Merge branch 'overlayfs-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mszer...
[deliverable/linux.git] / include / linux / skbuff.h
CommitLineData
1da177e4
LT
1/*
2 * Definitions for the 'struct sk_buff' memory handlers.
3 *
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14#ifndef _LINUX_SKBUFF_H
15#define _LINUX_SKBUFF_H
16
1da177e4 17#include <linux/kernel.h>
fe55f6d5 18#include <linux/kmemcheck.h>
1da177e4
LT
19#include <linux/compiler.h>
20#include <linux/time.h>
187f1882 21#include <linux/bug.h>
1da177e4 22#include <linux/cache.h>
56b17425 23#include <linux/rbtree.h>
51f3d02b 24#include <linux/socket.h>
1da177e4 25
60063497 26#include <linux/atomic.h>
1da177e4
LT
27#include <asm/types.h>
28#include <linux/spinlock.h>
1da177e4 29#include <linux/net.h>
3fc7e8a6 30#include <linux/textsearch.h>
1da177e4 31#include <net/checksum.h>
a80958f4 32#include <linux/rcupdate.h>
b7aa0bf7 33#include <linux/hrtimer.h>
131ea667 34#include <linux/dma-mapping.h>
c8f44aff 35#include <linux/netdev_features.h>
363ec392 36#include <linux/sched.h>
1bd758eb 37#include <net/flow_dissector.h>
a60e3cc7 38#include <linux/splice.h>
72b31f72 39#include <linux/in6.h>
f70ea018 40#include <net/flow.h>
1da177e4 41
7a6ae71b
TH
42/* The interface for checksum offload between the stack and networking drivers
43 * is as follows...
44 *
45 * A. IP checksum related features
46 *
47 * Drivers advertise checksum offload capabilities in the features of a device.
48 * From the stack's point of view these are capabilities offered by the driver,
49 * a driver typically only advertises features that it is capable of offloading
50 * to its device.
51 *
52 * The checksum related features are:
53 *
54 * NETIF_F_HW_CSUM - The driver (or its device) is able to compute one
55 * IP (one's complement) checksum for any combination
56 * of protocols or protocol layering. The checksum is
57 * computed and set in a packet per the CHECKSUM_PARTIAL
58 * interface (see below).
59 *
60 * NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
61 * TCP or UDP packets over IPv4. These are specifically
62 * unencapsulated packets of the form IPv4|TCP or
63 * IPv4|UDP where the Protocol field in the IPv4 header
64 * is TCP or UDP. The IPv4 header may contain IP options
65 * This feature cannot be set in features for a device
66 * with NETIF_F_HW_CSUM also set. This feature is being
67 * DEPRECATED (see below).
68 *
69 * NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
70 * TCP or UDP packets over IPv6. These are specifically
71 * unencapsulated packets of the form IPv6|TCP or
72 * IPv4|UDP where the Next Header field in the IPv6
73 * header is either TCP or UDP. IPv6 extension headers
74 * are not supported with this feature. This feature
75 * cannot be set in features for a device with
76 * NETIF_F_HW_CSUM also set. This feature is being
77 * DEPRECATED (see below).
78 *
79 * NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
80 * This flag is used only used to disable the RX checksum
81 * feature for a device. The stack will accept receive
82 * checksum indication in packets received on a device
83 * regardless of whether NETIF_F_RXCSUM is set.
84 *
85 * B. Checksumming of received packets by device. Indication of checksum
86 * verification is in set skb->ip_summed. Possible values are:
78ea85f1
DB
87 *
88 * CHECKSUM_NONE:
89 *
7a6ae71b 90 * Device did not checksum this packet e.g. due to lack of capabilities.
78ea85f1
DB
91 * The packet contains full (though not verified) checksum in packet but
92 * not in skb->csum. Thus, skb->csum is undefined in this case.
93 *
94 * CHECKSUM_UNNECESSARY:
95 *
96 * The hardware you're dealing with doesn't calculate the full checksum
97 * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
77cffe23
TH
98 * for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
99 * if their checksums are okay. skb->csum is still undefined in this case
7a6ae71b
TH
100 * though. A driver or device must never modify the checksum field in the
101 * packet even if checksum is verified.
77cffe23
TH
102 *
103 * CHECKSUM_UNNECESSARY is applicable to following protocols:
104 * TCP: IPv6 and IPv4.
105 * UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
106 * zero UDP checksum for either IPv4 or IPv6, the networking stack
107 * may perform further validation in this case.
108 * GRE: only if the checksum is present in the header.
109 * SCTP: indicates the CRC in SCTP header has been validated.
110 *
111 * skb->csum_level indicates the number of consecutive checksums found in
112 * the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
113 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
114 * and a device is able to verify the checksums for UDP (possibly zero),
115 * GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
116 * two. If the device were only able to verify the UDP checksum and not
117 * GRE, either because it doesn't support GRE checksum of because GRE
118 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is
119 * not considered in this case).
78ea85f1
DB
120 *
121 * CHECKSUM_COMPLETE:
122 *
123 * This is the most generic way. The device supplied checksum of the _whole_
124 * packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
125 * hardware doesn't need to parse L3/L4 headers to implement this.
126 *
127 * Note: Even if device supports only some protocols, but is able to produce
128 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
129 *
130 * CHECKSUM_PARTIAL:
131 *
6edec0e6
TH
132 * A checksum is set up to be offloaded to a device as described in the
133 * output description for CHECKSUM_PARTIAL. This may occur on a packet
78ea85f1 134 * received directly from another Linux OS, e.g., a virtualized Linux kernel
6edec0e6
TH
135 * on the same host, or it may be set in the input path in GRO or remote
136 * checksum offload. For the purposes of checksum verification, the checksum
137 * referred to by skb->csum_start + skb->csum_offset and any preceding
138 * checksums in the packet are considered verified. Any checksums in the
139 * packet that are after the checksum being offloaded are not considered to
140 * be verified.
78ea85f1 141 *
7a6ae71b
TH
142 * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
143 * in the skb->ip_summed for a packet. Values are:
78ea85f1
DB
144 *
145 * CHECKSUM_PARTIAL:
146 *
7a6ae71b 147 * The driver is required to checksum the packet as seen by hard_start_xmit()
78ea85f1 148 * from skb->csum_start up to the end, and to record/write the checksum at
7a6ae71b
TH
149 * offset skb->csum_start + skb->csum_offset. A driver may verify that the
150 * csum_start and csum_offset values are valid values given the length and
151 * offset of the packet, however they should not attempt to validate that the
152 * checksum refers to a legitimate transport layer checksum-- it is the
153 * purview of the stack to validate that csum_start and csum_offset are set
154 * correctly.
155 *
156 * When the stack requests checksum offload for a packet, the driver MUST
157 * ensure that the checksum is set correctly. A driver can either offload the
158 * checksum calculation to the device, or call skb_checksum_help (in the case
159 * that the device does not support offload for a particular checksum).
160 *
161 * NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
162 * NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
163 * checksum offload capability. If a device has limited checksum capabilities
164 * (for instance can only perform NETIF_F_IP_CSUM or NETIF_F_IPV6_CSUM as
165 * described above) a helper function can be called to resolve
166 * CHECKSUM_PARTIAL. The helper functions are skb_csum_off_chk*. The helper
167 * function takes a spec argument that describes the protocol layer that is
168 * supported for checksum offload and can be called for each packet. If a
169 * packet does not match the specification for offload, skb_checksum_help
170 * is called to resolve the checksum.
78ea85f1 171 *
7a6ae71b 172 * CHECKSUM_NONE:
78ea85f1 173 *
7a6ae71b
TH
174 * The skb was already checksummed by the protocol, or a checksum is not
175 * required.
78ea85f1
DB
176 *
177 * CHECKSUM_UNNECESSARY:
178 *
7a6ae71b
TH
179 * This has the same meaning on as CHECKSUM_NONE for checksum offload on
180 * output.
78ea85f1 181 *
7a6ae71b
TH
182 * CHECKSUM_COMPLETE:
183 * Not used in checksum output. If a driver observes a packet with this value
184 * set in skbuff, if should treat as CHECKSUM_NONE being set.
185 *
186 * D. Non-IP checksum (CRC) offloads
187 *
188 * NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
189 * offloading the SCTP CRC in a packet. To perform this offload the stack
190 * will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
191 * accordingly. Note the there is no indication in the skbuff that the
192 * CHECKSUM_PARTIAL refers to an SCTP checksum, a driver that supports
193 * both IP checksum offload and SCTP CRC offload must verify which offload
194 * is configured for a packet presumably by inspecting packet headers.
195 *
196 * NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
197 * offloading the FCOE CRC in a packet. To perform this offload the stack
198 * will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
199 * accordingly. Note the there is no indication in the skbuff that the
200 * CHECKSUM_PARTIAL refers to an FCOE checksum, a driver that supports
201 * both IP checksum offload and FCOE CRC offload must verify which offload
202 * is configured for a packet presumably by inspecting packet headers.
203 *
204 * E. Checksumming on output with GSO.
205 *
206 * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
207 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
208 * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
209 * part of the GSO operation is implied. If a checksum is being offloaded
210 * with GSO then ip_summed is CHECKSUM_PARTIAL, csum_start and csum_offset
211 * are set to refer to the outermost checksum being offload (two offloaded
212 * checksums are possible with UDP encapsulation).
78ea85f1
DB
213 */
214
60476372 215/* Don't change this without changing skb_csum_unnecessary! */
78ea85f1
DB
216#define CHECKSUM_NONE 0
217#define CHECKSUM_UNNECESSARY 1
218#define CHECKSUM_COMPLETE 2
219#define CHECKSUM_PARTIAL 3
1da177e4 220
77cffe23
TH
221/* Maximum value in skb->csum_level */
222#define SKB_MAX_CSUM_LEVEL 3
223
0bec8c88 224#define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES)
fc910a27 225#define SKB_WITH_OVERHEAD(X) \
deea84b0 226 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
fc910a27
DM
227#define SKB_MAX_ORDER(X, ORDER) \
228 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
1da177e4
LT
229#define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
230#define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
231
87fb4b7b
ED
232/* return minimum truesize of one skb containing X bytes of data */
233#define SKB_TRUESIZE(X) ((X) + \
234 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
235 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
236
1da177e4 237struct net_device;
716ea3a7 238struct scatterlist;
9c55e01c 239struct pipe_inode_info;
a8f820aa 240struct iov_iter;
fd11a83d 241struct napi_struct;
1da177e4 242
5f79e0f9 243#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1da177e4
LT
244struct nf_conntrack {
245 atomic_t use;
1da177e4 246};
5f79e0f9 247#endif
1da177e4 248
34666d46 249#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
1da177e4 250struct nf_bridge_info {
bf1ac5ca 251 atomic_t use;
3eaf4025
FW
252 enum {
253 BRNF_PROTO_UNCHANGED,
254 BRNF_PROTO_8021Q,
255 BRNF_PROTO_PPPOE
7fb48c5b 256 } orig_proto:8;
72b1e5e4
FW
257 u8 pkt_otherhost:1;
258 u8 in_prerouting:1;
259 u8 bridged_dnat:1;
411ffb4f 260 __u16 frag_max_size;
bf1ac5ca 261 struct net_device *physindev;
63cdbc06
FW
262
263 /* always valid & non-NULL from FORWARD on, for physdev match */
264 struct net_device *physoutdev;
7fb48c5b 265 union {
72b1e5e4 266 /* prerouting: detect dnat in orig/reply direction */
72b31f72
BT
267 __be32 ipv4_daddr;
268 struct in6_addr ipv6_daddr;
72b1e5e4
FW
269
270 /* after prerouting + nat detected: store original source
271 * mac since neigh resolution overwrites it, only used while
272 * skb is out in neigh layer.
273 */
274 char neigh_header[8];
72b31f72 275 };
1da177e4
LT
276};
277#endif
278
1da177e4
LT
279struct sk_buff_head {
280 /* These two members must be first. */
281 struct sk_buff *next;
282 struct sk_buff *prev;
283
284 __u32 qlen;
285 spinlock_t lock;
286};
287
288struct sk_buff;
289
9d4dde52
IC
290/* To allow 64K frame to be packed as single skb without frag_list we
291 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
292 * buffers which do not start on a page boundary.
293 *
294 * Since GRO uses frags we allocate at least 16 regardless of page
295 * size.
a715dea3 296 */
9d4dde52 297#if (65536/PAGE_SIZE + 1) < 16
eec00954 298#define MAX_SKB_FRAGS 16UL
a715dea3 299#else
9d4dde52 300#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
a715dea3 301#endif
5f74f82e 302extern int sysctl_max_skb_frags;
1da177e4
LT
303
304typedef struct skb_frag_struct skb_frag_t;
305
306struct skb_frag_struct {
a8605c60
IC
307 struct {
308 struct page *p;
309 } page;
cb4dfe56 310#if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
a309bb07
DM
311 __u32 page_offset;
312 __u32 size;
cb4dfe56
ED
313#else
314 __u16 page_offset;
315 __u16 size;
316#endif
1da177e4
LT
317};
318
9e903e08
ED
319static inline unsigned int skb_frag_size(const skb_frag_t *frag)
320{
321 return frag->size;
322}
323
324static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
325{
326 frag->size = size;
327}
328
329static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
330{
331 frag->size += delta;
332}
333
334static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
335{
336 frag->size -= delta;
337}
338
ac45f602
PO
339#define HAVE_HW_TIME_STAMP
340
341/**
d3a21be8 342 * struct skb_shared_hwtstamps - hardware time stamps
ac45f602
PO
343 * @hwtstamp: hardware time stamp transformed into duration
344 * since arbitrary point in time
ac45f602
PO
345 *
346 * Software time stamps generated by ktime_get_real() are stored in
4d276eb6 347 * skb->tstamp.
ac45f602
PO
348 *
349 * hwtstamps can only be compared against other hwtstamps from
350 * the same device.
351 *
352 * This structure is attached to packets as part of the
353 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
354 */
355struct skb_shared_hwtstamps {
356 ktime_t hwtstamp;
ac45f602
PO
357};
358
2244d07b
OH
359/* Definitions for tx_flags in struct skb_shared_info */
360enum {
361 /* generate hardware time stamp */
362 SKBTX_HW_TSTAMP = 1 << 0,
363
e7fd2885 364 /* generate software time stamp when queueing packet to NIC */
2244d07b
OH
365 SKBTX_SW_TSTAMP = 1 << 1,
366
367 /* device driver is going to provide hardware time stamp */
368 SKBTX_IN_PROGRESS = 1 << 2,
369
a6686f2f 370 /* device driver supports TX zero-copy buffers */
62b1a8ab 371 SKBTX_DEV_ZEROCOPY = 1 << 3,
6e3e939f
JB
372
373 /* generate wifi status information (where possible) */
62b1a8ab 374 SKBTX_WIFI_STATUS = 1 << 4,
c9af6db4
PS
375
376 /* This indicates at least one fragment might be overwritten
377 * (as in vmsplice(), sendfile() ...)
378 * If we need to compute a TX checksum, we'll need to copy
379 * all frags to avoid possible bad checksum
380 */
381 SKBTX_SHARED_FRAG = 1 << 5,
e7fd2885
WB
382
383 /* generate software time stamp when entering packet scheduling */
384 SKBTX_SCHED_TSTAMP = 1 << 6,
a6686f2f
SM
385};
386
e1c8a607 387#define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \
0a2cf20c 388 SKBTX_SCHED_TSTAMP)
f24b9be5
WB
389#define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
390
a6686f2f
SM
391/*
392 * The callback notifies userspace to release buffers when skb DMA is done in
393 * lower device, the skb last reference should be 0 when calling this.
e19d6763
MT
394 * The zerocopy_success argument is true if zero copy transmit occurred,
395 * false on data copy or out of memory error caused by data copy attempt.
ca8f4fb2
MT
396 * The ctx field is used to track device context.
397 * The desc field is used to track userspace buffer index.
a6686f2f
SM
398 */
399struct ubuf_info {
e19d6763 400 void (*callback)(struct ubuf_info *, bool zerocopy_success);
ca8f4fb2 401 void *ctx;
a6686f2f 402 unsigned long desc;
ac45f602
PO
403};
404
1da177e4
LT
405/* This data is invariant across clones and lives at
406 * the end of the header data, ie. at skb->end.
