IB/core: Add timestamp_mask and hca_core_clock to query_device
[deliverable/linux.git] / include / rdma / ib_verbs.h
CommitLineData
1da177e4
LT
1/*
2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
4 * Copyright (c) 2004 Intel Corporation. All rights reserved.
5 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
2a1d9b7f 7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
f7c6a7b5 8 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved.
1da177e4
LT
9 *
10 * This software is available to you under a choice of one of two
11 * licenses. You may choose to be licensed under the terms of the GNU
12 * General Public License (GPL) Version 2, available from the file
13 * COPYING in the main directory of this source tree, or the
14 * OpenIB.org BSD license below:
15 *
16 * Redistribution and use in source and binary forms, with or
17 * without modification, are permitted provided that the following
18 * conditions are met:
19 *
20 * - Redistributions of source code must retain the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer.
23 *
24 * - Redistributions in binary form must reproduce the above
25 * copyright notice, this list of conditions and the following
26 * disclaimer in the documentation and/or other materials
27 * provided with the distribution.
28 *
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36 * SOFTWARE.
1da177e4
LT
37 */
38
39#if !defined(IB_VERBS_H)
40#define IB_VERBS_H
41
42#include <linux/types.h>
43#include <linux/device.h>
9b513090
RC
44#include <linux/mm.h>
45#include <linux/dma-mapping.h>
459d6e2a 46#include <linux/kref.h>
bfb3ea12
DB
47#include <linux/list.h>
48#include <linux/rwsem.h>
87ae9afd 49#include <linux/scatterlist.h>
f0626710 50#include <linux/workqueue.h>
dd5f03be 51#include <uapi/linux/if_ether.h>
e2773c06 52
60063497 53#include <linux/atomic.h>
882214e2 54#include <linux/mmu_notifier.h>
e2773c06 55#include <asm/uaccess.h>
1da177e4 56
f0626710
TH
57extern struct workqueue_struct *ib_wq;
58
1da177e4
LT
59union ib_gid {
60 u8 raw[16];
61 struct {
97f52eb4
SH
62 __be64 subnet_prefix;
63 __be64 interface_id;
1da177e4
LT
64 } global;
65};
66
07ebafba
TT
67enum rdma_node_type {
68 /* IB values map to NodeInfo:NodeType. */
69 RDMA_NODE_IB_CA = 1,
70 RDMA_NODE_IB_SWITCH,
71 RDMA_NODE_IB_ROUTER,
180771a3
UM
72 RDMA_NODE_RNIC,
73 RDMA_NODE_USNIC,
5db5765e 74 RDMA_NODE_USNIC_UDP,
1da177e4
LT
75};
76
07ebafba
TT
77enum rdma_transport_type {
78 RDMA_TRANSPORT_IB,
180771a3 79 RDMA_TRANSPORT_IWARP,
248567f7
UM
80 RDMA_TRANSPORT_USNIC,
81 RDMA_TRANSPORT_USNIC_UDP
07ebafba
TT
82};
83
6b90a6d6
MW
84enum rdma_protocol_type {
85 RDMA_PROTOCOL_IB,
86 RDMA_PROTOCOL_IBOE,
87 RDMA_PROTOCOL_IWARP,
88 RDMA_PROTOCOL_USNIC_UDP
89};
90
8385fd84
RD
91__attribute_const__ enum rdma_transport_type
92rdma_node_get_transport(enum rdma_node_type node_type);
07ebafba 93
a3f5adaf
EC
94enum rdma_link_layer {
95 IB_LINK_LAYER_UNSPECIFIED,
96 IB_LINK_LAYER_INFINIBAND,
97 IB_LINK_LAYER_ETHERNET,
98};
99
1da177e4
LT
100enum ib_device_cap_flags {
101 IB_DEVICE_RESIZE_MAX_WR = 1,
102 IB_DEVICE_BAD_PKEY_CNTR = (1<<1),
103 IB_DEVICE_BAD_QKEY_CNTR = (1<<2),
104 IB_DEVICE_RAW_MULTI = (1<<3),
105 IB_DEVICE_AUTO_PATH_MIG = (1<<4),
106 IB_DEVICE_CHANGE_PHY_PORT = (1<<5),
107 IB_DEVICE_UD_AV_PORT_ENFORCE = (1<<6),
108 IB_DEVICE_CURR_QP_STATE_MOD = (1<<7),
109 IB_DEVICE_SHUTDOWN_PORT = (1<<8),
110 IB_DEVICE_INIT_TYPE = (1<<9),
111 IB_DEVICE_PORT_ACTIVE_EVENT = (1<<10),
112 IB_DEVICE_SYS_IMAGE_GUID = (1<<11),
113 IB_DEVICE_RC_RNR_NAK_GEN = (1<<12),
114 IB_DEVICE_SRQ_RESIZE = (1<<13),
115 IB_DEVICE_N_NOTIFY_CQ = (1<<14),
96f15c03 116 IB_DEVICE_LOCAL_DMA_LKEY = (1<<15),
0f39cf3d 117 IB_DEVICE_RESERVED = (1<<16), /* old SEND_W_INV */
e0605d91
EC
118 IB_DEVICE_MEM_WINDOW = (1<<17),
119 /*
120 * Devices should set IB_DEVICE_UD_IP_SUM if they support
121 * insertion of UDP and TCP checksum on outgoing UD IPoIB
122 * messages and can verify the validity of checksum for
123 * incoming messages. Setting this flag implies that the
124 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
125 */
126 IB_DEVICE_UD_IP_CSUM = (1<<18),
c93570f2 127 IB_DEVICE_UD_TSO = (1<<19),
59991f94 128 IB_DEVICE_XRC = (1<<20),
00f7ec36 129 IB_DEVICE_MEM_MGT_EXTENSIONS = (1<<21),
47ee1b9f 130 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1<<22),
7083e42e 131 IB_DEVICE_MEM_WINDOW_TYPE_2A = (1<<23),
319a441d 132 IB_DEVICE_MEM_WINDOW_TYPE_2B = (1<<24),
1b01d335 133 IB_DEVICE_MANAGED_FLOW_STEERING = (1<<29),
860f10a7
SG
134 IB_DEVICE_SIGNATURE_HANDOVER = (1<<30),
135 IB_DEVICE_ON_DEMAND_PAGING = (1<<31),
1b01d335
SG
136};
137
138enum ib_signature_prot_cap {
139 IB_PROT_T10DIF_TYPE_1 = 1,
140 IB_PROT_T10DIF_TYPE_2 = 1 << 1,
141 IB_PROT_T10DIF_TYPE_3 = 1 << 2,
142};
143
144enum ib_signature_guard_cap {
145 IB_GUARD_T10DIF_CRC = 1,
146 IB_GUARD_T10DIF_CSUM = 1 << 1,
1da177e4
LT
147};
148
149enum ib_atomic_cap {
150 IB_ATOMIC_NONE,
151 IB_ATOMIC_HCA,
152 IB_ATOMIC_GLOB
153};
154
860f10a7
SG
155enum ib_odp_general_cap_bits {
156 IB_ODP_SUPPORT = 1 << 0,
157};
158
159enum ib_odp_transport_cap_bits {
160 IB_ODP_SUPPORT_SEND = 1 << 0,
161 IB_ODP_SUPPORT_RECV = 1 << 1,
162 IB_ODP_SUPPORT_WRITE = 1 << 2,
163 IB_ODP_SUPPORT_READ = 1 << 3,
164 IB_ODP_SUPPORT_ATOMIC = 1 << 4,
165};
166
167struct ib_odp_caps {
168 uint64_t general_caps;
169 struct {
170 uint32_t rc_odp_caps;
171 uint32_t uc_odp_caps;
172 uint32_t ud_odp_caps;
173 } per_transport_caps;
174};
175
b9926b92
MB
176enum ib_cq_creation_flags {
177 IB_CQ_FLAGS_TIMESTAMP_COMPLETION = 1 << 0,
178};
179
bcf4c1ea
MB
180struct ib_cq_init_attr {
181 unsigned int cqe;
182 int comp_vector;
183 u32 flags;
184};
185
1da177e4
LT
186struct ib_device_attr {
187 u64 fw_ver;
97f52eb4 188 __be64 sys_image_guid;
1da177e4
LT
189 u64 max_mr_size;
190 u64 page_size_cap;
191 u32 vendor_id;
192 u32 vendor_part_id;
193 u32 hw_ver;
194 int max_qp;
195 int max_qp_wr;
196 int device_cap_flags;
197 int max_sge;
198 int max_sge_rd;
199 int max_cq;
200 int max_cqe;
201 int max_mr;
202 int max_pd;
203 int max_qp_rd_atom;
204 int max_ee_rd_atom;
205 int max_res_rd_atom;
206 int max_qp_init_rd_atom;
207 int max_ee_init_rd_atom;
208 enum ib_atomic_cap atomic_cap;
5e80ba8f 209 enum ib_atomic_cap masked_atomic_cap;
1da177e4
LT
210 int max_ee;
211 int max_rdd;
212 int max_mw;
213 int max_raw_ipv6_qp;
214 int max_raw_ethy_qp;
215 int max_mcast_grp;
216 int max_mcast_qp_attach;
217 int max_total_mcast_qp_attach;
218 int max_ah;
219 int max_fmr;
220 int max_map_per_fmr;
221 int max_srq;
222 int max_srq_wr;
223 int max_srq_sge;
00f7ec36 224 unsigned int max_fast_reg_page_list_len;
1da177e4
LT
225 u16 max_pkeys;
226 u8 local_ca_ack_delay;
1b01d335
SG
227 int sig_prot_cap;
228 int sig_guard_cap;
860f10a7 229 struct ib_odp_caps odp_caps;
24306dc6
MB
230 uint64_t timestamp_mask;
231 uint64_t hca_core_clock; /* in KHZ */
1da177e4
LT
232};
233
234enum ib_mtu {
235 IB_MTU_256 = 1,
236 IB_MTU_512 = 2,
237 IB_MTU_1024 = 3,
238 IB_MTU_2048 = 4,
239 IB_MTU_4096 = 5
240};
241
242static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
243{
244 switch (mtu) {
245 case IB_MTU_256: return 256;
246 case IB_MTU_512: return 512;
247 case IB_MTU_1024: return 1024;
248 case IB_MTU_2048: return 2048;
249 case IB_MTU_4096: return 4096;
250 default: return -1;
251 }
252}
253
254enum ib_port_state {
255 IB_PORT_NOP = 0,
256 IB_PORT_DOWN = 1,
257 IB_PORT_INIT = 2,
258 IB_PORT_ARMED = 3,
259 IB_PORT_ACTIVE = 4,
260 IB_PORT_ACTIVE_DEFER = 5
261};
262
263enum ib_port_cap_flags {
264 IB_PORT_SM = 1 << 1,
265 IB_PORT_NOTICE_SUP = 1 << 2,
266 IB_PORT_TRAP_SUP = 1 << 3,
267 IB_PORT_OPT_IPD_SUP = 1 << 4,
268 IB_PORT_AUTO_MIGR_SUP = 1 << 5,
269 IB_PORT_SL_MAP_SUP = 1 << 6,
270 IB_PORT_MKEY_NVRAM = 1 << 7,
271 IB_PORT_PKEY_NVRAM = 1 << 8,
272 IB_PORT_LED_INFO_SUP = 1 << 9,
273 IB_PORT_SM_DISABLED = 1 << 10,
274 IB_PORT_SYS_IMAGE_GUID_SUP = 1 << 11,
275 IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP = 1 << 12,
71eeba16 276 IB_PORT_EXTENDED_SPEEDS_SUP = 1 << 14,
1da177e4
LT
277 IB_PORT_CM_SUP = 1 << 16,
278 IB_PORT_SNMP_TUNNEL_SUP = 1 << 17,
279 IB_PORT_REINIT_SUP = 1 << 18,
280 IB_PORT_DEVICE_MGMT_SUP = 1 << 19,
281 IB_PORT_VENDOR_CLASS_SUP = 1 << 20,
282 IB_PORT_DR_NOTICE_SUP = 1 << 21,
283 IB_PORT_CAP_MASK_NOTICE_SUP = 1 << 22,
284 IB_PORT_BOOT_MGMT_SUP = 1 << 23,
285 IB_PORT_LINK_LATENCY_SUP = 1 << 24,
b4a26a27
MS
286 IB_PORT_CLIENT_REG_SUP = 1 << 25,
287 IB_PORT_IP_BASED_GIDS = 1 << 26
1da177e4
LT
288};
289
290enum ib_port_width {
291 IB_WIDTH_1X = 1,
292 IB_WIDTH_4X = 2,
293 IB_WIDTH_8X = 4,
294 IB_WIDTH_12X = 8
295};
296
297static inline int ib_width_enum_to_int(enum ib_port_width width)
298{
299 switch (width) {
300 case IB_WIDTH_1X: return 1;
301 case IB_WIDTH_4X: return 4;
302 case IB_WIDTH_8X: return 8;
303 case IB_WIDTH_12X: return 12;
304 default: return -1;
305 }
306}
307
2e96691c
OG
308enum ib_port_speed {
309 IB_SPEED_SDR = 1,
310 IB_SPEED_DDR = 2,
311 IB_SPEED_QDR = 4,
312 IB_SPEED_FDR10 = 8,
313 IB_SPEED_FDR = 16,
314 IB_SPEED_EDR = 32
315};
316
7f624d02
SW
317struct ib_protocol_stats {
318 /* TBD... */
319};
320
321struct iw_protocol_stats {
322 u64 ipInReceives;
323 u64 ipInHdrErrors;
324 u64 ipInTooBigErrors;
325 u64 ipInNoRoutes;
326 u64 ipInAddrErrors;
327 u64 ipInUnknownProtos;
328 u64 ipInTruncatedPkts;
329 u64 ipInDiscards;
330 u64 ipInDelivers;
331 u64 ipOutForwDatagrams;
332 u64 ipOutRequests;
333 u64 ipOutDiscards;
334 u64 ipOutNoRoutes;
335 u64 ipReasmTimeout;
336 u64 ipReasmReqds;
337 u64 ipReasmOKs;
338 u64 ipReasmFails;
339 u64 ipFragOKs;
340 u64 ipFragFails;
341 u64 ipFragCreates;
342 u64 ipInMcastPkts;
343 u64 ipOutMcastPkts;
344 u64 ipInBcastPkts;
345 u64 ipOutBcastPkts;
346
347 u64 tcpRtoAlgorithm;
348 u64 tcpRtoMin;
349 u64 tcpRtoMax;
350 u64 tcpMaxConn;
351 u64 tcpActiveOpens;
352 u64 tcpPassiveOpens;
353 u64 tcpAttemptFails;
354 u64 tcpEstabResets;
355 u64 tcpCurrEstab;
356 u64 tcpInSegs;
357 u64 tcpOutSegs;
358 u64 tcpRetransSegs;
359 u64 tcpInErrs;
360 u64 tcpOutRsts;
361};
362
363union rdma_protocol_stats {
364 struct ib_protocol_stats ib;
365 struct iw_protocol_stats iw;
366};
367
f9b22e35
IW
368/* Define bits for the various functionality this port needs to be supported by
369 * the core.
