stack grows down, this is just above the thread
2974 * info struct. Going any lower will corrupt the threadinfo.
2975 *
2976 * When the stack grows up, this is the highest address.
2977 * Beyond that position, we corrupt data on the next page.
2978 */
10ebffde
AV
2979static inline unsigned long *end_of_stack(struct task_struct *p)
2980{
6a40281a
CE
2981#ifdef CONFIG_STACK_GROWSUP
2982 return (unsigned long *)((unsigned long)task_thread_info(p) + THREAD_SIZE) - 1;
2983#else
f7e4217b 2984 return (unsigned long *)(task_thread_info(p) + 1);
6a40281a 2985#endif
10ebffde
AV
2986}
2987
f037360f 2988#endif
a70857e4
AT
2989#define task_stack_end_corrupted(task) \
2990 (*(end_of_stack(task)) != STACK_END_MAGIC)
f037360f 2991
8b05c7e6
FT
2992static inline int object_is_on_stack(void *obj)
2993{
2994 void *stack = task_stack_page(current);
2995
2996 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2997}
2998
8c9843e5
BH
2999extern void thread_info_cache_init(void);
3000
7c9f8861
ES
3001#ifdef CONFIG_DEBUG_STACK_USAGE
3002static inline unsigned long stack_not_used(struct task_struct *p)
3003{
3004 unsigned long *n = end_of_stack(p);
3005
3006 do { /* Skip over canary */
6c31da34
HD
3007# ifdef CONFIG_STACK_GROWSUP
3008 n--;
3009# else
7c9f8861 3010 n++;
6c31da34 3011# endif
7c9f8861
ES
3012 } while (!*n);
3013
6c31da34
HD
3014# ifdef CONFIG_STACK_GROWSUP
3015 return (unsigned long)end_of_stack(p) - (unsigned long)n;
3016# else
7c9f8861 3017 return (unsigned long)n - (unsigned long)end_of_stack(p);
6c31da34 3018# endif
7c9f8861
ES
3019}
3020#endif
d4311ff1 3021extern void set_task_stack_end_magic(struct task_struct *tsk);
7c9f8861 3022
1da177e4
LT
3023/* set thread flags in other task's structures
3024 * - see asm/thread_info.h for TIF_xxxx flags available
3025 */
3026static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
3027{
a1261f54 3028 set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
3029}
3030
3031static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
3032{
a1261f54 3033 clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
3034}
3035
3036static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
3037{
a1261f54 3038 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
3039}
3040
3041static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
3042{
a1261f54 3043 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
3044}
3045
3046static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
3047{
a1261f54 3048 return test_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
3049}
3050
3051static inline void set_tsk_need_resched(struct task_struct *tsk)
3052{
3053 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
3054}
3055
3056static inline void clear_tsk_need_resched(struct task_struct *tsk)
3057{
3058 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
3059}
3060
8ae121ac
GH
3061static inline int test_tsk_need_resched(struct task_struct *tsk)
3062{
3063 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
3064}
3065
690cc3ff
EB
3066static inline int restart_syscall(void)
3067{
3068 set_tsk_thread_flag(current, TIF_SIGPENDING);
3069 return -ERESTARTNOINTR;
3070}
3071
1da177e4
LT
3072static inline int signal_pending(struct task_struct *p)
3073{
3074 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
3075}
f776d12d 3076
d9588725
RM
3077static inline int __fatal_signal_pending(struct task_struct *p)
3078{
3079 return unlikely(sigismember(&p->pending.signal, SIGKILL));
3080}
f776d12d
MW
3081
3082static inline int fatal_signal_pending(struct task_struct *p)
3083{
3084 return signal_pending(p) && __fatal_signal_pending(p);
3085}
3086
16882c1e
ON
3087static inline int signal_pending_state(long state, struct task_struct *p)
3088{
3089 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
3090 return 0;
3091 if (!signal_pending(p))
3092 return 0;
3093
16882c1e
ON
3094 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
3095}
3096
1da177e4
LT
3097/*
3098 * cond_resched() and cond_resched_lock(): latency reduction via
3099 * explicit rescheduling in places that are safe. The return
3100 * value indicates whether a reschedule was done in fact.
3101 * cond_resched_lock() will drop the spinlock before scheduling,
3102 * cond_resched_softirq() will enable bhs before scheduling.
