IB/mlx5: Add create_cq extended command
[deliverable/linux.git] / include / rdma / ib_verbs.h
CommitLineData
1da177e4
LT
1/*
2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
4 * Copyright (c) 2004 Intel Corporation. All rights reserved.
5 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
2a1d9b7f 7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
f7c6a7b5 8 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved.
1da177e4
LT
9 *
10 * This software is available to you under a choice of one of two
11 * licenses. You may choose to be licensed under the terms of the GNU
12 * General Public License (GPL) Version 2, available from the file
13 * COPYING in the main directory of this source tree, or the
14 * OpenIB.org BSD license below:
15 *
16 * Redistribution and use in source and binary forms, with or
17 * without modification, are permitted provided that the following
18 * conditions are met:
19 *
20 * - Redistributions of source code must retain the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer.
23 *
24 * - Redistributions in binary form must reproduce the above
25 * copyright notice, this list of conditions and the following
26 * disclaimer in the documentation and/or other materials
27 * provided with the distribution.
28 *
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36 * SOFTWARE.
1da177e4
LT
37 */
38
39#if !defined(IB_VERBS_H)
40#define IB_VERBS_H
41
42#include <linux/types.h>
43#include <linux/device.h>
9b513090
RC
44#include <linux/mm.h>
45#include <linux/dma-mapping.h>
459d6e2a 46#include <linux/kref.h>
bfb3ea12
DB
47#include <linux/list.h>
48#include <linux/rwsem.h>
87ae9afd 49#include <linux/scatterlist.h>
f0626710 50#include <linux/workqueue.h>
9268f72d 51#include <linux/socket.h>
14d3a3b2 52#include <linux/irq_poll.h>
dd5f03be 53#include <uapi/linux/if_ether.h>
c865f246
SK
54#include <net/ipv6.h>
55#include <net/ip.h>
e2773c06 56
60063497 57#include <linux/atomic.h>
882214e2 58#include <linux/mmu_notifier.h>
e2773c06 59#include <asm/uaccess.h>
1da177e4 60
f0626710 61extern struct workqueue_struct *ib_wq;
14d3a3b2 62extern struct workqueue_struct *ib_comp_wq;
f0626710 63
1da177e4
LT
64union ib_gid {
65 u8 raw[16];
66 struct {
97f52eb4
SH
67 __be64 subnet_prefix;
68 __be64 interface_id;
1da177e4
LT
69 } global;
70};
71
e26be1bf
MS
72extern union ib_gid zgid;
73
b39ffa1d
MB
74enum ib_gid_type {
75 /* If link layer is Ethernet, this is RoCE V1 */
76 IB_GID_TYPE_IB = 0,
77 IB_GID_TYPE_ROCE = 0,
7766a99f 78 IB_GID_TYPE_ROCE_UDP_ENCAP = 1,
b39ffa1d
MB
79 IB_GID_TYPE_SIZE
80};
81
03db3a2d 82struct ib_gid_attr {
b39ffa1d 83 enum ib_gid_type gid_type;
03db3a2d
MB
84 struct net_device *ndev;
85};
86
07ebafba
TT
87enum rdma_node_type {
88 /* IB values map to NodeInfo:NodeType. */
89 RDMA_NODE_IB_CA = 1,
90 RDMA_NODE_IB_SWITCH,
91 RDMA_NODE_IB_ROUTER,
180771a3
UM
92 RDMA_NODE_RNIC,
93 RDMA_NODE_USNIC,
5db5765e 94 RDMA_NODE_USNIC_UDP,
1da177e4
LT
95};
96
07ebafba
TT
97enum rdma_transport_type {
98 RDMA_TRANSPORT_IB,
180771a3 99 RDMA_TRANSPORT_IWARP,
248567f7
UM
100 RDMA_TRANSPORT_USNIC,
101 RDMA_TRANSPORT_USNIC_UDP
07ebafba
TT
102};
103
6b90a6d6
MW
104enum rdma_protocol_type {
105 RDMA_PROTOCOL_IB,
106 RDMA_PROTOCOL_IBOE,
107 RDMA_PROTOCOL_IWARP,
108 RDMA_PROTOCOL_USNIC_UDP
109};
110
8385fd84
RD
111__attribute_const__ enum rdma_transport_type
112rdma_node_get_transport(enum rdma_node_type node_type);
07ebafba 113
c865f246
SK
114enum rdma_network_type {
115 RDMA_NETWORK_IB,
116 RDMA_NETWORK_ROCE_V1 = RDMA_NETWORK_IB,
117 RDMA_NETWORK_IPV4,
118 RDMA_NETWORK_IPV6
119};
120
121static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type)
122{
123 if (network_type == RDMA_NETWORK_IPV4 ||
124 network_type == RDMA_NETWORK_IPV6)
125 return IB_GID_TYPE_ROCE_UDP_ENCAP;
126
127 /* IB_GID_TYPE_IB same as RDMA_NETWORK_ROCE_V1 */
128 return IB_GID_TYPE_IB;
129}
130
131static inline enum rdma_network_type ib_gid_to_network_type(enum ib_gid_type gid_type,
132 union ib_gid *gid)
133{
134 if (gid_type == IB_GID_TYPE_IB)
135 return RDMA_NETWORK_IB;
136
137 if (ipv6_addr_v4mapped((struct in6_addr *)gid))
138 return RDMA_NETWORK_IPV4;
139 else
140 return RDMA_NETWORK_IPV6;
141}
142
a3f5adaf
EC
143enum rdma_link_layer {
144 IB_LINK_LAYER_UNSPECIFIED,
145 IB_LINK_LAYER_INFINIBAND,
146 IB_LINK_LAYER_ETHERNET,
147};
148
1da177e4
LT
149enum ib_device_cap_flags {
150 IB_DEVICE_RESIZE_MAX_WR = 1,
151 IB_DEVICE_BAD_PKEY_CNTR = (1<<1),
152 IB_DEVICE_BAD_QKEY_CNTR = (1<<2),
153 IB_DEVICE_RAW_MULTI = (1<<3),
154 IB_DEVICE_AUTO_PATH_MIG = (1<<4),
155 IB_DEVICE_CHANGE_PHY_PORT = (1<<5),
156 IB_DEVICE_UD_AV_PORT_ENFORCE = (1<<6),
157 IB_DEVICE_CURR_QP_STATE_MOD = (1<<7),
158 IB_DEVICE_SHUTDOWN_PORT = (1<<8),
159 IB_DEVICE_INIT_TYPE = (1<<9),
160 IB_DEVICE_PORT_ACTIVE_EVENT = (1<<10),
161 IB_DEVICE_SYS_IMAGE_GUID = (1<<11),
162 IB_DEVICE_RC_RNR_NAK_GEN = (1<<12),
163 IB_DEVICE_SRQ_RESIZE = (1<<13),
164 IB_DEVICE_N_NOTIFY_CQ = (1<<14),
b1adc714
CH
165
166 /*
167 * This device supports a per-device lkey or stag that can be
168 * used without performing a memory registration for the local
169 * memory. Note that ULPs should never check this flag, but
170 * instead of use the local_dma_lkey flag in the ib_pd structure,
171 * which will always contain a usable lkey.
172 */
96f15c03 173 IB_DEVICE_LOCAL_DMA_LKEY = (1<<15),
0f39cf3d 174 IB_DEVICE_RESERVED = (1<<16), /* old SEND_W_INV */
e0605d91
EC
175 IB_DEVICE_MEM_WINDOW = (1<<17),
176 /*
177 * Devices should set IB_DEVICE_UD_IP_SUM if they support
178 * insertion of UDP and TCP checksum on outgoing UD IPoIB
179 * messages and can verify the validity of checksum for
180 * incoming messages. Setting this flag implies that the
181 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
182 */
183 IB_DEVICE_UD_IP_CSUM = (1<<18),
c93570f2 184 IB_DEVICE_UD_TSO = (1<<19),
59991f94 185 IB_DEVICE_XRC = (1<<20),
b1adc714
CH
186
187 /*
188 * This device supports the IB "base memory management extension",
189 * which includes support for fast registrations (IB_WR_REG_MR,
190 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs). This flag should
191 * also be set by any iWarp device which must support FRs to comply
192 * to the iWarp verbs spec. iWarp devices also support the
193 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the
194 * stag.
195 */
00f7ec36 196 IB_DEVICE_MEM_MGT_EXTENSIONS = (1<<21),
47ee1b9f 197 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1<<22),
7083e42e 198 IB_DEVICE_MEM_WINDOW_TYPE_2A = (1<<23),
319a441d 199 IB_DEVICE_MEM_WINDOW_TYPE_2B = (1<<24),
470a5535
BW
200 IB_DEVICE_RC_IP_CSUM = (1<<25),
201 IB_DEVICE_RAW_IP_CSUM = (1<<26),
1b01d335 202 IB_DEVICE_MANAGED_FLOW_STEERING = (1<<29),
860f10a7
SG
203 IB_DEVICE_SIGNATURE_HANDOVER = (1<<30),
204 IB_DEVICE_ON_DEMAND_PAGING = (1<<31),
1b01d335
SG
205};
206
207enum ib_signature_prot_cap {
208 IB_PROT_T10DIF_TYPE_1 = 1,
209 IB_PROT_T10DIF_TYPE_2 = 1 << 1,
210 IB_PROT_T10DIF_TYPE_3 = 1 << 2,
211};
212
213enum ib_signature_guard_cap {
214 IB_GUARD_T10DIF_CRC = 1,
215 IB_GUARD_T10DIF_CSUM = 1 << 1,
1da177e4
LT
216};
217
218enum ib_atomic_cap {
219 IB_ATOMIC_NONE,
220 IB_ATOMIC_HCA,
221 IB_ATOMIC_GLOB
222};
223
860f10a7
SG
224enum ib_odp_general_cap_bits {
225 IB_ODP_SUPPORT = 1 << 0,
226};
227
228enum ib_odp_transport_cap_bits {
229 IB_ODP_SUPPORT_SEND = 1 << 0,
230 IB_ODP_SUPPORT_RECV = 1 << 1,
231 IB_ODP_SUPPORT_WRITE = 1 << 2,
232 IB_ODP_SUPPORT_READ = 1 << 3,
233 IB_ODP_SUPPORT_ATOMIC = 1 << 4,
234};
235
236struct ib_odp_caps {
237 uint64_t general_caps;
238 struct {
239 uint32_t rc_odp_caps;
240 uint32_t uc_odp_caps;
241 uint32_t ud_odp_caps;
242 } per_transport_caps;
243};
244
b9926b92
MB
245enum ib_cq_creation_flags {
246 IB_CQ_FLAGS_TIMESTAMP_COMPLETION = 1 << 0,
247};
248
bcf4c1ea
MB
249struct ib_cq_init_attr {
250 unsigned int cqe;
251 int comp_vector;
252 u32 flags;
253};
254
1da177e4
LT
255struct ib_device_attr {
256 u64 fw_ver;
97f52eb4 257 __be64 sys_image_guid;
1da177e4
LT
258 u64 max_mr_size;
259 u64 page_size_cap;
260 u32 vendor_id;
261 u32 vendor_part_id;
262 u32 hw_ver;
263 int max_qp;
264 int max_qp_wr;
265 int device_cap_flags;
266 int max_sge;
267 int max_sge_rd;
268 int max_cq;
269 int max_cqe;
270 int max_mr;
271 int max_pd;
272 int max_qp_rd_atom;
273 int max_ee_rd_atom;
274 int max_res_rd_atom;
275 int max_qp_init_rd_atom;
276 int max_ee_init_rd_atom;
277 enum ib_atomic_cap atomic_cap;
5e80ba8f 278 enum ib_atomic_cap masked_atomic_cap;
1da177e4
LT
279 int max_ee;
280 int max_rdd;
281 int max_mw;
282 int max_raw_ipv6_qp;
283 int max_raw_ethy_qp;
284 int max_mcast_grp;
285 int max_mcast_qp_attach;
286 int max_total_mcast_qp_attach;
287 int max_ah;
288 int max_fmr;
289 int max_map_per_fmr;
290 int max_srq;
291 int max_srq_wr;
292 int max_srq_sge;
00f7ec36 293 unsigned int max_fast_reg_page_list_len;
1da177e4
LT
294 u16 max_pkeys;
295 u8 local_ca_ack_delay;
1b01d335
SG
296 int sig_prot_cap;
297 int sig_guard_cap;
860f10a7 298 struct ib_odp_caps odp_caps;
24306dc6
MB
299 uint64_t timestamp_mask;
300 uint64_t hca_core_clock; /* in KHZ */
1da177e4
LT
301};
302
303enum ib_mtu {
304 IB_MTU_256 = 1,
305 IB_MTU_512 = 2,
306 IB_MTU_1024 = 3,
307 IB_MTU_2048 = 4,
308 IB_MTU_4096 = 5
309};
310
311static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
312{
313 switch (mtu) {
314 case IB_MTU_256: return 256;
315 case IB_MTU_512: return 512;
316 case IB_MTU_1024: return 1024;
317 case IB_MTU_2048: return 2048;
318 case IB_MTU_4096: return 4096;
319 default: return -1;
320 }
321}
322
323enum ib_port_state {
324 IB_PORT_NOP = 0,
325 IB_PORT_DOWN = 1,
326 IB_PORT_INIT = 2,
327 IB_PORT_ARMED = 3,
328 IB_PORT_ACTIVE = 4,
329 IB_PORT_ACTIVE_DEFER = 5
330};
331
332enum ib_port_cap_flags {
333 IB_PORT_SM = 1 << 1,
334 IB_PORT_NOTICE_SUP = 1 << 2,
335 IB_PORT_TRAP_SUP = 1 << 3,
336 IB_PORT_OPT_IPD_SUP = 1 << 4,
337 IB_PORT_AUTO_MIGR_SUP = 1 << 5,
338 IB_PORT_SL_MAP_SUP = 1 << 6,
339 IB_PORT_MKEY_NVRAM = 1 << 7,
340 IB_PORT_PKEY_NVRAM = 1 << 8,
341 IB_PORT_LED_INFO_SUP = 1 << 9,
342 IB_PORT_SM_DISABLED = 1 << 10,
343 IB_PORT_SYS_IMAGE_GUID_SUP = 1 << 11,
344 IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP = 1 << 12,
71eeba16 345 IB_PORT_EXTENDED_SPEEDS_SUP = 1 << 14,
1da177e4
LT
346 IB_PORT_CM_SUP = 1 << 16,
347 IB_PORT_SNMP_TUNNEL_SUP = 1 << 17,
348 IB_PORT_REINIT_SUP = 1 << 18,
349 IB_PORT_DEVICE_MGMT_SUP = 1 << 19,
350 IB_PORT_VENDOR_CLASS_SUP = 1 << 20,
351 IB_PORT_DR_NOTICE_SUP = 1 << 21,
352 IB_PORT_CAP_MASK_NOTICE_SUP = 1 << 22,
353 IB_PORT_BOOT_MGMT_SUP = 1 << 23,
354 IB_PORT_LINK_LATENCY_SUP = 1 << 24,
b4a26a27 355 IB_PORT_CLIENT_REG_SUP = 1 << 25,
03db3a2d 356 IB_PORT_IP_BASED_GIDS = 1 << 26,
1da177e4
LT
357};
358
359enum ib_port_width {
360 IB_WIDTH_1X = 1,
361 IB_WIDTH_4X = 2,
362 IB_WIDTH_8X = 4,
363 IB_WIDTH_12X = 8
364};
365
366static inline int ib_width_enum_to_int(enum ib_port_width width)
367{
368 switch (width) {
369 case IB_WIDTH_1X: return 1;
370 case IB_WIDTH_4X: return 4;
371 case IB_WIDTH_8X: return 8;
372 case IB_WIDTH_12X: return 12;
373 default: return -1;
374 }
375}
376
2e96691c
OG
377enum ib_port_speed {
378 IB_SPEED_SDR = 1,
379 IB_SPEED_DDR = 2,
380 IB_SPEED_QDR = 4,
381 IB_SPEED_FDR10 = 8,
382 IB_SPEED_FDR = 16,
383 IB_SPEED_EDR = 32
384};
385
7f624d02
SW
386struct ib_protocol_stats {
387 /* TBD... */
388};
389
390struct iw_protocol_stats {
391 u64 ipInReceives;
392 u64 ipInHdrErrors;
393 u64 ipInTooBigErrors;
394 u64 ipInNoRoutes;
395 u64 ipInAddrErrors;
396 u64 ipInUnknownProtos;
397 u64 ipInTruncatedPkts;
398 u64 ipInDiscards;
399 u64 ipInDelivers;
400 u64 ipOutForwDatagrams;
401 u64 ipOutRequests;
402 u64 ipOutDiscards;
403 u64 ipOutNoRoutes;
404 u64 ipReasmTimeout;
405 u64 ipReasmReqds;
406 u64 ipReasmOKs;
407 u64 ipReasmFails;
408 u64 ipFragOKs;
409 u64 ipFragFails;
410 u64 ipFragCreates;
411 u64 ipInMcastPkts;
412 u64 ipOutMcastPkts;
413 u64 ipInBcastPkts;
414 u64 ipOutBcastPkts;
415
416 u64 tcpRtoAlgorithm;
417 u64 tcpRtoMin;
418 u64 tcpRtoMax;
419 u64 tcpMaxConn;
420 u64 tcpActiveOpens;
421 u64 tcpPassiveOpens;
422 u64 tcpAttemptFails;
423 u64 tcpEstabResets;
424 u64 tcpCurrEstab;
425 u64 tcpInSegs;
426 u64 tcpOutSegs;
427 u64 tcpRetransSegs;
428 u64 tcpInErrs;
429 u64 tcpOutRsts;
430};
431
432union rdma_protocol_stats {
433 struct ib_protocol_stats ib;
434 struct iw_protocol_stats iw;
435};
436
f9b22e35
IW
437/* Define bits for the various functionality this port needs to be supported by
438 * the core.
