cgroup: remove unused parameter in cgroup_task_migrate().
[deliverable/linux.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
0dea1168
KS
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
ddbcc7e8
PM
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29#include <linux/cgroup.h>
2ce9738b 30#include <linux/cred.h>
c6d57f33 31#include <linux/ctype.h>
ddbcc7e8
PM
32#include <linux/errno.h>
33#include <linux/fs.h>
2ce9738b 34#include <linux/init_task.h>
ddbcc7e8
PM
35#include <linux/kernel.h>
36#include <linux/list.h>
37#include <linux/mm.h>
38#include <linux/mutex.h>
39#include <linux/mount.h>
40#include <linux/pagemap.h>
a424316c 41#include <linux/proc_fs.h>
ddbcc7e8
PM
42#include <linux/rcupdate.h>
43#include <linux/sched.h>
817929ec 44#include <linux/backing-dev.h>
ddbcc7e8
PM
45#include <linux/seq_file.h>
46#include <linux/slab.h>
47#include <linux/magic.h>
48#include <linux/spinlock.h>
49#include <linux/string.h>
bbcb81d0 50#include <linux/sort.h>
81a6a5cd 51#include <linux/kmod.h>
e6a1105b 52#include <linux/module.h>
846c7bb0
BS
53#include <linux/delayacct.h>
54#include <linux/cgroupstats.h>
0ac801fe 55#include <linux/hashtable.h>
3f8206d4 56#include <linux/namei.h>
096b7fe0 57#include <linux/pid_namespace.h>
2c6ab6d2 58#include <linux/idr.h>
d1d9fd33 59#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
0dea1168
KS
60#include <linux/eventfd.h>
61#include <linux/poll.h>
081aa458 62#include <linux/flex_array.h> /* used in cgroup_attach_task */
c4c27fbd 63#include <linux/kthread.h>
846c7bb0 64
60063497 65#include <linux/atomic.h>
ddbcc7e8 66
28b4c27b
TH
67/* css deactivation bias, makes css->refcnt negative to deny new trygets */
68#define CSS_DEACT_BIAS INT_MIN
69
e25e2cbb
TH
70/*
71 * cgroup_mutex is the master lock. Any modification to cgroup or its
72 * hierarchy must be performed while holding it.
73 *
74 * cgroup_root_mutex nests inside cgroup_mutex and should be held to modify
75 * cgroupfs_root of any cgroup hierarchy - subsys list, flags,
76 * release_agent_path and so on. Modifying requires both cgroup_mutex and
77 * cgroup_root_mutex. Readers can acquire either of the two. This is to
78 * break the following locking order cycle.
79 *
80 * A. cgroup_mutex -> cred_guard_mutex -> s_type->i_mutex_key -> namespace_sem
81 * B. namespace_sem -> cgroup_mutex
82 *
83 * B happens only through cgroup_show_options() and using cgroup_root_mutex
84 * breaks it.
85 */
81a6a5cd 86static DEFINE_MUTEX(cgroup_mutex);
e25e2cbb 87static DEFINE_MUTEX(cgroup_root_mutex);
81a6a5cd 88
aae8aab4
BB
89/*
90 * Generate an array of cgroup subsystem pointers. At boot time, this is
be45c900 91 * populated with the built in subsystems, and modular subsystems are
aae8aab4
BB
92 * registered after that. The mutable section of this array is protected by
93 * cgroup_mutex.
94 */
80f4c877 95#define SUBSYS(_x) [_x ## _subsys_id] = &_x ## _subsys,
5fc0b025 96#define IS_SUBSYS_ENABLED(option) IS_BUILTIN(option)
aae8aab4 97static struct cgroup_subsys *subsys[CGROUP_SUBSYS_COUNT] = {
ddbcc7e8
PM
98#include <linux/cgroup_subsys.h>
99};
100
c6d57f33
PM
101#define MAX_CGROUP_ROOT_NAMELEN 64
102
ddbcc7e8
PM
103/*
104 * A cgroupfs_root represents the root of a cgroup hierarchy,
105 * and may be associated with a superblock to form an active
106 * hierarchy
107 */
108struct cgroupfs_root {
109 struct super_block *sb;
110
111 /*
112 * The bitmask of subsystems intended to be attached to this
113 * hierarchy
114 */
a1a71b45 115 unsigned long subsys_mask;
ddbcc7e8 116
2c6ab6d2
PM
117 /* Unique id for this hierarchy. */
118 int hierarchy_id;
119
ddbcc7e8 120 /* The bitmask of subsystems currently attached to this hierarchy */
a1a71b45 121 unsigned long actual_subsys_mask;
ddbcc7e8
PM
122
123 /* A list running through the attached subsystems */
124 struct list_head subsys_list;
125
126 /* The root cgroup for this hierarchy */
127 struct cgroup top_cgroup;
128
129 /* Tracks how many cgroups are currently defined in hierarchy.*/
130 int number_of_cgroups;
131
e5f6a860 132 /* A list running through the active hierarchies */
ddbcc7e8
PM
133 struct list_head root_list;
134
b0ca5a84
TH
135 /* All cgroups on this root, cgroup_mutex protected */
136 struct list_head allcg_list;
137
ddbcc7e8
PM
138 /* Hierarchy-specific flags */
139 unsigned long flags;
81a6a5cd 140
0a950f65
TH
141 /* IDs for cgroups in this hierarchy */
142 struct ida cgroup_ida;
143
e788e066 144 /* The path to use for release notifications. */
81a6a5cd 145 char release_agent_path[PATH_MAX];
c6d57f33
PM
146
147 /* The name for this hierarchy - may be empty */
148 char name[MAX_CGROUP_ROOT_NAMELEN];
ddbcc7e8
PM
149};
150
ddbcc7e8
PM
151/*
152 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
153 * subsystems that are otherwise unattached - it never has more than a
154 * single cgroup, and all tasks are part of that cgroup.
155 */
156static struct cgroupfs_root rootnode;
157
05ef1d7c
TH
158/*
159 * cgroupfs file entry, pointed to from leaf dentry->d_fsdata.
160 */
161struct cfent {
162 struct list_head node;
163 struct dentry *dentry;
164 struct cftype *type;
165};
166
38460b48
KH
167/*
168 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
169 * cgroup_subsys->use_id != 0.
170 */
171#define CSS_ID_MAX (65535)
172struct css_id {
173 /*
174 * The css to which this ID points. This pointer is set to valid value
175 * after cgroup is populated. If cgroup is removed, this will be NULL.
176 * This pointer is expected to be RCU-safe because destroy()
e9316080
TH
177 * is called after synchronize_rcu(). But for safe use, css_tryget()
178 * should be used for avoiding race.
38460b48 179 */
2c392b8c 180 struct cgroup_subsys_state __rcu *css;
38460b48
KH
181 /*
182 * ID of this css.
183 */
184 unsigned short id;
185 /*
186 * Depth in hierarchy which this ID belongs to.
187 */
188 unsigned short depth;
189 /*
190 * ID is freed by RCU. (and lookup routine is RCU safe.)
191 */
192 struct rcu_head rcu_head;
193 /*
194 * Hierarchy of CSS ID belongs to.
195 */
196 unsigned short stack[0]; /* Array of Length (depth+1) */
197};
198
0dea1168 199/*
25985edc 200 * cgroup_event represents events which userspace want to receive.
0dea1168
KS
201 */
202struct cgroup_event {
203 /*
204 * Cgroup which the event belongs to.
205 */
206 struct cgroup *cgrp;
207 /*
208 * Control file which the event associated.
209 */
210 struct cftype *cft;
211 /*
212 * eventfd to signal userspace about the event.
213 */
214 struct eventfd_ctx *eventfd;
215 /*
216 * Each of these stored in a list by the cgroup.
217 */
218 struct list_head list;
219 /*
220 * All fields below needed to unregister event when
221 * userspace closes eventfd.
222 */
223 poll_table pt;
224 wait_queue_head_t *wqh;
225 wait_queue_t wait;
226 struct work_struct remove;
227};
38460b48 228
ddbcc7e8
PM
229/* The list of hierarchy roots */
230
231static LIST_HEAD(roots);
817929ec 232static int root_count;
ddbcc7e8 233
2c6ab6d2
PM
234static DEFINE_IDA(hierarchy_ida);
235static int next_hierarchy_id;
236static DEFINE_SPINLOCK(hierarchy_id_lock);
237
ddbcc7e8
PM
238/* dummytop is a shorthand for the dummy hierarchy's top cgroup */
239#define dummytop (&rootnode.top_cgroup)
240
65dff759
LZ
241static struct cgroup_name root_cgroup_name = { .name = "/" };
242
ddbcc7e8 243/* This flag indicates whether tasks in the fork and exit paths should
a043e3b2
LZ
244 * check for fork/exit handlers to call. This avoids us having to do
245 * extra work in the fork/exit path if none of the subsystems need to
246 * be called.
ddbcc7e8 247 */
8947f9d5 248static int need_forkexit_callback __read_mostly;
ddbcc7e8 249
42809dd4 250static int cgroup_destroy_locked(struct cgroup *cgrp);
879a3d9d
G
251static int cgroup_addrm_files(struct cgroup *cgrp, struct cgroup_subsys *subsys,
252 struct cftype cfts[], bool is_add);
42809dd4 253
d11c563d
PM
254#ifdef CONFIG_PROVE_LOCKING
255int cgroup_lock_is_held(void)
256{
257 return lockdep_is_held(&cgroup_mutex);
258}
259#else /* #ifdef CONFIG_PROVE_LOCKING */
260int cgroup_lock_is_held(void)
261{
262 return mutex_is_locked(&cgroup_mutex);
263}
264#endif /* #else #ifdef CONFIG_PROVE_LOCKING */
265
266EXPORT_SYMBOL_GPL(cgroup_lock_is_held);
267
8e3bbf42
SQ
268static int css_unbias_refcnt(int refcnt)
269{
270 return refcnt >= 0 ? refcnt : refcnt - CSS_DEACT_BIAS;
271}
272
28b4c27b
TH
273/* the current nr of refs, always >= 0 whether @css is deactivated or not */
274static int css_refcnt(struct cgroup_subsys_state *css)
275{
276 int v = atomic_read(&css->refcnt);
277
8e3bbf42 278 return css_unbias_refcnt(v);
28b4c27b
TH
279}
280
ddbcc7e8 281/* convenient tests for these bits */
bd89aabc 282inline int cgroup_is_removed(const struct cgroup *cgrp)
ddbcc7e8 283{
bd89aabc 284 return test_bit(CGRP_REMOVED, &cgrp->flags);
ddbcc7e8
PM
285}
286
287/* bits in struct cgroupfs_root flags field */
288enum {
03b1cde6
AR
289 ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
290 ROOT_XATTR, /* supports extended attributes */
ddbcc7e8
PM
291};
292
e9685a03 293static int cgroup_is_releasable(const struct cgroup *cgrp)
81a6a5cd
PM
294{
295 const int bits =
bd89aabc
PM
296 (1 << CGRP_RELEASABLE) |
297 (1 << CGRP_NOTIFY_ON_RELEASE);
298 return (cgrp->flags & bits) == bits;
81a6a5cd
PM
299}
300
e9685a03 301static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 302{
bd89aabc 303 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
304}
305
ddbcc7e8
PM
306/*
307 * for_each_subsys() allows you to iterate on each subsystem attached to
308 * an active hierarchy
309 */
310#define for_each_subsys(_root, _ss) \
311list_for_each_entry(_ss, &_root->subsys_list, sibling)
312
e5f6a860
LZ
313/* for_each_active_root() allows you to iterate across the active hierarchies */
314#define for_each_active_root(_root) \
ddbcc7e8
PM
315list_for_each_entry(_root, &roots, root_list)
316
f6ea9372
TH
317static inline struct cgroup *__d_cgrp(struct dentry *dentry)
318{
319 return dentry->d_fsdata;
320}
321
05ef1d7c 322static inline struct cfent *__d_cfe(struct dentry *dentry)
f6ea9372
TH
323{
324 return dentry->d_fsdata;
325}
326
05ef1d7c
TH
327static inline struct cftype *__d_cft(struct dentry *dentry)
328{
329 return __d_cfe(dentry)->type;
330}
331
81a6a5cd
PM
332/* the list of cgroups eligible for automatic release. Protected by
333 * release_list_lock */
334static LIST_HEAD(release_list);
cdcc136f 335static DEFINE_RAW_SPINLOCK(release_list_lock);
81a6a5cd
PM
336static void cgroup_release_agent(struct work_struct *work);
337static DECLARE_WORK(release_agent_work, cgroup_release_agent);
bd89aabc 338static void check_for_release(struct cgroup *cgrp);
81a6a5cd 339
817929ec
PM
340/* Link structure for associating css_set objects with cgroups */
341struct cg_cgroup_link {
342 /*
343 * List running through cg_cgroup_links associated with a
344 * cgroup, anchored on cgroup->css_sets
345 */
bd89aabc 346 struct list_head cgrp_link_list;
7717f7ba 347 struct cgroup *cgrp;
817929ec
PM
348 /*
349 * List running through cg_cgroup_links pointing at a
350 * single css_set object, anchored on css_set->cg_links
351 */
352 struct list_head cg_link_list;
353 struct css_set *cg;
354};
355
356/* The default css_set - used by init and its children prior to any
357 * hierarchies being mounted. It contains a pointer to the root state
358 * for each subsystem. Also used to anchor the list of css_sets. Not
359 * reference-counted, to improve performance when child cgroups
360 * haven't been created.
361 */
362
363static struct css_set init_css_set;
364static struct cg_cgroup_link init_css_set_link;
365
e6a1105b
BB
366static int cgroup_init_idr(struct cgroup_subsys *ss,
367 struct cgroup_subsys_state *css);
38460b48 368
817929ec
PM
369/* css_set_lock protects the list of css_set objects, and the
370 * chain of tasks off each css_set. Nests outside task->alloc_lock
371 * due to cgroup_iter_start() */
372static DEFINE_RWLOCK(css_set_lock);
373static int css_set_count;
374
7717f7ba
PM
375/*
376 * hash table for cgroup groups. This improves the performance to find
377 * an existing css_set. This hash doesn't (currently) take into
378 * account cgroups in empty hierarchies.
379 */
472b1053 380#define CSS_SET_HASH_BITS 7
0ac801fe 381static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
472b1053 382
0ac801fe 383static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
472b1053
LZ
384{
385 int i;
0ac801fe 386 unsigned long key = 0UL;
472b1053
LZ
387
388 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
0ac801fe
LZ
389 key += (unsigned long)css[i];
390 key = (key >> 16) ^ key;
472b1053 391
0ac801fe 392 return key;
472b1053
LZ
393}
394
817929ec
PM
395/* We don't maintain the lists running through each css_set to its
396 * task until after the first call to cgroup_iter_start(). This
397 * reduces the fork()/exit() overhead for people who have cgroups
398 * compiled into their kernel but not actually in use */
8947f9d5 399static int use_task_css_set_links __read_mostly;
817929ec 400
2c6ab6d2 401static void __put_css_set(struct css_set *cg, int taskexit)
b4f48b63 402{
71cbb949
KM
403 struct cg_cgroup_link *link;
404 struct cg_cgroup_link *saved_link;
146aa1bd
LJ
405 /*
406 * Ensure that the refcount doesn't hit zero while any readers
407 * can see it. Similar to atomic_dec_and_lock(), but for an
408 * rwlock
409 */
410 if (atomic_add_unless(&cg->refcount, -1, 1))
411 return;
412 write_lock(&css_set_lock);
413 if (!atomic_dec_and_test(&cg->refcount)) {
414 write_unlock(&css_set_lock);
415 return;
416 }
81a6a5cd 417
2c6ab6d2 418 /* This css_set is dead. unlink it and release cgroup refcounts */
0ac801fe 419 hash_del(&cg->hlist);
2c6ab6d2
PM
420 css_set_count--;
421
422 list_for_each_entry_safe(link, saved_link, &cg->cg_links,
423 cg_link_list) {
424 struct cgroup *cgrp = link->cgrp;
425 list_del(&link->cg_link_list);
426 list_del(&link->cgrp_link_list);
71b5707e
LZ
427
428 /*
429 * We may not be holding cgroup_mutex, and if cgrp->count is
430 * dropped to 0 the cgroup can be destroyed at any time, hence
431 * rcu_read_lock is used to keep it alive.
432 */
433 rcu_read_lock();
bd89aabc
PM
434 if (atomic_dec_and_test(&cgrp->count) &&
435 notify_on_release(cgrp)) {
81a6a5cd 436 if (taskexit)
bd89aabc
PM
437 set_bit(CGRP_RELEASABLE, &cgrp->flags);
438 check_for_release(cgrp);
81a6a5cd 439 }
71b5707e 440 rcu_read_unlock();
2c6ab6d2
PM
441
442 kfree(link);
81a6a5cd 443 }
2c6ab6d2
PM
444
445 write_unlock(&css_set_lock);
30088ad8 446 kfree_rcu(cg, rcu_head);
b4f48b63
PM
447}
448
817929ec
PM
449/*
450 * refcounted get/put for css_set objects
451 */
452static inline void get_css_set(struct css_set *cg)
453{
146aa1bd 454 atomic_inc(&cg->refcount);
817929ec
PM
455}
456
457static inline void put_css_set(struct css_set *cg)
458{
146aa1bd 459 __put_css_set(cg, 0);
817929ec
PM
460}
461
81a6a5cd
PM
462static inline void put_css_set_taskexit(struct css_set *cg)
463{
146aa1bd 464 __put_css_set(cg, 1);
81a6a5cd
PM
465}
466
7717f7ba
PM
467/*
468 * compare_css_sets - helper function for find_existing_css_set().
469 * @cg: candidate css_set being tested
470 * @old_cg: existing css_set for a task
471 * @new_cgrp: cgroup that's being entered by the task
472 * @template: desired set of css pointers in css_set (pre-calculated)
473 *
474 * Returns true if "cg" matches "old_cg" except for the hierarchy
475 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
476 */
477static bool compare_css_sets(struct css_set *cg,
478 struct css_set *old_cg,
479 struct cgroup *new_cgrp,
480 struct cgroup_subsys_state *template[])
481{
482 struct list_head *l1, *l2;
483
484 if (memcmp(template, cg->subsys, sizeof(cg->subsys))) {
485 /* Not all subsystems matched */
486 return false;
487 }
488
489 /*
490 * Compare cgroup pointers in order to distinguish between
491 * different cgroups in heirarchies with no subsystems. We
492 * could get by with just this check alone (and skip the
493 * memcmp above) but on most setups the memcmp check will
494 * avoid the need for this more expensive check on almost all
495 * candidates.
496 */
497
498 l1 = &cg->cg_links;
499 l2 = &old_cg->cg_links;
500 while (1) {
501 struct cg_cgroup_link *cgl1, *cgl2;
502 struct cgroup *cg1, *cg2;
503
504 l1 = l1->next;
505 l2 = l2->next;
506 /* See if we reached the end - both lists are equal length. */
507 if (l1 == &cg->cg_links) {
508 BUG_ON(l2 != &old_cg->cg_links);
509 break;
510 } else {
511 BUG_ON(l2 == &old_cg->cg_links);
512 }
513 /* Locate the cgroups associated with these links. */
514 cgl1 = list_entry(l1, struct cg_cgroup_link, cg_link_list);
515 cgl2 = list_entry(l2, struct cg_cgroup_link, cg_link_list);
516 cg1 = cgl1->cgrp;
517 cg2 = cgl2->cgrp;
518 /* Hierarchies should be linked in the same order. */
519 BUG_ON(cg1->root != cg2->root);
520
521 /*
522 * If this hierarchy is the hierarchy of the cgroup
523 * that's changing, then we need to check that this
524 * css_set points to the new cgroup; if it's any other
525 * hierarchy, then this css_set should point to the
526 * same cgroup as the old css_set.
527 */
528 if (cg1->root == new_cgrp->root) {
529 if (cg1 != new_cgrp)
530 return false;
531 } else {
532 if (cg1 != cg2)
533 return false;
534 }
535 }
536 return true;
537}
538
817929ec
PM
539/*
540 * find_existing_css_set() is a helper for
541 * find_css_set(), and checks to see whether an existing
472b1053 542 * css_set is suitable.
817929ec
PM
543 *
544 * oldcg: the cgroup group that we're using before the cgroup
545 * transition
546 *
bd89aabc 547 * cgrp: the cgroup that we're moving into
817929ec
PM
548 *
549 * template: location in which to build the desired set of subsystem
550 * state objects for the new cgroup group
551 */
817929ec
PM
552static struct css_set *find_existing_css_set(
553 struct css_set *oldcg,
bd89aabc 554 struct cgroup *cgrp,
817929ec 555 struct cgroup_subsys_state *template[])
b4f48b63
PM
556{
557 int i;
bd89aabc 558 struct cgroupfs_root *root = cgrp->root;
472b1053 559 struct css_set *cg;
0ac801fe 560 unsigned long key;
817929ec 561
aae8aab4
BB
562 /*
563 * Build the set of subsystem state objects that we want to see in the
564 * new css_set. while subsystems can change globally, the entries here
565 * won't change, so no need for locking.