3103 */
c3921ab7 3104extern int _cond_resched(void);
6f80bd98 3105
613afbf8 3106#define cond_resched() ({ \
3427445a 3107 ___might_sleep(__FILE__, __LINE__, 0); \
613afbf8
FW
3108 _cond_resched(); \
3109})
6f80bd98 3110
613afbf8
FW
3111extern int __cond_resched_lock(spinlock_t *lock);
3112
3113#define cond_resched_lock(lock) ({ \
3427445a 3114 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
613afbf8
FW
3115 __cond_resched_lock(lock); \
3116})
3117
3118extern int __cond_resched_softirq(void);
3119
75e1056f 3120#define cond_resched_softirq() ({ \
3427445a 3121 ___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
75e1056f 3122 __cond_resched_softirq(); \
613afbf8 3123})
1da177e4 3124
f6f3c437
SH
3125static inline void cond_resched_rcu(void)
3126{
3127#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
3128 rcu_read_unlock();
3129 cond_resched();
3130 rcu_read_lock();
3131#endif
3132}
3133
1da177e4
LT
3134/*
3135 * Does a critical section need to be broken due to another
95c354fe
NP
3136 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
3137 * but a general need for low latency)
1da177e4 3138 */
95c354fe 3139static inline int spin_needbreak(spinlock_t *lock)
1da177e4 3140{
95c354fe
NP
3141#ifdef CONFIG_PREEMPT
3142 return spin_is_contended(lock);
3143#else
1da177e4 3144 return 0;
95c354fe 3145#endif
1da177e4
LT
3146}
3147
ee761f62
TG
3148/*
3149 * Idle thread specific functions to determine the need_resched
69dd0f84 3150 * polling state.
ee761f62 3151 */
69dd0f84 3152#ifdef TIF_POLLING_NRFLAG
ee761f62
TG
3153static inline int tsk_is_polling(struct task_struct *p)
3154{
3155 return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG);
3156}
ea811747
PZ
3157
3158static inline void __current_set_polling(void)
3a98f871
TG
3159{
3160 set_thread_flag(TIF_POLLING_NRFLAG);
3161}
3162
ea811747
PZ
3163static inline bool __must_check current_set_polling_and_test(void)
3164{
3165 __current_set_polling();
3166
3167 /*
3168 * Polling state must be visible before we test NEED_RESCHED,
8875125e 3169 * paired by resched_curr()
ea811747 3170 */
4e857c58 3171 smp_mb__after_atomic();
ea811747
PZ
3172
3173 return unlikely(tif_need_resched());
3174}
3175
3176static inline void __current_clr_polling(void)
3a98f871
TG
3177{
3178 clear_thread_flag(TIF_POLLING_NRFLAG);
3179}
ea811747
PZ
3180
3181static inline bool __must_check current_clr_polling_and_test(void)
3182{
3183 __current_clr_polling();
3184
3185 /*
3186 * Polling state must be visible before we test NEED_RESCHED,
8875125e 3187 * paired by resched_curr()
ea811747 3188 */
4e857c58 3189 smp_mb__after_atomic();
ea811747
PZ
3190
3191 return unlikely(tif_need_resched());
3192}
3193
ee761f62
TG
3194#else
3195static inline int tsk_is_polling(struct task_struct *p) { return 0; }
ea811747
PZ
3196static inline void __current_set_polling(void) { }
3197static inline void __current_clr_polling(void) { }
3198
3199static inline bool __must_check current_set_polling_and_test(void)
3200{
3201 return unlikely(tif_need_resched());
3202}
3203static inline bool __must_check current_clr_polling_and_test(void)
3204{
3205 return unlikely(tif_need_resched());
3206}
ee761f62
TG
3207#endif
3208
8cb75e0c
PZ
3209static inline void current_clr_polling(void)
3210{
3211 __current_clr_polling();
3212
3213 /*
3214 * Ensure we check TIF_NEED_RESCHED after we clear the polling bit.
3215 * Once the bit is cleared, we'll get IPIs with every new
3216 * TIF_NEED_RESCHED and the IPI handler, scheduler_ipi(), will also
3217 * fold.
3218 */
8875125e 3219 smp_mb(); /* paired with resched_curr() */
8cb75e0c
PZ
3220
3221 preempt_fold_need_resched();
3222}
3223
75f93fed
PZ
3224static __always_inline bool need_resched(void)
3225{
3226 return unlikely(tif_need_resched());
3227}
3228
f06febc9
FM
3229/*
3230 * Thread group CPU time accounting.
3231 */
4cd4c1b4 3232void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
4da94d49 3233void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
f06febc9 3234
7bb44ade
RM
3235/*
3236 * Reevaluate whether the task has signals pending delivery.
3237 * Wake the task if so.
3238 * This is required every time the blocked sigset_t changes.