439 */
440/* Management 0x00000FFF */
441#define RDMA_CORE_CAP_IB_MAD 0x00000001
442#define RDMA_CORE_CAP_IB_SMI 0x00000002
443#define RDMA_CORE_CAP_IB_CM 0x00000004
444#define RDMA_CORE_CAP_IW_CM 0x00000008
445#define RDMA_CORE_CAP_IB_SA 0x00000010
65995fee 446#define RDMA_CORE_CAP_OPA_MAD 0x00000020
f9b22e35
IW
447
448/* Address format 0x000FF000 */
449#define RDMA_CORE_CAP_AF_IB 0x00001000
450#define RDMA_CORE_CAP_ETH_AH 0x00002000
451
452/* Protocol 0xFFF00000 */
453#define RDMA_CORE_CAP_PROT_IB 0x00100000
454#define RDMA_CORE_CAP_PROT_ROCE 0x00200000
455#define RDMA_CORE_CAP_PROT_IWARP 0x00400000
7766a99f 456#define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000
f9b22e35
IW
457
458#define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \
459 | RDMA_CORE_CAP_IB_MAD \
460 | RDMA_CORE_CAP_IB_SMI \
461 | RDMA_CORE_CAP_IB_CM \
462 | RDMA_CORE_CAP_IB_SA \
463 | RDMA_CORE_CAP_AF_IB)
464#define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \
465 | RDMA_CORE_CAP_IB_MAD \
466 | RDMA_CORE_CAP_IB_CM \
f9b22e35
IW
467 | RDMA_CORE_CAP_AF_IB \
468 | RDMA_CORE_CAP_ETH_AH)
7766a99f
MB
469#define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP \
470 (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \
471 | RDMA_CORE_CAP_IB_MAD \
472 | RDMA_CORE_CAP_IB_CM \
473 | RDMA_CORE_CAP_AF_IB \
474 | RDMA_CORE_CAP_ETH_AH)
f9b22e35
IW
475#define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \
476 | RDMA_CORE_CAP_IW_CM)
65995fee
IW
477#define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \
478 | RDMA_CORE_CAP_OPA_MAD)
f9b22e35 479
1da177e4
LT
480struct ib_port_attr {
481 enum ib_port_state state;
482 enum ib_mtu max_mtu;
483 enum ib_mtu active_mtu;
484 int gid_tbl_len;
485 u32 port_cap_flags;
486 u32 max_msg_sz;
487 u32 bad_pkey_cntr;
488 u32 qkey_viol_cntr;
489 u16 pkey_tbl_len;
490 u16 lid;
491 u16 sm_lid;
492 u8 lmc;
493 u8 max_vl_num;
494 u8 sm_sl;
495 u8 subnet_timeout;
496 u8 init_type_reply;
497 u8 active_width;
498 u8 active_speed;
499 u8 phys_state;
500};
501
502enum ib_device_modify_flags {
c5bcbbb9
RD
503 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0,
504 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1
1da177e4
LT
505};
506
507struct ib_device_modify {
508 u64 sys_image_guid;
c5bcbbb9 509 char node_desc[64];
1da177e4
LT
510};
511
512enum ib_port_modify_flags {
513 IB_PORT_SHUTDOWN = 1,
514 IB_PORT_INIT_TYPE = (1<<2),
515 IB_PORT_RESET_QKEY_CNTR = (1<<3)
516};
517
518struct ib_port_modify {
519 u32 set_port_cap_mask;
520 u32 clr_port_cap_mask;
521 u8 init_type;
522};
523
524enum ib_event_type {
525 IB_EVENT_CQ_ERR,
526 IB_EVENT_QP_FATAL,
527 IB_EVENT_QP_REQ_ERR,
528 IB_EVENT_QP_ACCESS_ERR,
529 IB_EVENT_COMM_EST,
530 IB_EVENT_SQ_DRAINED,
531 IB_EVENT_PATH_MIG,
532 IB_EVENT_PATH_MIG_ERR,
533 IB_EVENT_DEVICE_FATAL,
534 IB_EVENT_PORT_ACTIVE,
535 IB_EVENT_PORT_ERR,
536 IB_EVENT_LID_CHANGE,
537 IB_EVENT_PKEY_CHANGE,
d41fcc67
RD
538 IB_EVENT_SM_CHANGE,
539 IB_EVENT_SRQ_ERR,
540 IB_EVENT_SRQ_LIMIT_REACHED,
63942c9a 541 IB_EVENT_QP_LAST_WQE_REACHED,
761d90ed
OG
542 IB_EVENT_CLIENT_REREGISTER,
543 IB_EVENT_GID_CHANGE,
1da177e4
LT
544};
545
db7489e0 546const char *__attribute_const__ ib_event_msg(enum ib_event_type event);
2b1b5b60 547
1da177e4
LT
548struct ib_event {
549 struct ib_device *device;
550 union {
551 struct ib_cq *cq;
552 struct ib_qp *qp;
d41fcc67 553 struct ib_srq *srq;
1da177e4
LT
554 u8 port_num;
555 } element;
556 enum ib_event_type event;
557};
558
559struct ib_event_handler {
560 struct ib_device *device;
561 void (*handler)(struct ib_event_handler *, struct ib_event *);
562 struct list_head list;
563};
564
565#define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \
566 do { \
567 (_ptr)->device = _device; \
568 (_ptr)->handler = _handler; \
569 INIT_LIST_HEAD(&(_ptr)->list); \
570 } while (0)
571
572struct ib_global_route {
573 union ib_gid dgid;
574 u32 flow_label;
575 u8 sgid_index;
576 u8 hop_limit;
577 u8 traffic_class;
578};
579
513789ed 580struct ib_grh {
97f52eb4
SH
581 __be32 version_tclass_flow;
582 __be16 paylen;
513789ed
HR
583 u8 next_hdr;
584 u8 hop_limit;
585 union ib_gid sgid;
586 union ib_gid dgid;
587};
588
c865f246
SK
589union rdma_network_hdr {
590 struct ib_grh ibgrh;
591 struct {
592 /* The IB spec states that if it's IPv4, the header
593 * is located in the last 20 bytes of the header.
594 */
595 u8 reserved[20];
596 struct iphdr roce4grh;
597 };
598};
599
1da177e4
LT
600enum {
601 IB_MULTICAST_QPN = 0xffffff
602};
603
f3a7c66b 604#define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF)
97f52eb4 605
1da177e4
LT
606enum ib_ah_flags {
607 IB_AH_GRH = 1
608};
609
bf6a9e31
JM
610enum ib_rate {
611 IB_RATE_PORT_CURRENT = 0,
612 IB_RATE_2_5_GBPS = 2,
613 IB_RATE_5_GBPS = 5,
614 IB_RATE_10_GBPS = 3,
615 IB_RATE_20_GBPS = 6,
616 IB_RATE_30_GBPS = 4,
617 IB_RATE_40_GBPS = 7,
618 IB_RATE_60_GBPS = 8,
619 IB_RATE_80_GBPS = 9,
71eeba16
MA
620 IB_RATE_120_GBPS = 10,
621 IB_RATE_14_GBPS = 11,
622 IB_RATE_56_GBPS = 12,
623 IB_RATE_112_GBPS = 13,
624 IB_RATE_168_GBPS = 14,
625 IB_RATE_25_GBPS = 15,
626 IB_RATE_100_GBPS = 16,
627 IB_RATE_200_GBPS = 17,
628 IB_RATE_300_GBPS = 18
bf6a9e31
JM
629};
630
631/**
632 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
633 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be
634 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
635 * @rate: rate to convert.
636 */
8385fd84 637__attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
bf6a9e31 638
71eeba16
MA
639/**
640 * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
641 * For example, IB_RATE_2_5_GBPS will be converted to 2500.
642 * @rate: rate to convert.
643 */
8385fd84 644__attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
71eeba16 645
17cd3a2d
SG
646
647/**
9bee178b
SG
648 * enum ib_mr_type - memory region type
649 * @IB_MR_TYPE_MEM_REG: memory region that is used for
650 * normal registration
651 * @IB_MR_TYPE_SIGNATURE: memory region that is used for
652 * signature operations (data-integrity
653 * capable regions)
17cd3a2d 654 */
9bee178b
SG
655enum ib_mr_type {
656 IB_MR_TYPE_MEM_REG,
657 IB_MR_TYPE_SIGNATURE,
17cd3a2d
SG
658};
659
1b01d335 660/**
78eda2bb
SG
661 * Signature types
662 * IB_SIG_TYPE_NONE: Unprotected.
663 * IB_SIG_TYPE_T10_DIF: Type T10-DIF
1b01d335 664 */
78eda2bb
SG
665enum ib_signature_type {
666 IB_SIG_TYPE_NONE,
667 IB_SIG_TYPE_T10_DIF,
1b01d335
SG
668};
669
670/**
671 * Signature T10-DIF block-guard types
672 * IB_T10DIF_CRC: Corresponds to T10-PI mandated CRC checksum rules.
673 * IB_T10DIF_CSUM: Corresponds to IP checksum rules.
674 */
675enum ib_t10_dif_bg_type {
676 IB_T10DIF_CRC,
677 IB_T10DIF_CSUM
678};
679
680/**
681 * struct ib_t10_dif_domain - Parameters specific for T10-DIF
682 * domain.
1b01d335
SG
683 * @bg_type: T10-DIF block guard type (CRC|CSUM)
684 * @pi_interval: protection information interval.
685 * @bg: seed of guard computation.
686 * @app_tag: application tag of guard block
687 * @ref_tag: initial guard block reference tag.
78eda2bb
SG
688 * @ref_remap: Indicate wethear the reftag increments each block
689 * @app_escape: Indicate to skip block check if apptag=0xffff
690 * @ref_escape: Indicate to skip block check if reftag=0xffffffff
691 * @apptag_check_mask: check bitmask of application tag.
1b01d335
SG
692 */
693struct ib_t10_dif_domain {
1b01d335
SG
694 enum ib_t10_dif_bg_type bg_type;
695 u16 pi_interval;
696 u16 bg;
697 u16 app_tag;
698 u32 ref_tag;
78eda2bb
SG
699 bool ref_remap;
700 bool app_escape;
701 bool ref_escape;
702 u16 apptag_check_mask;
1b01d335
SG
703};
704
705/**
706 * struct ib_sig_domain - Parameters for signature domain
707 * @sig_type: specific signauture type
708 * @sig: union of all signature domain attributes that may
709 * be used to set domain layout.
710 */
711struct ib_sig_domain {
712 enum ib_signature_type sig_type;
713 union {
714 struct ib_t10_dif_domain dif;
715 } sig;
716};
717
718/**
719 * struct ib_sig_attrs - Parameters for signature handover operation
720 * @check_mask: bitmask for signature byte check (8 bytes)
721 * @mem: memory domain layout desciptor.
722 * @wire: wire domain layout desciptor.
723 */
724struct ib_sig_attrs {
725 u8 check_mask;
726 struct ib_sig_domain mem;
727 struct ib_sig_domain wire;
728};
729
730enum ib_sig_err_type {
731 IB_SIG_BAD_GUARD,
732 IB_SIG_BAD_REFTAG,
733 IB_SIG_BAD_APPTAG,
734};
735
736/**
737 * struct ib_sig_err - signature error descriptor
738 */
739struct ib_sig_err {
740 enum ib_sig_err_type err_type;
741 u32 expected;
742 u32 actual;
743 u64 sig_err_offset;
744 u32 key;
745};
746
747enum ib_mr_status_check {
748 IB_MR_CHECK_SIG_STATUS = 1,
749};
750
751/**
752 * struct ib_mr_status - Memory region status container
753 *
754 * @fail_status: Bitmask of MR checks status. For each
755 * failed check a corresponding status bit is set.
756 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
757 * failure.
758 */
759struct ib_mr_status {
760 u32 fail_status;
761 struct ib_sig_err sig_err;
762};
763
bf6a9e31
JM
764/**
765 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
766 * enum.
767 * @mult: multiple to convert.