370 */
371/* Management 0x00000FFF */
372#define RDMA_CORE_CAP_IB_MAD 0x00000001
373#define RDMA_CORE_CAP_IB_SMI 0x00000002
374#define RDMA_CORE_CAP_IB_CM 0x00000004
375#define RDMA_CORE_CAP_IW_CM 0x00000008
376#define RDMA_CORE_CAP_IB_SA 0x00000010
377
378/* Address format 0x000FF000 */
379#define RDMA_CORE_CAP_AF_IB 0x00001000
380#define RDMA_CORE_CAP_ETH_AH 0x00002000
381
382/* Protocol 0xFFF00000 */
383#define RDMA_CORE_CAP_PROT_IB 0x00100000
384#define RDMA_CORE_CAP_PROT_ROCE 0x00200000
385#define RDMA_CORE_CAP_PROT_IWARP 0x00400000
386
387#define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \
388 | RDMA_CORE_CAP_IB_MAD \
389 | RDMA_CORE_CAP_IB_SMI \
390 | RDMA_CORE_CAP_IB_CM \
391 | RDMA_CORE_CAP_IB_SA \
392 | RDMA_CORE_CAP_AF_IB)
393#define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \
394 | RDMA_CORE_CAP_IB_MAD \
395 | RDMA_CORE_CAP_IB_CM \
f9b22e35
IW
396 | RDMA_CORE_CAP_AF_IB \
397 | RDMA_CORE_CAP_ETH_AH)
398#define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \
399 | RDMA_CORE_CAP_IW_CM)
400
1da177e4
LT
401struct ib_port_attr {
402 enum ib_port_state state;
403 enum ib_mtu max_mtu;
404 enum ib_mtu active_mtu;
405 int gid_tbl_len;
406 u32 port_cap_flags;
407 u32 max_msg_sz;
408 u32 bad_pkey_cntr;
409 u32 qkey_viol_cntr;
410 u16 pkey_tbl_len;
411 u16 lid;
412 u16 sm_lid;
413 u8 lmc;
414 u8 max_vl_num;
415 u8 sm_sl;
416 u8 subnet_timeout;
417 u8 init_type_reply;
418 u8 active_width;
419 u8 active_speed;
420 u8 phys_state;
421};
422
423enum ib_device_modify_flags {
c5bcbbb9
RD
424 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0,
425 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1
1da177e4
LT
426};
427
428struct ib_device_modify {
429 u64 sys_image_guid;
c5bcbbb9 430 char node_desc[64];
1da177e4
LT
431};
432
433enum ib_port_modify_flags {
434 IB_PORT_SHUTDOWN = 1,
435 IB_PORT_INIT_TYPE = (1<<2),
436 IB_PORT_RESET_QKEY_CNTR = (1<<3)
437};
438
439struct ib_port_modify {
440 u32 set_port_cap_mask;
441 u32 clr_port_cap_mask;
442 u8 init_type;
443};
444
445enum ib_event_type {
446 IB_EVENT_CQ_ERR,
447 IB_EVENT_QP_FATAL,
448 IB_EVENT_QP_REQ_ERR,
449 IB_EVENT_QP_ACCESS_ERR,
450 IB_EVENT_COMM_EST,
451 IB_EVENT_SQ_DRAINED,
452 IB_EVENT_PATH_MIG,
453 IB_EVENT_PATH_MIG_ERR,
454 IB_EVENT_DEVICE_FATAL,
455 IB_EVENT_PORT_ACTIVE,
456 IB_EVENT_PORT_ERR,
457 IB_EVENT_LID_CHANGE,
458 IB_EVENT_PKEY_CHANGE,
d41fcc67
RD
459 IB_EVENT_SM_CHANGE,
460 IB_EVENT_SRQ_ERR,
461 IB_EVENT_SRQ_LIMIT_REACHED,
63942c9a 462 IB_EVENT_QP_LAST_WQE_REACHED,
761d90ed
OG
463 IB_EVENT_CLIENT_REREGISTER,
464 IB_EVENT_GID_CHANGE,
1da177e4
LT
465};
466
2b1b5b60
SG
467__attribute_const__ const char *ib_event_msg(enum ib_event_type event);
468
1da177e4
LT
469struct ib_event {
470 struct ib_device *device;
471 union {
472 struct ib_cq *cq;
473 struct ib_qp *qp;
d41fcc67 474 struct ib_srq *srq;
1da177e4
LT
475 u8 port_num;
476 } element;
477 enum ib_event_type event;
478};
479
480struct ib_event_handler {
481 struct ib_device *device;
482 void (*handler)(struct ib_event_handler *, struct ib_event *);
483 struct list_head list;
484};
485
486#define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \
487 do { \
488 (_ptr)->device = _device; \
489 (_ptr)->handler = _handler; \
490 INIT_LIST_HEAD(&(_ptr)->list); \
491 } while (0)
492
493struct ib_global_route {
494 union ib_gid dgid;
495 u32 flow_label;
496 u8 sgid_index;
497 u8 hop_limit;
498 u8 traffic_class;
499};
500
513789ed 501struct ib_grh {
97f52eb4
SH
502 __be32 version_tclass_flow;
503 __be16 paylen;
513789ed
HR
504 u8 next_hdr;
505 u8 hop_limit;
506 union ib_gid sgid;
507 union ib_gid dgid;
508};
509
1da177e4
LT
510enum {
511 IB_MULTICAST_QPN = 0xffffff
512};
513
f3a7c66b 514#define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF)
97f52eb4 515
1da177e4
LT
516enum ib_ah_flags {
517 IB_AH_GRH = 1
518};
519
bf6a9e31
JM
520enum ib_rate {
521 IB_RATE_PORT_CURRENT = 0,
522 IB_RATE_2_5_GBPS = 2,
523 IB_RATE_5_GBPS = 5,
524 IB_RATE_10_GBPS = 3,
525 IB_RATE_20_GBPS = 6,
526 IB_RATE_30_GBPS = 4,
527 IB_RATE_40_GBPS = 7,
528 IB_RATE_60_GBPS = 8,
529 IB_RATE_80_GBPS = 9,
71eeba16
MA
530 IB_RATE_120_GBPS = 10,
531 IB_RATE_14_GBPS = 11,
532 IB_RATE_56_GBPS = 12,
533 IB_RATE_112_GBPS = 13,
534 IB_RATE_168_GBPS = 14,
535 IB_RATE_25_GBPS = 15,
536 IB_RATE_100_GBPS = 16,
537 IB_RATE_200_GBPS = 17,
538 IB_RATE_300_GBPS = 18
bf6a9e31
JM
539};
540
541/**
542 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
543 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be
544 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
545 * @rate: rate to convert.
546 */
8385fd84 547__attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
bf6a9e31 548
71eeba16
MA
549/**
550 * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
551 * For example, IB_RATE_2_5_GBPS will be converted to 2500.
552 * @rate: rate to convert.
553 */
8385fd84 554__attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
71eeba16 555
17cd3a2d
SG
556enum ib_mr_create_flags {
557 IB_MR_SIGNATURE_EN = 1,
558};
559
560/**
561 * ib_mr_init_attr - Memory region init attributes passed to routine
562 * ib_create_mr.
563 * @max_reg_descriptors: max number of registration descriptors that
564 * may be used with registration work requests.
565 * @flags: MR creation flags bit mask.
566 */
567struct ib_mr_init_attr {
568 int max_reg_descriptors;
569 u32 flags;
570};
571
1b01d335 572/**
78eda2bb
SG
573 * Signature types
574 * IB_SIG_TYPE_NONE: Unprotected.
575 * IB_SIG_TYPE_T10_DIF: Type T10-DIF
1b01d335 576 */
78eda2bb
SG
577enum ib_signature_type {
578 IB_SIG_TYPE_NONE,
579 IB_SIG_TYPE_T10_DIF,
1b01d335
SG
580};
581
582/**
583 * Signature T10-DIF block-guard types
584 * IB_T10DIF_CRC: Corresponds to T10-PI mandated CRC checksum rules.
585 * IB_T10DIF_CSUM: Corresponds to IP checksum rules.
586 */
587enum ib_t10_dif_bg_type {
588 IB_T10DIF_CRC,
589 IB_T10DIF_CSUM
590};
591
592/**
593 * struct ib_t10_dif_domain - Parameters specific for T10-DIF
594 * domain.
1b01d335
SG
595 * @bg_type: T10-DIF block guard type (CRC|CSUM)
596 * @pi_interval: protection information interval.
597 * @bg: seed of guard computation.
598 * @app_tag: application tag of guard block
599 * @ref_tag: initial guard block reference tag.
78eda2bb
SG
600 * @ref_remap: Indicate wethear the reftag increments each block
601 * @app_escape: Indicate to skip block check if apptag=0xffff
602 * @ref_escape: Indicate to skip block check if reftag=0xffffffff
603 * @apptag_check_mask: check bitmask of application tag.
1b01d335
SG
604 */
605struct ib_t10_dif_domain {
1b01d335
SG
606 enum ib_t10_dif_bg_type bg_type;
607 u16 pi_interval;
608 u16 bg;
609 u16 app_tag;
610 u32 ref_tag;
78eda2bb
SG
611 bool ref_remap;
612 bool app_escape;
613 bool ref_escape;
614 u16 apptag_check_mask;
1b01d335
SG
615};
616
617/**
618 * struct ib_sig_domain - Parameters for signature domain
619 * @sig_type: specific signauture type
620 * @sig: union of all signature domain attributes that may
621 * be used to set domain layout.
622 */
623struct ib_sig_domain {
624 enum ib_signature_type sig_type;
625 union {
626 struct ib_t10_dif_domain dif;
627 } sig;
628};
629
630/**
631 * struct ib_sig_attrs - Parameters for signature handover operation
632 * @check_mask: bitmask for signature byte check (8 bytes)
633 * @mem: memory domain layout desciptor.
634 * @wire: wire domain layout desciptor.
635 */
636struct ib_sig_attrs {
637 u8 check_mask;
638 struct ib_sig_domain mem;
639 struct ib_sig_domain wire;
640};
641
642enum ib_sig_err_type {
643 IB_SIG_BAD_GUARD,
644 IB_SIG_BAD_REFTAG,
645 IB_SIG_BAD_APPTAG,
646};
647
648/**
649 * struct ib_sig_err - signature error descriptor
650 */
651struct ib_sig_err {
652 enum ib_sig_err_type err_type;
653 u32 expected;
654 u32 actual;
655 u64 sig_err_offset;
656 u32 key;
657};
658
659enum ib_mr_status_check {
660 IB_MR_CHECK_SIG_STATUS = 1,
661};
662
663/**
664 * struct ib_mr_status - Memory region status container
665 *
666 * @fail_status: Bitmask of MR checks status. For each
667 * failed check a corresponding status bit is set.
668 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
669 * failure.
670 */
671struct ib_mr_status {
672 u32 fail_status;
673 struct ib_sig_err sig_err;
674};
675
bf6a9e31
JM
676/**
677 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
678 * enum.
679 * @mult: multiple to convert.
680 */
8385fd84 681__attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
bf6a9e31 682
1da177e4
LT
683struct ib_ah_attr {
684 struct ib_global_route grh;
685 u16 dlid;
686 u8 sl;
687 u8 src_path_bits;
688 u8 static_rate;
689 u8 ah_flags;
690 u8 port_num;
dd5f03be
MB
691 u8 dmac[ETH_ALEN];
692 u16 vlan_id;
1da177e4
LT
693};
694
695enum ib_wc_status {
696 IB_WC_SUCCESS,
697 IB_WC_LOC_LEN_ERR,
698 IB_WC_LOC_QP_OP_ERR,
699 IB_WC_LOC_EEC_OP_ERR,
700 IB_WC_LOC_PROT_ERR,
701 IB_WC_WR_FLUSH_ERR,
702 IB_WC_MW_BIND_ERR,
703 IB_WC_BAD_RESP_ERR,
704 IB_WC_LOC_ACCESS_ERR,
705 IB_WC_REM_INV_REQ_ERR,
706 IB_WC_REM_ACCESS_ERR,
707 IB_WC_REM_OP_ERR,
708 IB_WC_RETRY_EXC_ERR,
709 IB_WC_RNR_RETRY_EXC_ERR,
710 IB_WC_LOC_RDD_VIOL_ERR,
711 IB_WC_REM_INV_RD_REQ_ERR,
712 IB_WC_REM_ABORT_ERR,
713 IB_WC_INV_EECN_ERR,
714 IB_WC_INV_EEC_STATE_ERR,
715 IB_WC_FATAL_ERR,
716 IB_WC_RESP_TIMEOUT_ERR,
717 IB_WC_GENERAL_ERR
718};
719
2b1b5b60
SG
720__attribute_const__ const char *ib_wc_status_msg(enum ib_wc_status status);
721
1da177e4
LT
722enum ib_wc_opcode {
723 IB_WC_SEND,
724 IB_WC_RDMA_WRITE,
725 IB_WC_RDMA_READ,
726 IB_WC_COMP_SWAP,
727 IB_WC_FETCH_ADD,
728 IB_WC_BIND_MW,
c93570f2 729 IB_WC_LSO,
00f7ec36
SW
730 IB_WC_LOCAL_INV,
731 IB_WC_FAST_REG_MR,
5e80ba8f
VS
732 IB_WC_MASKED_COMP_SWAP,
733 IB_WC_MASKED_FETCH_ADD,
1da177e4
LT
734/*
735 * Set value of IB_WC_RECV so consumers can test if a completion is a
736 * receive by testing (opcode & IB_WC_RECV).
