bpf: add bpf_prog_add api for bulk prog refcnt
[deliverable/linux.git] / kernel / bpf / verifier.c
CommitLineData
51580e79 1/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
969bf05e 2 * Copyright (c) 2016 Facebook
51580e79
AS
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 */
13#include <linux/kernel.h>
14#include <linux/types.h>
15#include <linux/slab.h>
16#include <linux/bpf.h>
17#include <linux/filter.h>
18#include <net/netlink.h>
19#include <linux/file.h>
20#include <linux/vmalloc.h>
21
22/* bpf_check() is a static code analyzer that walks eBPF program
23 * instruction by instruction and updates register/stack state.
24 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
25 *
26 * The first pass is depth-first-search to check that the program is a DAG.
27 * It rejects the following programs:
28 * - larger than BPF_MAXINSNS insns
29 * - if loop is present (detected via back-edge)
30 * - unreachable insns exist (shouldn't be a forest. program = one function)
31 * - out of bounds or malformed jumps
32 * The second pass is all possible path descent from the 1st insn.
33 * Since it's analyzing all pathes through the program, the length of the
34 * analysis is limited to 32k insn, which may be hit even if total number of
35 * insn is less then 4K, but there are too many branches that change stack/regs.
36 * Number of 'branches to be analyzed' is limited to 1k
37 *
38 * On entry to each instruction, each register has a type, and the instruction
39 * changes the types of the registers depending on instruction semantics.
40 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
41 * copied to R1.
42 *
43 * All registers are 64-bit.
44 * R0 - return register
45 * R1-R5 argument passing registers
46 * R6-R9 callee saved registers
47 * R10 - frame pointer read-only
48 *
49 * At the start of BPF program the register R1 contains a pointer to bpf_context
50 * and has type PTR_TO_CTX.
51 *
52 * Verifier tracks arithmetic operations on pointers in case:
53 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
54 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
55 * 1st insn copies R10 (which has FRAME_PTR) type into R1
56 * and 2nd arithmetic instruction is pattern matched to recognize
57 * that it wants to construct a pointer to some element within stack.
58 * So after 2nd insn, the register R1 has type PTR_TO_STACK
59 * (and -20 constant is saved for further stack bounds checking).
60 * Meaning that this reg is a pointer to stack plus known immediate constant.
61 *
62 * Most of the time the registers have UNKNOWN_VALUE type, which
63 * means the register has some value, but it's not a valid pointer.
64 * (like pointer plus pointer becomes UNKNOWN_VALUE type)
65 *
66 * When verifier sees load or store instructions the type of base register
67 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, FRAME_PTR. These are three pointer
68 * types recognized by check_mem_access() function.
69 *
70 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
71 * and the range of [ptr, ptr + map's value_size) is accessible.
72 *
73 * registers used to pass values to function calls are checked against
74 * function argument constraints.
75 *
76 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
77 * It means that the register type passed to this function must be
78 * PTR_TO_STACK and it will be used inside the function as
79 * 'pointer to map element key'
80 *
81 * For example the argument constraints for bpf_map_lookup_elem():
82 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
83 * .arg1_type = ARG_CONST_MAP_PTR,
84 * .arg2_type = ARG_PTR_TO_MAP_KEY,
85 *
86 * ret_type says that this function returns 'pointer to map elem value or null'
87 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
88 * 2nd argument should be a pointer to stack, which will be used inside
89 * the helper function as a pointer to map element key.
90 *
91 * On the kernel side the helper function looks like:
92 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
93 * {
94 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
95 * void *key = (void *) (unsigned long) r2;
96 * void *value;
97 *
98 * here kernel can access 'key' and 'map' pointers safely, knowing that
99 * [key, key + map->key_size) bytes are valid and were initialized on
100 * the stack of eBPF program.
101 * }
102 *
103 * Corresponding eBPF program may look like:
104 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
105 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
106 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
107 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
108 * here verifier looks at prototype of map_lookup_elem() and sees:
109 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
110 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
111 *
112 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
113 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
114 * and were initialized prior to this call.
115 * If it's ok, then verifier allows this BPF_CALL insn and looks at
116 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
117 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
118 * returns ether pointer to map value or NULL.
119 *
120 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
121 * insn, the register holding that pointer in the true branch changes state to
122 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
123 * branch. See check_cond_jmp_op().
124 *
125 * After the call R0 is set to return type of the function and registers R1-R5
126 * are set to NOT_INIT to indicate that they are no longer readable.
127 */
128
17a52670
AS
129struct reg_state {
130 enum bpf_reg_type type;
131 union {
969bf05e
AS
132 /* valid when type == CONST_IMM | PTR_TO_STACK | UNKNOWN_VALUE */
133 s64 imm;
134
135 /* valid when type == PTR_TO_PACKET* */
136 struct {
137 u32 id;
138 u16 off;
139 u16 range;
140 };
17a52670
AS
141
142 /* valid when type == CONST_PTR_TO_MAP | PTR_TO_MAP_VALUE |
143 * PTR_TO_MAP_VALUE_OR_NULL
144 */
145 struct bpf_map *map_ptr;
146 };
147};
148
149enum bpf_stack_slot_type {
150 STACK_INVALID, /* nothing was stored in this stack slot */
9c399760 151 STACK_SPILL, /* register spilled into stack */
17a52670
AS
152 STACK_MISC /* BPF program wrote some data into this slot */
153};
154
9c399760 155#define BPF_REG_SIZE 8 /* size of eBPF register in bytes */
17a52670
AS
156
157/* state of the program:
158 * type of all registers and stack info
159 */
160struct verifier_state {
161 struct reg_state regs[MAX_BPF_REG];
9c399760
AS
162 u8 stack_slot_type[MAX_BPF_STACK];
163 struct reg_state spilled_regs[MAX_BPF_STACK / BPF_REG_SIZE];
17a52670
AS
164};
165
166/* linked list of verifier states used to prune search */
167struct verifier_state_list {
168 struct verifier_state state;
169 struct verifier_state_list *next;
170};
171
172/* verifier_state + insn_idx are pushed to stack when branch is encountered */
173struct verifier_stack_elem {
174 /* verifer state is 'st'
175 * before processing instruction 'insn_idx'
176 * and after processing instruction 'prev_insn_idx'
177 */
178 struct verifier_state st;
179 int insn_idx;
180 int prev_insn_idx;
181 struct verifier_stack_elem *next;
182};
183
0246e64d
AS
184#define MAX_USED_MAPS 64 /* max number of maps accessed by one eBPF program */
185
cbd35700
AS
186/* single container for all structs
187 * one verifier_env per bpf_check() call
188 */
189struct verifier_env {
0246e64d 190 struct bpf_prog *prog; /* eBPF program being verified */
17a52670
AS
191 struct verifier_stack_elem *head; /* stack of verifier states to be processed */
192 int stack_size; /* number of states to be processed */
193 struct verifier_state cur_state; /* current verifier state */
f1bca824 194 struct verifier_state_list **explored_states; /* search pruning optimization */
0246e64d
AS
195 struct bpf_map *used_maps[MAX_USED_MAPS]; /* array of map's used by eBPF program */
196 u32 used_map_cnt; /* number of used maps */
1be7f75d 197 bool allow_ptr_leaks;
cbd35700
AS
198};
199
07016151
DB
200#define BPF_COMPLEXITY_LIMIT_INSNS 65536
201#define BPF_COMPLEXITY_LIMIT_STACK 1024
202
33ff9823
DB
203struct bpf_call_arg_meta {
204 struct bpf_map *map_ptr;
435faee1
DB
205 bool raw_mode;
206 int regno;
207 int access_size;
33ff9823
DB
208};
209
cbd35700
AS
210/* verbose verifier prints what it's seeing
211 * bpf_check() is called under lock, so no race to access these global vars
212 */
213static u32 log_level, log_size, log_len;
214static char *log_buf;
215
216static DEFINE_MUTEX(bpf_verifier_lock);
217
218/* log_level controls verbosity level of eBPF verifier.
219 * verbose() is used to dump the verification trace to the log, so the user
220 * can figure out what's wrong with the program
221 */
1d056d9c 222static __printf(1, 2) void verbose(const char *fmt, ...)
cbd35700
AS
223{
224 va_list args;
225
226 if (log_level == 0 || log_len >= log_size - 1)
227 return;
228
229 va_start(args, fmt);
230 log_len += vscnprintf(log_buf + log_len, log_size - log_len, fmt, args);
231 va_end(args);
232}
233
17a52670
AS
234/* string representation of 'enum bpf_reg_type' */
235static const char * const reg_type_str[] = {
236 [NOT_INIT] = "?",
237 [UNKNOWN_VALUE] = "inv",
238 [PTR_TO_CTX] = "ctx",
239 [CONST_PTR_TO_MAP] = "map_ptr",
240 [PTR_TO_MAP_VALUE] = "map_value",
241 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
242 [FRAME_PTR] = "fp",
243 [PTR_TO_STACK] = "fp",
244 [CONST_IMM] = "imm",
969bf05e
AS
245 [PTR_TO_PACKET] = "pkt",
246 [PTR_TO_PACKET_END] = "pkt_end",
17a52670
AS
247};
248
1a0dc1ac 249static void print_verifier_state(struct verifier_state *state)
17a52670 250{
1a0dc1ac 251 struct reg_state *reg;
17a52670
AS
252 enum bpf_reg_type t;
253 int i;
254
255 for (i = 0; i < MAX_BPF_REG; i++) {
1a0dc1ac
AS
256 reg = &state->regs[i];
257 t = reg->type;
17a52670
AS
258 if (t == NOT_INIT)
259 continue;
260 verbose(" R%d=%s", i, reg_type_str[t]);
261 if (t == CONST_IMM || t == PTR_TO_STACK)
969bf05e
AS
262 verbose("%lld", reg->imm);
263 else if (t == PTR_TO_PACKET)
264 verbose("(id=%d,off=%d,r=%d)",
265 reg->id, reg->off, reg->range);
266 else if (t == UNKNOWN_VALUE && reg->imm)
267 verbose("%lld", reg->imm);
17a52670
AS
268 else if (t == CONST_PTR_TO_MAP || t == PTR_TO_MAP_VALUE ||
269 t == PTR_TO_MAP_VALUE_OR_NULL)
270 verbose("(ks=%d,vs=%d)",
1a0dc1ac
AS
271 reg->map_ptr->key_size,
272 reg->map_ptr->value_size);
17a52670 273 }
9c399760 274 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
1a0dc1ac 275 if (state->stack_slot_type[i] == STACK_SPILL)
