Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[deliverable/linux.git] / include / linux / slab.h
CommitLineData
1da177e4 1/*
2e892f43
CL
2 * Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk).
3 *
cde53535 4 * (C) SGI 2006, Christoph Lameter
2e892f43
CL
5 * Cleaned up and restructured to ease the addition of alternative
6 * implementations of SLAB allocators.
f1b6eb6e
CL
7 * (C) Linux Foundation 2008-2013
8 * Unified interface for all slab allocators
1da177e4
LT
9 */
10
11#ifndef _LINUX_SLAB_H
12#define _LINUX_SLAB_H
13
1b1cec4b 14#include <linux/gfp.h>
1b1cec4b 15#include <linux/types.h>
1f458cbf
GC
16#include <linux/workqueue.h>
17
1da177e4 18
2e892f43
CL
19/*
20 * Flags to pass to kmem_cache_create().
21 * The ones marked DEBUG are only valid if CONFIG_SLAB_DEBUG is set.
1da177e4 22 */
55935a34 23#define SLAB_DEBUG_FREE 0x00000100UL /* DEBUG: Perform (expensive) checks on free */
55935a34
CL
24#define SLAB_RED_ZONE 0x00000400UL /* DEBUG: Red zone objs in a cache */
25#define SLAB_POISON 0x00000800UL /* DEBUG: Poison objects */
26#define SLAB_HWCACHE_ALIGN 0x00002000UL /* Align objs on cache lines */
2e892f43 27#define SLAB_CACHE_DMA 0x00004000UL /* Use GFP_DMA memory */
2e892f43 28#define SLAB_STORE_USER 0x00010000UL /* DEBUG: Store the last owner for bug hunting */
2e892f43 29#define SLAB_PANIC 0x00040000UL /* Panic if kmem_cache_create() fails */
d7de4c1d
PZ
30/*
31 * SLAB_DESTROY_BY_RCU - **WARNING** READ THIS!
32 *
33 * This delays freeing the SLAB page by a grace period, it does _NOT_
34 * delay object freeing. This means that if you do kmem_cache_free()
35 * that memory location is free to be reused at any time. Thus it may
36 * be possible to see another object there in the same RCU grace period.
37 *
38 * This feature only ensures the memory location backing the object
39 * stays valid, the trick to using this is relying on an independent
40 * object validation pass. Something like:
41 *
42 * rcu_read_lock()
43 * again:
44 * obj = lockless_lookup(key);
45 * if (obj) {
46 * if (!try_get_ref(obj)) // might fail for free objects
47 * goto again;
48 *
49 * if (obj->key != key) { // not the object we expected
50 * put_ref(obj);
51 * goto again;
52 * }
53 * }
54 * rcu_read_unlock();
55 *
68126702
JK
56 * This is useful if we need to approach a kernel structure obliquely,
57 * from its address obtained without the usual locking. We can lock
58 * the structure to stabilize it and check it's still at the given address,
59 * only if we can be sure that the memory has not been meanwhile reused
60 * for some other kind of object (which our subsystem's lock might corrupt).
61 *
62 * rcu_read_lock before reading the address, then rcu_read_unlock after
63 * taking the spinlock within the structure expected at that address.