737 */
738 IB_WC_RECV = 1 << 7,
739 IB_WC_RECV_RDMA_WITH_IMM
740};
741
742enum ib_wc_flags {
743 IB_WC_GRH = 1,
00f7ec36
SW
744 IB_WC_WITH_IMM = (1<<1),
745 IB_WC_WITH_INVALIDATE = (1<<2),
d927d505 746 IB_WC_IP_CSUM_OK = (1<<3),
dd5f03be
MB
747 IB_WC_WITH_SMAC = (1<<4),
748 IB_WC_WITH_VLAN = (1<<5),
1da177e4
LT
749};
750
751struct ib_wc {
752 u64 wr_id;
753 enum ib_wc_status status;
754 enum ib_wc_opcode opcode;
755 u32 vendor_err;
756 u32 byte_len;
062dbb69 757 struct ib_qp *qp;
00f7ec36
SW
758 union {
759 __be32 imm_data;
760 u32 invalidate_rkey;
761 } ex;
1da177e4
LT
762 u32 src_qp;
763 int wc_flags;
764 u16 pkey_index;
765 u16 slid;
766 u8 sl;
767 u8 dlid_path_bits;
768 u8 port_num; /* valid only for DR SMPs on switches */
dd5f03be
MB
769 u8 smac[ETH_ALEN];
770 u16 vlan_id;
1da177e4
LT
771};
772
ed23a727
RD
773enum ib_cq_notify_flags {
774 IB_CQ_SOLICITED = 1 << 0,
775 IB_CQ_NEXT_COMP = 1 << 1,
776 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
777 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2,
1da177e4
LT
778};
779
96104eda 780enum ib_srq_type {
418d5130
SH
781 IB_SRQT_BASIC,
782 IB_SRQT_XRC
96104eda
SH
783};
784
d41fcc67
RD
785enum ib_srq_attr_mask {
786 IB_SRQ_MAX_WR = 1 << 0,
787 IB_SRQ_LIMIT = 1 << 1,
788};
789
790struct ib_srq_attr {
791 u32 max_wr;
792 u32 max_sge;
793 u32 srq_limit;
794};
795
796struct ib_srq_init_attr {
797 void (*event_handler)(struct ib_event *, void *);
798 void *srq_context;
799 struct ib_srq_attr attr;
96104eda 800 enum ib_srq_type srq_type;
418d5130
SH
801
802 union {
803 struct {
804 struct ib_xrcd *xrcd;
805 struct ib_cq *cq;
806 } xrc;
807 } ext;
d41fcc67
RD
808};
809
1da177e4
LT
810struct ib_qp_cap {
811 u32 max_send_wr;
812 u32 max_recv_wr;
813 u32 max_send_sge;
814 u32 max_recv_sge;
815 u32 max_inline_data;
816};
817
818enum ib_sig_type {
819 IB_SIGNAL_ALL_WR,
820 IB_SIGNAL_REQ_WR
821};
822
823enum ib_qp_type {
824 /*
825 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
826 * here (and in that order) since the MAD layer uses them as
827 * indices into a 2-entry table.
828 */
829 IB_QPT_SMI,
830 IB_QPT_GSI,
831
832 IB_QPT_RC,
833 IB_QPT_UC,
834 IB_QPT_UD,
835 IB_QPT_RAW_IPV6,
b42b63cf 836 IB_QPT_RAW_ETHERTYPE,
c938a616 837 IB_QPT_RAW_PACKET = 8,
b42b63cf
SH
838 IB_QPT_XRC_INI = 9,
839 IB_QPT_XRC_TGT,
0134f16b
JM
840 IB_QPT_MAX,
841 /* Reserve a range for qp types internal to the low level driver.
842 * These qp types will not be visible at the IB core layer, so the
843 * IB_QPT_MAX usages should not be affected in the core layer
844 */
845 IB_QPT_RESERVED1 = 0x1000,
846 IB_QPT_RESERVED2,
847 IB_QPT_RESERVED3,
848 IB_QPT_RESERVED4,
849 IB_QPT_RESERVED5,
850 IB_QPT_RESERVED6,
851 IB_QPT_RESERVED7,
852 IB_QPT_RESERVED8,
853 IB_QPT_RESERVED9,
854 IB_QPT_RESERVED10,
1da177e4
LT
855};
856
b846f25a 857enum ib_qp_create_flags {
47ee1b9f
RL
858 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0,
859 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1 << 1,
90f1d1b4 860 IB_QP_CREATE_NETIF_QP = 1 << 5,
1b01d335 861 IB_QP_CREATE_SIGNATURE_EN = 1 << 6,
09b93088 862 IB_QP_CREATE_USE_GFP_NOIO = 1 << 7,
d2b57063
JM
863 /* reserve bits 26-31 for low level drivers' internal use */
864 IB_QP_CREATE_RESERVED_START = 1 << 26,
865 IB_QP_CREATE_RESERVED_END = 1 << 31,
b846f25a
EC
866};
867
73c40c61
YH
868
869/*
870 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
871 * callback to destroy the passed in QP.
872 */
873
1da177e4
LT
874struct ib_qp_init_attr {
875 void (*event_handler)(struct ib_event *, void *);
876 void *qp_context;
877 struct ib_cq *send_cq;
878 struct ib_cq *recv_cq;
879 struct ib_srq *srq;
b42b63cf 880 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1da177e4
LT
881 struct ib_qp_cap cap;
882 enum ib_sig_type sq_sig_type;
883 enum ib_qp_type qp_type;
b846f25a 884 enum ib_qp_create_flags create_flags;
1da177e4
LT
885 u8 port_num; /* special QP types only */
886};
887
0e0ec7e0
SH
888struct ib_qp_open_attr {
889 void (*event_handler)(struct ib_event *, void *);
890 void *qp_context;
891 u32 qp_num;
892 enum ib_qp_type qp_type;
893};
894
1da177e4
LT
895enum ib_rnr_timeout {
896 IB_RNR_TIMER_655_36 = 0,
897 IB_RNR_TIMER_000_01 = 1,
898 IB_RNR_TIMER_000_02 = 2,
899 IB_RNR_TIMER_000_03 = 3,
900 IB_RNR_TIMER_000_04 = 4,
901 IB_RNR_TIMER_000_06 = 5,
902 IB_RNR_TIMER_000_08 = 6,
903 IB_RNR_TIMER_000_12 = 7,
904 IB_RNR_TIMER_000_16 = 8,
905 IB_RNR_TIMER_000_24 = 9,
906 IB_RNR_TIMER_000_32 = 10,
907 IB_RNR_TIMER_000_48 = 11,
908 IB_RNR_TIMER_000_64 = 12,
909 IB_RNR_TIMER_000_96 = 13,
910 IB_RNR_TIMER_001_28 = 14,
911 IB_RNR_TIMER_001_92 = 15,
912 IB_RNR_TIMER_002_56 = 16,
913 IB_RNR_TIMER_003_84 = 17,
914 IB_RNR_TIMER_005_12 = 18,
915 IB_RNR_TIMER_007_68 = 19,
916 IB_RNR_TIMER_010_24 = 20,
917 IB_RNR_TIMER_015_36 = 21,
918 IB_RNR_TIMER_020_48 = 22,
919 IB_RNR_TIMER_030_72 = 23,
920 IB_RNR_TIMER_040_96 = 24,
921 IB_RNR_TIMER_061_44 = 25,
922 IB_RNR_TIMER_081_92 = 26,
923 IB_RNR_TIMER_122_88 = 27,
924 IB_RNR_TIMER_163_84 = 28,
925 IB_RNR_TIMER_245_76 = 29,
926 IB_RNR_TIMER_327_68 = 30,
927 IB_RNR_TIMER_491_52 = 31
928};
929
930enum ib_qp_attr_mask {
931 IB_QP_STATE = 1,
932 IB_QP_CUR_STATE = (1<<1),
933 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2),
934 IB_QP_ACCESS_FLAGS = (1<<3),
935 IB_QP_PKEY_INDEX = (1<<4),
936 IB_QP_PORT = (1<<5),
937 IB_QP_QKEY = (1<<6),
938 IB_QP_AV = (1<<7),
939 IB_QP_PATH_MTU = (1<<8),
940 IB_QP_TIMEOUT = (1<<9),
941 IB_QP_RETRY_CNT = (1<<10),
942 IB_QP_RNR_RETRY = (1<<11),
943 IB_QP_RQ_PSN = (1<<12),
944 IB_QP_MAX_QP_RD_ATOMIC = (1<<13),
945 IB_QP_ALT_PATH = (1<<14),
946 IB_QP_MIN_RNR_TIMER = (1<<15),
947 IB_QP_SQ_PSN = (1<<16),
948 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17),
949 IB_QP_PATH_MIG_STATE = (1<<18),
950 IB_QP_CAP = (1<<19),
dd5f03be
MB
951 IB_QP_DEST_QPN = (1<<20),
952 IB_QP_SMAC = (1<<21),
953 IB_QP_ALT_SMAC = (1<<22),
954 IB_QP_VID = (1<<23),
955 IB_QP_ALT_VID = (1<<24),
1da177e4
LT
956};
957
958enum ib_qp_state {
959 IB_QPS_RESET,
960 IB_QPS_INIT,
961 IB_QPS_RTR,
962 IB_QPS_RTS,
963 IB_QPS_SQD,
964 IB_QPS_SQE,
965 IB_QPS_ERR
966};
967
968enum ib_mig_state {
969 IB_MIG_MIGRATED,
970 IB_MIG_REARM,
971 IB_MIG_ARMED
972};
973
7083e42e
SM
974enum ib_mw_type {
975 IB_MW_TYPE_1 = 1,
976 IB_MW_TYPE_2 = 2
977};
978
1da177e4
LT
979struct ib_qp_attr {
980 enum ib_qp_state qp_state;
981 enum ib_qp_state cur_qp_state;
982 enum ib_mtu path_mtu;
983 enum ib_mig_state path_mig_state;
984 u32 qkey;
985 u32 rq_psn;
986 u32 sq_psn;
987 u32 dest_qp_num;
988 int qp_access_flags;
989 struct ib_qp_cap cap;
990 struct ib_ah_attr ah_attr;
991 struct ib_ah_attr alt_ah_attr;
992 u16 pkey_index;
993 u16 alt_pkey_index;
994 u8 en_sqd_async_notify;
995 u8 sq_draining;
996 u8 max_rd_atomic;
997 u8 max_dest_rd_atomic;
998 u8 min_rnr_timer;
999 u8 port_num;
1000 u8 timeout;
1001 u8 retry_cnt;
1002 u8 rnr_retry;
1003 u8 alt_port_num;
1004 u8 alt_timeout;
dd5f03be
MB
1005 u8 smac[ETH_ALEN];
1006 u8 alt_smac[ETH_ALEN];
1007 u16 vlan_id;
1008 u16 alt_vlan_id;
1da177e4
LT
1009};
1010
1011enum ib_wr_opcode {
1012 IB_WR_RDMA_WRITE,
1013 IB_WR_RDMA_WRITE_WITH_IMM,
1014 IB_WR_SEND,
1015 IB_WR_SEND_WITH_IMM,
1016 IB_WR_RDMA_READ,
1017 IB_WR_ATOMIC_CMP_AND_SWP,
c93570f2 1018 IB_WR_ATOMIC_FETCH_AND_ADD,
0f39cf3d
RD
1019 IB_WR_LSO,
1020 IB_WR_SEND_WITH_INV,
00f7ec36
SW
1021 IB_WR_RDMA_READ_WITH_INV,
1022 IB_WR_LOCAL_INV,
1023 IB_WR_FAST_REG_MR,
5e80ba8f
VS
1024 IB_WR_MASKED_ATOMIC_CMP_AND_SWP,
1025 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD,
7083e42e 1026 IB_WR_BIND_MW,
1b01d335 1027 IB_WR_REG_SIG_MR,
0134f16b
JM
1028 /* reserve values for low level drivers' internal use.
1029 * These values will not be used at all in the ib core layer.
1030 */
1031 IB_WR_RESERVED1 = 0xf0,
1032 IB_WR_RESERVED2,
1033 IB_WR_RESERVED3,
1034 IB_WR_RESERVED4,
1035 IB_WR_RESERVED5,
1036 IB_WR_RESERVED6,
1037 IB_WR_RESERVED7,
1038 IB_WR_RESERVED8,
1039 IB_WR_RESERVED9,
1040 IB_WR_RESERVED10,
1da177e4
LT
1041};
1042
1043enum ib_send_flags {
1044 IB_SEND_FENCE = 1,
1045 IB_SEND_SIGNALED = (1<<1),
1046 IB_SEND_SOLICITED = (1<<2),
e0605d91 1047 IB_SEND_INLINE = (1<<3),
0134f16b
JM
1048 IB_SEND_IP_CSUM = (1<<4),
1049
1050 /* reserve bits 26-31 for low level drivers' internal use */
1051 IB_SEND_RESERVED_START = (1 << 26),
1052 IB_SEND_RESERVED_END = (1 << 31),
1da177e4
LT
1053};
1054
1055struct ib_sge {
1056 u64 addr;
1057 u32 length;
1058 u32 lkey;
1059};
1060
00f7ec36
SW
1061struct ib_fast_reg_page_list {
1062 struct ib_device *device;
1063 u64 *page_list;
1064 unsigned int max_page_list_len;
1065};
1066
7083e42e
SM
1067/**
1068 * struct ib_mw_bind_info - Parameters for a memory window bind operation.
1069 * @mr: A memory region to bind the memory window to.
1070 * @addr: The address where the memory window should begin.
1071 * @length: The length of the memory window, in bytes.
1072 * @mw_access_flags: Access flags from enum ib_access_flags for the window.
1073 *
1074 * This struct contains the shared parameters for type 1 and type 2
1075 * memory window bind operations.
1076 */
1077struct ib_mw_bind_info {
1078 struct ib_mr *mr;
1079 u64 addr;
1080 u64 length;
1081 int mw_access_flags;
1082};
1083
1da177e4
LT
1084struct ib_send_wr {
1085 struct ib_send_wr *next;
1086 u64 wr_id;
1087 struct ib_sge *sg_list;
1088 int num_sge;
1089 enum ib_wr_opcode opcode;
1090 int send_flags;
0f39cf3d
RD
1091 union {
1092 __be32 imm_data;
1093 u32 invalidate_rkey;
1094 } ex;
1da177e4
LT
1095 union {
1096 struct {
1097 u64 remote_addr;
1098 u32 rkey;
1099 } rdma;
1100 struct {
1101 u64 remote_addr;
1102 u64 compare_add;
1103 u64 swap;
5e80ba8f
VS
1104 u64 compare_add_mask;
1105 u64 swap_mask;
1da177e4
LT
1106 u32 rkey;
1107 } atomic;
1108 struct {
1109 struct ib_ah *ah;
c93570f2
EC
1110 void *header;
1111 int hlen;
1112 int mss;
1da177e4
LT
1113 u32 remote_qpn;
1114 u32 remote_qkey;
1da177e4
LT
1115 u16 pkey_index; /* valid for GSI only */
1116 u8 port_num; /* valid for DR SMPs on switch only */
1117 } ud;
00f7ec36
SW
1118 struct {
1119 u64 iova_start;
1120 struct ib_fast_reg_page_list *page_list;
1121 unsigned int page_shift;
1122 unsigned int page_list_len;
1123 u32 length;
1124 int access_flags;
1125 u32 rkey;
1126 } fast_reg;
7083e42e
SM
1127 struct {
1128 struct ib_mw *mw;
1129 /* The new rkey for the memory window. */
1130 u32 rkey;
1131 struct ib_mw_bind_info bind_info;
1132 } bind_mw;
1b01d335
SG
1133 struct {
1134 struct ib_sig_attrs *sig_attrs;
1135 struct ib_mr *sig_mr;
1136 int access_flags;
1137 struct ib_sge *prot;
1138 } sig_handover;
1da177e4 1139 } wr;
b42b63cf 1140 u32 xrc_remote_srq_num; /* XRC TGT QPs only */
1da177e4
LT
1141};
1142
1143struct ib_recv_wr {
1144 struct ib_recv_wr *next;
1145 u64 wr_id;
1146 struct ib_sge *sg_list;
1147 int num_sge;
1148};
1149
1150enum ib_access_flags {
1151 IB_ACCESS_LOCAL_WRITE = 1,
1152 IB_ACCESS_REMOTE_WRITE = (1<<1),
1153 IB_ACCESS_REMOTE_READ = (1<<2),
1154 IB_ACCESS_REMOTE_ATOMIC = (1<<3),
7083e42e 1155 IB_ACCESS_MW_BIND = (1<<4),
860f10a7
SG
1156 IB_ZERO_BASED = (1<<5),
1157 IB_ACCESS_ON_DEMAND = (1<<6),
1da177e4
LT
1158};
1159
1160struct ib_phys_buf {
1161 u64 addr;
1162 u64 size;
1163};
1164
1165struct ib_mr_attr {
1166 struct ib_pd *pd;
1167 u64 device_virt_addr;
1168 u64 size;
1169 int mr_access_flags;
1170 u32 lkey;
1171 u32 rkey;
1172};
1173
1174enum ib_mr_rereg_flags {
1175 IB_MR_REREG_TRANS = 1,
1176 IB_MR_REREG_PD = (1<<1),
7e6edb9b
MB
1177 IB_MR_REREG_ACCESS = (1<<2),
1178 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1)
1da177e4
LT
1179};
1180
7083e42e
SM
1181/**
1182 * struct ib_mw_bind - Parameters for a type 1 memory window bind operation.