407 */
408struct skb_shared_info {
9f42f126
IC
409 unsigned char nr_frags;
410 __u8 tx_flags;
7967168c
HX
411 unsigned short gso_size;
412 /* Warning: this field is not always filled in (UFO)! */
413 unsigned short gso_segs;
414 unsigned short gso_type;
1da177e4 415 struct sk_buff *frag_list;
ac45f602 416 struct skb_shared_hwtstamps hwtstamps;
09c2d251 417 u32 tskey;
9f42f126 418 __be32 ip6_frag_id;
ec7d2f2c
ED
419
420 /*
421 * Warning : all fields before dataref are cleared in __alloc_skb()
422 */
423 atomic_t dataref;
424
69e3c75f
JB
425 /* Intermediate layers must ensure that destructor_arg
426 * remains valid until skb destructor */
427 void * destructor_arg;
a6686f2f 428
fed66381
ED
429 /* must be last field, see pskb_expand_head() */
430 skb_frag_t frags[MAX_SKB_FRAGS];
1da177e4
LT
431};
432
433/* We divide dataref into two halves. The higher 16 bits hold references
434 * to the payload part of skb->data. The lower 16 bits hold references to
334a8132
PM
435 * the entire skb->data. A clone of a headerless skb holds the length of
436 * the header in skb->hdr_len.
1da177e4
LT
437 *
438 * All users must obey the rule that the skb->data reference count must be
439 * greater than or equal to the payload reference count.
440 *
441 * Holding a reference to the payload part means that the user does not
442 * care about modifications to the header part of skb->data.
443 */
444#define SKB_DATAREF_SHIFT 16
445#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
446
d179cd12
DM
447
448enum {
c8753d55
VS
449 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */
450 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */
451 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */
d179cd12
DM
452};
453
7967168c
HX
454enum {
455 SKB_GSO_TCPV4 = 1 << 0,
f83ef8c0 456 SKB_GSO_UDP = 1 << 1,
576a30eb
HX
457
458 /* This indicates the skb is from an untrusted source. */
459 SKB_GSO_DODGY = 1 << 2,
b0da8537
MC
460
461 /* This indicates the tcp segment has CWR set. */
f83ef8c0
HX
462 SKB_GSO_TCP_ECN = 1 << 3,
463
cbc53e08 464 SKB_GSO_TCP_FIXEDID = 1 << 4,
01d5b2fc 465
cbc53e08 466 SKB_GSO_TCPV6 = 1 << 5,
68c33163 467
cbc53e08 468 SKB_GSO_FCOE = 1 << 6,
73136267 469
cbc53e08 470 SKB_GSO_GRE = 1 << 7,
0d89d203 471
cbc53e08 472 SKB_GSO_GRE_CSUM = 1 << 8,
cb32f511 473
7e13318d 474 SKB_GSO_IPXIP4 = 1 << 9,
61c1db7f 475
7e13318d 476 SKB_GSO_IPXIP6 = 1 << 10,
0f4f4ffa 477
cbc53e08 478 SKB_GSO_UDP_TUNNEL = 1 << 11,
4749c09c 479
cbc53e08
AD
480 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 12,
481
802ab55a
AD
482 SKB_GSO_PARTIAL = 1 << 13,
483
484 SKB_GSO_TUNNEL_REMCSUM = 1 << 14,
7967168c
HX
485};
486
2e07fa9c
ACM
487#if BITS_PER_LONG > 32
488#define NET_SKBUFF_DATA_USES_OFFSET 1
489#endif
490
491#ifdef NET_SKBUFF_DATA_USES_OFFSET
492typedef unsigned int sk_buff_data_t;
493#else
494typedef unsigned char *sk_buff_data_t;
495#endif
496
363ec392
ED
497/**
498 * struct skb_mstamp - multi resolution time stamps
499 * @stamp_us: timestamp in us resolution
500 * @stamp_jiffies: timestamp in jiffies
501 */
502struct skb_mstamp {
503 union {
504 u64 v64;
505 struct {
506 u32 stamp_us;
507 u32 stamp_jiffies;
508 };
509 };
510};
511
512/**
513 * skb_mstamp_get - get current timestamp
514 * @cl: place to store timestamps
515 */
516static inline void skb_mstamp_get(struct skb_mstamp *cl)
517{
518 u64 val = local_clock();
519
520 do_div(val, NSEC_PER_USEC);
521 cl->stamp_us = (u32)val;
522 cl->stamp_jiffies = (u32)jiffies;
523}
524
525/**
526 * skb_mstamp_delta - compute the difference in usec between two skb_mstamp
527 * @t1: pointer to newest sample
528 * @t0: pointer to oldest sample
529 */
530static inline u32 skb_mstamp_us_delta(const struct skb_mstamp *t1,
531 const struct skb_mstamp *t0)
532{
533 s32 delta_us = t1->stamp_us - t0->stamp_us;
534 u32 delta_jiffies = t1->stamp_jiffies - t0->stamp_jiffies;
535
536 /* If delta_us is negative, this might be because interval is too big,
537 * or local_clock() drift is too big : fallback using jiffies.
538 */
539 if (delta_us <= 0 ||
540 delta_jiffies >= (INT_MAX / (USEC_PER_SEC / HZ)))
541
542 delta_us = jiffies_to_usecs(delta_jiffies);
543
544 return delta_us;
545}
546
625a5e10
YC
547static inline bool skb_mstamp_after(const struct skb_mstamp *t1,
548 const struct skb_mstamp *t0)
549{
550 s32 diff = t1->stamp_jiffies - t0->stamp_jiffies;
551
552 if (!diff)
553 diff = t1->stamp_us - t0->stamp_us;
554 return diff > 0;
555}
363ec392 556
1da177e4
LT
557/**
558 * struct sk_buff - socket buffer
559 * @next: Next buffer in list
560 * @prev: Previous buffer in list
363ec392 561 * @tstamp: Time we arrived/left
56b17425 562 * @rbnode: RB tree node, alternative to next/prev for netem/tcp
d84e0bd7 563 * @sk: Socket we are owned by
1da177e4 564 * @dev: Device we arrived on/are leaving by
d84e0bd7 565 * @cb: Control buffer. Free for use by every layer. Put private vars here
7fee226a 566 * @_skb_refdst: destination entry (with norefcount bit)
67be2dd1 567 * @sp: the security path, used for xfrm
1da177e4
LT
568 * @len: Length of actual data
569 * @data_len: Data length
570 * @mac_len: Length of link layer header
334a8132 571 * @hdr_len: writable header length of cloned skb
663ead3b
HX
572 * @csum: Checksum (must include start/offset pair)
573 * @csum_start: Offset from skb->head where checksumming should start
574 * @csum_offset: Offset from csum_start where checksum should be stored
d84e0bd7 575 * @priority: Packet queueing priority
60ff7467 576 * @ignore_df: allow local fragmentation
1da177e4 577 * @cloned: Head may be cloned (check refcnt to be sure)
d84e0bd7 578 * @ip_summed: Driver fed us an IP checksum
1da177e4 579 * @nohdr: Payload reference only, must not modify header
d84e0bd7 580 * @nfctinfo: Relationship of this skb to the connection
1da177e4 581 * @pkt_type: Packet class
c83c2486 582 * @fclone: skbuff clone status
c83c2486 583 * @ipvs_property: skbuff is owned by ipvs
31729363
RD
584 * @peeked: this packet has been seen already, so stats have been
585 * done for it, don't do them again
ba9dda3a 586 * @nf_trace: netfilter packet trace flag
d84e0bd7
DB
587 * @protocol: Packet protocol from driver
588 * @destructor: Destruct function
589 * @nfct: Associated connection, if any
1da177e4 590 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
8964be4a 591 * @skb_iif: ifindex of device we arrived on
1da177e4
LT
592 * @tc_index: Traffic control index
593 * @tc_verd: traffic control verdict
61b905da 594 * @hash: the packet hash
d84e0bd7 595 * @queue_mapping: Queue mapping for multiqueue devices
0b725a2c 596 * @xmit_more: More SKBs are pending for this queue
553a5672 597 * @ndisc_nodetype: router type (from link layer)
d84e0bd7 598 * @ooo_okay: allow the mapping of a socket to a queue to be changed
61b905da 599 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport
4ca2462e 600 * ports.
a3b18ddb 601 * @sw_hash: indicates hash was computed in software stack
6e3e939f
JB
602 * @wifi_acked_valid: wifi_acked was set
603 * @wifi_acked: whether frame was acked on wifi or not
3bdc0eba 604 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS
06021292 605 * @napi_id: id of the NAPI struct this skb came from
984bc16c 606 * @secmark: security marking
0c4f691f 607 * @offload_fwd_mark: fwding offload mark
d84e0bd7 608 * @mark: Generic packet mark
86a9bad3 609 * @vlan_proto: vlan encapsulation protocol
6aa895b0 610 * @vlan_tci: vlan tag control information
0d89d203 611 * @inner_protocol: Protocol (encapsulation)
6a674e9c
JG
612 * @inner_transport_header: Inner transport layer header (encapsulation)
613 * @inner_network_header: Network layer header (encapsulation)
aefbd2b3 614 * @inner_mac_header: Link layer header (encapsulation)
d84e0bd7
DB
615 * @transport_header: Transport layer header
616 * @network_header: Network layer header
617 * @mac_header: Link layer header
618 * @tail: Tail pointer
619 * @end: End pointer
620 * @head: Head of buffer
621 * @data: Data head pointer
622 * @truesize: Buffer size
623 * @users: User count - see {datagram,tcp}.c
1da177e4
LT
624 */
625
626struct sk_buff {
363ec392 627 union {
56b17425
ED
628 struct {
629 /* These two members must be first. */
630 struct sk_buff *next;
631 struct sk_buff *prev;
632
633 union {
634 ktime_t tstamp;
635 struct skb_mstamp skb_mstamp;
636 };
637 };
638 struct rb_node rbnode; /* used in netem & tcp stack */
363ec392 639 };
da3f5cf1 640 struct sock *sk;
1da177e4 641 struct net_device *dev;
1da177e4 642
1da177e4
LT
643 /*
644 * This is the control buffer. It is free to use for every
645 * layer. Please put your private variables there. If you
646 * want to keep them across layers you have to do a skb_clone()
647 * first. This is owned by whoever has the skb queued ATM.
648 */
da3f5cf1 649 char cb[48] __aligned(8);
1da177e4 650
7fee226a 651 unsigned long _skb_refdst;
b1937227 652 void (*destructor)(struct sk_buff *skb);
da3f5cf1
FF
653#ifdef CONFIG_XFRM
654 struct sec_path *sp;
b1937227
ED
655#endif
656#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
657 struct nf_conntrack *nfct;
658#endif
85224844 659#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
b1937227 660 struct nf_bridge_info *nf_bridge;
da3f5cf1 661#endif
1da177e4 662 unsigned int len,
334a8132
PM
663 data_len;
664 __u16 mac_len,
665 hdr_len;
b1937227
ED
666
667 /* Following fields are _not_ copied in __copy_skb_header()
668 * Note that queue_mapping is here mostly to fill a hole.
669 */
fe55f6d5 670 kmemcheck_bitfield_begin(flags1);
b1937227
ED
671 __u16 queue_mapping;
672 __u8 cloned:1,
6869c4d8 673 nohdr:1,
b84f4cc9 674 fclone:2,
a59322be 675 peeked:1,
b1937227
ED
676 head_frag:1,
677 xmit_more:1;
678 /* one bit hole */
fe55f6d5 679 kmemcheck_bitfield_end(flags1);
4031ae6e 680
b1937227
ED
681 /* fields enclosed in headers_start/headers_end are copied
682 * using a single memcpy() in __copy_skb_header()
683 */
ebcf34f3 684 /* private: */
b1937227 685 __u32 headers_start[0];
ebcf34f3 686 /* public: */
4031ae6e 687
233577a2
HFS
688/* if you move pkt_type around you also must adapt those constants */
689#ifdef __BIG_ENDIAN_BITFIELD
690#define PKT_TYPE_MAX (7 << 5)
691#else
692#define PKT_TYPE_MAX 7
1da177e4 693#endif
233577a2 694#define PKT_TYPE_OFFSET() offsetof(struct sk_buff, __pkt_type_offset)
fe55f6d5 695
233577a2 696 __u8 __pkt_type_offset[0];
b1937227 697 __u8 pkt_type:3;
c93bdd0e 698 __u8 pfmemalloc:1;
b1937227
ED
699 __u8 ignore_df:1;
700 __u8 nfctinfo:3;
701
702 __u8 nf_trace:1;
703 __u8 ip_summed:2;
3853b584 704 __u8 ooo_okay:1;
61b905da 705 __u8 l4_hash:1;
a3b18ddb 706 __u8 sw_hash:1;
6e3e939f
JB
707 __u8 wifi_acked_valid:1;
708 __u8 wifi_acked:1;
b1937227 709
3bdc0eba 710 __u8 no_fcs:1;
77cffe23 711 /* Indicates the inner headers are valid in the skbuff. */
6a674e9c 712 __u8 encapsulation:1;
7e2b10c1 713 __u8 encap_hdr_csum:1;
5d0c2b95 714 __u8 csum_valid:1;
7e3cead5 715 __u8 csum_complete_sw:1;
b1937227
ED
716 __u8 csum_level:2;
717 __u8 csum_bad:1;
fe55f6d5 718
b1937227
ED
719#ifdef CONFIG_IPV6_NDISC_NODETYPE
720 __u8 ndisc_nodetype:2;
721#endif
722 __u8 ipvs_property:1;
8bce6d7d 723 __u8 inner_protocol_type:1;
e585f236
TH
724 __u8 remcsum_offload:1;
725 /* 3 or 5 bit hole */
b1937227
ED
726
727#ifdef CONFIG_NET_SCHED
728 __u16 tc_index; /* traffic control index */
729#ifdef CONFIG_NET_CLS_ACT
730 __u16 tc_verd; /* traffic control verdict */
731#endif
732#endif
fe55f6d5 733
b1937227
ED
734 union {
735 __wsum csum;
736 struct {
737 __u16 csum_start;
738 __u16 csum_offset;
739 };
740 };
741 __u32 priority;
742 int skb_iif;
743 __u32 hash;
744 __be16 vlan_proto;
745 __u16 vlan_tci;
2bd82484
ED
746#if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
747 union {
748 unsigned int napi_id;
749 unsigned int sender_cpu;
750 };
97fc2f08 751#endif
0c4f691f 752 union {
984bc16c 753#ifdef CONFIG_NETWORK_SECMARK
0c4f691f
SF
754 __u32 secmark;
755#endif
756#ifdef CONFIG_NET_SWITCHDEV
757 __u32 offload_fwd_mark;
984bc16c 758#endif
0c4f691f
SF
759 };
760
3b885787
NH
761 union {
762 __u32 mark;
16fad69c 763 __u32 reserved_tailroom;
3b885787 764 };
1da177e4 765
8bce6d7d
TH
766 union {
767 __be16 inner_protocol;
768 __u8 inner_ipproto;
769 };
770
1a37e412
SH
771 __u16 inner_transport_header;
772 __u16 inner_network_header;
773 __u16 inner_mac_header;
b1937227
ED
774
775 __be16 protocol;
1a37e412
SH
776 __u16 transport_header;
777 __u16 network_header;
778 __u16 mac_header;
b1937227 779
ebcf34f3 780 /* private: */
b1937227 781 __u32 headers_end[0];
ebcf34f3 782 /* public: */
b1937227 783
1da177e4 784 /* These elements must be at the end, see alloc_skb() for details. */
27a884dc 785 sk_buff_data_t tail;
4305b541 786 sk_buff_data_t end;
1da177e4 787 unsigned char *head,
4305b541 788 *data;
27a884dc
ACM
789 unsigned int truesize;
790 atomic_t users;
1da177e4
LT
791};
792
793#ifdef __KERNEL__
794/*
795 * Handling routines are only of interest to the kernel
796 */
797#include <linux/slab.h>
798
1da177e4 799
c93bdd0e
MG
800#define SKB_ALLOC_FCLONE 0x01
801#define SKB_ALLOC_RX 0x02
fd11a83d 802#define SKB_ALLOC_NAPI 0x04
c93bdd0e
MG
803
804/* Returns true if the skb was allocated from PFMEMALLOC reserves */
805static inline bool skb_pfmemalloc(const struct sk_buff *skb)
806{
807 return unlikely(skb->pfmemalloc);
808}
809
7fee226a
ED
810/*
811 * skb might have a dst pointer attached, refcounted or not.
812 * _skb_refdst low order bit is set if refcount was _not_ taken
813 */
814#define SKB_DST_NOREF 1UL
815#define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
816
817/**
818 * skb_dst - returns skb dst_entry
819 * @skb: buffer
820 *
821 * Returns skb dst_entry, regardless of reference taken or not.