768 */
8385fd84 769__attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
bf6a9e31 770
1da177e4
LT
771struct ib_ah_attr {
772 struct ib_global_route grh;
773 u16 dlid;
774 u8 sl;
775 u8 src_path_bits;
776 u8 static_rate;
777 u8 ah_flags;
778 u8 port_num;
dd5f03be 779 u8 dmac[ETH_ALEN];
1da177e4
LT
780};
781
782enum ib_wc_status {
783 IB_WC_SUCCESS,
784 IB_WC_LOC_LEN_ERR,
785 IB_WC_LOC_QP_OP_ERR,
786 IB_WC_LOC_EEC_OP_ERR,
787 IB_WC_LOC_PROT_ERR,
788 IB_WC_WR_FLUSH_ERR,
789 IB_WC_MW_BIND_ERR,
790 IB_WC_BAD_RESP_ERR,
791 IB_WC_LOC_ACCESS_ERR,
792 IB_WC_REM_INV_REQ_ERR,
793 IB_WC_REM_ACCESS_ERR,
794 IB_WC_REM_OP_ERR,
795 IB_WC_RETRY_EXC_ERR,
796 IB_WC_RNR_RETRY_EXC_ERR,
797 IB_WC_LOC_RDD_VIOL_ERR,
798 IB_WC_REM_INV_RD_REQ_ERR,
799 IB_WC_REM_ABORT_ERR,
800 IB_WC_INV_EECN_ERR,
801 IB_WC_INV_EEC_STATE_ERR,
802 IB_WC_FATAL_ERR,
803 IB_WC_RESP_TIMEOUT_ERR,
804 IB_WC_GENERAL_ERR
805};
806
db7489e0 807const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status);
2b1b5b60 808
1da177e4
LT
809enum ib_wc_opcode {
810 IB_WC_SEND,
811 IB_WC_RDMA_WRITE,
812 IB_WC_RDMA_READ,
813 IB_WC_COMP_SWAP,
814 IB_WC_FETCH_ADD,
c93570f2 815 IB_WC_LSO,
00f7ec36 816 IB_WC_LOCAL_INV,
4c67e2bf 817 IB_WC_REG_MR,
5e80ba8f
VS
818 IB_WC_MASKED_COMP_SWAP,
819 IB_WC_MASKED_FETCH_ADD,
1da177e4
LT
820/*
821 * Set value of IB_WC_RECV so consumers can test if a completion is a
822 * receive by testing (opcode & IB_WC_RECV).
823 */
824 IB_WC_RECV = 1 << 7,
825 IB_WC_RECV_RDMA_WITH_IMM
826};
827
828enum ib_wc_flags {
829 IB_WC_GRH = 1,
00f7ec36
SW
830 IB_WC_WITH_IMM = (1<<1),
831 IB_WC_WITH_INVALIDATE = (1<<2),
d927d505 832 IB_WC_IP_CSUM_OK = (1<<3),
dd5f03be
MB
833 IB_WC_WITH_SMAC = (1<<4),
834 IB_WC_WITH_VLAN = (1<<5),
c865f246 835 IB_WC_WITH_NETWORK_HDR_TYPE = (1<<6),
1da177e4
LT
836};
837
838struct ib_wc {
14d3a3b2
CH
839 union {
840 u64 wr_id;
841 struct ib_cqe *wr_cqe;
842 };
1da177e4
LT
843 enum ib_wc_status status;
844 enum ib_wc_opcode opcode;
845 u32 vendor_err;
846 u32 byte_len;
062dbb69 847 struct ib_qp *qp;
00f7ec36
SW
848 union {
849 __be32 imm_data;
850 u32 invalidate_rkey;
851 } ex;
1da177e4
LT
852 u32 src_qp;
853 int wc_flags;
854 u16 pkey_index;
855 u16 slid;
856 u8 sl;
857 u8 dlid_path_bits;
858 u8 port_num; /* valid only for DR SMPs on switches */
dd5f03be
MB
859 u8 smac[ETH_ALEN];
860 u16 vlan_id;
c865f246 861 u8 network_hdr_type;
1da177e4
LT
862};
863
ed23a727
RD
864enum ib_cq_notify_flags {
865 IB_CQ_SOLICITED = 1 << 0,
866 IB_CQ_NEXT_COMP = 1 << 1,
867 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
868 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2,
1da177e4
LT
869};
870
96104eda 871enum ib_srq_type {
418d5130
SH
872 IB_SRQT_BASIC,
873 IB_SRQT_XRC
96104eda
SH
874};
875
d41fcc67
RD
876enum ib_srq_attr_mask {
877 IB_SRQ_MAX_WR = 1 << 0,
878 IB_SRQ_LIMIT = 1 << 1,
879};
880
881struct ib_srq_attr {
882 u32 max_wr;
883 u32 max_sge;
884 u32 srq_limit;
885};
886
887struct ib_srq_init_attr {
888 void (*event_handler)(struct ib_event *, void *);
889 void *srq_context;
890 struct ib_srq_attr attr;
96104eda 891 enum ib_srq_type srq_type;
418d5130
SH
892
893 union {
894 struct {
895 struct ib_xrcd *xrcd;
896 struct ib_cq *cq;
897 } xrc;
898 } ext;
d41fcc67
RD
899};
900
1da177e4
LT
901struct ib_qp_cap {
902 u32 max_send_wr;
903 u32 max_recv_wr;
904 u32 max_send_sge;
905 u32 max_recv_sge;
906 u32 max_inline_data;
907};
908
909enum ib_sig_type {
910 IB_SIGNAL_ALL_WR,
911 IB_SIGNAL_REQ_WR
912};
913
914enum ib_qp_type {
915 /*
916 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
917 * here (and in that order) since the MAD layer uses them as
918 * indices into a 2-entry table.
919 */
920 IB_QPT_SMI,
921 IB_QPT_GSI,
922
923 IB_QPT_RC,
924 IB_QPT_UC,
925 IB_QPT_UD,
926 IB_QPT_RAW_IPV6,
b42b63cf 927 IB_QPT_RAW_ETHERTYPE,
c938a616 928 IB_QPT_RAW_PACKET = 8,
b42b63cf
SH
929 IB_QPT_XRC_INI = 9,
930 IB_QPT_XRC_TGT,
0134f16b
JM
931 IB_QPT_MAX,
932 /* Reserve a range for qp types internal to the low level driver.
933 * These qp types will not be visible at the IB core layer, so the
934 * IB_QPT_MAX usages should not be affected in the core layer
935 */
936 IB_QPT_RESERVED1 = 0x1000,
937 IB_QPT_RESERVED2,
938 IB_QPT_RESERVED3,
939 IB_QPT_RESERVED4,
940 IB_QPT_RESERVED5,
941 IB_QPT_RESERVED6,
942 IB_QPT_RESERVED7,
943 IB_QPT_RESERVED8,
944 IB_QPT_RESERVED9,
945 IB_QPT_RESERVED10,
1da177e4
LT
946};
947
b846f25a 948enum ib_qp_create_flags {
47ee1b9f
RL
949 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0,
950 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1 << 1,
90f1d1b4 951 IB_QP_CREATE_NETIF_QP = 1 << 5,
1b01d335 952 IB_QP_CREATE_SIGNATURE_EN = 1 << 6,
09b93088 953 IB_QP_CREATE_USE_GFP_NOIO = 1 << 7,
d2b57063
JM
954 /* reserve bits 26-31 for low level drivers' internal use */
955 IB_QP_CREATE_RESERVED_START = 1 << 26,
956 IB_QP_CREATE_RESERVED_END = 1 << 31,
b846f25a
EC
957};
958
73c40c61
YH
959/*
960 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
961 * callback to destroy the passed in QP.
962 */
963
1da177e4
LT
964struct ib_qp_init_attr {
965 void (*event_handler)(struct ib_event *, void *);
966 void *qp_context;
967 struct ib_cq *send_cq;
968 struct ib_cq *recv_cq;
969 struct ib_srq *srq;
b42b63cf 970 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1da177e4
LT
971 struct ib_qp_cap cap;
972 enum ib_sig_type sq_sig_type;
973 enum ib_qp_type qp_type;
b846f25a 974 enum ib_qp_create_flags create_flags;
1da177e4
LT
975 u8 port_num; /* special QP types only */
976};
977
0e0ec7e0
SH
978struct ib_qp_open_attr {
979 void (*event_handler)(struct ib_event *, void *);
980 void *qp_context;
981 u32 qp_num;
982 enum ib_qp_type qp_type;
983};
984
1da177e4
LT
985enum ib_rnr_timeout {
986 IB_RNR_TIMER_655_36 = 0,
987 IB_RNR_TIMER_000_01 = 1,
988 IB_RNR_TIMER_000_02 = 2,
989 IB_RNR_TIMER_000_03 = 3,
990 IB_RNR_TIMER_000_04 = 4,
991 IB_RNR_TIMER_000_06 = 5,
992 IB_RNR_TIMER_000_08 = 6,
993 IB_RNR_TIMER_000_12 = 7,
994 IB_RNR_TIMER_000_16 = 8,
995 IB_RNR_TIMER_000_24 = 9,
996 IB_RNR_TIMER_000_32 = 10,
997 IB_RNR_TIMER_000_48 = 11,
998 IB_RNR_TIMER_000_64 = 12,
999 IB_RNR_TIMER_000_96 = 13,
1000 IB_RNR_TIMER_001_28 = 14,
1001 IB_RNR_TIMER_001_92 = 15,
1002 IB_RNR_TIMER_002_56 = 16,
1003 IB_RNR_TIMER_003_84 = 17,
1004 IB_RNR_TIMER_005_12 = 18,
1005 IB_RNR_TIMER_007_68 = 19,
1006 IB_RNR_TIMER_010_24 = 20,
1007 IB_RNR_TIMER_015_36 = 21,
1008 IB_RNR_TIMER_020_48 = 22,
1009 IB_RNR_TIMER_030_72 = 23,
1010 IB_RNR_TIMER_040_96 = 24,
1011 IB_RNR_TIMER_061_44 = 25,
1012 IB_RNR_TIMER_081_92 = 26,
1013 IB_RNR_TIMER_122_88 = 27,
1014 IB_RNR_TIMER_163_84 = 28,
1015 IB_RNR_TIMER_245_76 = 29,
1016 IB_RNR_TIMER_327_68 = 30,
1017 IB_RNR_TIMER_491_52 = 31
1018};
1019
1020enum ib_qp_attr_mask {
1021 IB_QP_STATE = 1,
1022 IB_QP_CUR_STATE = (1<<1),
1023 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2),
1024 IB_QP_ACCESS_FLAGS = (1<<3),
1025 IB_QP_PKEY_INDEX = (1<<4),
1026 IB_QP_PORT = (1<<5),
1027 IB_QP_QKEY = (1<<6),
1028 IB_QP_AV = (1<<7),
1029 IB_QP_PATH_MTU = (1<<8),
1030 IB_QP_TIMEOUT = (1<<9),
1031 IB_QP_RETRY_CNT = (1<<10),
1032 IB_QP_RNR_RETRY = (1<<11),
1033 IB_QP_RQ_PSN = (1<<12),
1034 IB_QP_MAX_QP_RD_ATOMIC = (1<<13),
1035 IB_QP_ALT_PATH = (1<<14),
1036 IB_QP_MIN_RNR_TIMER = (1<<15),
1037 IB_QP_SQ_PSN = (1<<16),
1038 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17),
1039 IB_QP_PATH_MIG_STATE = (1<<18),
1040 IB_QP_CAP = (1<<19),
dd5f03be 1041 IB_QP_DEST_QPN = (1<<20),
aa744cc0
MB
1042 IB_QP_RESERVED1 = (1<<21),
1043 IB_QP_RESERVED2 = (1<<22),
1044 IB_QP_RESERVED3 = (1<<23),
1045 IB_QP_RESERVED4 = (1<<24),
1da177e4
LT
1046};
1047
1048enum ib_qp_state {
1049 IB_QPS_RESET,
1050 IB_QPS_INIT,
1051 IB_QPS_RTR,
1052 IB_QPS_RTS,
1053 IB_QPS_SQD,
1054 IB_QPS_SQE,
1055 IB_QPS_ERR
1056};
1057
1058enum ib_mig_state {
1059 IB_MIG_MIGRATED,
1060 IB_MIG_REARM,
1061 IB_MIG_ARMED
1062};
1063
7083e42e
SM
1064enum ib_mw_type {
1065 IB_MW_TYPE_1 = 1,
1066 IB_MW_TYPE_2 = 2
1067};
1068
1da177e4
LT
1069struct ib_qp_attr {
1070 enum ib_qp_state qp_state;
1071 enum ib_qp_state cur_qp_state;
1072 enum ib_mtu path_mtu;
1073 enum ib_mig_state path_mig_state;
1074 u32 qkey;
1075 u32 rq_psn;
1076 u32 sq_psn;
1077 u32 dest_qp_num;
1078 int qp_access_flags;
1079 struct ib_qp_cap cap;
1080 struct ib_ah_attr ah_attr;
1081 struct ib_ah_attr alt_ah_attr;
1082 u16 pkey_index;
1083 u16 alt_pkey_index;
1084 u8 en_sqd_async_notify;
1085 u8 sq_draining;
1086 u8 max_rd_atomic;
1087 u8 max_dest_rd_atomic;
1088 u8 min_rnr_timer;
1089 u8 port_num;
1090 u8 timeout;
1091 u8 retry_cnt;
1092 u8 rnr_retry;
1093 u8 alt_port_num;
1094 u8 alt_timeout;
1095};
1096
1097enum ib_wr_opcode {
1098 IB_WR_RDMA_WRITE,
1099 IB_WR_RDMA_WRITE_WITH_IMM,
1100 IB_WR_SEND,
1101 IB_WR_SEND_WITH_IMM,
1102 IB_WR_RDMA_READ,
1103 IB_WR_ATOMIC_CMP_AND_SWP,
c93570f2 1104 IB_WR_ATOMIC_FETCH_AND_ADD,
0f39cf3d
RD
1105 IB_WR_LSO,
1106 IB_WR_SEND_WITH_INV,
00f7ec36
SW
1107 IB_WR_RDMA_READ_WITH_INV,
1108 IB_WR_LOCAL_INV,
4c67e2bf 1109 IB_WR_REG_MR,
5e80ba8f
VS
1110 IB_WR_MASKED_ATOMIC_CMP_AND_SWP,
1111 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD,
1b01d335 1112 IB_WR_REG_SIG_MR,
0134f16b
JM
1113 /* reserve values for low level drivers' internal use.
1114 * These values will not be used at all in the ib core layer.