d7de4c1d 64 */
2e892f43 65#define SLAB_DESTROY_BY_RCU 0x00080000UL /* Defer freeing slabs to RCU */
101a5001 66#define SLAB_MEM_SPREAD 0x00100000UL /* Spread some memory over cpuset */
81819f0f 67#define SLAB_TRACE 0x00200000UL /* Trace allocations and frees */
1da177e4 68
30327acf
TG
69/* Flag to prevent checks on free */
70#ifdef CONFIG_DEBUG_OBJECTS
71# define SLAB_DEBUG_OBJECTS 0x00400000UL
72#else
73# define SLAB_DEBUG_OBJECTS 0x00000000UL
74#endif
75
d5cff635
CM
76#define SLAB_NOLEAKTRACE 0x00800000UL /* Avoid kmemleak tracing */
77
2dff4405
VN
78/* Don't track use of uninitialized memory */
79#ifdef CONFIG_KMEMCHECK
80# define SLAB_NOTRACK 0x01000000UL
81#else
82# define SLAB_NOTRACK 0x00000000UL
83#endif
4c13dd3b
DM
84#ifdef CONFIG_FAILSLAB
85# define SLAB_FAILSLAB 0x02000000UL /* Fault injection mark */
86#else
87# define SLAB_FAILSLAB 0x00000000UL
88#endif
2dff4405 89
e12ba74d
MG
90/* The following flags affect the page allocator grouping pages by mobility */
91#define SLAB_RECLAIM_ACCOUNT 0x00020000UL /* Objects are reclaimable */
92#define SLAB_TEMPORARY SLAB_RECLAIM_ACCOUNT /* Objects are short-lived */
6cb8f913
CL
93/*
94 * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests.
95 *
96 * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault.
97 *
98 * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can.
99 * Both make kfree a no-op.
100 */
101#define ZERO_SIZE_PTR ((void *)16)
102
1d4ec7b1 103#define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \
6cb8f913
CL
104 (unsigned long)ZERO_SIZE_PTR)
105
f1b6eb6e 106#include <linux/kmemleak.h>
3b0efdfa 107
2633d7a0 108struct mem_cgroup;
2e892f43
CL
109/*
110 * struct kmem_cache related prototypes
111 */
112void __init kmem_cache_init(void);
81819f0f 113int slab_is_available(void);
1da177e4 114
2e892f43 115struct kmem_cache *kmem_cache_create(const char *, size_t, size_t,
ebe29738 116 unsigned long,
51cc5068 117 void (*)(void *));
2633d7a0
GC
118struct kmem_cache *
119kmem_cache_create_memcg(struct mem_cgroup *, const char *, size_t, size_t,
943a451a 120 unsigned long, void (*)(void *), struct kmem_cache *);
2e892f43
CL
121void kmem_cache_destroy(struct kmem_cache *);
122int kmem_cache_shrink(struct kmem_cache *);
2e892f43 123void kmem_cache_free(struct kmem_cache *, void *);
2e892f43 124
0a31bd5f
CL
125/*
126 * Please use this macro to create slab caches. Simply specify the
127 * name of the structure and maybe some flags that are listed above.
128 *
129 * The alignment of the struct determines object alignment. If you
130 * f.e. add ____cacheline_aligned_in_smp to the struct declaration
131 * then the objects will be properly aligned in SMP configurations.
132 */
133#define KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\
134 sizeof(struct __struct), __alignof__(struct __struct),\
20c2df83 135 (__flags), NULL)
0a31bd5f 136
34504667
CL
137/*
138 * Common kmalloc functions provided by all allocators
139 */
140void * __must_check __krealloc(const void *, size_t, gfp_t);
141void * __must_check krealloc(const void *, size_t, gfp_t);
142void kfree(const void *);
143void kzfree(const void *);
144size_t ksize(const void *);
145
c601fd69
CL
146/*
147 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
148 * alignment larger than the alignment of a 64-bit integer.
149 * Setting ARCH_KMALLOC_MINALIGN in arch headers allows that.
150 */
151#if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8
152#define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN
153#define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN
154#define KMALLOC_SHIFT_LOW ilog2(ARCH_DMA_MINALIGN)
155#else
156#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
157#endif
158
ce6a5026
CL
159#ifdef CONFIG_SLOB
160/*
161 * Common fields provided in kmem_cache by all slab allocators
162 * This struct is either used directly by the allocator (SLOB)
163 * or the allocator must include definitions for all fields
164 * provided in kmem_cache_common in their definition of kmem_cache.
165 *
166 * Once we can do anonymous structs (C11 standard) we could put a
167 * anonymous struct definition in these allocators so that the
168 * separate allocations in the kmem_cache structure of SLAB and
169 * SLUB is no longer needed.