822 */
adf30907
ED
823static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
824{
7fee226a
ED
825 /* If refdst was not refcounted, check we still are in a
826 * rcu_read_lock section
827 */
828 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
829 !rcu_read_lock_held() &&
830 !rcu_read_lock_bh_held());
831 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
adf30907
ED
832}
833
7fee226a
ED
834/**
835 * skb_dst_set - sets skb dst
836 * @skb: buffer
837 * @dst: dst entry
838 *
839 * Sets skb dst, assuming a reference was taken on dst and should
840 * be released by skb_dst_drop()
841 */
adf30907
ED
842static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
843{
7fee226a
ED
844 skb->_skb_refdst = (unsigned long)dst;
845}
846
932bc4d7
JA
847/**
848 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
849 * @skb: buffer
850 * @dst: dst entry
851 *
852 * Sets skb dst, assuming a reference was not taken on dst.
853 * If dst entry is cached, we do not take reference and dst_release
854 * will be avoided by refdst_drop. If dst entry is not cached, we take
855 * reference, so that last dst_release can destroy the dst immediately.
856 */
857static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
858{
dbfc4fb7
HFS
859 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
860 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
932bc4d7 861}
7fee226a
ED
862
863/**
25985edc 864 * skb_dst_is_noref - Test if skb dst isn't refcounted
7fee226a
ED
865 * @skb: buffer
866 */
867static inline bool skb_dst_is_noref(const struct sk_buff *skb)
868{
869 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
adf30907
ED
870}
871
511c3f92
ED
872static inline struct rtable *skb_rtable(const struct sk_buff *skb)
873{
adf30907 874 return (struct rtable *)skb_dst(skb);
511c3f92
ED
875}
876
7965bd4d
JP
877void kfree_skb(struct sk_buff *skb);
878void kfree_skb_list(struct sk_buff *segs);
879void skb_tx_error(struct sk_buff *skb);
880void consume_skb(struct sk_buff *skb);
881void __kfree_skb(struct sk_buff *skb);
d7e8883c 882extern struct kmem_cache *skbuff_head_cache;
bad43ca8 883
7965bd4d
JP
884void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
885bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
886 bool *fragstolen, int *delta_truesize);
bad43ca8 887
7965bd4d
JP
888struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
889 int node);
2ea2f62c 890struct sk_buff *__build_skb(void *data, unsigned int frag_size);
7965bd4d 891struct sk_buff *build_skb(void *data, unsigned int frag_size);
d179cd12 892static inline struct sk_buff *alloc_skb(unsigned int size,
dd0fc66f 893 gfp_t priority)
d179cd12 894{
564824b0 895 return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
d179cd12
DM
896}
897
2e4e4410
ED
898struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
899 unsigned long data_len,
900 int max_page_order,
901 int *errcode,
902 gfp_t gfp_mask);
903
d0bf4a9e
ED
904/* Layout of fast clones : [skb1][skb2][fclone_ref] */
905struct sk_buff_fclones {
906 struct sk_buff skb1;
907
908 struct sk_buff skb2;
909
910 atomic_t fclone_ref;
911};
912
913/**
914 * skb_fclone_busy - check if fclone is busy
915 * @skb: buffer
916 *
bda13fed 917 * Returns true if skb is a fast clone, and its clone is not freed.
39bb5e62
ED
918 * Some drivers call skb_orphan() in their ndo_start_xmit(),
919 * so we also check that this didnt happen.
d0bf4a9e 920 */
39bb5e62
ED
921static inline bool skb_fclone_busy(const struct sock *sk,
922 const struct sk_buff *skb)
d0bf4a9e
ED
923{
924 const struct sk_buff_fclones *fclones;
925
926 fclones = container_of(skb, struct sk_buff_fclones, skb1);
927
928 return skb->fclone == SKB_FCLONE_ORIG &&
6ffe75eb 929 atomic_read(&fclones->fclone_ref) > 1 &&
39bb5e62 930 fclones->skb2.sk == sk;
d0bf4a9e
ED
931}
932
d179cd12 933static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
dd0fc66f 934 gfp_t priority)
d179cd12 935{
c93bdd0e 936 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
d179cd12
DM
937}
938
7965bd4d 939struct sk_buff *__alloc_skb_head(gfp_t priority, int node);
0ebd0ac5
PM
940static inline struct sk_buff *alloc_skb_head(gfp_t priority)
941{
942 return __alloc_skb_head(priority, -1);
943}
944
7965bd4d
JP
945struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
946int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
947struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
948struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
bad93e9d
OP
949struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
950 gfp_t gfp_mask, bool fclone);
951static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
952 gfp_t gfp_mask)
953{
954 return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
955}
7965bd4d
JP
956
957int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
958struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
959 unsigned int headroom);
960struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
961 int newtailroom, gfp_t priority);
25a91d8d
FD
962int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
963 int offset, int len);
7965bd4d
JP
964int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset,
965 int len);
966int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
967int skb_pad(struct sk_buff *skb, int pad);
ead2ceb0 968#define dev_kfree_skb(a) consume_skb(a)
1da177e4 969
7965bd4d
JP
970int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
971 int getfrag(void *from, char *to, int offset,
972 int len, int odd, struct sk_buff *skb),
973 void *from, int length);
e89e9cf5 974
be12a1fe
HFS
975int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
976 int offset, size_t size);
977
d94d9fee 978struct skb_seq_state {
677e90ed
TG
979 __u32 lower_offset;
980 __u32 upper_offset;
981 __u32 frag_idx;
982 __u32 stepped_offset;
983 struct sk_buff *root_skb;
984 struct sk_buff *cur_skb;
985 __u8 *frag_data;
986};
987
7965bd4d
JP
988void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
989 unsigned int to, struct skb_seq_state *st);
990unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
991 struct skb_seq_state *st);
992void skb_abort_seq_read(struct skb_seq_state *st);
677e90ed 993
7965bd4d 994unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
059a2440 995 unsigned int to, struct ts_config *config);
3fc7e8a6 996
09323cc4
TH
997/*
998 * Packet hash types specify the type of hash in skb_set_hash.
999 *
1000 * Hash types refer to the protocol layer addresses which are used to
1001 * construct a packet's hash. The hashes are used to differentiate or identify
1002 * flows of the protocol layer for the hash type. Hash types are either
1003 * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1004 *
1005 * Properties of hashes:
1006 *
1007 * 1) Two packets in different flows have different hash values
1008 * 2) Two packets in the same flow should have the same hash value
1009 *
1010 * A hash at a higher layer is considered to be more specific. A driver should
1011 * set the most specific hash possible.
1012 *
1013 * A driver cannot indicate a more specific hash than the layer at which a hash
1014 * was computed. For instance an L3 hash cannot be set as an L4 hash.
1015 *
1016 * A driver may indicate a hash level which is less specific than the
1017 * actual layer the hash was computed on. For instance, a hash computed
1018 * at L4 may be considered an L3 hash. This should only be done if the
1019 * driver can't unambiguously determine that the HW computed the hash at
1020 * the higher layer. Note that the "should" in the second property above
1021 * permits this.
1022 */
1023enum pkt_hash_types {
1024 PKT_HASH_TYPE_NONE, /* Undefined type */
1025 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */
1026 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */
1027 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */
1028};
1029
bcc83839 1030static inline void skb_clear_hash(struct sk_buff *skb)
09323cc4 1031{
bcc83839 1032 skb->hash = 0;
a3b18ddb 1033 skb->sw_hash = 0;
bcc83839
TH
1034 skb->l4_hash = 0;
1035}
1036
1037static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1038{
1039 if (!skb->l4_hash)
1040 skb_clear_hash(skb);
1041}
1042
1043static inline void
1044__skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1045{
1046 skb->l4_hash = is_l4;
1047 skb->sw_hash = is_sw;
61b905da 1048 skb->hash = hash;
09323cc4
TH
1049}
1050
bcc83839
TH
1051static inline void
1052skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1053{
1054 /* Used by drivers to set hash from HW */
1055 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1056}
1057
1058static inline void
1059__skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1060{
1061 __skb_set_hash(skb, hash, true, is_l4);
1062}
1063
e5276937 1064void __skb_get_hash(struct sk_buff *skb);
eb70db87 1065u32 __skb_get_hash_symmetric(struct sk_buff *skb);
e5276937
TH
1066u32 skb_get_poff(const struct sk_buff *skb);
1067u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1068 const struct flow_keys *keys, int hlen);
1069__be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1070 void *data, int hlen_proto);
1071
1072static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1073 int thoff, u8 ip_proto)
1074{
1075 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1076}
1077
1078void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1079 const struct flow_dissector_key *key,
1080 unsigned int key_count);
1081
1082bool __skb_flow_dissect(const struct sk_buff *skb,
1083 struct flow_dissector *flow_dissector,
1084 void *target_container,
cd79a238
TH
1085 void *data, __be16 proto, int nhoff, int hlen,
1086 unsigned int flags);
e5276937
TH
1087
1088static inline bool skb_flow_dissect(const struct sk_buff *skb,
1089 struct flow_dissector *flow_dissector,
cd79a238 1090 void *target_container, unsigned int flags)
e5276937
TH
1091{
1092 return __skb_flow_dissect(skb, flow_dissector, target_container,
cd79a238 1093 NULL, 0, 0, 0, flags);
e5276937
TH
1094}
1095
1096static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
cd79a238
TH
1097 struct flow_keys *flow,
1098 unsigned int flags)
e5276937
TH
1099{
1100 memset(flow, 0, sizeof(*flow));
1101 return __skb_flow_dissect(skb, &flow_keys_dissector, flow,
cd79a238 1102 NULL, 0, 0, 0, flags);
e5276937
TH
1103}
1104
1105static inline bool skb_flow_dissect_flow_keys_buf(struct flow_keys *flow,
1106 void *data, __be16 proto,
cd79a238
TH
1107 int nhoff, int hlen,
1108 unsigned int flags)
e5276937
TH
1109{
1110 memset(flow, 0, sizeof(*flow));
1111 return __skb_flow_dissect(NULL, &flow_keys_buf_dissector, flow,
cd79a238 1112 data, proto, nhoff, hlen, flags);
e5276937
TH
1113}
1114
3958afa1 1115static inline __u32 skb_get_hash(struct sk_buff *skb)
bfb564e7 1116{
a3b18ddb 1117 if (!skb->l4_hash && !skb->sw_hash)
3958afa1 1118 __skb_get_hash(skb);
bfb564e7 1119
61b905da 1120 return skb->hash;
bfb564e7
KK
1121}
1122
20a17bf6 1123__u32 __skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6);
f70ea018 1124
20a17bf6 1125static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
f70ea018 1126{
c6cc1ca7
TH
1127 if (!skb->l4_hash && !skb->sw_hash) {
1128 struct flow_keys keys;
de4c1f8b 1129 __u32 hash = __get_hash_from_flowi6(fl6, &keys);
c6cc1ca7 1130
de4c1f8b 1131 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
c6cc1ca7 1132 }
f70ea018
TH
1133
1134 return skb->hash;
1135}
1136
20a17bf6 1137__u32 __skb_get_hash_flowi4(struct sk_buff *skb, const struct flowi4 *fl);
f70ea018 1138
20a17bf6 1139static inline __u32 skb_get_hash_flowi4(struct sk_buff *skb, const struct flowi4 *fl4)
f70ea018 1140{
c6cc1ca7
TH
1141 if (!skb->l4_hash && !skb->sw_hash) {
1142 struct flow_keys keys;
de4c1f8b 1143 __u32 hash = __get_hash_from_flowi4(fl4, &keys);
c6cc1ca7 1144
de4c1f8b 1145 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
c6cc1ca7 1146 }
f70ea018
TH
1147
1148 return skb->hash;
1149}
1150
50fb7992
TH
1151__u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb);
1152
57bdf7f4
TH
1153static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1154{
61b905da 1155 return skb->hash;
57bdf7f4
TH
1156}
1157
3df7a74e
TH
1158static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1159{
61b905da 1160 to->hash = from->hash;
a3b18ddb 1161 to->sw_hash = from->sw_hash;
61b905da 1162 to->l4_hash = from->l4_hash;
3df7a74e
TH
1163};
1164
4305b541
ACM
1165#ifdef NET_SKBUFF_DATA_USES_OFFSET
1166static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1167{
1168 return skb->head + skb->end;
1169}
ec47ea82
AD
1170
1171static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1172{
1173 return skb->end;
1174}
4305b541
ACM
1175#else
1176static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1177{
1178 return skb->end;
1179}
ec47ea82
AD
1180
1181static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1182{
1183 return skb->end - skb->head;
1184}
4305b541
ACM
1185#endif
1186
1da177e4 1187/* Internal */
4305b541 1188#define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
1da177e4 1189
ac45f602
PO
1190static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1191{
1192 return &skb_shinfo(skb)->hwtstamps;
1193}
1194
1da177e4
LT
1195/**
1196 * skb_queue_empty - check if a queue is empty
1197 * @list: queue head
1198 *
1199 * Returns true if the queue is empty, false otherwise.
1200 */
1201static inline int skb_queue_empty(const struct sk_buff_head *list)
1202{
fd44b93c 1203 return list->next == (const struct sk_buff *) list;
1da177e4
LT
1204}
1205
fc7ebb21
DM
1206/**
1207 * skb_queue_is_last - check if skb is the last entry in the queue
1208 * @list: queue head
1209 * @skb: buffer
1210 *
1211 * Returns true if @skb is the last buffer on the list.
1212 */
1213static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1214 const struct sk_buff *skb)
1215{
fd44b93c 1216 return skb->next == (const struct sk_buff *) list;
fc7ebb21
DM
1217}
1218
832d11c5
IJ
1219/**
1220 * skb_queue_is_first - check if skb is the first entry in the queue
1221 * @list: queue head
1222 * @skb: buffer
1223 *
1224 * Returns true if @skb is the first buffer on the list.
1225 */
1226static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1227 const struct sk_buff *skb)
1228{
fd44b93c 1229 return skb->prev == (const struct sk_buff *) list;
832d11c5
IJ
1230}
1231
249c8b42
DM
1232/**
1233 * skb_queue_next - return the next packet in the queue
1234 * @list: queue head
1235 * @skb: current buffer
1236 *
1237 * Return the next packet in @list after @skb. It is only valid to
1238 * call this if skb_queue_is_last() evaluates to false.
1239 */
1240static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1241 const struct sk_buff *skb)
1242{
1243 /* This BUG_ON may seem severe, but if we just return then we
1244 * are going to dereference garbage.
1245 */
1246 BUG_ON(skb_queue_is_last(list, skb));
1247 return skb->next;
1248}
1249
832d11c5
IJ
1250/**
1251 * skb_queue_prev - return the prev packet in the queue
1252 * @list: queue head
1253 * @skb: current buffer
1254 *
1255 * Return the prev packet in @list before @skb. It is only valid to
1256 * call this if skb_queue_is_first() evaluates to false.
1257 */
1258static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1259 const struct sk_buff *skb)
1260{
1261 /* This BUG_ON may seem severe, but if we just return then we
1262 * are going to dereference garbage.
1263 */
1264 BUG_ON(skb_queue_is_first(list, skb));
1265 return skb->prev;
1266}
1267
1da177e4
LT
1268/**
1269 * skb_get - reference buffer
1270 * @skb: buffer to reference
1271 *
1272 * Makes another reference to a socket buffer and returns a pointer
1273 * to the buffer.
1274 */
1275static inline struct sk_buff *skb_get(struct sk_buff *skb)
1276{
1277 atomic_inc(&skb->users);
1278 return skb;
1279}
1280
1281/*
1282 * If users == 1, we are the only owner and are can avoid redundant
1283 * atomic change.
1284 */
1285
1da177e4
LT
1286/**
1287 * skb_cloned - is the buffer a clone
1288 * @skb: buffer to check
1289 *
1290 * Returns true if the buffer was generated with skb_clone() and is
1291 * one of multiple shared copies of the buffer. Cloned buffers are
1292 * shared data so must not be written to under normal circumstances.
1293 */
1294static inline int skb_cloned(const struct sk_buff *skb)
1295{
1296 return skb->cloned &&
1297 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1298}
1299
14bbd6a5
PS
1300static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1301{
d0164adc 1302 might_sleep_if(gfpflags_allow_blocking(pri));
14bbd6a5
PS
1303
1304 if (skb_cloned(skb))
1305 return pskb_expand_head(skb, 0, 0, pri);
1306
1307 return 0;
1308}
1309
1da177e4
LT
1310/**
1311 * skb_header_cloned - is the header a clone
1312 * @skb: buffer to check
1313 *
1314 * Returns true if modifying the header part of the buffer requires
1315 * the data to be copied.
