Merge branch 'kconfig' of git://git.kernel.org/pub/scm/linux/kernel/git/mmarek/kbuild
[deliverable/linux.git] / include / linux / slub_def.h
CommitLineData
81819f0f
CL
1#ifndef _LINUX_SLUB_DEF_H
2#define _LINUX_SLUB_DEF_H
3
4/*
5 * SLUB : A Slab allocator without object queues.
6 *
cde53535 7 * (C) 2007 SGI, Christoph Lameter
81819f0f
CL
8 */
9#include <linux/types.h>
10#include <linux/gfp.h>
11#include <linux/workqueue.h>
12#include <linux/kobject.h>
13
4a92379b 14#include <linux/kmemleak.h>
039ca4e7 15
8ff12cfc
CL
16enum stat_item {
17 ALLOC_FASTPATH, /* Allocation from cpu slab */
18 ALLOC_SLOWPATH, /* Allocation by getting a new cpu slab */
19 FREE_FASTPATH, /* Free to cpu slub */
20 FREE_SLOWPATH, /* Freeing not to cpu slab */
21 FREE_FROZEN, /* Freeing to frozen slab */
22 FREE_ADD_PARTIAL, /* Freeing moves slab to partial list */
23 FREE_REMOVE_PARTIAL, /* Freeing removes last object */
24 ALLOC_FROM_PARTIAL, /* Cpu slab acquired from partial list */
25 ALLOC_SLAB, /* Cpu slab acquired from page allocator */
26 ALLOC_REFILL, /* Refill cpu slab from slab freelist */
e36a2652 27 ALLOC_NODE_MISMATCH, /* Switching cpu slab */
8ff12cfc
CL
28 FREE_SLAB, /* Slab freed to the page allocator */
29 CPUSLAB_FLUSH, /* Abandoning of the cpu slab */
30 DEACTIVATE_FULL, /* Cpu slab was full when deactivated */
31 DEACTIVATE_EMPTY, /* Cpu slab was empty when deactivated */
32 DEACTIVATE_TO_HEAD, /* Cpu slab was moved to the head of partials */
33 DEACTIVATE_TO_TAIL, /* Cpu slab was moved to the tail of partials */
34 DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */
03e404af 35 DEACTIVATE_BYPASS, /* Implicit deactivation */
65c3376a 36 ORDER_FALLBACK, /* Number of times fallback was necessary */
4fdccdfb 37 CMPXCHG_DOUBLE_CPU_FAIL,/* Failure of this_cpu_cmpxchg_double */
b789ef51 38 CMPXCHG_DOUBLE_FAIL, /* Number of times that cmpxchg double did not match */
49e22585
CL
39 CPU_PARTIAL_ALLOC, /* Used cpu partial on alloc */
40 CPU_PARTIAL_FREE, /* USed cpu partial on free */
8ff12cfc
CL
41 NR_SLUB_STAT_ITEMS };
42
dfb4f096 43struct kmem_cache_cpu {
8a5ec0ba 44 void **freelist; /* Pointer to next available object */
8a5ec0ba 45 unsigned long tid; /* Globally unique transaction id */
da89b79e 46 struct page *page; /* The slab from which we are allocating */
49e22585 47 struct page *partial; /* Partially allocated frozen slabs */
da89b79e 48 int node; /* The node of the page (or -1 for debug) */
8ff12cfc
CL
49#ifdef CONFIG_SLUB_STATS
50 unsigned stat[NR_SLUB_STAT_ITEMS];
51#endif
4c93c355 52};
dfb4f096 53
81819f0f
CL
54struct kmem_cache_node {
55 spinlock_t list_lock; /* Protect partial list and nr_partial */
56 unsigned long nr_partial;
81819f0f 57 struct list_head partial;
0c710013 58#ifdef CONFIG_SLUB_DEBUG
0f389ec6 59 atomic_long_t nr_slabs;
205ab99d 60 atomic_long_t total_objects;
643b1138 61 struct list_head full;
0c710013 62#endif
81819f0f
CL
63};
64
834f3d11
CL
65/*
66 * Word size structure that can be atomically updated or read and that
67 * contains both the order and the number of objects that a slab of the
68 * given order would contain.
69 */
70struct kmem_cache_order_objects {
71 unsigned long x;
72};
73
81819f0f
CL
74/*
75 * Slab cache management.