170 */
171struct kmem_cache {
172 unsigned int object_size;/* The original size of the object */
173 unsigned int size; /* The aligned/padded/added on size */
174 unsigned int align; /* Alignment as calculated */
175 unsigned long flags; /* Active flags on the slab */
176 const char *name; /* Slab name for sysfs */
177 int refcount; /* Use counter */
178 void (*ctor)(void *); /* Called on object slot creation */
179 struct list_head list; /* List of all slab caches on the system */
180};
181
069e2b35 182#endif /* CONFIG_SLOB */
ce6a5026 183
0aa817f0 184/*
95a05b42
CL
185 * Kmalloc array related definitions
186 */
187
188#ifdef CONFIG_SLAB
189/*
190 * The largest kmalloc size supported by the SLAB allocators is
0aa817f0
CL
191 * 32 megabyte (2^25) or the maximum allocatable page order if that is
192 * less than 32 MB.
193 *
194 * WARNING: Its not easy to increase this value since the allocators have
195 * to do various tricks to work around compiler limitations in order to
196 * ensure proper constant folding.
197 */
debee076
CL
198#define KMALLOC_SHIFT_HIGH ((MAX_ORDER + PAGE_SHIFT - 1) <= 25 ? \
199 (MAX_ORDER + PAGE_SHIFT - 1) : 25)
95a05b42 200#define KMALLOC_SHIFT_MAX KMALLOC_SHIFT_HIGH
c601fd69 201#ifndef KMALLOC_SHIFT_LOW
95a05b42 202#define KMALLOC_SHIFT_LOW 5
c601fd69 203#endif
069e2b35
CL
204#endif
205
206#ifdef CONFIG_SLUB
95a05b42
CL
207/*
208 * SLUB allocates up to order 2 pages directly and otherwise
209 * passes the request to the page allocator.
210 */
211#define KMALLOC_SHIFT_HIGH (PAGE_SHIFT + 1)
212#define KMALLOC_SHIFT_MAX (MAX_ORDER + PAGE_SHIFT)
c601fd69 213#ifndef KMALLOC_SHIFT_LOW
95a05b42
CL
214#define KMALLOC_SHIFT_LOW 3
215#endif
c601fd69 216#endif
0aa817f0 217
069e2b35
CL
218#ifdef CONFIG_SLOB
219/*
220 * SLOB passes all page size and larger requests to the page allocator.
221 * No kmalloc array is necessary since objects of different sizes can
222 * be allocated from the same page.
223 */
224#define KMALLOC_SHIFT_MAX 30
225#define KMALLOC_SHIFT_HIGH PAGE_SHIFT
226#ifndef KMALLOC_SHIFT_LOW
227#define KMALLOC_SHIFT_LOW 3
228#endif
229#endif
230
95a05b42
CL
231/* Maximum allocatable size */
232#define KMALLOC_MAX_SIZE (1UL << KMALLOC_SHIFT_MAX)
233/* Maximum size for which we actually use a slab cache */
234#define KMALLOC_MAX_CACHE_SIZE (1UL << KMALLOC_SHIFT_HIGH)
235/* Maximum order allocatable via the slab allocagtor */
236#define KMALLOC_MAX_ORDER (KMALLOC_SHIFT_MAX - PAGE_SHIFT)
0aa817f0 237
ce6a5026
CL
238/*
239 * Kmalloc subsystem.
240 */
c601fd69 241#ifndef KMALLOC_MIN_SIZE
95a05b42 242#define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_LOW)
ce6a5026
CL
243#endif
244
069e2b35 245#ifndef CONFIG_SLOB
9425c58e
CL
246extern struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
247#ifdef CONFIG_ZONE_DMA
248extern struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
249#endif
250
ce6a5026
CL
251/*
252 * Figure out which kmalloc slab an allocation of a certain size
253 * belongs to.