1115 */
1116 IB_WR_RESERVED1 = 0xf0,
1117 IB_WR_RESERVED2,
1118 IB_WR_RESERVED3,
1119 IB_WR_RESERVED4,
1120 IB_WR_RESERVED5,
1121 IB_WR_RESERVED6,
1122 IB_WR_RESERVED7,
1123 IB_WR_RESERVED8,
1124 IB_WR_RESERVED9,
1125 IB_WR_RESERVED10,
1da177e4
LT
1126};
1127
1128enum ib_send_flags {
1129 IB_SEND_FENCE = 1,
1130 IB_SEND_SIGNALED = (1<<1),
1131 IB_SEND_SOLICITED = (1<<2),
e0605d91 1132 IB_SEND_INLINE = (1<<3),
0134f16b
JM
1133 IB_SEND_IP_CSUM = (1<<4),
1134
1135 /* reserve bits 26-31 for low level drivers' internal use */
1136 IB_SEND_RESERVED_START = (1 << 26),
1137 IB_SEND_RESERVED_END = (1 << 31),
1da177e4
LT
1138};
1139
1140struct ib_sge {
1141 u64 addr;
1142 u32 length;
1143 u32 lkey;
1144};
1145
14d3a3b2
CH
1146struct ib_cqe {
1147 void (*done)(struct ib_cq *cq, struct ib_wc *wc);
1148};
1149
1da177e4
LT
1150struct ib_send_wr {
1151 struct ib_send_wr *next;
14d3a3b2
CH
1152 union {
1153 u64 wr_id;
1154 struct ib_cqe *wr_cqe;
1155 };
1da177e4
LT
1156 struct ib_sge *sg_list;
1157 int num_sge;
1158 enum ib_wr_opcode opcode;
1159 int send_flags;
0f39cf3d
RD
1160 union {
1161 __be32 imm_data;
1162 u32 invalidate_rkey;
1163 } ex;
1da177e4
LT
1164};
1165
e622f2f4
CH
1166struct ib_rdma_wr {
1167 struct ib_send_wr wr;
1168 u64 remote_addr;
1169 u32 rkey;
1170};
1171
1172static inline struct ib_rdma_wr *rdma_wr(struct ib_send_wr *wr)
1173{
1174 return container_of(wr, struct ib_rdma_wr, wr);
1175}
1176
1177struct ib_atomic_wr {
1178 struct ib_send_wr wr;
1179 u64 remote_addr;
1180 u64 compare_add;
1181 u64 swap;
1182 u64 compare_add_mask;
1183 u64 swap_mask;
1184 u32 rkey;
1185};
1186
1187static inline struct ib_atomic_wr *atomic_wr(struct ib_send_wr *wr)
1188{
1189 return container_of(wr, struct ib_atomic_wr, wr);
1190}
1191
1192struct ib_ud_wr {
1193 struct ib_send_wr wr;
1194 struct ib_ah *ah;
1195 void *header;
1196 int hlen;
1197 int mss;
1198 u32 remote_qpn;
1199 u32 remote_qkey;
1200 u16 pkey_index; /* valid for GSI only */
1201 u8 port_num; /* valid for DR SMPs on switch only */
1202};
1203
1204static inline struct ib_ud_wr *ud_wr(struct ib_send_wr *wr)
1205{
1206 return container_of(wr, struct ib_ud_wr, wr);
1207}
1208
4c67e2bf
SG
1209struct ib_reg_wr {
1210 struct ib_send_wr wr;
1211 struct ib_mr *mr;
1212 u32 key;
1213 int access;
1214};
1215
1216static inline struct ib_reg_wr *reg_wr(struct ib_send_wr *wr)
1217{
1218 return container_of(wr, struct ib_reg_wr, wr);
1219}
1220
e622f2f4
CH
1221struct ib_sig_handover_wr {
1222 struct ib_send_wr wr;
1223 struct ib_sig_attrs *sig_attrs;
1224 struct ib_mr *sig_mr;
1225 int access_flags;
1226 struct ib_sge *prot;
1227};
1228
1229static inline struct ib_sig_handover_wr *sig_handover_wr(struct ib_send_wr *wr)
1230{
1231 return container_of(wr, struct ib_sig_handover_wr, wr);
1232}
1233
1da177e4
LT
1234struct ib_recv_wr {
1235 struct ib_recv_wr *next;
14d3a3b2
CH
1236 union {
1237 u64 wr_id;
1238 struct ib_cqe *wr_cqe;
1239 };
1da177e4
LT
1240 struct ib_sge *sg_list;
1241 int num_sge;
1242};
1243
1244enum ib_access_flags {
1245 IB_ACCESS_LOCAL_WRITE = 1,
1246 IB_ACCESS_REMOTE_WRITE = (1<<1),
1247 IB_ACCESS_REMOTE_READ = (1<<2),
1248 IB_ACCESS_REMOTE_ATOMIC = (1<<3),
7083e42e 1249 IB_ACCESS_MW_BIND = (1<<4),
860f10a7
SG
1250 IB_ZERO_BASED = (1<<5),
1251 IB_ACCESS_ON_DEMAND = (1<<6),
1da177e4
LT
1252};
1253
b7d3e0a9
CH
1254/*
1255 * XXX: these are apparently used for ->rereg_user_mr, no idea why they
1256 * are hidden here instead of a uapi header!
1257 */
1da177e4
LT
1258enum ib_mr_rereg_flags {
1259 IB_MR_REREG_TRANS = 1,
1260 IB_MR_REREG_PD = (1<<1),
7e6edb9b
MB
1261 IB_MR_REREG_ACCESS = (1<<2),
1262 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1)
1da177e4
LT
1263};
1264
1da177e4
LT
1265struct ib_fmr_attr {
1266 int max_pages;
1267 int max_maps;
d36f34aa 1268 u8 page_shift;
1da177e4
LT
1269};
1270
882214e2
HE
1271struct ib_umem;
1272
e2773c06
RD
1273struct ib_ucontext {
1274 struct ib_device *device;
1275 struct list_head pd_list;
1276 struct list_head mr_list;
1277 struct list_head mw_list;
1278 struct list_head cq_list;
1279 struct list_head qp_list;
1280 struct list_head srq_list;
1281 struct list_head ah_list;
53d0bd1e 1282 struct list_head xrcd_list;
436f2ad0 1283 struct list_head rule_list;
f7c6a7b5 1284 int closing;
8ada2c1c
SR
1285
1286 struct pid *tgid;
882214e2
HE
1287#ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING
1288 struct rb_root umem_tree;
1289 /*
1290 * Protects .umem_rbroot and tree, as well as odp_mrs_count and
1291 * mmu notifiers registration.
1292 */
1293 struct rw_semaphore umem_rwsem;
1294 void (*invalidate_range)(struct ib_umem *umem,
1295 unsigned long start, unsigned long end);
1296
1297 struct mmu_notifier mn;
1298 atomic_t notifier_count;
1299 /* A list of umems that don't have private mmu notifier counters yet. */
1300 struct list_head no_private_counters;
1301 int odp_mrs_count;
1302#endif
e2773c06
RD
1303};
1304
1305struct ib_uobject {
1306 u64 user_handle; /* handle given to us by userspace */
1307 struct ib_ucontext *context; /* associated user context */
9ead190b 1308 void *object; /* containing object */
e2773c06 1309 struct list_head list; /* link to context's list */
b3d636b0 1310 int id; /* index into kernel idr */
9ead190b
RD
1311 struct kref ref;
1312 struct rw_semaphore mutex; /* protects .live */
d144da8c 1313 struct rcu_head rcu; /* kfree_rcu() overhead */
9ead190b 1314 int live;
e2773c06
RD
1315};
1316
e2773c06 1317struct ib_udata {
309243ec 1318 const void __user *inbuf;
e2773c06
RD
1319 void __user *outbuf;
1320 size_t inlen;
1321 size_t outlen;
1322};
1323
1da177e4 1324struct ib_pd {
96249d70 1325 u32 local_dma_lkey;
e2773c06
RD
1326 struct ib_device *device;
1327 struct ib_uobject *uobject;
1328 atomic_t usecnt; /* count all resources */
96249d70 1329 struct ib_mr *local_mr;
1da177e4
LT
1330};
1331
59991f94
SH
1332struct ib_xrcd {
1333 struct ib_device *device;
d3d72d90 1334 atomic_t usecnt; /* count all exposed resources */
53d0bd1e 1335 struct inode *inode;
d3d72d90
SH
1336
1337 struct mutex tgt_qp_mutex;
1338 struct list_head tgt_qp_list;
59991f94
SH
1339};
1340
1da177e4
LT
1341struct ib_ah {
1342 struct ib_device *device;
1343 struct ib_pd *pd;
e2773c06 1344 struct ib_uobject *uobject;
1da177e4
LT
1345};
1346
1347typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1348
14d3a3b2
CH
1349enum ib_poll_context {
1350 IB_POLL_DIRECT, /* caller context, no hw completions */
1351 IB_POLL_SOFTIRQ, /* poll from softirq context */
1352 IB_POLL_WORKQUEUE, /* poll from workqueue */
1353};
1354
1da177e4 1355struct ib_cq {
e2773c06
RD
1356 struct ib_device *device;
1357 struct ib_uobject *uobject;
1358 ib_comp_handler comp_handler;
1359 void (*event_handler)(struct ib_event *, void *);
4deccd6d 1360 void *cq_context;
e2773c06
RD
1361 int cqe;
1362 atomic_t usecnt; /* count number of work queues */
14d3a3b2
CH
1363 enum ib_poll_context poll_ctx;
1364 struct ib_wc *wc;
1365 union {
1366 struct irq_poll iop;
1367 struct work_struct work;
1368 };
1da177e4
LT
1369};
1370
1371struct ib_srq {
d41fcc67
RD
1372 struct ib_device *device;
1373 struct ib_pd *pd;
1374 struct ib_uobject *uobject;
1375 void (*event_handler)(struct ib_event *, void *);
1376 void *srq_context;
96104eda 1377 enum ib_srq_type srq_type;
1da177e4 1378 atomic_t usecnt;
418d5130
SH
1379
1380 union {
1381 struct {
1382 struct ib_xrcd *xrcd;
1383 struct ib_cq *cq;
1384 u32 srq_num;
1385 } xrc;
1386 } ext;
1da177e4
LT
1387};
1388
1389struct ib_qp {
1390 struct ib_device *device;
1391 struct ib_pd *pd;
1392 struct ib_cq *send_cq;
1393 struct ib_cq *recv_cq;
1394 struct ib_srq *srq;
b42b63cf 1395 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
d3d72d90 1396 struct list_head xrcd_list;
319a441d
HHZ
1397 /* count times opened, mcast attaches, flow attaches */
1398 atomic_t usecnt;
0e0ec7e0
SH
1399 struct list_head open_list;
1400 struct ib_qp *real_qp;
e2773c06 1401 struct ib_uobject *uobject;
1da177e4
LT
1402 void (*event_handler)(struct ib_event *, void *);
1403 void *qp_context;
1404 u32 qp_num;
1405 enum ib_qp_type qp_type;
1406};
1407
1408struct ib_mr {
e2773c06
RD
1409 struct ib_device *device;
1410 struct ib_pd *pd;
1411 struct ib_uobject *uobject;
1412 u32 lkey;
1413 u32 rkey;
4c67e2bf
SG
1414 u64 iova;
1415 u32 length;
1416 unsigned int page_size;
1da177e4
LT
1417};
1418
1419struct ib_mw {
1420 struct ib_device *device;
1421 struct ib_pd *pd;
e2773c06 1422 struct ib_uobject *uobject;
1da177e4 1423 u32 rkey;
7083e42e 1424 enum ib_mw_type type;
1da177e4
LT
1425};
1426
1427struct ib_fmr {
1428 struct ib_device *device;
1429 struct ib_pd *pd;
1430 struct list_head list;
1431 u32 lkey;
1432 u32 rkey;
1433};
1434
319a441d
HHZ
1435/* Supported steering options */
1436enum ib_flow_attr_type {
1437 /* steering according to rule specifications */
1438 IB_FLOW_ATTR_NORMAL = 0x0,
1439 /* default unicast and multicast rule -
1440 * receive all Eth traffic which isn't steered to any QP
1441 */
1442 IB_FLOW_ATTR_ALL_DEFAULT = 0x1,
1443 /* default multicast rule -
1444 * receive all Eth multicast traffic which isn't steered to any QP
1445 */
1446 IB_FLOW_ATTR_MC_DEFAULT = 0x2,
1447 /* sniffer rule - receive all port traffic */
1448 IB_FLOW_ATTR_SNIFFER = 0x3
1449};
1450
1451/* Supported steering header types */
1452enum ib_flow_spec_type {
1453 /* L2 headers*/
1454 IB_FLOW_SPEC_ETH = 0x20,
240ae00e 1455 IB_FLOW_SPEC_IB = 0x22,
319a441d
HHZ
1456 /* L3 header*/
1457 IB_FLOW_SPEC_IPV4 = 0x30,
1458 /* L4 headers*/
1459 IB_FLOW_SPEC_TCP = 0x40,
1460 IB_FLOW_SPEC_UDP = 0x41
1461};
240ae00e 1462#define IB_FLOW_SPEC_LAYER_MASK 0xF0
22878dbc
MB
1463#define IB_FLOW_SPEC_SUPPORT_LAYERS 4
1464
319a441d
HHZ
1465/* Flow steering rule priority is set according to it's domain.
1466 * Lower domain value means higher priority.