1316 */
1317static inline int skb_header_cloned(const struct sk_buff *skb)
1318{
1319 int dataref;
1320
1321 if (!skb->cloned)
1322 return 0;
1323
1324 dataref = atomic_read(&skb_shinfo(skb)->dataref);
1325 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1326 return dataref != 1;
1327}
1328
9580bf2e
ED
1329static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1330{
1331 might_sleep_if(gfpflags_allow_blocking(pri));
1332
1333 if (skb_header_cloned(skb))
1334 return pskb_expand_head(skb, 0, 0, pri);
1335
1336 return 0;
1337}
1338
1da177e4
LT
1339/**
1340 * skb_header_release - release reference to header
1341 * @skb: buffer to operate on
1342 *
1343 * Drop a reference to the header part of the buffer. This is done
1344 * by acquiring a payload reference. You must not read from the header
1345 * part of skb->data after this.
f4a775d1 1346 * Note : Check if you can use __skb_header_release() instead.
1da177e4
LT
1347 */
1348static inline void skb_header_release(struct sk_buff *skb)
1349{
1350 BUG_ON(skb->nohdr);
1351 skb->nohdr = 1;
1352 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
1353}
1354
f4a775d1
ED
1355/**
1356 * __skb_header_release - release reference to header
1357 * @skb: buffer to operate on
1358 *
1359 * Variant of skb_header_release() assuming skb is private to caller.
1360 * We can avoid one atomic operation.
1361 */
1362static inline void __skb_header_release(struct sk_buff *skb)
1363{
1364 skb->nohdr = 1;
1365 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1366}
1367
1368
1da177e4
LT
1369/**
1370 * skb_shared - is the buffer shared
1371 * @skb: buffer to check
1372 *
1373 * Returns true if more than one person has a reference to this
1374 * buffer.
1375 */
1376static inline int skb_shared(const struct sk_buff *skb)
1377{
1378 return atomic_read(&skb->users) != 1;
1379}
1380
1381/**
1382 * skb_share_check - check if buffer is shared and if so clone it
1383 * @skb: buffer to check
1384 * @pri: priority for memory allocation
1385 *
1386 * If the buffer is shared the buffer is cloned and the old copy
1387 * drops a reference. A new clone with a single reference is returned.
1388 * If the buffer is not shared the original buffer is returned. When
1389 * being called from interrupt status or with spinlocks held pri must
1390 * be GFP_ATOMIC.
1391 *
1392 * NULL is returned on a memory allocation failure.
1393 */
47061bc4 1394static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1da177e4 1395{
d0164adc 1396 might_sleep_if(gfpflags_allow_blocking(pri));
1da177e4
LT
1397 if (skb_shared(skb)) {
1398 struct sk_buff *nskb = skb_clone(skb, pri);
47061bc4
ED
1399
1400 if (likely(nskb))
1401 consume_skb(skb);
1402 else
1403 kfree_skb(skb);
1da177e4
LT
1404 skb = nskb;
1405 }
1406 return skb;
1407}
1408
1409/*
1410 * Copy shared buffers into a new sk_buff. We effectively do COW on
1411 * packets to handle cases where we have a local reader and forward
1412 * and a couple of other messy ones. The normal one is tcpdumping
1413 * a packet thats being forwarded.
1414 */
1415
1416/**
1417 * skb_unshare - make a copy of a shared buffer
1418 * @skb: buffer to check
1419 * @pri: priority for memory allocation
1420 *
1421 * If the socket buffer is a clone then this function creates a new
1422 * copy of the data, drops a reference count on the old copy and returns
1423 * the new copy with the reference count at 1. If the buffer is not a clone
1424 * the original buffer is returned. When called with a spinlock held or
1425 * from interrupt state @pri must be %GFP_ATOMIC
1426 *
1427 * %NULL is returned on a memory allocation failure.
1428 */
e2bf521d 1429static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
dd0fc66f 1430 gfp_t pri)
1da177e4 1431{
d0164adc 1432 might_sleep_if(gfpflags_allow_blocking(pri));
1da177e4
LT
1433 if (skb_cloned(skb)) {
1434 struct sk_buff *nskb = skb_copy(skb, pri);
31eff81e
AA
1435
1436 /* Free our shared copy */
1437 if (likely(nskb))
1438 consume_skb(skb);
1439 else
1440 kfree_skb(skb);
1da177e4
LT
1441 skb = nskb;
1442 }
1443 return skb;
1444}
1445
1446/**
1a5778aa 1447 * skb_peek - peek at the head of an &sk_buff_head
1da177e4
LT
1448 * @list_: list to peek at
1449 *
1450 * Peek an &sk_buff. Unlike most other operations you _MUST_
1451 * be careful with this one. A peek leaves the buffer on the
1452 * list and someone else may run off with it. You must hold
1453 * the appropriate locks or have a private queue to do this.
1454 *
1455 * Returns %NULL for an empty list or a pointer to the head element.
1456 * The reference count is not incremented and the reference is therefore
1457 * volatile. Use with caution.
1458 */
05bdd2f1 1459static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1da177e4 1460{
18d07000
ED
1461 struct sk_buff *skb = list_->next;
1462
1463 if (skb == (struct sk_buff *)list_)
1464 skb = NULL;
1465 return skb;
1da177e4
LT
1466}
1467
da5ef6e5
PE
1468/**
1469 * skb_peek_next - peek skb following the given one from a queue
1470 * @skb: skb to start from
1471 * @list_: list to peek at
1472 *
1473 * Returns %NULL when the end of the list is met or a pointer to the
1474 * next element. The reference count is not incremented and the
1475 * reference is therefore volatile. Use with caution.
1476 */
1477static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1478 const struct sk_buff_head *list_)
1479{
1480 struct sk_buff *next = skb->next;
18d07000 1481
da5ef6e5
PE
1482 if (next == (struct sk_buff *)list_)
1483 next = NULL;
1484 return next;
1485}
1486
1da177e4 1487/**
1a5778aa 1488 * skb_peek_tail - peek at the tail of an &sk_buff_head
1da177e4
LT
1489 * @list_: list to peek at
1490 *
1491 * Peek an &sk_buff. Unlike most other operations you _MUST_
1492 * be careful with this one. A peek leaves the buffer on the
1493 * list and someone else may run off with it. You must hold
1494 * the appropriate locks or have a private queue to do this.
1495 *
1496 * Returns %NULL for an empty list or a pointer to the tail element.
1497 * The reference count is not incremented and the reference is therefore
1498 * volatile. Use with caution.
1499 */
05bdd2f1 1500static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1da177e4 1501{
18d07000
ED
1502 struct sk_buff *skb = list_->prev;
1503
1504 if (skb == (struct sk_buff *)list_)
1505 skb = NULL;
1506 return skb;
1507
1da177e4
LT
1508}
1509
1510/**
1511 * skb_queue_len - get queue length
1512 * @list_: list to measure
1513 *
1514 * Return the length of an &sk_buff queue.
1515 */
1516static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1517{
1518 return list_->qlen;
1519}
1520
67fed459
DM
1521/**
1522 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1523 * @list: queue to initialize
1524 *
1525 * This initializes only the list and queue length aspects of
1526 * an sk_buff_head object. This allows to initialize the list
1527 * aspects of an sk_buff_head without reinitializing things like
1528 * the spinlock. It can also be used for on-stack sk_buff_head
1529 * objects where the spinlock is known to not be used.
1530 */
1531static inline void __skb_queue_head_init(struct sk_buff_head *list)
1532{
1533 list->prev = list->next = (struct sk_buff *)list;
1534 list->qlen = 0;
1535}
1536
76f10ad0
AV
1537/*
1538 * This function creates a split out lock class for each invocation;
1539 * this is needed for now since a whole lot of users of the skb-queue
1540 * infrastructure in drivers have different locking usage (in hardirq)
1541 * than the networking core (in softirq only). In the long run either the
1542 * network layer or drivers should need annotation to consolidate the
1543 * main types of usage into 3 classes.
1544 */
1da177e4
LT
1545static inline void skb_queue_head_init(struct sk_buff_head *list)
1546{
1547 spin_lock_init(&list->lock);
67fed459 1548 __skb_queue_head_init(list);
1da177e4
LT
1549}
1550
c2ecba71
PE
1551static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1552 struct lock_class_key *class)
1553{
1554 skb_queue_head_init(list);
1555 lockdep_set_class(&list->lock, class);
1556}
1557
1da177e4 1558/*
bf299275 1559 * Insert an sk_buff on a list.
1da177e4
LT
1560 *
1561 * The "__skb_xxxx()" functions are the non-atomic ones that
1562 * can only be called with interrupts disabled.
1563 */
7965bd4d
JP
1564void skb_insert(struct sk_buff *old, struct sk_buff *newsk,
1565 struct sk_buff_head *list);
bf299275
GR
1566static inline void __skb_insert(struct sk_buff *newsk,
1567 struct sk_buff *prev, struct sk_buff *next,
1568 struct sk_buff_head *list)
1569{
1570 newsk->next = next;
1571 newsk->prev = prev;
1572 next->prev = prev->next = newsk;
1573 list->qlen++;
1574}
1da177e4 1575
67fed459
DM
1576static inline void __skb_queue_splice(const struct sk_buff_head *list,
1577 struct sk_buff *prev,
1578 struct sk_buff *next)
1579{
1580 struct sk_buff *first = list->next;
1581 struct sk_buff *last = list->prev;
1582
1583 first->prev = prev;
1584 prev->next = first;
1585
1586 last->next = next;
1587 next->prev = last;
1588}
1589
1590/**
1591 * skb_queue_splice - join two skb lists, this is designed for stacks
1592 * @list: the new list to add
1593 * @head: the place to add it in the first list
1594 */
1595static inline void skb_queue_splice(const struct sk_buff_head *list,
1596 struct sk_buff_head *head)
1597{
1598 if (!skb_queue_empty(list)) {
1599 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1d4a31dd 1600 head->qlen += list->qlen;
67fed459
DM
1601 }
1602}
1603
1604/**
d9619496 1605 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list
67fed459
DM
1606 * @list: the new list to add
1607 * @head: the place to add it in the first list
1608 *
1609 * The list at @list is reinitialised
1610 */
1611static inline void skb_queue_splice_init(struct sk_buff_head *list,
1612 struct sk_buff_head *head)
1613{
1614 if (!skb_queue_empty(list)) {
1615 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1d4a31dd 1616 head->qlen += list->qlen;
67fed459
DM
1617 __skb_queue_head_init(list);
1618 }
1619}
1620
1621/**
1622 * skb_queue_splice_tail - join two skb lists, each list being a queue
1623 * @list: the new list to add
1624 * @head: the place to add it in the first list
1625 */
1626static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1627 struct sk_buff_head *head)
1628{
1629 if (!skb_queue_empty(list)) {
1630 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1d4a31dd 1631 head->qlen += list->qlen;
67fed459
DM
1632 }
1633}
1634
1635/**
d9619496 1636 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
67fed459
DM
1637 * @list: the new list to add
1638 * @head: the place to add it in the first list
1639 *
1640 * Each of the lists is a queue.
1641 * The list at @list is reinitialised
1642 */
1643static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1644 struct sk_buff_head *head)
1645{
1646 if (!skb_queue_empty(list)) {
1647 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1d4a31dd 1648 head->qlen += list->qlen;
67fed459
DM
1649 __skb_queue_head_init(list);
1650 }
1651}
1652
1da177e4 1653/**
300ce174 1654 * __skb_queue_after - queue a buffer at the list head
1da177e4 1655 * @list: list to use
300ce174 1656 * @prev: place after this buffer
1da177e4
LT
1657 * @newsk: buffer to queue
1658 *
300ce174 1659 * Queue a buffer int the middle of a list. This function takes no locks
1da177e4
LT
1660 * and you must therefore hold required locks before calling it.
1661 *
1662 * A buffer cannot be placed on two lists at the same time.
1663 */
300ce174
SH
1664static inline void __skb_queue_after(struct sk_buff_head *list,
1665 struct sk_buff *prev,
1666 struct sk_buff *newsk)
1da177e4 1667{
bf299275 1668 __skb_insert(newsk, prev, prev->next, list);
1da177e4
LT
1669}
1670
7965bd4d
JP
1671void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1672 struct sk_buff_head *list);
7de6c033 1673
f5572855
GR
1674static inline void __skb_queue_before(struct sk_buff_head *list,
1675 struct sk_buff *next,
1676 struct sk_buff *newsk)
1677{
1678 __skb_insert(newsk, next->prev, next, list);
1679}
1680
300ce174
SH
1681/**
1682 * __skb_queue_head - queue a buffer at the list head
1683 * @list: list to use
1684 * @newsk: buffer to queue
1685 *
1686 * Queue a buffer at the start of a list. This function takes no locks
1687 * and you must therefore hold required locks before calling it.
1688 *
1689 * A buffer cannot be placed on two lists at the same time.
1690 */
7965bd4d 1691void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
300ce174
SH
1692static inline void __skb_queue_head(struct sk_buff_head *list,
1693 struct sk_buff *newsk)
1694{
1695 __skb_queue_after(list, (struct sk_buff *)list, newsk);
1696}
1697
1da177e4
LT
1698/**
1699 * __skb_queue_tail - queue a buffer at the list tail
1700 * @list: list to use
1701 * @newsk: buffer to queue
1702 *
1703 * Queue a buffer at the end of a list. This function takes no locks
1704 * and you must therefore hold required locks before calling it.
1705 *
1706 * A buffer cannot be placed on two lists at the same time.
1707 */
7965bd4d 1708void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1da177e4
LT
1709static inline void __skb_queue_tail(struct sk_buff_head *list,
1710 struct sk_buff *newsk)
1711{
f5572855 1712 __skb_queue_before(list, (struct sk_buff *)list, newsk);
1da177e4
LT
1713}
1714
1da177e4
LT
1715/*
1716 * remove sk_buff from list. _Must_ be called atomically, and with
1717 * the list known..
1718 */
7965bd4d 1719void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1da177e4
LT
1720static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1721{
1722 struct sk_buff *next, *prev;
1723
1724 list->qlen--;
1725 next = skb->next;
1726 prev = skb->prev;
1727 skb->next = skb->prev = NULL;
1da177e4
LT
1728 next->prev = prev;
1729 prev->next = next;
1730}
1731
f525c06d
GR
1732/**
1733 * __skb_dequeue - remove from the head of the queue
1734 * @list: list to dequeue from
1735 *
1736 * Remove the head of the list. This function does not take any locks
1737 * so must be used with appropriate locks held only. The head item is
1738 * returned or %NULL if the list is empty.
1739 */
7965bd4d 1740struct sk_buff *skb_dequeue(struct sk_buff_head *list);
f525c06d
GR
1741static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1742{
1743 struct sk_buff *skb = skb_peek(list);
1744 if (skb)
1745 __skb_unlink(skb, list);
1746 return skb;
1747}
1da177e4
LT
1748
1749/**
1750 * __skb_dequeue_tail - remove from the tail of the queue
1751 * @list: list to dequeue from
1752 *
1753 * Remove the tail of the list. This function does not take any locks
1754 * so must be used with appropriate locks held only. The tail item is
1755 * returned or %NULL if the list is empty.
1756 */
7965bd4d 1757struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1da177e4
LT
1758static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1759{
1760 struct sk_buff *skb = skb_peek_tail(list);
1761 if (skb)
1762 __skb_unlink(skb, list);
1763 return skb;
1764}
1765
1766
bdcc0924 1767static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1da177e4
LT
1768{
1769 return skb->data_len;
1770}
1771
1772static inline unsigned int skb_headlen(const struct sk_buff *skb)
1773{
1774 return skb->len - skb->data_len;
1775}
1776
1777static inline int skb_pagelen(const struct sk_buff *skb)
1778{
1779 int i, len = 0;
1780
1781 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
9e903e08 1782 len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1da177e4
LT
1783 return len + skb_headlen(skb);
1784}
1785
131ea667
IC
1786/**
1787 * __skb_fill_page_desc - initialise a paged fragment in an skb
1788 * @skb: buffer containing fragment to be initialised
1789 * @i: paged fragment index to initialise
1790 * @page: the page to use for this fragment
1791 * @off: the offset to the data with @page
1792 * @size: the length of the data
1793 *
1794 * Initialises the @i'th fragment of @skb to point to &size bytes at
1795 * offset @off within @page.
1796 *
1797 * Does not take any additional reference on the fragment.
1798 */
1799static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1800 struct page *page, int off, int size)
1da177e4
LT
1801{
1802 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1803
c48a11c7 1804 /*
2f064f34
MH
1805 * Propagate page pfmemalloc to the skb if we can. The problem is
1806 * that not all callers have unique ownership of the page but rely
1807 * on page_is_pfmemalloc doing the right thing(tm).
c48a11c7 1808 */
a8605c60 1809 frag->page.p = page;
1da177e4 1810 frag->page_offset = off;
9e903e08 1811 skb_frag_size_set(frag, size);
cca7af38
PE
1812
1813 page = compound_head(page);
2f064f34 1814 if (page_is_pfmemalloc(page))
cca7af38 1815 skb->pfmemalloc = true;
131ea667
IC
1816}
1817
1818/**
1819 * skb_fill_page_desc - initialise a paged fragment in an skb
1820 * @skb: buffer containing fragment to be initialised
1821 * @i: paged fragment index to initialise
1822 * @page: the page to use for this fragment
1823 * @off: the offset to the data with @page
1824 * @size: the length of the data
1825 *
1826 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
bc32383c 1827 * @skb to point to @size bytes at offset @off within @page. In
131ea667
IC
1828 * addition updates @skb such that @i is the last fragment.
