ipc: use Kconfig options for __ARCH_WANT_[COMPAT_]IPC_PARSE_VERSION
[deliverable/linux.git] / include / linux / slub_def.h
CommitLineData
81819f0f
CL
1#ifndef _LINUX_SLUB_DEF_H
2#define _LINUX_SLUB_DEF_H
3
4/*
5 * SLUB : A Slab allocator without object queues.
6 *
cde53535 7 * (C) 2007 SGI, Christoph Lameter
81819f0f
CL
8 */
9#include <linux/types.h>
10#include <linux/gfp.h>
187f1882 11#include <linux/bug.h>
81819f0f
CL
12#include <linux/workqueue.h>
13#include <linux/kobject.h>
14
4a92379b 15#include <linux/kmemleak.h>
039ca4e7 16
8ff12cfc
CL
17enum stat_item {
18 ALLOC_FASTPATH, /* Allocation from cpu slab */
19 ALLOC_SLOWPATH, /* Allocation by getting a new cpu slab */
20 FREE_FASTPATH, /* Free to cpu slub */
21 FREE_SLOWPATH, /* Freeing not to cpu slab */
22 FREE_FROZEN, /* Freeing to frozen slab */
23 FREE_ADD_PARTIAL, /* Freeing moves slab to partial list */
24 FREE_REMOVE_PARTIAL, /* Freeing removes last object */
8028dcea 25 ALLOC_FROM_PARTIAL, /* Cpu slab acquired from node partial list */
8ff12cfc
CL
26 ALLOC_SLAB, /* Cpu slab acquired from page allocator */
27 ALLOC_REFILL, /* Refill cpu slab from slab freelist */
e36a2652 28 ALLOC_NODE_MISMATCH, /* Switching cpu slab */
8ff12cfc
CL
29 FREE_SLAB, /* Slab freed to the page allocator */
30 CPUSLAB_FLUSH, /* Abandoning of the cpu slab */
31 DEACTIVATE_FULL, /* Cpu slab was full when deactivated */
32 DEACTIVATE_EMPTY, /* Cpu slab was empty when deactivated */
33 DEACTIVATE_TO_HEAD, /* Cpu slab was moved to the head of partials */
34 DEACTIVATE_TO_TAIL, /* Cpu slab was moved to the tail of partials */
35 DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */
03e404af 36 DEACTIVATE_BYPASS, /* Implicit deactivation */
65c3376a 37 ORDER_FALLBACK, /* Number of times fallback was necessary */
4fdccdfb 38 CMPXCHG_DOUBLE_CPU_FAIL,/* Failure of this_cpu_cmpxchg_double */
b789ef51 39 CMPXCHG_DOUBLE_FAIL, /* Number of times that cmpxchg double did not match */
49e22585 40 CPU_PARTIAL_ALLOC, /* Used cpu partial on alloc */
8028dcea
AS
41 CPU_PARTIAL_FREE, /* Refill cpu partial on free */
42 CPU_PARTIAL_NODE, /* Refill cpu partial from node partial */
43 CPU_PARTIAL_DRAIN, /* Drain cpu partial to node partial */
8ff12cfc
CL
44 NR_SLUB_STAT_ITEMS };
45
dfb4f096 46struct kmem_cache_cpu {
8a5ec0ba 47 void **freelist; /* Pointer to next available object */
8a5ec0ba 48 unsigned long tid; /* Globally unique transaction id */
da89b79e 49 struct page *page; /* The slab from which we are allocating */
49e22585 50 struct page *partial; /* Partially allocated frozen slabs */
da89b79e 51 int node; /* The node of the page (or -1 for debug) */
8ff12cfc
CL
52#ifdef CONFIG_SLUB_STATS
53 unsigned stat[NR_SLUB_STAT_ITEMS];
54#endif
4c93c355 55};
dfb4f096 56
81819f0f
CL
57struct kmem_cache_node {
58 spinlock_t list_lock; /* Protect partial list and nr_partial */
59 unsigned long nr_partial;
81819f0f 60 struct list_head partial;
0c710013 61#ifdef CONFIG_SLUB_DEBUG
0f389ec6 62 atomic_long_t nr_slabs;
205ab99d 63 atomic_long_t total_objects;
643b1138 64 struct list_head full;
0c710013 65#endif
81819f0f
CL
66};
67
834f3d11
CL
68/*
69 * Word size structure that can be atomically updated or read and that
70 * contains both the order and the number of objects that a slab of the
71 * given order would contain.
72 */
73struct kmem_cache_order_objects {
74 unsigned long x;
75};
76
81819f0f
CL
77/*
78 * Slab cache management.