254 * 0 = zero alloc
255 * 1 = 65 .. 96 bytes
256 * 2 = 120 .. 192 bytes
257 * n = 2^(n-1) .. 2^n -1
258 */
259static __always_inline int kmalloc_index(size_t size)
260{
261 if (!size)
262 return 0;
263
264 if (size <= KMALLOC_MIN_SIZE)
265 return KMALLOC_SHIFT_LOW;
266
267 if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96)
268 return 1;
269 if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192)
270 return 2;
271 if (size <= 8) return 3;
272 if (size <= 16) return 4;
273 if (size <= 32) return 5;
274 if (size <= 64) return 6;
275 if (size <= 128) return 7;
276 if (size <= 256) return 8;
277 if (size <= 512) return 9;
278 if (size <= 1024) return 10;
279 if (size <= 2 * 1024) return 11;
280 if (size <= 4 * 1024) return 12;
281 if (size <= 8 * 1024) return 13;
282 if (size <= 16 * 1024) return 14;
283 if (size <= 32 * 1024) return 15;
284 if (size <= 64 * 1024) return 16;
285 if (size <= 128 * 1024) return 17;
286 if (size <= 256 * 1024) return 18;
287 if (size <= 512 * 1024) return 19;
288 if (size <= 1024 * 1024) return 20;
289 if (size <= 2 * 1024 * 1024) return 21;
290 if (size <= 4 * 1024 * 1024) return 22;
291 if (size <= 8 * 1024 * 1024) return 23;
292 if (size <= 16 * 1024 * 1024) return 24;
293 if (size <= 32 * 1024 * 1024) return 25;
294 if (size <= 64 * 1024 * 1024) return 26;
295 BUG();
296
297 /* Will never be reached. Needed because the compiler may complain */
298 return -1;
299}
069e2b35 300#endif /* !CONFIG_SLOB */
ce6a5026 301
f1b6eb6e
CL
302void *__kmalloc(size_t size, gfp_t flags);
303void *kmem_cache_alloc(struct kmem_cache *, gfp_t flags);
304
305#ifdef CONFIG_NUMA
306void *__kmalloc_node(size_t size, gfp_t flags, int node);
307void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node);
308#else
309static __always_inline void *__kmalloc_node(size_t size, gfp_t flags, int node)
310{
311 return __kmalloc(size, flags);
312}
313
314static __always_inline void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t flags, int node)
315{
316 return kmem_cache_alloc(s, flags);
317}
318#endif
319
320#ifdef CONFIG_TRACING
321extern void *kmem_cache_alloc_trace(struct kmem_cache *, gfp_t, size_t);
322
323#ifdef CONFIG_NUMA
324extern void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
325 gfp_t gfpflags,
326 int node, size_t size);
327#else
328static __always_inline void *
329kmem_cache_alloc_node_trace(struct kmem_cache *s,
330 gfp_t gfpflags,
331 int node, size_t size)
332{
333 return kmem_cache_alloc_trace(s, gfpflags, size);
334}
335#endif /* CONFIG_NUMA */
336
337#else /* CONFIG_TRACING */
338static __always_inline void *kmem_cache_alloc_trace(struct kmem_cache *s,
339 gfp_t flags, size_t size)
340{
341 return kmem_cache_alloc(s, flags);
342}
343
344static __always_inline void *
345kmem_cache_alloc_node_trace(struct kmem_cache *s,
346 gfp_t gfpflags,
347 int node, size_t size)
348{
349 return kmem_cache_alloc_node(s, gfpflags, node);
350}
351#endif /* CONFIG_TRACING */
352
ce6a5026
CL
353#ifdef CONFIG_SLAB
354#include <linux/slab_def.h>
069e2b35
CL
355#endif
356
357#ifdef CONFIG_SLUB
ce6a5026 358#include <linux/slub_def.h>
069e2b35
CL
359#endif
360
f1b6eb6e
CL
361static __always_inline void *
362kmalloc_order(size_t size, gfp_t flags, unsigned int order)
363{
364 void *ret;
365
366 flags |= (__GFP_COMP | __GFP_KMEMCG);
367 ret = (void *) __get_free_pages(flags, order);
368 kmemleak_alloc(ret, size, 1, flags);
369 return ret;
370}
371
372#ifdef CONFIG_TRACING
373extern void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order);
374#else
375static __always_inline void *
376kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
377{
378 return kmalloc_order(size, flags, order);
379}
ce6a5026
CL
380#endif
381
f1b6eb6e
CL
382static __always_inline void *kmalloc_large(size_t size, gfp_t flags)
383{
384 unsigned int order = get_order(size);
385 return kmalloc_order_trace(size, flags, order);
386}
387
388/**
389 * kmalloc - allocate memory
390 * @size: how many bytes of memory are required.