3239 * callers must hold sighand->siglock.
3240 */
3241extern void recalc_sigpending_and_wake(struct task_struct *t);
1da177e4
LT
3242extern void recalc_sigpending(void);
3243
910ffdb1
ON
3244extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
3245
3246static inline void signal_wake_up(struct task_struct *t, bool resume)
3247{
3248 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
3249}
3250static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
3251{
3252 signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
3253}
1da177e4
LT
3254
3255/*
3256 * Wrappers for p->thread_info->cpu access. No-op on UP.
3257 */
3258#ifdef CONFIG_SMP
3259
3260static inline unsigned int task_cpu(const struct task_struct *p)
3261{
a1261f54 3262 return task_thread_info(p)->cpu;
1da177e4
LT
3263}
3264
b32e86b4
IM
3265static inline int task_node(const struct task_struct *p)
3266{
3267 return cpu_to_node(task_cpu(p));
3268}
3269
c65cc870 3270extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1da177e4
LT
3271
3272#else
3273
3274static inline unsigned int task_cpu(const struct task_struct *p)
3275{
3276 return 0;
3277}
3278
3279static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
3280{
3281}
3282
3283#endif /* CONFIG_SMP */
3284
96f874e2
RR
3285extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
3286extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
5c45bf27 3287
7c941438 3288#ifdef CONFIG_CGROUP_SCHED
07e06b01 3289extern struct task_group root_task_group;
8323f26c 3290#endif /* CONFIG_CGROUP_SCHED */
9b5b7751 3291
54e99124
DG
3292extern int task_can_switch_user(struct user_struct *up,
3293 struct task_struct *tsk);
3294
4b98d11b
AD
3295#ifdef CONFIG_TASK_XACCT
3296static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3297{
940389b8 3298 tsk->ioac.rchar += amt;
4b98d11b
AD
3299}
3300
3301static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3302{
940389b8 3303 tsk->ioac.wchar += amt;
4b98d11b
AD
3304}
3305
3306static inline void inc_syscr(struct task_struct *tsk)
3307{
940389b8 3308 tsk->ioac.syscr++;
4b98d11b
AD
3309}
3310
3311static inline void inc_syscw(struct task_struct *tsk)
3312{
940389b8 3313 tsk->ioac.syscw++;
4b98d11b
AD
3314}
3315#else
3316static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3317{
3318}
3319
3320static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3321{
3322}
3323
3324static inline void inc_syscr(struct task_struct *tsk)
3325{
3326}
3327
3328static inline void inc_syscw(struct task_struct *tsk)
3329{
3330}
3331#endif
3332
82455257
DH
3333#ifndef TASK_SIZE_OF
3334#define TASK_SIZE_OF(tsk) TASK_SIZE
3335#endif
3336
f98bafa0 3337#ifdef CONFIG_MEMCG
cf475ad2 3338extern void mm_update_next_owner(struct mm_struct *mm);
cf475ad2
BS
3339#else
3340static inline void mm_update_next_owner(struct mm_struct *mm)
3341{
3342}
f98bafa0 3343#endif /* CONFIG_MEMCG */
cf475ad2 3344
3e10e716
JS
3345static inline unsigned long task_rlimit(const struct task_struct *tsk,
3346 unsigned int limit)
3347{
316c1608 3348 return READ_ONCE(tsk->signal->rlim[limit].rlim_cur);
3e10e716
JS
3349}
3350
3351static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
3352 unsigned int limit)
3353{
316c1608 3354 return READ_ONCE(tsk->signal->rlim[limit].rlim_max);
3e10e716
JS
3355}
3356
3357static inline unsigned long rlimit(unsigned int limit)
3358{
3359 return task_rlimit(current, limit);
3360}
3361
3362static inline unsigned long rlimit_max(unsigned int limit)
3363{
3364 return task_rlimit_max(current, limit);
3365}
3366
adaf9fcd
RW
3367#ifdef CONFIG_CPU_FREQ
3368struct update_util_data {
3369 void (*func)(struct update_util_data *data,
3370 u64 time, unsigned long util, unsigned long max);
3371};
3372
0bed612b
RW
3373void cpufreq_add_update_util_hook(int cpu, struct update_util_data *data,
3374 void (*func)(struct update_util_data *data, u64 time,
3375 unsigned long util, unsigned long max));
3376void cpufreq_remove_update_util_hook(int cpu);
adaf9fcd
RW
3377#endif /* CONFIG_CPU_FREQ */
3378
1da177e4 3379#endif
This page took 2.218935 seconds and 5 git commands to generate.