17a52670 276 verbose(" fp%d=%s", -MAX_BPF_STACK + i,
1a0dc1ac 277 reg_type_str[state->spilled_regs[i / BPF_REG_SIZE].type]);
17a52670
AS
278 }
279 verbose("\n");
280}
281
cbd35700
AS
282static const char *const bpf_class_string[] = {
283 [BPF_LD] = "ld",
284 [BPF_LDX] = "ldx",
285 [BPF_ST] = "st",
286 [BPF_STX] = "stx",
287 [BPF_ALU] = "alu",
288 [BPF_JMP] = "jmp",
289 [BPF_RET] = "BUG",
290 [BPF_ALU64] = "alu64",
291};
292
687f0715 293static const char *const bpf_alu_string[16] = {
cbd35700
AS
294 [BPF_ADD >> 4] = "+=",
295 [BPF_SUB >> 4] = "-=",
296 [BPF_MUL >> 4] = "*=",
297 [BPF_DIV >> 4] = "/=",
298 [BPF_OR >> 4] = "|=",
299 [BPF_AND >> 4] = "&=",
300 [BPF_LSH >> 4] = "<<=",
301 [BPF_RSH >> 4] = ">>=",
302 [BPF_NEG >> 4] = "neg",
303 [BPF_MOD >> 4] = "%=",
304 [BPF_XOR >> 4] = "^=",
305 [BPF_MOV >> 4] = "=",
306 [BPF_ARSH >> 4] = "s>>=",
307 [BPF_END >> 4] = "endian",
308};
309
310static const char *const bpf_ldst_string[] = {
311 [BPF_W >> 3] = "u32",
312 [BPF_H >> 3] = "u16",
313 [BPF_B >> 3] = "u8",
314 [BPF_DW >> 3] = "u64",
315};
316
687f0715 317static const char *const bpf_jmp_string[16] = {
cbd35700
AS
318 [BPF_JA >> 4] = "jmp",
319 [BPF_JEQ >> 4] = "==",
320 [BPF_JGT >> 4] = ">",
321 [BPF_JGE >> 4] = ">=",
322 [BPF_JSET >> 4] = "&",
323 [BPF_JNE >> 4] = "!=",
324 [BPF_JSGT >> 4] = "s>",
325 [BPF_JSGE >> 4] = "s>=",
326 [BPF_CALL >> 4] = "call",
327 [BPF_EXIT >> 4] = "exit",
328};
329
330static void print_bpf_insn(struct bpf_insn *insn)
331{
332 u8 class = BPF_CLASS(insn->code);
333
334 if (class == BPF_ALU || class == BPF_ALU64) {
335 if (BPF_SRC(insn->code) == BPF_X)
336 verbose("(%02x) %sr%d %s %sr%d\n",
337 insn->code, class == BPF_ALU ? "(u32) " : "",
338 insn->dst_reg,
339 bpf_alu_string[BPF_OP(insn->code) >> 4],
340 class == BPF_ALU ? "(u32) " : "",
341 insn->src_reg);
342 else
343 verbose("(%02x) %sr%d %s %s%d\n",
344 insn->code, class == BPF_ALU ? "(u32) " : "",
345 insn->dst_reg,
346 bpf_alu_string[BPF_OP(insn->code) >> 4],
347 class == BPF_ALU ? "(u32) " : "",
348 insn->imm);
349 } else if (class == BPF_STX) {
350 if (BPF_MODE(insn->code) == BPF_MEM)
351 verbose("(%02x) *(%s *)(r%d %+d) = r%d\n",
352 insn->code,
353 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
354 insn->dst_reg,
355 insn->off, insn->src_reg);
356 else if (BPF_MODE(insn->code) == BPF_XADD)
357 verbose("(%02x) lock *(%s *)(r%d %+d) += r%d\n",
358 insn->code,
359 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
360 insn->dst_reg, insn->off,
361 insn->src_reg);
362 else
363 verbose("BUG_%02x\n", insn->code);
364 } else if (class == BPF_ST) {
365 if (BPF_MODE(insn->code) != BPF_MEM) {
366 verbose("BUG_st_%02x\n", insn->code);
367 return;
368 }
369 verbose("(%02x) *(%s *)(r%d %+d) = %d\n",
370 insn->code,
371 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
372 insn->dst_reg,
373 insn->off, insn->imm);
374 } else if (class == BPF_LDX) {
375 if (BPF_MODE(insn->code) != BPF_MEM) {
376 verbose("BUG_ldx_%02x\n", insn->code);
377 return;
378 }
379 verbose("(%02x) r%d = *(%s *)(r%d %+d)\n",
380 insn->code, insn->dst_reg,
381 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
382 insn->src_reg, insn->off);
383 } else if (class == BPF_LD) {
384 if (BPF_MODE(insn->code) == BPF_ABS) {
385 verbose("(%02x) r0 = *(%s *)skb[%d]\n",
386 insn->code,
387 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
388 insn->imm);
389 } else if (BPF_MODE(insn->code) == BPF_IND) {
390 verbose("(%02x) r0 = *(%s *)skb[r%d + %d]\n",
391 insn->code,
392 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
393 insn->src_reg, insn->imm);
394 } else if (BPF_MODE(insn->code) == BPF_IMM) {
395 verbose("(%02x) r%d = 0x%x\n",
396 insn->code, insn->dst_reg, insn->imm);
397 } else {
398 verbose("BUG_ld_%02x\n", insn->code);
399 return;
400 }
401 } else if (class == BPF_JMP) {
402 u8 opcode = BPF_OP(insn->code);
403
404 if (opcode == BPF_CALL) {
405 verbose("(%02x) call %d\n", insn->code, insn->imm);
406 } else if (insn->code == (BPF_JMP | BPF_JA)) {
407 verbose("(%02x) goto pc%+d\n",
408 insn->code, insn->off);
409 } else if (insn->code == (BPF_JMP | BPF_EXIT)) {
410 verbose("(%02x) exit\n", insn->code);
411 } else if (BPF_SRC(insn->code) == BPF_X) {
412 verbose("(%02x) if r%d %s r%d goto pc%+d\n",
413 insn->code, insn->dst_reg,
414 bpf_jmp_string[BPF_OP(insn->code) >> 4],
415 insn->src_reg, insn->off);
416 } else {
417 verbose("(%02x) if r%d %s 0x%x goto pc%+d\n",
418 insn->code, insn->dst_reg,
419 bpf_jmp_string[BPF_OP(insn->code) >> 4],
420 insn->imm, insn->off);
421 }
422 } else {
423 verbose("(%02x) %s\n", insn->code, bpf_class_string[class]);
424 }
425}
426
17a52670
AS
427static int pop_stack(struct verifier_env *env, int *prev_insn_idx)
428{
429 struct verifier_stack_elem *elem;
430 int insn_idx;
431
432 if (env->head == NULL)
433 return -1;
434
435 memcpy(&env->cur_state, &env->head->st, sizeof(env->cur_state));
436 insn_idx = env->head->insn_idx;
437 if (prev_insn_idx)
438 *prev_insn_idx = env->head->prev_insn_idx;
439 elem = env->head->next;
440 kfree(env->head);
441 env->head = elem;
442 env->stack_size--;
443 return insn_idx;
444}
445
446static struct verifier_state *push_stack(struct verifier_env *env, int insn_idx,
447 int prev_insn_idx)
448{
449 struct verifier_stack_elem *elem;
450
451 elem = kmalloc(sizeof(struct verifier_stack_elem), GFP_KERNEL);
452 if (!elem)
453 goto err;
454
455 memcpy(&elem->st, &env->cur_state, sizeof(env->cur_state));
456 elem->insn_idx = insn_idx;
457 elem->prev_insn_idx = prev_insn_idx;
458 elem->next = env->head;
459 env->head = elem;
460 env->stack_size++;
07016151 461 if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
17a52670
AS
462 verbose("BPF program is too complex\n");
463 goto err;
464 }
465 return &elem->st;
466err:
467 /* pop all elements and return */
468 while (pop_stack(env, NULL) >= 0);
469 return NULL;
470}
471
472#define CALLER_SAVED_REGS 6
473static const int caller_saved[CALLER_SAVED_REGS] = {
474 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
475};
476
477static void init_reg_state(struct reg_state *regs)
478{
479 int i;
480
481 for (i = 0; i < MAX_BPF_REG; i++) {
482 regs[i].type = NOT_INIT;
483 regs[i].imm = 0;
17a52670
AS
484 }
485
486 /* frame pointer */
487 regs[BPF_REG_FP].type = FRAME_PTR;
488
489 /* 1st arg to a function */
490 regs[BPF_REG_1].type = PTR_TO_CTX;
491}
492
493static void mark_reg_unknown_value(struct reg_state *regs, u32 regno)
494{
495 BUG_ON(regno >= MAX_BPF_REG);
496 regs[regno].type = UNKNOWN_VALUE;
497 regs[regno].imm = 0;
17a52670
AS
498}
499
500enum reg_arg_type {
501 SRC_OP, /* register is used as source operand */
502 DST_OP, /* register is used as destination operand */
503 DST_OP_NO_MARK /* same as above, check only, don't mark */
504};
505
506static int check_reg_arg(struct reg_state *regs, u32 regno,
507 enum reg_arg_type t)
508{
509 if (regno >= MAX_BPF_REG) {
510 verbose("R%d is invalid\n", regno);
511 return -EINVAL;
512 }
513
514 if (t == SRC_OP) {
515 /* check whether register used as source operand can be read */
516 if (regs[regno].type == NOT_INIT) {
517 verbose("R%d !read_ok\n", regno);
518 return -EACCES;
519 }
520 } else {
521 /* check whether register used as dest operand can be written to */
522 if (regno == BPF_REG_FP) {
523 verbose("frame pointer is read only\n");
524 return -EACCES;
525 }
526 if (t == DST_OP)
527 mark_reg_unknown_value(regs, regno);
528 }
529 return 0;
530}
531
532static int bpf_size_to_bytes(int bpf_size)
533{
534 if (bpf_size == BPF_W)
535 return 4;
536 else if (bpf_size == BPF_H)
537 return 2;
538 else if (bpf_size == BPF_B)
539 return 1;
540 else if (bpf_size == BPF_DW)
541 return 8;
542 else
543 return -EINVAL;
544}
545
1be7f75d
AS
546static bool is_spillable_regtype(enum bpf_reg_type type)
547{
548 switch (type) {
549 case PTR_TO_MAP_VALUE:
550 case PTR_TO_MAP_VALUE_OR_NULL:
551 case PTR_TO_STACK:
552 case PTR_TO_CTX:
969bf05e
AS
553 case PTR_TO_PACKET:
554 case PTR_TO_PACKET_END:
1be7f75d
AS
555 case FRAME_PTR:
556 case CONST_PTR_TO_MAP:
557 return true;
558 default:
559 return false;
560 }
561}
562
17a52670
AS
563/* check_stack_read/write functions track spill/fill of registers,
564 * stack boundary and alignment are checked in check_mem_access()
565 */
566static int check_stack_write(struct verifier_state *state, int off, int size,
567 int value_regno)
568{
17a52670 569 int i;
9c399760
AS
570 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
571 * so it's aligned access and [off, off + size) are within stack limits
572 */
17a52670
AS
573
574 if (value_regno >= 0 &&
1be7f75d 575 is_spillable_regtype(state->regs[value_regno].type)) {
17a52670
AS
576
577 /* register containing pointer is being spilled into stack */
9c399760 578 if (size != BPF_REG_SIZE) {
17a52670
AS
579 verbose("invalid size of register spill\n");
580 return -EACCES;
581 }
582
17a52670 583 /* save register state */
9c399760
AS
584 state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE] =
585 state->regs[value_regno];
17a52670 586
9c399760
AS
587 for (i = 0; i < BPF_REG_SIZE; i++)
588 state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_SPILL;
589 } else {
17a52670 590 /* regular write of data into stack */
9c399760
AS
591 state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE] =
592 (struct reg_state) {};
593
594 for (i = 0; i < size; i++)
595 state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_MISC;
17a52670
AS
596 }
597 return 0;
598}
599
600static int check_stack_read(struct verifier_state *state, int off, int size,
601 int value_regno)
602{
9c399760 603 u8 *slot_type;
17a52670 604 int i;
17a52670 605
9c399760 606 slot_type = &state->stack_slot_type[MAX_BPF_STACK + off];
17a52670 607
9c399760
AS
608 if (slot_type[0] == STACK_SPILL) {
609 if (size != BPF_REG_SIZE) {
17a52670
AS
610 verbose("invalid size of register spill\n");
611 return -EACCES;
612 }
9c399760
AS
613 for (i = 1; i < BPF_REG_SIZE; i++) {
614 if (slot_type[i] != STACK_SPILL) {
17a52670
AS
615 verbose("corrupted spill memory\n");
616 return -EACCES;
617 }
618 }
619
620 if (value_regno >= 0)
621 /* restore register state from stack */
9c399760
AS
622 state->regs[value_regno] =
623 state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE];
17a52670
AS
624 return 0;
625 } else {
626 for (i = 0; i < size; i++) {
9c399760 627 if (slot_type[i] != STACK_MISC) {
17a52670
AS
628 verbose("invalid read from stack off %d+%d size %d\n",
629 off, i, size);
630 return -EACCES;
631 }
632 }
633 if (value_regno >= 0)
634 /* have read misc data from the stack */