1183 * @wr_id: Work request id.
1184 * @send_flags: Flags from ib_send_flags enum.
1185 * @bind_info: More parameters of the bind operation.
1186 */
1da177e4 1187struct ib_mw_bind {
7083e42e
SM
1188 u64 wr_id;
1189 int send_flags;
1190 struct ib_mw_bind_info bind_info;
1da177e4
LT
1191};
1192
1193struct ib_fmr_attr {
1194 int max_pages;
1195 int max_maps;
d36f34aa 1196 u8 page_shift;
1da177e4
LT
1197};
1198
882214e2
HE
1199struct ib_umem;
1200
e2773c06
RD
1201struct ib_ucontext {
1202 struct ib_device *device;
1203 struct list_head pd_list;
1204 struct list_head mr_list;
1205 struct list_head mw_list;
1206 struct list_head cq_list;
1207 struct list_head qp_list;
1208 struct list_head srq_list;
1209 struct list_head ah_list;
53d0bd1e 1210 struct list_head xrcd_list;
436f2ad0 1211 struct list_head rule_list;
f7c6a7b5 1212 int closing;
8ada2c1c
SR
1213
1214 struct pid *tgid;
882214e2
HE
1215#ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING
1216 struct rb_root umem_tree;
1217 /*
1218 * Protects .umem_rbroot and tree, as well as odp_mrs_count and
1219 * mmu notifiers registration.
1220 */
1221 struct rw_semaphore umem_rwsem;
1222 void (*invalidate_range)(struct ib_umem *umem,
1223 unsigned long start, unsigned long end);
1224
1225 struct mmu_notifier mn;
1226 atomic_t notifier_count;
1227 /* A list of umems that don't have private mmu notifier counters yet. */
1228 struct list_head no_private_counters;
1229 int odp_mrs_count;
1230#endif
e2773c06
RD
1231};
1232
1233struct ib_uobject {
1234 u64 user_handle; /* handle given to us by userspace */
1235 struct ib_ucontext *context; /* associated user context */
9ead190b 1236 void *object; /* containing object */
e2773c06 1237 struct list_head list; /* link to context's list */
b3d636b0 1238 int id; /* index into kernel idr */
9ead190b
RD
1239 struct kref ref;
1240 struct rw_semaphore mutex; /* protects .live */
1241 int live;
e2773c06
RD
1242};
1243
e2773c06 1244struct ib_udata {
309243ec 1245 const void __user *inbuf;
e2773c06
RD
1246 void __user *outbuf;
1247 size_t inlen;
1248 size_t outlen;
1249};
1250
1da177e4 1251struct ib_pd {
e2773c06
RD
1252 struct ib_device *device;
1253 struct ib_uobject *uobject;
1254 atomic_t usecnt; /* count all resources */
1da177e4
LT
1255};
1256
59991f94
SH
1257struct ib_xrcd {
1258 struct ib_device *device;
d3d72d90 1259 atomic_t usecnt; /* count all exposed resources */
53d0bd1e 1260 struct inode *inode;
d3d72d90
SH
1261
1262 struct mutex tgt_qp_mutex;
1263 struct list_head tgt_qp_list;
59991f94
SH
1264};
1265
1da177e4
LT
1266struct ib_ah {
1267 struct ib_device *device;
1268 struct ib_pd *pd;
e2773c06 1269 struct ib_uobject *uobject;
1da177e4
LT
1270};
1271
1272typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1273
1274struct ib_cq {
e2773c06
RD
1275 struct ib_device *device;
1276 struct ib_uobject *uobject;
1277 ib_comp_handler comp_handler;
1278 void (*event_handler)(struct ib_event *, void *);
4deccd6d 1279 void *cq_context;
e2773c06
RD
1280 int cqe;
1281 atomic_t usecnt; /* count number of work queues */
1da177e4
LT
1282};
1283
1284struct ib_srq {
d41fcc67
RD
1285 struct ib_device *device;
1286 struct ib_pd *pd;
1287 struct ib_uobject *uobject;
1288 void (*event_handler)(struct ib_event *, void *);
1289 void *srq_context;
96104eda 1290 enum ib_srq_type srq_type;
1da177e4 1291 atomic_t usecnt;
418d5130
SH
1292
1293 union {
1294 struct {
1295 struct ib_xrcd *xrcd;
1296 struct ib_cq *cq;
1297 u32 srq_num;
1298 } xrc;
1299 } ext;
1da177e4
LT
1300};
1301
1302struct ib_qp {
1303 struct ib_device *device;
1304 struct ib_pd *pd;
1305 struct ib_cq *send_cq;
1306 struct ib_cq *recv_cq;
1307 struct ib_srq *srq;
b42b63cf 1308 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
d3d72d90 1309 struct list_head xrcd_list;
319a441d
HHZ
1310 /* count times opened, mcast attaches, flow attaches */
1311 atomic_t usecnt;
0e0ec7e0
SH
1312 struct list_head open_list;
1313 struct ib_qp *real_qp;
e2773c06 1314 struct ib_uobject *uobject;
1da177e4
LT
1315 void (*event_handler)(struct ib_event *, void *);
1316 void *qp_context;
1317 u32 qp_num;
1318 enum ib_qp_type qp_type;
1319};
1320
1321struct ib_mr {
e2773c06
RD
1322 struct ib_device *device;
1323 struct ib_pd *pd;
1324 struct ib_uobject *uobject;
1325 u32 lkey;
1326 u32 rkey;
1327 atomic_t usecnt; /* count number of MWs */
1da177e4
LT
1328};
1329
1330struct ib_mw {
1331 struct ib_device *device;
1332 struct ib_pd *pd;
e2773c06 1333 struct ib_uobject *uobject;
1da177e4 1334 u32 rkey;
7083e42e 1335 enum ib_mw_type type;
1da177e4
LT
1336};
1337
1338struct ib_fmr {
1339 struct ib_device *device;
1340 struct ib_pd *pd;
1341 struct list_head list;
1342 u32 lkey;
1343 u32 rkey;
1344};
1345
319a441d
HHZ
1346/* Supported steering options */
1347enum ib_flow_attr_type {
1348 /* steering according to rule specifications */
1349 IB_FLOW_ATTR_NORMAL = 0x0,
1350 /* default unicast and multicast rule -
1351 * receive all Eth traffic which isn't steered to any QP
1352 */
1353 IB_FLOW_ATTR_ALL_DEFAULT = 0x1,
1354 /* default multicast rule -
1355 * receive all Eth multicast traffic which isn't steered to any QP
1356 */
1357 IB_FLOW_ATTR_MC_DEFAULT = 0x2,
1358 /* sniffer rule - receive all port traffic */
1359 IB_FLOW_ATTR_SNIFFER = 0x3
1360};
1361
1362/* Supported steering header types */
1363enum ib_flow_spec_type {
1364 /* L2 headers*/
1365 IB_FLOW_SPEC_ETH = 0x20,
240ae00e 1366 IB_FLOW_SPEC_IB = 0x22,
319a441d
HHZ
1367 /* L3 header*/
1368 IB_FLOW_SPEC_IPV4 = 0x30,
1369 /* L4 headers*/
1370 IB_FLOW_SPEC_TCP = 0x40,
1371 IB_FLOW_SPEC_UDP = 0x41
1372};
240ae00e 1373#define IB_FLOW_SPEC_LAYER_MASK 0xF0
22878dbc
MB
1374#define IB_FLOW_SPEC_SUPPORT_LAYERS 4
1375
319a441d
HHZ
1376/* Flow steering rule priority is set according to it's domain.
1377 * Lower domain value means higher priority.
1378 */
1379enum ib_flow_domain {
1380 IB_FLOW_DOMAIN_USER,
1381 IB_FLOW_DOMAIN_ETHTOOL,
1382 IB_FLOW_DOMAIN_RFS,
1383 IB_FLOW_DOMAIN_NIC,
1384 IB_FLOW_DOMAIN_NUM /* Must be last */
1385};
1386
1387struct ib_flow_eth_filter {
1388 u8 dst_mac[6];
1389 u8 src_mac[6];
1390 __be16 ether_type;
1391 __be16 vlan_tag;
1392};
1393
1394struct ib_flow_spec_eth {
1395 enum ib_flow_spec_type type;
1396 u16 size;
1397 struct ib_flow_eth_filter val;
1398 struct ib_flow_eth_filter mask;
1399};
1400
240ae00e
MB
1401struct ib_flow_ib_filter {
1402 __be16 dlid;
1403 __u8 sl;
1404};
1405
1406struct ib_flow_spec_ib {
1407 enum ib_flow_spec_type type;
1408 u16 size;
1409 struct ib_flow_ib_filter val;
1410 struct ib_flow_ib_filter mask;
1411};
1412
319a441d
HHZ
1413struct ib_flow_ipv4_filter {
1414 __be32 src_ip;
1415 __be32 dst_ip;
1416};
1417
1418struct ib_flow_spec_ipv4 {
1419 enum ib_flow_spec_type type;
1420 u16 size;
1421 struct ib_flow_ipv4_filter val;
1422 struct ib_flow_ipv4_filter mask;
1423};
1424
1425struct ib_flow_tcp_udp_filter {
1426 __be16 dst_port;
1427 __be16 src_port;
1428};
1429
1430struct ib_flow_spec_tcp_udp {
1431 enum ib_flow_spec_type type;
1432 u16 size;
1433 struct ib_flow_tcp_udp_filter val;
1434 struct ib_flow_tcp_udp_filter mask;
1435};
1436
1437union ib_flow_spec {
1438 struct {
1439 enum ib_flow_spec_type type;
1440 u16 size;
1441 };
1442 struct ib_flow_spec_eth eth;
240ae00e 1443 struct ib_flow_spec_ib ib;
319a441d
HHZ
1444 struct ib_flow_spec_ipv4 ipv4;
1445 struct ib_flow_spec_tcp_udp tcp_udp;
1446};
1447
1448struct ib_flow_attr {
1449 enum ib_flow_attr_type type;
1450 u16 size;
1451 u16 priority;
1452 u32 flags;
1453 u8 num_of_specs;
1454 u8 port;
1455 /* Following are the optional layers according to user request
1456 * struct ib_flow_spec_xxx
1457 * struct ib_flow_spec_yyy
1458 */
1459};
1460
1461struct ib_flow {
1462 struct ib_qp *qp;
1463 struct ib_uobject *uobject;
1464};
1465
1da177e4
LT
1466struct ib_mad;
1467struct ib_grh;
1468
1469enum ib_process_mad_flags {
1470 IB_MAD_IGNORE_MKEY = 1,
1471 IB_MAD_IGNORE_BKEY = 2,
1472 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
1473};
1474
1475enum ib_mad_result {
1476 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */
1477 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */
1478 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */
1479 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */
1480};
1481
1482#define IB_DEVICE_NAME_MAX 64
1483
1484struct ib_cache {
1485 rwlock_t lock;
1486 struct ib_event_handler event_handler;
1487 struct ib_pkey_cache **pkey_cache;
1488 struct ib_gid_cache **gid_cache;
6fb9cdbf 1489 u8 *lmc_cache;
1da177e4
LT
1490};
1491
9b513090
RC
1492struct ib_dma_mapping_ops {
1493 int (*mapping_error)(struct ib_device *dev,
1494 u64 dma_addr);
1495 u64 (*map_single)(struct ib_device *dev,
1496 void *ptr, size_t size,
1497 enum dma_data_direction direction);
1498 void (*unmap_single)(struct ib_device *dev,
1499 u64 addr, size_t size,
1500 enum dma_data_direction direction);
1501 u64 (*map_page)(struct ib_device *dev,
1502 struct page *page, unsigned long offset,
1503 size_t size,
1504 enum dma_data_direction direction);
1505 void (*unmap_page)(struct ib_device *dev,
1506 u64 addr, size_t size,
1507 enum dma_data_direction direction);
1508 int (*map_sg)(struct ib_device *dev,
1509 struct scatterlist *sg, int nents,
1510 enum dma_data_direction direction);
1511 void (*unmap_sg)(struct ib_device *dev,
1512 struct scatterlist *sg, int nents,
1513 enum dma_data_direction direction);
9b513090
RC
1514 void (*sync_single_for_cpu)(struct ib_device *dev,
1515 u64 dma_handle,
1516 size_t size,
4deccd6d 1517 enum dma_data_direction dir);
9b513090
RC
1518 void (*sync_single_for_device)(struct ib_device *dev,
1519 u64 dma_handle,
1520 size_t size,
1521 enum dma_data_direction dir);
1522 void *(*alloc_coherent)(struct ib_device *dev,
1523 size_t size,
1524 u64 *dma_handle,
1525 gfp_t flag);
1526 void (*free_coherent)(struct ib_device *dev,
1527 size_t size, void *cpu_addr,
1528 u64 dma_handle);
1529};
1530
07ebafba
TT
1531struct iw_cm_verbs;
1532
7738613e
IW
1533struct ib_port_immutable {
1534 int pkey_tbl_len;
1535 int gid_tbl_len;
f9b22e35 1536 u32 core_cap_flags;
7738613e
IW
1537};
1538
1da177e4
LT
1539struct ib_device {
1540 struct device *dma_device;
1541
1542 char name[IB_DEVICE_NAME_MAX];
1543
1544 struct list_head event_handler_list;
1545 spinlock_t event_handler_lock;
1546
17a55f79 1547 spinlock_t client_data_lock;
1da177e4
LT
1548 struct list_head core_list;
1549 struct list_head client_data_list;
1da177e4
LT
1550
1551 struct ib_cache cache;
7738613e
IW
1552 /**
1553 * port_immutable is indexed by port number
1554 */
1555 struct ib_port_immutable *port_immutable;
1da177e4 1556
f4fd0b22
MT
1557 int num_comp_vectors;
1558
07ebafba
TT
1559 struct iw_cm_verbs *iwcm;
1560
7f624d02
SW
1561 int (*get_protocol_stats)(struct ib_device *device,
1562 union rdma_protocol_stats *stats);
1da177e4
LT
1563 int (*query_device)(struct ib_device *device,
1564 struct ib_device_attr *device_attr);
1565 int (*query_port)(struct ib_device *device,
1566 u8 port_num,
1567 struct ib_port_attr *port_attr);
a3f5adaf
EC
1568 enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
1569 u8 port_num);
1da177e4
LT
1570 int (*query_gid)(struct ib_device *device,