391 * @flags: the type of memory to allocate (see kcalloc).
392 *
393 * kmalloc is the normal method of allocating memory
394 * for objects smaller than page size in the kernel.
395 */
396static __always_inline void *kmalloc(size_t size, gfp_t flags)
397{
398 if (__builtin_constant_p(size)) {
399 if (size > KMALLOC_MAX_CACHE_SIZE)
400 return kmalloc_large(size, flags);
401#ifndef CONFIG_SLOB
402 if (!(flags & GFP_DMA)) {
403 int index = kmalloc_index(size);
404
405 if (!index)
406 return ZERO_SIZE_PTR;
407
408 return kmem_cache_alloc_trace(kmalloc_caches[index],
409 flags, size);
410 }
411#endif
412 }
413 return __kmalloc(size, flags);
414}
415
ce6a5026
CL
416/*
417 * Determine size used for the nth kmalloc cache.
418 * return size or 0 if a kmalloc cache for that
419 * size does not exist
420 */
421static __always_inline int kmalloc_size(int n)
422{
069e2b35 423#ifndef CONFIG_SLOB
ce6a5026
CL
424 if (n > 2)
425 return 1 << n;
426
427 if (n == 1 && KMALLOC_MIN_SIZE <= 32)
428 return 96;
429
430 if (n == 2 && KMALLOC_MIN_SIZE <= 64)
431 return 192;
069e2b35 432#endif
ce6a5026
CL
433 return 0;
434}
ce6a5026 435
f1b6eb6e
CL
436static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node)
437{
438#ifndef CONFIG_SLOB
439 if (__builtin_constant_p(size) &&
23774a2f 440 size <= KMALLOC_MAX_CACHE_SIZE && !(flags & GFP_DMA)) {
f1b6eb6e
CL
441 int i = kmalloc_index(size);
442
443 if (!i)
444 return ZERO_SIZE_PTR;
445
446 return kmem_cache_alloc_node_trace(kmalloc_caches[i],
447 flags, node, size);
448 }
449#endif
450 return __kmalloc_node(size, flags, node);
451}
452
90810645
CL
453/*
454 * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment.
455 * Intended for arches that get misalignment faults even for 64 bit integer
456 * aligned buffers.
457 */
3192b920
CL
458#ifndef ARCH_SLAB_MINALIGN
459#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
460#endif
ba6c496e
GC
461/*
462 * This is the main placeholder for memcg-related information in kmem caches.
463 * struct kmem_cache will hold a pointer to it, so the memory cost while
464 * disabled is 1 pointer. The runtime cost while enabled, gets bigger than it
465 * would otherwise be if that would be bundled in kmem_cache: we'll need an
466 * extra pointer chase. But the trade off clearly lays in favor of not
467 * penalizing non-users.
468 *
469 * Both the root cache and the child caches will have it. For the root cache,
470 * this will hold a dynamically allocated array large enough to hold
471 * information about the currently limited memcgs in the system.
472 *
473 * Child caches will hold extra metadata needed for its operation. Fields are:
474 *
475 * @memcg: pointer to the memcg this cache belongs to
2633d7a0
GC
476 * @list: list_head for the list of all caches in this memcg
477 * @root_cache: pointer to the global, root cache, this cache was derived from
1f458cbf
GC
478 * @dead: set to true after the memcg dies; the cache may still be around.
479 * @nr_pages: number of pages that belongs to this cache.