635 mark_reg_unknown_value(state->regs, value_regno);
636 return 0;
637 }
638}
639
640/* check read/write into map element returned by bpf_map_lookup_elem() */
641static int check_map_access(struct verifier_env *env, u32 regno, int off,
642 int size)
643{
644 struct bpf_map *map = env->cur_state.regs[regno].map_ptr;
645
646 if (off < 0 || off + size > map->value_size) {
647 verbose("invalid access to map value, value_size=%d off=%d size=%d\n",
648 map->value_size, off, size);
649 return -EACCES;
650 }
651 return 0;
652}
653
969bf05e
AS
654#define MAX_PACKET_OFF 0xffff
655
656static int check_packet_access(struct verifier_env *env, u32 regno, int off,
657 int size)
658{
659 struct reg_state *regs = env->cur_state.regs;
660 struct reg_state *reg = &regs[regno];
969bf05e 661
d91b28ed
AS
662 off += reg->off;
663 if (off < 0 || off + size > reg->range) {
664 verbose("invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
665 off, size, regno, reg->id, reg->off, reg->range);
969bf05e
AS
666 return -EACCES;
667 }
668 return 0;
669}
670
17a52670
AS
671/* check access to 'struct bpf_context' fields */
672static int check_ctx_access(struct verifier_env *env, int off, int size,
19de99f7 673 enum bpf_access_type t, enum bpf_reg_type *reg_type)
17a52670
AS
674{
675 if (env->prog->aux->ops->is_valid_access &&
19de99f7 676 env->prog->aux->ops->is_valid_access(off, size, t, reg_type)) {
32bbe007
AS
677 /* remember the offset of last byte accessed in ctx */
678 if (env->prog->aux->max_ctx_offset < off + size)
679 env->prog->aux->max_ctx_offset = off + size;
17a52670 680 return 0;
32bbe007 681 }
17a52670
AS
682
683 verbose("invalid bpf_context access off=%d size=%d\n", off, size);
684 return -EACCES;
685}
686
1be7f75d
AS
687static bool is_pointer_value(struct verifier_env *env, int regno)
688{
689 if (env->allow_ptr_leaks)
690 return false;
691
692 switch (env->cur_state.regs[regno].type) {
693 case UNKNOWN_VALUE:
694 case CONST_IMM:
695 return false;
696 default:
697 return true;
698 }
699}
700
969bf05e
AS
701static int check_ptr_alignment(struct verifier_env *env, struct reg_state *reg,
702 int off, int size)
703{
704 if (reg->type != PTR_TO_PACKET) {
705 if (off % size != 0) {
706 verbose("misaligned access off %d size %d\n", off, size);
707 return -EACCES;
708 } else {
709 return 0;
710 }
711 }
712
713 switch (env->prog->type) {
714 case BPF_PROG_TYPE_SCHED_CLS:
715 case BPF_PROG_TYPE_SCHED_ACT:
716 break;
717 default:
718 verbose("verifier is misconfigured\n");
719 return -EACCES;
720 }
721
722 if (IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
723 /* misaligned access to packet is ok on x86,arm,arm64 */
724 return 0;
725
726 if (reg->id && size != 1) {
727 verbose("Unknown packet alignment. Only byte-sized access allowed\n");
728 return -EACCES;
729 }
730
731 /* skb->data is NET_IP_ALIGN-ed */
732 if ((NET_IP_ALIGN + reg->off + off) % size != 0) {
733 verbose("misaligned packet access off %d+%d+%d size %d\n",
734 NET_IP_ALIGN, reg->off, off, size);
735 return -EACCES;
736 }
737 return 0;
738}
739
17a52670
AS
740/* check whether memory at (regno + off) is accessible for t = (read | write)
741 * if t==write, value_regno is a register which value is stored into memory
742 * if t==read, value_regno is a register which will receive the value from memory
743 * if t==write && value_regno==-1, some unknown value is stored into memory
744 * if t==read && value_regno==-1, don't care what we read from memory
745 */
746static int check_mem_access(struct verifier_env *env, u32 regno, int off,
747 int bpf_size, enum bpf_access_type t,
748 int value_regno)
749{
750 struct verifier_state *state = &env->cur_state;
1a0dc1ac 751 struct reg_state *reg = &state->regs[regno];
17a52670
AS
752 int size, err = 0;
753
1a0dc1ac
AS
754 if (reg->type == PTR_TO_STACK)
755 off += reg->imm;
24b4d2ab 756
17a52670
AS
757 size = bpf_size_to_bytes(bpf_size);
758 if (size < 0)
759 return size;
760
969bf05e
AS
761 err = check_ptr_alignment(env, reg, off, size);
762 if (err)
763 return err;
17a52670 764
1a0dc1ac 765 if (reg->type == PTR_TO_MAP_VALUE) {
1be7f75d
AS
766 if (t == BPF_WRITE && value_regno >= 0 &&
767 is_pointer_value(env, value_regno)) {
768 verbose("R%d leaks addr into map\n", value_regno);
769 return -EACCES;
770 }
17a52670
AS
771 err = check_map_access(env, regno, off, size);
772 if (!err && t == BPF_READ && value_regno >= 0)
773 mark_reg_unknown_value(state->regs, value_regno);
774
1a0dc1ac 775 } else if (reg->type == PTR_TO_CTX) {
19de99f7
AS
776 enum bpf_reg_type reg_type = UNKNOWN_VALUE;
777
1be7f75d
AS
778 if (t == BPF_WRITE && value_regno >= 0 &&
779 is_pointer_value(env, value_regno)) {
780 verbose("R%d leaks addr into ctx\n", value_regno);
781 return -EACCES;
782 }
19de99f7 783 err = check_ctx_access(env, off, size, t, &reg_type);
969bf05e 784 if (!err && t == BPF_READ && value_regno >= 0) {
17a52670 785 mark_reg_unknown_value(state->regs, value_regno);
19de99f7 786 if (env->allow_ptr_leaks)
969bf05e 787 /* note that reg.[id|off|range] == 0 */
19de99f7 788 state->regs[value_regno].type = reg_type;
969bf05e 789 }
17a52670 790
1a0dc1ac 791 } else if (reg->type == FRAME_PTR || reg->type == PTR_TO_STACK) {
17a52670
AS
792 if (off >= 0 || off < -MAX_BPF_STACK) {
793 verbose("invalid stack off=%d size=%d\n", off, size);
794 return -EACCES;
795 }
1be7f75d
AS
796 if (t == BPF_WRITE) {
797 if (!env->allow_ptr_leaks &&
798 state->stack_slot_type[MAX_BPF_STACK + off] == STACK_SPILL &&
799 size != BPF_REG_SIZE) {
800 verbose("attempt to corrupt spilled pointer on stack\n");
801 return -EACCES;
802 }
17a52670 803 err = check_stack_write(state, off, size, value_regno);
1be7f75d 804 } else {
17a52670 805 err = check_stack_read(state, off, size, value_regno);
1be7f75d 806 }
969bf05e
AS
807 } else if (state->regs[regno].type == PTR_TO_PACKET) {
808 if (t == BPF_WRITE) {
809 verbose("cannot write into packet\n");
810 return -EACCES;
811 }
812 err = check_packet_access(env, regno, off, size);
813 if (!err && t == BPF_READ && value_regno >= 0)
814 mark_reg_unknown_value(state->regs, value_regno);
17a52670
AS
815 } else {
816 verbose("R%d invalid mem access '%s'\n",
1a0dc1ac 817 regno, reg_type_str[reg->type]);
17a52670
AS
818 return -EACCES;
819 }
969bf05e
AS
820
821 if (!err && size <= 2 && value_regno >= 0 && env->allow_ptr_leaks &&
822 state->regs[value_regno].type == UNKNOWN_VALUE) {
823 /* 1 or 2 byte load zero-extends, determine the number of
824 * zero upper bits. Not doing it fo 4 byte load, since
825 * such values cannot be added to ptr_to_packet anyway.
826 */
827 state->regs[value_regno].imm = 64 - size * 8;
828 }
17a52670
AS
829 return err;
830}
831
832static int check_xadd(struct verifier_env *env, struct bpf_insn *insn)
833{
834 struct reg_state *regs = env->cur_state.regs;
835 int err;
836
837 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
838 insn->imm != 0) {
839 verbose("BPF_XADD uses reserved fields\n");
840 return -EINVAL;
841 }
842
843 /* check src1 operand */
844 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
845 if (err)
846 return err;
847
848 /* check src2 operand */
849 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
850 if (err)
851 return err;
852
853 /* check whether atomic_add can read the memory */
854 err = check_mem_access(env, insn->dst_reg, insn->off,
855 BPF_SIZE(insn->code), BPF_READ, -1);
856 if (err)
857 return err;
858
859 /* check whether atomic_add can write into the same memory */
860 return check_mem_access(env, insn->dst_reg, insn->off,
861 BPF_SIZE(insn->code), BPF_WRITE, -1);
862}
863
864/* when register 'regno' is passed into function that will read 'access_size'
865 * bytes from that pointer, make sure that it's within stack boundary
866 * and all elements of stack are initialized
867 */
8e2fe1d9 868static int check_stack_boundary(struct verifier_env *env, int regno,
435faee1
DB
869 int access_size, bool zero_size_allowed,
870 struct bpf_call_arg_meta *meta)
17a52670
AS
871{
872 struct verifier_state *state = &env->cur_state;
873 struct reg_state *regs = state->regs;
874 int off, i;
875
8e2fe1d9
DB
876 if (regs[regno].type != PTR_TO_STACK) {
877 if (zero_size_allowed && access_size == 0 &&
878 regs[regno].type == CONST_IMM &&
879 regs[regno].imm == 0)
880 return 0;
881
882 verbose("R%d type=%s expected=%s\n", regno,
883 reg_type_str[regs[regno].type],
884 reg_type_str[PTR_TO_STACK]);
17a52670 885 return -EACCES;
8e2fe1d9 886 }
17a52670
AS
887
888 off = regs[regno].imm;
889 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
890 access_size <= 0) {
891 verbose("invalid stack type R%d off=%d access_size=%d\n",
892 regno, off, access_size);
893 return -EACCES;
894 }
895
435faee1
DB
896 if (meta && meta->raw_mode) {
897 meta->access_size = access_size;
898 meta->regno = regno;
899 return 0;
900 }
901
17a52670 902 for (i = 0; i < access_size; i++) {
9c399760 903 if (state->stack_slot_type[MAX_BPF_STACK + off + i] != STACK_MISC) {
17a52670
AS
904 verbose("invalid indirect read from stack off %d+%d size %d\n",
905 off, i, access_size);
906 return -EACCES;
907 }
908 }
909 return 0;
910}
911
912static int check_func_arg(struct verifier_env *env, u32 regno,
33ff9823
DB
913 enum bpf_arg_type arg_type,
914 struct bpf_call_arg_meta *meta)
17a52670
AS
915{
916 struct reg_state *reg = env->cur_state.regs + regno;
917 enum bpf_reg_type expected_type;
918 int err = 0;
919
80f1d68c 920 if (arg_type == ARG_DONTCARE)
17a52670
AS
921 return 0;
922
923 if (reg->type == NOT_INIT) {
924 verbose("R%d !read_ok\n", regno);
925 return -EACCES;
926 }
927
1be7f75d
AS
928 if (arg_type == ARG_ANYTHING) {
929 if (is_pointer_value(env, regno)) {
930 verbose("R%d leaks addr into helper function\n", regno);
931 return -EACCES;
932 }
80f1d68c 933 return 0;
1be7f75d 934 }
80f1d68c 935
8e2fe1d9 936 if (arg_type == ARG_PTR_TO_MAP_KEY ||
17a52670
AS
937 arg_type == ARG_PTR_TO_MAP_VALUE) {
938 expected_type = PTR_TO_STACK;
8e2fe1d9
DB
939 } else if (arg_type == ARG_CONST_STACK_SIZE ||
940 arg_type == ARG_CONST_STACK_SIZE_OR_ZERO) {
17a52670
AS
941 expected_type = CONST_IMM;
942 } else if (arg_type == ARG_CONST_MAP_PTR) {
943 expected_type = CONST_PTR_TO_MAP;
608cd71a
AS
944 } else if (arg_type == ARG_PTR_TO_CTX) {
945 expected_type = PTR_TO_CTX;
435faee1
DB
946 } else if (arg_type == ARG_PTR_TO_STACK ||
947 arg_type == ARG_PTR_TO_RAW_STACK) {
8e2fe1d9
DB
948 expected_type = PTR_TO_STACK;
949 /* One exception here. In case function allows for NULL to be
950 * passed in as argument, it's a CONST_IMM type. Final test
951 * happens during stack boundary checking.