1467 */
1468enum ib_flow_domain {
1469 IB_FLOW_DOMAIN_USER,
1470 IB_FLOW_DOMAIN_ETHTOOL,
1471 IB_FLOW_DOMAIN_RFS,
1472 IB_FLOW_DOMAIN_NIC,
1473 IB_FLOW_DOMAIN_NUM /* Must be last */
1474};
1475
1476struct ib_flow_eth_filter {
1477 u8 dst_mac[6];
1478 u8 src_mac[6];
1479 __be16 ether_type;
1480 __be16 vlan_tag;
1481};
1482
1483struct ib_flow_spec_eth {
1484 enum ib_flow_spec_type type;
1485 u16 size;
1486 struct ib_flow_eth_filter val;
1487 struct ib_flow_eth_filter mask;
1488};
1489
240ae00e
MB
1490struct ib_flow_ib_filter {
1491 __be16 dlid;
1492 __u8 sl;
1493};
1494
1495struct ib_flow_spec_ib {
1496 enum ib_flow_spec_type type;
1497 u16 size;
1498 struct ib_flow_ib_filter val;
1499 struct ib_flow_ib_filter mask;
1500};
1501
319a441d
HHZ
1502struct ib_flow_ipv4_filter {
1503 __be32 src_ip;
1504 __be32 dst_ip;
1505};
1506
1507struct ib_flow_spec_ipv4 {
1508 enum ib_flow_spec_type type;
1509 u16 size;
1510 struct ib_flow_ipv4_filter val;
1511 struct ib_flow_ipv4_filter mask;
1512};
1513
1514struct ib_flow_tcp_udp_filter {
1515 __be16 dst_port;
1516 __be16 src_port;
1517};
1518
1519struct ib_flow_spec_tcp_udp {
1520 enum ib_flow_spec_type type;
1521 u16 size;
1522 struct ib_flow_tcp_udp_filter val;
1523 struct ib_flow_tcp_udp_filter mask;
1524};
1525
1526union ib_flow_spec {
1527 struct {
1528 enum ib_flow_spec_type type;
1529 u16 size;
1530 };
1531 struct ib_flow_spec_eth eth;
240ae00e 1532 struct ib_flow_spec_ib ib;
319a441d
HHZ
1533 struct ib_flow_spec_ipv4 ipv4;
1534 struct ib_flow_spec_tcp_udp tcp_udp;
1535};
1536
1537struct ib_flow_attr {
1538 enum ib_flow_attr_type type;
1539 u16 size;
1540 u16 priority;
1541 u32 flags;
1542 u8 num_of_specs;
1543 u8 port;
1544 /* Following are the optional layers according to user request
1545 * struct ib_flow_spec_xxx
1546 * struct ib_flow_spec_yyy
1547 */
1548};
1549
1550struct ib_flow {
1551 struct ib_qp *qp;
1552 struct ib_uobject *uobject;
1553};
1554
4cd7c947 1555struct ib_mad_hdr;
1da177e4
LT
1556struct ib_grh;
1557
1558enum ib_process_mad_flags {
1559 IB_MAD_IGNORE_MKEY = 1,
1560 IB_MAD_IGNORE_BKEY = 2,
1561 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
1562};
1563
1564enum ib_mad_result {
1565 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */
1566 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */
1567 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */
1568 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */
1569};
1570
1571#define IB_DEVICE_NAME_MAX 64
1572
1573struct ib_cache {
1574 rwlock_t lock;
1575 struct ib_event_handler event_handler;
1576 struct ib_pkey_cache **pkey_cache;
03db3a2d 1577 struct ib_gid_table **gid_cache;
6fb9cdbf 1578 u8 *lmc_cache;
1da177e4
LT
1579};
1580
9b513090
RC
1581struct ib_dma_mapping_ops {
1582 int (*mapping_error)(struct ib_device *dev,
1583 u64 dma_addr);
1584 u64 (*map_single)(struct ib_device *dev,
1585 void *ptr, size_t size,
1586 enum dma_data_direction direction);
1587 void (*unmap_single)(struct ib_device *dev,
1588 u64 addr, size_t size,
1589 enum dma_data_direction direction);
1590 u64 (*map_page)(struct ib_device *dev,
1591 struct page *page, unsigned long offset,
1592 size_t size,
1593 enum dma_data_direction direction);
1594 void (*unmap_page)(struct ib_device *dev,
1595 u64 addr, size_t size,
1596 enum dma_data_direction direction);
1597 int (*map_sg)(struct ib_device *dev,
1598 struct scatterlist *sg, int nents,
1599 enum dma_data_direction direction);
1600 void (*unmap_sg)(struct ib_device *dev,
1601 struct scatterlist *sg, int nents,
1602 enum dma_data_direction direction);
9b513090
RC
1603 void (*sync_single_for_cpu)(struct ib_device *dev,
1604 u64 dma_handle,
1605 size_t size,
4deccd6d 1606 enum dma_data_direction dir);
9b513090
RC
1607 void (*sync_single_for_device)(struct ib_device *dev,
1608 u64 dma_handle,
1609 size_t size,
1610 enum dma_data_direction dir);
1611 void *(*alloc_coherent)(struct ib_device *dev,
1612 size_t size,
1613 u64 *dma_handle,
1614 gfp_t flag);
1615 void (*free_coherent)(struct ib_device *dev,
1616 size_t size, void *cpu_addr,
1617 u64 dma_handle);
1618};
1619
07ebafba
TT
1620struct iw_cm_verbs;
1621
7738613e
IW
1622struct ib_port_immutable {
1623 int pkey_tbl_len;
1624 int gid_tbl_len;
f9b22e35 1625 u32 core_cap_flags;
337877a4 1626 u32 max_mad_size;
7738613e
IW
1627};
1628
1da177e4
LT
1629struct ib_device {
1630 struct device *dma_device;
1631
1632 char name[IB_DEVICE_NAME_MAX];
1633
1634 struct list_head event_handler_list;
1635 spinlock_t event_handler_lock;
1636
17a55f79 1637 spinlock_t client_data_lock;
1da177e4 1638 struct list_head core_list;
7c1eb45a
HE
1639 /* Access to the client_data_list is protected by the client_data_lock
1640 * spinlock and the lists_rwsem read-write semaphore */
1da177e4 1641 struct list_head client_data_list;
1da177e4
LT
1642
1643 struct ib_cache cache;
7738613e
IW
1644 /**
1645 * port_immutable is indexed by port number
1646 */
1647 struct ib_port_immutable *port_immutable;
1da177e4 1648
f4fd0b22
MT
1649 int num_comp_vectors;
1650
07ebafba
TT
1651 struct iw_cm_verbs *iwcm;
1652
7f624d02
SW
1653 int (*get_protocol_stats)(struct ib_device *device,
1654 union rdma_protocol_stats *stats);
1da177e4 1655 int (*query_device)(struct ib_device *device,
2528e33e
MB
1656 struct ib_device_attr *device_attr,
1657 struct ib_udata *udata);
1da177e4
LT
1658 int (*query_port)(struct ib_device *device,
1659 u8 port_num,
1660 struct ib_port_attr *port_attr);
a3f5adaf
EC
1661 enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
1662 u8 port_num);
03db3a2d
MB
1663 /* When calling get_netdev, the HW vendor's driver should return the
1664 * net device of device @device at port @port_num or NULL if such
1665 * a net device doesn't exist. The vendor driver should call dev_hold
1666 * on this net device. The HW vendor's device driver must guarantee
1667 * that this function returns NULL before the net device reaches
1668 * NETDEV_UNREGISTER_FINAL state.
1669 */
1670 struct net_device *(*get_netdev)(struct ib_device *device,
1671 u8 port_num);
1da177e4
LT
1672 int (*query_gid)(struct ib_device *device,
1673 u8 port_num, int index,
1674 union ib_gid *gid);
03db3a2d
MB
1675 /* When calling add_gid, the HW vendor's driver should
1676 * add the gid of device @device at gid index @index of
1677 * port @port_num to be @gid. Meta-info of that gid (for example,
1678 * the network device related to this gid is available
1679 * at @attr. @context allows the HW vendor driver to store extra
1680 * information together with a GID entry. The HW vendor may allocate
1681 * memory to contain this information and store it in @context when a
1682 * new GID entry is written to. Params are consistent until the next
1683 * call of add_gid or delete_gid. The function should return 0 on
1684 * success or error otherwise. The function could be called
1685 * concurrently for different ports. This function is only called
1686 * when roce_gid_table is used.
1687 */
1688 int (*add_gid)(struct ib_device *device,
1689 u8 port_num,
1690 unsigned int index,
1691 const union ib_gid *gid,
1692 const struct ib_gid_attr *attr,
1693 void **context);
1694 /* When calling del_gid, the HW vendor's driver should delete the
1695 * gid of device @device at gid index @index of port @port_num.
1696 * Upon the deletion of a GID entry, the HW vendor must free any
1697 * allocated memory. The caller will clear @context afterwards.
1698 * This function is only called when roce_gid_table is used.
1699 */
1700 int (*del_gid)(struct ib_device *device,
1701 u8 port_num,
1702 unsigned int index,
1703 void **context);
1da177e4
LT
1704 int (*query_pkey)(struct ib_device *device,
1705 u8 port_num, u16 index, u16 *pkey);
1706 int (*modify_device)(struct ib_device *device,
1707 int device_modify_mask,
1708 struct ib_device_modify *device_modify);
1709 int (*modify_port)(struct ib_device *device,
1710 u8 port_num, int port_modify_mask,
1711 struct ib_port_modify *port_modify);
e2773c06
RD
1712 struct ib_ucontext * (*alloc_ucontext)(struct ib_device *device,
1713 struct ib_udata *udata);
1714 int (*dealloc_ucontext)(struct ib_ucontext *context);
1715 int (*mmap)(struct ib_ucontext *context,
1716 struct vm_area_struct *vma);
1717 struct ib_pd * (*alloc_pd)(struct ib_device *device,
1718 struct ib_ucontext *context,
1719 struct ib_udata *udata);
1da177e4
LT
1720 int (*dealloc_pd)(struct ib_pd *pd);
1721 struct ib_ah * (*create_ah)(struct ib_pd *pd,
1722 struct ib_ah_attr *ah_attr);
1723 int (*modify_ah)(struct ib_ah *ah,
1724 struct ib_ah_attr *ah_attr);
1725 int (*query_ah)(struct ib_ah *ah,
1726 struct ib_ah_attr *ah_attr);
1727 int (*destroy_ah)(struct ib_ah *ah);
d41fcc67
RD
1728 struct ib_srq * (*create_srq)(struct ib_pd *pd,
1729 struct ib_srq_init_attr *srq_init_attr,
1730 struct ib_udata *udata);
1731 int (*modify_srq)(struct ib_srq *srq,
1732 struct ib_srq_attr *srq_attr,
9bc57e2d
RC
1733 enum ib_srq_attr_mask srq_attr_mask,
1734 struct ib_udata *udata);
d41fcc67
RD
1735 int (*query_srq)(struct ib_srq *srq,
1736 struct ib_srq_attr *srq_attr);
1737 int (*destroy_srq)(struct ib_srq *srq);
1738 int (*post_srq_recv)(struct ib_srq *srq,
1739 struct ib_recv_wr *recv_wr,
1740 struct ib_recv_wr **bad_recv_wr);
1da177e4 1741 struct ib_qp * (*create_qp)(struct ib_pd *pd,
e2773c06
RD
1742 struct ib_qp_init_attr *qp_init_attr,
1743 struct ib_udata *udata);
1da177e4
LT
1744 int (*modify_qp)(struct ib_qp *qp,
1745 struct ib_qp_attr *qp_attr,
9bc57e2d
RC
1746 int qp_attr_mask,
1747 struct ib_udata *udata);
1da177e4
LT
1748 int (*query_qp)(struct ib_qp *qp,
1749 struct ib_qp_attr *qp_attr,
1750 int qp_attr_mask,
1751 struct ib_qp_init_attr *qp_init_attr);
1752 int (*destroy_qp)(struct ib_qp *qp);
1753 int (*post_send)(struct ib_qp *qp,
1754 struct ib_send_wr *send_wr,
1755 struct ib_send_wr **bad_send_wr);
1756 int (*post_recv)(struct ib_qp *qp,
1757 struct ib_recv_wr *recv_wr,
1758 struct ib_recv_wr **bad_recv_wr);
bcf4c1ea
MB
1759 struct ib_cq * (*create_cq)(struct ib_device *device,
1760 const struct ib_cq_init_attr *attr,
e2773c06
RD
1761 struct ib_ucontext *context,
1762 struct ib_udata *udata);
2dd57162
EC
1763 int (*modify_cq)(struct ib_cq *cq, u16 cq_count,
1764 u16 cq_period);
1da177e4 1765 int (*destroy_cq)(struct ib_cq *cq);
33b9b3ee
RD
1766 int (*resize_cq)(struct ib_cq *cq, int cqe,
1767 struct ib_udata *udata);
1da177e4
LT
1768 int (*poll_cq)(struct ib_cq *cq, int num_entries,
1769 struct ib_wc *wc);
1770 int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
1771 int (*req_notify_cq)(struct ib_cq *cq,
ed23a727 1772 enum ib_cq_notify_flags flags);
1da177e4
LT
1773 int (*req_ncomp_notif)(struct ib_cq *cq,
1774 int wc_cnt);
1775 struct ib_mr * (*get_dma_mr)(struct ib_pd *pd,
1776 int mr_access_flags);
e2773c06 1777 struct ib_mr * (*reg_user_mr)(struct ib_pd *pd,
f7c6a7b5
RD
1778 u64 start, u64 length,
1779 u64 virt_addr,
e2773c06
RD
1780 int mr_access_flags,
1781 struct ib_udata *udata);
7e6edb9b
MB
1782 int (*rereg_user_mr)(struct ib_mr *mr,
1783 int flags,
1784 u64 start, u64 length,
1785 u64 virt_addr,
1786 int mr_access_flags,
1787 struct ib_pd *pd,
1788 struct ib_udata *udata);
1da177e4 1789 int (*dereg_mr)(struct ib_mr *mr);
9bee178b
SG
1790 struct ib_mr * (*alloc_mr)(struct ib_pd *pd,
1791 enum ib_mr_type mr_type,
1792 u32 max_num_sg);
4c67e2bf
SG
1793 int (*map_mr_sg)(struct ib_mr *mr,
1794 struct scatterlist *sg,
1795 int sg_nents);
7083e42e
SM
1796 struct ib_mw * (*alloc_mw)(struct ib_pd *pd,
1797 enum ib_mw_type type);
1da177e4
LT
1798 int (*dealloc_mw)(struct ib_mw *mw);
1799 struct ib_fmr * (*alloc_fmr)(struct ib_pd *pd,
1800 int mr_access_flags,
1801 struct ib_fmr_attr *fmr_attr);
1802 int (*map_phys_fmr)(struct ib_fmr *fmr,
1803 u64 *page_list, int list_len,
1804 u64 iova);
1805 int (*unmap_fmr)(struct list_head *fmr_list);
1806 int (*dealloc_fmr)(struct ib_fmr *fmr);
1807 int (*attach_mcast)(struct ib_qp *qp,
1808 union ib_gid *gid,
1809 u16 lid);
1810 int (*detach_mcast)(struct ib_qp *qp,
1811 union ib_gid *gid,
1812 u16 lid);
1813 int (*process_mad)(struct ib_device *device,
1814 int process_mad_flags,
1815 u8 port_num,
a97e2d86
IW
1816 const struct ib_wc *in_wc,
1817 const struct ib_grh *in_grh,
4cd7c947
IW
1818 const struct ib_mad_hdr *in_mad,
1819 size_t in_mad_size,
1820 struct ib_mad_hdr *out_mad,
1821 size_t *out_mad_size,
1822 u16 *out_mad_pkey_index);
59991f94
SH
1823 struct ib_xrcd * (*alloc_xrcd)(struct ib_device *device,
1824 struct ib_ucontext *ucontext,
1825 struct ib_udata *udata);
1826 int (*dealloc_xrcd)(struct ib_xrcd *xrcd);
319a441d
HHZ
1827 struct ib_flow * (*create_flow)(struct ib_qp *qp,
1828 struct ib_flow_attr
1829 *flow_attr,
1830 int domain);
1831 int (*destroy_flow)(struct ib_flow *flow_id);
1b01d335
SG
1832 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
1833 struct ib_mr_status *mr_status);
036b1063 1834 void (*disassociate_ucontext)(struct ib_ucontext *ibcontext);
1da177e4 1835
9b513090
RC
1836 struct ib_dma_mapping_ops *dma_ops;
1837
e2773c06 1838 struct module *owner;
f4e91eb4 1839 struct device dev;
35be0681 1840 struct kobject *ports_parent;
1da177e4
LT
1841 struct list_head port_list;
1842
1843 enum {
1844 IB_DEV_UNINITIALIZED,
1845 IB_DEV_REGISTERED,
1846 IB_DEV_UNREGISTERED
1847 } reg_state;
1848
274c0891 1849 int uverbs_abi_ver;
17a55f79 1850 u64 uverbs_cmd_mask;
f21519b2 1851 u64 uverbs_ex_cmd_mask;
274c0891 1852
c5bcbbb9 1853 char node_desc[64];
cf311cd4 1854 __be64 node_guid;
96f15c03 1855 u32 local_dma_lkey;
4139032b 1856 u16 is_switch:1;
1da177e4
LT
1857 u8 node_type;
1858 u8 phys_port_cnt;
3e153a93 1859 struct ib_device_attr attrs;
7738613e
IW
1860
1861 /**
1862 * The following mandatory functions are used only at device
1863 * registration. Keep functions such as these at the end of this
1864 * structure to avoid cache line misses when accessing struct ib_device
1865 * in fast paths.