1829 *
1830 * Does not take any additional reference on the fragment.
1831 */
1832static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1833 struct page *page, int off, int size)
1834{
1835 __skb_fill_page_desc(skb, i, page, off, size);
1da177e4
LT
1836 skb_shinfo(skb)->nr_frags = i + 1;
1837}
1838
7965bd4d
JP
1839void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
1840 int size, unsigned int truesize);
654bed16 1841
f8e617e1
JW
1842void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
1843 unsigned int truesize);
1844
1da177e4 1845#define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
21dc3301 1846#define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb))
1da177e4
LT
1847#define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
1848
27a884dc
ACM
1849#ifdef NET_SKBUFF_DATA_USES_OFFSET
1850static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1851{
1852 return skb->head + skb->tail;
1853}
1854
1855static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1856{
1857 skb->tail = skb->data - skb->head;
1858}
1859
1860static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1861{
1862 skb_reset_tail_pointer(skb);
1863 skb->tail += offset;
1864}
7cc46190 1865
27a884dc
ACM
1866#else /* NET_SKBUFF_DATA_USES_OFFSET */
1867static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1868{
1869 return skb->tail;
1870}
1871
1872static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1873{
1874 skb->tail = skb->data;
1875}
1876
1877static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1878{
1879 skb->tail = skb->data + offset;
1880}
4305b541 1881
27a884dc
ACM
1882#endif /* NET_SKBUFF_DATA_USES_OFFSET */
1883
1da177e4
LT
1884/*
1885 * Add data to an sk_buff
1886 */
0c7ddf36 1887unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
7965bd4d 1888unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1da177e4
LT
1889static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1890{
27a884dc 1891 unsigned char *tmp = skb_tail_pointer(skb);
1da177e4
LT
1892 SKB_LINEAR_ASSERT(skb);
1893 skb->tail += len;
1894 skb->len += len;
1895 return tmp;
1896}
1897
7965bd4d 1898unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1da177e4
LT
1899static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1900{
1901 skb->data -= len;
1902 skb->len += len;
1903 return skb->data;
1904}
1905
7965bd4d 1906unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1da177e4
LT
1907static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1908{
1909 skb->len -= len;
1910 BUG_ON(skb->len < skb->data_len);
1911 return skb->data += len;
1912}
1913
47d29646
DM
1914static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
1915{
1916 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1917}
1918
7965bd4d 1919unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1da177e4
LT
1920
1921static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1922{
1923 if (len > skb_headlen(skb) &&
987c402a 1924 !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1da177e4
LT
1925 return NULL;
1926 skb->len -= len;
1927 return skb->data += len;
1928}
1929
1930static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1931{
1932 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1933}
1934
1935static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1936{
1937 if (likely(len <= skb_headlen(skb)))
1938 return 1;
1939 if (unlikely(len > skb->len))
1940 return 0;
987c402a 1941 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1da177e4
LT
1942}
1943
1944/**
1945 * skb_headroom - bytes at buffer head
1946 * @skb: buffer to check
1947 *
1948 * Return the number of bytes of free space at the head of an &sk_buff.
1949 */
c2636b4d 1950static inline unsigned int skb_headroom(const struct sk_buff *skb)
1da177e4
LT
1951{
1952 return skb->data - skb->head;
1953}
1954
1955/**
1956 * skb_tailroom - bytes at buffer end
1957 * @skb: buffer to check
1958 *
1959 * Return the number of bytes of free space at the tail of an sk_buff
1960 */
1961static inline int skb_tailroom(const struct sk_buff *skb)
1962{
4305b541 1963 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1da177e4
LT
1964}
1965
a21d4572
ED
1966/**
1967 * skb_availroom - bytes at buffer end
1968 * @skb: buffer to check
1969 *
1970 * Return the number of bytes of free space at the tail of an sk_buff
1971 * allocated by sk_stream_alloc()
1972 */
1973static inline int skb_availroom(const struct sk_buff *skb)
1974{
16fad69c
ED
1975 if (skb_is_nonlinear(skb))
1976 return 0;
1977
1978 return skb->end - skb->tail - skb->reserved_tailroom;
a21d4572
ED
1979}
1980
1da177e4
LT
1981/**
1982 * skb_reserve - adjust headroom
1983 * @skb: buffer to alter
1984 * @len: bytes to move
1985 *
1986 * Increase the headroom of an empty &sk_buff by reducing the tail
1987 * room. This is only allowed for an empty buffer.
1988 */
8243126c 1989static inline void skb_reserve(struct sk_buff *skb, int len)
1da177e4
LT
1990{
1991 skb->data += len;
1992 skb->tail += len;
1993}
1994
1837b2e2
BP
1995/**
1996 * skb_tailroom_reserve - adjust reserved_tailroom
1997 * @skb: buffer to alter
1998 * @mtu: maximum amount of headlen permitted
1999 * @needed_tailroom: minimum amount of reserved_tailroom
2000 *
2001 * Set reserved_tailroom so that headlen can be as large as possible but
2002 * not larger than mtu and tailroom cannot be smaller than
2003 * needed_tailroom.
2004 * The required headroom should already have been reserved before using
2005 * this function.
2006 */
2007static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2008 unsigned int needed_tailroom)
2009{
2010 SKB_LINEAR_ASSERT(skb);
2011 if (mtu < skb_tailroom(skb) - needed_tailroom)
2012 /* use at most mtu */
2013 skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2014 else
2015 /* use up to all available space */
2016 skb->reserved_tailroom = needed_tailroom;
2017}
2018
8bce6d7d
TH
2019#define ENCAP_TYPE_ETHER 0
2020#define ENCAP_TYPE_IPPROTO 1
2021
2022static inline void skb_set_inner_protocol(struct sk_buff *skb,
2023 __be16 protocol)
2024{
2025 skb->inner_protocol = protocol;
2026 skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2027}
2028
2029static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2030 __u8 ipproto)
2031{
2032 skb->inner_ipproto = ipproto;
2033 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2034}
2035
6a674e9c
JG
2036static inline void skb_reset_inner_headers(struct sk_buff *skb)
2037{
aefbd2b3 2038 skb->inner_mac_header = skb->mac_header;
6a674e9c
JG
2039 skb->inner_network_header = skb->network_header;
2040 skb->inner_transport_header = skb->transport_header;
2041}
2042
0b5c9db1
JP
2043static inline void skb_reset_mac_len(struct sk_buff *skb)
2044{
2045 skb->mac_len = skb->network_header - skb->mac_header;
2046}
2047
6a674e9c
JG
2048static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2049 *skb)
2050{
2051 return skb->head + skb->inner_transport_header;
2052}
2053
55dc5a9f
TH
2054static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2055{
2056 return skb_inner_transport_header(skb) - skb->data;
2057}
2058
6a674e9c
JG
2059static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2060{
2061 skb->inner_transport_header = skb->data - skb->head;
2062}
2063
2064static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2065 const int offset)
2066{
2067 skb_reset_inner_transport_header(skb);
2068 skb->inner_transport_header += offset;
2069}
2070
2071static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2072{
2073 return skb->head + skb->inner_network_header;
2074}
2075
2076static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2077{
2078 skb->inner_network_header = skb->data - skb->head;
2079}
2080
2081static inline void skb_set_inner_network_header(struct sk_buff *skb,
2082 const int offset)
2083{
2084 skb_reset_inner_network_header(skb);
2085 skb->inner_network_header += offset;
2086}
2087
aefbd2b3
PS
2088static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2089{
2090 return skb->head + skb->inner_mac_header;
2091}
2092
2093static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2094{
2095 skb->inner_mac_header = skb->data - skb->head;
2096}
2097
2098static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2099 const int offset)
2100{
2101 skb_reset_inner_mac_header(skb);
2102 skb->inner_mac_header += offset;
2103}
fda55eca
ED
2104static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2105{
35d04610 2106 return skb->transport_header != (typeof(skb->transport_header))~0U;
fda55eca
ED
2107}
2108
9c70220b
ACM
2109static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2110{
2e07fa9c 2111 return skb->head + skb->transport_header;
9c70220b
ACM
2112}
2113
badff6d0
ACM
2114static inline void skb_reset_transport_header(struct sk_buff *skb)
2115{
2e07fa9c 2116 skb->transport_header = skb->data - skb->head;
badff6d0
ACM
2117}
2118
967b05f6
ACM
2119static inline void skb_set_transport_header(struct sk_buff *skb,
2120 const int offset)
2121{
2e07fa9c
ACM
2122 skb_reset_transport_header(skb);
2123 skb->transport_header += offset;
ea2ae17d
ACM
2124}
2125
d56f90a7
ACM
2126static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2127{
2e07fa9c 2128 return skb->head + skb->network_header;
d56f90a7
ACM
2129}
2130
c1d2bbe1
ACM
2131static inline void skb_reset_network_header(struct sk_buff *skb)
2132{
2e07fa9c 2133 skb->network_header = skb->data - skb->head;
c1d2bbe1
ACM
2134}
2135
c14d2450
ACM
2136static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2137{
2e07fa9c
ACM
2138 skb_reset_network_header(skb);
2139 skb->network_header += offset;
c14d2450
ACM
2140}
2141
2e07fa9c 2142static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
bbe735e4 2143{
2e07fa9c 2144 return skb->head + skb->mac_header;
bbe735e4
ACM
2145}
2146
2e07fa9c 2147static inline int skb_mac_header_was_set(const struct sk_buff *skb)
cfe1fc77 2148{
35d04610 2149 return skb->mac_header != (typeof(skb->mac_header))~0U;
2e07fa9c
ACM
2150}
2151
2152static inline void skb_reset_mac_header(struct sk_buff *skb)
2153{
2154 skb->mac_header = skb->data - skb->head;
2155}
2156
2157static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2158{
2159 skb_reset_mac_header(skb);
2160 skb->mac_header += offset;
2161}
2162
0e3da5bb
TT
2163static inline void skb_pop_mac_header(struct sk_buff *skb)
2164{
2165 skb->mac_header = skb->network_header;
2166}
2167
fbbdb8f0
YX
2168static inline void skb_probe_transport_header(struct sk_buff *skb,
2169 const int offset_hint)
2170{
2171 struct flow_keys keys;
2172
2173 if (skb_transport_header_was_set(skb))
2174 return;
cd79a238 2175 else if (skb_flow_dissect_flow_keys(skb, &keys, 0))
42aecaa9 2176 skb_set_transport_header(skb, keys.control.thoff);
fbbdb8f0
YX
2177 else
2178 skb_set_transport_header(skb, offset_hint);
2179}
2180
03606895
ED
2181static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2182{
2183 if (skb_mac_header_was_set(skb)) {
2184 const unsigned char *old_mac = skb_mac_header(skb);
2185
2186 skb_set_mac_header(skb, -skb->mac_len);
2187 memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2188 }
2189}
2190
04fb451e
MM
2191static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2192{
2193 return skb->csum_start - skb_headroom(skb);
2194}
2195
08b64fcc
AD
2196static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2197{
2198 return skb->head + skb->csum_start;
2199}
2200
2e07fa9c
ACM
2201static inline int skb_transport_offset(const struct sk_buff *skb)
2202{
2203 return skb_transport_header(skb) - skb->data;
2204}
2205
2206static inline u32 skb_network_header_len(const struct sk_buff *skb)
2207{
2208 return skb->transport_header - skb->network_header;
2209}
2210
6a674e9c
JG
2211static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2212{
2213 return skb->inner_transport_header - skb->inner_network_header;
2214}
2215
2e07fa9c
ACM
2216static inline int skb_network_offset(const struct sk_buff *skb)
2217{
2218 return skb_network_header(skb) - skb->data;
2219}
48d49d0c 2220
6a674e9c
JG
2221static inline int skb_inner_network_offset(const struct sk_buff *skb)
2222{
2223 return skb_inner_network_header(skb) - skb->data;
2224}
2225
f9599ce1
CG
2226static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2227{
2228 return pskb_may_pull(skb, skb_network_offset(skb) + len);
2229}
2230
1da177e4
LT
2231/*
2232 * CPUs often take a performance hit when accessing unaligned memory
2233 * locations. The actual performance hit varies, it can be small if the
2234 * hardware handles it or large if we have to take an exception and fix it
2235 * in software.
2236 *
2237 * Since an ethernet header is 14 bytes network drivers often end up with
2238 * the IP header at an unaligned offset. The IP header can be aligned by
2239 * shifting the start of the packet by 2 bytes. Drivers should do this
2240 * with:
2241 *
8660c124 2242 * skb_reserve(skb, NET_IP_ALIGN);
1da177e4
LT
2243 *
2244 * The downside to this alignment of the IP header is that the DMA is now
2245 * unaligned. On some architectures the cost of an unaligned DMA is high
2246 * and this cost outweighs the gains made by aligning the IP header.
8660c124 2247 *
1da177e4
LT
2248 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2249 * to be overridden.
2250 */
2251#ifndef NET_IP_ALIGN
2252#define NET_IP_ALIGN 2
2253#endif
2254
025be81e
AB
2255/*
2256 * The networking layer reserves some headroom in skb data (via
2257 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2258 * the header has to grow. In the default case, if the header has to grow
d6301d3d 2259 * 32 bytes or less we avoid the reallocation.
025be81e
AB
2260 *
2261 * Unfortunately this headroom changes the DMA alignment of the resulting
2262 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2263 * on some architectures. An architecture can override this value,
2264 * perhaps setting it to a cacheline in size (since that will maintain
2265 * cacheline alignment of the DMA). It must be a power of 2.
2266 *
d6301d3d 2267 * Various parts of the networking layer expect at least 32 bytes of
025be81e 2268 * headroom, you should not reduce this.
5933dd2f
ED
2269 *
2270 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2271 * to reduce average number of cache lines per packet.
2272 * get_rps_cpus() for example only access one 64 bytes aligned block :
18e8c134 2273 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
025be81e
AB
2274 */
2275#ifndef NET_SKB_PAD
5933dd2f 2276#define NET_SKB_PAD max(32, L1_CACHE_BYTES)
025be81e
AB
2277#endif
2278
7965bd4d 2279int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1da177e4
LT
2280
2281static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2282{
c4264f27 2283 if (unlikely(skb_is_nonlinear(skb))) {
3cc0e873
HX
2284 WARN_ON(1);
2285 return;
2286 }
27a884dc
ACM
2287 skb->len = len;
2288 skb_set_tail_pointer(skb, len);
1da177e4
LT
2289}
2290
7965bd4d 2291void skb_trim(struct sk_buff *skb, unsigned int len);
1da177e4
LT
2292
2293static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2294{
3cc0e873
HX
2295 if (skb->data_len)
2296 return ___pskb_trim(skb, len);
2297 __skb_trim(skb, len);
2298 return 0;
1da177e4
LT
2299}
2300
2301static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2302{
2303 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2304}
2305
e9fa4f7b
HX
2306/**
2307 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2308 * @skb: buffer to alter
2309 * @len: new length
2310 *
2311 * This is identical to pskb_trim except that the caller knows that
2312 * the skb is not cloned so we should never get an error due to out-
2313 * of-memory.
2314 */
2315static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2316{
2317 int err = pskb_trim(skb, len);
2318 BUG_ON(err);
2319}
2320
1da177e4
LT
2321/**
2322 * skb_orphan - orphan a buffer
2323 * @skb: buffer to orphan
2324 *
2325 * If a buffer currently has an owner then we call the owner's
2326 * destructor function and make the @skb unowned. The buffer continues
2327 * to exist but is no longer charged to its former owner.
2328 */
2329static inline void skb_orphan(struct sk_buff *skb)
2330{
c34a7612 2331 if (skb->destructor) {
1da177e4 2332 skb->destructor(skb);
c34a7612
ED
2333 skb->destructor = NULL;
2334 skb->sk = NULL;
376c7311
ED
2335 } else {
2336 BUG_ON(skb->sk);
c34a7612 2337 }
1da177e4
LT
2338}
2339
a353e0ce
MT
2340/**
2341 * skb_orphan_frags - orphan the frags contained in a buffer
2342 * @skb: buffer to orphan frags from
2343 * @gfp_mask: allocation mask for replacement pages
2344 *
2345 * For each frag in the SKB which needs a destructor (i.e. has an
2346 * owner) create a copy of that frag and release the original
2347 * page by calling the destructor.