79 */
80struct kmem_cache {
1b5ad248 81 struct kmem_cache_cpu __percpu *cpu_slab;
81819f0f
CL
82 /* Used for retriving partial slabs etc */
83 unsigned long flags;
1a757fe5 84 unsigned long min_partial;
81819f0f
CL
85 int size; /* The size of an object including meta data */
86 int objsize; /* The size of an object without meta data */
87 int offset; /* Free pointer offset. */
9f264904 88 int cpu_partial; /* Number of per cpu partial objects to keep around */
834f3d11 89 struct kmem_cache_order_objects oo;
81819f0f 90
81819f0f 91 /* Allocation and freeing of slabs */
205ab99d 92 struct kmem_cache_order_objects max;
65c3376a 93 struct kmem_cache_order_objects min;
b7a49f0d 94 gfp_t allocflags; /* gfp flags to use on each alloc */
81819f0f 95 int refcount; /* Refcount for slab cache destroy */
51cc5068 96 void (*ctor)(void *);
81819f0f
CL
97 int inuse; /* Offset to metadata */
98 int align; /* Alignment */
ab9a0f19 99 int reserved; /* Reserved bytes at the end of slabs */
81819f0f
CL
100 const char *name; /* Name (only for display!) */
101 struct list_head list; /* List of slab caches */
ab4d5ed5 102#ifdef CONFIG_SYSFS
81819f0f 103 struct kobject kobj; /* For sysfs */
0c710013 104#endif
81819f0f
CL
105
106#ifdef CONFIG_NUMA
9824601e
CL
107 /*
108 * Defragmentation by allocating from a remote node.
109 */
110 int remote_node_defrag_ratio;
81819f0f 111#endif
7340cc84 112 struct kmem_cache_node *node[MAX_NUMNODES];
81819f0f
CL
113};
114
115/*
116 * Kmalloc subsystem.
117 */
a6eb9fe1
FT
118#if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8
119#define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN
4b356be0
CL
120#else
121#define KMALLOC_MIN_SIZE 8
122#endif
123
124#define KMALLOC_SHIFT_LOW ilog2(KMALLOC_MIN_SIZE)
81819f0f 125
ffadd4d0
CL
126/*
127 * Maximum kmalloc object size handled by SLUB. Larger object allocations
128 * are passed through to the page allocator. The page allocator "fastpath"
129 * is relatively slow so we need this value sufficiently high so that
130 * performance critical objects are allocated through the SLUB fastpath.
131 *
132 * This should be dropped to PAGE_SIZE / 2 once the page allocator
133 * "fastpath" becomes competitive with the slab allocator fastpaths.
134 */
51735a7c 135#define SLUB_MAX_SIZE (2 * PAGE_SIZE)
ffadd4d0 136
51735a7c 137#define SLUB_PAGE_SHIFT (PAGE_SHIFT + 2)
ffadd4d0 138
756dee75
CL
139#ifdef CONFIG_ZONE_DMA
140#define SLUB_DMA __GFP_DMA
756dee75
CL
141#else
142/* Disable DMA functionality */
143#define SLUB_DMA (__force gfp_t)0
756dee75
CL
144#endif
145
81819f0f
CL
146/*
147 * We keep the general caches in an array of slab caches that are used for
148 * 2^x bytes of allocations.
149 */
51df1142 150extern struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
81819f0f
CL
151
152/*
153 * Sorry that the following has to be that ugly but some versions of GCC
154 * have trouble with constant propagation and loops.
155 */
aa137f9d 156static __always_inline int kmalloc_index(size_t size)
81819f0f 157{
272c1d21
CL
158 if (!size)
159 return 0;
614410d5 160
4b356be0
CL
161 if (size <= KMALLOC_MIN_SIZE)
162 return KMALLOC_SHIFT_LOW;
163
acdfcd04 164 if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96)
81819f0f 165 return 1;
acdfcd04 166 if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192)
81819f0f
CL
167 return 2;
168 if (size <= 8) return 3;
169 if (size <= 16) return 4;
170 if (size <= 32) return 5;
171 if (size <= 64) return 6;
172 if (size <= 128) return 7;
173 if (size <= 256) return 8;
174 if (size <= 512) return 9;
175 if (size <= 1024) return 10;
176 if (size <= 2 * 1024) return 11;
6446faa2 177 if (size <= 4 * 1024) return 12;
aadb4bc4
CL
178/*
179 * The following is only needed to support architectures with a larger page
3e0c2ab6
CL
180 * size than 4k. We need to support 2 * PAGE_SIZE here. So for a 64k page
181 * size we would have to go up to 128k.
aadb4bc4 182 */
81819f0f
CL
183 if (size <= 8 * 1024) return 13;
184 if (size <= 16 * 1024) return 14;
185 if (size <= 32 * 1024) return 15;
186 if (size <= 64 * 1024) return 16;
187 if (size <= 128 * 1024) return 17;
188 if (size <= 256 * 1024) return 18;
aadb4bc4 189 if (size <= 512 * 1024) return 19;
81819f0f 190 if (size <= 1024 * 1024) return 20;
81819f0f 191 if (size <= 2 * 1024 * 1024) return 21;
3e0c2ab6
CL
192 BUG();
193 return -1; /* Will never be reached */
81819f0f
CL
194
195/*
196 * What we really wanted to do and cannot do because of compiler issues is:
197 * int i;
198 * for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++)
199 * if (size <= (1 << i))
200 * return i;
201 */
202}
203
204/*
205 * Find the slab cache for a given combination of allocation flags and size.