1866 */
1867 int (*get_port_immutable)(struct ib_device *, u8, struct ib_port_immutable *);
1da177e4
LT
1868};
1869
1870struct ib_client {
1871 char *name;
1872 void (*add) (struct ib_device *);
7c1eb45a 1873 void (*remove)(struct ib_device *, void *client_data);
1da177e4 1874
9268f72d
YK
1875 /* Returns the net_dev belonging to this ib_client and matching the
1876 * given parameters.
1877 * @dev: An RDMA device that the net_dev use for communication.
1878 * @port: A physical port number on the RDMA device.
1879 * @pkey: P_Key that the net_dev uses if applicable.
1880 * @gid: A GID that the net_dev uses to communicate.
1881 * @addr: An IP address the net_dev is configured with.
1882 * @client_data: The device's client data set by ib_set_client_data().
1883 *
1884 * An ib_client that implements a net_dev on top of RDMA devices
1885 * (such as IP over IB) should implement this callback, allowing the
1886 * rdma_cm module to find the right net_dev for a given request.
1887 *
1888 * The caller is responsible for calling dev_put on the returned
1889 * netdev. */
1890 struct net_device *(*get_net_dev_by_params)(
1891 struct ib_device *dev,
1892 u8 port,
1893 u16 pkey,
1894 const union ib_gid *gid,
1895 const struct sockaddr *addr,
1896 void *client_data);
1da177e4
LT
1897 struct list_head list;
1898};
1899
1900struct ib_device *ib_alloc_device(size_t size);
1901void ib_dealloc_device(struct ib_device *device);
1902
9a6edb60
RC
1903int ib_register_device(struct ib_device *device,
1904 int (*port_callback)(struct ib_device *,
1905 u8, struct kobject *));
1da177e4
LT
1906void ib_unregister_device(struct ib_device *device);
1907
1908int ib_register_client (struct ib_client *client);
1909void ib_unregister_client(struct ib_client *client);
1910
1911void *ib_get_client_data(struct ib_device *device, struct ib_client *client);
1912void ib_set_client_data(struct ib_device *device, struct ib_client *client,
1913 void *data);
1914
e2773c06
RD
1915static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
1916{
1917 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
1918}
1919
1920static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
1921{
43c61165 1922 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
e2773c06
RD
1923}
1924
8a51866f
RD
1925/**
1926 * ib_modify_qp_is_ok - Check that the supplied attribute mask
1927 * contains all required attributes and no attributes not allowed for
1928 * the given QP state transition.
1929 * @cur_state: Current QP state
1930 * @next_state: Next QP state
1931 * @type: QP type
1932 * @mask: Mask of supplied QP attributes
dd5f03be 1933 * @ll : link layer of port
8a51866f
RD
1934 *
1935 * This function is a helper function that a low-level driver's
1936 * modify_qp method can use to validate the consumer's input. It
1937 * checks that cur_state and next_state are valid QP states, that a
1938 * transition from cur_state to next_state is allowed by the IB spec,
1939 * and that the attribute mask supplied is allowed for the transition.
1940 */
1941int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
dd5f03be
MB
1942 enum ib_qp_type type, enum ib_qp_attr_mask mask,
1943 enum rdma_link_layer ll);
8a51866f 1944
1da177e4
LT
1945int ib_register_event_handler (struct ib_event_handler *event_handler);
1946int ib_unregister_event_handler(struct ib_event_handler *event_handler);
1947void ib_dispatch_event(struct ib_event *event);
1948
1da177e4
LT
1949int ib_query_port(struct ib_device *device,
1950 u8 port_num, struct ib_port_attr *port_attr);
1951
a3f5adaf
EC
1952enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
1953 u8 port_num);
1954
4139032b
HR
1955/**
1956 * rdma_cap_ib_switch - Check if the device is IB switch
1957 * @device: Device to check
1958 *
1959 * Device driver is responsible for setting is_switch bit on
1960 * in ib_device structure at init time.
1961 *
1962 * Return: true if the device is IB switch.
1963 */
1964static inline bool rdma_cap_ib_switch(const struct ib_device *device)
1965{
1966 return device->is_switch;
1967}
1968
0cf18d77
IW
1969/**
1970 * rdma_start_port - Return the first valid port number for the device
1971 * specified
1972 *
1973 * @device: Device to be checked
1974 *
1975 * Return start port number
1976 */
1977static inline u8 rdma_start_port(const struct ib_device *device)
1978{
4139032b 1979 return rdma_cap_ib_switch(device) ? 0 : 1;
0cf18d77
IW
1980}
1981
1982/**
1983 * rdma_end_port - Return the last valid port number for the device
1984 * specified
1985 *
1986 * @device: Device to be checked
1987 *
1988 * Return last port number
1989 */
1990static inline u8 rdma_end_port(const struct ib_device *device)
1991{
4139032b 1992 return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
0cf18d77
IW
1993}
1994
5ede9289 1995static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num)
de66be94 1996{
f9b22e35 1997 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IB;
de66be94
MW
1998}
1999
5ede9289 2000static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num)
7766a99f
MB
2001{
2002 return device->port_immutable[port_num].core_cap_flags &
2003 (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP);
2004}
2005
2006static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, u8 port_num)
2007{
2008 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP;
2009}
2010
2011static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, u8 port_num)
de66be94 2012{
f9b22e35 2013 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE;
de66be94
MW
2014}
2015
5ede9289 2016static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num)
de66be94 2017{
f9b22e35 2018 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IWARP;
de66be94
MW
2019}
2020
5ede9289 2021static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num)
de66be94 2022{
7766a99f
MB
2023 return rdma_protocol_ib(device, port_num) ||
2024 rdma_protocol_roce(device, port_num);
de66be94
MW
2025}
2026
c757dea8 2027/**
296ec009 2028 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
c757dea8 2029 * Management Datagrams.
296ec009
MW
2030 * @device: Device to check
2031 * @port_num: Port number to check
c757dea8 2032 *
296ec009
MW
2033 * Management Datagrams (MAD) are a required part of the InfiniBand
2034 * specification and are supported on all InfiniBand devices. A slightly
2035 * extended version are also supported on OPA interfaces.
c757dea8 2036 *
296ec009 2037 * Return: true if the port supports sending/receiving of MAD packets.
c757dea8 2038 */
5ede9289 2039static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num)
c757dea8 2040{
f9b22e35 2041 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_MAD;
c757dea8
MW
2042}
2043
65995fee
IW
2044/**
2045 * rdma_cap_opa_mad - Check if the port of device provides support for OPA
2046 * Management Datagrams.
2047 * @device: Device to check
2048 * @port_num: Port number to check
2049 *
2050 * Intel OmniPath devices extend and/or replace the InfiniBand Management
2051 * datagrams with their own versions. These OPA MADs share many but not all of
2052 * the characteristics of InfiniBand MADs.
2053 *
2054 * OPA MADs differ in the following ways:
2055 *
2056 * 1) MADs are variable size up to 2K
2057 * IBTA defined MADs remain fixed at 256 bytes
2058 * 2) OPA SMPs must carry valid PKeys
2059 * 3) OPA SMP packets are a different format
2060 *
2061 * Return: true if the port supports OPA MAD packet formats.
2062 */
2063static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num)
2064{
2065 return (device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_OPA_MAD)
2066 == RDMA_CORE_CAP_OPA_MAD;
2067}
2068
29541e3a 2069/**
296ec009
MW
2070 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
2071 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
2072 * @device: Device to check
2073 * @port_num: Port number to check
29541e3a 2074 *
296ec009
MW
2075 * Each InfiniBand node is required to provide a Subnet Management Agent
2076 * that the subnet manager can access. Prior to the fabric being fully
2077 * configured by the subnet manager, the SMA is accessed via a well known
2078 * interface called the Subnet Management Interface (SMI). This interface
2079 * uses directed route packets to communicate with the SM to get around the
2080 * chicken and egg problem of the SM needing to know what's on the fabric
2081 * in order to configure the fabric, and needing to configure the fabric in
2082 * order to send packets to the devices on the fabric. These directed
2083 * route packets do not need the fabric fully configured in order to reach
2084 * their destination. The SMI is the only method allowed to send
2085 * directed route packets on an InfiniBand fabric.
29541e3a 2086 *
296ec009 2087 * Return: true if the port provides an SMI.
29541e3a 2088 */
5ede9289 2089static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num)
29541e3a 2090{
f9b22e35 2091 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SMI;
29541e3a
MW
2092}
2093
72219cea
MW
2094/**
2095 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
2096 * Communication Manager.
296ec009
MW
2097 * @device: Device to check
2098 * @port_num: Port number to check
72219cea 2099 *
296ec009
MW
2100 * The InfiniBand Communication Manager is one of many pre-defined General
2101 * Service Agents (GSA) that are accessed via the General Service
2102 * Interface (GSI). It's role is to facilitate establishment of connections
2103 * between nodes as well as other management related tasks for established
2104 * connections.
72219cea 2105 *
296ec009
MW
2106 * Return: true if the port supports an IB CM (this does not guarantee that
2107 * a CM is actually running however).
72219cea 2108 */
5ede9289 2109static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num)
72219cea 2110{
f9b22e35 2111 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_CM;
72219cea
MW
2112}
2113
04215330
MW
2114/**
2115 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
2116 * Communication Manager.
296ec009
MW
2117 * @device: Device to check
2118 * @port_num: Port number to check
04215330 2119 *
296ec009
MW
2120 * Similar to above, but specific to iWARP connections which have a different
2121 * managment protocol than InfiniBand.
04215330 2122 *
296ec009
MW
2123 * Return: true if the port supports an iWARP CM (this does not guarantee that
2124 * a CM is actually running however).
04215330 2125 */
5ede9289 2126static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num)
04215330 2127{
f9b22e35 2128 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IW_CM;
04215330
MW
2129}
2130
fe53ba2f
MW
2131/**
2132 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
2133 * Subnet Administration.
296ec009
MW
2134 * @device: Device to check
2135 * @port_num: Port number to check
fe53ba2f 2136 *
296ec009
MW
2137 * An InfiniBand Subnet Administration (SA) service is a pre-defined General
2138 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand
2139 * fabrics, devices should resolve routes to other hosts by contacting the
2140 * SA to query the proper route.
fe53ba2f 2141 *
296ec009
MW
2142 * Return: true if the port should act as a client to the fabric Subnet
2143 * Administration interface. This does not imply that the SA service is
2144 * running locally.
fe53ba2f 2145 */
5ede9289 2146static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num)
fe53ba2f 2147{
f9b22e35 2148 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SA;
fe53ba2f
MW
2149}
2150
a31ad3b0
MW
2151/**
2152 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
2153 * Multicast.
296ec009
MW
2154 * @device: Device to check
2155 * @port_num: Port number to check
a31ad3b0 2156 *
296ec009
MW
2157 * InfiniBand multicast registration is more complex than normal IPv4 or
2158 * IPv6 multicast registration. Each Host Channel Adapter must register
2159 * with the Subnet Manager when it wishes to join a multicast group. It
2160 * should do so only once regardless of how many queue pairs it subscribes
2161 * to this group. And it should leave the group only after all queue pairs
2162 * attached to the group have been detached.
a31ad3b0 2163 *
296ec009
MW
2164 * Return: true if the port must undertake the additional adminstrative
2165 * overhead of registering/unregistering with the SM and tracking of the
2166 * total number of queue pairs attached to the multicast group.
a31ad3b0 2167 */
5ede9289 2168static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num)
a31ad3b0
MW
2169{
2170 return rdma_cap_ib_sa(device, port_num);
2171}
2172
30a74ef4
MW
2173/**
2174 * rdma_cap_af_ib - Check if the port of device has the capability
2175 * Native Infiniband Address.
296ec009
MW
2176 * @device: Device to check
2177 * @port_num: Port number to check
30a74ef4 2178 *
296ec009
MW
2179 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
2180 * GID. RoCE uses a different mechanism, but still generates a GID via
2181 * a prescribed mechanism and port specific data.
30a74ef4 2182 *
296ec009
MW
2183 * Return: true if the port uses a GID address to identify devices on the
2184 * network.
30a74ef4 2185 */
5ede9289 2186static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num)
30a74ef4 2187{
f9b22e35 2188 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_AF_IB;
30a74ef4
MW
2189}
2190
227128fc
MW
2191/**
2192 * rdma_cap_eth_ah - Check if the port of device has the capability
296ec009
MW
2193 * Ethernet Address Handle.
2194 * @device: Device to check
2195 * @port_num: Port number to check
227128fc 2196 *
296ec009
MW
2197 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
2198 * to fabricate GIDs over Ethernet/IP specific addresses native to the
2199 * port. Normally, packet headers are generated by the sending host
2200 * adapter, but when sending connectionless datagrams, we must manually
2201 * inject the proper headers for the fabric we are communicating over.
227128fc 2202 *
296ec009
MW
2203 * Return: true if we are running as a RoCE port and must force the
2204 * addition of a Global Route Header built from our Ethernet Address
2205 * Handle into our header list for connectionless packets.
227128fc 2206 */
5ede9289 2207static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num)
227128fc 2208{
f9b22e35 2209 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_ETH_AH;
227128fc
MW
2210}
2211
337877a4
IW
2212/**
2213 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
2214 *
2215 * @device: Device
2216 * @port_num: Port number
2217 *
2218 * This MAD size includes the MAD headers and MAD payload. No other headers
2219 * are included.
2220 *
2221 * Return the max MAD size required by the Port. Will return 0 if the port
2222 * does not support MADs
2223 */
2224static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num)
2225{
2226 return device->port_immutable[port_num].max_mad_size;
2227}
2228
03db3a2d
MB
2229/**
2230 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table
2231 * @device: Device to check
2232 * @port_num: Port number to check
2233 *
2234 * RoCE GID table mechanism manages the various GIDs for a device.
2235 *
2236 * NOTE: if allocating the port's GID table has failed, this call will still
2237 * return true, but any RoCE GID table API will fail.
2238 *
2239 * Return: true if the port uses RoCE GID table mechanism in order to manage
2240 * its GIDs.
2241 */
2242static inline bool rdma_cap_roce_gid_table(const struct ib_device *device,
2243 u8 port_num)
2244{
2245 return rdma_protocol_roce(device, port_num) &&
2246 device->add_gid && device->del_gid;
2247}
2248
1da177e4 2249int ib_query_gid(struct ib_device *device,
55ee3ab2
MB
2250 u8 port_num, int index, union ib_gid *gid,
2251 struct ib_gid_attr *attr);
1da177e4
LT
2252
2253int ib_query_pkey(struct ib_device *device,
2254 u8 port_num, u16 index, u16 *pkey);
2255
2256int ib_modify_device(struct ib_device *device,
2257 int device_modify_mask,
2258 struct ib_device_modify *device_modify);
2259
2260int ib_modify_port(struct ib_device *device,
2261 u8 port_num, int port_modify_mask,
2262 struct ib_port_modify *port_modify);
2263
5eb620c8 2264int ib_find_gid(struct ib_device *device, union ib_gid *gid,
b39ffa1d
MB
2265 enum ib_gid_type gid_type, struct net_device *ndev,
2266 u8 *port_num, u16 *index);
5eb620c8
YE
2267
2268int ib_find_pkey(struct ib_device *device,
2269 u8 port_num, u16 pkey, u16 *index);
2270
1da177e4
LT
2271struct ib_pd *ib_alloc_pd(struct ib_device *device);
2272
7dd78647 2273void ib_dealloc_pd(struct ib_pd *pd);
1da177e4
LT
2274
2275/**
2276 * ib_create_ah - Creates an address handle for the given address vector.