2348 */
2349static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2350{
2351 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)))
2352 return 0;
2353 return skb_copy_ubufs(skb, gfp_mask);
2354}
2355
1da177e4
LT
2356/**
2357 * __skb_queue_purge - empty a list
2358 * @list: list to empty
2359 *
2360 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2361 * the list and one reference dropped. This function does not take the
2362 * list lock and the caller must hold the relevant locks to use it.
2363 */
7965bd4d 2364void skb_queue_purge(struct sk_buff_head *list);
1da177e4
LT
2365static inline void __skb_queue_purge(struct sk_buff_head *list)
2366{
2367 struct sk_buff *skb;
2368 while ((skb = __skb_dequeue(list)) != NULL)
2369 kfree_skb(skb);
2370}
2371
7965bd4d 2372void *netdev_alloc_frag(unsigned int fragsz);
1da177e4 2373
7965bd4d
JP
2374struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2375 gfp_t gfp_mask);
8af27456
CH
2376
2377/**
2378 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
2379 * @dev: network device to receive on
2380 * @length: length to allocate
2381 *
2382 * Allocate a new &sk_buff and assign it a usage count of one. The
2383 * buffer has unspecified headroom built in. Users should allocate
2384 * the headroom they think they need without accounting for the
2385 * built in space. The built in space is used for optimisations.
2386 *
2387 * %NULL is returned if there is no free memory. Although this function
2388 * allocates memory it can be called from an interrupt.
2389 */
2390static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
6f532612 2391 unsigned int length)
8af27456
CH
2392{
2393 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2394}
2395
6f532612
ED
2396/* legacy helper around __netdev_alloc_skb() */
2397static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2398 gfp_t gfp_mask)
2399{
2400 return __netdev_alloc_skb(NULL, length, gfp_mask);
2401}
2402
2403/* legacy helper around netdev_alloc_skb() */
2404static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2405{
2406 return netdev_alloc_skb(NULL, length);
2407}
2408
2409
4915a0de
ED
2410static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2411 unsigned int length, gfp_t gfp)
61321bbd 2412{
4915a0de 2413 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
61321bbd
ED
2414
2415 if (NET_IP_ALIGN && skb)
2416 skb_reserve(skb, NET_IP_ALIGN);
2417 return skb;
2418}
2419
4915a0de
ED
2420static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2421 unsigned int length)
2422{
2423 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2424}
2425
181edb2b
AD
2426static inline void skb_free_frag(void *addr)
2427{
2428 __free_page_frag(addr);
2429}
2430
ffde7328 2431void *napi_alloc_frag(unsigned int fragsz);
fd11a83d
AD
2432struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2433 unsigned int length, gfp_t gfp_mask);
2434static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2435 unsigned int length)
2436{
2437 return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2438}
795bb1c0
JDB
2439void napi_consume_skb(struct sk_buff *skb, int budget);
2440
2441void __kfree_skb_flush(void);
15fad714 2442void __kfree_skb_defer(struct sk_buff *skb);
ffde7328 2443
71dfda58
AD
2444/**
2445 * __dev_alloc_pages - allocate page for network Rx
2446 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2447 * @order: size of the allocation
2448 *
2449 * Allocate a new page.
2450 *
2451 * %NULL is returned if there is no free memory.
2452*/
2453static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2454 unsigned int order)
2455{
2456 /* This piece of code contains several assumptions.
2457 * 1. This is for device Rx, therefor a cold page is preferred.
2458 * 2. The expectation is the user wants a compound page.
2459 * 3. If requesting a order 0 page it will not be compound
2460 * due to the check to see if order has a value in prep_new_page
2461 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2462 * code in gfp_to_alloc_flags that should be enforcing this.
2463 */
2464 gfp_mask |= __GFP_COLD | __GFP_COMP | __GFP_MEMALLOC;
2465
2466 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2467}
2468
2469static inline struct page *dev_alloc_pages(unsigned int order)
2470{
95829b3a 2471 return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
71dfda58
AD
2472}
2473
2474/**
2475 * __dev_alloc_page - allocate a page for network Rx
2476 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2477 *
2478 * Allocate a new page.
2479 *
2480 * %NULL is returned if there is no free memory.
2481 */
2482static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2483{
2484 return __dev_alloc_pages(gfp_mask, 0);
2485}
2486
2487static inline struct page *dev_alloc_page(void)
2488{
95829b3a 2489 return dev_alloc_pages(0);
71dfda58
AD
2490}
2491
0614002b
MG
2492/**
2493 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2494 * @page: The page that was allocated from skb_alloc_page
2495 * @skb: The skb that may need pfmemalloc set
2496 */
2497static inline void skb_propagate_pfmemalloc(struct page *page,
2498 struct sk_buff *skb)
2499{
2f064f34 2500 if (page_is_pfmemalloc(page))
0614002b
MG
2501 skb->pfmemalloc = true;
2502}
2503
131ea667 2504/**
e227867f 2505 * skb_frag_page - retrieve the page referred to by a paged fragment
131ea667
IC
2506 * @frag: the paged fragment
2507 *
2508 * Returns the &struct page associated with @frag.
2509 */
2510static inline struct page *skb_frag_page(const skb_frag_t *frag)
2511{
a8605c60 2512 return frag->page.p;
131ea667
IC
2513}
2514
2515/**
2516 * __skb_frag_ref - take an addition reference on a paged fragment.
2517 * @frag: the paged fragment
2518 *
2519 * Takes an additional reference on the paged fragment @frag.
2520 */
2521static inline void __skb_frag_ref(skb_frag_t *frag)
2522{
2523 get_page(skb_frag_page(frag));
2524}
2525
2526/**
2527 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2528 * @skb: the buffer
2529 * @f: the fragment offset.
2530 *
2531 * Takes an additional reference on the @f'th paged fragment of @skb.
2532 */
2533static inline void skb_frag_ref(struct sk_buff *skb, int f)
2534{
2535 __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
2536}
2537
2538/**
2539 * __skb_frag_unref - release a reference on a paged fragment.
2540 * @frag: the paged fragment
2541 *
2542 * Releases a reference on the paged fragment @frag.
2543 */
2544static inline void __skb_frag_unref(skb_frag_t *frag)
2545{
2546 put_page(skb_frag_page(frag));
2547}
2548
2549/**
2550 * skb_frag_unref - release a reference on a paged fragment of an skb.
2551 * @skb: the buffer
2552 * @f: the fragment offset
2553 *
2554 * Releases a reference on the @f'th paged fragment of @skb.
2555 */
2556static inline void skb_frag_unref(struct sk_buff *skb, int f)
2557{
2558 __skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2559}
2560
2561/**
2562 * skb_frag_address - gets the address of the data contained in a paged fragment
2563 * @frag: the paged fragment buffer
2564 *
2565 * Returns the address of the data within @frag. The page must already
2566 * be mapped.
2567 */
2568static inline void *skb_frag_address(const skb_frag_t *frag)
2569{
2570 return page_address(skb_frag_page(frag)) + frag->page_offset;
2571}
2572
2573/**
2574 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
2575 * @frag: the paged fragment buffer
2576 *
2577 * Returns the address of the data within @frag. Checks that the page
2578 * is mapped and returns %NULL otherwise.
2579 */
2580static inline void *skb_frag_address_safe(const skb_frag_t *frag)
2581{
2582 void *ptr = page_address(skb_frag_page(frag));
2583 if (unlikely(!ptr))
2584 return NULL;
2585
2586 return ptr + frag->page_offset;
2587}
2588
2589/**
2590 * __skb_frag_set_page - sets the page contained in a paged fragment
2591 * @frag: the paged fragment
2592 * @page: the page to set
2593 *
2594 * Sets the fragment @frag to contain @page.
2595 */
2596static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
2597{
a8605c60 2598 frag->page.p = page;
131ea667
IC
2599}
2600
2601/**
2602 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
2603 * @skb: the buffer
2604 * @f: the fragment offset
2605 * @page: the page to set
2606 *
2607 * Sets the @f'th fragment of @skb to contain @page.
2608 */
2609static inline void skb_frag_set_page(struct sk_buff *skb, int f,
2610 struct page *page)
2611{
2612 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
2613}
2614
400dfd3a
ED
2615bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
2616
131ea667
IC
2617/**
2618 * skb_frag_dma_map - maps a paged fragment via the DMA API
f83347df 2619 * @dev: the device to map the fragment to
131ea667
IC
2620 * @frag: the paged fragment to map
2621 * @offset: the offset within the fragment (starting at the
2622 * fragment's own offset)
2623 * @size: the number of bytes to map
f83347df 2624 * @dir: the direction of the mapping (%PCI_DMA_*)
131ea667
IC
2625 *
2626 * Maps the page associated with @frag to @device.
2627 */
2628static inline dma_addr_t skb_frag_dma_map(struct device *dev,
2629 const skb_frag_t *frag,
2630 size_t offset, size_t size,
2631 enum dma_data_direction dir)
2632{
2633 return dma_map_page(dev, skb_frag_page(frag),
2634 frag->page_offset + offset, size, dir);
2635}
2636
117632e6
ED
2637static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
2638 gfp_t gfp_mask)
2639{
2640 return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
2641}
2642
bad93e9d
OP
2643
2644static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
2645 gfp_t gfp_mask)
2646{
2647 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
2648}
2649
2650
334a8132
PM
2651/**
2652 * skb_clone_writable - is the header of a clone writable
2653 * @skb: buffer to check
2654 * @len: length up to which to write
2655 *
2656 * Returns true if modifying the header part of the cloned buffer
2657 * does not requires the data to be copied.
2658 */
05bdd2f1 2659static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
334a8132
PM
2660{
2661 return !skb_header_cloned(skb) &&
2662 skb_headroom(skb) + len <= skb->hdr_len;
2663}
2664
3697649f
DB
2665static inline int skb_try_make_writable(struct sk_buff *skb,
2666 unsigned int write_len)
2667{
2668 return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
2669 pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2670}
2671
d9cc2048
HX
2672static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
2673 int cloned)
2674{
2675 int delta = 0;
2676
d9cc2048
HX
2677 if (headroom > skb_headroom(skb))
2678 delta = headroom - skb_headroom(skb);
2679
2680 if (delta || cloned)
2681 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
2682 GFP_ATOMIC);
2683 return 0;
2684}
2685
1da177e4
LT
2686/**
2687 * skb_cow - copy header of skb when it is required
2688 * @skb: buffer to cow
2689 * @headroom: needed headroom
2690 *
2691 * If the skb passed lacks sufficient headroom or its data part
2692 * is shared, data is reallocated. If reallocation fails, an error
2693 * is returned and original skb is not changed.
2694 *
2695 * The result is skb with writable area skb->head...skb->tail
2696 * and at least @headroom of space at head.
2697 */
2698static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
2699{
d9cc2048
HX
2700 return __skb_cow(skb, headroom, skb_cloned(skb));
2701}
1da177e4 2702
d9cc2048
HX
2703/**
2704 * skb_cow_head - skb_cow but only making the head writable
2705 * @skb: buffer to cow
2706 * @headroom: needed headroom
2707 *
2708 * This function is identical to skb_cow except that we replace the
2709 * skb_cloned check by skb_header_cloned. It should be used when
2710 * you only need to push on some header and do not need to modify
2711 * the data.
2712 */
2713static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
2714{
2715 return __skb_cow(skb, headroom, skb_header_cloned(skb));
1da177e4
LT
2716}
2717
2718/**
2719 * skb_padto - pad an skbuff up to a minimal size
2720 * @skb: buffer to pad
2721 * @len: minimal length
2722 *
2723 * Pads up a buffer to ensure the trailing bytes exist and are
2724 * blanked. If the buffer already contains sufficient data it
5b057c6b
HX
2725 * is untouched. Otherwise it is extended. Returns zero on
2726 * success. The skb is freed on error.
1da177e4 2727 */
5b057c6b 2728static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1da177e4
LT
2729{
2730 unsigned int size = skb->len;
2731 if (likely(size >= len))
5b057c6b 2732 return 0;
987c402a 2733 return skb_pad(skb, len - size);
1da177e4
LT
2734}
2735
9c0c1124
AD
2736/**
2737 * skb_put_padto - increase size and pad an skbuff up to a minimal size
2738 * @skb: buffer to pad
2739 * @len: minimal length
2740 *
2741 * Pads up a buffer to ensure the trailing bytes exist and are
2742 * blanked. If the buffer already contains sufficient data it
2743 * is untouched. Otherwise it is extended. Returns zero on
2744 * success. The skb is freed on error.
2745 */
2746static inline int skb_put_padto(struct sk_buff *skb, unsigned int len)
2747{
2748 unsigned int size = skb->len;
2749
2750 if (unlikely(size < len)) {
2751 len -= size;
2752 if (skb_pad(skb, len))
2753 return -ENOMEM;
2754 __skb_put(skb, len);
2755 }
2756 return 0;
2757}
2758
1da177e4 2759static inline int skb_add_data(struct sk_buff *skb,
af2b040e 2760 struct iov_iter *from, int copy)
1da177e4
LT
2761{
2762 const int off = skb->len;
2763
2764 if (skb->ip_summed == CHECKSUM_NONE) {
af2b040e
AV
2765 __wsum csum = 0;
2766 if (csum_and_copy_from_iter(skb_put(skb, copy), copy,
2767 &csum, from) == copy) {
1da177e4
LT
2768 skb->csum = csum_block_add(skb->csum, csum, off);
2769 return 0;
2770 }
af2b040e 2771 } else if (copy_from_iter(skb_put(skb, copy), copy, from) == copy)
1da177e4
LT
2772 return 0;
2773
2774 __skb_trim(skb, off);
2775 return -EFAULT;
2776}
2777
38ba0a65
ED
2778static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
2779 const struct page *page, int off)
1da177e4
LT
2780{
2781 if (i) {
9e903e08 2782 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1da177e4 2783
ea2ab693 2784 return page == skb_frag_page(frag) &&
9e903e08 2785 off == frag->page_offset + skb_frag_size(frag);
1da177e4 2786 }
38ba0a65 2787 return false;
1da177e4
LT
2788}
2789
364c6bad
HX
2790static inline int __skb_linearize(struct sk_buff *skb)
2791{
2792 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
2793}
2794
1da177e4
LT
2795/**
2796 * skb_linearize - convert paged skb to linear one
2797 * @skb: buffer to linarize
1da177e4
LT
2798 *
2799 * If there is no free memory -ENOMEM is returned, otherwise zero
2800 * is returned and the old skb data released.
2801 */
364c6bad
HX
2802static inline int skb_linearize(struct sk_buff *skb)
2803{
2804 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
2805}
2806
cef401de
ED
2807/**
2808 * skb_has_shared_frag - can any frag be overwritten
2809 * @skb: buffer to test
2810 *
2811 * Return true if the skb has at least one frag that might be modified
2812 * by an external entity (as in vmsplice()/sendfile())
2813 */
2814static inline bool skb_has_shared_frag(const struct sk_buff *skb)
2815{
c9af6db4
PS
2816 return skb_is_nonlinear(skb) &&
2817 skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
cef401de
ED
2818}
2819
364c6bad
HX
2820/**
2821 * skb_linearize_cow - make sure skb is linear and writable
2822 * @skb: buffer to process
2823 *
2824 * If there is no free memory -ENOMEM is returned, otherwise zero
2825 * is returned and the old skb data released.
2826 */
2827static inline int skb_linearize_cow(struct sk_buff *skb)
1da177e4 2828{
364c6bad
HX
2829 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
2830 __skb_linearize(skb) : 0;
1da177e4
LT
2831}
2832
2833/**
2834 * skb_postpull_rcsum - update checksum for received skb after pull
2835 * @skb: buffer to update
2836 * @start: start of data before pull
2837 * @len: length of data pulled
2838 *
2839 * After doing a pull on a received packet, you need to call this to
84fa7933
PM
2840 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
2841 * CHECKSUM_NONE so that it can be recomputed from scratch.
1da177e4
LT
2842 */
2843
2844static inline void skb_postpull_rcsum(struct sk_buff *skb,
cbb042f9 2845 const void *start, unsigned int len)
1da177e4 2846{
84fa7933 2847 if (skb->ip_summed == CHECKSUM_COMPLETE)
1da177e4 2848 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
6ae459bd 2849 else if (skb->ip_summed == CHECKSUM_PARTIAL &&
31b33dfb 2850 skb_checksum_start_offset(skb) < 0)
6ae459bd 2851 skb->ip_summed = CHECKSUM_NONE;
1da177e4
LT
2852}
2853
cbb042f9
HX
2854unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
2855
f8ffad69
DB
2856static inline void skb_postpush_rcsum(struct sk_buff *skb,
2857 const void *start, unsigned int len)
2858{
2859 /* For performing the reverse operation to skb_postpull_rcsum(),
2860 * we can instead of ...