1571 u8 port_num, int index,
1572 union ib_gid *gid);
1573 int (*query_pkey)(struct ib_device *device,
1574 u8 port_num, u16 index, u16 *pkey);
1575 int (*modify_device)(struct ib_device *device,
1576 int device_modify_mask,
1577 struct ib_device_modify *device_modify);
1578 int (*modify_port)(struct ib_device *device,
1579 u8 port_num, int port_modify_mask,
1580 struct ib_port_modify *port_modify);
e2773c06
RD
1581 struct ib_ucontext * (*alloc_ucontext)(struct ib_device *device,
1582 struct ib_udata *udata);
1583 int (*dealloc_ucontext)(struct ib_ucontext *context);
1584 int (*mmap)(struct ib_ucontext *context,
1585 struct vm_area_struct *vma);
1586 struct ib_pd * (*alloc_pd)(struct ib_device *device,
1587 struct ib_ucontext *context,
1588 struct ib_udata *udata);
1da177e4
LT
1589 int (*dealloc_pd)(struct ib_pd *pd);
1590 struct ib_ah * (*create_ah)(struct ib_pd *pd,
1591 struct ib_ah_attr *ah_attr);
1592 int (*modify_ah)(struct ib_ah *ah,
1593 struct ib_ah_attr *ah_attr);
1594 int (*query_ah)(struct ib_ah *ah,
1595 struct ib_ah_attr *ah_attr);
1596 int (*destroy_ah)(struct ib_ah *ah);
d41fcc67
RD
1597 struct ib_srq * (*create_srq)(struct ib_pd *pd,
1598 struct ib_srq_init_attr *srq_init_attr,
1599 struct ib_udata *udata);
1600 int (*modify_srq)(struct ib_srq *srq,
1601 struct ib_srq_attr *srq_attr,
9bc57e2d
RC
1602 enum ib_srq_attr_mask srq_attr_mask,
1603 struct ib_udata *udata);
d41fcc67
RD
1604 int (*query_srq)(struct ib_srq *srq,
1605 struct ib_srq_attr *srq_attr);
1606 int (*destroy_srq)(struct ib_srq *srq);
1607 int (*post_srq_recv)(struct ib_srq *srq,
1608 struct ib_recv_wr *recv_wr,
1609 struct ib_recv_wr **bad_recv_wr);
1da177e4 1610 struct ib_qp * (*create_qp)(struct ib_pd *pd,
e2773c06
RD
1611 struct ib_qp_init_attr *qp_init_attr,
1612 struct ib_udata *udata);
1da177e4
LT
1613 int (*modify_qp)(struct ib_qp *qp,
1614 struct ib_qp_attr *qp_attr,
9bc57e2d
RC
1615 int qp_attr_mask,
1616 struct ib_udata *udata);
1da177e4
LT
1617 int (*query_qp)(struct ib_qp *qp,
1618 struct ib_qp_attr *qp_attr,
1619 int qp_attr_mask,
1620 struct ib_qp_init_attr *qp_init_attr);
1621 int (*destroy_qp)(struct ib_qp *qp);
1622 int (*post_send)(struct ib_qp *qp,
1623 struct ib_send_wr *send_wr,
1624 struct ib_send_wr **bad_send_wr);
1625 int (*post_recv)(struct ib_qp *qp,
1626 struct ib_recv_wr *recv_wr,
1627 struct ib_recv_wr **bad_recv_wr);
bcf4c1ea
MB
1628 struct ib_cq * (*create_cq)(struct ib_device *device,
1629 const struct ib_cq_init_attr *attr,
e2773c06
RD
1630 struct ib_ucontext *context,
1631 struct ib_udata *udata);
2dd57162
EC
1632 int (*modify_cq)(struct ib_cq *cq, u16 cq_count,
1633 u16 cq_period);
1da177e4 1634 int (*destroy_cq)(struct ib_cq *cq);
33b9b3ee
RD
1635 int (*resize_cq)(struct ib_cq *cq, int cqe,
1636 struct ib_udata *udata);
1da177e4
LT
1637 int (*poll_cq)(struct ib_cq *cq, int num_entries,
1638 struct ib_wc *wc);
1639 int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
1640 int (*req_notify_cq)(struct ib_cq *cq,
ed23a727 1641 enum ib_cq_notify_flags flags);
1da177e4
LT
1642 int (*req_ncomp_notif)(struct ib_cq *cq,
1643 int wc_cnt);
1644 struct ib_mr * (*get_dma_mr)(struct ib_pd *pd,
1645 int mr_access_flags);
1646 struct ib_mr * (*reg_phys_mr)(struct ib_pd *pd,
1647 struct ib_phys_buf *phys_buf_array,
1648 int num_phys_buf,
1649 int mr_access_flags,
1650 u64 *iova_start);
e2773c06 1651 struct ib_mr * (*reg_user_mr)(struct ib_pd *pd,
f7c6a7b5
RD
1652 u64 start, u64 length,
1653 u64 virt_addr,
e2773c06
RD
1654 int mr_access_flags,
1655 struct ib_udata *udata);
7e6edb9b
MB
1656 int (*rereg_user_mr)(struct ib_mr *mr,
1657 int flags,
1658 u64 start, u64 length,
1659 u64 virt_addr,
1660 int mr_access_flags,
1661 struct ib_pd *pd,
1662 struct ib_udata *udata);
1da177e4
LT
1663 int (*query_mr)(struct ib_mr *mr,
1664 struct ib_mr_attr *mr_attr);
1665 int (*dereg_mr)(struct ib_mr *mr);
17cd3a2d
SG
1666 int (*destroy_mr)(struct ib_mr *mr);
1667 struct ib_mr * (*create_mr)(struct ib_pd *pd,
1668 struct ib_mr_init_attr *mr_init_attr);
00f7ec36
SW
1669 struct ib_mr * (*alloc_fast_reg_mr)(struct ib_pd *pd,
1670 int max_page_list_len);
1671 struct ib_fast_reg_page_list * (*alloc_fast_reg_page_list)(struct ib_device *device,
1672 int page_list_len);
1673 void (*free_fast_reg_page_list)(struct ib_fast_reg_page_list *page_list);
1da177e4
LT
1674 int (*rereg_phys_mr)(struct ib_mr *mr,
1675 int mr_rereg_mask,
1676 struct ib_pd *pd,
1677 struct ib_phys_buf *phys_buf_array,
1678 int num_phys_buf,
1679 int mr_access_flags,
1680 u64 *iova_start);
7083e42e
SM
1681 struct ib_mw * (*alloc_mw)(struct ib_pd *pd,
1682 enum ib_mw_type type);
1da177e4
LT
1683 int (*bind_mw)(struct ib_qp *qp,
1684 struct ib_mw *mw,
1685 struct ib_mw_bind *mw_bind);
1686 int (*dealloc_mw)(struct ib_mw *mw);
1687 struct ib_fmr * (*alloc_fmr)(struct ib_pd *pd,
1688 int mr_access_flags,
1689 struct ib_fmr_attr *fmr_attr);
1690 int (*map_phys_fmr)(struct ib_fmr *fmr,
1691 u64 *page_list, int list_len,
1692 u64 iova);
1693 int (*unmap_fmr)(struct list_head *fmr_list);
1694 int (*dealloc_fmr)(struct ib_fmr *fmr);
1695 int (*attach_mcast)(struct ib_qp *qp,
1696 union ib_gid *gid,
1697 u16 lid);
1698 int (*detach_mcast)(struct ib_qp *qp,
1699 union ib_gid *gid,
1700 u16 lid);
1701 int (*process_mad)(struct ib_device *device,
1702 int process_mad_flags,
1703 u8 port_num,
a97e2d86
IW
1704 const struct ib_wc *in_wc,
1705 const struct ib_grh *in_grh,
1706 const struct ib_mad *in_mad,
1da177e4 1707 struct ib_mad *out_mad);
59991f94
SH
1708 struct ib_xrcd * (*alloc_xrcd)(struct ib_device *device,
1709 struct ib_ucontext *ucontext,
1710 struct ib_udata *udata);
1711 int (*dealloc_xrcd)(struct ib_xrcd *xrcd);
319a441d
HHZ
1712 struct ib_flow * (*create_flow)(struct ib_qp *qp,
1713 struct ib_flow_attr
1714 *flow_attr,
1715 int domain);
1716 int (*destroy_flow)(struct ib_flow *flow_id);
1b01d335
SG
1717 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
1718 struct ib_mr_status *mr_status);
1da177e4 1719
9b513090
RC
1720 struct ib_dma_mapping_ops *dma_ops;
1721
e2773c06 1722 struct module *owner;
f4e91eb4 1723 struct device dev;
35be0681 1724 struct kobject *ports_parent;
1da177e4
LT
1725 struct list_head port_list;
1726
1727 enum {
1728 IB_DEV_UNINITIALIZED,
1729 IB_DEV_REGISTERED,
1730 IB_DEV_UNREGISTERED
1731 } reg_state;
1732
274c0891 1733 int uverbs_abi_ver;
17a55f79 1734 u64 uverbs_cmd_mask;
f21519b2 1735 u64 uverbs_ex_cmd_mask;
274c0891 1736
c5bcbbb9 1737 char node_desc[64];
cf311cd4 1738 __be64 node_guid;
96f15c03 1739 u32 local_dma_lkey;
1da177e4
LT
1740 u8 node_type;
1741 u8 phys_port_cnt;
7738613e
IW
1742
1743 /**
1744 * The following mandatory functions are used only at device
1745 * registration. Keep functions such as these at the end of this
1746 * structure to avoid cache line misses when accessing struct ib_device
1747 * in fast paths.
1748 */
1749 int (*get_port_immutable)(struct ib_device *, u8, struct ib_port_immutable *);
1da177e4
LT
1750};
1751
1752struct ib_client {
1753 char *name;
1754 void (*add) (struct ib_device *);
1755 void (*remove)(struct ib_device *);
1756
1757 struct list_head list;
1758};
1759
1760struct ib_device *ib_alloc_device(size_t size);
1761void ib_dealloc_device(struct ib_device *device);
1762
9a6edb60
RC
1763int ib_register_device(struct ib_device *device,
1764 int (*port_callback)(struct ib_device *,
1765 u8, struct kobject *));
1da177e4
LT
1766void ib_unregister_device(struct ib_device *device);
1767
1768int ib_register_client (struct ib_client *client);
1769void ib_unregister_client(struct ib_client *client);
1770
1771void *ib_get_client_data(struct ib_device *device, struct ib_client *client);
1772void ib_set_client_data(struct ib_device *device, struct ib_client *client,
1773 void *data);
1774
e2773c06
RD
1775static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
1776{
1777 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
1778}
1779
1780static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
1781{
43c61165 1782 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
e2773c06
RD
1783}
1784
8a51866f
RD
1785/**
1786 * ib_modify_qp_is_ok - Check that the supplied attribute mask
1787 * contains all required attributes and no attributes not allowed for
1788 * the given QP state transition.
1789 * @cur_state: Current QP state
1790 * @next_state: Next QP state
1791 * @type: QP type
1792 * @mask: Mask of supplied QP attributes
dd5f03be 1793 * @ll : link layer of port
8a51866f
RD
1794 *
1795 * This function is a helper function that a low-level driver's
1796 * modify_qp method can use to validate the consumer's input. It
1797 * checks that cur_state and next_state are valid QP states, that a
1798 * transition from cur_state to next_state is allowed by the IB spec,
1799 * and that the attribute mask supplied is allowed for the transition.
1800 */
1801int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
dd5f03be
MB
1802 enum ib_qp_type type, enum ib_qp_attr_mask mask,
1803 enum rdma_link_layer ll);
8a51866f 1804
1da177e4
LT
1805int ib_register_event_handler (struct ib_event_handler *event_handler);
1806int ib_unregister_event_handler(struct ib_event_handler *event_handler);
1807void ib_dispatch_event(struct ib_event *event);
1808
1809int ib_query_device(struct ib_device *device,
1810 struct ib_device_attr *device_attr);
1811
1812int ib_query_port(struct ib_device *device,
1813 u8 port_num, struct ib_port_attr *port_attr);
1814
a3f5adaf
EC
1815enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
1816 u8 port_num);
1817
0cf18d77
IW
1818/**
1819 * rdma_start_port - Return the first valid port number for the device
1820 * specified
1821 *
1822 * @device: Device to be checked
1823 *
1824 * Return start port number
1825 */
1826static inline u8 rdma_start_port(const struct ib_device *device)
1827{
1828 return (device->node_type == RDMA_NODE_IB_SWITCH) ? 0 : 1;
1829}
1830
1831/**
1832 * rdma_end_port - Return the last valid port number for the device
1833 * specified
1834 *
1835 * @device: Device to be checked
1836 *
1837 * Return last port number
1838 */
1839static inline u8 rdma_end_port(const struct ib_device *device)
1840{
1841 return (device->node_type == RDMA_NODE_IB_SWITCH) ?
1842 0 : device->phys_port_cnt;
1843}
1844
5ede9289 1845static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num)
de66be94 1846{
f9b22e35 1847 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IB;
de66be94
MW
1848}
1849
5ede9289 1850static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num)
de66be94 1851{
f9b22e35 1852 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE;
de66be94
MW
1853}
1854
5ede9289 1855static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num)
de66be94 1856{
f9b22e35 1857 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IWARP;
de66be94
MW
1858}
1859
5ede9289 1860static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num)
de66be94 1861{
f9b22e35
IW
1862 return device->port_immutable[port_num].core_cap_flags &
1863 (RDMA_CORE_CAP_PROT_IB | RDMA_CORE_CAP_PROT_ROCE);
de66be94
MW
1864}
1865
c757dea8 1866/**
296ec009 1867 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
c757dea8 1868 * Management Datagrams.