952 */
953 if (reg->type == CONST_IMM && reg->imm == 0)
954 expected_type = CONST_IMM;
435faee1 955 meta->raw_mode = arg_type == ARG_PTR_TO_RAW_STACK;
17a52670
AS
956 } else {
957 verbose("unsupported arg_type %d\n", arg_type);
958 return -EFAULT;
959 }
960
961 if (reg->type != expected_type) {
962 verbose("R%d type=%s expected=%s\n", regno,
963 reg_type_str[reg->type], reg_type_str[expected_type]);
964 return -EACCES;
965 }
966
967 if (arg_type == ARG_CONST_MAP_PTR) {
968 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
33ff9823 969 meta->map_ptr = reg->map_ptr;
17a52670
AS
970 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
971 /* bpf_map_xxx(..., map_ptr, ..., key) call:
972 * check that [key, key + map->key_size) are within
973 * stack limits and initialized
974 */
33ff9823 975 if (!meta->map_ptr) {
17a52670
AS
976 /* in function declaration map_ptr must come before
977 * map_key, so that it's verified and known before
978 * we have to check map_key here. Otherwise it means
979 * that kernel subsystem misconfigured verifier
980 */
981 verbose("invalid map_ptr to access map->key\n");
982 return -EACCES;
983 }
33ff9823 984 err = check_stack_boundary(env, regno, meta->map_ptr->key_size,
435faee1 985 false, NULL);
17a52670
AS
986 } else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
987 /* bpf_map_xxx(..., map_ptr, ..., value) call:
988 * check [value, value + map->value_size) validity
989 */
33ff9823 990 if (!meta->map_ptr) {
17a52670
AS
991 /* kernel subsystem misconfigured verifier */
992 verbose("invalid map_ptr to access map->value\n");
993 return -EACCES;
994 }
33ff9823 995 err = check_stack_boundary(env, regno,
435faee1
DB
996 meta->map_ptr->value_size,
997 false, NULL);
8e2fe1d9
DB
998 } else if (arg_type == ARG_CONST_STACK_SIZE ||
999 arg_type == ARG_CONST_STACK_SIZE_OR_ZERO) {
1000 bool zero_size_allowed = (arg_type == ARG_CONST_STACK_SIZE_OR_ZERO);
17a52670 1001
17a52670
AS
1002 /* bpf_xxx(..., buf, len) call will access 'len' bytes
1003 * from stack pointer 'buf'. Check it
1004 * note: regno == len, regno - 1 == buf
1005 */
1006 if (regno == 0) {
1007 /* kernel subsystem misconfigured verifier */
1008 verbose("ARG_CONST_STACK_SIZE cannot be first argument\n");
1009 return -EACCES;
1010 }
8e2fe1d9 1011 err = check_stack_boundary(env, regno - 1, reg->imm,
435faee1 1012 zero_size_allowed, meta);
17a52670
AS
1013 }
1014
1015 return err;
1016}
1017
35578d79
KX
1018static int check_map_func_compatibility(struct bpf_map *map, int func_id)
1019{
35578d79
KX
1020 if (!map)
1021 return 0;
1022
6aff67c8
AS
1023 /* We need a two way check, first is from map perspective ... */
1024 switch (map->map_type) {
1025 case BPF_MAP_TYPE_PROG_ARRAY:
1026 if (func_id != BPF_FUNC_tail_call)
1027 goto error;
1028 break;
1029 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
1030 if (func_id != BPF_FUNC_perf_event_read &&
1031 func_id != BPF_FUNC_perf_event_output)
1032 goto error;
1033 break;
1034 case BPF_MAP_TYPE_STACK_TRACE:
1035 if (func_id != BPF_FUNC_get_stackid)
1036 goto error;
1037 break;
4ed8ec52 1038 case BPF_MAP_TYPE_CGROUP_ARRAY:
4a482f34
MKL
1039 if (func_id != BPF_FUNC_skb_in_cgroup)
1040 goto error;
1041 break;
6aff67c8
AS
1042 default:
1043 break;
1044 }
1045
1046 /* ... and second from the function itself. */
1047 switch (func_id) {
1048 case BPF_FUNC_tail_call:
1049 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1050 goto error;
1051 break;
1052 case BPF_FUNC_perf_event_read:
1053 case BPF_FUNC_perf_event_output:
1054 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
1055 goto error;
1056 break;
1057 case BPF_FUNC_get_stackid:
1058 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
1059 goto error;
1060 break;
4a482f34
MKL
1061 case BPF_FUNC_skb_in_cgroup:
1062 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
1063 goto error;
1064 break;
6aff67c8
AS
1065 default:
1066 break;
35578d79
KX
1067 }
1068
1069 return 0;
6aff67c8
AS
1070error:
1071 verbose("cannot pass map_type %d into func %d\n",
1072 map->map_type, func_id);
1073 return -EINVAL;
35578d79
KX
1074}
1075
435faee1
DB
1076static int check_raw_mode(const struct bpf_func_proto *fn)
1077{
1078 int count = 0;
1079
1080 if (fn->arg1_type == ARG_PTR_TO_RAW_STACK)
1081 count++;
1082 if (fn->arg2_type == ARG_PTR_TO_RAW_STACK)
1083 count++;
1084 if (fn->arg3_type == ARG_PTR_TO_RAW_STACK)
1085 count++;
1086 if (fn->arg4_type == ARG_PTR_TO_RAW_STACK)
1087 count++;
1088 if (fn->arg5_type == ARG_PTR_TO_RAW_STACK)
1089 count++;
1090
1091 return count > 1 ? -EINVAL : 0;
1092}
1093
969bf05e
AS
1094static void clear_all_pkt_pointers(struct verifier_env *env)
1095{
1096 struct verifier_state *state = &env->cur_state;
1097 struct reg_state *regs = state->regs, *reg;
1098 int i;
1099
1100 for (i = 0; i < MAX_BPF_REG; i++)
1101 if (regs[i].type == PTR_TO_PACKET ||
1102 regs[i].type == PTR_TO_PACKET_END)
1103 mark_reg_unknown_value(regs, i);
1104
1105 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
1106 if (state->stack_slot_type[i] != STACK_SPILL)
1107 continue;
1108 reg = &state->spilled_regs[i / BPF_REG_SIZE];
1109 if (reg->type != PTR_TO_PACKET &&
1110 reg->type != PTR_TO_PACKET_END)
1111 continue;
1112 reg->type = UNKNOWN_VALUE;
1113 reg->imm = 0;
1114 }
1115}
1116
17a52670
AS
1117static int check_call(struct verifier_env *env, int func_id)
1118{
1119 struct verifier_state *state = &env->cur_state;
1120 const struct bpf_func_proto *fn = NULL;
1121 struct reg_state *regs = state->regs;
17a52670 1122 struct reg_state *reg;
33ff9823 1123 struct bpf_call_arg_meta meta;
969bf05e 1124 bool changes_data;
17a52670
AS
1125 int i, err;
1126
1127 /* find function prototype */
1128 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
1129 verbose("invalid func %d\n", func_id);
1130 return -EINVAL;
1131 }
1132
1133 if (env->prog->aux->ops->get_func_proto)
1134 fn = env->prog->aux->ops->get_func_proto(func_id);
1135
1136 if (!fn) {
1137 verbose("unknown func %d\n", func_id);
1138 return -EINVAL;
1139 }
1140
1141 /* eBPF programs must be GPL compatible to use GPL-ed functions */
24701ece 1142 if (!env->prog->gpl_compatible && fn->gpl_only) {
17a52670
AS
1143 verbose("cannot call GPL only function from proprietary program\n");
1144 return -EINVAL;
1145 }
1146
969bf05e
AS
1147 changes_data = bpf_helper_changes_skb_data(fn->func);
1148
33ff9823
DB
1149 memset(&meta, 0, sizeof(meta));
1150
435faee1
DB
1151 /* We only support one arg being in raw mode at the moment, which
1152 * is sufficient for the helper functions we have right now.
1153 */
1154 err = check_raw_mode(fn);
1155 if (err) {
1156 verbose("kernel subsystem misconfigured func %d\n", func_id);
1157 return err;
1158 }
1159
17a52670 1160 /* check args */
33ff9823 1161 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
17a52670
AS
1162 if (err)
1163 return err;
33ff9823 1164 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
17a52670
AS
1165 if (err)
1166 return err;
33ff9823 1167 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
17a52670
AS
1168 if (err)
1169 return err;
33ff9823 1170 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
17a52670
AS
1171 if (err)
1172 return err;
33ff9823 1173 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
17a52670
AS
1174 if (err)
1175 return err;
1176
435faee1
DB
1177 /* Mark slots with STACK_MISC in case of raw mode, stack offset
1178 * is inferred from register state.
1179 */
1180 for (i = 0; i < meta.access_size; i++) {
1181 err = check_mem_access(env, meta.regno, i, BPF_B, BPF_WRITE, -1);
1182 if (err)
1183 return err;
1184 }
1185
17a52670
AS
1186 /* reset caller saved regs */
1187 for (i = 0; i < CALLER_SAVED_REGS; i++) {
1188 reg = regs + caller_saved[i];
1189 reg->type = NOT_INIT;
1190 reg->imm = 0;
1191 }
1192
1193 /* update return register */
1194 if (fn->ret_type == RET_INTEGER) {
1195 regs[BPF_REG_0].type = UNKNOWN_VALUE;
1196 } else if (fn->ret_type == RET_VOID) {
1197 regs[BPF_REG_0].type = NOT_INIT;
1198 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
1199 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
1200 /* remember map_ptr, so that check_map_access()
1201 * can check 'value_size' boundary of memory access
1202 * to map element returned from bpf_map_lookup_elem()
1203 */
33ff9823 1204 if (meta.map_ptr == NULL) {
17a52670
AS
1205 verbose("kernel subsystem misconfigured verifier\n");
1206 return -EINVAL;
1207 }
33ff9823 1208 regs[BPF_REG_0].map_ptr = meta.map_ptr;
17a52670
AS
1209 } else {
1210 verbose("unknown return type %d of func %d\n",
1211 fn->ret_type, func_id);
1212 return -EINVAL;
1213 }
04fd61ab 1214
33ff9823 1215 err = check_map_func_compatibility(meta.map_ptr, func_id);
35578d79
KX
1216 if (err)
1217 return err;
04fd61ab 1218
969bf05e
AS
1219 if (changes_data)
1220 clear_all_pkt_pointers(env);
1221 return 0;
1222}
1223
1224static int check_packet_ptr_add(struct verifier_env *env, struct bpf_insn *insn)
1225{
1226 struct reg_state *regs = env->cur_state.regs;
1227 struct reg_state *dst_reg = &regs[insn->dst_reg];
1228 struct reg_state *src_reg = &regs[insn->src_reg];
1b9b69ec 1229 struct reg_state tmp_reg;
969bf05e
AS
1230 s32 imm;
1231
1232 if (BPF_SRC(insn->code) == BPF_K) {
1233 /* pkt_ptr += imm */
1234 imm = insn->imm;
1235
1236add_imm:
1237 if (imm <= 0) {
1238 verbose("addition of negative constant to packet pointer is not allowed\n");
1239 return -EACCES;
1240 }
1241 if (imm >= MAX_PACKET_OFF ||
1242 imm + dst_reg->off >= MAX_PACKET_OFF) {
1243 verbose("constant %d is too large to add to packet pointer\n",
1244 imm);
1245 return -EACCES;
1246 }
1247 /* a constant was added to pkt_ptr.
1248 * Remember it while keeping the same 'id'
1249 */
1250 dst_reg->off += imm;
1251 } else {
1b9b69ec
AS
1252 if (src_reg->type == PTR_TO_PACKET) {
1253 /* R6=pkt(id=0,off=0,r=62) R7=imm22; r7 += r6 */
1254 tmp_reg = *dst_reg; /* save r7 state */
1255 *dst_reg = *src_reg; /* copy pkt_ptr state r6 into r7 */
1256 src_reg = &tmp_reg; /* pretend it's src_reg state */
1257 /* if the checks below reject it, the copy won't matter,
1258 * since we're rejecting the whole program. If all ok,
1259 * then imm22 state will be added to r7
1260 * and r7 will be pkt(id=0,off=22,r=62) while
1261 * r6 will stay as pkt(id=0,off=0,r=62)
1262 */
1263 }
1264
969bf05e
AS
1265 if (src_reg->type == CONST_IMM) {
1266 /* pkt_ptr += reg where reg is known constant */
1267 imm = src_reg->imm;
1268 goto add_imm;
1269 }
1270 /* disallow pkt_ptr += reg
1271 * if reg is not uknown_value with guaranteed zero upper bits
1272 * otherwise pkt_ptr may overflow and addition will become
1273 * subtraction which is not allowed
1274 */
1275 if (src_reg->type != UNKNOWN_VALUE) {
1276 verbose("cannot add '%s' to ptr_to_packet\n",
1277 reg_type_str[src_reg->type]);
1278 return -EACCES;
1279 }
1280 if (src_reg->imm < 48) {
1281 verbose("cannot add integer value with %lld upper zero bits to ptr_to_packet\n",
1282 src_reg->imm);
1283 return -EACCES;
1284 }
1285 /* dst_reg stays as pkt_ptr type and since some positive
1286 * integer value was added to the pointer, increment its 'id'
1287 */
1288 dst_reg->id++;
1289
1290 /* something was added to pkt_ptr, set range and off to zero */
1291 dst_reg->off = 0;
1292 dst_reg->range = 0;
1293 }
1294 return 0;
1295}
1296
1297static int evaluate_reg_alu(struct verifier_env *env, struct bpf_insn *insn)
1298{
1299 struct reg_state *regs = env->cur_state.regs;
1300 struct reg_state *dst_reg = &regs[insn->dst_reg];
1301 u8 opcode = BPF_OP(insn->code);
1302 s64 imm_log2;
1303
1304 /* for type == UNKNOWN_VALUE:
1305 * imm > 0 -> number of zero upper bits
1306 * imm == 0 -> don't track which is the same as all bits can be non-zero
1307 */
1308
1309 if (BPF_SRC(insn->code) == BPF_X) {
1310 struct reg_state *src_reg = &regs[insn->src_reg];
1311
1312 if (src_reg->type == UNKNOWN_VALUE && src_reg->imm > 0 &&
1313 dst_reg->imm && opcode == BPF_ADD) {
1314 /* dreg += sreg
1315 * where both have zero upper bits. Adding them
1316 * can only result making one more bit non-zero
1317 * in the larger value.
1318 * Ex. 0xffff (imm=48) + 1 (imm=63) = 0x10000 (imm=47)
1319 * 0xffff (imm=48) + 0xffff = 0x1fffe (imm=47)
1320 */
1321 dst_reg->imm = min(dst_reg->imm, src_reg->imm);
1322 dst_reg->imm--;
1323 return 0;
1324 }
1325 if (src_reg->type == CONST_IMM && src_reg->imm > 0 &&
1326 dst_reg->imm && opcode == BPF_ADD) {
1327 /* dreg += sreg
1328 * where dreg has zero upper bits and sreg is const.
1329 * Adding them can only result making one more bit
1330 * non-zero in the larger value.
1331 */
1332 imm_log2 = __ilog2_u64((long long)src_reg->imm);
1333 dst_reg->imm = min(dst_reg->imm, 63 - imm_log2);
1334 dst_reg->imm--;
1335 return 0;
1336 }
1337 /* all other cases non supported yet, just mark dst_reg */
1338 dst_reg->imm = 0;
1339 return 0;
1340 }
1341
1342 /* sign extend 32-bit imm into 64-bit to make sure that
1343 * negative values occupy bit 63. Note ilog2() would have
1344 * been incorrect, since sizeof(insn->imm) == 4
1345 */
1346 imm_log2 = __ilog2_u64((long long)insn->imm);
1347
1348 if (dst_reg->imm && opcode == BPF_LSH) {
1349 /* reg <<= imm
1350 * if reg was a result of 2 byte load, then its imm == 48
1351 * which means that upper 48 bits are zero and shifting this reg
1352 * left by 4 would mean that upper 44 bits are still zero
1353 */
1354 dst_reg->imm -= insn->imm;
1355 } else if (dst_reg->imm && opcode == BPF_MUL) {
1356 /* reg *= imm
1357 * if multiplying by 14 subtract 4
1358 * This is conservative calculation of upper zero bits.