206 *
207 * This ought to end up with a global pointer to the right cache
208 * in kmalloc_caches.
209 */
aa137f9d 210static __always_inline struct kmem_cache *kmalloc_slab(size_t size)
81819f0f
CL
211{
212 int index = kmalloc_index(size);
213
214 if (index == 0)
215 return NULL;
216
51df1142 217 return kmalloc_caches[index];
81819f0f
CL
218}
219
6193a2ff
PM
220void *kmem_cache_alloc(struct kmem_cache *, gfp_t);
221void *__kmalloc(size_t size, gfp_t flags);
222
4a92379b
RK
223static __always_inline void *
224kmalloc_order(size_t size, gfp_t flags, unsigned int order)
225{
226 void *ret = (void *) __get_free_pages(flags | __GFP_COMP, order);
227 kmemleak_alloc(ret, size, 1, flags);
228 return ret;
229}
230
d18a90dd
BG
231/**
232 * Calling this on allocated memory will check that the memory
233 * is expected to be in use, and print warnings if not.
234 */
235#ifdef CONFIG_SLUB_DEBUG
236extern bool verify_mem_not_deleted(const void *x);
237#else
238static inline bool verify_mem_not_deleted(const void *x)
239{
240 return true;
241}
242#endif
243
0f24f128 244#ifdef CONFIG_TRACING
4a92379b
RK
245extern void *
246kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size);
247extern void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order);
5b882be4
EGM
248#else
249static __always_inline void *
4a92379b 250kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
5b882be4
EGM
251{
252 return kmem_cache_alloc(s, gfpflags);
253}
4a92379b
RK
254
255static __always_inline void *
256kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
257{
258 return kmalloc_order(size, flags, order);
259}
5b882be4
EGM
260#endif
261
eada35ef
PE
262static __always_inline void *kmalloc_large(size_t size, gfp_t flags)
263{
5b882be4 264 unsigned int order = get_order(size);
4a92379b 265 return kmalloc_order_trace(size, flags, order);
eada35ef
PE
266}
267
aa137f9d 268static __always_inline void *kmalloc(size_t size, gfp_t flags)
81819f0f 269{
aadb4bc4 270 if (__builtin_constant_p(size)) {
ffadd4d0 271 if (size > SLUB_MAX_SIZE)
eada35ef 272 return kmalloc_large(size, flags);
81819f0f 273
aadb4bc4
CL
274 if (!(flags & SLUB_DMA)) {
275 struct kmem_cache *s = kmalloc_slab(size);
276
277 if (!s)
278 return ZERO_SIZE_PTR;
81819f0f 279
4a92379b 280 return kmem_cache_alloc_trace(s, flags, size);
aadb4bc4
CL
281 }
282 }
283 return __kmalloc(size, flags);
81819f0f
CL
284}
285
81819f0f 286#ifdef CONFIG_NUMA
6193a2ff
PM
287void *__kmalloc_node(size_t size, gfp_t flags, int node);
288void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node);
81819f0f 289
0f24f128 290#ifdef CONFIG_TRACING
4a92379b 291extern void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 292 gfp_t gfpflags,
4a92379b 293 int node, size_t size);
5b882be4
EGM
294#else
295static __always_inline void *
4a92379b 296kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 297 gfp_t gfpflags,
4a92379b 298 int node, size_t size)
5b882be4
EGM
299{
300 return kmem_cache_alloc_node(s, gfpflags, node);
301}
302#endif
303
aa137f9d 304static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node)
81819f0f 305{
aadb4bc4 306 if (__builtin_constant_p(size) &&
ffadd4d0 307 size <= SLUB_MAX_SIZE && !(flags & SLUB_DMA)) {
aadb4bc4 308 struct kmem_cache *s = kmalloc_slab(size);
81819f0f
CL
309
310 if (!s)
272c1d21 311 return ZERO_SIZE_PTR;
81819f0f 312
4a92379b 313 return kmem_cache_alloc_node_trace(s, flags, node, size);
aadb4bc4
CL
314 }
315 return __kmalloc_node(size, flags, node);
81819f0f
CL
316}
317#endif
318
319#endif /* _LINUX_SLUB_DEF_H */
This page took 0.724976 seconds and 5 git commands to generate.