296ec009
MW
1869 * @device: Device to check
1870 * @port_num: Port number to check
c757dea8 1871 *
296ec009
MW
1872 * Management Datagrams (MAD) are a required part of the InfiniBand
1873 * specification and are supported on all InfiniBand devices. A slightly
1874 * extended version are also supported on OPA interfaces.
c757dea8 1875 *
296ec009 1876 * Return: true if the port supports sending/receiving of MAD packets.
c757dea8 1877 */
5ede9289 1878static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num)
c757dea8 1879{
f9b22e35 1880 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_MAD;
c757dea8
MW
1881}
1882
29541e3a 1883/**
296ec009
MW
1884 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
1885 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
1886 * @device: Device to check
1887 * @port_num: Port number to check
29541e3a 1888 *
296ec009
MW
1889 * Each InfiniBand node is required to provide a Subnet Management Agent
1890 * that the subnet manager can access. Prior to the fabric being fully
1891 * configured by the subnet manager, the SMA is accessed via a well known
1892 * interface called the Subnet Management Interface (SMI). This interface
1893 * uses directed route packets to communicate with the SM to get around the
1894 * chicken and egg problem of the SM needing to know what's on the fabric
1895 * in order to configure the fabric, and needing to configure the fabric in
1896 * order to send packets to the devices on the fabric. These directed
1897 * route packets do not need the fabric fully configured in order to reach
1898 * their destination. The SMI is the only method allowed to send
1899 * directed route packets on an InfiniBand fabric.
29541e3a 1900 *
296ec009 1901 * Return: true if the port provides an SMI.
29541e3a 1902 */
5ede9289 1903static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num)
29541e3a 1904{
f9b22e35 1905 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SMI;
29541e3a
MW
1906}
1907
72219cea
MW
1908/**
1909 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
1910 * Communication Manager.
296ec009
MW
1911 * @device: Device to check
1912 * @port_num: Port number to check
72219cea 1913 *
296ec009
MW
1914 * The InfiniBand Communication Manager is one of many pre-defined General
1915 * Service Agents (GSA) that are accessed via the General Service
1916 * Interface (GSI). It's role is to facilitate establishment of connections
1917 * between nodes as well as other management related tasks for established
1918 * connections.
72219cea 1919 *
296ec009
MW
1920 * Return: true if the port supports an IB CM (this does not guarantee that
1921 * a CM is actually running however).
72219cea 1922 */
5ede9289 1923static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num)
72219cea 1924{
f9b22e35 1925 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_CM;
72219cea
MW
1926}
1927
04215330
MW
1928/**
1929 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
1930 * Communication Manager.
296ec009
MW
1931 * @device: Device to check
1932 * @port_num: Port number to check
04215330 1933 *
296ec009
MW
1934 * Similar to above, but specific to iWARP connections which have a different
1935 * managment protocol than InfiniBand.
04215330 1936 *
296ec009
MW
1937 * Return: true if the port supports an iWARP CM (this does not guarantee that
1938 * a CM is actually running however).
04215330 1939 */
5ede9289 1940static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num)
04215330 1941{
f9b22e35 1942 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IW_CM;
04215330
MW
1943}
1944
fe53ba2f
MW
1945/**
1946 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
1947 * Subnet Administration.
296ec009
MW
1948 * @device: Device to check
1949 * @port_num: Port number to check
fe53ba2f 1950 *
296ec009
MW
1951 * An InfiniBand Subnet Administration (SA) service is a pre-defined General
1952 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand
1953 * fabrics, devices should resolve routes to other hosts by contacting the
1954 * SA to query the proper route.
fe53ba2f 1955 *
296ec009
MW
1956 * Return: true if the port should act as a client to the fabric Subnet
1957 * Administration interface. This does not imply that the SA service is
1958 * running locally.
fe53ba2f 1959 */
5ede9289 1960static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num)
fe53ba2f 1961{
f9b22e35 1962 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SA;
fe53ba2f
MW
1963}
1964
a31ad3b0
MW
1965/**
1966 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
1967 * Multicast.
296ec009
MW
1968 * @device: Device to check
1969 * @port_num: Port number to check
a31ad3b0 1970 *
296ec009
MW
1971 * InfiniBand multicast registration is more complex than normal IPv4 or
1972 * IPv6 multicast registration. Each Host Channel Adapter must register
1973 * with the Subnet Manager when it wishes to join a multicast group. It
1974 * should do so only once regardless of how many queue pairs it subscribes
1975 * to this group. And it should leave the group only after all queue pairs
1976 * attached to the group have been detached.
a31ad3b0 1977 *
296ec009
MW
1978 * Return: true if the port must undertake the additional adminstrative
1979 * overhead of registering/unregistering with the SM and tracking of the
1980 * total number of queue pairs attached to the multicast group.
a31ad3b0 1981 */
5ede9289 1982static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num)
a31ad3b0
MW
1983{
1984 return rdma_cap_ib_sa(device, port_num);
1985}
1986
30a74ef4
MW
1987/**
1988 * rdma_cap_af_ib - Check if the port of device has the capability
1989 * Native Infiniband Address.
296ec009
MW
1990 * @device: Device to check
1991 * @port_num: Port number to check
30a74ef4 1992 *
296ec009
MW
1993 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
1994 * GID. RoCE uses a different mechanism, but still generates a GID via
1995 * a prescribed mechanism and port specific data.
30a74ef4 1996 *
296ec009
MW
1997 * Return: true if the port uses a GID address to identify devices on the
1998 * network.
30a74ef4 1999 */
5ede9289 2000static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num)
30a74ef4 2001{
f9b22e35 2002 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_AF_IB;
30a74ef4
MW
2003}
2004
227128fc
MW
2005/**
2006 * rdma_cap_eth_ah - Check if the port of device has the capability
296ec009
MW
2007 * Ethernet Address Handle.
2008 * @device: Device to check
2009 * @port_num: Port number to check
227128fc 2010 *
296ec009
MW
2011 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
2012 * to fabricate GIDs over Ethernet/IP specific addresses native to the
2013 * port. Normally, packet headers are generated by the sending host
2014 * adapter, but when sending connectionless datagrams, we must manually
2015 * inject the proper headers for the fabric we are communicating over.
227128fc 2016 *
296ec009
MW
2017 * Return: true if we are running as a RoCE port and must force the
2018 * addition of a Global Route Header built from our Ethernet Address
2019 * Handle into our header list for connectionless packets.
227128fc 2020 */
5ede9289 2021static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num)
227128fc 2022{
f9b22e35 2023 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_ETH_AH;
227128fc
MW
2024}
2025
bc0f1d71
MW
2026/**
2027 * rdma_cap_read_multi_sge - Check if the port of device has the capability
2028 * RDMA Read Multiple Scatter-Gather Entries.
296ec009
MW
2029 * @device: Device to check
2030 * @port_num: Port number to check
bc0f1d71 2031 *
296ec009
MW
2032 * iWARP has a restriction that RDMA READ requests may only have a single
2033 * Scatter/Gather Entry (SGE) in the work request.
bc0f1d71 2034 *
296ec009
MW
2035 * NOTE: although the linux kernel currently assumes all devices are either
2036 * single SGE RDMA READ devices or identical SGE maximums for RDMA READs and
2037 * WRITEs, according to Tom Talpey, this is not accurate. There are some
2038 * devices out there that support more than a single SGE on RDMA READ
2039 * requests, but do not support the same number of SGEs as they do on
2040 * RDMA WRITE requests. The linux kernel would need rearchitecting to
2041 * support these imbalanced READ/WRITE SGEs allowed devices. So, for now,
2042 * suffice with either the device supports the same READ/WRITE SGEs, or
2043 * it only gets one READ sge.
2044 *
2045 * Return: true for any device that allows more than one SGE in RDMA READ
2046 * requests.
bc0f1d71
MW
2047 */
2048static inline bool rdma_cap_read_multi_sge(struct ib_device *device,
2049 u8 port_num)
2050{
f9b22e35 2051 return !(device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IWARP);
bc0f1d71
MW
2052}
2053
1da177e4
LT
2054int ib_query_gid(struct ib_device *device,
2055 u8 port_num, int index, union ib_gid *gid);
2056
2057int ib_query_pkey(struct ib_device *device,
2058 u8 port_num, u16 index, u16 *pkey);
2059
2060int ib_modify_device(struct ib_device *device,
2061 int device_modify_mask,
2062 struct ib_device_modify *device_modify);
2063
2064int ib_modify_port(struct ib_device *device,
2065 u8 port_num, int port_modify_mask,
2066 struct ib_port_modify *port_modify);
2067
5eb620c8
YE
2068int ib_find_gid(struct ib_device *device, union ib_gid *gid,
2069 u8 *port_num, u16 *index);
2070
2071int ib_find_pkey(struct ib_device *device,
2072 u8 port_num, u16 pkey, u16 *index);
2073
1da177e4
LT
2074/**
2075 * ib_alloc_pd - Allocates an unused protection domain.
2076 * @device: The device on which to allocate the protection domain.
2077 *
2078 * A protection domain object provides an association between QPs, shared
2079 * receive queues, address handles, memory regions, and memory windows.
2080 */
2081struct ib_pd *ib_alloc_pd(struct ib_device *device);
2082
2083/**
2084 * ib_dealloc_pd - Deallocates a protection domain.
2085 * @pd: The protection domain to deallocate.
2086 */
2087int ib_dealloc_pd(struct ib_pd *pd);
2088
2089/**
2090 * ib_create_ah - Creates an address handle for the given address vector.
2091 * @pd: The protection domain associated with the address handle.
2092 * @ah_attr: The attributes of the address vector.
2093 *
2094 * The address handle is used to reference a local or global destination
2095 * in all UD QP post sends.
2096 */
2097struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr);
2098
4e00d694
SH
2099/**
2100 * ib_init_ah_from_wc - Initializes address handle attributes from a
2101 * work completion.
2102 * @device: Device on which the received message arrived.
2103 * @port_num: Port on which the received message arrived.
2104 * @wc: Work completion associated with the received message.
2105 * @grh: References the received global route header. This parameter is
2106 * ignored unless the work completion indicates that the GRH is valid.
2107 * @ah_attr: Returned attributes that can be used when creating an address
2108 * handle for replying to the message.
2109 */
73cdaaee
IW
2110int ib_init_ah_from_wc(struct ib_device *device, u8 port_num,
2111 const struct ib_wc *wc, const struct ib_grh *grh,
2112 struct ib_ah_attr *ah_attr);
4e00d694 2113
513789ed
HR
2114/**
2115 * ib_create_ah_from_wc - Creates an address handle associated with the
2116 * sender of the specified work completion.
2117 * @pd: The protection domain associated with the address handle.
2118 * @wc: Work completion information associated with a received message.
2119 * @grh: References the received global route header. This parameter is
2120 * ignored unless the work completion indicates that the GRH is valid.
2121 * @port_num: The outbound port number to associate with the address.
2122 *
2123 * The address handle is used to reference a local or global destination
2124 * in all UD QP post sends.
2125 */
73cdaaee
IW
2126struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
2127 const struct ib_grh *grh, u8 port_num);
513789ed 2128
1da177e4
LT
2129/**
2130 * ib_modify_ah - Modifies the address vector associated with an address
2131 * handle.
2132 * @ah: The address handle to modify.
2133 * @ah_attr: The new address vector attributes to associate with the
2134 * address handle.
2135 */
2136int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
2137
2138/**
2139 * ib_query_ah - Queries the address vector associated with an address
2140 * handle.
2141 * @ah: The address handle to query.
2142 * @ah_attr: The address vector attributes associated with the address
2143 * handle.
2144 */
2145int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
2146
2147/**
2148 * ib_destroy_ah - Destroys an address handle.
2149 * @ah: The address handle to destroy.
2150 */
2151int ib_destroy_ah(struct ib_ah *ah);
2152
d41fcc67
RD
2153/**
2154 * ib_create_srq - Creates a SRQ associated with the specified protection
2155 * domain.
2156 * @pd: The protection domain associated with the SRQ.
abb6e9ba
DB
2157 * @srq_init_attr: A list of initial attributes required to create the
2158 * SRQ. If SRQ creation succeeds, then the attributes are updated to
2159 * the actual capabilities of the created SRQ.
d41fcc67
RD
2160 *
2161 * srq_attr->max_wr and srq_attr->max_sge are read the determine the
2162 * requested size of the SRQ, and set to the actual values allocated
2163 * on return. If ib_create_srq() succeeds, then max_wr and max_sge
2164 * will always be at least as large as the requested values.
2165 */
2166struct ib_srq *ib_create_srq(struct ib_pd *pd,
2167 struct ib_srq_init_attr *srq_init_attr);
2168
2169/**
2170 * ib_modify_srq - Modifies the attributes for the specified SRQ.
2171 * @srq: The SRQ to modify.
2172 * @srq_attr: On input, specifies the SRQ attributes to modify. On output,
2173 * the current values of selected SRQ attributes are returned.
2174 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
2175 * are being modified.
2176 *
2177 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
2178 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
2179 * the number of receives queued drops below the limit.
2180 */
2181int ib_modify_srq(struct ib_srq *srq,
2182 struct ib_srq_attr *srq_attr,
2183 enum ib_srq_attr_mask srq_attr_mask);
2184
2185/**
2186 * ib_query_srq - Returns the attribute list and current values for the
2187 * specified SRQ.
2188 * @srq: The SRQ to query.
2189 * @srq_attr: The attributes of the specified SRQ.
2190 */
2191int ib_query_srq(struct ib_srq *srq,
2192 struct ib_srq_attr *srq_attr);
2193
2194/**
2195 * ib_destroy_srq - Destroys the specified SRQ.
2196 * @srq: The SRQ to destroy.
2197 */
2198int ib_destroy_srq(struct ib_srq *srq);
2199
2200/**
2201 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
2202 * @srq: The SRQ to post the work request on.
2203 * @recv_wr: A list of work requests to post on the receive queue.
2204 * @bad_recv_wr: On an immediate failure, this parameter will reference
2205 * the work request that failed to be posted on the QP.
2206 */
2207static inline int ib_post_srq_recv(struct ib_srq *srq,
2208 struct ib_recv_wr *recv_wr,
2209 struct ib_recv_wr **bad_recv_wr)
2210{
2211 return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr);
2212}
2213
1da177e4
LT
2214/**
2215 * ib_create_qp - Creates a QP associated with the specified protection
2216 * domain.
2217 * @pd: The protection domain associated with the QP.
abb6e9ba
DB
2218 * @qp_init_attr: A list of initial attributes required to create the
2219 * QP. If QP creation succeeds, then the attributes are updated to
2220 * the actual capabilities of the created QP.
1da177e4
LT
2221 */
2222struct ib_qp *ib_create_qp(struct ib_pd *pd,
2223 struct ib_qp_init_attr *qp_init_attr);
2224
2225/**
2226 * ib_modify_qp - Modifies the attributes for the specified QP and then
2227 * transitions the QP to the given state.
2228 * @qp: The QP to modify.