1359 * It's not trying to special case insn->imm == 1 or 0 cases
1360 */
1361 dst_reg->imm -= imm_log2 + 1;
1362 } else if (opcode == BPF_AND) {
1363 /* reg &= imm */
1364 dst_reg->imm = 63 - imm_log2;
1365 } else if (dst_reg->imm && opcode == BPF_ADD) {
1366 /* reg += imm */
1367 dst_reg->imm = min(dst_reg->imm, 63 - imm_log2);
1368 dst_reg->imm--;
1369 } else if (opcode == BPF_RSH) {
1370 /* reg >>= imm
1371 * which means that after right shift, upper bits will be zero
1372 * note that verifier already checked that
1373 * 0 <= imm < 64 for shift insn
1374 */
1375 dst_reg->imm += insn->imm;
1376 if (unlikely(dst_reg->imm > 64))
1377 /* some dumb code did:
1378 * r2 = *(u32 *)mem;
1379 * r2 >>= 32;
1380 * and all bits are zero now */
1381 dst_reg->imm = 64;
1382 } else {
1383 /* all other alu ops, means that we don't know what will
1384 * happen to the value, mark it with unknown number of zero bits
1385 */
1386 dst_reg->imm = 0;
1387 }
1388
1389 if (dst_reg->imm < 0) {
1390 /* all 64 bits of the register can contain non-zero bits
1391 * and such value cannot be added to ptr_to_packet, since it
1392 * may overflow, mark it as unknown to avoid further eval
1393 */
1394 dst_reg->imm = 0;
1395 }
1396 return 0;
1397}
1398
1399static int evaluate_reg_imm_alu(struct verifier_env *env, struct bpf_insn *insn)
1400{
1401 struct reg_state *regs = env->cur_state.regs;
1402 struct reg_state *dst_reg = &regs[insn->dst_reg];
1403 struct reg_state *src_reg = &regs[insn->src_reg];
1404 u8 opcode = BPF_OP(insn->code);
1405
1406 /* dst_reg->type == CONST_IMM here, simulate execution of 'add' insn.
1407 * Don't care about overflow or negative values, just add them
1408 */
1409 if (opcode == BPF_ADD && BPF_SRC(insn->code) == BPF_K)
1410 dst_reg->imm += insn->imm;
1411 else if (opcode == BPF_ADD && BPF_SRC(insn->code) == BPF_X &&
1412 src_reg->type == CONST_IMM)
1413 dst_reg->imm += src_reg->imm;
1414 else
1415 mark_reg_unknown_value(regs, insn->dst_reg);
17a52670
AS
1416 return 0;
1417}
1418
1419/* check validity of 32-bit and 64-bit arithmetic operations */
1be7f75d 1420static int check_alu_op(struct verifier_env *env, struct bpf_insn *insn)
17a52670 1421{
1a0dc1ac 1422 struct reg_state *regs = env->cur_state.regs, *dst_reg;
17a52670
AS
1423 u8 opcode = BPF_OP(insn->code);
1424 int err;
1425
1426 if (opcode == BPF_END || opcode == BPF_NEG) {
1427 if (opcode == BPF_NEG) {
1428 if (BPF_SRC(insn->code) != 0 ||
1429 insn->src_reg != BPF_REG_0 ||
1430 insn->off != 0 || insn->imm != 0) {
1431 verbose("BPF_NEG uses reserved fields\n");
1432 return -EINVAL;
1433 }
1434 } else {
1435 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
1436 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64)) {
1437 verbose("BPF_END uses reserved fields\n");
1438 return -EINVAL;
1439 }
1440 }
1441
1442 /* check src operand */
1443 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
1444 if (err)
1445 return err;
1446
1be7f75d
AS
1447 if (is_pointer_value(env, insn->dst_reg)) {
1448 verbose("R%d pointer arithmetic prohibited\n",
1449 insn->dst_reg);
1450 return -EACCES;
1451 }
1452
17a52670
AS
1453 /* check dest operand */
1454 err = check_reg_arg(regs, insn->dst_reg, DST_OP);
1455 if (err)
1456 return err;
1457
1458 } else if (opcode == BPF_MOV) {
1459
1460 if (BPF_SRC(insn->code) == BPF_X) {
1461 if (insn->imm != 0 || insn->off != 0) {
1462 verbose("BPF_MOV uses reserved fields\n");
1463 return -EINVAL;
1464 }
1465
1466 /* check src operand */
1467 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1468 if (err)
1469 return err;
1470 } else {
1471 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
1472 verbose("BPF_MOV uses reserved fields\n");
1473 return -EINVAL;
1474 }
1475 }
1476
1477 /* check dest operand */
1478 err = check_reg_arg(regs, insn->dst_reg, DST_OP);
1479 if (err)
1480 return err;
1481
1482 if (BPF_SRC(insn->code) == BPF_X) {
1483 if (BPF_CLASS(insn->code) == BPF_ALU64) {
1484 /* case: R1 = R2
1485 * copy register state to dest reg
1486 */
1487 regs[insn->dst_reg] = regs[insn->src_reg];
1488 } else {
1be7f75d
AS
1489 if (is_pointer_value(env, insn->src_reg)) {
1490 verbose("R%d partial copy of pointer\n",
1491 insn->src_reg);
1492 return -EACCES;
1493 }
17a52670
AS
1494 regs[insn->dst_reg].type = UNKNOWN_VALUE;
1495 regs[insn->dst_reg].map_ptr = NULL;
1496 }
1497 } else {
1498 /* case: R = imm
1499 * remember the value we stored into this reg
1500 */
1501 regs[insn->dst_reg].type = CONST_IMM;
1502 regs[insn->dst_reg].imm = insn->imm;
1503 }
1504
1505 } else if (opcode > BPF_END) {
1506 verbose("invalid BPF_ALU opcode %x\n", opcode);
1507 return -EINVAL;
1508
1509 } else { /* all other ALU ops: and, sub, xor, add, ... */
1510
17a52670
AS
1511 if (BPF_SRC(insn->code) == BPF_X) {
1512 if (insn->imm != 0 || insn->off != 0) {
1513 verbose("BPF_ALU uses reserved fields\n");
1514 return -EINVAL;
1515 }
1516 /* check src1 operand */
1517 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1518 if (err)
1519 return err;
1520 } else {
1521 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
1522 verbose("BPF_ALU uses reserved fields\n");
1523 return -EINVAL;
1524 }
1525 }
1526
1527 /* check src2 operand */
1528 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
1529 if (err)
1530 return err;
1531
1532 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
1533 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
1534 verbose("div by zero\n");
1535 return -EINVAL;
1536 }
1537
229394e8
RV
1538 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
1539 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
1540 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
1541
1542 if (insn->imm < 0 || insn->imm >= size) {
1543 verbose("invalid shift %d\n", insn->imm);
1544 return -EINVAL;
1545 }
1546 }
1547
1a0dc1ac
AS
1548 /* check dest operand */
1549 err = check_reg_arg(regs, insn->dst_reg, DST_OP_NO_MARK);
1550 if (err)
1551 return err;
1552
1553 dst_reg = &regs[insn->dst_reg];
1554
17a52670
AS
1555 /* pattern match 'bpf_add Rx, imm' instruction */
1556 if (opcode == BPF_ADD && BPF_CLASS(insn->code) == BPF_ALU64 &&
1a0dc1ac
AS
1557 dst_reg->type == FRAME_PTR && BPF_SRC(insn->code) == BPF_K) {
1558 dst_reg->type = PTR_TO_STACK;
1559 dst_reg->imm = insn->imm;
1560 return 0;
969bf05e
AS
1561 } else if (opcode == BPF_ADD &&
1562 BPF_CLASS(insn->code) == BPF_ALU64 &&
1b9b69ec
AS
1563 (dst_reg->type == PTR_TO_PACKET ||
1564 (BPF_SRC(insn->code) == BPF_X &&
1565 regs[insn->src_reg].type == PTR_TO_PACKET))) {
969bf05e
AS
1566 /* ptr_to_packet += K|X */
1567 return check_packet_ptr_add(env, insn);
1568 } else if (BPF_CLASS(insn->code) == BPF_ALU64 &&
1569 dst_reg->type == UNKNOWN_VALUE &&
1570 env->allow_ptr_leaks) {
1571 /* unknown += K|X */
1572 return evaluate_reg_alu(env, insn);
1573 } else if (BPF_CLASS(insn->code) == BPF_ALU64 &&
1574 dst_reg->type == CONST_IMM &&
1575 env->allow_ptr_leaks) {
1576 /* reg_imm += K|X */
1577 return evaluate_reg_imm_alu(env, insn);
1be7f75d
AS
1578 } else if (is_pointer_value(env, insn->dst_reg)) {
1579 verbose("R%d pointer arithmetic prohibited\n",
1580 insn->dst_reg);
1581 return -EACCES;
1582 } else if (BPF_SRC(insn->code) == BPF_X &&
1583 is_pointer_value(env, insn->src_reg)) {
1584 verbose("R%d pointer arithmetic prohibited\n",
1585 insn->src_reg);
1586 return -EACCES;
1587 }
17a52670 1588
1a0dc1ac
AS
1589 /* mark dest operand */
1590 mark_reg_unknown_value(regs, insn->dst_reg);
17a52670
AS
1591 }
1592
1593 return 0;
1594}
1595
969bf05e
AS
1596static void find_good_pkt_pointers(struct verifier_env *env,
1597 struct reg_state *dst_reg)
1598{
1599 struct verifier_state *state = &env->cur_state;
1600 struct reg_state *regs = state->regs, *reg;
1601 int i;
1602 /* r2 = r3;
1603 * r2 += 8
1604 * if (r2 > pkt_end) goto somewhere
1605 * r2 == dst_reg, pkt_end == src_reg,
1606 * r2=pkt(id=n,off=8,r=0)
1607 * r3=pkt(id=n,off=0,r=0)
1608 * find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
1609 * so that range of bytes [r3, r3 + 8) is safe to access
1610 */
1611 for (i = 0; i < MAX_BPF_REG; i++)
1612 if (regs[i].type == PTR_TO_PACKET && regs[i].id == dst_reg->id)
1613 regs[i].range = dst_reg->off;
1614
1615 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
1616 if (state->stack_slot_type[i] != STACK_SPILL)
1617 continue;
1618 reg = &state->spilled_regs[i / BPF_REG_SIZE];
1619 if (reg->type == PTR_TO_PACKET && reg->id == dst_reg->id)
1620 reg->range = dst_reg->off;
1621 }
1622}
1623
17a52670
AS
1624static int check_cond_jmp_op(struct verifier_env *env,
1625 struct bpf_insn *insn, int *insn_idx)
1626{
1a0dc1ac 1627 struct reg_state *regs = env->cur_state.regs, *dst_reg;
17a52670
AS
1628 struct verifier_state *other_branch;
1629 u8 opcode = BPF_OP(insn->code);
1630 int err;
1631
1632 if (opcode > BPF_EXIT) {
1633 verbose("invalid BPF_JMP opcode %x\n", opcode);
1634 return -EINVAL;
1635 }
1636
1637 if (BPF_SRC(insn->code) == BPF_X) {
1638 if (insn->imm != 0) {
1639 verbose("BPF_JMP uses reserved fields\n");
1640 return -EINVAL;
1641 }
1642
1643 /* check src1 operand */
1644 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1645 if (err)
1646 return err;
1be7f75d
AS
1647
1648 if (is_pointer_value(env, insn->src_reg)) {
1649 verbose("R%d pointer comparison prohibited\n",
1650 insn->src_reg);
1651 return -EACCES;
1652 }
17a52670
AS
1653 } else {
1654 if (insn->src_reg != BPF_REG_0) {
1655 verbose("BPF_JMP uses reserved fields\n");
1656 return -EINVAL;
1657 }
1658 }
1659
1660 /* check src2 operand */
1661 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
1662 if (err)
1663 return err;
1664
1a0dc1ac
AS
1665 dst_reg = &regs[insn->dst_reg];
1666
17a52670
AS
1667 /* detect if R == 0 where R was initialized to zero earlier */
1668 if (BPF_SRC(insn->code) == BPF_K &&
1669 (opcode == BPF_JEQ || opcode == BPF_JNE) &&
1a0dc1ac 1670 dst_reg->type == CONST_IMM && dst_reg->imm == insn->imm) {
17a52670
AS
1671 if (opcode == BPF_JEQ) {
1672 /* if (imm == imm) goto pc+off;
1673 * only follow the goto, ignore fall-through
1674 */
1675 *insn_idx += insn->off;
1676 return 0;
1677 } else {
1678 /* if (imm != imm) goto pc+off;
1679 * only follow fall-through branch, since
1680 * that's where the program will go
1681 */
1682 return 0;
1683 }
1684 }
1685
1686 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
1687 if (!other_branch)
1688 return -EFAULT;
1689
1690 /* detect if R == 0 where R is returned value from bpf_map_lookup_elem() */
1691 if (BPF_SRC(insn->code) == BPF_K &&
1a0dc1ac
AS
1692 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
1693 dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
17a52670
AS
1694 if (opcode == BPF_JEQ) {
1695 /* next fallthrough insn can access memory via
1696 * this register
1697 */
1698 regs[insn->dst_reg].type = PTR_TO_MAP_VALUE;
1699 /* branch targer cannot access it, since reg == 0 */
735b4333
AS
1700 mark_reg_unknown_value(other_branch->regs,
1701 insn->dst_reg);
17a52670
AS
1702 } else {
1703 other_branch->regs[insn->dst_reg].type = PTR_TO_MAP_VALUE;
735b4333 1704 mark_reg_unknown_value(regs, insn->dst_reg);
17a52670 1705 }
969bf05e
AS
1706 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGT &&