2277 * @pd: The protection domain associated with the address handle.
2278 * @ah_attr: The attributes of the address vector.
2279 *
2280 * The address handle is used to reference a local or global destination
2281 * in all UD QP post sends.
2282 */
2283struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr);
2284
4e00d694
SH
2285/**
2286 * ib_init_ah_from_wc - Initializes address handle attributes from a
2287 * work completion.
2288 * @device: Device on which the received message arrived.
2289 * @port_num: Port on which the received message arrived.
2290 * @wc: Work completion associated with the received message.
2291 * @grh: References the received global route header. This parameter is
2292 * ignored unless the work completion indicates that the GRH is valid.
2293 * @ah_attr: Returned attributes that can be used when creating an address
2294 * handle for replying to the message.
2295 */
73cdaaee
IW
2296int ib_init_ah_from_wc(struct ib_device *device, u8 port_num,
2297 const struct ib_wc *wc, const struct ib_grh *grh,
2298 struct ib_ah_attr *ah_attr);
4e00d694 2299
513789ed
HR
2300/**
2301 * ib_create_ah_from_wc - Creates an address handle associated with the
2302 * sender of the specified work completion.
2303 * @pd: The protection domain associated with the address handle.
2304 * @wc: Work completion information associated with a received message.
2305 * @grh: References the received global route header. This parameter is
2306 * ignored unless the work completion indicates that the GRH is valid.
2307 * @port_num: The outbound port number to associate with the address.
2308 *
2309 * The address handle is used to reference a local or global destination
2310 * in all UD QP post sends.
2311 */
73cdaaee
IW
2312struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
2313 const struct ib_grh *grh, u8 port_num);
513789ed 2314
1da177e4
LT
2315/**
2316 * ib_modify_ah - Modifies the address vector associated with an address
2317 * handle.
2318 * @ah: The address handle to modify.
2319 * @ah_attr: The new address vector attributes to associate with the
2320 * address handle.
2321 */
2322int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
2323
2324/**
2325 * ib_query_ah - Queries the address vector associated with an address
2326 * handle.
2327 * @ah: The address handle to query.
2328 * @ah_attr: The address vector attributes associated with the address
2329 * handle.
2330 */
2331int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
2332
2333/**
2334 * ib_destroy_ah - Destroys an address handle.
2335 * @ah: The address handle to destroy.
2336 */
2337int ib_destroy_ah(struct ib_ah *ah);
2338
d41fcc67
RD
2339/**
2340 * ib_create_srq - Creates a SRQ associated with the specified protection
2341 * domain.
2342 * @pd: The protection domain associated with the SRQ.
abb6e9ba
DB
2343 * @srq_init_attr: A list of initial attributes required to create the
2344 * SRQ. If SRQ creation succeeds, then the attributes are updated to
2345 * the actual capabilities of the created SRQ.
d41fcc67
RD
2346 *
2347 * srq_attr->max_wr and srq_attr->max_sge are read the determine the
2348 * requested size of the SRQ, and set to the actual values allocated
2349 * on return. If ib_create_srq() succeeds, then max_wr and max_sge
2350 * will always be at least as large as the requested values.
2351 */
2352struct ib_srq *ib_create_srq(struct ib_pd *pd,
2353 struct ib_srq_init_attr *srq_init_attr);
2354
2355/**
2356 * ib_modify_srq - Modifies the attributes for the specified SRQ.
2357 * @srq: The SRQ to modify.
2358 * @srq_attr: On input, specifies the SRQ attributes to modify. On output,
2359 * the current values of selected SRQ attributes are returned.
2360 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
2361 * are being modified.
2362 *
2363 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
2364 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
2365 * the number of receives queued drops below the limit.
2366 */
2367int ib_modify_srq(struct ib_srq *srq,
2368 struct ib_srq_attr *srq_attr,
2369 enum ib_srq_attr_mask srq_attr_mask);
2370
2371/**
2372 * ib_query_srq - Returns the attribute list and current values for the
2373 * specified SRQ.
2374 * @srq: The SRQ to query.
2375 * @srq_attr: The attributes of the specified SRQ.
2376 */
2377int ib_query_srq(struct ib_srq *srq,
2378 struct ib_srq_attr *srq_attr);
2379
2380/**
2381 * ib_destroy_srq - Destroys the specified SRQ.
2382 * @srq: The SRQ to destroy.
2383 */
2384int ib_destroy_srq(struct ib_srq *srq);
2385
2386/**
2387 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
2388 * @srq: The SRQ to post the work request on.
2389 * @recv_wr: A list of work requests to post on the receive queue.
2390 * @bad_recv_wr: On an immediate failure, this parameter will reference
2391 * the work request that failed to be posted on the QP.
2392 */
2393static inline int ib_post_srq_recv(struct ib_srq *srq,
2394 struct ib_recv_wr *recv_wr,
2395 struct ib_recv_wr **bad_recv_wr)
2396{
2397 return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr);
2398}
2399
1da177e4
LT
2400/**
2401 * ib_create_qp - Creates a QP associated with the specified protection
2402 * domain.
2403 * @pd: The protection domain associated with the QP.
abb6e9ba
DB
2404 * @qp_init_attr: A list of initial attributes required to create the
2405 * QP. If QP creation succeeds, then the attributes are updated to
2406 * the actual capabilities of the created QP.
1da177e4
LT
2407 */
2408struct ib_qp *ib_create_qp(struct ib_pd *pd,
2409 struct ib_qp_init_attr *qp_init_attr);
2410
2411/**
2412 * ib_modify_qp - Modifies the attributes for the specified QP and then
2413 * transitions the QP to the given state.
2414 * @qp: The QP to modify.
2415 * @qp_attr: On input, specifies the QP attributes to modify. On output,
2416 * the current values of selected QP attributes are returned.
2417 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
2418 * are being modified.
2419 */
2420int ib_modify_qp(struct ib_qp *qp,
2421 struct ib_qp_attr *qp_attr,
2422 int qp_attr_mask);
2423
2424/**
2425 * ib_query_qp - Returns the attribute list and current values for the
2426 * specified QP.
2427 * @qp: The QP to query.
2428 * @qp_attr: The attributes of the specified QP.
2429 * @qp_attr_mask: A bit-mask used to select specific attributes to query.
2430 * @qp_init_attr: Additional attributes of the selected QP.
2431 *
2432 * The qp_attr_mask may be used to limit the query to gathering only the
2433 * selected attributes.
2434 */
2435int ib_query_qp(struct ib_qp *qp,
2436 struct ib_qp_attr *qp_attr,
2437 int qp_attr_mask,
2438 struct ib_qp_init_attr *qp_init_attr);
2439
2440/**
2441 * ib_destroy_qp - Destroys the specified QP.
2442 * @qp: The QP to destroy.
2443 */
2444int ib_destroy_qp(struct ib_qp *qp);
2445
d3d72d90 2446/**
0e0ec7e0
SH
2447 * ib_open_qp - Obtain a reference to an existing sharable QP.
2448 * @xrcd - XRC domain
2449 * @qp_open_attr: Attributes identifying the QP to open.
2450 *
2451 * Returns a reference to a sharable QP.
2452 */
2453struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
2454 struct ib_qp_open_attr *qp_open_attr);
2455
2456/**
2457 * ib_close_qp - Release an external reference to a QP.
d3d72d90
SH
2458 * @qp: The QP handle to release
2459 *
0e0ec7e0
SH
2460 * The opened QP handle is released by the caller. The underlying
2461 * shared QP is not destroyed until all internal references are released.
d3d72d90 2462 */
0e0ec7e0 2463int ib_close_qp(struct ib_qp *qp);
d3d72d90 2464
1da177e4
LT
2465/**
2466 * ib_post_send - Posts a list of work requests to the send queue of
2467 * the specified QP.
2468 * @qp: The QP to post the work request on.
2469 * @send_wr: A list of work requests to post on the send queue.
2470 * @bad_send_wr: On an immediate failure, this parameter will reference
2471 * the work request that failed to be posted on the QP.
55464d46
BVA
2472 *
2473 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
2474 * error is returned, the QP state shall not be affected,
2475 * ib_post_send() will return an immediate error after queueing any
2476 * earlier work requests in the list.
1da177e4
LT
2477 */
2478static inline int ib_post_send(struct ib_qp *qp,
2479 struct ib_send_wr *send_wr,
2480 struct ib_send_wr **bad_send_wr)
2481{
2482 return qp->device->post_send(qp, send_wr, bad_send_wr);
2483}
2484
2485/**
2486 * ib_post_recv - Posts a list of work requests to the receive queue of
2487 * the specified QP.
2488 * @qp: The QP to post the work request on.
2489 * @recv_wr: A list of work requests to post on the receive queue.
2490 * @bad_recv_wr: On an immediate failure, this parameter will reference
2491 * the work request that failed to be posted on the QP.
2492 */
2493static inline int ib_post_recv(struct ib_qp *qp,
2494 struct ib_recv_wr *recv_wr,
2495 struct ib_recv_wr **bad_recv_wr)
2496{
2497 return qp->device->post_recv(qp, recv_wr, bad_recv_wr);
2498}
2499
14d3a3b2
CH
2500struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private,
2501 int nr_cqe, int comp_vector, enum ib_poll_context poll_ctx);
2502void ib_free_cq(struct ib_cq *cq);
2503int ib_process_cq_direct(struct ib_cq *cq, int budget);
2504
1da177e4
LT
2505/**
2506 * ib_create_cq - Creates a CQ on the specified device.
2507 * @device: The device on which to create the CQ.
2508 * @comp_handler: A user-specified callback that is invoked when a
2509 * completion event occurs on the CQ.
2510 * @event_handler: A user-specified callback that is invoked when an
2511 * asynchronous event not associated with a completion occurs on the CQ.
2512 * @cq_context: Context associated with the CQ returned to the user via
2513 * the associated completion and event handlers.
8e37210b 2514 * @cq_attr: The attributes the CQ should be created upon.
1da177e4
LT
2515 *
2516 * Users can examine the cq structure to determine the actual CQ size.
2517 */
2518struct ib_cq *ib_create_cq(struct ib_device *device,
2519 ib_comp_handler comp_handler,
2520 void (*event_handler)(struct ib_event *, void *),
8e37210b
MB
2521 void *cq_context,
2522 const struct ib_cq_init_attr *cq_attr);
1da177e4
LT
2523
2524/**
2525 * ib_resize_cq - Modifies the capacity of the CQ.
2526 * @cq: The CQ to resize.
2527 * @cqe: The minimum size of the CQ.
2528 *
2529 * Users can examine the cq structure to determine the actual CQ size.
2530 */
2531int ib_resize_cq(struct ib_cq *cq, int cqe);
2532
2dd57162
EC
2533/**
2534 * ib_modify_cq - Modifies moderation params of the CQ
2535 * @cq: The CQ to modify.
2536 * @cq_count: number of CQEs that will trigger an event
2537 * @cq_period: max period of time in usec before triggering an event
2538 *
2539 */
2540int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period);
2541
1da177e4
LT
2542/**
2543 * ib_destroy_cq - Destroys the specified CQ.
2544 * @cq: The CQ to destroy.
2545 */
2546int ib_destroy_cq(struct ib_cq *cq);
2547
2548/**
2549 * ib_poll_cq - poll a CQ for completion(s)
2550 * @cq:the CQ being polled
2551 * @num_entries:maximum number of completions to return
2552 * @wc:array of at least @num_entries &struct ib_wc where completions
2553 * will be returned
2554 *
2555 * Poll a CQ for (possibly multiple) completions. If the return value
2556 * is < 0, an error occurred. If the return value is >= 0, it is the
2557 * number of completions returned. If the return value is
2558 * non-negative and < num_entries, then the CQ was emptied.
2559 */
2560static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
2561 struct ib_wc *wc)
2562{
2563 return cq->device->poll_cq(cq, num_entries, wc);
2564}
2565
2566/**
2567 * ib_peek_cq - Returns the number of unreaped completions currently
2568 * on the specified CQ.
2569 * @cq: The CQ to peek.
2570 * @wc_cnt: A minimum number of unreaped completions to check for.
2571 *
2572 * If the number of unreaped completions is greater than or equal to wc_cnt,
2573 * this function returns wc_cnt, otherwise, it returns the actual number of
2574 * unreaped completions.
2575 */
2576int ib_peek_cq(struct ib_cq *cq, int wc_cnt);
2577
2578/**
2579 * ib_req_notify_cq - Request completion notification on a CQ.
2580 * @cq: The CQ to generate an event for.
ed23a727
RD
2581 * @flags:
2582 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
2583 * to request an event on the next solicited event or next work
2584 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
2585 * may also be |ed in to request a hint about missed events, as
2586 * described below.
2587 *
2588 * Return Value:
2589 * < 0 means an error occurred while requesting notification
2590 * == 0 means notification was requested successfully, and if
2591 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
2592 * were missed and it is safe to wait for another event. In
2593 * this case is it guaranteed that any work completions added
2594 * to the CQ since the last CQ poll will trigger a completion
2595 * notification event.
2596 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
2597 * in. It means that the consumer must poll the CQ again to
2598 * make sure it is empty to avoid missing an event because of a
2599 * race between requesting notification and an entry being
2600 * added to the CQ. This return value means it is possible
2601 * (but not guaranteed) that a work completion has been added
2602 * to the CQ since the last poll without triggering a
2603 * completion notification event.
1da177e4
LT
2604 */
2605static inline int ib_req_notify_cq(struct ib_cq *cq,
ed23a727 2606 enum ib_cq_notify_flags flags)
1da177e4 2607{
ed23a727 2608 return cq->device->req_notify_cq(cq, flags);
1da177e4
LT
2609}
2610
2611/**
2612 * ib_req_ncomp_notif - Request completion notification when there are
2613 * at least the specified number of unreaped completions on the CQ.
2614 * @cq: The CQ to generate an event for.
2615 * @wc_cnt: The number of unreaped completions that should be on the
2616 * CQ before an event is generated.
2617 */
2618static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
2619{
2620 return cq->device->req_ncomp_notif ?
2621 cq->device->req_ncomp_notif(cq, wc_cnt) :
2622 -ENOSYS;
2623}
2624
2625/**
2626 * ib_get_dma_mr - Returns a memory region for system memory that is
2627 * usable for DMA.
2628 * @pd: The protection domain associated with the memory region.
2629 * @mr_access_flags: Specifies the memory access rights.
9b513090
RC
2630 *
2631 * Note that the ib_dma_*() functions defined below must be used
2632 * to create/destroy addresses used with the Lkey or Rkey returned
2633 * by ib_get_dma_mr().