566 */
817929ec 567 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
a1a71b45 568 if (root->subsys_mask & (1UL << i)) {
817929ec
PM
569 /* Subsystem is in this hierarchy. So we want
570 * the subsystem state from the new
571 * cgroup */
bd89aabc 572 template[i] = cgrp->subsys[i];
817929ec
PM
573 } else {
574 /* Subsystem is not in this hierarchy, so we
575 * don't want to change the subsystem state */
576 template[i] = oldcg->subsys[i];
577 }
578 }
579
0ac801fe 580 key = css_set_hash(template);
b67bfe0d 581 hash_for_each_possible(css_set_table, cg, hlist, key) {
7717f7ba
PM
582 if (!compare_css_sets(cg, oldcg, cgrp, template))
583 continue;
584
585 /* This css_set matches what we need */
586 return cg;
472b1053 587 }
817929ec
PM
588
589 /* No existing cgroup group matched */
590 return NULL;
591}
592
36553434
LZ
593static void free_cg_links(struct list_head *tmp)
594{
595 struct cg_cgroup_link *link;
596 struct cg_cgroup_link *saved_link;
597
598 list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
599 list_del(&link->cgrp_link_list);
600 kfree(link);
601 }
602}
603
817929ec
PM
604/*
605 * allocate_cg_links() allocates "count" cg_cgroup_link structures
bd89aabc 606 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
817929ec
PM
607 * success or a negative error
608 */
817929ec
PM
609static int allocate_cg_links(int count, struct list_head *tmp)
610{
611 struct cg_cgroup_link *link;
612 int i;
613 INIT_LIST_HEAD(tmp);
614 for (i = 0; i < count; i++) {
615 link = kmalloc(sizeof(*link), GFP_KERNEL);
616 if (!link) {
36553434 617 free_cg_links(tmp);
817929ec
PM
618 return -ENOMEM;
619 }
bd89aabc 620 list_add(&link->cgrp_link_list, tmp);
817929ec
PM
621 }
622 return 0;
623}
624
c12f65d4
LZ
625/**
626 * link_css_set - a helper function to link a css_set to a cgroup
627 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
628 * @cg: the css_set to be linked
629 * @cgrp: the destination cgroup
630 */
631static void link_css_set(struct list_head *tmp_cg_links,
632 struct css_set *cg, struct cgroup *cgrp)
633{
634 struct cg_cgroup_link *link;
635
636 BUG_ON(list_empty(tmp_cg_links));
637 link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
638 cgrp_link_list);
639 link->cg = cg;
7717f7ba 640 link->cgrp = cgrp;
2c6ab6d2 641 atomic_inc(&cgrp->count);
c12f65d4 642 list_move(&link->cgrp_link_list, &cgrp->css_sets);
7717f7ba
PM
643 /*
644 * Always add links to the tail of the list so that the list
645 * is sorted by order of hierarchy creation
646 */
647 list_add_tail(&link->cg_link_list, &cg->cg_links);
c12f65d4
LZ
648}
649
817929ec
PM
650/*
651 * find_css_set() takes an existing cgroup group and a
652 * cgroup object, and returns a css_set object that's
653 * equivalent to the old group, but with the given cgroup
654 * substituted into the appropriate hierarchy. Must be called with
655 * cgroup_mutex held
656 */
817929ec 657static struct css_set *find_css_set(
bd89aabc 658 struct css_set *oldcg, struct cgroup *cgrp)
817929ec
PM
659{
660 struct css_set *res;
661 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
817929ec
PM
662
663 struct list_head tmp_cg_links;
817929ec 664
7717f7ba 665 struct cg_cgroup_link *link;
0ac801fe 666 unsigned long key;
472b1053 667
817929ec
PM
668 /* First see if we already have a cgroup group that matches
669 * the desired set */
7e9abd89 670 read_lock(&css_set_lock);
bd89aabc 671 res = find_existing_css_set(oldcg, cgrp, template);
817929ec
PM
672 if (res)
673 get_css_set(res);
7e9abd89 674 read_unlock(&css_set_lock);
817929ec
PM
675
676 if (res)
677 return res;
678
679 res = kmalloc(sizeof(*res), GFP_KERNEL);
680 if (!res)
681 return NULL;
682
683 /* Allocate all the cg_cgroup_link objects that we'll need */
684 if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
685 kfree(res);
686 return NULL;
687 }
688
146aa1bd 689 atomic_set(&res->refcount, 1);
817929ec
PM
690 INIT_LIST_HEAD(&res->cg_links);
691 INIT_LIST_HEAD(&res->tasks);
472b1053 692 INIT_HLIST_NODE(&res->hlist);
817929ec
PM
693
694 /* Copy the set of subsystem state objects generated in
695 * find_existing_css_set() */
696 memcpy(res->subsys, template, sizeof(res->subsys));
697
698 write_lock(&css_set_lock);
699 /* Add reference counts and links from the new css_set. */
7717f7ba
PM
700 list_for_each_entry(link, &oldcg->cg_links, cg_link_list) {
701 struct cgroup *c = link->cgrp;
702 if (c->root == cgrp->root)
703 c = cgrp;
704 link_css_set(&tmp_cg_links, res, c);
705 }
817929ec
PM
706
707 BUG_ON(!list_empty(&tmp_cg_links));
708
817929ec 709 css_set_count++;
472b1053
LZ
710
711 /* Add this cgroup group to the hash table */
0ac801fe
LZ
712 key = css_set_hash(res->subsys);
713 hash_add(css_set_table, &res->hlist, key);
472b1053 714
817929ec
PM
715 write_unlock(&css_set_lock);
716
717 return res;
b4f48b63
PM
718}
719
7717f7ba
PM
720/*
721 * Return the cgroup for "task" from the given hierarchy. Must be
722 * called with cgroup_mutex held.
723 */
724static struct cgroup *task_cgroup_from_root(struct task_struct *task,
725 struct cgroupfs_root *root)
726{
727 struct css_set *css;
728 struct cgroup *res = NULL;
729
730 BUG_ON(!mutex_is_locked(&cgroup_mutex));
731 read_lock(&css_set_lock);
732 /*
733 * No need to lock the task - since we hold cgroup_mutex the
734 * task can't change groups, so the only thing that can happen
735 * is that it exits and its css is set back to init_css_set.
736 */
737 css = task->cgroups;
738 if (css == &init_css_set) {
739 res = &root->top_cgroup;
740 } else {
741 struct cg_cgroup_link *link;
742 list_for_each_entry(link, &css->cg_links, cg_link_list) {
743 struct cgroup *c = link->cgrp;
744 if (c->root == root) {
745 res = c;
746 break;
747 }
748 }
749 }
750 read_unlock(&css_set_lock);
751 BUG_ON(!res);
752 return res;
753}
754
ddbcc7e8
PM
755/*
756 * There is one global cgroup mutex. We also require taking
757 * task_lock() when dereferencing a task's cgroup subsys pointers.
758 * See "The task_lock() exception", at the end of this comment.
759 *
760 * A task must hold cgroup_mutex to modify cgroups.
761 *
762 * Any task can increment and decrement the count field without lock.
763 * So in general, code holding cgroup_mutex can't rely on the count
764 * field not changing. However, if the count goes to zero, then only
956db3ca 765 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
766 * means that no tasks are currently attached, therefore there is no
767 * way a task attached to that cgroup can fork (the other way to
768 * increment the count). So code holding cgroup_mutex can safely
769 * assume that if the count is zero, it will stay zero. Similarly, if
770 * a task holds cgroup_mutex on a cgroup with zero count, it
771 * knows that the cgroup won't be removed, as cgroup_rmdir()
772 * needs that mutex.
773 *
ddbcc7e8
PM
774 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
775 * (usually) take cgroup_mutex. These are the two most performance
776 * critical pieces of code here. The exception occurs on cgroup_exit(),
777 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
778 * is taken, and if the cgroup count is zero, a usermode call made
a043e3b2
LZ
779 * to the release agent with the name of the cgroup (path relative to
780 * the root of cgroup file system) as the argument.
ddbcc7e8
PM
781 *
782 * A cgroup can only be deleted if both its 'count' of using tasks
783 * is zero, and its list of 'children' cgroups is empty. Since all
784 * tasks in the system use _some_ cgroup, and since there is always at
785 * least one task in the system (init, pid == 1), therefore, top_cgroup
786 * always has either children cgroups and/or using tasks. So we don't
787 * need a special hack to ensure that top_cgroup cannot be deleted.
788 *
789 * The task_lock() exception
790 *
791 * The need for this exception arises from the action of
d0b2fdd2 792 * cgroup_attach_task(), which overwrites one task's cgroup pointer with
a043e3b2 793 * another. It does so using cgroup_mutex, however there are
ddbcc7e8
PM
794 * several performance critical places that need to reference
795 * task->cgroup without the expense of grabbing a system global
796 * mutex. Therefore except as noted below, when dereferencing or, as
d0b2fdd2 797 * in cgroup_attach_task(), modifying a task's cgroup pointer we use
ddbcc7e8
PM
798 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
799 * the task_struct routinely used for such matters.
800 *
801 * P.S. One more locking exception. RCU is used to guard the
956db3ca 802 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
803 */
804
ddbcc7e8
PM
805/**
806 * cgroup_lock - lock out any changes to cgroup structures
807 *
808 */
ddbcc7e8
PM
809void cgroup_lock(void)
810{
811 mutex_lock(&cgroup_mutex);
812}
67523c48 813EXPORT_SYMBOL_GPL(cgroup_lock);
ddbcc7e8
PM
814
815/**
816 * cgroup_unlock - release lock on cgroup changes
817 *
818 * Undo the lock taken in a previous cgroup_lock() call.
819 */
ddbcc7e8
PM
820void cgroup_unlock(void)
821{
822 mutex_unlock(&cgroup_mutex);
823}
67523c48 824EXPORT_SYMBOL_GPL(cgroup_unlock);
ddbcc7e8
PM
825
826/*
827 * A couple of forward declarations required, due to cyclic reference loop:
828 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
829 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
830 * -> cgroup_mkdir.
831 */
832
18bb1db3 833static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode);
00cd8dd3 834static struct dentry *cgroup_lookup(struct inode *, struct dentry *, unsigned int);
ddbcc7e8 835static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
13af07df
AR
836static int cgroup_populate_dir(struct cgroup *cgrp, bool base_files,
837 unsigned long subsys_mask);
6e1d5dcc 838static const struct inode_operations cgroup_dir_inode_operations;
828c0950 839static const struct file_operations proc_cgroupstats_operations;
a424316c
PM
840
841static struct backing_dev_info cgroup_backing_dev_info = {
d993831f 842 .name = "cgroup",
e4ad08fe 843 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
a424316c 844};
ddbcc7e8 845
38460b48
KH
846static int alloc_css_id(struct cgroup_subsys *ss,
847 struct cgroup *parent, struct cgroup *child);
848
a5e7ed32 849static struct inode *cgroup_new_inode(umode_t mode, struct super_block *sb)
ddbcc7e8
PM
850{
851 struct inode *inode = new_inode(sb);
ddbcc7e8
PM
852
853 if (inode) {
85fe4025 854 inode->i_ino = get_next_ino();
ddbcc7e8 855 inode->i_mode = mode;
76aac0e9
DH
856 inode->i_uid = current_fsuid();
857 inode->i_gid = current_fsgid();
ddbcc7e8
PM
858 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
859 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
860 }
861 return inode;
862}
863
65dff759
LZ
864static struct cgroup_name *cgroup_alloc_name(struct dentry *dentry)
865{
866 struct cgroup_name *name;
867
868 name = kmalloc(sizeof(*name) + dentry->d_name.len + 1, GFP_KERNEL);
869 if (!name)
870 return NULL;
871 strcpy(name->name, dentry->d_name.name);
872 return name;
873}
874
be445626
LZ
875static void cgroup_free_fn(struct work_struct *work)
876{
877 struct cgroup *cgrp = container_of(work, struct cgroup, free_work);
878 struct cgroup_subsys *ss;
879
880 mutex_lock(&cgroup_mutex);
881 /*
882 * Release the subsystem state objects.
883 */
884 for_each_subsys(cgrp->root, ss)
885 ss->css_free(cgrp);
886
887 cgrp->root->number_of_cgroups--;
888 mutex_unlock(&cgroup_mutex);
889
890 /*
891 * Drop the active superblock reference that we took when we
892 * created the cgroup
893 */
894 deactivate_super(cgrp->root->sb);
895
896 /*
897 * if we're getting rid of the cgroup, refcount should ensure
898 * that there are no pidlists left.
899 */
900 BUG_ON(!list_empty(&cgrp->pidlists));
901
902 simple_xattrs_free(&cgrp->xattrs);
903
904 ida_simple_remove(&cgrp->root->cgroup_ida, cgrp->id);
65dff759 905 kfree(rcu_dereference_raw(cgrp->name));
be445626
LZ
906 kfree(cgrp);
907}
908
909static void cgroup_free_rcu(struct rcu_head *head)
910{
911 struct cgroup *cgrp = container_of(head, struct cgroup, rcu_head);
912
913 schedule_work(&cgrp->free_work);
914}
915
ddbcc7e8
PM
916static void cgroup_diput(struct dentry *dentry, struct inode *inode)
917{
918 /* is dentry a directory ? if so, kfree() associated cgroup */
919 if (S_ISDIR(inode->i_mode)) {
bd89aabc 920 struct cgroup *cgrp = dentry->d_fsdata;
be445626 921
bd89aabc 922 BUG_ON(!(cgroup_is_removed(cgrp)));
be445626 923 call_rcu(&cgrp->rcu_head, cgroup_free_rcu);
05ef1d7c
TH
924 } else {
925 struct cfent *cfe = __d_cfe(dentry);
926 struct cgroup *cgrp = dentry->d_parent->d_fsdata;
03b1cde6 927 struct cftype *cft = cfe->type;
05ef1d7c
TH
928
929 WARN_ONCE(!list_empty(&cfe->node) &&
930 cgrp != &cgrp->root->top_cgroup,
931 "cfe still linked for %s\n", cfe->type->name);
932 kfree(cfe);
03b1cde6 933 simple_xattrs_free(&cft->xattrs);
ddbcc7e8
PM
934 }
935 iput(inode);
936}
937
c72a04e3
AV
938static int cgroup_delete(const struct dentry *d)
939{
940 return 1;
941}
942
ddbcc7e8
PM
943static void remove_dir(struct dentry *d)
944{
945 struct dentry *parent = dget(d->d_parent);
946
947 d_delete(d);
948 simple_rmdir(parent->d_inode, d);
949 dput(parent);
950}
951
2739d3cc 952static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
05ef1d7c
TH
953{
954 struct cfent *cfe;
955
956 lockdep_assert_held(&cgrp->dentry->d_inode->i_mutex);
957 lockdep_assert_held(&cgroup_mutex);
958
2739d3cc
LZ
959 /*
960 * If we're doing cleanup due to failure of cgroup_create(),
961 * the corresponding @cfe may not exist.
962 */
05ef1d7c
TH
963 list_for_each_entry(cfe, &cgrp->files, node) {
964 struct dentry *d = cfe->dentry;
965
966 if (cft && cfe->type != cft)
967 continue;
968
969 dget(d);
970 d_delete(d);
ce27e317 971 simple_unlink(cgrp->dentry->d_inode, d);
05ef1d7c
TH
972 list_del_init(&cfe->node);
973 dput(d);
974
2739d3cc 975 break;
ddbcc7e8 976 }
05ef1d7c
TH
977}
978
13af07df
AR
979/**
980 * cgroup_clear_directory - selective removal of base and subsystem files
981 * @dir: directory containing the files
982 * @base_files: true if the base files should be removed
983 * @subsys_mask: mask of the subsystem ids whose files should be removed
984 */
985static void cgroup_clear_directory(struct dentry *dir, bool base_files,
986 unsigned long subsys_mask)
05ef1d7c
TH
987{
988 struct cgroup *cgrp = __d_cgrp(dir);
13af07df 989 struct cgroup_subsys *ss;
05ef1d7c 990
13af07df
AR
991 for_each_subsys(cgrp->root, ss) {
992 struct cftype_set *set;
993 if (!test_bit(ss->subsys_id, &subsys_mask))
994 continue;
995 list_for_each_entry(set, &ss->cftsets, node)
879a3d9d 996 cgroup_addrm_files(cgrp, NULL, set->cfts, false);
13af07df
AR
997 }
998 if (base_files) {
999 while (!list_empty(&cgrp->files))
1000 cgroup_rm_file(cgrp, NULL);
1001 }
ddbcc7e8
PM
1002}
1003
1004/*
1005 * NOTE : the dentry must have been dget()'ed
1006 */
1007static void cgroup_d_remove_dir(struct dentry *dentry)
1008{
2fd6b7f5 1009 struct dentry *parent;
13af07df 1010 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
2fd6b7f5 1011
a1a71b45 1012 cgroup_clear_directory(dentry, true, root->subsys_mask);
ddbcc7e8 1013
2fd6b7f5
NP
1014 parent = dentry->d_parent;
1015 spin_lock(&parent->d_lock);
3ec762ad 1016 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
ddbcc7e8 1017 list_del_init(&dentry->d_u.d_child);
2fd6b7f5
NP
1018 spin_unlock(&dentry->d_lock);
1019 spin_unlock(&parent->d_lock);
ddbcc7e8
PM
1020 remove_dir(dentry);
1021}
1022
aae8aab4 1023/*
cf5d5941
BB
1024 * Call with cgroup_mutex held. Drops reference counts on modules, including
1025 * any duplicate ones that parse_cgroupfs_options took. If this function
1026 * returns an error, no reference counts are touched.
aae8aab4 1027 */
ddbcc7e8 1028static int rebind_subsystems(struct cgroupfs_root *root,
a1a71b45 1029 unsigned long final_subsys_mask)
ddbcc7e8 1030{
a1a71b45 1031 unsigned long added_mask, removed_mask;
bd89aabc 1032 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8
PM
1033 int i;
1034
aae8aab4 1035 BUG_ON(!mutex_is_locked(&cgroup_mutex));
e25e2cbb 1036 BUG_ON(!mutex_is_locked(&cgroup_root_mutex));
aae8aab4 1037
a1a71b45
AR
1038 removed_mask = root->actual_subsys_mask & ~final_subsys_mask;
1039 added_mask = final_subsys_mask & ~root->actual_subsys_mask;
ddbcc7e8
PM
1040 /* Check that any added subsystems are currently free */
1041 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
8d53d55d 1042 unsigned long bit = 1UL << i;
ddbcc7e8 1043 struct cgroup_subsys *ss = subsys[i];
a1a71b45 1044 if (!(bit & added_mask))
ddbcc7e8 1045 continue;
aae8aab4
BB
1046 /*
1047 * Nobody should tell us to do a subsys that doesn't exist:
1048 * parse_cgroupfs_options should catch that case and refcounts
1049 * ensure that subsystems won't disappear once selected.
1050 */
1051 BUG_ON(ss == NULL);
ddbcc7e8
PM
1052 if (ss->root != &rootnode) {
1053 /* Subsystem isn't free */
1054 return -EBUSY;
1055 }
1056 }
1057
1058 /* Currently we don't handle adding/removing subsystems when
1059 * any child cgroups exist. This is theoretically supportable
1060 * but involves complex error handling, so it's being left until
1061 * later */
307257cf 1062 if (root->number_of_cgroups > 1)
ddbcc7e8
PM
1063 return -EBUSY;
1064
1065 /* Process each subsystem */
1066 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1067 struct cgroup_subsys *ss = subsys[i];
1068 unsigned long bit = 1UL << i;
a1a71b45 1069 if (bit & added_mask) {
ddbcc7e8 1070 /* We're binding this subsystem to this hierarchy */
aae8aab4 1071 BUG_ON(ss == NULL);
bd89aabc 1072 BUG_ON(cgrp->subsys[i]);
ddbcc7e8
PM
1073 BUG_ON(!dummytop->subsys[i]);
1074 BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
bd89aabc
PM
1075 cgrp->subsys[i] = dummytop->subsys[i];
1076 cgrp->subsys[i]->cgroup = cgrp;
33a68ac1 1077 list_move(&ss->sibling, &root->subsys_list);
b2aa30f7 1078 ss->root = root;
ddbcc7e8 1079 if (ss->bind)
761b3ef5 1080 ss->bind(cgrp);
cf5d5941 1081 /* refcount was already taken, and we're keeping it */
a1a71b45 1082 } else if (bit & removed_mask) {
ddbcc7e8 1083 /* We're removing this subsystem */
aae8aab4 1084 BUG_ON(ss == NULL);
bd89aabc
PM
1085 BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
1086 BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
ddbcc7e8 1087 if (ss->bind)
761b3ef5 1088 ss->bind(dummytop);
ddbcc7e8 1089 dummytop->subsys[i]->cgroup = dummytop;
bd89aabc 1090 cgrp->subsys[i] = NULL;
b2aa30f7 1091 subsys[i]->root = &rootnode;
33a68ac1 1092 list_move(&ss->sibling, &rootnode.subsys_list);
cf5d5941
BB
1093 /* subsystem is now free - drop reference on module */
1094 module_put(ss->module);
a1a71b45 1095 } else if (bit & final_subsys_mask) {
ddbcc7e8 1096 /* Subsystem state should already exist */
aae8aab4 1097 BUG_ON(ss == NULL);
bd89aabc 1098 BUG_ON(!cgrp->subsys[i]);
cf5d5941
BB
1099 /*
1100 * a refcount was taken, but we already had one, so
1101 * drop the extra reference.