2861 *
2862 * skb->csum = csum_add(skb->csum, csum_partial(start, len, 0));
2863 *
2864 * ... just use this equivalent version here to save a few
2865 * instructions. Feeding csum of 0 in csum_partial() and later
2866 * on adding skb->csum is equivalent to feed skb->csum in the
2867 * first place.
2868 */
2869 if (skb->ip_summed == CHECKSUM_COMPLETE)
2870 skb->csum = csum_partial(start, len, skb->csum);
2871}
2872
82a31b92
WC
2873/**
2874 * skb_push_rcsum - push skb and update receive checksum
2875 * @skb: buffer to update
2876 * @len: length of data pulled
2877 *
2878 * This function performs an skb_push on the packet and updates
2879 * the CHECKSUM_COMPLETE checksum. It should be used on
2880 * receive path processing instead of skb_push unless you know
2881 * that the checksum difference is zero (e.g., a valid IP header)
2882 * or you are setting ip_summed to CHECKSUM_NONE.
2883 */
2884static inline unsigned char *skb_push_rcsum(struct sk_buff *skb,
2885 unsigned int len)
2886{
2887 skb_push(skb, len);
2888 skb_postpush_rcsum(skb, skb->data, len);
2889 return skb->data;
2890}
2891
7ce5a27f
DM
2892/**
2893 * pskb_trim_rcsum - trim received skb and update checksum
2894 * @skb: buffer to trim
2895 * @len: new length
2896 *
2897 * This is exactly the same as pskb_trim except that it ensures the
2898 * checksum of received packets are still valid after the operation.
2899 */
2900
2901static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
2902{
2903 if (likely(len >= skb->len))
2904 return 0;
2905 if (skb->ip_summed == CHECKSUM_COMPLETE)
2906 skb->ip_summed = CHECKSUM_NONE;
2907 return __pskb_trim(skb, len);
2908}
2909
1da177e4
LT
2910#define skb_queue_walk(queue, skb) \
2911 for (skb = (queue)->next; \
a1e4891f 2912 skb != (struct sk_buff *)(queue); \
1da177e4
LT
2913 skb = skb->next)
2914
46f8914e
JC
2915#define skb_queue_walk_safe(queue, skb, tmp) \
2916 for (skb = (queue)->next, tmp = skb->next; \
2917 skb != (struct sk_buff *)(queue); \
2918 skb = tmp, tmp = skb->next)
2919
1164f52a 2920#define skb_queue_walk_from(queue, skb) \
a1e4891f 2921 for (; skb != (struct sk_buff *)(queue); \
1164f52a
DM
2922 skb = skb->next)
2923
2924#define skb_queue_walk_from_safe(queue, skb, tmp) \
2925 for (tmp = skb->next; \
2926 skb != (struct sk_buff *)(queue); \
2927 skb = tmp, tmp = skb->next)
2928
300ce174
SH
2929#define skb_queue_reverse_walk(queue, skb) \
2930 for (skb = (queue)->prev; \
a1e4891f 2931 skb != (struct sk_buff *)(queue); \
300ce174
SH
2932 skb = skb->prev)
2933
686a2955
DM
2934#define skb_queue_reverse_walk_safe(queue, skb, tmp) \
2935 for (skb = (queue)->prev, tmp = skb->prev; \
2936 skb != (struct sk_buff *)(queue); \
2937 skb = tmp, tmp = skb->prev)
2938
2939#define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
2940 for (tmp = skb->prev; \
2941 skb != (struct sk_buff *)(queue); \
2942 skb = tmp, tmp = skb->prev)
1da177e4 2943
21dc3301 2944static inline bool skb_has_frag_list(const struct sk_buff *skb)
ee039871
DM
2945{
2946 return skb_shinfo(skb)->frag_list != NULL;
2947}
2948
2949static inline void skb_frag_list_init(struct sk_buff *skb)
2950{
2951 skb_shinfo(skb)->frag_list = NULL;
2952}
2953
ee039871
DM
2954#define skb_walk_frags(skb, iter) \
2955 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
2956
ea3793ee
RW
2957
2958int __skb_wait_for_more_packets(struct sock *sk, int *err, long *timeo_p,
2959 const struct sk_buff *skb);
2960struct sk_buff *__skb_try_recv_datagram(struct sock *sk, unsigned flags,
2961 int *peeked, int *off, int *err,
2962 struct sk_buff **last);
7965bd4d
JP
2963struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
2964 int *peeked, int *off, int *err);
2965struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
2966 int *err);
2967unsigned int datagram_poll(struct file *file, struct socket *sock,
2968 struct poll_table_struct *wait);
c0371da6
AV
2969int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
2970 struct iov_iter *to, int size);
51f3d02b
DM
2971static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
2972 struct msghdr *msg, int size)
2973{
e5a4b0bb 2974 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
227158db 2975}
e5a4b0bb
AV
2976int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
2977 struct msghdr *msg);
3a654f97
AV
2978int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
2979 struct iov_iter *from, int len);
3a654f97 2980int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
7965bd4d 2981void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
627d2d6b 2982void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
2983static inline void skb_free_datagram_locked(struct sock *sk,
2984 struct sk_buff *skb)
2985{
2986 __skb_free_datagram_locked(sk, skb, 0);
2987}
7965bd4d 2988int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
7965bd4d
JP
2989int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
2990int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
2991__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
2992 int len, __wsum csum);
a60e3cc7
HFS
2993ssize_t skb_socket_splice(struct sock *sk,
2994 struct pipe_inode_info *pipe,
2995 struct splice_pipe_desc *spd);
2996int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
7965bd4d 2997 struct pipe_inode_info *pipe, unsigned int len,
a60e3cc7
HFS
2998 unsigned int flags,
2999 ssize_t (*splice_cb)(struct sock *,
3000 struct pipe_inode_info *,
3001 struct splice_pipe_desc *));
7965bd4d 3002void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
af2806f8 3003unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
36d5fe6a
ZK
3004int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3005 int len, int hlen);
7965bd4d
JP
3006void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3007int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3008void skb_scrub_packet(struct sk_buff *skb, bool xnet);
de960aa9 3009unsigned int skb_gso_transport_seglen(const struct sk_buff *skb);
7965bd4d 3010struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
0d5501c1 3011struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
e2195121 3012int skb_ensure_writable(struct sk_buff *skb, int write_len);
93515d53
JP
3013int skb_vlan_pop(struct sk_buff *skb);
3014int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
6fa01ccd
SV
3015struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3016 gfp_t gfp);
20380731 3017
6ce8e9ce
AV
3018static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3019{
21226abb 3020 return copy_from_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
6ce8e9ce
AV
3021}
3022
7eab8d9e
AV
3023static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3024{
e5a4b0bb 3025 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
7eab8d9e
AV
3026}
3027
2817a336
DB
3028struct skb_checksum_ops {
3029 __wsum (*update)(const void *mem, int len, __wsum wsum);
3030 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3031};
3032
3033__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3034 __wsum csum, const struct skb_checksum_ops *ops);
3035__wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3036 __wsum csum);
3037
1e98a0f0
ED
3038static inline void * __must_check
3039__skb_header_pointer(const struct sk_buff *skb, int offset,
3040 int len, void *data, int hlen, void *buffer)
1da177e4 3041{
55820ee2 3042 if (hlen - offset >= len)
690e36e7 3043 return data + offset;
1da177e4 3044
690e36e7
DM
3045 if (!skb ||
3046 skb_copy_bits(skb, offset, buffer, len) < 0)
1da177e4
LT
3047 return NULL;
3048
3049 return buffer;
3050}
3051
1e98a0f0
ED
3052static inline void * __must_check
3053skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
690e36e7
DM
3054{
3055 return __skb_header_pointer(skb, offset, len, skb->data,
3056 skb_headlen(skb), buffer);
3057}
3058
4262e5cc
DB
3059/**
3060 * skb_needs_linearize - check if we need to linearize a given skb
3061 * depending on the given device features.
3062 * @skb: socket buffer to check
3063 * @features: net device features
3064 *
3065 * Returns true if either:
3066 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
3067 * 2. skb is fragmented and the device does not support SG.
3068 */
3069static inline bool skb_needs_linearize(struct sk_buff *skb,
3070 netdev_features_t features)
3071{
3072 return skb_is_nonlinear(skb) &&
3073 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3074 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3075}
3076
d626f62b
ACM
3077static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3078 void *to,
3079 const unsigned int len)
3080{
3081 memcpy(to, skb->data, len);
3082}
3083
3084static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3085 const int offset, void *to,
3086 const unsigned int len)
3087{
3088 memcpy(to, skb->data + offset, len);
3089}
3090
27d7ff46
ACM
3091static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3092 const void *from,
3093 const unsigned int len)
3094{
3095 memcpy(skb->data, from, len);
3096}
3097
3098static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3099 const int offset,
3100 const void *from,
3101 const unsigned int len)
3102{
3103 memcpy(skb->data + offset, from, len);
3104}
3105
7965bd4d 3106void skb_init(void);
1da177e4 3107
ac45f602
PO
3108static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3109{
3110 return skb->tstamp;
3111}
3112
a61bbcf2
PM
3113/**
3114 * skb_get_timestamp - get timestamp from a skb
3115 * @skb: skb to get stamp from
3116 * @stamp: pointer to struct timeval to store stamp in
3117 *
3118 * Timestamps are stored in the skb as offsets to a base timestamp.
3119 * This function converts the offset back to a struct timeval and stores
3120 * it in stamp.
3121 */
ac45f602
PO
3122static inline void skb_get_timestamp(const struct sk_buff *skb,
3123 struct timeval *stamp)
a61bbcf2 3124{
b7aa0bf7 3125 *stamp = ktime_to_timeval(skb->tstamp);
a61bbcf2
PM
3126}
3127
ac45f602
PO
3128static inline void skb_get_timestampns(const struct sk_buff *skb,
3129 struct timespec *stamp)
3130{
3131 *stamp = ktime_to_timespec(skb->tstamp);
3132}
3133
b7aa0bf7 3134static inline void __net_timestamp(struct sk_buff *skb)
a61bbcf2 3135{
b7aa0bf7 3136 skb->tstamp = ktime_get_real();
a61bbcf2
PM
3137}
3138
164891aa
SH
3139static inline ktime_t net_timedelta(ktime_t t)
3140{
3141 return ktime_sub(ktime_get_real(), t);
3142}
3143
b9ce204f
IJ
3144static inline ktime_t net_invalid_timestamp(void)
3145{
3146 return ktime_set(0, 0);
3147}
a61bbcf2 3148
62bccb8c
AD
3149struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3150
c1f19b51
RC
3151#ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3152
7965bd4d
JP
3153void skb_clone_tx_timestamp(struct sk_buff *skb);
3154bool skb_defer_rx_timestamp(struct sk_buff *skb);
c1f19b51
RC
3155
3156#else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3157
3158static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3159{
3160}
3161
3162static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3163{
3164 return false;
3165}
3166
3167#endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3168
3169/**
3170 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3171 *
da92b194
RC
3172 * PHY drivers may accept clones of transmitted packets for
3173 * timestamping via their phy_driver.txtstamp method. These drivers
7a76a021
BP
3174 * must call this function to return the skb back to the stack with a
3175 * timestamp.
da92b194 3176 *
c1f19b51 3177 * @skb: clone of the the original outgoing packet
7a76a021 3178 * @hwtstamps: hardware time stamps
c1f19b51
RC
3179 *
3180 */
3181void skb_complete_tx_timestamp(struct sk_buff *skb,
3182 struct skb_shared_hwtstamps *hwtstamps);
3183
e7fd2885
WB
3184void __skb_tstamp_tx(struct sk_buff *orig_skb,
3185 struct skb_shared_hwtstamps *hwtstamps,
3186 struct sock *sk, int tstype);
3187
ac45f602
PO
3188/**
3189 * skb_tstamp_tx - queue clone of skb with send time stamps
3190 * @orig_skb: the original outgoing packet
3191 * @hwtstamps: hardware time stamps, may be NULL if not available
3192 *
3193 * If the skb has a socket associated, then this function clones the
3194 * skb (thus sharing the actual data and optional structures), stores
3195 * the optional hardware time stamping information (if non NULL) or
3196 * generates a software time stamp (otherwise), then queues the clone
3197 * to the error queue of the socket. Errors are silently ignored.
3198 */
7965bd4d
JP
3199void skb_tstamp_tx(struct sk_buff *orig_skb,
3200 struct skb_shared_hwtstamps *hwtstamps);
ac45f602 3201
4507a715
RC
3202static inline void sw_tx_timestamp(struct sk_buff *skb)
3203{
2244d07b
OH
3204 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
3205 !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
4507a715
RC
3206 skb_tstamp_tx(skb, NULL);
3207}
3208
3209/**
3210 * skb_tx_timestamp() - Driver hook for transmit timestamping
3211 *
3212 * Ethernet MAC Drivers should call this function in their hard_xmit()
4ff75b7c 3213 * function immediately before giving the sk_buff to the MAC hardware.
4507a715 3214 *
73409f3b
DM
3215 * Specifically, one should make absolutely sure that this function is
3216 * called before TX completion of this packet can trigger. Otherwise
3217 * the packet could potentially already be freed.
3218 *
4507a715
RC
3219 * @skb: A socket buffer.
3220 */
3221static inline void skb_tx_timestamp(struct sk_buff *skb)
3222{
c1f19b51 3223 skb_clone_tx_timestamp(skb);
4507a715
RC
3224 sw_tx_timestamp(skb);
3225}
3226
6e3e939f
JB
3227/**
3228 * skb_complete_wifi_ack - deliver skb with wifi status
3229 *
3230 * @skb: the original outgoing packet
3231 * @acked: ack status
3232 *
3233 */
3234void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3235
7965bd4d
JP
3236__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3237__sum16 __skb_checksum_complete(struct sk_buff *skb);
fb286bb2 3238
60476372
HX
3239static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3240{
6edec0e6
TH
3241 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3242 skb->csum_valid ||
3243 (skb->ip_summed == CHECKSUM_PARTIAL &&
3244 skb_checksum_start_offset(skb) >= 0));
60476372
HX
3245}
3246
fb286bb2
HX
3247/**
3248 * skb_checksum_complete - Calculate checksum of an entire packet
3249 * @skb: packet to process
3250 *
3251 * This function calculates the checksum over the entire packet plus
3252 * the value of skb->csum. The latter can be used to supply the
3253 * checksum of a pseudo header as used by TCP/UDP. It returns the
3254 * checksum.
3255 *
3256 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
3257 * this function can be used to verify that checksum on received
3258 * packets. In that case the function should return zero if the
3259 * checksum is correct. In particular, this function will return zero
3260 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
3261 * hardware has already verified the correctness of the checksum.
3262 */
4381ca3c 3263static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
fb286bb2 3264{
60476372
HX
3265 return skb_csum_unnecessary(skb) ?
3266 0 : __skb_checksum_complete(skb);
fb286bb2
HX
3267}
3268
77cffe23
TH
3269static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
3270{
3271 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3272 if (skb->csum_level == 0)
3273 skb->ip_summed = CHECKSUM_NONE;
3274 else
3275 skb->csum_level--;
3276 }
3277}
3278
3279static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
3280{
3281 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3282 if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
3283 skb->csum_level++;
3284 } else if (skb->ip_summed == CHECKSUM_NONE) {
3285 skb->ip_summed = CHECKSUM_UNNECESSARY;
3286 skb->csum_level = 0;
3287 }
3288}
3289
5a212329
TH
3290static inline void __skb_mark_checksum_bad(struct sk_buff *skb)
3291{
3292 /* Mark current checksum as bad (typically called from GRO
3293 * path). In the case that ip_summed is CHECKSUM_NONE
3294 * this must be the first checksum encountered in the packet.
3295 * When ip_summed is CHECKSUM_UNNECESSARY, this is the first
3296 * checksum after the last one validated. For UDP, a zero
3297 * checksum can not be marked as bad.
3298 */
3299
3300 if (skb->ip_summed == CHECKSUM_NONE ||
3301 skb->ip_summed == CHECKSUM_UNNECESSARY)
3302 skb->csum_bad = 1;
3303}
3304
76ba0aae
TH
3305/* Check if we need to perform checksum complete validation.
3306 *
3307 * Returns true if checksum complete is needed, false otherwise
3308 * (either checksum is unnecessary or zero checksum is allowed).
3309 */
3310static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
3311 bool zero_okay,
3312 __sum16 check)
3313{
5d0c2b95
TH
3314 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
3315 skb->csum_valid = 1;
77cffe23 3316 __skb_decr_checksum_unnecessary(skb);
76ba0aae
TH
3317 return false;
3318 }
3319
3320 return true;
3321}
3322
3323/* For small packets <= CHECKSUM_BREAK peform checksum complete directly
3324 * in checksum_init.