1707 dst_reg->type == PTR_TO_PACKET &&
1708 regs[insn->src_reg].type == PTR_TO_PACKET_END) {
1709 find_good_pkt_pointers(env, dst_reg);
1be7f75d
AS
1710 } else if (is_pointer_value(env, insn->dst_reg)) {
1711 verbose("R%d pointer comparison prohibited\n", insn->dst_reg);
1712 return -EACCES;
17a52670
AS
1713 }
1714 if (log_level)
1a0dc1ac 1715 print_verifier_state(&env->cur_state);
17a52670
AS
1716 return 0;
1717}
1718
0246e64d
AS
1719/* return the map pointer stored inside BPF_LD_IMM64 instruction */
1720static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
1721{
1722 u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
1723
1724 return (struct bpf_map *) (unsigned long) imm64;
1725}
1726
17a52670
AS
1727/* verify BPF_LD_IMM64 instruction */
1728static int check_ld_imm(struct verifier_env *env, struct bpf_insn *insn)
1729{
1730 struct reg_state *regs = env->cur_state.regs;
1731 int err;
1732
1733 if (BPF_SIZE(insn->code) != BPF_DW) {
1734 verbose("invalid BPF_LD_IMM insn\n");
1735 return -EINVAL;
1736 }
1737 if (insn->off != 0) {
1738 verbose("BPF_LD_IMM64 uses reserved fields\n");
1739 return -EINVAL;
1740 }
1741
1742 err = check_reg_arg(regs, insn->dst_reg, DST_OP);
1743 if (err)
1744 return err;
1745
1746 if (insn->src_reg == 0)
1747 /* generic move 64-bit immediate into a register */
1748 return 0;
1749
1750 /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
1751 BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
1752
1753 regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
1754 regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
1755 return 0;
1756}
1757
96be4325
DB
1758static bool may_access_skb(enum bpf_prog_type type)
1759{
1760 switch (type) {
1761 case BPF_PROG_TYPE_SOCKET_FILTER:
1762 case BPF_PROG_TYPE_SCHED_CLS:
94caee8c 1763 case BPF_PROG_TYPE_SCHED_ACT:
96be4325
DB
1764 return true;
1765 default:
1766 return false;
1767 }
1768}
1769
ddd872bc
AS
1770/* verify safety of LD_ABS|LD_IND instructions:
1771 * - they can only appear in the programs where ctx == skb
1772 * - since they are wrappers of function calls, they scratch R1-R5 registers,
1773 * preserve R6-R9, and store return value into R0
1774 *
1775 * Implicit input:
1776 * ctx == skb == R6 == CTX
1777 *
1778 * Explicit input:
1779 * SRC == any register
1780 * IMM == 32-bit immediate
1781 *
1782 * Output:
1783 * R0 - 8/16/32-bit skb data converted to cpu endianness
1784 */
1785static int check_ld_abs(struct verifier_env *env, struct bpf_insn *insn)
1786{
1787 struct reg_state *regs = env->cur_state.regs;
1788 u8 mode = BPF_MODE(insn->code);
1789 struct reg_state *reg;
1790 int i, err;
1791
24701ece 1792 if (!may_access_skb(env->prog->type)) {
1a0dc1ac 1793 verbose("BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
ddd872bc
AS
1794 return -EINVAL;
1795 }
1796
1797 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
d82bccc6 1798 BPF_SIZE(insn->code) == BPF_DW ||
ddd872bc 1799 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
1a0dc1ac 1800 verbose("BPF_LD_[ABS|IND] uses reserved fields\n");
ddd872bc
AS
1801 return -EINVAL;
1802 }
1803
1804 /* check whether implicit source operand (register R6) is readable */
1805 err = check_reg_arg(regs, BPF_REG_6, SRC_OP);
1806 if (err)
1807 return err;
1808
1809 if (regs[BPF_REG_6].type != PTR_TO_CTX) {
1810 verbose("at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
1811 return -EINVAL;
1812 }
1813
1814 if (mode == BPF_IND) {
1815 /* check explicit source operand */
1816 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1817 if (err)
1818 return err;
1819 }
1820
1821 /* reset caller saved regs to unreadable */
1822 for (i = 0; i < CALLER_SAVED_REGS; i++) {
1823 reg = regs + caller_saved[i];
1824 reg->type = NOT_INIT;
1825 reg->imm = 0;
1826 }
1827
1828 /* mark destination R0 register as readable, since it contains
1829 * the value fetched from the packet
1830 */
1831 regs[BPF_REG_0].type = UNKNOWN_VALUE;
1832 return 0;
1833}
1834
475fb78f
AS
1835/* non-recursive DFS pseudo code
1836 * 1 procedure DFS-iterative(G,v):
1837 * 2 label v as discovered
1838 * 3 let S be a stack
1839 * 4 S.push(v)
1840 * 5 while S is not empty
1841 * 6 t <- S.pop()
1842 * 7 if t is what we're looking for:
1843 * 8 return t
1844 * 9 for all edges e in G.adjacentEdges(t) do
1845 * 10 if edge e is already labelled
1846 * 11 continue with the next edge
1847 * 12 w <- G.adjacentVertex(t,e)
1848 * 13 if vertex w is not discovered and not explored
1849 * 14 label e as tree-edge
1850 * 15 label w as discovered
1851 * 16 S.push(w)
1852 * 17 continue at 5
1853 * 18 else if vertex w is discovered
1854 * 19 label e as back-edge
1855 * 20 else
1856 * 21 // vertex w is explored
1857 * 22 label e as forward- or cross-edge
1858 * 23 label t as explored
1859 * 24 S.pop()
1860 *
1861 * convention:
1862 * 0x10 - discovered
1863 * 0x11 - discovered and fall-through edge labelled
1864 * 0x12 - discovered and fall-through and branch edges labelled
1865 * 0x20 - explored
1866 */
1867
1868enum {
1869 DISCOVERED = 0x10,
1870 EXPLORED = 0x20,
1871 FALLTHROUGH = 1,
1872 BRANCH = 2,
1873};
1874
f1bca824
AS
1875#define STATE_LIST_MARK ((struct verifier_state_list *) -1L)
1876
475fb78f
AS
1877static int *insn_stack; /* stack of insns to process */
1878static int cur_stack; /* current stack index */
1879static int *insn_state;
1880
1881/* t, w, e - match pseudo-code above:
1882 * t - index of current instruction
1883 * w - next instruction
1884 * e - edge
1885 */
1886static int push_insn(int t, int w, int e, struct verifier_env *env)
1887{
1888 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
1889 return 0;
1890
1891 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
1892 return 0;
1893
1894 if (w < 0 || w >= env->prog->len) {
1895 verbose("jump out of range from insn %d to %d\n", t, w);
1896 return -EINVAL;
1897 }
1898
f1bca824
AS
1899 if (e == BRANCH)
1900 /* mark branch target for state pruning */
1901 env->explored_states[w] = STATE_LIST_MARK;
1902
475fb78f
AS
1903 if (insn_state[w] == 0) {
1904 /* tree-edge */
1905 insn_state[t] = DISCOVERED | e;
1906 insn_state[w] = DISCOVERED;
1907 if (cur_stack >= env->prog->len)
1908 return -E2BIG;
1909 insn_stack[cur_stack++] = w;
1910 return 1;
1911 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
1912 verbose("back-edge from insn %d to %d\n", t, w);
1913 return -EINVAL;
1914 } else if (insn_state[w] == EXPLORED) {
1915 /* forward- or cross-edge */
1916 insn_state[t] = DISCOVERED | e;
1917 } else {
1918 verbose("insn state internal bug\n");
1919 return -EFAULT;
1920 }
1921 return 0;
1922}
1923
1924/* non-recursive depth-first-search to detect loops in BPF program
1925 * loop == back-edge in directed graph
1926 */
1927static int check_cfg(struct verifier_env *env)
1928{
1929 struct bpf_insn *insns = env->prog->insnsi;
1930 int insn_cnt = env->prog->len;
1931 int ret = 0;
1932 int i, t;
1933
1934 insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
1935 if (!insn_state)
1936 return -ENOMEM;
1937
1938 insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
1939 if (!insn_stack) {
1940 kfree(insn_state);
1941 return -ENOMEM;
1942 }
1943
1944 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
1945 insn_stack[0] = 0; /* 0 is the first instruction */
1946 cur_stack = 1;
1947
1948peek_stack:
1949 if (cur_stack == 0)
1950 goto check_state;
1951 t = insn_stack[cur_stack - 1];
1952
1953 if (BPF_CLASS(insns[t].code) == BPF_JMP) {
1954 u8 opcode = BPF_OP(insns[t].code);
1955
1956 if (opcode == BPF_EXIT) {
1957 goto mark_explored;
1958 } else if (opcode == BPF_CALL) {
1959 ret = push_insn(t, t + 1, FALLTHROUGH, env);
1960 if (ret == 1)
1961 goto peek_stack;
1962 else if (ret < 0)
1963 goto err_free;
07016151
DB
1964 if (t + 1 < insn_cnt)
1965 env->explored_states[t + 1] = STATE_LIST_MARK;
475fb78f
AS
1966 } else if (opcode == BPF_JA) {
1967 if (BPF_SRC(insns[t].code) != BPF_K) {
1968 ret = -EINVAL;
1969 goto err_free;
1970 }
1971 /* unconditional jump with single edge */
1972 ret = push_insn(t, t + insns[t].off + 1,
1973 FALLTHROUGH, env);
1974 if (ret == 1)
1975 goto peek_stack;
1976 else if (ret < 0)
1977 goto err_free;
f1bca824
AS
1978 /* tell verifier to check for equivalent states
1979 * after every call and jump
1980 */
c3de6317
AS
1981 if (t + 1 < insn_cnt)
1982 env->explored_states[t + 1] = STATE_LIST_MARK;
475fb78f
AS
1983 } else {
1984 /* conditional jump with two edges */
1985 ret = push_insn(t, t + 1, FALLTHROUGH, env);
1986 if (ret == 1)
1987 goto peek_stack;
1988 else if (ret < 0)
1989 goto err_free;
1990
1991 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
1992 if (ret == 1)
1993 goto peek_stack;
1994 else if (ret < 0)
1995 goto err_free;
1996 }
1997 } else {
1998 /* all other non-branch instructions with single
1999 * fall-through edge
2000 */
2001 ret = push_insn(t, t + 1, FALLTHROUGH, env);
2002 if (ret == 1)
2003 goto peek_stack;
2004 else if (ret < 0)
2005 goto err_free;
2006 }
2007
2008mark_explored:
2009 insn_state[t] = EXPLORED;
2010 if (cur_stack-- <= 0) {
2011 verbose("pop stack internal bug\n");
2012 ret = -EFAULT;
2013 goto err_free;
2014 }
2015 goto peek_stack;
2016
2017check_state:
2018 for (i = 0; i < insn_cnt; i++) {
2019 if (insn_state[i] != EXPLORED) {
2020 verbose("unreachable insn %d\n", i);
2021 ret = -EINVAL;
2022 goto err_free;
2023 }
2024 }
2025 ret = 0; /* cfg looks good */
2026
2027err_free:
2028 kfree(insn_state);
2029 kfree(insn_stack);
2030 return ret;
2031}
2032
969bf05e
AS
2033/* the following conditions reduce the number of explored insns
2034 * from ~140k to ~80k for ultra large programs that use a lot of ptr_to_packet
2035 */
2036static bool compare_ptrs_to_packet(struct reg_state *old, struct reg_state *cur)
2037{
2038 if (old->id != cur->id)
2039 return false;
2040
2041 /* old ptr_to_packet is more conservative, since it allows smaller
2042 * range. Ex:
2043 * old(off=0,r=10) is equal to cur(off=0,r=20), because
2044 * old(off=0,r=10) means that with range=10 the verifier proceeded
2045 * further and found no issues with the program. Now we're in the same
2046 * spot with cur(off=0,r=20), so we're safe too, since anything further
2047 * will only be looking at most 10 bytes after this pointer.
2048 */
2049 if (old->off == cur->off && old->range < cur->range)
2050 return true;
2051
2052 /* old(off=20,r=10) is equal to cur(off=22,re=22 or 5 or 0)
2053 * since both cannot be used for packet access and safe(old)
2054 * pointer has smaller off that could be used for further
2055 * 'if (ptr > data_end)' check
2056 * Ex:
2057 * old(off=20,r=10) and cur(off=22,r=22) and cur(off=22,r=0) mean
2058 * that we cannot access the packet.
2059 * The safe range is:
2060 * [ptr, ptr + range - off)
2061 * so whenever off >=range, it means no safe bytes from this pointer.
2062 * When comparing old->off <= cur->off, it means that older code
2063 * went with smaller offset and that offset was later
2064 * used to figure out the safe range after 'if (ptr > data_end)' check
2065 * Say, 'old' state was explored like:
2066 * ... R3(off=0, r=0)
2067 * R4 = R3 + 20
2068 * ... now R4(off=20,r=0) <-- here
2069 * if (R4 > data_end)
2070 * ... R4(off=20,r=20), R3(off=0,r=20) and R3 can be used to access.