480 * @destroy: worker to be called whenever we are ready, or believe we may be
481 * ready, to destroy this cache.
ba6c496e
GC
482 */
483struct memcg_cache_params {
484 bool is_root_cache;
485 union {
486 struct kmem_cache *memcg_caches[0];
2633d7a0
GC
487 struct {
488 struct mem_cgroup *memcg;
489 struct list_head list;
490 struct kmem_cache *root_cache;
1f458cbf
GC
491 bool dead;
492 atomic_t nr_pages;
493 struct work_struct destroy;
2633d7a0 494 };
ba6c496e
GC
495 };
496};
497
2633d7a0
GC
498int memcg_update_all_caches(int num_memcgs);
499
749c5415
GC
500struct seq_file;
501int cache_show(struct kmem_cache *s, struct seq_file *m);
502void print_slabinfo_header(struct seq_file *m);
503
2e892f43 504/**
e7efa615
MO
505 * kmalloc - allocate memory
506 * @size: how many bytes of memory are required.
2e892f43 507 * @flags: the type of memory to allocate.
800590f5
PD
508 *
509 * The @flags argument may be one of:
510 *
511 * %GFP_USER - Allocate memory on behalf of user. May sleep.
512 *
513 * %GFP_KERNEL - Allocate normal kernel ram. May sleep.
514 *
6193a2ff 515 * %GFP_ATOMIC - Allocation will not sleep. May use emergency pools.
800590f5
PD
516 * For example, use this inside interrupt handlers.
517 *
518 * %GFP_HIGHUSER - Allocate pages from high memory.
519 *
520 * %GFP_NOIO - Do not do any I/O at all while trying to get memory.
521 *
522 * %GFP_NOFS - Do not make any fs calls while trying to get memory.
523 *
6193a2ff
PM
524 * %GFP_NOWAIT - Allocation will not sleep.
525 *
526 * %GFP_THISNODE - Allocate node-local memory only.
527 *
528 * %GFP_DMA - Allocation suitable for DMA.
529 * Should only be used for kmalloc() caches. Otherwise, use a
530 * slab created with SLAB_DMA.
531 *
800590f5
PD
532 * Also it is possible to set different flags by OR'ing
533 * in one or more of the following additional @flags:
534 *
535 * %__GFP_COLD - Request cache-cold pages instead of
536 * trying to return cache-warm pages.
537 *
800590f5
PD
538 * %__GFP_HIGH - This allocation has high priority and may use emergency pools.
539 *
800590f5
PD
540 * %__GFP_NOFAIL - Indicate that this allocation is in no way allowed to fail
541 * (think twice before using).
542 *
543 * %__GFP_NORETRY - If memory is not immediately available,
544 * then give up at once.
545 *
546 * %__GFP_NOWARN - If allocation fails, don't issue any warnings.
547 *
548 * %__GFP_REPEAT - If allocation fails initially, try once more before failing.
6193a2ff
PM
549 *
550 * There are other flags available as well, but these are not intended
551 * for general use, and so are not documented here. For a full list of
552 * potential flags, always refer to linux/gfp.h.
e7efa615
MO
553 *
554 * kmalloc is the normal method of allocating memory
555 * in the kernel.
556 */
557static __always_inline void *kmalloc(size_t size, gfp_t flags);
558
559/**
560 * kmalloc_array - allocate memory for an array.
561 * @n: number of elements.
562 * @size: element size.
563 * @flags: the type of memory to allocate (see kmalloc).
800590f5 564 */
a8203725 565static inline void *kmalloc_array(size_t n, size_t size, gfp_t flags)
1da177e4 566{
a3860c1c 567 if (size != 0 && n > SIZE_MAX / size)
6193a2ff 568 return NULL;
a8203725
XW
569 return __kmalloc(n * size, flags);
570}
571
572/**
573 * kcalloc - allocate memory for an array. The memory is set to zero.
574 * @n: number of elements.
575 * @size: element size.
576 * @flags: the type of memory to allocate (see kmalloc).