1102 */
1103 module_put(ss->module);
1104#ifdef CONFIG_MODULE_UNLOAD
1105 BUG_ON(ss->module && !module_refcount(ss->module));
1106#endif
ddbcc7e8
PM
1107 } else {
1108 /* Subsystem state shouldn't exist */
bd89aabc 1109 BUG_ON(cgrp->subsys[i]);
ddbcc7e8
PM
1110 }
1111 }
a1a71b45 1112 root->subsys_mask = root->actual_subsys_mask = final_subsys_mask;
ddbcc7e8
PM
1113
1114 return 0;
1115}
1116
34c80b1d 1117static int cgroup_show_options(struct seq_file *seq, struct dentry *dentry)
ddbcc7e8 1118{
34c80b1d 1119 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
ddbcc7e8
PM
1120 struct cgroup_subsys *ss;
1121
e25e2cbb 1122 mutex_lock(&cgroup_root_mutex);
ddbcc7e8
PM
1123 for_each_subsys(root, ss)
1124 seq_printf(seq, ",%s", ss->name);
1125 if (test_bit(ROOT_NOPREFIX, &root->flags))
1126 seq_puts(seq, ",noprefix");
03b1cde6
AR
1127 if (test_bit(ROOT_XATTR, &root->flags))
1128 seq_puts(seq, ",xattr");
81a6a5cd
PM
1129 if (strlen(root->release_agent_path))
1130 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
2260e7fc 1131 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags))
97978e6d 1132 seq_puts(seq, ",clone_children");
c6d57f33
PM
1133 if (strlen(root->name))
1134 seq_printf(seq, ",name=%s", root->name);
e25e2cbb 1135 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8
PM
1136 return 0;
1137}
1138
1139struct cgroup_sb_opts {
a1a71b45 1140 unsigned long subsys_mask;
ddbcc7e8 1141 unsigned long flags;
81a6a5cd 1142 char *release_agent;
2260e7fc 1143 bool cpuset_clone_children;
c6d57f33 1144 char *name;
2c6ab6d2
PM
1145 /* User explicitly requested empty subsystem */
1146 bool none;
c6d57f33
PM
1147
1148 struct cgroupfs_root *new_root;
2c6ab6d2 1149
ddbcc7e8
PM
1150};
1151
aae8aab4
BB
1152/*
1153 * Convert a hierarchy specifier into a bitmask of subsystems and flags. Call
cf5d5941
BB
1154 * with cgroup_mutex held to protect the subsys[] array. This function takes
1155 * refcounts on subsystems to be used, unless it returns error, in which case
1156 * no refcounts are taken.
aae8aab4 1157 */
cf5d5941 1158static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
ddbcc7e8 1159{
32a8cf23
DL
1160 char *token, *o = data;
1161 bool all_ss = false, one_ss = false;
f9ab5b5b 1162 unsigned long mask = (unsigned long)-1;
cf5d5941
BB
1163 int i;
1164 bool module_pin_failed = false;
f9ab5b5b 1165
aae8aab4
BB
1166 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1167
f9ab5b5b
LZ
1168#ifdef CONFIG_CPUSETS
1169 mask = ~(1UL << cpuset_subsys_id);
1170#endif
ddbcc7e8 1171
c6d57f33 1172 memset(opts, 0, sizeof(*opts));
ddbcc7e8
PM
1173
1174 while ((token = strsep(&o, ",")) != NULL) {
1175 if (!*token)
1176 return -EINVAL;
32a8cf23 1177 if (!strcmp(token, "none")) {
2c6ab6d2
PM
1178 /* Explicitly have no subsystems */
1179 opts->none = true;
32a8cf23
DL
1180 continue;
1181 }
1182 if (!strcmp(token, "all")) {
1183 /* Mutually exclusive option 'all' + subsystem name */
1184 if (one_ss)
1185 return -EINVAL;
1186 all_ss = true;
1187 continue;
1188 }
1189 if (!strcmp(token, "noprefix")) {
ddbcc7e8 1190 set_bit(ROOT_NOPREFIX, &opts->flags);
32a8cf23
DL
1191 continue;
1192 }
1193 if (!strcmp(token, "clone_children")) {
2260e7fc 1194 opts->cpuset_clone_children = true;
32a8cf23
DL
1195 continue;
1196 }
03b1cde6
AR
1197 if (!strcmp(token, "xattr")) {
1198 set_bit(ROOT_XATTR, &opts->flags);
1199 continue;
1200 }
32a8cf23 1201 if (!strncmp(token, "release_agent=", 14)) {
81a6a5cd
PM
1202 /* Specifying two release agents is forbidden */
1203 if (opts->release_agent)
1204 return -EINVAL;
c6d57f33 1205 opts->release_agent =
e400c285 1206 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
81a6a5cd
PM
1207 if (!opts->release_agent)
1208 return -ENOMEM;
32a8cf23
DL
1209 continue;
1210 }
1211 if (!strncmp(token, "name=", 5)) {
c6d57f33
PM
1212 const char *name = token + 5;
1213 /* Can't specify an empty name */
1214 if (!strlen(name))
1215 return -EINVAL;
1216 /* Must match [\w.-]+ */
1217 for (i = 0; i < strlen(name); i++) {
1218 char c = name[i];
1219 if (isalnum(c))
1220 continue;
1221 if ((c == '.') || (c == '-') || (c == '_'))
1222 continue;
1223 return -EINVAL;
1224 }
1225 /* Specifying two names is forbidden */
1226 if (opts->name)
1227 return -EINVAL;
1228 opts->name = kstrndup(name,
e400c285 1229 MAX_CGROUP_ROOT_NAMELEN - 1,
c6d57f33
PM
1230 GFP_KERNEL);
1231 if (!opts->name)
1232 return -ENOMEM;
32a8cf23
DL
1233
1234 continue;
1235 }
1236
1237 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1238 struct cgroup_subsys *ss = subsys[i];
1239 if (ss == NULL)
1240 continue;
1241 if (strcmp(token, ss->name))
1242 continue;
1243 if (ss->disabled)
1244 continue;
1245
1246 /* Mutually exclusive option 'all' + subsystem name */
1247 if (all_ss)
1248 return -EINVAL;
a1a71b45 1249 set_bit(i, &opts->subsys_mask);
32a8cf23
DL
1250 one_ss = true;
1251
1252 break;
1253 }
1254 if (i == CGROUP_SUBSYS_COUNT)
1255 return -ENOENT;
1256 }
1257
1258 /*
1259 * If the 'all' option was specified select all the subsystems,
0d19ea86
LZ
1260 * otherwise if 'none', 'name=' and a subsystem name options
1261 * were not specified, let's default to 'all'
32a8cf23 1262 */
0d19ea86 1263 if (all_ss || (!one_ss && !opts->none && !opts->name)) {
32a8cf23
DL
1264 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1265 struct cgroup_subsys *ss = subsys[i];
1266 if (ss == NULL)
1267 continue;
1268 if (ss->disabled)
1269 continue;
a1a71b45 1270 set_bit(i, &opts->subsys_mask);
ddbcc7e8
PM
1271 }
1272 }
1273
2c6ab6d2
PM
1274 /* Consistency checks */
1275
f9ab5b5b
LZ
1276 /*
1277 * Option noprefix was introduced just for backward compatibility
1278 * with the old cpuset, so we allow noprefix only if mounting just
1279 * the cpuset subsystem.
1280 */
1281 if (test_bit(ROOT_NOPREFIX, &opts->flags) &&
a1a71b45 1282 (opts->subsys_mask & mask))
f9ab5b5b
LZ
1283 return -EINVAL;
1284
2c6ab6d2
PM
1285
1286 /* Can't specify "none" and some subsystems */
a1a71b45 1287 if (opts->subsys_mask && opts->none)
2c6ab6d2
PM
1288 return -EINVAL;
1289
1290 /*
1291 * We either have to specify by name or by subsystems. (So all
1292 * empty hierarchies must have a name).
1293 */
a1a71b45 1294 if (!opts->subsys_mask && !opts->name)
ddbcc7e8
PM
1295 return -EINVAL;
1296
cf5d5941
BB
1297 /*
1298 * Grab references on all the modules we'll need, so the subsystems
1299 * don't dance around before rebind_subsystems attaches them. This may
1300 * take duplicate reference counts on a subsystem that's already used,
1301 * but rebind_subsystems handles this case.
1302 */
be45c900 1303 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
cf5d5941
BB
1304 unsigned long bit = 1UL << i;
1305
a1a71b45 1306 if (!(bit & opts->subsys_mask))
cf5d5941
BB
1307 continue;
1308 if (!try_module_get(subsys[i]->module)) {
1309 module_pin_failed = true;
1310 break;
1311 }
1312 }
1313 if (module_pin_failed) {
1314 /*
1315 * oops, one of the modules was going away. this means that we
1316 * raced with a module_delete call, and to the user this is
1317 * essentially a "subsystem doesn't exist" case.
1318 */
be45c900 1319 for (i--; i >= 0; i--) {
cf5d5941
BB
1320 /* drop refcounts only on the ones we took */
1321 unsigned long bit = 1UL << i;
1322
a1a71b45 1323 if (!(bit & opts->subsys_mask))
cf5d5941
BB
1324 continue;
1325 module_put(subsys[i]->module);
1326 }
1327 return -ENOENT;
1328 }
1329
ddbcc7e8
PM
1330 return 0;
1331}
1332
a1a71b45 1333static void drop_parsed_module_refcounts(unsigned long subsys_mask)
cf5d5941
BB
1334{
1335 int i;
be45c900 1336 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
cf5d5941
BB
1337 unsigned long bit = 1UL << i;
1338
a1a71b45 1339 if (!(bit & subsys_mask))
cf5d5941
BB
1340 continue;
1341 module_put(subsys[i]->module);
1342 }
1343}
1344
ddbcc7e8
PM
1345static int cgroup_remount(struct super_block *sb, int *flags, char *data)
1346{
1347 int ret = 0;
1348 struct cgroupfs_root *root = sb->s_fs_info;
bd89aabc 1349 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8 1350 struct cgroup_sb_opts opts;
a1a71b45 1351 unsigned long added_mask, removed_mask;
ddbcc7e8 1352
bd89aabc 1353 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8 1354 mutex_lock(&cgroup_mutex);
e25e2cbb 1355 mutex_lock(&cgroup_root_mutex);
ddbcc7e8
PM
1356
1357 /* See what subsystems are wanted */
1358 ret = parse_cgroupfs_options(data, &opts);
1359 if (ret)
1360 goto out_unlock;
1361
a1a71b45 1362 if (opts.subsys_mask != root->actual_subsys_mask || opts.release_agent)
8b5a5a9d
TH
1363 pr_warning("cgroup: option changes via remount are deprecated (pid=%d comm=%s)\n",
1364 task_tgid_nr(current), current->comm);
1365
a1a71b45
AR
1366 added_mask = opts.subsys_mask & ~root->subsys_mask;
1367 removed_mask = root->subsys_mask & ~opts.subsys_mask;
13af07df 1368
cf5d5941
BB
1369 /* Don't allow flags or name to change at remount */
1370 if (opts.flags != root->flags ||
1371 (opts.name && strcmp(opts.name, root->name))) {
c6d57f33 1372 ret = -EINVAL;
a1a71b45 1373 drop_parsed_module_refcounts(opts.subsys_mask);
c6d57f33
PM
1374 goto out_unlock;
1375 }
1376
7083d037
G
1377 /*
1378 * Clear out the files of subsystems that should be removed, do
1379 * this before rebind_subsystems, since rebind_subsystems may
1380 * change this hierarchy's subsys_list.
1381 */
1382 cgroup_clear_directory(cgrp->dentry, false, removed_mask);
1383
a1a71b45 1384 ret = rebind_subsystems(root, opts.subsys_mask);
cf5d5941 1385 if (ret) {
7083d037
G
1386 /* rebind_subsystems failed, re-populate the removed files */
1387 cgroup_populate_dir(cgrp, false, removed_mask);
a1a71b45 1388 drop_parsed_module_refcounts(opts.subsys_mask);
0670e08b 1389 goto out_unlock;
cf5d5941 1390 }
ddbcc7e8 1391
13af07df 1392 /* re-populate subsystem files */
a1a71b45 1393 cgroup_populate_dir(cgrp, false, added_mask);
ddbcc7e8 1394
81a6a5cd
PM
1395 if (opts.release_agent)
1396 strcpy(root->release_agent_path, opts.release_agent);
ddbcc7e8 1397 out_unlock:
66bdc9cf 1398 kfree(opts.release_agent);
c6d57f33 1399 kfree(opts.name);
e25e2cbb 1400 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8 1401 mutex_unlock(&cgroup_mutex);
bd89aabc 1402 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8
PM
1403 return ret;
1404}
1405
b87221de 1406static const struct super_operations cgroup_ops = {
ddbcc7e8
PM
1407 .statfs = simple_statfs,
1408 .drop_inode = generic_delete_inode,
1409 .show_options = cgroup_show_options,
1410 .remount_fs = cgroup_remount,
1411};
1412
cc31edce
PM
1413static void init_cgroup_housekeeping(struct cgroup *cgrp)
1414{
1415 INIT_LIST_HEAD(&cgrp->sibling);
1416 INIT_LIST_HEAD(&cgrp->children);
05ef1d7c 1417 INIT_LIST_HEAD(&cgrp->files);
cc31edce 1418 INIT_LIST_HEAD(&cgrp->css_sets);
2243076a 1419 INIT_LIST_HEAD(&cgrp->allcg_node);
cc31edce 1420 INIT_LIST_HEAD(&cgrp->release_list);
72a8cb30 1421 INIT_LIST_HEAD(&cgrp->pidlists);
be445626 1422 INIT_WORK(&cgrp->free_work, cgroup_free_fn);
72a8cb30 1423 mutex_init(&cgrp->pidlist_mutex);
0dea1168
KS
1424 INIT_LIST_HEAD(&cgrp->event_list);
1425 spin_lock_init(&cgrp->event_list_lock);
03b1cde6 1426 simple_xattrs_init(&cgrp->xattrs);
cc31edce 1427}
c6d57f33 1428
ddbcc7e8
PM
1429static void init_cgroup_root(struct cgroupfs_root *root)
1430{
bd89aabc 1431 struct cgroup *cgrp = &root->top_cgroup;
b0ca5a84 1432
ddbcc7e8
PM
1433 INIT_LIST_HEAD(&root->subsys_list);
1434 INIT_LIST_HEAD(&root->root_list);
b0ca5a84 1435 INIT_LIST_HEAD(&root->allcg_list);
ddbcc7e8 1436 root->number_of_cgroups = 1;
bd89aabc 1437 cgrp->root = root;
65dff759 1438 cgrp->name = &root_cgroup_name;
bd89aabc 1439 cgrp->top_cgroup = cgrp;
cc31edce 1440 init_cgroup_housekeeping(cgrp);
fddfb02a 1441 list_add_tail(&cgrp->allcg_node, &root->allcg_list);
ddbcc7e8
PM
1442}
1443
2c6ab6d2
PM
1444static bool init_root_id(struct cgroupfs_root *root)
1445{
1446 int ret = 0;
1447
1448 do {
1449 if (!ida_pre_get(&hierarchy_ida, GFP_KERNEL))
1450 return false;
1451 spin_lock(&hierarchy_id_lock);
1452 /* Try to allocate the next unused ID */
1453 ret = ida_get_new_above(&hierarchy_ida, next_hierarchy_id,
1454 &root->hierarchy_id);
1455 if (ret == -ENOSPC)
1456 /* Try again starting from 0 */
1457 ret = ida_get_new(&hierarchy_ida, &root->hierarchy_id);
1458 if (!ret) {
1459 next_hierarchy_id = root->hierarchy_id + 1;
1460 } else if (ret != -EAGAIN) {
1461 /* Can only get here if the 31-bit IDR is full ... */
1462 BUG_ON(ret);
1463 }
1464 spin_unlock(&hierarchy_id_lock);
1465 } while (ret);
1466 return true;
1467}
1468
ddbcc7e8
PM
1469static int cgroup_test_super(struct super_block *sb, void *data)
1470{
c6d57f33 1471 struct cgroup_sb_opts *opts = data;
ddbcc7e8
PM
1472 struct cgroupfs_root *root = sb->s_fs_info;
1473
c6d57f33
PM
1474 /* If we asked for a name then it must match */
1475 if (opts->name && strcmp(opts->name, root->name))
1476 return 0;
ddbcc7e8 1477
2c6ab6d2
PM
1478 /*
1479 * If we asked for subsystems (or explicitly for no
1480 * subsystems) then they must match
1481 */
a1a71b45
AR
1482 if ((opts->subsys_mask || opts->none)
1483 && (opts->subsys_mask != root->subsys_mask))
ddbcc7e8
PM
1484 return 0;
1485
1486 return 1;
1487}
1488
c6d57f33
PM
1489static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
1490{
1491 struct cgroupfs_root *root;
1492
a1a71b45 1493 if (!opts->subsys_mask && !opts->none)
c6d57f33
PM
1494 return NULL;
1495
1496 root = kzalloc(sizeof(*root), GFP_KERNEL);
1497 if (!root)
1498 return ERR_PTR(-ENOMEM);
1499
2c6ab6d2
PM
1500 if (!init_root_id(root)) {
1501 kfree(root);
1502 return ERR_PTR(-ENOMEM);
1503 }
c6d57f33 1504 init_cgroup_root(root);
2c6ab6d2 1505
a1a71b45 1506 root->subsys_mask = opts->subsys_mask;
c6d57f33 1507 root->flags = opts->flags;
0a950f65 1508 ida_init(&root->cgroup_ida);
c6d57f33
PM
1509 if (opts->release_agent)
1510 strcpy(root->release_agent_path, opts->release_agent);
1511 if (opts->name)
1512 strcpy(root->name, opts->name);
2260e7fc
TH
1513 if (opts->cpuset_clone_children)
1514 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags);
c6d57f33
PM
1515 return root;
1516}
1517
2c6ab6d2
PM
1518static void cgroup_drop_root(struct cgroupfs_root *root)
1519{
1520 if (!root)
1521 return;
1522
1523 BUG_ON(!root->hierarchy_id);
1524 spin_lock(&hierarchy_id_lock);
1525 ida_remove(&hierarchy_ida, root->hierarchy_id);
1526 spin_unlock(&hierarchy_id_lock);
0a950f65 1527 ida_destroy(&root->cgroup_ida);
2c6ab6d2
PM
1528 kfree(root);
1529}
1530
ddbcc7e8
PM
1531static int cgroup_set_super(struct super_block *sb, void *data)
1532{
1533 int ret;
c6d57f33
PM
1534 struct cgroup_sb_opts *opts = data;
1535
1536 /* If we don't have a new root, we can't set up a new sb */
1537 if (!opts->new_root)
1538 return -EINVAL;
1539
a1a71b45 1540 BUG_ON(!opts->subsys_mask && !opts->none);
ddbcc7e8
PM
1541
1542 ret = set_anon_super(sb, NULL);
1543 if (ret)
1544 return ret;
1545
c6d57f33
PM
1546 sb->s_fs_info = opts->new_root;
1547 opts->new_root->sb = sb;
ddbcc7e8
PM
1548
1549 sb->s_blocksize = PAGE_CACHE_SIZE;
1550 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1551 sb->s_magic = CGROUP_SUPER_MAGIC;
1552 sb->s_op = &cgroup_ops;
1553
1554 return 0;
1555}
1556
1557static int cgroup_get_rootdir(struct super_block *sb)
1558{
0df6a63f
AV
1559 static const struct dentry_operations cgroup_dops = {
1560 .d_iput = cgroup_diput,
c72a04e3 1561 .d_delete = cgroup_delete,
0df6a63f
AV
1562 };
1563
ddbcc7e8
PM
1564 struct inode *inode =
1565 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
ddbcc7e8
PM
1566
1567 if (!inode)
1568 return -ENOMEM;
1569
ddbcc7e8
PM
1570 inode->i_fop = &simple_dir_operations;
1571 inode->i_op = &cgroup_dir_inode_operations;
1572 /* directories start off with i_nlink == 2 (for "." entry) */
1573 inc_nlink(inode);
48fde701
AV
1574 sb->s_root = d_make_root(inode);
1575 if (!sb->s_root)
ddbcc7e8 1576 return -ENOMEM;
0df6a63f
AV
1577 /* for everything else we want ->d_op set */
1578 sb->s_d_op = &cgroup_dops;
ddbcc7e8
PM
1579 return 0;
1580}
1581
f7e83571 1582static struct dentry *cgroup_mount(struct file_system_type *fs_type,
ddbcc7e8 1583 int flags, const char *unused_dev_name,
f7e83571 1584 void *data)
ddbcc7e8
PM
1585{
1586 struct cgroup_sb_opts opts;
c6d57f33 1587 struct cgroupfs_root *root;
ddbcc7e8
PM
1588 int ret = 0;
1589 struct super_block *sb;
c6d57f33 1590 struct cgroupfs_root *new_root;
e25e2cbb 1591 struct inode *inode;
ddbcc7e8
PM
1592
1593 /* First find the desired set of subsystems */
aae8aab4 1594 mutex_lock(&cgroup_mutex);
ddbcc7e8 1595 ret = parse_cgroupfs_options(data, &opts);
aae8aab4 1596 mutex_unlock(&cgroup_mutex);
c6d57f33
PM
1597 if (ret)
1598 goto out_err;
ddbcc7e8 1599
c6d57f33
PM
1600 /*
1601 * Allocate a new cgroup root. We may not need it if we're
1602 * reusing an existing hierarchy.
1603 */
1604 new_root = cgroup_root_from_opts(&opts);
1605 if (IS_ERR(new_root)) {
1606 ret = PTR_ERR(new_root);
cf5d5941 1607 goto drop_modules;
81a6a5cd 1608 }
c6d57f33 1609 opts.new_root = new_root;
ddbcc7e8 1610
c6d57f33 1611 /* Locate an existing or new sb for this hierarchy */
9249e17f 1612 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, 0, &opts);
ddbcc7e8 1613 if (IS_ERR(sb)) {
c6d57f33 1614 ret = PTR_ERR(sb);
2c6ab6d2 1615 cgroup_drop_root(opts.new_root);
cf5d5941 1616 goto drop_modules;
ddbcc7e8
PM
1617 }
1618
c6d57f33
PM
1619 root = sb->s_fs_info;
1620 BUG_ON(!root);
1621 if (root == opts.new_root) {
1622 /* We used the new root structure, so this is a new hierarchy */
1623 struct list_head tmp_cg_links;
c12f65d4 1624 struct cgroup *root_cgrp = &root->top_cgroup;
c6d57f33 1625 struct cgroupfs_root *existing_root;
2ce9738b 1626 const struct cred *cred;
28fd5dfc 1627 int i;
0ac801fe 1628 struct css_set *cg;
ddbcc7e8
PM
1629
1630 BUG_ON(sb->s_root != NULL);
1631
1632 ret = cgroup_get_rootdir(sb);
1633 if (ret)
1634 goto drop_new_super;
817929ec 1635 inode = sb->s_root->d_inode;
ddbcc7e8 1636
817929ec 1637 mutex_lock(&inode->i_mutex);
ddbcc7e8 1638 mutex_lock(&cgroup_mutex);
e25e2cbb 1639 mutex_lock(&cgroup_root_mutex);
ddbcc7e8 1640
e25e2cbb
TH
1641 /* Check for name clashes with existing mounts */
1642 ret = -EBUSY;
1643 if (strlen(root->name))
1644 for_each_active_root(existing_root)
1645 if (!strcmp(existing_root->name, root->name))
1646 goto unlock_drop;
c6d57f33 1647
817929ec
PM
1648 /*
1649 * We're accessing css_set_count without locking
1650 * css_set_lock here, but that's OK - it can only be
1651 * increased by someone holding cgroup_lock, and
1652 * that's us. The worst that can happen is that we
1653 * have some link structures left over
1654 */
1655 ret = allocate_cg_links(css_set_count, &tmp_cg_links);
e25e2cbb
TH
1656 if (ret)
1657 goto unlock_drop;
817929ec 1658
a1a71b45 1659 ret = rebind_subsystems(root, root->subsys_mask);
ddbcc7e8 1660 if (ret == -EBUSY) {
c6d57f33 1661 free_cg_links(&tmp_cg_links);
e25e2cbb 1662 goto unlock_drop;
ddbcc7e8 1663 }
cf5d5941
BB
1664 /*
1665 * There must be no failure case after here, since rebinding
1666 * takes care of subsystems' refcounts, which are explicitly
1667 * dropped in the failure exit path.