2229 * @qp_attr: On input, specifies the QP attributes to modify. On output,
2230 * the current values of selected QP attributes are returned.
2231 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
2232 * are being modified.
2233 */
2234int ib_modify_qp(struct ib_qp *qp,
2235 struct ib_qp_attr *qp_attr,
2236 int qp_attr_mask);
2237
2238/**
2239 * ib_query_qp - Returns the attribute list and current values for the
2240 * specified QP.
2241 * @qp: The QP to query.
2242 * @qp_attr: The attributes of the specified QP.
2243 * @qp_attr_mask: A bit-mask used to select specific attributes to query.
2244 * @qp_init_attr: Additional attributes of the selected QP.
2245 *
2246 * The qp_attr_mask may be used to limit the query to gathering only the
2247 * selected attributes.
2248 */
2249int ib_query_qp(struct ib_qp *qp,
2250 struct ib_qp_attr *qp_attr,
2251 int qp_attr_mask,
2252 struct ib_qp_init_attr *qp_init_attr);
2253
2254/**
2255 * ib_destroy_qp - Destroys the specified QP.
2256 * @qp: The QP to destroy.
2257 */
2258int ib_destroy_qp(struct ib_qp *qp);
2259
d3d72d90 2260/**
0e0ec7e0
SH
2261 * ib_open_qp - Obtain a reference to an existing sharable QP.
2262 * @xrcd - XRC domain
2263 * @qp_open_attr: Attributes identifying the QP to open.
2264 *
2265 * Returns a reference to a sharable QP.
2266 */
2267struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
2268 struct ib_qp_open_attr *qp_open_attr);
2269
2270/**
2271 * ib_close_qp - Release an external reference to a QP.
d3d72d90
SH
2272 * @qp: The QP handle to release
2273 *
0e0ec7e0
SH
2274 * The opened QP handle is released by the caller. The underlying
2275 * shared QP is not destroyed until all internal references are released.
d3d72d90 2276 */
0e0ec7e0 2277int ib_close_qp(struct ib_qp *qp);
d3d72d90 2278
1da177e4
LT
2279/**
2280 * ib_post_send - Posts a list of work requests to the send queue of
2281 * the specified QP.
2282 * @qp: The QP to post the work request on.
2283 * @send_wr: A list of work requests to post on the send queue.
2284 * @bad_send_wr: On an immediate failure, this parameter will reference
2285 * the work request that failed to be posted on the QP.
55464d46
BVA
2286 *
2287 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
2288 * error is returned, the QP state shall not be affected,
2289 * ib_post_send() will return an immediate error after queueing any
2290 * earlier work requests in the list.
1da177e4
LT
2291 */
2292static inline int ib_post_send(struct ib_qp *qp,
2293 struct ib_send_wr *send_wr,
2294 struct ib_send_wr **bad_send_wr)
2295{
2296 return qp->device->post_send(qp, send_wr, bad_send_wr);
2297}
2298
2299/**
2300 * ib_post_recv - Posts a list of work requests to the receive queue of
2301 * the specified QP.
2302 * @qp: The QP to post the work request on.
2303 * @recv_wr: A list of work requests to post on the receive queue.
2304 * @bad_recv_wr: On an immediate failure, this parameter will reference
2305 * the work request that failed to be posted on the QP.
2306 */
2307static inline int ib_post_recv(struct ib_qp *qp,
2308 struct ib_recv_wr *recv_wr,
2309 struct ib_recv_wr **bad_recv_wr)
2310{
2311 return qp->device->post_recv(qp, recv_wr, bad_recv_wr);
2312}
2313
2314/**
2315 * ib_create_cq - Creates a CQ on the specified device.
2316 * @device: The device on which to create the CQ.
2317 * @comp_handler: A user-specified callback that is invoked when a
2318 * completion event occurs on the CQ.
2319 * @event_handler: A user-specified callback that is invoked when an
2320 * asynchronous event not associated with a completion occurs on the CQ.
2321 * @cq_context: Context associated with the CQ returned to the user via
2322 * the associated completion and event handlers.
8e37210b 2323 * @cq_attr: The attributes the CQ should be created upon.
1da177e4
LT
2324 *
2325 * Users can examine the cq structure to determine the actual CQ size.
2326 */
2327struct ib_cq *ib_create_cq(struct ib_device *device,
2328 ib_comp_handler comp_handler,
2329 void (*event_handler)(struct ib_event *, void *),
8e37210b
MB
2330 void *cq_context,
2331 const struct ib_cq_init_attr *cq_attr);
1da177e4
LT
2332
2333/**
2334 * ib_resize_cq - Modifies the capacity of the CQ.
2335 * @cq: The CQ to resize.
2336 * @cqe: The minimum size of the CQ.
2337 *
2338 * Users can examine the cq structure to determine the actual CQ size.
2339 */
2340int ib_resize_cq(struct ib_cq *cq, int cqe);
2341
2dd57162
EC
2342/**
2343 * ib_modify_cq - Modifies moderation params of the CQ
2344 * @cq: The CQ to modify.
2345 * @cq_count: number of CQEs that will trigger an event
2346 * @cq_period: max period of time in usec before triggering an event
2347 *
2348 */
2349int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period);
2350
1da177e4
LT
2351/**
2352 * ib_destroy_cq - Destroys the specified CQ.
2353 * @cq: The CQ to destroy.
2354 */
2355int ib_destroy_cq(struct ib_cq *cq);
2356
2357/**
2358 * ib_poll_cq - poll a CQ for completion(s)
2359 * @cq:the CQ being polled
2360 * @num_entries:maximum number of completions to return
2361 * @wc:array of at least @num_entries &struct ib_wc where completions
2362 * will be returned
2363 *
2364 * Poll a CQ for (possibly multiple) completions. If the return value
2365 * is < 0, an error occurred. If the return value is >= 0, it is the
2366 * number of completions returned. If the return value is
2367 * non-negative and < num_entries, then the CQ was emptied.
2368 */
2369static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
2370 struct ib_wc *wc)
2371{
2372 return cq->device->poll_cq(cq, num_entries, wc);
2373}
2374
2375/**
2376 * ib_peek_cq - Returns the number of unreaped completions currently
2377 * on the specified CQ.
2378 * @cq: The CQ to peek.
2379 * @wc_cnt: A minimum number of unreaped completions to check for.
2380 *
2381 * If the number of unreaped completions is greater than or equal to wc_cnt,
2382 * this function returns wc_cnt, otherwise, it returns the actual number of
2383 * unreaped completions.
2384 */
2385int ib_peek_cq(struct ib_cq *cq, int wc_cnt);
2386
2387/**
2388 * ib_req_notify_cq - Request completion notification on a CQ.
2389 * @cq: The CQ to generate an event for.
ed23a727
RD
2390 * @flags:
2391 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
2392 * to request an event on the next solicited event or next work
2393 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
2394 * may also be |ed in to request a hint about missed events, as
2395 * described below.
2396 *
2397 * Return Value:
2398 * < 0 means an error occurred while requesting notification
2399 * == 0 means notification was requested successfully, and if
2400 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
2401 * were missed and it is safe to wait for another event. In
2402 * this case is it guaranteed that any work completions added
2403 * to the CQ since the last CQ poll will trigger a completion
2404 * notification event.
2405 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
2406 * in. It means that the consumer must poll the CQ again to
2407 * make sure it is empty to avoid missing an event because of a
2408 * race between requesting notification and an entry being
2409 * added to the CQ. This return value means it is possible
2410 * (but not guaranteed) that a work completion has been added
2411 * to the CQ since the last poll without triggering a
2412 * completion notification event.
1da177e4
LT
2413 */
2414static inline int ib_req_notify_cq(struct ib_cq *cq,
ed23a727 2415 enum ib_cq_notify_flags flags)
1da177e4 2416{
ed23a727 2417 return cq->device->req_notify_cq(cq, flags);
1da177e4
LT
2418}
2419
2420/**
2421 * ib_req_ncomp_notif - Request completion notification when there are
2422 * at least the specified number of unreaped completions on the CQ.
2423 * @cq: The CQ to generate an event for.
2424 * @wc_cnt: The number of unreaped completions that should be on the
2425 * CQ before an event is generated.
2426 */
2427static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
2428{
2429 return cq->device->req_ncomp_notif ?
2430 cq->device->req_ncomp_notif(cq, wc_cnt) :
2431 -ENOSYS;
2432}
2433
2434/**
2435 * ib_get_dma_mr - Returns a memory region for system memory that is
2436 * usable for DMA.
2437 * @pd: The protection domain associated with the memory region.
2438 * @mr_access_flags: Specifies the memory access rights.
9b513090
RC
2439 *
2440 * Note that the ib_dma_*() functions defined below must be used
2441 * to create/destroy addresses used with the Lkey or Rkey returned
2442 * by ib_get_dma_mr().
1da177e4
LT
2443 */
2444struct ib_mr *ib_get_dma_mr(struct ib_pd *pd, int mr_access_flags);
2445
9b513090
RC
2446/**
2447 * ib_dma_mapping_error - check a DMA addr for error
2448 * @dev: The device for which the dma_addr was created
2449 * @dma_addr: The DMA address to check
2450 */
2451static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
2452{
d1998ef3
BC
2453 if (dev->dma_ops)
2454 return dev->dma_ops->mapping_error(dev, dma_addr);
8d8bb39b 2455 return dma_mapping_error(dev->dma_device, dma_addr);
9b513090
RC
2456}
2457
2458/**
2459 * ib_dma_map_single - Map a kernel virtual address to DMA address
2460 * @dev: The device for which the dma_addr is to be created
2461 * @cpu_addr: The kernel virtual address
2462 * @size: The size of the region in bytes
2463 * @direction: The direction of the DMA
2464 */
2465static inline u64 ib_dma_map_single(struct ib_device *dev,
2466 void *cpu_addr, size_t size,
2467 enum dma_data_direction direction)
2468{
d1998ef3
BC
2469 if (dev->dma_ops)
2470 return dev->dma_ops->map_single(dev, cpu_addr, size, direction);
2471 return dma_map_single(dev->dma_device, cpu_addr, size, direction);
9b513090
RC
2472}
2473
2474/**
2475 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
2476 * @dev: The device for which the DMA address was created
2477 * @addr: The DMA address
2478 * @size: The size of the region in bytes
2479 * @direction: The direction of the DMA
2480 */
2481static inline void ib_dma_unmap_single(struct ib_device *dev,
2482 u64 addr, size_t size,
2483 enum dma_data_direction direction)
2484{
d1998ef3
BC
2485 if (dev->dma_ops)
2486 dev->dma_ops->unmap_single(dev, addr, size, direction);
2487 else
9b513090
RC
2488 dma_unmap_single(dev->dma_device, addr, size, direction);
2489}
2490
cb9fbc5c
AK
2491static inline u64 ib_dma_map_single_attrs(struct ib_device *dev,
2492 void *cpu_addr, size_t size,
2493 enum dma_data_direction direction,
2494 struct dma_attrs *attrs)
2495{
2496 return dma_map_single_attrs(dev->dma_device, cpu_addr, size,
2497 direction, attrs);
2498}
2499
2500static inline void ib_dma_unmap_single_attrs(struct ib_device *dev,
2501 u64 addr, size_t size,
2502 enum dma_data_direction direction,
2503 struct dma_attrs *attrs)
2504{
2505 return dma_unmap_single_attrs(dev->dma_device, addr, size,
2506 direction, attrs);
2507}
2508
9b513090
RC
2509/**
2510 * ib_dma_map_page - Map a physical page to DMA address
2511 * @dev: The device for which the dma_addr is to be created
2512 * @page: The page to be mapped
2513 * @offset: The offset within the page
2514 * @size: The size of the region in bytes
2515 * @direction: The direction of the DMA
2516 */
2517static inline u64 ib_dma_map_page(struct ib_device *dev,
2518 struct page *page,
2519 unsigned long offset,
2520 size_t size,
2521 enum dma_data_direction direction)
2522{
d1998ef3
BC
2523 if (dev->dma_ops)
2524 return dev->dma_ops->map_page(dev, page, offset, size, direction);
2525 return dma_map_page(dev->dma_device, page, offset, size, direction);
9b513090
RC
2526}
2527
2528/**
2529 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
2530 * @dev: The device for which the DMA address was created
2531 * @addr: The DMA address
2532 * @size: The size of the region in bytes
2533 * @direction: The direction of the DMA
2534 */
2535static inline void ib_dma_unmap_page(struct ib_device *dev,
2536 u64 addr, size_t size,
2537 enum dma_data_direction direction)
2538{
d1998ef3
BC
2539 if (dev->dma_ops)
2540 dev->dma_ops->unmap_page(dev, addr, size, direction);
2541 else
9b513090
RC
2542 dma_unmap_page(dev->dma_device, addr, size, direction);
2543}
2544
2545/**
2546 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
2547 * @dev: The device for which the DMA addresses are to be created
2548 * @sg: The array of scatter/gather entries
2549 * @nents: The number of scatter/gather entries
2550 * @direction: The direction of the DMA
2551 */
2552static inline int ib_dma_map_sg(struct ib_device *dev,
2553 struct scatterlist *sg, int nents,
2554 enum dma_data_direction direction)
2555{
d1998ef3
BC
2556 if (dev->dma_ops)
2557 return dev->dma_ops->map_sg(dev, sg, nents, direction);
2558 return dma_map_sg(dev->dma_device, sg, nents, direction);
9b513090
RC
2559}
2560
2561/**
2562 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
2563 * @dev: The device for which the DMA addresses were created
2564 * @sg: The array of scatter/gather entries
2565 * @nents: The number of scatter/gather entries
2566 * @direction: The direction of the DMA
2567 */
2568static inline void ib_dma_unmap_sg(struct ib_device *dev,
2569 struct scatterlist *sg, int nents,
2570 enum dma_data_direction direction)
2571{
d1998ef3
BC
2572 if (dev->dma_ops)
2573 dev->dma_ops->unmap_sg(dev, sg, nents, direction);
2574 else
9b513090
RC
2575 dma_unmap_sg(dev->dma_device, sg, nents, direction);
2576}
2577
cb9fbc5c
AK
2578static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
2579 struct scatterlist *sg, int nents,
2580 enum dma_data_direction direction,
2581 struct dma_attrs *attrs)
2582{
2583 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, attrs);
2584}
2585
2586static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
2587 struct scatterlist *sg, int nents,
2588 enum dma_data_direction direction,
2589 struct dma_attrs *attrs)
2590{
2591 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, attrs);
2592}
9b513090
RC
2593/**
2594 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry
2595 * @dev: The device for which the DMA addresses were created
2596 * @sg: The scatter/gather entry
ea58a595
MM
2597 *
2598 * Note: this function is obsolete. To do: change all occurrences of
2599 * ib_sg_dma_address() into sg_dma_address().