1da177e4
LT
2634 */
2635struct ib_mr *ib_get_dma_mr(struct ib_pd *pd, int mr_access_flags);
2636
9b513090
RC
2637/**
2638 * ib_dma_mapping_error - check a DMA addr for error
2639 * @dev: The device for which the dma_addr was created
2640 * @dma_addr: The DMA address to check
2641 */
2642static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
2643{
d1998ef3
BC
2644 if (dev->dma_ops)
2645 return dev->dma_ops->mapping_error(dev, dma_addr);
8d8bb39b 2646 return dma_mapping_error(dev->dma_device, dma_addr);
9b513090
RC
2647}
2648
2649/**
2650 * ib_dma_map_single - Map a kernel virtual address to DMA address
2651 * @dev: The device for which the dma_addr is to be created
2652 * @cpu_addr: The kernel virtual address
2653 * @size: The size of the region in bytes
2654 * @direction: The direction of the DMA
2655 */
2656static inline u64 ib_dma_map_single(struct ib_device *dev,
2657 void *cpu_addr, size_t size,
2658 enum dma_data_direction direction)
2659{
d1998ef3
BC
2660 if (dev->dma_ops)
2661 return dev->dma_ops->map_single(dev, cpu_addr, size, direction);
2662 return dma_map_single(dev->dma_device, cpu_addr, size, direction);
9b513090
RC
2663}
2664
2665/**
2666 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
2667 * @dev: The device for which the DMA address was created
2668 * @addr: The DMA address
2669 * @size: The size of the region in bytes
2670 * @direction: The direction of the DMA
2671 */
2672static inline void ib_dma_unmap_single(struct ib_device *dev,
2673 u64 addr, size_t size,
2674 enum dma_data_direction direction)
2675{
d1998ef3
BC
2676 if (dev->dma_ops)
2677 dev->dma_ops->unmap_single(dev, addr, size, direction);
2678 else
9b513090
RC
2679 dma_unmap_single(dev->dma_device, addr, size, direction);
2680}
2681
cb9fbc5c
AK
2682static inline u64 ib_dma_map_single_attrs(struct ib_device *dev,
2683 void *cpu_addr, size_t size,
2684 enum dma_data_direction direction,
2685 struct dma_attrs *attrs)
2686{
2687 return dma_map_single_attrs(dev->dma_device, cpu_addr, size,
2688 direction, attrs);
2689}
2690
2691static inline void ib_dma_unmap_single_attrs(struct ib_device *dev,
2692 u64 addr, size_t size,
2693 enum dma_data_direction direction,
2694 struct dma_attrs *attrs)
2695{
2696 return dma_unmap_single_attrs(dev->dma_device, addr, size,
2697 direction, attrs);
2698}
2699
9b513090
RC
2700/**
2701 * ib_dma_map_page - Map a physical page to DMA address
2702 * @dev: The device for which the dma_addr is to be created
2703 * @page: The page to be mapped
2704 * @offset: The offset within the page
2705 * @size: The size of the region in bytes
2706 * @direction: The direction of the DMA
2707 */
2708static inline u64 ib_dma_map_page(struct ib_device *dev,
2709 struct page *page,
2710 unsigned long offset,
2711 size_t size,
2712 enum dma_data_direction direction)
2713{
d1998ef3
BC
2714 if (dev->dma_ops)
2715 return dev->dma_ops->map_page(dev, page, offset, size, direction);
2716 return dma_map_page(dev->dma_device, page, offset, size, direction);
9b513090
RC
2717}
2718
2719/**
2720 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
2721 * @dev: The device for which the DMA address was created
2722 * @addr: The DMA address
2723 * @size: The size of the region in bytes
2724 * @direction: The direction of the DMA
2725 */
2726static inline void ib_dma_unmap_page(struct ib_device *dev,
2727 u64 addr, size_t size,
2728 enum dma_data_direction direction)
2729{
d1998ef3
BC
2730 if (dev->dma_ops)
2731 dev->dma_ops->unmap_page(dev, addr, size, direction);
2732 else
9b513090
RC
2733 dma_unmap_page(dev->dma_device, addr, size, direction);
2734}
2735
2736/**
2737 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
2738 * @dev: The device for which the DMA addresses are to be created
2739 * @sg: The array of scatter/gather entries
2740 * @nents: The number of scatter/gather entries
2741 * @direction: The direction of the DMA
2742 */
2743static inline int ib_dma_map_sg(struct ib_device *dev,
2744 struct scatterlist *sg, int nents,
2745 enum dma_data_direction direction)
2746{
d1998ef3
BC
2747 if (dev->dma_ops)
2748 return dev->dma_ops->map_sg(dev, sg, nents, direction);
2749 return dma_map_sg(dev->dma_device, sg, nents, direction);
9b513090
RC
2750}
2751
2752/**
2753 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
2754 * @dev: The device for which the DMA addresses were created
2755 * @sg: The array of scatter/gather entries
2756 * @nents: The number of scatter/gather entries
2757 * @direction: The direction of the DMA
2758 */
2759static inline void ib_dma_unmap_sg(struct ib_device *dev,
2760 struct scatterlist *sg, int nents,
2761 enum dma_data_direction direction)
2762{
d1998ef3
BC
2763 if (dev->dma_ops)
2764 dev->dma_ops->unmap_sg(dev, sg, nents, direction);
2765 else
9b513090
RC
2766 dma_unmap_sg(dev->dma_device, sg, nents, direction);
2767}
2768
cb9fbc5c
AK
2769static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
2770 struct scatterlist *sg, int nents,
2771 enum dma_data_direction direction,
2772 struct dma_attrs *attrs)
2773{
2774 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, attrs);
2775}
2776
2777static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
2778 struct scatterlist *sg, int nents,
2779 enum dma_data_direction direction,
2780 struct dma_attrs *attrs)
2781{
2782 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, attrs);
2783}
9b513090
RC
2784/**
2785 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry
2786 * @dev: The device for which the DMA addresses were created
2787 * @sg: The scatter/gather entry
ea58a595
MM
2788 *
2789 * Note: this function is obsolete. To do: change all occurrences of
2790 * ib_sg_dma_address() into sg_dma_address().
9b513090
RC
2791 */
2792static inline u64 ib_sg_dma_address(struct ib_device *dev,
2793 struct scatterlist *sg)
2794{
d1998ef3 2795 return sg_dma_address(sg);
9b513090
RC
2796}
2797
2798/**
2799 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry
2800 * @dev: The device for which the DMA addresses were created
2801 * @sg: The scatter/gather entry
ea58a595
MM
2802 *
2803 * Note: this function is obsolete. To do: change all occurrences of
2804 * ib_sg_dma_len() into sg_dma_len().
9b513090
RC
2805 */
2806static inline unsigned int ib_sg_dma_len(struct ib_device *dev,
2807 struct scatterlist *sg)
2808{
d1998ef3 2809 return sg_dma_len(sg);
9b513090
RC
2810}
2811
2812/**
2813 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
2814 * @dev: The device for which the DMA address was created
2815 * @addr: The DMA address
2816 * @size: The size of the region in bytes
2817 * @dir: The direction of the DMA
2818 */
2819static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
2820 u64 addr,
2821 size_t size,
2822 enum dma_data_direction dir)
2823{
d1998ef3
BC
2824 if (dev->dma_ops)
2825 dev->dma_ops->sync_single_for_cpu(dev, addr, size, dir);
2826 else
9b513090
RC
2827 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
2828}
2829
2830/**
2831 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
2832 * @dev: The device for which the DMA address was created
2833 * @addr: The DMA address
2834 * @size: The size of the region in bytes
2835 * @dir: The direction of the DMA
2836 */
2837static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
2838 u64 addr,
2839 size_t size,
2840 enum dma_data_direction dir)
2841{
d1998ef3
BC
2842 if (dev->dma_ops)
2843 dev->dma_ops->sync_single_for_device(dev, addr, size, dir);
2844 else
9b513090
RC
2845 dma_sync_single_for_device(dev->dma_device, addr, size, dir);
2846}
2847
2848/**
2849 * ib_dma_alloc_coherent - Allocate memory and map it for DMA
2850 * @dev: The device for which the DMA address is requested
2851 * @size: The size of the region to allocate in bytes
2852 * @dma_handle: A pointer for returning the DMA address of the region
2853 * @flag: memory allocator flags
2854 */
2855static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
2856 size_t size,
2857 u64 *dma_handle,
2858 gfp_t flag)
2859{
d1998ef3
BC
2860 if (dev->dma_ops)
2861 return dev->dma_ops->alloc_coherent(dev, size, dma_handle, flag);
c59a3da1
RD
2862 else {
2863 dma_addr_t handle;
2864 void *ret;
2865
2866 ret = dma_alloc_coherent(dev->dma_device, size, &handle, flag);
2867 *dma_handle = handle;
2868 return ret;
2869 }
9b513090
RC
2870}
2871
2872/**
2873 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
2874 * @dev: The device for which the DMA addresses were allocated
2875 * @size: The size of the region
2876 * @cpu_addr: the address returned by ib_dma_alloc_coherent()
2877 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
2878 */
2879static inline void ib_dma_free_coherent(struct ib_device *dev,
2880 size_t size, void *cpu_addr,
2881 u64 dma_handle)
2882{
d1998ef3
BC
2883 if (dev->dma_ops)
2884 dev->dma_ops->free_coherent(dev, size, cpu_addr, dma_handle);
2885 else
9b513090
RC
2886 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
2887}
2888
1da177e4
LT
2889/**
2890 * ib_dereg_mr - Deregisters a memory region and removes it from the
2891 * HCA translation table.
2892 * @mr: The memory region to deregister.
7083e42e
SM
2893 *
2894 * This function can fail, if the memory region has memory windows bound to it.
1da177e4
LT
2895 */
2896int ib_dereg_mr(struct ib_mr *mr);
2897
9bee178b
SG
2898struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
2899 enum ib_mr_type mr_type,
2900 u32 max_num_sg);
00f7ec36 2901
00f7ec36
SW
2902/**
2903 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
2904 * R_Key and L_Key.
2905 * @mr - struct ib_mr pointer to be updated.
2906 * @newkey - new key to be used.
2907 */
2908static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
2909{
2910 mr->lkey = (mr->lkey & 0xffffff00) | newkey;
2911 mr->rkey = (mr->rkey & 0xffffff00) | newkey;
2912}
2913
7083e42e
SM
2914/**
2915 * ib_inc_rkey - increments the key portion of the given rkey. Can be used
2916 * for calculating a new rkey for type 2 memory windows.
2917 * @rkey - the rkey to increment.
2918 */
2919static inline u32 ib_inc_rkey(u32 rkey)
2920{
2921 const u32 mask = 0x000000ff;
2922 return ((rkey + 1) & mask) | (rkey & ~mask);
2923}
2924
1da177e4
LT
2925/**
2926 * ib_alloc_fmr - Allocates a unmapped fast memory region.
2927 * @pd: The protection domain associated with the unmapped region.
2928 * @mr_access_flags: Specifies the memory access rights.
2929 * @fmr_attr: Attributes of the unmapped region.
2930 *
2931 * A fast memory region must be mapped before it can be used as part of
2932 * a work request.
2933 */
2934struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
2935 int mr_access_flags,
2936 struct ib_fmr_attr *fmr_attr);
2937
2938/**
2939 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region.
2940 * @fmr: The fast memory region to associate with the pages.
2941 * @page_list: An array of physical pages to map to the fast memory region.
2942 * @list_len: The number of pages in page_list.
2943 * @iova: The I/O virtual address to use with the mapped region.
2944 */
2945static inline int ib_map_phys_fmr(struct ib_fmr *fmr,
2946 u64 *page_list, int list_len,
2947 u64 iova)
2948{
2949 return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova);
2950}
2951
2952/**
2953 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions.
2954 * @fmr_list: A linked list of fast memory regions to unmap.
2955 */
2956int ib_unmap_fmr(struct list_head *fmr_list);
2957
2958/**
2959 * ib_dealloc_fmr - Deallocates a fast memory region.
2960 * @fmr: The fast memory region to deallocate.
2961 */
2962int ib_dealloc_fmr(struct ib_fmr *fmr);
2963
2964/**
2965 * ib_attach_mcast - Attaches the specified QP to a multicast group.
2966 * @qp: QP to attach to the multicast group. The QP must be type
2967 * IB_QPT_UD.
2968 * @gid: Multicast group GID.
2969 * @lid: Multicast group LID in host byte order.
2970 *
2971 * In order to send and receive multicast packets, subnet
2972 * administration must have created the multicast group and configured
2973 * the fabric appropriately. The port associated with the specified
2974 * QP must also be a member of the multicast group.
2975 */
2976int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2977
2978/**
2979 * ib_detach_mcast - Detaches the specified QP from a multicast group.
2980 * @qp: QP to detach from the multicast group.
2981 * @gid: Multicast group GID.
2982 * @lid: Multicast group LID in host byte order.
2983 */
2984int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2985
59991f94
SH
2986/**
2987 * ib_alloc_xrcd - Allocates an XRC domain.
2988 * @device: The device on which to allocate the XRC domain.
2989 */
2990struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device);
2991
2992/**
2993 * ib_dealloc_xrcd - Deallocates an XRC domain.
2994 * @xrcd: The XRC domain to deallocate.
2995 */
2996int ib_dealloc_xrcd(struct ib_xrcd *xrcd);
2997
319a441d
HHZ
2998struct ib_flow *ib_create_flow(struct ib_qp *qp,
2999 struct ib_flow_attr *flow_attr, int domain);
3000int ib_destroy_flow(struct ib_flow *flow_id);
3001
1c636f80
EC
3002static inline int ib_check_mr_access(int flags)
3003{
3004 /*
3005 * Local write permission is required if remote write or
3006 * remote atomic permission is also requested.
3007 */
3008 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
3009 !(flags & IB_ACCESS_LOCAL_WRITE))
3010 return -EINVAL;
3011
3012 return 0;
3013}
3014
1b01d335
SG
3015/**
3016 * ib_check_mr_status: lightweight check of MR status.
3017 * This routine may provide status checks on a selected
3018 * ib_mr. first use is for signature status check.
3019 *
3020 * @mr: A memory region.
3021 * @check_mask: Bitmask of which checks to perform from
3022 * ib_mr_status_check enumeration.
3023 * @mr_status: The container of relevant status checks.
3024 * failed checks will be indicated in the status bitmask
3025 * and the relevant info shall be in the error item.
3026 */
3027int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
3028 struct ib_mr_status *mr_status);
3029
9268f72d
YK
3030struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u8 port,
3031 u16 pkey, const union ib_gid *gid,
3032 const struct sockaddr *addr);
3033
4c67e2bf
SG
3034int ib_map_mr_sg(struct ib_mr *mr,
3035 struct scatterlist *sg,
3036 int sg_nents,
3037 unsigned int page_size);
3038
3039static inline int
3040ib_map_mr_sg_zbva(struct ib_mr *mr,
3041 struct scatterlist *sg,
3042 int sg_nents,
3043 unsigned int page_size)
3044{
3045 int n;
3046
3047 n = ib_map_mr_sg(mr, sg, sg_nents, page_size);
3048 mr->iova = 0;
3049
3050 return n;
3051}
3052
3053int ib_sg_to_pages(struct ib_mr *mr,
3054 struct scatterlist *sgl,
3055 int sg_nents,
3056 int (*set_page)(struct ib_mr *, u64));
3057
1da177e4 3058#endif /* IB_VERBS_H */
This page took 0.84877 seconds and 5 git commands to generate.