1668 */
ddbcc7e8
PM
1669
1670 /* EBUSY should be the only error here */
1671 BUG_ON(ret);
1672
1673 list_add(&root->root_list, &roots);
817929ec 1674 root_count++;
ddbcc7e8 1675
c12f65d4 1676 sb->s_root->d_fsdata = root_cgrp;
ddbcc7e8
PM
1677 root->top_cgroup.dentry = sb->s_root;
1678
817929ec
PM
1679 /* Link the top cgroup in this hierarchy into all
1680 * the css_set objects */
1681 write_lock(&css_set_lock);
b67bfe0d 1682 hash_for_each(css_set_table, i, cg, hlist)
0ac801fe 1683 link_css_set(&tmp_cg_links, cg, root_cgrp);
817929ec
PM
1684 write_unlock(&css_set_lock);
1685
1686 free_cg_links(&tmp_cg_links);
1687
c12f65d4 1688 BUG_ON(!list_empty(&root_cgrp->children));
ddbcc7e8
PM
1689 BUG_ON(root->number_of_cgroups != 1);
1690
2ce9738b 1691 cred = override_creds(&init_cred);
a1a71b45 1692 cgroup_populate_dir(root_cgrp, true, root->subsys_mask);
2ce9738b 1693 revert_creds(cred);
e25e2cbb 1694 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8 1695 mutex_unlock(&cgroup_mutex);
34f77a90 1696 mutex_unlock(&inode->i_mutex);
c6d57f33
PM
1697 } else {
1698 /*
1699 * We re-used an existing hierarchy - the new root (if
1700 * any) is not needed
1701 */
2c6ab6d2 1702 cgroup_drop_root(opts.new_root);
cf5d5941 1703 /* no subsys rebinding, so refcounts don't change */
a1a71b45 1704 drop_parsed_module_refcounts(opts.subsys_mask);
ddbcc7e8
PM
1705 }
1706
c6d57f33
PM
1707 kfree(opts.release_agent);
1708 kfree(opts.name);
f7e83571 1709 return dget(sb->s_root);
ddbcc7e8 1710
e25e2cbb
TH
1711 unlock_drop:
1712 mutex_unlock(&cgroup_root_mutex);
1713 mutex_unlock(&cgroup_mutex);
1714 mutex_unlock(&inode->i_mutex);
ddbcc7e8 1715 drop_new_super:
6f5bbff9 1716 deactivate_locked_super(sb);
cf5d5941 1717 drop_modules:
a1a71b45 1718 drop_parsed_module_refcounts(opts.subsys_mask);
c6d57f33
PM
1719 out_err:
1720 kfree(opts.release_agent);
1721 kfree(opts.name);
f7e83571 1722 return ERR_PTR(ret);
ddbcc7e8
PM
1723}
1724
1725static void cgroup_kill_sb(struct super_block *sb) {
1726 struct cgroupfs_root *root = sb->s_fs_info;
bd89aabc 1727 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8 1728 int ret;
71cbb949
KM
1729 struct cg_cgroup_link *link;
1730 struct cg_cgroup_link *saved_link;
ddbcc7e8
PM
1731
1732 BUG_ON(!root);
1733
1734 BUG_ON(root->number_of_cgroups != 1);
bd89aabc 1735 BUG_ON(!list_empty(&cgrp->children));
ddbcc7e8
PM
1736
1737 mutex_lock(&cgroup_mutex);
e25e2cbb 1738 mutex_lock(&cgroup_root_mutex);
ddbcc7e8
PM
1739
1740 /* Rebind all subsystems back to the default hierarchy */
1741 ret = rebind_subsystems(root, 0);
1742 /* Shouldn't be able to fail ... */
1743 BUG_ON(ret);
1744
817929ec
PM
1745 /*
1746 * Release all the links from css_sets to this hierarchy's
1747 * root cgroup
1748 */
1749 write_lock(&css_set_lock);
71cbb949
KM
1750
1751 list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
1752 cgrp_link_list) {
817929ec 1753 list_del(&link->cg_link_list);
bd89aabc 1754 list_del(&link->cgrp_link_list);
817929ec
PM
1755 kfree(link);
1756 }
1757 write_unlock(&css_set_lock);
1758
839ec545
PM
1759 if (!list_empty(&root->root_list)) {
1760 list_del(&root->root_list);
1761 root_count--;
1762 }
e5f6a860 1763
e25e2cbb 1764 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8
PM
1765 mutex_unlock(&cgroup_mutex);
1766
03b1cde6
AR
1767 simple_xattrs_free(&cgrp->xattrs);
1768
ddbcc7e8 1769 kill_litter_super(sb);
2c6ab6d2 1770 cgroup_drop_root(root);
ddbcc7e8
PM
1771}
1772
1773static struct file_system_type cgroup_fs_type = {
1774 .name = "cgroup",
f7e83571 1775 .mount = cgroup_mount,
ddbcc7e8
PM
1776 .kill_sb = cgroup_kill_sb,
1777};
1778
676db4af
GK
1779static struct kobject *cgroup_kobj;
1780
a043e3b2
LZ
1781/**
1782 * cgroup_path - generate the path of a cgroup
1783 * @cgrp: the cgroup in question
1784 * @buf: the buffer to write the path into
1785 * @buflen: the length of the buffer
1786 *
65dff759
LZ
1787 * Writes path of cgroup into buf. Returns 0 on success, -errno on error.
1788 *
1789 * We can't generate cgroup path using dentry->d_name, as accessing
1790 * dentry->name must be protected by irq-unsafe dentry->d_lock or parent
1791 * inode's i_mutex, while on the other hand cgroup_path() can be called
1792 * with some irq-safe spinlocks held.
ddbcc7e8 1793 */
bd89aabc 1794int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
ddbcc7e8 1795{
65dff759 1796 int ret = -ENAMETOOLONG;
ddbcc7e8 1797 char *start;
febfcef6 1798
316eb661 1799 start = buf + buflen - 1;
316eb661 1800 *start = '\0';
9a9686b6 1801
65dff759
LZ
1802 rcu_read_lock();
1803 while (cgrp) {
1804 const char *name = cgroup_name(cgrp);
1805 int len;
1806
1807 len = strlen(name);
ddbcc7e8 1808 if ((start -= len) < buf)
65dff759
LZ
1809 goto out;
1810 memcpy(start, name, len);
9a9686b6 1811
bd89aabc 1812 if (!cgrp->parent)
65dff759
LZ
1813 break;
1814
ddbcc7e8 1815 if (--start < buf)
65dff759 1816 goto out;
ddbcc7e8 1817 *start = '/';
65dff759
LZ
1818
1819 cgrp = cgrp->parent;
ddbcc7e8 1820 }
65dff759 1821 ret = 0;
ddbcc7e8 1822 memmove(buf, start, buf + buflen - start);
65dff759
LZ
1823out:
1824 rcu_read_unlock();
1825 return ret;
ddbcc7e8 1826}
67523c48 1827EXPORT_SYMBOL_GPL(cgroup_path);
ddbcc7e8 1828
2f7ee569
TH
1829/*
1830 * Control Group taskset
1831 */
134d3373
TH
1832struct task_and_cgroup {
1833 struct task_struct *task;
1834 struct cgroup *cgrp;
61d1d219 1835 struct css_set *cg;
134d3373
TH
1836};
1837
2f7ee569
TH
1838struct cgroup_taskset {
1839 struct task_and_cgroup single;
1840 struct flex_array *tc_array;
1841 int tc_array_len;
1842 int idx;
1843 struct cgroup *cur_cgrp;
1844};
1845
1846/**
1847 * cgroup_taskset_first - reset taskset and return the first task
1848 * @tset: taskset of interest
1849 *
1850 * @tset iteration is initialized and the first task is returned.
1851 */
1852struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
1853{
1854 if (tset->tc_array) {
1855 tset->idx = 0;
1856 return cgroup_taskset_next(tset);
1857 } else {
1858 tset->cur_cgrp = tset->single.cgrp;
1859 return tset->single.task;
1860 }
1861}
1862EXPORT_SYMBOL_GPL(cgroup_taskset_first);
1863
1864/**
1865 * cgroup_taskset_next - iterate to the next task in taskset
1866 * @tset: taskset of interest
1867 *
1868 * Return the next task in @tset. Iteration must have been initialized
1869 * with cgroup_taskset_first().
1870 */
1871struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
1872{
1873 struct task_and_cgroup *tc;
1874
1875 if (!tset->tc_array || tset->idx >= tset->tc_array_len)
1876 return NULL;
1877
1878 tc = flex_array_get(tset->tc_array, tset->idx++);
1879 tset->cur_cgrp = tc->cgrp;
1880 return tc->task;
1881}
1882EXPORT_SYMBOL_GPL(cgroup_taskset_next);
1883
1884/**
1885 * cgroup_taskset_cur_cgroup - return the matching cgroup for the current task
1886 * @tset: taskset of interest
1887 *
1888 * Return the cgroup for the current (last returned) task of @tset. This
1889 * function must be preceded by either cgroup_taskset_first() or
1890 * cgroup_taskset_next().
1891 */
1892struct cgroup *cgroup_taskset_cur_cgroup(struct cgroup_taskset *tset)
1893{
1894 return tset->cur_cgrp;
1895}
1896EXPORT_SYMBOL_GPL(cgroup_taskset_cur_cgroup);
1897
1898/**
1899 * cgroup_taskset_size - return the number of tasks in taskset
1900 * @tset: taskset of interest
1901 */
1902int cgroup_taskset_size(struct cgroup_taskset *tset)
1903{
1904 return tset->tc_array ? tset->tc_array_len : 1;
1905}
1906EXPORT_SYMBOL_GPL(cgroup_taskset_size);
1907
1908
74a1166d
BB
1909/*
1910 * cgroup_task_migrate - move a task from one cgroup to another.
1911 *
d0b2fdd2 1912 * Must be called with cgroup_mutex and threadgroup locked.
74a1166d 1913 */
1e2ccd1c 1914static void cgroup_task_migrate(struct cgroup *oldcgrp,
61d1d219 1915 struct task_struct *tsk, struct css_set *newcg)
74a1166d
BB
1916{
1917 struct css_set *oldcg;
74a1166d
BB
1918
1919 /*
026085ef
MSB
1920 * We are synchronized through threadgroup_lock() against PF_EXITING
1921 * setting such that we can't race against cgroup_exit() changing the
1922 * css_set to init_css_set and dropping the old one.
74a1166d 1923 */
c84cdf75 1924 WARN_ON_ONCE(tsk->flags & PF_EXITING);
74a1166d 1925 oldcg = tsk->cgroups;
74a1166d 1926
74a1166d 1927 task_lock(tsk);
74a1166d
BB
1928 rcu_assign_pointer(tsk->cgroups, newcg);
1929 task_unlock(tsk);
1930
1931 /* Update the css_set linked lists if we're using them */
1932 write_lock(&css_set_lock);
1933 if (!list_empty(&tsk->cg_list))
1934 list_move(&tsk->cg_list, &newcg->tasks);
1935 write_unlock(&css_set_lock);
1936
1937 /*
1938 * We just gained a reference on oldcg by taking it from the task. As
1939 * trading it for newcg is protected by cgroup_mutex, we're safe to drop
1940 * it here; it will be freed under RCU.
1941 */
74a1166d 1942 set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
1f5320d5 1943 put_css_set(oldcg);
74a1166d
BB
1944}
1945
d7926ee3 1946/**
31583bb0
MT
1947 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
1948 * @from: attach to all cgroups of a given task
d7926ee3
SS
1949 * @tsk: the task to be attached
1950 */
31583bb0 1951int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
d7926ee3
SS
1952{
1953 struct cgroupfs_root *root;
d7926ee3
SS
1954 int retval = 0;
1955
1956 cgroup_lock();
1957 for_each_active_root(root) {
31583bb0
MT
1958 struct cgroup *from_cg = task_cgroup_from_root(from, root);
1959
081aa458 1960 retval = cgroup_attach_task(from_cg, tsk, false);
d7926ee3
SS
1961 if (retval)
1962 break;
1963 }
1964 cgroup_unlock();
1965
1966 return retval;
1967}
31583bb0 1968EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
d7926ee3 1969
74a1166d 1970/**
081aa458 1971 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
74a1166d 1972 * @cgrp: the cgroup to attach to
081aa458
LZ
1973 * @tsk: the task or the leader of the threadgroup to be attached
1974 * @threadgroup: attach the whole threadgroup?
74a1166d 1975 *
257058ae 1976 * Call holding cgroup_mutex and the group_rwsem of the leader. Will take
081aa458 1977 * task_lock of @tsk or each thread in the threadgroup individually in turn.
74a1166d 1978 */
081aa458
LZ
1979int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk,
1980 bool threadgroup)
74a1166d
BB
1981{
1982 int retval, i, group_size;
1983 struct cgroup_subsys *ss, *failed_ss = NULL;
74a1166d
BB
1984 struct cgroupfs_root *root = cgrp->root;
1985 /* threadgroup list cursor and array */
081aa458 1986 struct task_struct *leader = tsk;
134d3373 1987 struct task_and_cgroup *tc;
d846687d 1988 struct flex_array *group;
2f7ee569 1989 struct cgroup_taskset tset = { };
74a1166d
BB
1990
1991 /*
1992 * step 0: in order to do expensive, possibly blocking operations for
1993 * every thread, we cannot iterate the thread group list, since it needs
1994 * rcu or tasklist locked. instead, build an array of all threads in the
257058ae
TH
1995 * group - group_rwsem prevents new threads from appearing, and if
1996 * threads exit, this will just be an over-estimate.
74a1166d 1997 */
081aa458
LZ
1998 if (threadgroup)
1999 group_size = get_nr_threads(tsk);
2000 else
2001 group_size = 1;
d846687d 2002 /* flex_array supports very large thread-groups better than kmalloc. */
134d3373 2003 group = flex_array_alloc(sizeof(*tc), group_size, GFP_KERNEL);
74a1166d
BB
2004 if (!group)
2005 return -ENOMEM;
d846687d 2006 /* pre-allocate to guarantee space while iterating in rcu read-side. */
3ac1707a 2007 retval = flex_array_prealloc(group, 0, group_size, GFP_KERNEL);
d846687d
BB
2008 if (retval)
2009 goto out_free_group_list;
74a1166d 2010
74a1166d 2011 i = 0;
fb5d2b4c
MSB
2012 /*
2013 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2014 * already PF_EXITING could be freed from underneath us unless we
2015 * take an rcu_read_lock.
2016 */
2017 rcu_read_lock();
74a1166d 2018 do {
134d3373
TH
2019 struct task_and_cgroup ent;
2020
cd3d0952
TH
2021 /* @tsk either already exited or can't exit until the end */
2022 if (tsk->flags & PF_EXITING)
2023 continue;
2024
74a1166d
BB
2025 /* as per above, nr_threads may decrease, but not increase. */
2026 BUG_ON(i >= group_size);
134d3373
TH
2027 ent.task = tsk;
2028 ent.cgrp = task_cgroup_from_root(tsk, root);
892a2b90
MSB
2029 /* nothing to do if this task is already in the cgroup */
2030 if (ent.cgrp == cgrp)
2031 continue;
61d1d219
MSB
2032 /*
2033 * saying GFP_ATOMIC has no effect here because we did prealloc
2034 * earlier, but it's good form to communicate our expectations.
2035 */
134d3373 2036 retval = flex_array_put(group, i, &ent, GFP_ATOMIC);
d846687d 2037 BUG_ON(retval != 0);
74a1166d 2038 i++;
081aa458
LZ
2039
2040 if (!threadgroup)
2041 break;
74a1166d 2042 } while_each_thread(leader, tsk);
fb5d2b4c 2043 rcu_read_unlock();
74a1166d
BB
2044 /* remember the number of threads in the array for later. */
2045 group_size = i;
2f7ee569
TH
2046 tset.tc_array = group;
2047 tset.tc_array_len = group_size;
74a1166d 2048
134d3373
TH
2049 /* methods shouldn't be called if no task is actually migrating */
2050 retval = 0;
892a2b90 2051 if (!group_size)
b07ef774 2052 goto out_free_group_list;
134d3373 2053
74a1166d
BB
2054 /*
2055 * step 1: check that we can legitimately attach to the cgroup.
2056 */
2057 for_each_subsys(root, ss) {
2058 if (ss->can_attach) {
761b3ef5 2059 retval = ss->can_attach(cgrp, &tset);
74a1166d
BB
2060 if (retval) {
2061 failed_ss = ss;
2062 goto out_cancel_attach;
2063 }
2064 }
74a1166d
BB
2065 }
2066
2067 /*
2068 * step 2: make sure css_sets exist for all threads to be migrated.
2069 * we use find_css_set, which allocates a new one if necessary.
2070 */
74a1166d 2071 for (i = 0; i < group_size; i++) {
134d3373 2072 tc = flex_array_get(group, i);
61d1d219
MSB
2073 tc->cg = find_css_set(tc->task->cgroups, cgrp);
2074 if (!tc->cg) {
2075 retval = -ENOMEM;
2076 goto out_put_css_set_refs;
74a1166d
BB
2077 }
2078 }
2079
2080 /*
494c167c
TH
2081 * step 3: now that we're guaranteed success wrt the css_sets,
2082 * proceed to move all tasks to the new cgroup. There are no
2083 * failure cases after here, so this is the commit point.
74a1166d 2084 */
74a1166d 2085 for (i = 0; i < group_size; i++) {
134d3373 2086 tc = flex_array_get(group, i);
1e2ccd1c 2087 cgroup_task_migrate(tc->cgrp, tc->task, tc->cg);
74a1166d
BB
2088 }
2089 /* nothing is sensitive to fork() after this point. */
2090
2091 /*
494c167c 2092 * step 4: do subsystem attach callbacks.
74a1166d
BB
2093 */
2094 for_each_subsys(root, ss) {
2095 if (ss->attach)
761b3ef5 2096 ss->attach(cgrp, &tset);
74a1166d
BB
2097 }
2098
2099 /*
2100 * step 5: success! and cleanup
2101 */
74a1166d 2102 retval = 0;
61d1d219
MSB
2103out_put_css_set_refs:
2104 if (retval) {
2105 for (i = 0; i < group_size; i++) {
2106 tc = flex_array_get(group, i);
2107 if (!tc->cg)
2108 break;
2109 put_css_set(tc->cg);
2110 }
74a1166d
BB
2111 }
2112out_cancel_attach:
74a1166d
BB
2113 if (retval) {
2114 for_each_subsys(root, ss) {
494c167c 2115 if (ss == failed_ss)
74a1166d 2116 break;
74a1166d 2117 if (ss->cancel_attach)
761b3ef5 2118 ss->cancel_attach(cgrp, &tset);
74a1166d
BB
2119 }
2120 }
74a1166d 2121out_free_group_list:
d846687d 2122 flex_array_free(group);
74a1166d
BB
2123 return retval;
2124}
2125
2126/*
2127 * Find the task_struct of the task to attach by vpid and pass it along to the
cd3d0952
TH
2128 * function to attach either it or all tasks in its threadgroup. Will lock
2129 * cgroup_mutex and threadgroup; may take task_lock of task.
bbcb81d0 2130 */
74a1166d 2131static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
bbcb81d0 2132{
bbcb81d0 2133 struct task_struct *tsk;
c69e8d9c 2134 const struct cred *cred = current_cred(), *tcred;
bbcb81d0
PM
2135 int ret;
2136
74a1166d
BB
2137 if (!cgroup_lock_live_group(cgrp))
2138 return -ENODEV;
2139
b78949eb
MSB
2140retry_find_task:
2141 rcu_read_lock();
bbcb81d0 2142 if (pid) {
73507f33 2143 tsk = find_task_by_vpid(pid);
74a1166d
BB
2144 if (!tsk) {
2145 rcu_read_unlock();
b78949eb
MSB
2146 ret= -ESRCH;
2147 goto out_unlock_cgroup;
bbcb81d0 2148 }
74a1166d
BB
2149 /*
2150 * even if we're attaching all tasks in the thread group, we
2151 * only need to check permissions on one of them.
2152 */
c69e8d9c 2153 tcred = __task_cred(tsk);
14a590c3
EB
2154 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2155 !uid_eq(cred->euid, tcred->uid) &&
2156 !uid_eq(cred->euid, tcred->suid)) {
c69e8d9c 2157 rcu_read_unlock();
b78949eb
MSB
2158 ret = -EACCES;
2159 goto out_unlock_cgroup;
bbcb81d0 2160 }
b78949eb
MSB
2161 } else
2162 tsk = current;
cd3d0952
TH
2163
2164 if (threadgroup)
b78949eb 2165 tsk = tsk->group_leader;
c4c27fbd
MG
2166
2167 /*
2168 * Workqueue threads may acquire PF_THREAD_BOUND and become
2169 * trapped in a cpuset, or RT worker may be born in a cgroup
2170 * with no rt_runtime allocated. Just say no.