2071 * ... the code further went all the way to bpf_exit.
2072 * Now the 'cur' state at the mark 'here' has R4(off=30,r=0).
2073 * old_R4(off=20,r=0) equal to cur_R4(off=30,r=0), since if the verifier
2074 * goes further, such cur_R4 will give larger safe packet range after
2075 * 'if (R4 > data_end)' and all further insn were already good with r=20,
2076 * so they will be good with r=30 and we can prune the search.
2077 */
2078 if (old->off <= cur->off &&
2079 old->off >= old->range && cur->off >= cur->range)
2080 return true;
2081
2082 return false;
2083}
2084
f1bca824
AS
2085/* compare two verifier states
2086 *
2087 * all states stored in state_list are known to be valid, since
2088 * verifier reached 'bpf_exit' instruction through them
2089 *
2090 * this function is called when verifier exploring different branches of
2091 * execution popped from the state stack. If it sees an old state that has
2092 * more strict register state and more strict stack state then this execution
2093 * branch doesn't need to be explored further, since verifier already
2094 * concluded that more strict state leads to valid finish.
2095 *
2096 * Therefore two states are equivalent if register state is more conservative
2097 * and explored stack state is more conservative than the current one.
2098 * Example:
2099 * explored current
2100 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
2101 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
2102 *
2103 * In other words if current stack state (one being explored) has more
2104 * valid slots than old one that already passed validation, it means
2105 * the verifier can stop exploring and conclude that current state is valid too
2106 *
2107 * Similarly with registers. If explored state has register type as invalid
2108 * whereas register type in current state is meaningful, it means that
2109 * the current state will reach 'bpf_exit' instruction safely
2110 */
2111static bool states_equal(struct verifier_state *old, struct verifier_state *cur)
2112{
1a0dc1ac 2113 struct reg_state *rold, *rcur;
f1bca824
AS
2114 int i;
2115
2116 for (i = 0; i < MAX_BPF_REG; i++) {
1a0dc1ac
AS
2117 rold = &old->regs[i];
2118 rcur = &cur->regs[i];
2119
2120 if (memcmp(rold, rcur, sizeof(*rold)) == 0)
2121 continue;
2122
2123 if (rold->type == NOT_INIT ||
2124 (rold->type == UNKNOWN_VALUE && rcur->type != NOT_INIT))
2125 continue;
2126
969bf05e
AS
2127 if (rold->type == PTR_TO_PACKET && rcur->type == PTR_TO_PACKET &&
2128 compare_ptrs_to_packet(rold, rcur))
2129 continue;
2130
1a0dc1ac 2131 return false;
f1bca824
AS
2132 }
2133
2134 for (i = 0; i < MAX_BPF_STACK; i++) {
9c399760
AS
2135 if (old->stack_slot_type[i] == STACK_INVALID)
2136 continue;
2137 if (old->stack_slot_type[i] != cur->stack_slot_type[i])
2138 /* Ex: old explored (safe) state has STACK_SPILL in
2139 * this stack slot, but current has has STACK_MISC ->
2140 * this verifier states are not equivalent,
2141 * return false to continue verification of this path
2142 */
f1bca824 2143 return false;
9c399760
AS
2144 if (i % BPF_REG_SIZE)
2145 continue;
2146 if (memcmp(&old->spilled_regs[i / BPF_REG_SIZE],
2147 &cur->spilled_regs[i / BPF_REG_SIZE],
2148 sizeof(old->spilled_regs[0])))
2149 /* when explored and current stack slot types are
2150 * the same, check that stored pointers types
2151 * are the same as well.
2152 * Ex: explored safe path could have stored
2153 * (struct reg_state) {.type = PTR_TO_STACK, .imm = -8}
2154 * but current path has stored:
2155 * (struct reg_state) {.type = PTR_TO_STACK, .imm = -16}
2156 * such verifier states are not equivalent.
2157 * return false to continue verification of this path
2158 */
2159 return false;
2160 else
2161 continue;
f1bca824
AS
2162 }
2163 return true;
2164}
2165
2166static int is_state_visited(struct verifier_env *env, int insn_idx)
2167{
2168 struct verifier_state_list *new_sl;
2169 struct verifier_state_list *sl;
2170
2171 sl = env->explored_states[insn_idx];
2172 if (!sl)
2173 /* this 'insn_idx' instruction wasn't marked, so we will not
2174 * be doing state search here
2175 */
2176 return 0;
2177
2178 while (sl != STATE_LIST_MARK) {
2179 if (states_equal(&sl->state, &env->cur_state))
2180 /* reached equivalent register/stack state,
2181 * prune the search
2182 */
2183 return 1;
2184 sl = sl->next;
2185 }
2186
2187 /* there were no equivalent states, remember current one.
2188 * technically the current state is not proven to be safe yet,
2189 * but it will either reach bpf_exit (which means it's safe) or
2190 * it will be rejected. Since there are no loops, we won't be
2191 * seeing this 'insn_idx' instruction again on the way to bpf_exit
2192 */
2193 new_sl = kmalloc(sizeof(struct verifier_state_list), GFP_USER);
2194 if (!new_sl)
2195 return -ENOMEM;
2196
2197 /* add new state to the head of linked list */
2198 memcpy(&new_sl->state, &env->cur_state, sizeof(env->cur_state));
2199 new_sl->next = env->explored_states[insn_idx];
2200 env->explored_states[insn_idx] = new_sl;
2201 return 0;
2202}
2203
17a52670
AS
2204static int do_check(struct verifier_env *env)
2205{
2206 struct verifier_state *state = &env->cur_state;
2207 struct bpf_insn *insns = env->prog->insnsi;
2208 struct reg_state *regs = state->regs;
2209 int insn_cnt = env->prog->len;
2210 int insn_idx, prev_insn_idx = 0;
2211 int insn_processed = 0;
2212 bool do_print_state = false;
2213
2214 init_reg_state(regs);
2215 insn_idx = 0;
2216 for (;;) {
2217 struct bpf_insn *insn;
2218 u8 class;
2219 int err;
2220
2221 if (insn_idx >= insn_cnt) {
2222 verbose("invalid insn idx %d insn_cnt %d\n",
2223 insn_idx, insn_cnt);
2224 return -EFAULT;
2225 }
2226
2227 insn = &insns[insn_idx];
2228 class = BPF_CLASS(insn->code);
2229
07016151 2230 if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
17a52670
AS
2231 verbose("BPF program is too large. Proccessed %d insn\n",
2232 insn_processed);
2233 return -E2BIG;
2234 }
2235
f1bca824
AS
2236 err = is_state_visited(env, insn_idx);
2237 if (err < 0)
2238 return err;
2239 if (err == 1) {
2240 /* found equivalent state, can prune the search */
2241 if (log_level) {
2242 if (do_print_state)
2243 verbose("\nfrom %d to %d: safe\n",
2244 prev_insn_idx, insn_idx);
2245 else
2246 verbose("%d: safe\n", insn_idx);
2247 }
2248 goto process_bpf_exit;
2249 }
2250
17a52670
AS
2251 if (log_level && do_print_state) {
2252 verbose("\nfrom %d to %d:", prev_insn_idx, insn_idx);
1a0dc1ac 2253 print_verifier_state(&env->cur_state);
17a52670
AS
2254 do_print_state = false;
2255 }
2256
2257 if (log_level) {
2258 verbose("%d: ", insn_idx);
2259 print_bpf_insn(insn);
2260 }
2261
2262 if (class == BPF_ALU || class == BPF_ALU64) {
1be7f75d 2263 err = check_alu_op(env, insn);
17a52670
AS
2264 if (err)
2265 return err;
2266
2267 } else if (class == BPF_LDX) {
9bac3d6d
AS
2268 enum bpf_reg_type src_reg_type;
2269
2270 /* check for reserved fields is already done */
2271
17a52670
AS
2272 /* check src operand */
2273 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
2274 if (err)
2275 return err;
2276
2277 err = check_reg_arg(regs, insn->dst_reg, DST_OP_NO_MARK);
2278 if (err)
2279 return err;
2280
725f9dcd
AS
2281 src_reg_type = regs[insn->src_reg].type;
2282
17a52670
AS
2283 /* check that memory (src_reg + off) is readable,
2284 * the state of dst_reg will be updated by this func
2285 */
2286 err = check_mem_access(env, insn->src_reg, insn->off,
2287 BPF_SIZE(insn->code), BPF_READ,
2288 insn->dst_reg);
2289 if (err)
2290 return err;
2291
725f9dcd
AS
2292 if (BPF_SIZE(insn->code) != BPF_W) {
2293 insn_idx++;
2294 continue;
2295 }
9bac3d6d 2296
725f9dcd 2297 if (insn->imm == 0) {
9bac3d6d
AS
2298 /* saw a valid insn
2299 * dst_reg = *(u32 *)(src_reg + off)
2300 * use reserved 'imm' field to mark this insn
2301 */
2302 insn->imm = src_reg_type;
2303
2304 } else if (src_reg_type != insn->imm &&
2305 (src_reg_type == PTR_TO_CTX ||
2306 insn->imm == PTR_TO_CTX)) {
2307 /* ABuser program is trying to use the same insn
2308 * dst_reg = *(u32*) (src_reg + off)
2309 * with different pointer types:
2310 * src_reg == ctx in one branch and
2311 * src_reg == stack|map in some other branch.
2312 * Reject it.
2313 */
2314 verbose("same insn cannot be used with different pointers\n");
2315 return -EINVAL;
2316 }
2317
17a52670 2318 } else if (class == BPF_STX) {
d691f9e8
AS
2319 enum bpf_reg_type dst_reg_type;
2320
17a52670
AS
2321 if (BPF_MODE(insn->code) == BPF_XADD) {
2322 err = check_xadd(env, insn);
2323 if (err)
2324 return err;
2325 insn_idx++;
2326 continue;
2327 }
2328
17a52670
AS
2329 /* check src1 operand */
2330 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
2331 if (err)
2332 return err;
2333 /* check src2 operand */
2334 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
2335 if (err)
2336 return err;
2337
d691f9e8
AS
2338 dst_reg_type = regs[insn->dst_reg].type;
2339
17a52670
AS
2340 /* check that memory (dst_reg + off) is writeable */
2341 err = check_mem_access(env, insn->dst_reg, insn->off,
2342 BPF_SIZE(insn->code), BPF_WRITE,
2343 insn->src_reg);
2344 if (err)
2345 return err;
2346
d691f9e8
AS
2347 if (insn->imm == 0) {
2348 insn->imm = dst_reg_type;
2349 } else if (dst_reg_type != insn->imm &&
2350 (dst_reg_type == PTR_TO_CTX ||
2351 insn->imm == PTR_TO_CTX)) {
2352 verbose("same insn cannot be used with different pointers\n");
2353 return -EINVAL;
2354 }
2355
17a52670
AS
2356 } else if (class == BPF_ST) {
2357 if (BPF_MODE(insn->code) != BPF_MEM ||
2358 insn->src_reg != BPF_REG_0) {
2359 verbose("BPF_ST uses reserved fields\n");
2360 return -EINVAL;
2361 }
2362 /* check src operand */
2363 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
2364 if (err)
2365 return err;
2366
2367 /* check that memory (dst_reg + off) is writeable */
2368 err = check_mem_access(env, insn->dst_reg, insn->off,
2369 BPF_SIZE(insn->code), BPF_WRITE,
2370 -1);
2371 if (err)
2372 return err;
2373
2374 } else if (class == BPF_JMP) {
2375 u8 opcode = BPF_OP(insn->code);
2376
2377 if (opcode == BPF_CALL) {
2378 if (BPF_SRC(insn->code) != BPF_K ||
2379 insn->off != 0 ||
2380 insn->src_reg != BPF_REG_0 ||
2381 insn->dst_reg != BPF_REG_0) {
2382 verbose("BPF_CALL uses reserved fields\n");
2383 return -EINVAL;
2384 }
2385
2386 err = check_call(env, insn->imm);
2387 if (err)
2388 return err;
2389
2390 } else if (opcode == BPF_JA) {
2391 if (BPF_SRC(insn->code) != BPF_K ||
2392 insn->imm != 0 ||
2393 insn->src_reg != BPF_REG_0 ||
2394 insn->dst_reg != BPF_REG_0) {
2395 verbose("BPF_JA uses reserved fields\n");
2396 return -EINVAL;
2397 }
2398
2399 insn_idx += insn->off + 1;
2400 continue;
2401
2402 } else if (opcode == BPF_EXIT) {
2403 if (BPF_SRC(insn->code) != BPF_K ||
2404 insn->imm != 0 ||
2405 insn->src_reg != BPF_REG_0 ||
2406 insn->dst_reg != BPF_REG_0) {
2407 verbose("BPF_EXIT uses reserved fields\n");
2408 return -EINVAL;
2409 }
2410
2411 /* eBPF calling convetion is such that R0 is used
2412 * to return the value from eBPF program.