76 */
77struct kmem_cache {
1b5ad248 78 struct kmem_cache_cpu __percpu *cpu_slab;
81819f0f
CL
79 /* Used for retriving partial slabs etc */
80 unsigned long flags;
1a757fe5 81 unsigned long min_partial;
81819f0f
CL
82 int size; /* The size of an object including meta data */
83 int objsize; /* The size of an object without meta data */
84 int offset; /* Free pointer offset. */
9f264904 85 int cpu_partial; /* Number of per cpu partial objects to keep around */
834f3d11 86 struct kmem_cache_order_objects oo;
81819f0f 87
81819f0f 88 /* Allocation and freeing of slabs */
205ab99d 89 struct kmem_cache_order_objects max;
65c3376a 90 struct kmem_cache_order_objects min;
b7a49f0d 91 gfp_t allocflags; /* gfp flags to use on each alloc */
81819f0f 92 int refcount; /* Refcount for slab cache destroy */
51cc5068 93 void (*ctor)(void *);
81819f0f
CL
94 int inuse; /* Offset to metadata */
95 int align; /* Alignment */
ab9a0f19 96 int reserved; /* Reserved bytes at the end of slabs */
81819f0f
CL
97 const char *name; /* Name (only for display!) */
98 struct list_head list; /* List of slab caches */
ab4d5ed5 99#ifdef CONFIG_SYSFS
81819f0f 100 struct kobject kobj; /* For sysfs */
0c710013 101#endif
81819f0f
CL
102
103#ifdef CONFIG_NUMA
9824601e
CL
104 /*
105 * Defragmentation by allocating from a remote node.
106 */
107 int remote_node_defrag_ratio;
81819f0f 108#endif
7340cc84 109 struct kmem_cache_node *node[MAX_NUMNODES];
81819f0f
CL
110};
111
112/*
113 * Kmalloc subsystem.
114 */
a6eb9fe1
FT
115#if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8
116#define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN
4b356be0
CL
117#else
118#define KMALLOC_MIN_SIZE 8
119#endif
120
121#define KMALLOC_SHIFT_LOW ilog2(KMALLOC_MIN_SIZE)
81819f0f 122
ffadd4d0
CL
123/*
124 * Maximum kmalloc object size handled by SLUB. Larger object allocations
125 * are passed through to the page allocator. The page allocator "fastpath"
126 * is relatively slow so we need this value sufficiently high so that
127 * performance critical objects are allocated through the SLUB fastpath.
128 *
129 * This should be dropped to PAGE_SIZE / 2 once the page allocator
130 * "fastpath" becomes competitive with the slab allocator fastpaths.
131 */
51735a7c 132#define SLUB_MAX_SIZE (2 * PAGE_SIZE)
ffadd4d0 133
51735a7c 134#define SLUB_PAGE_SHIFT (PAGE_SHIFT + 2)
ffadd4d0 135
756dee75
CL
136#ifdef CONFIG_ZONE_DMA
137#define SLUB_DMA __GFP_DMA
756dee75
CL
138#else
139/* Disable DMA functionality */
140#define SLUB_DMA (__force gfp_t)0
756dee75
CL
141#endif
142
81819f0f
CL
143/*
144 * We keep the general caches in an array of slab caches that are used for
145 * 2^x bytes of allocations.
146 */
51df1142 147extern struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
81819f0f
CL
148
149/*
150 * Sorry that the following has to be that ugly but some versions of GCC
151 * have trouble with constant propagation and loops.
152 */
aa137f9d 153static __always_inline int kmalloc_index(size_t size)
81819f0f 154{
272c1d21
CL
155 if (!size)
156 return 0;
614410d5 157
4b356be0
CL
158 if (size <= KMALLOC_MIN_SIZE)
159 return KMALLOC_SHIFT_LOW;
160
acdfcd04 161 if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96)
81819f0f 162 return 1;
acdfcd04 163 if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192)
81819f0f
CL
164 return 2;
165 if (size <= 8) return 3;
166 if (size <= 16) return 4;
167 if (size <= 32) return 5;
168 if (size <= 64) return 6;
169 if (size <= 128) return 7;
170 if (size <= 256) return 8;
171 if (size <= 512) return 9;
172 if (size <= 1024) return 10;
173 if (size <= 2 * 1024) return 11;
6446faa2 174 if (size <= 4 * 1024) return 12;
aadb4bc4
CL
175/*
176 * The following is only needed to support architectures with a larger page
3e0c2ab6
CL
177 * size than 4k. We need to support 2 * PAGE_SIZE here. So for a 64k page
178 * size we would have to go up to 128k.
aadb4bc4 179 */
81819f0f
CL
180 if (size <= 8 * 1024) return 13;
181 if (size <= 16 * 1024) return 14;
182 if (size <= 32 * 1024) return 15;
183 if (size <= 64 * 1024) return 16;
184 if (size <= 128 * 1024) return 17;
185 if (size <= 256 * 1024) return 18;
aadb4bc4 186 if (size <= 512 * 1024) return 19;
81819f0f 187 if (size <= 1024 * 1024) return 20;
81819f0f 188 if (size <= 2 * 1024 * 1024) return 21;
3e0c2ab6
CL
189 BUG();
190 return -1; /* Will never be reached */
81819f0f
CL
191
192/*
193 * What we really wanted to do and cannot do because of compiler issues is:
194 * int i;
195 * for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++)
196 * if (size <= (1 << i))
197 * return i;
198 */
199}
200
201/*
202 * Find the slab cache for a given combination of allocation flags and size.