2171 */
2172 if (tsk == kthreadd_task || (tsk->flags & PF_THREAD_BOUND)) {
2173 ret = -EINVAL;
2174 rcu_read_unlock();
2175 goto out_unlock_cgroup;
2176 }
2177
b78949eb
MSB
2178 get_task_struct(tsk);
2179 rcu_read_unlock();
2180
2181 threadgroup_lock(tsk);
2182 if (threadgroup) {
2183 if (!thread_group_leader(tsk)) {
2184 /*
2185 * a race with de_thread from another thread's exec()
2186 * may strip us of our leadership, if this happens,
2187 * there is no choice but to throw this task away and
2188 * try again; this is
2189 * "double-double-toil-and-trouble-check locking".
2190 */
2191 threadgroup_unlock(tsk);
2192 put_task_struct(tsk);
2193 goto retry_find_task;
2194 }
081aa458
LZ
2195 }
2196
2197 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
2198
cd3d0952
TH
2199 threadgroup_unlock(tsk);
2200
bbcb81d0 2201 put_task_struct(tsk);
b78949eb 2202out_unlock_cgroup:
74a1166d 2203 cgroup_unlock();
bbcb81d0
PM
2204 return ret;
2205}
2206
af351026 2207static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
74a1166d
BB
2208{
2209 return attach_task_by_pid(cgrp, pid, false);
2210}
2211
2212static int cgroup_procs_write(struct cgroup *cgrp, struct cftype *cft, u64 tgid)
af351026 2213{
b78949eb 2214 return attach_task_by_pid(cgrp, tgid, true);
af351026
PM
2215}
2216
e788e066
PM
2217/**
2218 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
2219 * @cgrp: the cgroup to be checked for liveness
2220 *
84eea842
PM
2221 * On success, returns true; the lock should be later released with
2222 * cgroup_unlock(). On failure returns false with no lock held.
e788e066 2223 */
84eea842 2224bool cgroup_lock_live_group(struct cgroup *cgrp)
e788e066
PM
2225{
2226 mutex_lock(&cgroup_mutex);
2227 if (cgroup_is_removed(cgrp)) {
2228 mutex_unlock(&cgroup_mutex);
2229 return false;
2230 }
2231 return true;
2232}
67523c48 2233EXPORT_SYMBOL_GPL(cgroup_lock_live_group);
e788e066
PM
2234
2235static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
2236 const char *buffer)
2237{
2238 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
f4a2589f
EK
2239 if (strlen(buffer) >= PATH_MAX)
2240 return -EINVAL;
e788e066
PM
2241 if (!cgroup_lock_live_group(cgrp))
2242 return -ENODEV;
e25e2cbb 2243 mutex_lock(&cgroup_root_mutex);
e788e066 2244 strcpy(cgrp->root->release_agent_path, buffer);
e25e2cbb 2245 mutex_unlock(&cgroup_root_mutex);
84eea842 2246 cgroup_unlock();
e788e066
PM
2247 return 0;
2248}
2249
2250static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
2251 struct seq_file *seq)
2252{
2253 if (!cgroup_lock_live_group(cgrp))
2254 return -ENODEV;
2255 seq_puts(seq, cgrp->root->release_agent_path);
2256 seq_putc(seq, '\n');
84eea842 2257 cgroup_unlock();
e788e066
PM
2258 return 0;
2259}
2260
84eea842
PM
2261/* A buffer size big enough for numbers or short strings */
2262#define CGROUP_LOCAL_BUFFER_SIZE 64
2263
e73d2c61 2264static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
f4c753b7
PM
2265 struct file *file,
2266 const char __user *userbuf,
2267 size_t nbytes, loff_t *unused_ppos)
355e0c48 2268{
84eea842 2269 char buffer[CGROUP_LOCAL_BUFFER_SIZE];
355e0c48 2270 int retval = 0;
355e0c48
PM
2271 char *end;
2272
2273 if (!nbytes)
2274 return -EINVAL;
2275 if (nbytes >= sizeof(buffer))
2276 return -E2BIG;
2277 if (copy_from_user(buffer, userbuf, nbytes))
2278 return -EFAULT;
2279
2280 buffer[nbytes] = 0; /* nul-terminate */
e73d2c61 2281 if (cft->write_u64) {
478988d3 2282 u64 val = simple_strtoull(strstrip(buffer), &end, 0);
e73d2c61
PM
2283 if (*end)
2284 return -EINVAL;
2285 retval = cft->write_u64(cgrp, cft, val);
2286 } else {
478988d3 2287 s64 val = simple_strtoll(strstrip(buffer), &end, 0);
e73d2c61
PM
2288 if (*end)
2289 return -EINVAL;
2290 retval = cft->write_s64(cgrp, cft, val);
2291 }
355e0c48
PM
2292 if (!retval)
2293 retval = nbytes;
2294 return retval;
2295}
2296
db3b1497
PM
2297static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
2298 struct file *file,
2299 const char __user *userbuf,
2300 size_t nbytes, loff_t *unused_ppos)
2301{
84eea842 2302 char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
db3b1497
PM
2303 int retval = 0;
2304 size_t max_bytes = cft->max_write_len;
2305 char *buffer = local_buffer;
2306
2307 if (!max_bytes)
2308 max_bytes = sizeof(local_buffer) - 1;
2309 if (nbytes >= max_bytes)
2310 return -E2BIG;
2311 /* Allocate a dynamic buffer if we need one */
2312 if (nbytes >= sizeof(local_buffer)) {
2313 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
2314 if (buffer == NULL)
2315 return -ENOMEM;
2316 }
5a3eb9f6
LZ
2317 if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
2318 retval = -EFAULT;
2319 goto out;
2320 }
db3b1497
PM
2321
2322 buffer[nbytes] = 0; /* nul-terminate */
478988d3 2323 retval = cft->write_string(cgrp, cft, strstrip(buffer));
db3b1497
PM
2324 if (!retval)
2325 retval = nbytes;
5a3eb9f6 2326out:
db3b1497
PM
2327 if (buffer != local_buffer)
2328 kfree(buffer);
2329 return retval;
2330}
2331
ddbcc7e8
PM
2332static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
2333 size_t nbytes, loff_t *ppos)
2334{
2335 struct cftype *cft = __d_cft(file->f_dentry);
bd89aabc 2336 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
ddbcc7e8 2337
75139b82 2338 if (cgroup_is_removed(cgrp))
ddbcc7e8 2339 return -ENODEV;
355e0c48 2340 if (cft->write)
bd89aabc 2341 return cft->write(cgrp, cft, file, buf, nbytes, ppos);
e73d2c61
PM
2342 if (cft->write_u64 || cft->write_s64)
2343 return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
db3b1497
PM
2344 if (cft->write_string)
2345 return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
d447ea2f
PE
2346 if (cft->trigger) {
2347 int ret = cft->trigger(cgrp, (unsigned int)cft->private);
2348 return ret ? ret : nbytes;
2349 }
355e0c48 2350 return -EINVAL;
ddbcc7e8
PM
2351}
2352
f4c753b7
PM
2353static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
2354 struct file *file,
2355 char __user *buf, size_t nbytes,
2356 loff_t *ppos)
ddbcc7e8 2357{
84eea842 2358 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
f4c753b7 2359 u64 val = cft->read_u64(cgrp, cft);
ddbcc7e8
PM
2360 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
2361
2362 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2363}
2364
e73d2c61
PM
2365static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
2366 struct file *file,
2367 char __user *buf, size_t nbytes,
2368 loff_t *ppos)
2369{
84eea842 2370 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
e73d2c61
PM
2371 s64 val = cft->read_s64(cgrp, cft);
2372 int len = sprintf(tmp, "%lld\n", (long long) val);
2373
2374 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2375}
2376
ddbcc7e8
PM
2377static ssize_t cgroup_file_read(struct file *file, char __user *buf,
2378 size_t nbytes, loff_t *ppos)
2379{
2380 struct cftype *cft = __d_cft(file->f_dentry);
bd89aabc 2381 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
ddbcc7e8 2382
75139b82 2383 if (cgroup_is_removed(cgrp))
ddbcc7e8
PM
2384 return -ENODEV;
2385
2386 if (cft->read)
bd89aabc 2387 return cft->read(cgrp, cft, file, buf, nbytes, ppos);
f4c753b7
PM
2388 if (cft->read_u64)
2389 return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
e73d2c61
PM
2390 if (cft->read_s64)
2391 return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
ddbcc7e8
PM
2392 return -EINVAL;
2393}
2394
91796569
PM
2395/*
2396 * seqfile ops/methods for returning structured data. Currently just
2397 * supports string->u64 maps, but can be extended in future.
2398 */
2399
2400struct cgroup_seqfile_state {
2401 struct cftype *cft;
2402 struct cgroup *cgroup;
2403};
2404
2405static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
2406{
2407 struct seq_file *sf = cb->state;
2408 return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
2409}
2410
2411static int cgroup_seqfile_show(struct seq_file *m, void *arg)
2412{
2413 struct cgroup_seqfile_state *state = m->private;
2414 struct cftype *cft = state->cft;
29486df3
SH
2415 if (cft->read_map) {
2416 struct cgroup_map_cb cb = {
2417 .fill = cgroup_map_add,
2418 .state = m,
2419 };
2420 return cft->read_map(state->cgroup, cft, &cb);
2421 }
2422 return cft->read_seq_string(state->cgroup, cft, m);
91796569
PM
2423}
2424
96930a63 2425static int cgroup_seqfile_release(struct inode *inode, struct file *file)
91796569
PM
2426{
2427 struct seq_file *seq = file->private_data;
2428 kfree(seq->private);
2429 return single_release(inode, file);
2430}
2431
828c0950 2432static const struct file_operations cgroup_seqfile_operations = {
91796569 2433 .read = seq_read,
e788e066 2434 .write = cgroup_file_write,
91796569
PM
2435 .llseek = seq_lseek,
2436 .release = cgroup_seqfile_release,
2437};
2438
ddbcc7e8
PM
2439static int cgroup_file_open(struct inode *inode, struct file *file)
2440{
2441 int err;
2442 struct cftype *cft;
2443
2444 err = generic_file_open(inode, file);
2445 if (err)
2446 return err;
ddbcc7e8 2447 cft = __d_cft(file->f_dentry);
75139b82 2448
29486df3 2449 if (cft->read_map || cft->read_seq_string) {
91796569
PM
2450 struct cgroup_seqfile_state *state =
2451 kzalloc(sizeof(*state), GFP_USER);
2452 if (!state)
2453 return -ENOMEM;
2454 state->cft = cft;
2455 state->cgroup = __d_cgrp(file->f_dentry->d_parent);
2456 file->f_op = &cgroup_seqfile_operations;
2457 err = single_open(file, cgroup_seqfile_show, state);
2458 if (err < 0)
2459 kfree(state);
2460 } else if (cft->open)
ddbcc7e8
PM
2461 err = cft->open(inode, file);
2462 else
2463 err = 0;
2464
2465 return err;
2466}
2467
2468static int cgroup_file_release(struct inode *inode, struct file *file)
2469{
2470 struct cftype *cft = __d_cft(file->f_dentry);
2471 if (cft->release)
2472 return cft->release(inode, file);
2473 return 0;
2474}
2475
2476/*
2477 * cgroup_rename - Only allow simple rename of directories in place.
2478 */
2479static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
2480 struct inode *new_dir, struct dentry *new_dentry)
2481{
65dff759
LZ
2482 int ret;
2483 struct cgroup_name *name, *old_name;
2484 struct cgroup *cgrp;
2485
2486 /*
2487 * It's convinient to use parent dir's i_mutex to protected
2488 * cgrp->name.
2489 */
2490 lockdep_assert_held(&old_dir->i_mutex);
2491
ddbcc7e8
PM
2492 if (!S_ISDIR(old_dentry->d_inode->i_mode))
2493 return -ENOTDIR;
2494 if (new_dentry->d_inode)
2495 return -EEXIST;
2496 if (old_dir != new_dir)
2497 return -EIO;
65dff759
LZ
2498
2499 cgrp = __d_cgrp(old_dentry);
2500
2501 name = cgroup_alloc_name(new_dentry);
2502 if (!name)
2503 return -ENOMEM;
2504
2505 ret = simple_rename(old_dir, old_dentry, new_dir, new_dentry);
2506 if (ret) {
2507 kfree(name);
2508 return ret;
2509 }
2510
2511 old_name = cgrp->name;
2512 rcu_assign_pointer(cgrp->name, name);
2513
2514 kfree_rcu(old_name, rcu_head);
2515 return 0;
ddbcc7e8
PM
2516}
2517
03b1cde6
AR
2518static struct simple_xattrs *__d_xattrs(struct dentry *dentry)
2519{
2520 if (S_ISDIR(dentry->d_inode->i_mode))
2521 return &__d_cgrp(dentry)->xattrs;
2522 else
2523 return &__d_cft(dentry)->xattrs;
2524}
2525
2526static inline int xattr_enabled(struct dentry *dentry)
2527{
2528 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
2529 return test_bit(ROOT_XATTR, &root->flags);
2530}
2531
2532static bool is_valid_xattr(const char *name)
2533{
2534 if (!strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN) ||
2535 !strncmp(name, XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN))
2536 return true;
2537 return false;
2538}
2539
2540static int cgroup_setxattr(struct dentry *dentry, const char *name,
2541 const void *val, size_t size, int flags)
2542{
2543 if (!xattr_enabled(dentry))
2544 return -EOPNOTSUPP;
2545 if (!is_valid_xattr(name))
2546 return -EINVAL;
2547 return simple_xattr_set(__d_xattrs(dentry), name, val, size, flags);
2548}
2549
2550static int cgroup_removexattr(struct dentry *dentry, const char *name)
2551{
2552 if (!xattr_enabled(dentry))
2553 return -EOPNOTSUPP;
2554 if (!is_valid_xattr(name))
2555 return -EINVAL;
2556 return simple_xattr_remove(__d_xattrs(dentry), name);
2557}
2558
2559static ssize_t cgroup_getxattr(struct dentry *dentry, const char *name,
2560 void *buf, size_t size)
2561{
2562 if (!xattr_enabled(dentry))
2563 return -EOPNOTSUPP;
2564 if (!is_valid_xattr(name))
2565 return -EINVAL;
2566 return simple_xattr_get(__d_xattrs(dentry), name, buf, size);
2567}
2568
2569static ssize_t cgroup_listxattr(struct dentry *dentry, char *buf, size_t size)
2570{
2571 if (!xattr_enabled(dentry))
2572 return -EOPNOTSUPP;
2573 return simple_xattr_list(__d_xattrs(dentry), buf, size);
2574}
2575
828c0950 2576static const struct file_operations cgroup_file_operations = {
ddbcc7e8
PM
2577 .read = cgroup_file_read,
2578 .write = cgroup_file_write,
2579 .llseek = generic_file_llseek,
2580 .open = cgroup_file_open,
2581 .release = cgroup_file_release,
2582};
2583
03b1cde6
AR
2584static const struct inode_operations cgroup_file_inode_operations = {
2585 .setxattr = cgroup_setxattr,
2586 .getxattr = cgroup_getxattr,
2587 .listxattr = cgroup_listxattr,
2588 .removexattr = cgroup_removexattr,
2589};
2590
6e1d5dcc 2591static const struct inode_operations cgroup_dir_inode_operations = {
c72a04e3 2592 .lookup = cgroup_lookup,
ddbcc7e8
PM
2593 .mkdir = cgroup_mkdir,
2594 .rmdir = cgroup_rmdir,
2595 .rename = cgroup_rename,
03b1cde6
AR
2596 .setxattr = cgroup_setxattr,
2597 .getxattr = cgroup_getxattr,
2598 .listxattr = cgroup_listxattr,
2599 .removexattr = cgroup_removexattr,
ddbcc7e8
PM
2600};
2601
00cd8dd3 2602static struct dentry *cgroup_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
c72a04e3
AV
2603{
2604 if (dentry->d_name.len > NAME_MAX)
2605 return ERR_PTR(-ENAMETOOLONG);
2606 d_add(dentry, NULL);
2607 return NULL;
2608}
2609
0dea1168
KS
2610/*
2611 * Check if a file is a control file
2612 */
2613static inline struct cftype *__file_cft(struct file *file)
2614{
496ad9aa 2615 if (file_inode(file)->i_fop != &cgroup_file_operations)
0dea1168
KS
2616 return ERR_PTR(-EINVAL);
2617 return __d_cft(file->f_dentry);
2618}
2619
a5e7ed32 2620static int cgroup_create_file(struct dentry *dentry, umode_t mode,
5adcee1d
NP
2621 struct super_block *sb)
2622{
ddbcc7e8
PM
2623 struct inode *inode;
2624
2625 if (!dentry)
2626 return -ENOENT;
2627 if (dentry->d_inode)
2628 return -EEXIST;
2629
2630 inode = cgroup_new_inode(mode, sb);
2631 if (!inode)
2632 return -ENOMEM;
2633
2634 if (S_ISDIR(mode)) {
2635 inode->i_op = &cgroup_dir_inode_operations;
2636 inode->i_fop = &simple_dir_operations;
2637
2638 /* start off with i_nlink == 2 (for "." entry) */
2639 inc_nlink(inode);
28fd6f30 2640 inc_nlink(dentry->d_parent->d_inode);
ddbcc7e8 2641
b8a2df6a
TH
2642 /*
2643 * Control reaches here with cgroup_mutex held.
2644 * @inode->i_mutex should nest outside cgroup_mutex but we
2645 * want to populate it immediately without releasing
2646 * cgroup_mutex. As @inode isn't visible to anyone else
2647 * yet, trylock will always succeed without affecting
2648 * lockdep checks.
2649 */
2650 WARN_ON_ONCE(!mutex_trylock(&inode->i_mutex));
ddbcc7e8
PM
2651 } else if (S_ISREG(mode)) {
2652 inode->i_size = 0;
2653 inode->i_fop = &cgroup_file_operations;
03b1cde6 2654 inode->i_op = &cgroup_file_inode_operations;
ddbcc7e8 2655 }
ddbcc7e8
PM
2656 d_instantiate(dentry, inode);
2657 dget(dentry); /* Extra count - pin the dentry in core */
2658 return 0;
2659}
2660
099fca32
LZ
2661/**
2662 * cgroup_file_mode - deduce file mode of a control file
2663 * @cft: the control file in question
2664 *
2665 * returns cft->mode if ->mode is not 0
2666 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
2667 * returns S_IRUGO if it has only a read handler
2668 * returns S_IWUSR if it has only a write hander
2669 */
a5e7ed32 2670static umode_t cgroup_file_mode(const struct cftype *cft)
099fca32 2671{
a5e7ed32 2672 umode_t mode = 0;
099fca32
LZ
2673
2674 if (cft->mode)
2675 return cft->mode;
2676
2677 if (cft->read || cft->read_u64 || cft->read_s64 ||
2678 cft->read_map || cft->read_seq_string)
2679 mode |= S_IRUGO;
2680
2681 if (cft->write || cft->write_u64 || cft->write_s64 ||
2682 cft->write_string || cft->trigger)
2683 mode |= S_IWUSR;
2684
2685 return mode;
2686}
2687
db0416b6 2688static int cgroup_add_file(struct cgroup *cgrp, struct cgroup_subsys *subsys,
03b1cde6 2689 struct cftype *cft)
ddbcc7e8 2690{
bd89aabc 2691 struct dentry *dir = cgrp->dentry;
05ef1d7c 2692 struct cgroup *parent = __d_cgrp(dir);
ddbcc7e8 2693 struct dentry *dentry;
05ef1d7c 2694 struct cfent *cfe;
ddbcc7e8 2695 int error;
a5e7ed32 2696 umode_t mode;
ddbcc7e8 2697 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
8e3f6541 2698
03b1cde6
AR
2699 simple_xattrs_init(&cft->xattrs);
2700
bd89aabc 2701 if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
ddbcc7e8
PM
2702 strcpy(name, subsys->name);
2703 strcat(name, ".");
2704 }
2705 strcat(name, cft->name);
05ef1d7c 2706
ddbcc7e8 2707 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
05ef1d7c
TH
2708
2709 cfe = kzalloc(sizeof(*cfe), GFP_KERNEL);
2710 if (!cfe)
2711 return -ENOMEM;
2712
ddbcc7e8 2713 dentry = lookup_one_len(name, dir, strlen(name));
05ef1d7c 2714 if (IS_ERR(dentry)) {
ddbcc7e8 2715 error = PTR_ERR(dentry);
05ef1d7c
TH
2716 goto out;
2717 }
2718
2719 mode = cgroup_file_mode(cft);
2720 error = cgroup_create_file(dentry, mode | S_IFREG, cgrp->root->sb);
2721 if (!error) {
2722 cfe->type = (void *)cft;
2723 cfe->dentry = dentry;
2724 dentry->d_fsdata = cfe;
2725 list_add_tail(&cfe->node, &parent->files);
2726 cfe = NULL;
2727 }
2728 dput(dentry);
2729out:
2730 kfree(cfe);
ddbcc7e8
PM
2731 return error;
2732}
2733
79578621 2734static int cgroup_addrm_files(struct cgroup *cgrp, struct cgroup_subsys *subsys,
03b1cde6 2735 struct cftype cfts[], bool is_add)
ddbcc7e8 2736{
03b1cde6 2737 struct cftype *cft;
db0416b6
TH
2738 int err, ret = 0;
2739
2740 for (cft = cfts; cft->name[0] != '\0'; cft++) {
f33fddc2
G
2741 /* does cft->flags tell us to skip this file on @cgrp? */
2742 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgrp->parent)
2743 continue;
2744 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgrp->parent)
2745 continue;
2746
2739d3cc 2747 if (is_add) {
79578621 2748 err = cgroup_add_file(cgrp, subsys, cft);
2739d3cc
LZ
2749 if (err)
2750 pr_warn("cgroup_addrm_files: failed to add %s, err=%d\n",
2751 cft->name, err);
db0416b6 2752 ret = err;
2739d3cc
LZ
2753 } else {
2754 cgroup_rm_file(cgrp, cft);
db0416b6 2755 }
ddbcc7e8 2756 }
db0416b6 2757 return ret;
ddbcc7e8
PM
2758}
2759
8e3f6541
TH
2760static DEFINE_MUTEX(cgroup_cft_mutex);
2761
2762static void cgroup_cfts_prepare(void)
2763 __acquires(&cgroup_cft_mutex) __acquires(&cgroup_mutex)
2764{
2765 /*
2766 * Thanks to the entanglement with vfs inode locking, we can't walk
2767 * the existing cgroups under cgroup_mutex and create files.