2413 * Make sure that it's readable at this time
2414 * of bpf_exit, which means that program wrote
2415 * something into it earlier
2416 */
2417 err = check_reg_arg(regs, BPF_REG_0, SRC_OP);
2418 if (err)
2419 return err;
2420
1be7f75d
AS
2421 if (is_pointer_value(env, BPF_REG_0)) {
2422 verbose("R0 leaks addr as return value\n");
2423 return -EACCES;
2424 }
2425
f1bca824 2426process_bpf_exit:
17a52670
AS
2427 insn_idx = pop_stack(env, &prev_insn_idx);
2428 if (insn_idx < 0) {
2429 break;
2430 } else {
2431 do_print_state = true;
2432 continue;
2433 }
2434 } else {
2435 err = check_cond_jmp_op(env, insn, &insn_idx);
2436 if (err)
2437 return err;
2438 }
2439 } else if (class == BPF_LD) {
2440 u8 mode = BPF_MODE(insn->code);
2441
2442 if (mode == BPF_ABS || mode == BPF_IND) {
ddd872bc
AS
2443 err = check_ld_abs(env, insn);
2444 if (err)
2445 return err;
2446
17a52670
AS
2447 } else if (mode == BPF_IMM) {
2448 err = check_ld_imm(env, insn);
2449 if (err)
2450 return err;
2451
2452 insn_idx++;
2453 } else {
2454 verbose("invalid BPF_LD mode\n");
2455 return -EINVAL;
2456 }
2457 } else {
2458 verbose("unknown insn class %d\n", class);
2459 return -EINVAL;
2460 }
2461
2462 insn_idx++;
2463 }
2464
1a0dc1ac 2465 verbose("processed %d insns\n", insn_processed);
17a52670
AS
2466 return 0;
2467}
2468
0246e64d
AS
2469/* look for pseudo eBPF instructions that access map FDs and
2470 * replace them with actual map pointers
2471 */
2472static int replace_map_fd_with_map_ptr(struct verifier_env *env)
2473{
2474 struct bpf_insn *insn = env->prog->insnsi;
2475 int insn_cnt = env->prog->len;
2476 int i, j;
2477
2478 for (i = 0; i < insn_cnt; i++, insn++) {
9bac3d6d 2479 if (BPF_CLASS(insn->code) == BPF_LDX &&
d691f9e8 2480 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
9bac3d6d
AS
2481 verbose("BPF_LDX uses reserved fields\n");
2482 return -EINVAL;
2483 }
2484
d691f9e8
AS
2485 if (BPF_CLASS(insn->code) == BPF_STX &&
2486 ((BPF_MODE(insn->code) != BPF_MEM &&
2487 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
2488 verbose("BPF_STX uses reserved fields\n");
2489 return -EINVAL;
2490 }
2491
0246e64d
AS
2492 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
2493 struct bpf_map *map;
2494 struct fd f;
2495
2496 if (i == insn_cnt - 1 || insn[1].code != 0 ||
2497 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
2498 insn[1].off != 0) {
2499 verbose("invalid bpf_ld_imm64 insn\n");
2500 return -EINVAL;
2501 }
2502
2503 if (insn->src_reg == 0)
2504 /* valid generic load 64-bit imm */
2505 goto next_insn;
2506
2507 if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
2508 verbose("unrecognized bpf_ld_imm64 insn\n");
2509 return -EINVAL;
2510 }
2511
2512 f = fdget(insn->imm);
c2101297 2513 map = __bpf_map_get(f);
0246e64d
AS
2514 if (IS_ERR(map)) {
2515 verbose("fd %d is not pointing to valid bpf_map\n",
2516 insn->imm);
0246e64d
AS
2517 return PTR_ERR(map);
2518 }
2519
2520 /* store map pointer inside BPF_LD_IMM64 instruction */
2521 insn[0].imm = (u32) (unsigned long) map;
2522 insn[1].imm = ((u64) (unsigned long) map) >> 32;
2523
2524 /* check whether we recorded this map already */
2525 for (j = 0; j < env->used_map_cnt; j++)
2526 if (env->used_maps[j] == map) {
2527 fdput(f);
2528 goto next_insn;
2529 }
2530
2531 if (env->used_map_cnt >= MAX_USED_MAPS) {
2532 fdput(f);
2533 return -E2BIG;
2534 }
2535
0246e64d
AS
2536 /* hold the map. If the program is rejected by verifier,
2537 * the map will be released by release_maps() or it
2538 * will be used by the valid program until it's unloaded
2539 * and all maps are released in free_bpf_prog_info()
2540 */
92117d84
AS
2541 map = bpf_map_inc(map, false);
2542 if (IS_ERR(map)) {
2543 fdput(f);
2544 return PTR_ERR(map);
2545 }
2546 env->used_maps[env->used_map_cnt++] = map;
2547
0246e64d
AS
2548 fdput(f);
2549next_insn:
2550 insn++;
2551 i++;
2552 }
2553 }
2554
2555 /* now all pseudo BPF_LD_IMM64 instructions load valid
2556 * 'struct bpf_map *' into a register instead of user map_fd.
2557 * These pointers will be used later by verifier to validate map access.
2558 */
2559 return 0;
2560}
2561
2562/* drop refcnt of maps used by the rejected program */
2563static void release_maps(struct verifier_env *env)
2564{
2565 int i;
2566
2567 for (i = 0; i < env->used_map_cnt; i++)
2568 bpf_map_put(env->used_maps[i]);
2569}
2570
2571/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
2572static void convert_pseudo_ld_imm64(struct verifier_env *env)
2573{
2574 struct bpf_insn *insn = env->prog->insnsi;
2575 int insn_cnt = env->prog->len;
2576 int i;
2577
2578 for (i = 0; i < insn_cnt; i++, insn++)
2579 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
2580 insn->src_reg = 0;
2581}
2582
9bac3d6d
AS
2583/* convert load instructions that access fields of 'struct __sk_buff'
2584 * into sequence of instructions that access fields of 'struct sk_buff'
2585 */
2586static int convert_ctx_accesses(struct verifier_env *env)
2587{
2588 struct bpf_insn *insn = env->prog->insnsi;
2589 int insn_cnt = env->prog->len;
2590 struct bpf_insn insn_buf[16];
2591 struct bpf_prog *new_prog;
d691f9e8 2592 enum bpf_access_type type;
c237ee5e 2593 int i;
9bac3d6d
AS
2594
2595 if (!env->prog->aux->ops->convert_ctx_access)
2596 return 0;
2597
2598 for (i = 0; i < insn_cnt; i++, insn++) {
c237ee5e
DB
2599 u32 insn_delta, cnt;
2600
d691f9e8
AS
2601 if (insn->code == (BPF_LDX | BPF_MEM | BPF_W))
2602 type = BPF_READ;
2603 else if (insn->code == (BPF_STX | BPF_MEM | BPF_W))
2604 type = BPF_WRITE;
2605 else
9bac3d6d
AS
2606 continue;
2607
2608 if (insn->imm != PTR_TO_CTX) {
2609 /* clear internal mark */
2610 insn->imm = 0;
2611 continue;
2612 }
2613
2614 cnt = env->prog->aux->ops->
d691f9e8 2615 convert_ctx_access(type, insn->dst_reg, insn->src_reg,
ff936a04 2616 insn->off, insn_buf, env->prog);
9bac3d6d
AS
2617 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
2618 verbose("bpf verifier is misconfigured\n");
2619 return -EINVAL;
2620 }
2621
c237ee5e 2622 new_prog = bpf_patch_insn_single(env->prog, i, insn_buf, cnt);
9bac3d6d
AS
2623 if (!new_prog)
2624 return -ENOMEM;
2625
c237ee5e 2626 insn_delta = cnt - 1;
9bac3d6d
AS
2627
2628 /* keep walking new program and skip insns we just inserted */
2629 env->prog = new_prog;
c237ee5e
DB
2630 insn = new_prog->insnsi + i + insn_delta;
2631
2632 insn_cnt += insn_delta;
2633 i += insn_delta;
9bac3d6d
AS
2634 }
2635
2636 return 0;
2637}
2638
f1bca824
AS
2639static void free_states(struct verifier_env *env)
2640{
2641 struct verifier_state_list *sl, *sln;
2642 int i;
2643
2644 if (!env->explored_states)
2645 return;
2646
2647 for (i = 0; i < env->prog->len; i++) {
2648 sl = env->explored_states[i];
2649
2650 if (sl)
2651 while (sl != STATE_LIST_MARK) {
2652 sln = sl->next;
2653 kfree(sl);
2654 sl = sln;
2655 }
2656 }
2657
2658 kfree(env->explored_states);
2659}
2660
9bac3d6d 2661int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
51580e79 2662{
cbd35700
AS
2663 char __user *log_ubuf = NULL;
2664 struct verifier_env *env;
51580e79
AS
2665 int ret = -EINVAL;
2666
9bac3d6d 2667 if ((*prog)->len <= 0 || (*prog)->len > BPF_MAXINSNS)
cbd35700
AS
2668 return -E2BIG;
2669
2670 /* 'struct verifier_env' can be global, but since it's not small,
2671 * allocate/free it every time bpf_check() is called
2672 */
2673 env = kzalloc(sizeof(struct verifier_env), GFP_KERNEL);
2674 if (!env)
2675 return -ENOMEM;
2676
9bac3d6d 2677 env->prog = *prog;
0246e64d 2678
cbd35700
AS
2679 /* grab the mutex to protect few globals used by verifier */
2680 mutex_lock(&bpf_verifier_lock);
2681
2682 if (attr->log_level || attr->log_buf || attr->log_size) {
2683 /* user requested verbose verifier output
2684 * and supplied buffer to store the verification trace
2685 */
2686 log_level = attr->log_level;
2687 log_ubuf = (char __user *) (unsigned long) attr->log_buf;
2688 log_size = attr->log_size;
2689 log_len = 0;
2690
2691 ret = -EINVAL;
2692 /* log_* values have to be sane */
2693 if (log_size < 128 || log_size > UINT_MAX >> 8 ||
2694 log_level == 0 || log_ubuf == NULL)
2695 goto free_env;
2696
2697 ret = -ENOMEM;
2698 log_buf = vmalloc(log_size);
2699 if (!log_buf)
2700 goto free_env;
2701 } else {
2702 log_level = 0;
2703 }
2704
0246e64d
AS
2705 ret = replace_map_fd_with_map_ptr(env);
2706 if (ret < 0)
2707 goto skip_full_check;
2708
9bac3d6d 2709 env->explored_states = kcalloc(env->prog->len,
f1bca824
AS
2710 sizeof(struct verifier_state_list *),
2711 GFP_USER);
2712 ret = -ENOMEM;
2713 if (!env->explored_states)
2714 goto skip_full_check;
2715
475fb78f
AS
2716 ret = check_cfg(env);
2717 if (ret < 0)
2718 goto skip_full_check;
2719
1be7f75d
AS
2720 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
2721
17a52670 2722 ret = do_check(env);
cbd35700 2723
0246e64d 2724skip_full_check:
17a52670 2725 while (pop_stack(env, NULL) >= 0);
f1bca824 2726 free_states(env);
0246e64d 2727
9bac3d6d
AS
2728 if (ret == 0)
2729 /* program is valid, convert *(u32*)(ctx + off) accesses */
2730 ret = convert_ctx_accesses(env);
2731
cbd35700
AS
2732 if (log_level && log_len >= log_size - 1) {
2733 BUG_ON(log_len >= log_size);
2734 /* verifier log exceeded user supplied buffer */
2735 ret = -ENOSPC;
2736 /* fall through to return what was recorded */
2737 }
2738
2739 /* copy verifier log back to user space including trailing zero */
2740 if (log_level && copy_to_user(log_ubuf, log_buf, log_len + 1) != 0) {
2741 ret = -EFAULT;
2742 goto free_log_buf;
2743 }
2744
0246e64d
AS
2745 if (ret == 0 && env->used_map_cnt) {
2746 /* if program passed verifier, update used_maps in bpf_prog_info */
9bac3d6d
AS
2747 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
2748 sizeof(env->used_maps[0]),
2749 GFP_KERNEL);
0246e64d 2750
9bac3d6d 2751 if (!env->prog->aux->used_maps) {
0246e64d
AS
2752 ret = -ENOMEM;
2753 goto free_log_buf;
2754 }
2755
9bac3d6d 2756 memcpy(env->prog->aux->used_maps, env->used_maps,
0246e64d 2757 sizeof(env->used_maps[0]) * env->used_map_cnt);
9bac3d6d 2758 env->prog->aux->used_map_cnt = env->used_map_cnt;
0246e64d
AS
2759
2760 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
2761 * bpf_ld_imm64 instructions
2762 */
2763 convert_pseudo_ld_imm64(env);
2764 }
cbd35700
AS
2765
2766free_log_buf:
2767 if (log_level)
2768 vfree(log_buf);
2769free_env:
9bac3d6d 2770 if (!env->prog->aux->used_maps)
0246e64d
AS
2771 /* if we didn't copy map pointers into bpf_prog_info, release
2772 * them now. Otherwise free_bpf_prog_info() will release them.
2773 */
2774 release_maps(env);
9bac3d6d 2775 *prog = env->prog;
cbd35700
AS
2776 kfree(env);
2777 mutex_unlock(&bpf_verifier_lock);
51580e79
AS
2778 return ret;
2779}
This page took 0.228243 seconds and 5 git commands to generate.