203 *
204 * This ought to end up with a global pointer to the right cache
205 * in kmalloc_caches.
206 */
aa137f9d 207static __always_inline struct kmem_cache *kmalloc_slab(size_t size)
81819f0f
CL
208{
209 int index = kmalloc_index(size);
210
211 if (index == 0)
212 return NULL;
213
51df1142 214 return kmalloc_caches[index];
81819f0f
CL
215}
216
6193a2ff
PM
217void *kmem_cache_alloc(struct kmem_cache *, gfp_t);
218void *__kmalloc(size_t size, gfp_t flags);
219
4a92379b
RK
220static __always_inline void *
221kmalloc_order(size_t size, gfp_t flags, unsigned int order)
222{
223 void *ret = (void *) __get_free_pages(flags | __GFP_COMP, order);
224 kmemleak_alloc(ret, size, 1, flags);
225 return ret;
226}
227
d18a90dd
BG
228/**
229 * Calling this on allocated memory will check that the memory
230 * is expected to be in use, and print warnings if not.
231 */
232#ifdef CONFIG_SLUB_DEBUG
233extern bool verify_mem_not_deleted(const void *x);
234#else
235static inline bool verify_mem_not_deleted(const void *x)
236{
237 return true;
238}
239#endif
240
0f24f128 241#ifdef CONFIG_TRACING
4a92379b
RK
242extern void *
243kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size);
244extern void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order);
5b882be4
EGM
245#else
246static __always_inline void *
4a92379b 247kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
5b882be4
EGM
248{
249 return kmem_cache_alloc(s, gfpflags);
250}
4a92379b
RK
251
252static __always_inline void *
253kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
254{
255 return kmalloc_order(size, flags, order);
256}
5b882be4
EGM
257#endif
258
eada35ef
PE
259static __always_inline void *kmalloc_large(size_t size, gfp_t flags)
260{
5b882be4 261 unsigned int order = get_order(size);
4a92379b 262 return kmalloc_order_trace(size, flags, order);
eada35ef
PE
263}
264
aa137f9d 265static __always_inline void *kmalloc(size_t size, gfp_t flags)
81819f0f 266{
aadb4bc4 267 if (__builtin_constant_p(size)) {
ffadd4d0 268 if (size > SLUB_MAX_SIZE)
eada35ef 269 return kmalloc_large(size, flags);
81819f0f 270
aadb4bc4
CL
271 if (!(flags & SLUB_DMA)) {
272 struct kmem_cache *s = kmalloc_slab(size);
273
274 if (!s)
275 return ZERO_SIZE_PTR;
81819f0f 276
4a92379b 277 return kmem_cache_alloc_trace(s, flags, size);
aadb4bc4
CL
278 }
279 }
280 return __kmalloc(size, flags);
81819f0f
CL
281}
282
81819f0f 283#ifdef CONFIG_NUMA
6193a2ff
PM
284void *__kmalloc_node(size_t size, gfp_t flags, int node);
285void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node);
81819f0f 286
0f24f128 287#ifdef CONFIG_TRACING
4a92379b 288extern void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 289 gfp_t gfpflags,
4a92379b 290 int node, size_t size);
5b882be4
EGM
291#else
292static __always_inline void *
4a92379b 293kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 294 gfp_t gfpflags,
4a92379b 295 int node, size_t size)
5b882be4
EGM
296{
297 return kmem_cache_alloc_node(s, gfpflags, node);
298}
299#endif
300
aa137f9d 301static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node)
81819f0f 302{
aadb4bc4 303 if (__builtin_constant_p(size) &&
ffadd4d0 304 size <= SLUB_MAX_SIZE && !(flags & SLUB_DMA)) {
aadb4bc4 305 struct kmem_cache *s = kmalloc_slab(size);
81819f0f
CL
306
307 if (!s)
272c1d21 308 return ZERO_SIZE_PTR;
81819f0f 309
4a92379b 310 return kmem_cache_alloc_node_trace(s, flags, node, size);
aadb4bc4
CL
311 }
312 return __kmalloc_node(size, flags, node);
81819f0f
CL
313}
314#endif
315
316#endif /* _LINUX_SLUB_DEF_H */
This page took 0.606248 seconds and 5 git commands to generate.