2768 * Instead, we increment reference on all cgroups and build list of
2769 * them using @cgrp->cft_q_node. Grab cgroup_cft_mutex to ensure
2770 * exclusive access to the field.
2771 */
2772 mutex_lock(&cgroup_cft_mutex);
2773 mutex_lock(&cgroup_mutex);
2774}
2775
2776static void cgroup_cfts_commit(struct cgroup_subsys *ss,
03b1cde6 2777 struct cftype *cfts, bool is_add)
8e3f6541
TH
2778 __releases(&cgroup_mutex) __releases(&cgroup_cft_mutex)
2779{
2780 LIST_HEAD(pending);
2781 struct cgroup *cgrp, *n;
8e3f6541
TH
2782
2783 /* %NULL @cfts indicates abort and don't bother if @ss isn't attached */
2784 if (cfts && ss->root != &rootnode) {
2785 list_for_each_entry(cgrp, &ss->root->allcg_list, allcg_node) {
2786 dget(cgrp->dentry);
2787 list_add_tail(&cgrp->cft_q_node, &pending);
2788 }
2789 }
2790
2791 mutex_unlock(&cgroup_mutex);
2792
2793 /*
2794 * All new cgroups will see @cfts update on @ss->cftsets. Add/rm
2795 * files for all cgroups which were created before.
2796 */
2797 list_for_each_entry_safe(cgrp, n, &pending, cft_q_node) {
2798 struct inode *inode = cgrp->dentry->d_inode;
2799
2800 mutex_lock(&inode->i_mutex);
2801 mutex_lock(&cgroup_mutex);
2802 if (!cgroup_is_removed(cgrp))
79578621 2803 cgroup_addrm_files(cgrp, ss, cfts, is_add);
8e3f6541
TH
2804 mutex_unlock(&cgroup_mutex);
2805 mutex_unlock(&inode->i_mutex);
2806
2807 list_del_init(&cgrp->cft_q_node);
2808 dput(cgrp->dentry);
2809 }
2810
2811 mutex_unlock(&cgroup_cft_mutex);
2812}
2813
2814/**
2815 * cgroup_add_cftypes - add an array of cftypes to a subsystem
2816 * @ss: target cgroup subsystem
2817 * @cfts: zero-length name terminated array of cftypes
2818 *
2819 * Register @cfts to @ss. Files described by @cfts are created for all
2820 * existing cgroups to which @ss is attached and all future cgroups will
2821 * have them too. This function can be called anytime whether @ss is
2822 * attached or not.
2823 *
2824 * Returns 0 on successful registration, -errno on failure. Note that this
2825 * function currently returns 0 as long as @cfts registration is successful
2826 * even if some file creation attempts on existing cgroups fail.
2827 */
03b1cde6 2828int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
8e3f6541
TH
2829{
2830 struct cftype_set *set;
2831
2832 set = kzalloc(sizeof(*set), GFP_KERNEL);
2833 if (!set)
2834 return -ENOMEM;
2835
2836 cgroup_cfts_prepare();
2837 set->cfts = cfts;
2838 list_add_tail(&set->node, &ss->cftsets);
79578621 2839 cgroup_cfts_commit(ss, cfts, true);
8e3f6541
TH
2840
2841 return 0;
2842}
2843EXPORT_SYMBOL_GPL(cgroup_add_cftypes);
2844
79578621
TH
2845/**
2846 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
2847 * @ss: target cgroup subsystem
2848 * @cfts: zero-length name terminated array of cftypes
2849 *
2850 * Unregister @cfts from @ss. Files described by @cfts are removed from
2851 * all existing cgroups to which @ss is attached and all future cgroups
2852 * won't have them either. This function can be called anytime whether @ss
2853 * is attached or not.
2854 *
2855 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2856 * registered with @ss.
2857 */
03b1cde6 2858int cgroup_rm_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
79578621
TH
2859{
2860 struct cftype_set *set;
2861
2862 cgroup_cfts_prepare();
2863
2864 list_for_each_entry(set, &ss->cftsets, node) {
2865 if (set->cfts == cfts) {
2866 list_del_init(&set->node);
2867 cgroup_cfts_commit(ss, cfts, false);
2868 return 0;
2869 }
2870 }
2871
2872 cgroup_cfts_commit(ss, NULL, false);
2873 return -ENOENT;
2874}
2875
a043e3b2
LZ
2876/**
2877 * cgroup_task_count - count the number of tasks in a cgroup.
2878 * @cgrp: the cgroup in question
2879 *
2880 * Return the number of tasks in the cgroup.
2881 */
bd89aabc 2882int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
2883{
2884 int count = 0;
71cbb949 2885 struct cg_cgroup_link *link;
817929ec
PM
2886
2887 read_lock(&css_set_lock);
71cbb949 2888 list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
146aa1bd 2889 count += atomic_read(&link->cg->refcount);
817929ec
PM
2890 }
2891 read_unlock(&css_set_lock);
bbcb81d0
PM
2892 return count;
2893}
2894
817929ec
PM
2895/*
2896 * Advance a list_head iterator. The iterator should be positioned at
2897 * the start of a css_set
2898 */
bd89aabc 2899static void cgroup_advance_iter(struct cgroup *cgrp,
7717f7ba 2900 struct cgroup_iter *it)
817929ec
PM
2901{
2902 struct list_head *l = it->cg_link;
2903 struct cg_cgroup_link *link;
2904 struct css_set *cg;
2905
2906 /* Advance to the next non-empty css_set */
2907 do {
2908 l = l->next;
bd89aabc 2909 if (l == &cgrp->css_sets) {
817929ec
PM
2910 it->cg_link = NULL;
2911 return;
2912 }
bd89aabc 2913 link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
817929ec
PM
2914 cg = link->cg;
2915 } while (list_empty(&cg->tasks));
2916 it->cg_link = l;
2917 it->task = cg->tasks.next;
2918}
2919
31a7df01
CW
2920/*
2921 * To reduce the fork() overhead for systems that are not actually
2922 * using their cgroups capability, we don't maintain the lists running
2923 * through each css_set to its tasks until we see the list actually
2924 * used - in other words after the first call to cgroup_iter_start().
31a7df01 2925 */
3df91fe3 2926static void cgroup_enable_task_cg_lists(void)
31a7df01
CW
2927{
2928 struct task_struct *p, *g;
2929 write_lock(&css_set_lock);
2930 use_task_css_set_links = 1;
3ce3230a
FW
2931 /*
2932 * We need tasklist_lock because RCU is not safe against
2933 * while_each_thread(). Besides, a forking task that has passed
2934 * cgroup_post_fork() without seeing use_task_css_set_links = 1
2935 * is not guaranteed to have its child immediately visible in the
2936 * tasklist if we walk through it with RCU.
2937 */
2938 read_lock(&tasklist_lock);
31a7df01
CW
2939 do_each_thread(g, p) {
2940 task_lock(p);
0e04388f
LZ
2941 /*
2942 * We should check if the process is exiting, otherwise
2943 * it will race with cgroup_exit() in that the list
2944 * entry won't be deleted though the process has exited.
2945 */
2946 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
31a7df01
CW
2947 list_add(&p->cg_list, &p->cgroups->tasks);
2948 task_unlock(p);
2949 } while_each_thread(g, p);
3ce3230a 2950 read_unlock(&tasklist_lock);
31a7df01
CW
2951 write_unlock(&css_set_lock);
2952}
2953
574bd9f7
TH
2954/**
2955 * cgroup_next_descendant_pre - find the next descendant for pre-order walk
2956 * @pos: the current position (%NULL to initiate traversal)
2957 * @cgroup: cgroup whose descendants to walk
2958 *
2959 * To be used by cgroup_for_each_descendant_pre(). Find the next
2960 * descendant to visit for pre-order traversal of @cgroup's descendants.
2961 */
2962struct cgroup *cgroup_next_descendant_pre(struct cgroup *pos,
2963 struct cgroup *cgroup)
2964{
2965 struct cgroup *next;
2966
2967 WARN_ON_ONCE(!rcu_read_lock_held());
2968
2969 /* if first iteration, pretend we just visited @cgroup */
2970 if (!pos) {
2971 if (list_empty(&cgroup->children))
2972 return NULL;
2973 pos = cgroup;
2974 }
2975
2976 /* visit the first child if exists */
2977 next = list_first_or_null_rcu(&pos->children, struct cgroup, sibling);
2978 if (next)
2979 return next;
2980
2981 /* no child, visit my or the closest ancestor's next sibling */
2982 do {
2983 next = list_entry_rcu(pos->sibling.next, struct cgroup,
2984 sibling);
2985 if (&next->sibling != &pos->parent->children)
2986 return next;
2987
2988 pos = pos->parent;
2989 } while (pos != cgroup);
2990
2991 return NULL;
2992}
2993EXPORT_SYMBOL_GPL(cgroup_next_descendant_pre);
2994
12a9d2fe
TH
2995/**
2996 * cgroup_rightmost_descendant - return the rightmost descendant of a cgroup
2997 * @pos: cgroup of interest
2998 *
2999 * Return the rightmost descendant of @pos. If there's no descendant,
3000 * @pos is returned. This can be used during pre-order traversal to skip
3001 * subtree of @pos.
3002 */
3003struct cgroup *cgroup_rightmost_descendant(struct cgroup *pos)
3004{
3005 struct cgroup *last, *tmp;
3006
3007 WARN_ON_ONCE(!rcu_read_lock_held());
3008
3009 do {
3010 last = pos;
3011 /* ->prev isn't RCU safe, walk ->next till the end */
3012 pos = NULL;
3013 list_for_each_entry_rcu(tmp, &last->children, sibling)
3014 pos = tmp;
3015 } while (pos);
3016
3017 return last;
3018}
3019EXPORT_SYMBOL_GPL(cgroup_rightmost_descendant);
3020
574bd9f7
TH
3021static struct cgroup *cgroup_leftmost_descendant(struct cgroup *pos)
3022{
3023 struct cgroup *last;
3024
3025 do {
3026 last = pos;
3027 pos = list_first_or_null_rcu(&pos->children, struct cgroup,
3028 sibling);
3029 } while (pos);
3030
3031 return last;
3032}
3033
3034/**
3035 * cgroup_next_descendant_post - find the next descendant for post-order walk
3036 * @pos: the current position (%NULL to initiate traversal)
3037 * @cgroup: cgroup whose descendants to walk
3038 *
3039 * To be used by cgroup_for_each_descendant_post(). Find the next
3040 * descendant to visit for post-order traversal of @cgroup's descendants.
3041 */
3042struct cgroup *cgroup_next_descendant_post(struct cgroup *pos,
3043 struct cgroup *cgroup)
3044{
3045 struct cgroup *next;
3046
3047 WARN_ON_ONCE(!rcu_read_lock_held());
3048
3049 /* if first iteration, visit the leftmost descendant */
3050 if (!pos) {
3051 next = cgroup_leftmost_descendant(cgroup);
3052 return next != cgroup ? next : NULL;
3053 }
3054
3055 /* if there's an unvisited sibling, visit its leftmost descendant */
3056 next = list_entry_rcu(pos->sibling.next, struct cgroup, sibling);
3057 if (&next->sibling != &pos->parent->children)
3058 return cgroup_leftmost_descendant(next);
3059
3060 /* no sibling left, visit parent */
3061 next = pos->parent;
3062 return next != cgroup ? next : NULL;
3063}
3064EXPORT_SYMBOL_GPL(cgroup_next_descendant_post);
3065
bd89aabc 3066void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
c6ca5750 3067 __acquires(css_set_lock)
817929ec
PM
3068{
3069 /*
3070 * The first time anyone tries to iterate across a cgroup,
3071 * we need to enable the list linking each css_set to its
3072 * tasks, and fix up all existing tasks.
3073 */
31a7df01
CW
3074 if (!use_task_css_set_links)
3075 cgroup_enable_task_cg_lists();
3076
817929ec 3077 read_lock(&css_set_lock);
bd89aabc
PM
3078 it->cg_link = &cgrp->css_sets;
3079 cgroup_advance_iter(cgrp, it);
817929ec
PM
3080}
3081
bd89aabc 3082struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
817929ec
PM
3083 struct cgroup_iter *it)
3084{
3085 struct task_struct *res;
3086 struct list_head *l = it->task;
2019f634 3087 struct cg_cgroup_link *link;
817929ec
PM
3088
3089 /* If the iterator cg is NULL, we have no tasks */
3090 if (!it->cg_link)
3091 return NULL;
3092 res = list_entry(l, struct task_struct, cg_list);
3093 /* Advance iterator to find next entry */
3094 l = l->next;
2019f634
LJ
3095 link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
3096 if (l == &link->cg->tasks) {
817929ec
PM
3097 /* We reached the end of this task list - move on to
3098 * the next cg_cgroup_link */
bd89aabc 3099 cgroup_advance_iter(cgrp, it);
817929ec
PM
3100 } else {
3101 it->task = l;
3102 }
3103 return res;
3104}
3105
bd89aabc 3106void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
c6ca5750 3107 __releases(css_set_lock)
817929ec
PM
3108{
3109 read_unlock(&css_set_lock);
3110}
3111
31a7df01
CW
3112static inline int started_after_time(struct task_struct *t1,
3113 struct timespec *time,
3114 struct task_struct *t2)
3115{
3116 int start_diff = timespec_compare(&t1->start_time, time);
3117 if (start_diff > 0) {
3118 return 1;
3119 } else if (start_diff < 0) {
3120 return 0;
3121 } else {
3122 /*
3123 * Arbitrarily, if two processes started at the same
3124 * time, we'll say that the lower pointer value
3125 * started first. Note that t2 may have exited by now
3126 * so this may not be a valid pointer any longer, but
3127 * that's fine - it still serves to distinguish
3128 * between two tasks started (effectively) simultaneously.
3129 */
3130 return t1 > t2;
3131 }
3132}
3133
3134/*
3135 * This function is a callback from heap_insert() and is used to order
3136 * the heap.
3137 * In this case we order the heap in descending task start time.
3138 */
3139static inline int started_after(void *p1, void *p2)
3140{
3141 struct task_struct *t1 = p1;
3142 struct task_struct *t2 = p2;
3143 return started_after_time(t1, &t2->start_time, t2);
3144}
3145
3146/**
3147 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
3148 * @scan: struct cgroup_scanner containing arguments for the scan
3149 *
3150 * Arguments include pointers to callback functions test_task() and
3151 * process_task().
3152 * Iterate through all the tasks in a cgroup, calling test_task() for each,
3153 * and if it returns true, call process_task() for it also.
3154 * The test_task pointer may be NULL, meaning always true (select all tasks).
3155 * Effectively duplicates cgroup_iter_{start,next,end}()
3156 * but does not lock css_set_lock for the call to process_task().
3157 * The struct cgroup_scanner may be embedded in any structure of the caller's
3158 * creation.
3159 * It is guaranteed that process_task() will act on every task that
3160 * is a member of the cgroup for the duration of this call. This
3161 * function may or may not call process_task() for tasks that exit
3162 * or move to a different cgroup during the call, or are forked or
3163 * move into the cgroup during the call.
3164 *
3165 * Note that test_task() may be called with locks held, and may in some
3166 * situations be called multiple times for the same task, so it should
3167 * be cheap.
3168 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
3169 * pre-allocated and will be used for heap operations (and its "gt" member will
3170 * be overwritten), else a temporary heap will be used (allocation of which
3171 * may cause this function to fail).
3172 */
3173int cgroup_scan_tasks(struct cgroup_scanner *scan)
3174{
3175 int retval, i;
3176 struct cgroup_iter it;
3177 struct task_struct *p, *dropped;
3178 /* Never dereference latest_task, since it's not refcounted */
3179 struct task_struct *latest_task = NULL;
3180 struct ptr_heap tmp_heap;
3181 struct ptr_heap *heap;
3182 struct timespec latest_time = { 0, 0 };
3183
3184 if (scan->heap) {
3185 /* The caller supplied our heap and pre-allocated its memory */
3186 heap = scan->heap;
3187 heap->gt = &started_after;
3188 } else {
3189 /* We need to allocate our own heap memory */
3190 heap = &tmp_heap;
3191 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
3192 if (retval)
3193 /* cannot allocate the heap */
3194 return retval;
3195 }
3196
3197 again:
3198 /*
3199 * Scan tasks in the cgroup, using the scanner's "test_task" callback
3200 * to determine which are of interest, and using the scanner's
3201 * "process_task" callback to process any of them that need an update.
3202 * Since we don't want to hold any locks during the task updates,
3203 * gather tasks to be processed in a heap structure.
3204 * The heap is sorted by descending task start time.
3205 * If the statically-sized heap fills up, we overflow tasks that
3206 * started later, and in future iterations only consider tasks that
3207 * started after the latest task in the previous pass. This
3208 * guarantees forward progress and that we don't miss any tasks.
3209 */
3210 heap->size = 0;
3211 cgroup_iter_start(scan->cg, &it);
3212 while ((p = cgroup_iter_next(scan->cg, &it))) {
3213 /*
3214 * Only affect tasks that qualify per the caller's callback,
3215 * if he provided one
3216 */
3217 if (scan->test_task && !scan->test_task(p, scan))
3218 continue;
3219 /*
3220 * Only process tasks that started after the last task
3221 * we processed
3222 */
3223 if (!started_after_time(p, &latest_time, latest_task))
3224 continue;
3225 dropped = heap_insert(heap, p);
3226 if (dropped == NULL) {
3227 /*
3228 * The new task was inserted; the heap wasn't
3229 * previously full
3230 */
3231 get_task_struct(p);
3232 } else if (dropped != p) {
3233 /*
3234 * The new task was inserted, and pushed out a
3235 * different task
3236 */
3237 get_task_struct(p);
3238 put_task_struct(dropped);
3239 }
3240 /*
3241 * Else the new task was newer than anything already in
3242 * the heap and wasn't inserted
3243 */
3244 }
3245 cgroup_iter_end(scan->cg, &it);
3246
3247 if (heap->size) {
3248 for (i = 0; i < heap->size; i++) {
4fe91d51 3249 struct task_struct *q = heap->ptrs[i];
31a7df01 3250 if (i == 0) {
4fe91d51
PJ
3251 latest_time = q->start_time;
3252 latest_task = q;
31a7df01
CW
3253 }
3254 /* Process the task per the caller's callback */
4fe91d51
PJ
3255 scan->process_task(q, scan);
3256 put_task_struct(q);
31a7df01
CW
3257 }
3258 /*
3259 * If we had to process any tasks at all, scan again
3260 * in case some of them were in the middle of forking
3261 * children that didn't get processed.
3262 * Not the most efficient way to do it, but it avoids
3263 * having to take callback_mutex in the fork path
3264 */
3265 goto again;
3266 }
3267 if (heap == &tmp_heap)
3268 heap_free(&tmp_heap);
3269 return 0;
3270}
3271
bbcb81d0 3272/*
102a775e 3273 * Stuff for reading the 'tasks'/'procs' files.
bbcb81d0
PM
3274 *
3275 * Reading this file can return large amounts of data if a cgroup has
3276 * *lots* of attached tasks. So it may need several calls to read(),
3277 * but we cannot guarantee that the information we produce is correct
3278 * unless we produce it entirely atomically.
3279 *
bbcb81d0 3280 */
bbcb81d0 3281
24528255
LZ
3282/* which pidlist file are we talking about? */
3283enum cgroup_filetype {
3284 CGROUP_FILE_PROCS,
3285 CGROUP_FILE_TASKS,
3286};
3287
3288/*
3289 * A pidlist is a list of pids that virtually represents the contents of one
3290 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3291 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3292 * to the cgroup.
3293 */
3294struct cgroup_pidlist {
3295 /*
3296 * used to find which pidlist is wanted. doesn't change as long as
3297 * this particular list stays in the list.
3298 */
3299 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
3300 /* array of xids */
3301 pid_t *list;
3302 /* how many elements the above list has */
3303 int length;
3304 /* how many files are using the current array */
3305 int use_count;
3306 /* each of these stored in a list by its cgroup */
3307 struct list_head links;
3308 /* pointer to the cgroup we belong to, for list removal purposes */
3309 struct cgroup *owner;
3310 /* protects the other fields */
3311 struct rw_semaphore mutex;
3312};
3313
d1d9fd33
BB
3314/*
3315 * The following two functions "fix" the issue where there are more pids
3316 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3317 * TODO: replace with a kernel-wide solution to this problem
3318 */
3319#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3320static void *pidlist_allocate(int count)
3321{
3322 if (PIDLIST_TOO_LARGE(count))
3323 return vmalloc(count * sizeof(pid_t));
3324 else
3325 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3326}
3327static void pidlist_free(void *p)
3328{
3329 if (is_vmalloc_addr(p))
3330 vfree(p);
3331 else
3332 kfree(p);
3333}
d1d9fd33 3334
bbcb81d0 3335/*
102a775e 3336 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
6ee211ad 3337 * Returns the number of unique elements.
bbcb81d0 3338 */
6ee211ad 3339static int pidlist_uniq(pid_t *list, int length)
bbcb81d0 3340{
102a775e 3341 int src, dest = 1;
102a775e
BB
3342
3343 /*
3344 * we presume the 0th element is unique, so i starts at 1. trivial
3345 * edge cases first; no work needs to be done for either
3346 */
3347 if (length == 0 || length == 1)
3348 return length;
3349 /* src and dest walk down the list; dest counts unique elements */
3350 for (src = 1; src < length; src++) {
3351 /* find next unique element */
3352 while (list[src] == list[src-1]) {
3353 src++;
3354 if (src == length)
3355 goto after;
3356 }
3357 /* dest always points to where the next unique element goes */
3358 list[dest] = list[src];
3359 dest++;
3360 }
3361after:
102a775e
BB
3362 return dest;
3363}
3364
3365static int cmppid(const void *a, const void *b)
3366{
3367 return *(pid_t *)a - *(pid_t *)b;
3368}
3369
72a8cb30
BB
3370/*
3371 * find the appropriate pidlist for our purpose (given procs vs tasks)
3372 * returns with the lock on that pidlist already held, and takes care
3373 * of the use count, or returns NULL with no locks held if we're out of
3374 * memory.