3325 */
3326#define CHECKSUM_BREAK 76
3327
4e18b9ad
TH
3328/* Unset checksum-complete
3329 *
3330 * Unset checksum complete can be done when packet is being modified
3331 * (uncompressed for instance) and checksum-complete value is
3332 * invalidated.
3333 */
3334static inline void skb_checksum_complete_unset(struct sk_buff *skb)
3335{
3336 if (skb->ip_summed == CHECKSUM_COMPLETE)
3337 skb->ip_summed = CHECKSUM_NONE;
3338}
3339
76ba0aae
TH
3340/* Validate (init) checksum based on checksum complete.
3341 *
3342 * Return values:
3343 * 0: checksum is validated or try to in skb_checksum_complete. In the latter
3344 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
3345 * checksum is stored in skb->csum for use in __skb_checksum_complete
3346 * non-zero: value of invalid checksum
3347 *
3348 */
3349static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
3350 bool complete,
3351 __wsum psum)
3352{
3353 if (skb->ip_summed == CHECKSUM_COMPLETE) {
3354 if (!csum_fold(csum_add(psum, skb->csum))) {
5d0c2b95 3355 skb->csum_valid = 1;
76ba0aae
TH
3356 return 0;
3357 }
5a212329
TH
3358 } else if (skb->csum_bad) {
3359 /* ip_summed == CHECKSUM_NONE in this case */
c91d4606 3360 return (__force __sum16)1;
76ba0aae
TH
3361 }
3362
3363 skb->csum = psum;
3364
5d0c2b95
TH
3365 if (complete || skb->len <= CHECKSUM_BREAK) {
3366 __sum16 csum;
3367
3368 csum = __skb_checksum_complete(skb);
3369 skb->csum_valid = !csum;
3370 return csum;
3371 }
76ba0aae
TH
3372
3373 return 0;
3374}
3375
3376static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
3377{
3378 return 0;
3379}
3380
3381/* Perform checksum validate (init). Note that this is a macro since we only
3382 * want to calculate the pseudo header which is an input function if necessary.
3383 * First we try to validate without any computation (checksum unnecessary) and
3384 * then calculate based on checksum complete calling the function to compute
3385 * pseudo header.
3386 *
3387 * Return values:
3388 * 0: checksum is validated or try to in skb_checksum_complete
3389 * non-zero: value of invalid checksum
3390 */
3391#define __skb_checksum_validate(skb, proto, complete, \
3392 zero_okay, check, compute_pseudo) \
3393({ \
3394 __sum16 __ret = 0; \
5d0c2b95 3395 skb->csum_valid = 0; \
76ba0aae
TH
3396 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \
3397 __ret = __skb_checksum_validate_complete(skb, \
3398 complete, compute_pseudo(skb, proto)); \
3399 __ret; \
3400})
3401
3402#define skb_checksum_init(skb, proto, compute_pseudo) \
3403 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
3404
3405#define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \
3406 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
3407
3408#define skb_checksum_validate(skb, proto, compute_pseudo) \
3409 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
3410
3411#define skb_checksum_validate_zero_check(skb, proto, check, \
3412 compute_pseudo) \
096a4cfa 3413 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
76ba0aae
TH
3414
3415#define skb_checksum_simple_validate(skb) \
3416 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
3417
d96535a1
TH
3418static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
3419{
3420 return (skb->ip_summed == CHECKSUM_NONE &&
3421 skb->csum_valid && !skb->csum_bad);
3422}
3423
3424static inline void __skb_checksum_convert(struct sk_buff *skb,
3425 __sum16 check, __wsum pseudo)
3426{
3427 skb->csum = ~pseudo;
3428 skb->ip_summed = CHECKSUM_COMPLETE;
3429}
3430
3431#define skb_checksum_try_convert(skb, proto, check, compute_pseudo) \
3432do { \
3433 if (__skb_checksum_convert_check(skb)) \
3434 __skb_checksum_convert(skb, check, \
3435 compute_pseudo(skb, proto)); \
3436} while (0)
3437
15e2396d
TH
3438static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
3439 u16 start, u16 offset)
3440{
3441 skb->ip_summed = CHECKSUM_PARTIAL;
3442 skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
3443 skb->csum_offset = offset - start;
3444}
3445
dcdc8994
TH
3446/* Update skbuf and packet to reflect the remote checksum offload operation.
3447 * When called, ptr indicates the starting point for skb->csum when
3448 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
3449 * here, skb_postpull_rcsum is done so skb->csum start is ptr.
3450 */
3451static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
15e2396d 3452 int start, int offset, bool nopartial)
dcdc8994
TH
3453{
3454 __wsum delta;
3455
15e2396d
TH
3456 if (!nopartial) {
3457 skb_remcsum_adjust_partial(skb, ptr, start, offset);
3458 return;
3459 }
3460
dcdc8994
TH
3461 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
3462 __skb_checksum_complete(skb);
3463 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
3464 }
3465
3466 delta = remcsum_adjust(ptr, skb->csum, start, offset);
3467
3468 /* Adjust skb->csum since we changed the packet */
3469 skb->csum = csum_add(skb->csum, delta);
3470}
3471
5f79e0f9 3472#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
7965bd4d 3473void nf_conntrack_destroy(struct nf_conntrack *nfct);
1da177e4
LT
3474static inline void nf_conntrack_put(struct nf_conntrack *nfct)
3475{
3476 if (nfct && atomic_dec_and_test(&nfct->use))
de6e05c4 3477 nf_conntrack_destroy(nfct);
1da177e4
LT
3478}
3479static inline void nf_conntrack_get(struct nf_conntrack *nfct)
3480{
3481 if (nfct)
3482 atomic_inc(&nfct->use);
3483}
2fc72c7b 3484#endif
34666d46 3485#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
1da177e4
LT
3486static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
3487{
3488 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
3489 kfree(nf_bridge);
3490}
3491static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
3492{
3493 if (nf_bridge)
3494 atomic_inc(&nf_bridge->use);
3495}
3496#endif /* CONFIG_BRIDGE_NETFILTER */
a193a4ab
PM
3497static inline void nf_reset(struct sk_buff *skb)
3498{
5f79e0f9 3499#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
a193a4ab
PM
3500 nf_conntrack_put(skb->nfct);
3501 skb->nfct = NULL;
2fc72c7b 3502#endif
34666d46 3503#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
a193a4ab
PM
3504 nf_bridge_put(skb->nf_bridge);
3505 skb->nf_bridge = NULL;
3506#endif
3507}
3508
124dff01
PM
3509static inline void nf_reset_trace(struct sk_buff *skb)
3510{
478b360a 3511#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
130549fe
G
3512 skb->nf_trace = 0;
3513#endif
a193a4ab
PM
3514}
3515
edda553c 3516/* Note: This doesn't put any conntrack and bridge info in dst. */
b1937227
ED
3517static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
3518 bool copy)
edda553c 3519{
5f79e0f9 3520#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
edda553c
YK
3521 dst->nfct = src->nfct;
3522 nf_conntrack_get(src->nfct);
b1937227
ED
3523 if (copy)
3524 dst->nfctinfo = src->nfctinfo;
2fc72c7b 3525#endif
34666d46 3526#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
edda553c
YK
3527 dst->nf_bridge = src->nf_bridge;
3528 nf_bridge_get(src->nf_bridge);
3529#endif
478b360a 3530#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
b1937227
ED
3531 if (copy)
3532 dst->nf_trace = src->nf_trace;
478b360a 3533#endif
edda553c
YK
3534}
3535
e7ac05f3
YK
3536static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
3537{
e7ac05f3 3538#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
5f79e0f9 3539 nf_conntrack_put(dst->nfct);
2fc72c7b 3540#endif
34666d46 3541#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
e7ac05f3
YK
3542 nf_bridge_put(dst->nf_bridge);
3543#endif
b1937227 3544 __nf_copy(dst, src, true);
e7ac05f3
YK
3545}
3546
984bc16c
JM
3547#ifdef CONFIG_NETWORK_SECMARK
3548static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3549{
3550 to->secmark = from->secmark;
3551}
3552
3553static inline void skb_init_secmark(struct sk_buff *skb)
3554{
3555 skb->secmark = 0;
3556}
3557#else
3558static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3559{ }
3560
3561static inline void skb_init_secmark(struct sk_buff *skb)
3562{ }
3563#endif
3564
574f7194
EB
3565static inline bool skb_irq_freeable(const struct sk_buff *skb)
3566{
3567 return !skb->destructor &&
3568#if IS_ENABLED(CONFIG_XFRM)
3569 !skb->sp &&
3570#endif
3571#if IS_ENABLED(CONFIG_NF_CONNTRACK)
3572 !skb->nfct &&
3573#endif
3574 !skb->_skb_refdst &&
3575 !skb_has_frag_list(skb);
3576}
3577
f25f4e44
PWJ
3578static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
3579{
f25f4e44 3580 skb->queue_mapping = queue_mapping;
f25f4e44
PWJ
3581}
3582
9247744e 3583static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4e3ab47a 3584{
4e3ab47a 3585 return skb->queue_mapping;
4e3ab47a
PE
3586}
3587
f25f4e44
PWJ
3588static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
3589{
f25f4e44 3590 to->queue_mapping = from->queue_mapping;
f25f4e44
PWJ
3591}
3592
d5a9e24a
DM
3593static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
3594{
3595 skb->queue_mapping = rx_queue + 1;
3596}
3597
9247744e 3598static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
d5a9e24a
DM
3599{
3600 return skb->queue_mapping - 1;
3601}
3602
9247744e 3603static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
d5a9e24a 3604{
a02cec21 3605 return skb->queue_mapping != 0;
d5a9e24a
DM
3606}
3607
def8b4fa
AD
3608static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
3609{
0b3d8e08 3610#ifdef CONFIG_XFRM
def8b4fa 3611 return skb->sp;
def8b4fa 3612#else
def8b4fa 3613 return NULL;
def8b4fa 3614#endif
0b3d8e08 3615}
def8b4fa 3616
68c33163
PS
3617/* Keeps track of mac header offset relative to skb->head.
3618 * It is useful for TSO of Tunneling protocol. e.g. GRE.
3619 * For non-tunnel skb it points to skb_mac_header() and for
3347c960
ED
3620 * tunnel skb it points to outer mac header.
3621 * Keeps track of level of encapsulation of network headers.
3622 */
68c33163 3623struct skb_gso_cb {
802ab55a
AD
3624 union {
3625 int mac_offset;
3626 int data_offset;
3627 };
3347c960 3628 int encap_level;
76443456 3629 __wsum csum;
7e2b10c1 3630 __u16 csum_start;
68c33163 3631};
9207f9d4
KK
3632#define SKB_SGO_CB_OFFSET 32
3633#define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET))
68c33163
PS
3634
3635static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
3636{
3637 return (skb_mac_header(inner_skb) - inner_skb->head) -
3638 SKB_GSO_CB(inner_skb)->mac_offset;
3639}
3640
1e2bd517
PS
3641static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
3642{
3643 int new_headroom, headroom;
3644 int ret;
3645
3646 headroom = skb_headroom(skb);
3647 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
3648 if (ret)
3649 return ret;
3650
3651 new_headroom = skb_headroom(skb);
3652 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
3653 return 0;
3654}
3655
08b64fcc
AD
3656static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
3657{
3658 /* Do not update partial checksums if remote checksum is enabled. */
3659 if (skb->remcsum_offload)
3660 return;
3661
3662 SKB_GSO_CB(skb)->csum = res;
3663 SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
3664}
3665
7e2b10c1
TH
3666/* Compute the checksum for a gso segment. First compute the checksum value
3667 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
3668 * then add in skb->csum (checksum from csum_start to end of packet).
3669 * skb->csum and csum_start are then updated to reflect the checksum of the
3670 * resultant packet starting from the transport header-- the resultant checksum
3671 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
3672 * header.
3673 */
3674static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
3675{
76443456
AD
3676 unsigned char *csum_start = skb_transport_header(skb);
3677 int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
3678 __wsum partial = SKB_GSO_CB(skb)->csum;
7e2b10c1 3679
76443456
AD
3680 SKB_GSO_CB(skb)->csum = res;
3681 SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
7e2b10c1 3682
76443456 3683 return csum_fold(csum_partial(csum_start, plen, partial));
7e2b10c1
TH
3684}
3685
bdcc0924 3686static inline bool skb_is_gso(const struct sk_buff *skb)
89114afd
HX
3687{
3688 return skb_shinfo(skb)->gso_size;
3689}
3690
36a8f39e 3691/* Note: Should be called only if skb_is_gso(skb) is true */
bdcc0924 3692static inline bool skb_is_gso_v6(const struct sk_buff *skb)
eabd7e35
BG
3693{
3694 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
3695}
3696
7965bd4d 3697void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4497b076
BH
3698
3699static inline bool skb_warn_if_lro(const struct sk_buff *skb)
3700{
3701 /* LRO sets gso_size but not gso_type, whereas if GSO is really
3702 * wanted then gso_type will be set. */
05bdd2f1
ED
3703 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3704
b78462eb
AD
3705 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
3706 unlikely(shinfo->gso_type == 0)) {
4497b076
BH
3707 __skb_warn_lro_forwarding(skb);
3708 return true;
3709 }
3710 return false;
3711}
3712
35fc92a9
HX
3713static inline void skb_forward_csum(struct sk_buff *skb)
3714{
3715 /* Unfortunately we don't support this one. Any brave souls? */
3716 if (skb->ip_summed == CHECKSUM_COMPLETE)
3717 skb->ip_summed = CHECKSUM_NONE;
3718}
3719
bc8acf2c
ED
3720/**
3721 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
3722 * @skb: skb to check
3723 *
3724 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
3725 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
3726 * use this helper, to document places where we make this assertion.
3727 */
05bdd2f1 3728static inline void skb_checksum_none_assert(const struct sk_buff *skb)
bc8acf2c
ED
3729{
3730#ifdef DEBUG
3731 BUG_ON(skb->ip_summed != CHECKSUM_NONE);
3732#endif
3733}
3734
f35d9d8a 3735bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
a6686f2f 3736
ed1f50c3 3737int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
9afd85c9
LL
3738struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
3739 unsigned int transport_len,
3740 __sum16(*skb_chkf)(struct sk_buff *skb));
ed1f50c3 3741
3a7c1ee4
AD
3742/**
3743 * skb_head_is_locked - Determine if the skb->head is locked down
3744 * @skb: skb to check
3745 *
3746 * The head on skbs build around a head frag can be removed if they are
3747 * not cloned. This function returns true if the skb head is locked down
3748 * due to either being allocated via kmalloc, or by being a clone with
3749 * multiple references to the head.
3750 */
3751static inline bool skb_head_is_locked(const struct sk_buff *skb)
3752{
3753 return !skb->head_frag || skb_cloned(skb);
3754}
fe6cc55f
FW
3755
3756/**
3757 * skb_gso_network_seglen - Return length of individual segments of a gso packet
3758 *
3759 * @skb: GSO skb
3760 *
3761 * skb_gso_network_seglen is used to determine the real size of the
3762 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
3763 *
3764 * The MAC/L2 header is not accounted for.
3765 */
3766static inline unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
3767{
3768 unsigned int hdr_len = skb_transport_header(skb) -
3769 skb_network_header(skb);
3770 return hdr_len + skb_gso_transport_seglen(skb);
3771}
ee122c79 3772
179bc67f
EC
3773/* Local Checksum Offload.
3774 * Compute outer checksum based on the assumption that the
3775 * inner checksum will be offloaded later.
e8ae7b00
EC
3776 * See Documentation/networking/checksum-offloads.txt for
3777 * explanation of how this works.
179bc67f
EC
3778 * Fill in outer checksum adjustment (e.g. with sum of outer
3779 * pseudo-header) before calling.
3780 * Also ensure that inner checksum is in linear data area.
3781 */
3782static inline __wsum lco_csum(struct sk_buff *skb)
3783{
9e74a6da
AD
3784 unsigned char *csum_start = skb_checksum_start(skb);
3785 unsigned char *l4_hdr = skb_transport_header(skb);
3786 __wsum partial;
179bc67f
EC
3787
3788 /* Start with complement of inner checksum adjustment */
9e74a6da
AD
3789 partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
3790 skb->csum_offset));
3791
179bc67f 3792 /* Add in checksum of our headers (incl. outer checksum
9e74a6da 3793 * adjustment filled in by caller) and return result.
179bc67f 3794 */
9e74a6da 3795 return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
179bc67f
EC
3796}
3797
1da177e4
LT
3798#endif /* __KERNEL__ */
3799#endif /* _LINUX_SKBUFF_H */
This page took 2.302799 seconds and 5 git commands to generate.