9b513090
RC
2600 */
2601static inline u64 ib_sg_dma_address(struct ib_device *dev,
2602 struct scatterlist *sg)
2603{
d1998ef3 2604 return sg_dma_address(sg);
9b513090
RC
2605}
2606
2607/**
2608 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry
2609 * @dev: The device for which the DMA addresses were created
2610 * @sg: The scatter/gather entry
ea58a595
MM
2611 *
2612 * Note: this function is obsolete. To do: change all occurrences of
2613 * ib_sg_dma_len() into sg_dma_len().
9b513090
RC
2614 */
2615static inline unsigned int ib_sg_dma_len(struct ib_device *dev,
2616 struct scatterlist *sg)
2617{
d1998ef3 2618 return sg_dma_len(sg);
9b513090
RC
2619}
2620
2621/**
2622 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
2623 * @dev: The device for which the DMA address was created
2624 * @addr: The DMA address
2625 * @size: The size of the region in bytes
2626 * @dir: The direction of the DMA
2627 */
2628static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
2629 u64 addr,
2630 size_t size,
2631 enum dma_data_direction dir)
2632{
d1998ef3
BC
2633 if (dev->dma_ops)
2634 dev->dma_ops->sync_single_for_cpu(dev, addr, size, dir);
2635 else
9b513090
RC
2636 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
2637}
2638
2639/**
2640 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
2641 * @dev: The device for which the DMA address was created
2642 * @addr: The DMA address
2643 * @size: The size of the region in bytes
2644 * @dir: The direction of the DMA
2645 */
2646static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
2647 u64 addr,
2648 size_t size,
2649 enum dma_data_direction dir)
2650{
d1998ef3
BC
2651 if (dev->dma_ops)
2652 dev->dma_ops->sync_single_for_device(dev, addr, size, dir);
2653 else
9b513090
RC
2654 dma_sync_single_for_device(dev->dma_device, addr, size, dir);
2655}
2656
2657/**
2658 * ib_dma_alloc_coherent - Allocate memory and map it for DMA
2659 * @dev: The device for which the DMA address is requested
2660 * @size: The size of the region to allocate in bytes
2661 * @dma_handle: A pointer for returning the DMA address of the region
2662 * @flag: memory allocator flags
2663 */
2664static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
2665 size_t size,
2666 u64 *dma_handle,
2667 gfp_t flag)
2668{
d1998ef3
BC
2669 if (dev->dma_ops)
2670 return dev->dma_ops->alloc_coherent(dev, size, dma_handle, flag);
c59a3da1
RD
2671 else {
2672 dma_addr_t handle;
2673 void *ret;
2674
2675 ret = dma_alloc_coherent(dev->dma_device, size, &handle, flag);
2676 *dma_handle = handle;
2677 return ret;
2678 }
9b513090
RC
2679}
2680
2681/**
2682 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
2683 * @dev: The device for which the DMA addresses were allocated
2684 * @size: The size of the region
2685 * @cpu_addr: the address returned by ib_dma_alloc_coherent()
2686 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
2687 */
2688static inline void ib_dma_free_coherent(struct ib_device *dev,
2689 size_t size, void *cpu_addr,
2690 u64 dma_handle)
2691{
d1998ef3
BC
2692 if (dev->dma_ops)
2693 dev->dma_ops->free_coherent(dev, size, cpu_addr, dma_handle);
2694 else
9b513090
RC
2695 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
2696}
2697
1da177e4
LT
2698/**
2699 * ib_reg_phys_mr - Prepares a virtually addressed memory region for use
2700 * by an HCA.
2701 * @pd: The protection domain associated assigned to the registered region.
2702 * @phys_buf_array: Specifies a list of physical buffers to use in the
2703 * memory region.
2704 * @num_phys_buf: Specifies the size of the phys_buf_array.
2705 * @mr_access_flags: Specifies the memory access rights.
2706 * @iova_start: The offset of the region's starting I/O virtual address.
2707 */
2708struct ib_mr *ib_reg_phys_mr(struct ib_pd *pd,
2709 struct ib_phys_buf *phys_buf_array,
2710 int num_phys_buf,
2711 int mr_access_flags,
2712 u64 *iova_start);
2713
2714/**
2715 * ib_rereg_phys_mr - Modifies the attributes of an existing memory region.
2716 * Conceptually, this call performs the functions deregister memory region
2717 * followed by register physical memory region. Where possible,
2718 * resources are reused instead of deallocated and reallocated.
2719 * @mr: The memory region to modify.
2720 * @mr_rereg_mask: A bit-mask used to indicate which of the following
2721 * properties of the memory region are being modified.
2722 * @pd: If %IB_MR_REREG_PD is set in mr_rereg_mask, this field specifies
2723 * the new protection domain to associated with the memory region,
2724 * otherwise, this parameter is ignored.
2725 * @phys_buf_array: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this
2726 * field specifies a list of physical buffers to use in the new
2727 * translation, otherwise, this parameter is ignored.
2728 * @num_phys_buf: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this
2729 * field specifies the size of the phys_buf_array, otherwise, this
2730 * parameter is ignored.
2731 * @mr_access_flags: If %IB_MR_REREG_ACCESS is set in mr_rereg_mask, this
2732 * field specifies the new memory access rights, otherwise, this
2733 * parameter is ignored.
2734 * @iova_start: The offset of the region's starting I/O virtual address.
2735 */
2736int ib_rereg_phys_mr(struct ib_mr *mr,
2737 int mr_rereg_mask,
2738 struct ib_pd *pd,
2739 struct ib_phys_buf *phys_buf_array,
2740 int num_phys_buf,
2741 int mr_access_flags,
2742 u64 *iova_start);
2743
2744/**
2745 * ib_query_mr - Retrieves information about a specific memory region.
2746 * @mr: The memory region to retrieve information about.
2747 * @mr_attr: The attributes of the specified memory region.
2748 */
2749int ib_query_mr(struct ib_mr *mr, struct ib_mr_attr *mr_attr);
2750
2751/**
2752 * ib_dereg_mr - Deregisters a memory region and removes it from the
2753 * HCA translation table.
2754 * @mr: The memory region to deregister.
7083e42e
SM
2755 *
2756 * This function can fail, if the memory region has memory windows bound to it.
1da177e4
LT
2757 */
2758int ib_dereg_mr(struct ib_mr *mr);
2759
17cd3a2d
SG
2760
2761/**
2762 * ib_create_mr - Allocates a memory region that may be used for
2763 * signature handover operations.
2764 * @pd: The protection domain associated with the region.
2765 * @mr_init_attr: memory region init attributes.
2766 */
2767struct ib_mr *ib_create_mr(struct ib_pd *pd,
2768 struct ib_mr_init_attr *mr_init_attr);
2769
2770/**
2771 * ib_destroy_mr - Destroys a memory region that was created using
2772 * ib_create_mr and removes it from HW translation tables.
2773 * @mr: The memory region to destroy.
2774 *
2775 * This function can fail, if the memory region has memory windows bound to it.
2776 */
2777int ib_destroy_mr(struct ib_mr *mr);
2778
00f7ec36
SW
2779/**
2780 * ib_alloc_fast_reg_mr - Allocates memory region usable with the
2781 * IB_WR_FAST_REG_MR send work request.
2782 * @pd: The protection domain associated with the region.
2783 * @max_page_list_len: requested max physical buffer list length to be
2784 * used with fast register work requests for this MR.
2785 */
2786struct ib_mr *ib_alloc_fast_reg_mr(struct ib_pd *pd, int max_page_list_len);
2787
2788/**
2789 * ib_alloc_fast_reg_page_list - Allocates a page list array
2790 * @device - ib device pointer.
2791 * @page_list_len - size of the page list array to be allocated.
2792 *
2793 * This allocates and returns a struct ib_fast_reg_page_list * and a
2794 * page_list array that is at least page_list_len in size. The actual
2795 * size is returned in max_page_list_len. The caller is responsible
2796 * for initializing the contents of the page_list array before posting
2797 * a send work request with the IB_WC_FAST_REG_MR opcode.
2798 *
2799 * The page_list array entries must be translated using one of the
2800 * ib_dma_*() functions just like the addresses passed to
2801 * ib_map_phys_fmr(). Once the ib_post_send() is issued, the struct
2802 * ib_fast_reg_page_list must not be modified by the caller until the
2803 * IB_WC_FAST_REG_MR work request completes.
2804 */
2805struct ib_fast_reg_page_list *ib_alloc_fast_reg_page_list(
2806 struct ib_device *device, int page_list_len);
2807
2808/**
2809 * ib_free_fast_reg_page_list - Deallocates a previously allocated
2810 * page list array.
2811 * @page_list - struct ib_fast_reg_page_list pointer to be deallocated.
2812 */
2813void ib_free_fast_reg_page_list(struct ib_fast_reg_page_list *page_list);
2814
2815/**
2816 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
2817 * R_Key and L_Key.
2818 * @mr - struct ib_mr pointer to be updated.
2819 * @newkey - new key to be used.
2820 */
2821static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
2822{
2823 mr->lkey = (mr->lkey & 0xffffff00) | newkey;
2824 mr->rkey = (mr->rkey & 0xffffff00) | newkey;
2825}
2826
7083e42e
SM
2827/**
2828 * ib_inc_rkey - increments the key portion of the given rkey. Can be used
2829 * for calculating a new rkey for type 2 memory windows.
2830 * @rkey - the rkey to increment.
2831 */
2832static inline u32 ib_inc_rkey(u32 rkey)
2833{
2834 const u32 mask = 0x000000ff;
2835 return ((rkey + 1) & mask) | (rkey & ~mask);
2836}
2837
1da177e4
LT
2838/**
2839 * ib_alloc_mw - Allocates a memory window.
2840 * @pd: The protection domain associated with the memory window.
7083e42e 2841 * @type: The type of the memory window (1 or 2).
1da177e4 2842 */
7083e42e 2843struct ib_mw *ib_alloc_mw(struct ib_pd *pd, enum ib_mw_type type);
1da177e4
LT
2844
2845/**
2846 * ib_bind_mw - Posts a work request to the send queue of the specified
2847 * QP, which binds the memory window to the given address range and
2848 * remote access attributes.
2849 * @qp: QP to post the bind work request on.
2850 * @mw: The memory window to bind.
2851 * @mw_bind: Specifies information about the memory window, including
2852 * its address range, remote access rights, and associated memory region.
7083e42e
SM
2853 *
2854 * If there is no immediate error, the function will update the rkey member
2855 * of the mw parameter to its new value. The bind operation can still fail
2856 * asynchronously.
1da177e4
LT
2857 */
2858static inline int ib_bind_mw(struct ib_qp *qp,
2859 struct ib_mw *mw,
2860 struct ib_mw_bind *mw_bind)
2861{
2862 /* XXX reference counting in corresponding MR? */
2863 return mw->device->bind_mw ?
2864 mw->device->bind_mw(qp, mw, mw_bind) :
2865 -ENOSYS;
2866}
2867
2868/**
2869 * ib_dealloc_mw - Deallocates a memory window.
2870 * @mw: The memory window to deallocate.
2871 */
2872int ib_dealloc_mw(struct ib_mw *mw);
2873
2874/**
2875 * ib_alloc_fmr - Allocates a unmapped fast memory region.
2876 * @pd: The protection domain associated with the unmapped region.
2877 * @mr_access_flags: Specifies the memory access rights.
2878 * @fmr_attr: Attributes of the unmapped region.
2879 *
2880 * A fast memory region must be mapped before it can be used as part of
2881 * a work request.
2882 */
2883struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
2884 int mr_access_flags,
2885 struct ib_fmr_attr *fmr_attr);
2886
2887/**
2888 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region.
2889 * @fmr: The fast memory region to associate with the pages.
2890 * @page_list: An array of physical pages to map to the fast memory region.
2891 * @list_len: The number of pages in page_list.
2892 * @iova: The I/O virtual address to use with the mapped region.
2893 */
2894static inline int ib_map_phys_fmr(struct ib_fmr *fmr,
2895 u64 *page_list, int list_len,
2896 u64 iova)
2897{
2898 return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova);
2899}
2900
2901/**
2902 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions.
2903 * @fmr_list: A linked list of fast memory regions to unmap.
2904 */
2905int ib_unmap_fmr(struct list_head *fmr_list);
2906
2907/**
2908 * ib_dealloc_fmr - Deallocates a fast memory region.
2909 * @fmr: The fast memory region to deallocate.
2910 */
2911int ib_dealloc_fmr(struct ib_fmr *fmr);
2912
2913/**
2914 * ib_attach_mcast - Attaches the specified QP to a multicast group.
2915 * @qp: QP to attach to the multicast group. The QP must be type
2916 * IB_QPT_UD.
2917 * @gid: Multicast group GID.
2918 * @lid: Multicast group LID in host byte order.
2919 *
2920 * In order to send and receive multicast packets, subnet
2921 * administration must have created the multicast group and configured
2922 * the fabric appropriately. The port associated with the specified
2923 * QP must also be a member of the multicast group.
2924 */
2925int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2926
2927/**
2928 * ib_detach_mcast - Detaches the specified QP from a multicast group.
2929 * @qp: QP to detach from the multicast group.
2930 * @gid: Multicast group GID.
2931 * @lid: Multicast group LID in host byte order.
2932 */
2933int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2934
59991f94
SH
2935/**
2936 * ib_alloc_xrcd - Allocates an XRC domain.
2937 * @device: The device on which to allocate the XRC domain.
2938 */
2939struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device);
2940
2941/**
2942 * ib_dealloc_xrcd - Deallocates an XRC domain.
2943 * @xrcd: The XRC domain to deallocate.
2944 */
2945int ib_dealloc_xrcd(struct ib_xrcd *xrcd);
2946
319a441d
HHZ
2947struct ib_flow *ib_create_flow(struct ib_qp *qp,
2948 struct ib_flow_attr *flow_attr, int domain);
2949int ib_destroy_flow(struct ib_flow *flow_id);
2950
1c636f80
EC
2951static inline int ib_check_mr_access(int flags)
2952{
2953 /*
2954 * Local write permission is required if remote write or
2955 * remote atomic permission is also requested.
2956 */
2957 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
2958 !(flags & IB_ACCESS_LOCAL_WRITE))
2959 return -EINVAL;
2960
2961 return 0;
2962}
2963
1b01d335
SG
2964/**
2965 * ib_check_mr_status: lightweight check of MR status.
2966 * This routine may provide status checks on a selected
2967 * ib_mr. first use is for signature status check.
2968 *
2969 * @mr: A memory region.
2970 * @check_mask: Bitmask of which checks to perform from
2971 * ib_mr_status_check enumeration.
2972 * @mr_status: The container of relevant status checks.
2973 * failed checks will be indicated in the status bitmask
2974 * and the relevant info shall be in the error item.
2975 */
2976int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
2977 struct ib_mr_status *mr_status);
2978
1da177e4 2979#endif /* IB_VERBS_H */
This page took 0.801099 seconds and 5 git commands to generate.