3375 */
3376static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3377 enum cgroup_filetype type)
3378{
3379 struct cgroup_pidlist *l;
3380 /* don't need task_nsproxy() if we're looking at ourself */
17cf22c3 3381 struct pid_namespace *ns = task_active_pid_ns(current);
b70cc5fd 3382
72a8cb30
BB
3383 /*
3384 * We can't drop the pidlist_mutex before taking the l->mutex in case
3385 * the last ref-holder is trying to remove l from the list at the same
3386 * time. Holding the pidlist_mutex precludes somebody taking whichever
3387 * list we find out from under us - compare release_pid_array().
3388 */
3389 mutex_lock(&cgrp->pidlist_mutex);
3390 list_for_each_entry(l, &cgrp->pidlists, links) {
3391 if (l->key.type == type && l->key.ns == ns) {
72a8cb30
BB
3392 /* make sure l doesn't vanish out from under us */
3393 down_write(&l->mutex);
3394 mutex_unlock(&cgrp->pidlist_mutex);
72a8cb30
BB
3395 return l;
3396 }
3397 }
3398 /* entry not found; create a new one */
3399 l = kmalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
3400 if (!l) {
3401 mutex_unlock(&cgrp->pidlist_mutex);
72a8cb30
BB
3402 return l;
3403 }
3404 init_rwsem(&l->mutex);
3405 down_write(&l->mutex);
3406 l->key.type = type;
b70cc5fd 3407 l->key.ns = get_pid_ns(ns);
72a8cb30
BB
3408 l->use_count = 0; /* don't increment here */
3409 l->list = NULL;
3410 l->owner = cgrp;
3411 list_add(&l->links, &cgrp->pidlists);
3412 mutex_unlock(&cgrp->pidlist_mutex);
3413 return l;
3414}
3415
102a775e
BB
3416/*
3417 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3418 */
72a8cb30
BB
3419static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3420 struct cgroup_pidlist **lp)
102a775e
BB
3421{
3422 pid_t *array;
3423 int length;
3424 int pid, n = 0; /* used for populating the array */
817929ec
PM
3425 struct cgroup_iter it;
3426 struct task_struct *tsk;
102a775e
BB
3427 struct cgroup_pidlist *l;
3428
3429 /*
3430 * If cgroup gets more users after we read count, we won't have
3431 * enough space - tough. This race is indistinguishable to the
3432 * caller from the case that the additional cgroup users didn't
3433 * show up until sometime later on.
3434 */
3435 length = cgroup_task_count(cgrp);
d1d9fd33 3436 array = pidlist_allocate(length);
102a775e
BB
3437 if (!array)
3438 return -ENOMEM;
3439 /* now, populate the array */
bd89aabc
PM
3440 cgroup_iter_start(cgrp, &it);
3441 while ((tsk = cgroup_iter_next(cgrp, &it))) {
102a775e 3442 if (unlikely(n == length))
817929ec 3443 break;
102a775e 3444 /* get tgid or pid for procs or tasks file respectively */
72a8cb30
BB
3445 if (type == CGROUP_FILE_PROCS)
3446 pid = task_tgid_vnr(tsk);
3447 else
3448 pid = task_pid_vnr(tsk);
102a775e
BB
3449 if (pid > 0) /* make sure to only use valid results */
3450 array[n++] = pid;
817929ec 3451 }
bd89aabc 3452 cgroup_iter_end(cgrp, &it);
102a775e
BB
3453 length = n;
3454 /* now sort & (if procs) strip out duplicates */
3455 sort(array, length, sizeof(pid_t), cmppid, NULL);
72a8cb30 3456 if (type == CGROUP_FILE_PROCS)
6ee211ad 3457 length = pidlist_uniq(array, length);
72a8cb30
BB
3458 l = cgroup_pidlist_find(cgrp, type);
3459 if (!l) {
d1d9fd33 3460 pidlist_free(array);
72a8cb30 3461 return -ENOMEM;
102a775e 3462 }
72a8cb30 3463 /* store array, freeing old if necessary - lock already held */
d1d9fd33 3464 pidlist_free(l->list);
102a775e
BB
3465 l->list = array;
3466 l->length = length;
3467 l->use_count++;
3468 up_write(&l->mutex);
72a8cb30 3469 *lp = l;
102a775e 3470 return 0;
bbcb81d0
PM
3471}
3472
846c7bb0 3473/**
a043e3b2 3474 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
3475 * @stats: cgroupstats to fill information into
3476 * @dentry: A dentry entry belonging to the cgroup for which stats have
3477 * been requested.
a043e3b2
LZ
3478 *
3479 * Build and fill cgroupstats so that taskstats can export it to user
3480 * space.
846c7bb0
BS
3481 */
3482int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3483{
3484 int ret = -EINVAL;
bd89aabc 3485 struct cgroup *cgrp;
846c7bb0
BS
3486 struct cgroup_iter it;
3487 struct task_struct *tsk;
33d283be 3488
846c7bb0 3489 /*
33d283be
LZ
3490 * Validate dentry by checking the superblock operations,
3491 * and make sure it's a directory.
846c7bb0 3492 */
33d283be
LZ
3493 if (dentry->d_sb->s_op != &cgroup_ops ||
3494 !S_ISDIR(dentry->d_inode->i_mode))
846c7bb0
BS
3495 goto err;
3496
3497 ret = 0;
bd89aabc 3498 cgrp = dentry->d_fsdata;
846c7bb0 3499
bd89aabc
PM
3500 cgroup_iter_start(cgrp, &it);
3501 while ((tsk = cgroup_iter_next(cgrp, &it))) {
846c7bb0
BS
3502 switch (tsk->state) {
3503 case TASK_RUNNING:
3504 stats->nr_running++;
3505 break;
3506 case TASK_INTERRUPTIBLE:
3507 stats->nr_sleeping++;
3508 break;
3509 case TASK_UNINTERRUPTIBLE:
3510 stats->nr_uninterruptible++;
3511 break;
3512 case TASK_STOPPED:
3513 stats->nr_stopped++;
3514 break;
3515 default:
3516 if (delayacct_is_task_waiting_on_io(tsk))
3517 stats->nr_io_wait++;
3518 break;
3519 }
3520 }
bd89aabc 3521 cgroup_iter_end(cgrp, &it);
846c7bb0 3522
846c7bb0
BS
3523err:
3524 return ret;
3525}
3526
8f3ff208 3527
bbcb81d0 3528/*
102a775e 3529 * seq_file methods for the tasks/procs files. The seq_file position is the
cc31edce 3530 * next pid to display; the seq_file iterator is a pointer to the pid
102a775e 3531 * in the cgroup->l->list array.
bbcb81d0 3532 */
cc31edce 3533
102a775e 3534static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
bbcb81d0 3535{
cc31edce
PM
3536 /*
3537 * Initially we receive a position value that corresponds to
3538 * one more than the last pid shown (or 0 on the first call or
3539 * after a seek to the start). Use a binary-search to find the
3540 * next pid to display, if any
3541 */
102a775e 3542 struct cgroup_pidlist *l = s->private;
cc31edce
PM
3543 int index = 0, pid = *pos;
3544 int *iter;
3545
102a775e 3546 down_read(&l->mutex);
cc31edce 3547 if (pid) {
102a775e 3548 int end = l->length;
20777766 3549
cc31edce
PM
3550 while (index < end) {
3551 int mid = (index + end) / 2;
102a775e 3552 if (l->list[mid] == pid) {
cc31edce
PM
3553 index = mid;
3554 break;
102a775e 3555 } else if (l->list[mid] <= pid)
cc31edce
PM
3556 index = mid + 1;
3557 else
3558 end = mid;
3559 }
3560 }
3561 /* If we're off the end of the array, we're done */
102a775e 3562 if (index >= l->length)
cc31edce
PM
3563 return NULL;
3564 /* Update the abstract position to be the actual pid that we found */
102a775e 3565 iter = l->list + index;
cc31edce
PM
3566 *pos = *iter;
3567 return iter;
3568}
3569
102a775e 3570static void cgroup_pidlist_stop(struct seq_file *s, void *v)
cc31edce 3571{
102a775e
BB
3572 struct cgroup_pidlist *l = s->private;
3573 up_read(&l->mutex);
cc31edce
PM
3574}
3575
102a775e 3576static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
cc31edce 3577{
102a775e
BB
3578 struct cgroup_pidlist *l = s->private;
3579 pid_t *p = v;
3580 pid_t *end = l->list + l->length;
cc31edce
PM
3581 /*
3582 * Advance to the next pid in the array. If this goes off the
3583 * end, we're done
3584 */
3585 p++;
3586 if (p >= end) {
3587 return NULL;
3588 } else {
3589 *pos = *p;
3590 return p;
3591 }
3592}
3593
102a775e 3594static int cgroup_pidlist_show(struct seq_file *s, void *v)
cc31edce
PM
3595{
3596 return seq_printf(s, "%d\n", *(int *)v);
3597}
bbcb81d0 3598
102a775e
BB
3599/*
3600 * seq_operations functions for iterating on pidlists through seq_file -
3601 * independent of whether it's tasks or procs
3602 */
3603static const struct seq_operations cgroup_pidlist_seq_operations = {
3604 .start = cgroup_pidlist_start,
3605 .stop = cgroup_pidlist_stop,
3606 .next = cgroup_pidlist_next,
3607 .show = cgroup_pidlist_show,
cc31edce
PM
3608};
3609
102a775e 3610static void cgroup_release_pid_array(struct cgroup_pidlist *l)
cc31edce 3611{
72a8cb30
BB
3612 /*
3613 * the case where we're the last user of this particular pidlist will
3614 * have us remove it from the cgroup's list, which entails taking the
3615 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
3616 * pidlist_mutex, we have to take pidlist_mutex first.
3617 */
3618 mutex_lock(&l->owner->pidlist_mutex);
102a775e
BB
3619 down_write(&l->mutex);
3620 BUG_ON(!l->use_count);
3621 if (!--l->use_count) {
72a8cb30
BB
3622 /* we're the last user if refcount is 0; remove and free */
3623 list_del(&l->links);
3624 mutex_unlock(&l->owner->pidlist_mutex);
d1d9fd33 3625 pidlist_free(l->list);
72a8cb30
BB
3626 put_pid_ns(l->key.ns);
3627 up_write(&l->mutex);
3628 kfree(l);
3629 return;
cc31edce 3630 }
72a8cb30 3631 mutex_unlock(&l->owner->pidlist_mutex);
102a775e 3632 up_write(&l->mutex);
bbcb81d0
PM
3633}
3634
102a775e 3635static int cgroup_pidlist_release(struct inode *inode, struct file *file)
cc31edce 3636{
102a775e 3637 struct cgroup_pidlist *l;
cc31edce
PM
3638 if (!(file->f_mode & FMODE_READ))
3639 return 0;
102a775e
BB
3640 /*
3641 * the seq_file will only be initialized if the file was opened for
3642 * reading; hence we check if it's not null only in that case.
3643 */
3644 l = ((struct seq_file *)file->private_data)->private;
3645 cgroup_release_pid_array(l);
cc31edce
PM
3646 return seq_release(inode, file);
3647}
3648
102a775e 3649static const struct file_operations cgroup_pidlist_operations = {
cc31edce
PM
3650 .read = seq_read,
3651 .llseek = seq_lseek,
3652 .write = cgroup_file_write,
102a775e 3653 .release = cgroup_pidlist_release,
cc31edce
PM
3654};
3655
bbcb81d0 3656/*
102a775e
BB
3657 * The following functions handle opens on a file that displays a pidlist
3658 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
3659 * in the cgroup.
bbcb81d0 3660 */
102a775e 3661/* helper function for the two below it */
72a8cb30 3662static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
bbcb81d0 3663{
bd89aabc 3664 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
72a8cb30 3665 struct cgroup_pidlist *l;
cc31edce 3666 int retval;
bbcb81d0 3667
cc31edce 3668 /* Nothing to do for write-only files */
bbcb81d0
PM
3669 if (!(file->f_mode & FMODE_READ))
3670 return 0;
3671
102a775e 3672 /* have the array populated */
72a8cb30 3673 retval = pidlist_array_load(cgrp, type, &l);
102a775e
BB
3674 if (retval)
3675 return retval;
3676 /* configure file information */
3677 file->f_op = &cgroup_pidlist_operations;
cc31edce 3678
102a775e 3679 retval = seq_open(file, &cgroup_pidlist_seq_operations);
cc31edce 3680 if (retval) {
102a775e 3681 cgroup_release_pid_array(l);
cc31edce 3682 return retval;
bbcb81d0 3683 }
102a775e 3684 ((struct seq_file *)file->private_data)->private = l;
bbcb81d0
PM
3685 return 0;
3686}
102a775e
BB
3687static int cgroup_tasks_open(struct inode *unused, struct file *file)
3688{
72a8cb30 3689 return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
102a775e
BB
3690}
3691static int cgroup_procs_open(struct inode *unused, struct file *file)
3692{
72a8cb30 3693 return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
102a775e 3694}
bbcb81d0 3695
bd89aabc 3696static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
81a6a5cd
PM
3697 struct cftype *cft)
3698{
bd89aabc 3699 return notify_on_release(cgrp);
81a6a5cd
PM
3700}
3701
6379c106
PM
3702static int cgroup_write_notify_on_release(struct cgroup *cgrp,
3703 struct cftype *cft,
3704 u64 val)
3705{
3706 clear_bit(CGRP_RELEASABLE, &cgrp->flags);
3707 if (val)
3708 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3709 else
3710 clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3711 return 0;
3712}
3713
0dea1168
KS
3714/*
3715 * Unregister event and free resources.
3716 *
3717 * Gets called from workqueue.
3718 */
3719static void cgroup_event_remove(struct work_struct *work)
3720{
3721 struct cgroup_event *event = container_of(work, struct cgroup_event,
3722 remove);
3723 struct cgroup *cgrp = event->cgrp;
3724
810cbee4
LZ
3725 remove_wait_queue(event->wqh, &event->wait);
3726
0dea1168
KS
3727 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3728
810cbee4
LZ
3729 /* Notify userspace the event is going away. */
3730 eventfd_signal(event->eventfd, 1);
3731
0dea1168 3732 eventfd_ctx_put(event->eventfd);
0dea1168 3733 kfree(event);
a0a4db54 3734 dput(cgrp->dentry);
0dea1168
KS
3735}
3736
3737/*
3738 * Gets called on POLLHUP on eventfd when user closes it.
3739 *
3740 * Called with wqh->lock held and interrupts disabled.
3741 */
3742static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
3743 int sync, void *key)
3744{
3745 struct cgroup_event *event = container_of(wait,
3746 struct cgroup_event, wait);
3747 struct cgroup *cgrp = event->cgrp;
3748 unsigned long flags = (unsigned long)key;
3749
3750 if (flags & POLLHUP) {
0dea1168 3751 /*
810cbee4
LZ
3752 * If the event has been detached at cgroup removal, we
3753 * can simply return knowing the other side will cleanup
3754 * for us.
3755 *
3756 * We can't race against event freeing since the other
3757 * side will require wqh->lock via remove_wait_queue(),
3758 * which we hold.
0dea1168 3759 */
810cbee4
LZ
3760 spin_lock(&cgrp->event_list_lock);
3761 if (!list_empty(&event->list)) {
3762 list_del_init(&event->list);
3763 /*
3764 * We are in atomic context, but cgroup_event_remove()
3765 * may sleep, so we have to call it in workqueue.
3766 */
3767 schedule_work(&event->remove);
3768 }
3769 spin_unlock(&cgrp->event_list_lock);
0dea1168
KS
3770 }
3771
3772 return 0;
3773}
3774
3775static void cgroup_event_ptable_queue_proc(struct file *file,
3776 wait_queue_head_t *wqh, poll_table *pt)
3777{
3778 struct cgroup_event *event = container_of(pt,
3779 struct cgroup_event, pt);
3780
3781 event->wqh = wqh;
3782 add_wait_queue(wqh, &event->wait);
3783}
3784
3785/*
3786 * Parse input and register new cgroup event handler.
3787 *
3788 * Input must be in format '<event_fd> <control_fd> <args>'.
3789 * Interpretation of args is defined by control file implementation.
3790 */
3791static int cgroup_write_event_control(struct cgroup *cgrp, struct cftype *cft,
3792 const char *buffer)
3793{
3794 struct cgroup_event *event = NULL;
f169007b 3795 struct cgroup *cgrp_cfile;
0dea1168
KS
3796 unsigned int efd, cfd;
3797 struct file *efile = NULL;
3798 struct file *cfile = NULL;
3799 char *endp;
3800 int ret;
3801
3802 efd = simple_strtoul(buffer, &endp, 10);
3803 if (*endp != ' ')
3804 return -EINVAL;
3805 buffer = endp + 1;
3806
3807 cfd = simple_strtoul(buffer, &endp, 10);
3808 if ((*endp != ' ') && (*endp != '\0'))
3809 return -EINVAL;
3810 buffer = endp + 1;
3811
3812 event = kzalloc(sizeof(*event), GFP_KERNEL);
3813 if (!event)
3814 return -ENOMEM;
3815 event->cgrp = cgrp;
3816 INIT_LIST_HEAD(&event->list);
3817 init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
3818 init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
3819 INIT_WORK(&event->remove, cgroup_event_remove);
3820
3821 efile = eventfd_fget(efd);
3822 if (IS_ERR(efile)) {
3823 ret = PTR_ERR(efile);
3824 goto fail;
3825 }
3826
3827 event->eventfd = eventfd_ctx_fileget(efile);
3828 if (IS_ERR(event->eventfd)) {
3829 ret = PTR_ERR(event->eventfd);
3830 goto fail;
3831 }
3832
3833 cfile = fget(cfd);
3834 if (!cfile) {
3835 ret = -EBADF;
3836 goto fail;
3837 }
3838
3839 /* the process need read permission on control file */
3bfa784a 3840 /* AV: shouldn't we check that it's been opened for read instead? */
496ad9aa 3841 ret = inode_permission(file_inode(cfile), MAY_READ);
0dea1168
KS
3842 if (ret < 0)
3843 goto fail;
3844
3845 event->cft = __file_cft(cfile);
3846 if (IS_ERR(event->cft)) {
3847 ret = PTR_ERR(event->cft);
3848 goto fail;
3849 }
3850
f169007b
LZ
3851 /*
3852 * The file to be monitored must be in the same cgroup as
3853 * cgroup.event_control is.
3854 */
3855 cgrp_cfile = __d_cgrp(cfile->f_dentry->d_parent);
3856 if (cgrp_cfile != cgrp) {
3857 ret = -EINVAL;
3858 goto fail;
3859 }
3860
0dea1168
KS
3861 if (!event->cft->register_event || !event->cft->unregister_event) {
3862 ret = -EINVAL;
3863 goto fail;
3864 }
3865
3866 ret = event->cft->register_event(cgrp, event->cft,
3867 event->eventfd, buffer);
3868 if (ret)
3869 goto fail;
3870
a0a4db54
KS
3871 /*
3872 * Events should be removed after rmdir of cgroup directory, but before
3873 * destroying subsystem state objects. Let's take reference to cgroup
3874 * directory dentry to do that.
3875 */
3876 dget(cgrp->dentry);
3877
0dea1168
KS
3878 spin_lock(&cgrp->event_list_lock);
3879 list_add(&event->list, &cgrp->event_list);
3880 spin_unlock(&cgrp->event_list_lock);
3881
3882 fput(cfile);
3883 fput(efile);
3884
3885 return 0;
3886
3887fail:
3888 if (cfile)
3889 fput(cfile);
3890
3891 if (event && event->eventfd && !IS_ERR(event->eventfd))
3892 eventfd_ctx_put(event->eventfd);
3893
3894 if (!IS_ERR_OR_NULL(efile))
3895 fput(efile);
3896
3897 kfree(event);
3898
3899 return ret;
3900}
3901
97978e6d
DL
3902static u64 cgroup_clone_children_read(struct cgroup *cgrp,
3903 struct cftype *cft)
3904{
2260e7fc 3905 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d
DL
3906}
3907
3908static int cgroup_clone_children_write(struct cgroup *cgrp,
3909 struct cftype *cft,
3910 u64 val)
3911{
3912 if (val)
2260e7fc 3913 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d 3914 else
2260e7fc 3915 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d
DL
3916 return 0;
3917}
3918
bbcb81d0
PM
3919/*
3920 * for the common functions, 'private' gives the type of file
3921 */
102a775e
BB
3922/* for hysterical raisins, we can't put this on the older files */
3923#define CGROUP_FILE_GENERIC_PREFIX "cgroup."