577 */
578static inline void *kcalloc(size_t n, size_t size, gfp_t flags)
579{
580 return kmalloc_array(n, size, flags | __GFP_ZERO);
1da177e4
LT
581}
582
1d2c8eea
CH
583/*
584 * kmalloc_track_caller is a special version of kmalloc that records the
585 * calling function of the routine calling it for slab leak tracking instead
586 * of just the calling function (confusing, eh?).
587 * It's useful when the call to kmalloc comes from a widely-used standard
588 * allocator where we care about the real place the memory allocation
589 * request comes from.
590 */
7adde04a 591#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB) || \
f3f74101
EG
592 (defined(CONFIG_SLAB) && defined(CONFIG_TRACING)) || \
593 (defined(CONFIG_SLOB) && defined(CONFIG_TRACING))
ce71e27c 594extern void *__kmalloc_track_caller(size_t, gfp_t, unsigned long);
1d2c8eea 595#define kmalloc_track_caller(size, flags) \
ce71e27c 596 __kmalloc_track_caller(size, flags, _RET_IP_)
2e892f43
CL
597#else
598#define kmalloc_track_caller(size, flags) \
599 __kmalloc(size, flags)
600#endif /* DEBUG_SLAB */
1da177e4 601
97e2bde4 602#ifdef CONFIG_NUMA
8b98c169
CH
603/*
604 * kmalloc_node_track_caller is a special version of kmalloc_node that
605 * records the calling function of the routine calling it for slab leak
606 * tracking instead of just the calling function (confusing, eh?).
607 * It's useful when the call to kmalloc_node comes from a widely-used
608 * standard allocator where we care about the real place the memory
609 * allocation request comes from.
610 */
7adde04a 611#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB) || \
f3f74101
EG
612 (defined(CONFIG_SLAB) && defined(CONFIG_TRACING)) || \
613 (defined(CONFIG_SLOB) && defined(CONFIG_TRACING))
ce71e27c 614extern void *__kmalloc_node_track_caller(size_t, gfp_t, int, unsigned long);
8b98c169
CH
615#define kmalloc_node_track_caller(size, flags, node) \
616 __kmalloc_node_track_caller(size, flags, node, \
ce71e27c 617 _RET_IP_)
2e892f43
CL
618#else
619#define kmalloc_node_track_caller(size, flags, node) \
620 __kmalloc_node(size, flags, node)
8b98c169 621#endif
2e892f43 622
8b98c169 623#else /* CONFIG_NUMA */
8b98c169
CH
624
625#define kmalloc_node_track_caller(size, flags, node) \
626 kmalloc_track_caller(size, flags)
97e2bde4 627
dfcd3610 628#endif /* CONFIG_NUMA */
10cef602 629
81cda662
CL
630/*
631 * Shortcuts
632 */
633static inline void *kmem_cache_zalloc(struct kmem_cache *k, gfp_t flags)
634{
635 return kmem_cache_alloc(k, flags | __GFP_ZERO);
636}
637
638/**
639 * kzalloc - allocate memory. The memory is set to zero.
640 * @size: how many bytes of memory are required.
641 * @flags: the type of memory to allocate (see kmalloc).
642 */
643static inline void *kzalloc(size_t size, gfp_t flags)
644{
645 return kmalloc(size, flags | __GFP_ZERO);
646}
647
979b0fea
JL
648/**
649 * kzalloc_node - allocate zeroed memory from a particular memory node.
650 * @size: how many bytes of memory are required.
651 * @flags: the type of memory to allocate (see kmalloc).
652 * @node: memory node from which to allocate
653 */
654static inline void *kzalloc_node(size_t size, gfp_t flags, int node)
655{
656 return kmalloc_node(size, flags | __GFP_ZERO, node);
657}
658
242860a4
EG
659/*
660 * Determine the size of a slab object
661 */
662static inline unsigned int kmem_cache_size(struct kmem_cache *s)
663{
664 return s->object_size;
665}
666
7e85ee0c
PE
667void __init kmem_cache_init_late(void);
668
1da177e4 669#endif /* _LINUX_SLAB_H */
This page took 1.243969 seconds and 5 git commands to generate.