81a6a5cd
PM
3924static struct cftype files[] = {
3925 {
3926 .name = "tasks",
3927 .open = cgroup_tasks_open,
af351026 3928 .write_u64 = cgroup_tasks_write,
102a775e 3929 .release = cgroup_pidlist_release,
099fca32 3930 .mode = S_IRUGO | S_IWUSR,
81a6a5cd 3931 },
102a775e
BB
3932 {
3933 .name = CGROUP_FILE_GENERIC_PREFIX "procs",
3934 .open = cgroup_procs_open,
74a1166d 3935 .write_u64 = cgroup_procs_write,
102a775e 3936 .release = cgroup_pidlist_release,
74a1166d 3937 .mode = S_IRUGO | S_IWUSR,
102a775e 3938 },
81a6a5cd
PM
3939 {
3940 .name = "notify_on_release",
f4c753b7 3941 .read_u64 = cgroup_read_notify_on_release,
6379c106 3942 .write_u64 = cgroup_write_notify_on_release,
81a6a5cd 3943 },
0dea1168
KS
3944 {
3945 .name = CGROUP_FILE_GENERIC_PREFIX "event_control",
3946 .write_string = cgroup_write_event_control,
3947 .mode = S_IWUGO,
3948 },
97978e6d
DL
3949 {
3950 .name = "cgroup.clone_children",
3951 .read_u64 = cgroup_clone_children_read,
3952 .write_u64 = cgroup_clone_children_write,
3953 },
6e6ff25b
TH
3954 {
3955 .name = "release_agent",
3956 .flags = CFTYPE_ONLY_ON_ROOT,
3957 .read_seq_string = cgroup_release_agent_show,
3958 .write_string = cgroup_release_agent_write,
3959 .max_write_len = PATH_MAX,
3960 },
db0416b6 3961 { } /* terminate */
bbcb81d0
PM
3962};
3963
13af07df
AR
3964/**
3965 * cgroup_populate_dir - selectively creation of files in a directory
3966 * @cgrp: target cgroup
3967 * @base_files: true if the base files should be added
3968 * @subsys_mask: mask of the subsystem ids whose files should be added
3969 */
3970static int cgroup_populate_dir(struct cgroup *cgrp, bool base_files,
3971 unsigned long subsys_mask)
ddbcc7e8
PM
3972{
3973 int err;
3974 struct cgroup_subsys *ss;
3975
13af07df
AR
3976 if (base_files) {
3977 err = cgroup_addrm_files(cgrp, NULL, files, true);
3978 if (err < 0)
3979 return err;
3980 }
bbcb81d0 3981
8e3f6541 3982 /* process cftsets of each subsystem */
bd89aabc 3983 for_each_subsys(cgrp->root, ss) {
8e3f6541 3984 struct cftype_set *set;
13af07df
AR
3985 if (!test_bit(ss->subsys_id, &subsys_mask))
3986 continue;
8e3f6541 3987
db0416b6 3988 list_for_each_entry(set, &ss->cftsets, node)
79578621 3989 cgroup_addrm_files(cgrp, ss, set->cfts, true);
ddbcc7e8 3990 }
8e3f6541 3991
38460b48
KH
3992 /* This cgroup is ready now */
3993 for_each_subsys(cgrp->root, ss) {
3994 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3995 /*
3996 * Update id->css pointer and make this css visible from
3997 * CSS ID functions. This pointer will be dereferened
3998 * from RCU-read-side without locks.
3999 */
4000 if (css->id)
4001 rcu_assign_pointer(css->id->css, css);
4002 }
ddbcc7e8
PM
4003
4004 return 0;
4005}
4006
48ddbe19
TH
4007static void css_dput_fn(struct work_struct *work)
4008{
4009 struct cgroup_subsys_state *css =
4010 container_of(work, struct cgroup_subsys_state, dput_work);
5db9a4d9
TH
4011 struct dentry *dentry = css->cgroup->dentry;
4012 struct super_block *sb = dentry->d_sb;
48ddbe19 4013
5db9a4d9
TH
4014 atomic_inc(&sb->s_active);
4015 dput(dentry);
4016 deactivate_super(sb);
48ddbe19
TH
4017}
4018
ddbcc7e8
PM
4019static void init_cgroup_css(struct cgroup_subsys_state *css,
4020 struct cgroup_subsys *ss,
bd89aabc 4021 struct cgroup *cgrp)
ddbcc7e8 4022{
bd89aabc 4023 css->cgroup = cgrp;
e7c5ec91 4024 atomic_set(&css->refcnt, 1);
ddbcc7e8 4025 css->flags = 0;
38460b48 4026 css->id = NULL;
bd89aabc 4027 if (cgrp == dummytop)
38b53aba 4028 css->flags |= CSS_ROOT;
bd89aabc
PM
4029 BUG_ON(cgrp->subsys[ss->subsys_id]);
4030 cgrp->subsys[ss->subsys_id] = css;
48ddbe19
TH
4031
4032 /*
ed957793
TH
4033 * css holds an extra ref to @cgrp->dentry which is put on the last
4034 * css_put(). dput() requires process context, which css_put() may
4035 * be called without. @css->dput_work will be used to invoke
4036 * dput() asynchronously from css_put().
48ddbe19
TH
4037 */
4038 INIT_WORK(&css->dput_work, css_dput_fn);
ddbcc7e8
PM
4039}
4040
b1929db4
TH
4041/* invoke ->post_create() on a new CSS and mark it online if successful */
4042static int online_css(struct cgroup_subsys *ss, struct cgroup *cgrp)
a31f2d3f 4043{
b1929db4
TH
4044 int ret = 0;
4045
a31f2d3f
TH
4046 lockdep_assert_held(&cgroup_mutex);
4047
92fb9748
TH
4048 if (ss->css_online)
4049 ret = ss->css_online(cgrp);
b1929db4
TH
4050 if (!ret)
4051 cgrp->subsys[ss->subsys_id]->flags |= CSS_ONLINE;
4052 return ret;
a31f2d3f
TH
4053}
4054
4055/* if the CSS is online, invoke ->pre_destory() on it and mark it offline */
4056static void offline_css(struct cgroup_subsys *ss, struct cgroup *cgrp)
4057 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
4058{
4059 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4060
4061 lockdep_assert_held(&cgroup_mutex);
4062
4063 if (!(css->flags & CSS_ONLINE))
4064 return;
4065
d7eeac19 4066 if (ss->css_offline)
92fb9748 4067 ss->css_offline(cgrp);
a31f2d3f
TH
4068
4069 cgrp->subsys[ss->subsys_id]->flags &= ~CSS_ONLINE;
4070}
4071
ddbcc7e8 4072/*
a043e3b2
LZ
4073 * cgroup_create - create a cgroup
4074 * @parent: cgroup that will be parent of the new cgroup
4075 * @dentry: dentry of the new cgroup
4076 * @mode: mode to set on new inode
ddbcc7e8 4077 *
a043e3b2 4078 * Must be called with the mutex on the parent inode held
ddbcc7e8 4079 */
ddbcc7e8 4080static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
a5e7ed32 4081 umode_t mode)
ddbcc7e8 4082{
bd89aabc 4083 struct cgroup *cgrp;
65dff759 4084 struct cgroup_name *name;
ddbcc7e8
PM
4085 struct cgroupfs_root *root = parent->root;
4086 int err = 0;
4087 struct cgroup_subsys *ss;
4088 struct super_block *sb = root->sb;
4089
0a950f65 4090 /* allocate the cgroup and its ID, 0 is reserved for the root */
bd89aabc
PM
4091 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
4092 if (!cgrp)
ddbcc7e8
PM
4093 return -ENOMEM;
4094
65dff759
LZ
4095 name = cgroup_alloc_name(dentry);
4096 if (!name)
4097 goto err_free_cgrp;
4098 rcu_assign_pointer(cgrp->name, name);
4099
0a950f65
TH
4100 cgrp->id = ida_simple_get(&root->cgroup_ida, 1, 0, GFP_KERNEL);
4101 if (cgrp->id < 0)
65dff759 4102 goto err_free_name;
0a950f65 4103
976c06bc
TH
4104 /*
4105 * Only live parents can have children. Note that the liveliness
4106 * check isn't strictly necessary because cgroup_mkdir() and
4107 * cgroup_rmdir() are fully synchronized by i_mutex; however, do it
4108 * anyway so that locking is contained inside cgroup proper and we
4109 * don't get nasty surprises if we ever grow another caller.
4110 */
4111 if (!cgroup_lock_live_group(parent)) {
4112 err = -ENODEV;
0a950f65 4113 goto err_free_id;
976c06bc
TH
4114 }
4115
ddbcc7e8
PM
4116 /* Grab a reference on the superblock so the hierarchy doesn't
4117 * get deleted on unmount if there are child cgroups. This
4118 * can be done outside cgroup_mutex, since the sb can't
4119 * disappear while someone has an open control file on the
4120 * fs */
4121 atomic_inc(&sb->s_active);
4122
cc31edce 4123 init_cgroup_housekeeping(cgrp);
ddbcc7e8 4124
fe1c06ca
LZ
4125 dentry->d_fsdata = cgrp;
4126 cgrp->dentry = dentry;
4127
bd89aabc
PM
4128 cgrp->parent = parent;
4129 cgrp->root = parent->root;
4130 cgrp->top_cgroup = parent->top_cgroup;
ddbcc7e8 4131
b6abdb0e
LZ
4132 if (notify_on_release(parent))
4133 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4134
2260e7fc
TH
4135 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4136 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d 4137
ddbcc7e8 4138 for_each_subsys(root, ss) {
8c7f6edb 4139 struct cgroup_subsys_state *css;
4528fd05 4140
92fb9748 4141 css = ss->css_alloc(cgrp);
ddbcc7e8
PM
4142 if (IS_ERR(css)) {
4143 err = PTR_ERR(css);
4b8b47eb 4144 goto err_free_all;
ddbcc7e8 4145 }
bd89aabc 4146 init_cgroup_css(css, ss, cgrp);
4528fd05
LZ
4147 if (ss->use_id) {
4148 err = alloc_css_id(ss, parent, cgrp);
4149 if (err)
4b8b47eb 4150 goto err_free_all;
4528fd05 4151 }
ddbcc7e8
PM
4152 }
4153
4e139afc
TH
4154 /*
4155 * Create directory. cgroup_create_file() returns with the new
4156 * directory locked on success so that it can be populated without
4157 * dropping cgroup_mutex.
4158 */
28fd6f30 4159 err = cgroup_create_file(dentry, S_IFDIR | mode, sb);
ddbcc7e8 4160 if (err < 0)
4b8b47eb 4161 goto err_free_all;
4e139afc 4162 lockdep_assert_held(&dentry->d_inode->i_mutex);
ddbcc7e8 4163
4e139afc 4164 /* allocation complete, commit to creation */
4e139afc
TH
4165 list_add_tail(&cgrp->allcg_node, &root->allcg_list);
4166 list_add_tail_rcu(&cgrp->sibling, &cgrp->parent->children);
4167 root->number_of_cgroups++;
28fd6f30 4168
b1929db4
TH
4169 /* each css holds a ref to the cgroup's dentry */
4170 for_each_subsys(root, ss)
ed957793 4171 dget(dentry);
48ddbe19 4172
b1929db4
TH
4173 /* creation succeeded, notify subsystems */
4174 for_each_subsys(root, ss) {
4175 err = online_css(ss, cgrp);
4176 if (err)
4177 goto err_destroy;
1f869e87
GC
4178
4179 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
4180 parent->parent) {
4181 pr_warning("cgroup: %s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4182 current->comm, current->pid, ss->name);
4183 if (!strcmp(ss->name, "memory"))
4184 pr_warning("cgroup: \"memory\" requires setting use_hierarchy to 1 on the root.\n");
4185 ss->warned_broken_hierarchy = true;
4186 }
a8638030
TH
4187 }
4188
a1a71b45 4189 err = cgroup_populate_dir(cgrp, true, root->subsys_mask);
4b8b47eb
TH
4190 if (err)
4191 goto err_destroy;
ddbcc7e8
PM
4192
4193 mutex_unlock(&cgroup_mutex);
bd89aabc 4194 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8
PM
4195
4196 return 0;
4197
4b8b47eb 4198err_free_all:
ddbcc7e8 4199 for_each_subsys(root, ss) {
bd89aabc 4200 if (cgrp->subsys[ss->subsys_id])
92fb9748 4201 ss->css_free(cgrp);
ddbcc7e8 4202 }
ddbcc7e8 4203 mutex_unlock(&cgroup_mutex);
ddbcc7e8
PM
4204 /* Release the reference count that we took on the superblock */
4205 deactivate_super(sb);
0a950f65
TH
4206err_free_id:
4207 ida_simple_remove(&root->cgroup_ida, cgrp->id);
65dff759
LZ
4208err_free_name:
4209 kfree(rcu_dereference_raw(cgrp->name));
4b8b47eb 4210err_free_cgrp:
bd89aabc 4211 kfree(cgrp);
ddbcc7e8 4212 return err;
4b8b47eb
TH
4213
4214err_destroy:
4215 cgroup_destroy_locked(cgrp);
4216 mutex_unlock(&cgroup_mutex);
4217 mutex_unlock(&dentry->d_inode->i_mutex);
4218 return err;
ddbcc7e8
PM
4219}
4220
18bb1db3 4221static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
ddbcc7e8
PM
4222{
4223 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
4224
4225 /* the vfs holds inode->i_mutex already */
4226 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
4227}
4228
42809dd4
TH
4229static int cgroup_destroy_locked(struct cgroup *cgrp)
4230 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
ddbcc7e8 4231{
42809dd4
TH
4232 struct dentry *d = cgrp->dentry;
4233 struct cgroup *parent = cgrp->parent;
4ab78683 4234 struct cgroup_event *event, *tmp;
ed957793 4235 struct cgroup_subsys *ss;
ddbcc7e8 4236
42809dd4
TH
4237 lockdep_assert_held(&d->d_inode->i_mutex);
4238 lockdep_assert_held(&cgroup_mutex);
4239
4240 if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children))
ddbcc7e8 4241 return -EBUSY;
a043e3b2 4242
88703267 4243 /*
1a90dd50
TH
4244 * Block new css_tryget() by deactivating refcnt and mark @cgrp
4245 * removed. This makes future css_tryget() and child creation
4246 * attempts fail thus maintaining the removal conditions verified
4247 * above.
88703267 4248 */
ed957793
TH
4249 for_each_subsys(cgrp->root, ss) {
4250 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
88703267 4251
ed957793
TH
4252 WARN_ON(atomic_read(&css->refcnt) < 0);
4253 atomic_add(CSS_DEACT_BIAS, &css->refcnt);
88703267 4254 }
1a90dd50 4255 set_bit(CGRP_REMOVED, &cgrp->flags);
ddbcc7e8 4256
a31f2d3f 4257 /* tell subsystems to initate destruction */
1a90dd50 4258 for_each_subsys(cgrp->root, ss)
a31f2d3f 4259 offline_css(ss, cgrp);
ed957793
TH
4260
4261 /*
ed957793
TH
4262 * Put all the base refs. Each css holds an extra reference to the
4263 * cgroup's dentry and cgroup removal proceeds regardless of css
4264 * refs. On the last put of each css, whenever that may be, the
4265 * extra dentry ref is put so that dentry destruction happens only
4266 * after all css's are released.
4267 */
e9316080
TH
4268 for_each_subsys(cgrp->root, ss)
4269 css_put(cgrp->subsys[ss->subsys_id]);
ddbcc7e8 4270
cdcc136f 4271 raw_spin_lock(&release_list_lock);
bd89aabc 4272 if (!list_empty(&cgrp->release_list))
8d258797 4273 list_del_init(&cgrp->release_list);
cdcc136f 4274 raw_spin_unlock(&release_list_lock);
999cd8a4 4275
999cd8a4 4276 /* delete this cgroup from parent->children */
eb6fd504 4277 list_del_rcu(&cgrp->sibling);
b0ca5a84
TH
4278 list_del_init(&cgrp->allcg_node);
4279
42809dd4 4280 dget(d);
ddbcc7e8
PM
4281 cgroup_d_remove_dir(d);
4282 dput(d);
ddbcc7e8 4283
bd89aabc 4284 set_bit(CGRP_RELEASABLE, &parent->flags);
81a6a5cd
PM
4285 check_for_release(parent);
4286
4ab78683
KS
4287 /*
4288 * Unregister events and notify userspace.
4289 * Notify userspace about cgroup removing only after rmdir of cgroup
810cbee4 4290 * directory to avoid race between userspace and kernelspace.
4ab78683
KS
4291 */
4292 spin_lock(&cgrp->event_list_lock);
810cbee4 4293 list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
9718ceb3 4294 list_del_init(&event->list);
4ab78683
KS
4295 schedule_work(&event->remove);
4296 }
810cbee4 4297 spin_unlock(&cgrp->event_list_lock);
4ab78683 4298
ddbcc7e8
PM
4299 return 0;
4300}
4301
42809dd4
TH
4302static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
4303{
4304 int ret;
4305
4306 mutex_lock(&cgroup_mutex);
4307 ret = cgroup_destroy_locked(dentry->d_fsdata);
4308 mutex_unlock(&cgroup_mutex);
4309
4310 return ret;
4311}
4312
8e3f6541
TH
4313static void __init_or_module cgroup_init_cftsets(struct cgroup_subsys *ss)
4314{
4315 INIT_LIST_HEAD(&ss->cftsets);
4316
4317 /*
4318 * base_cftset is embedded in subsys itself, no need to worry about
4319 * deregistration.
4320 */
4321 if (ss->base_cftypes) {
4322 ss->base_cftset.cfts = ss->base_cftypes;
4323 list_add_tail(&ss->base_cftset.node, &ss->cftsets);
4324 }
4325}
4326
06a11920 4327static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
ddbcc7e8 4328{
ddbcc7e8 4329 struct cgroup_subsys_state *css;
cfe36bde
DC
4330
4331 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8 4332
648bb56d
TH
4333 mutex_lock(&cgroup_mutex);
4334
8e3f6541
TH
4335 /* init base cftset */
4336 cgroup_init_cftsets(ss);
4337
ddbcc7e8 4338 /* Create the top cgroup state for this subsystem */
33a68ac1 4339 list_add(&ss->sibling, &rootnode.subsys_list);
ddbcc7e8 4340 ss->root = &rootnode;
92fb9748 4341 css = ss->css_alloc(dummytop);
ddbcc7e8
PM
4342 /* We don't handle early failures gracefully */
4343 BUG_ON(IS_ERR(css));
4344 init_cgroup_css(css, ss, dummytop);
4345
e8d55fde 4346 /* Update the init_css_set to contain a subsys
817929ec 4347 * pointer to this state - since the subsystem is
e8d55fde
LZ
4348 * newly registered, all tasks and hence the
4349 * init_css_set is in the subsystem's top cgroup. */
b48c6a80 4350 init_css_set.subsys[ss->subsys_id] = css;
ddbcc7e8
PM
4351
4352 need_forkexit_callback |= ss->fork || ss->exit;
4353
e8d55fde
LZ
4354 /* At system boot, before all subsystems have been
4355 * registered, no tasks have been forked, so we don't
4356 * need to invoke fork callbacks here. */
4357 BUG_ON(!list_empty(&init_task.tasks));
4358
ddbcc7e8 4359 ss->active = 1;
b1929db4 4360 BUG_ON(online_css(ss, dummytop));
a8638030 4361
648bb56d
TH
4362 mutex_unlock(&cgroup_mutex);
4363
e6a1105b
BB
4364 /* this function shouldn't be used with modular subsystems, since they
4365 * need to register a subsys_id, among other things */
4366 BUG_ON(ss->module);
4367}
4368
4369/**
4370 * cgroup_load_subsys: load and register a modular subsystem at runtime
4371 * @ss: the subsystem to load
4372 *
4373 * This function should be called in a modular subsystem's initcall. If the
88393161 4374 * subsystem is built as a module, it will be assigned a new subsys_id and set
e6a1105b
BB
4375 * up for use. If the subsystem is built-in anyway, work is delegated to the
4376 * simpler cgroup_init_subsys.
4377 */
4378int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
4379{
e6a1105b 4380 struct cgroup_subsys_state *css;
d19e19de 4381 int i, ret;
b67bfe0d 4382 struct hlist_node *tmp;
0ac801fe
LZ
4383 struct css_set *cg;
4384 unsigned long key;
e6a1105b
BB
4385
4386 /* check name and function validity */
4387 if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
92fb9748 4388 ss->css_alloc == NULL || ss->css_free == NULL)
e6a1105b
BB
4389 return -EINVAL;
4390
4391 /*
4392 * we don't support callbacks in modular subsystems. this check is
4393 * before the ss->module check for consistency; a subsystem that could
4394 * be a module should still have no callbacks even if the user isn't
4395 * compiling it as one.
4396 */
4397 if (ss->fork || ss->exit)
4398 return -EINVAL;
4399
4400 /*
4401 * an optionally modular subsystem is built-in: we want to do nothing,
4402 * since cgroup_init_subsys will have already taken care of it.
4403 */
4404 if (ss->module == NULL) {
be45c900 4405 /* a sanity check */
e6a1105b
BB
4406 BUG_ON(subsys[ss->subsys_id] != ss);
4407 return 0;
4408 }
4409
8e3f6541
TH
4410 /* init base cftset */
4411 cgroup_init_cftsets(ss);
4412
e6a1105b 4413 mutex_lock(&cgroup_mutex);
8a8e04df 4414 subsys[ss->subsys_id] = ss;
e6a1105b
BB
4415
4416 /*
92fb9748
TH
4417 * no ss->css_alloc seems to need anything important in the ss
4418 * struct, so this can happen first (i.e. before the rootnode
4419 * attachment).
e6a1105b 4420 */
92fb9748 4421 css = ss->css_alloc(dummytop);
e6a1105b
BB
4422 if (IS_ERR(css)) {
4423 /* failure case - need to deassign the subsys[] slot. */
8a8e04df 4424 subsys[ss->subsys_id] = NULL;
e6a1105b
BB
4425 mutex_unlock(&cgroup_mutex);
4426 return PTR_ERR(css);
4427 }
4428
4429 list_add(&ss->sibling, &rootnode.subsys_list);
4430 ss->root = &rootnode;
4431
4432 /* our new subsystem will be attached to the dummy hierarchy. */
4433 init_cgroup_css(css, ss, dummytop);
4434 /* init_idr must be after init_cgroup_css because it sets css->id. */
4435 if (ss->use_id) {
d19e19de
TH
4436 ret = cgroup_init_idr(ss, css);
4437 if (ret)
4438 goto err_unload;
e6a1105b
BB
4439 }
4440
4441 /*
4442 * Now we need to entangle the css into the existing css_sets. unlike
4443 * in cgroup_init_subsys, there are now multiple css_sets, so each one
4444 * will need a new pointer to it; done by iterating the css_set_table.
4445 * furthermore, modifying the existing css_sets will corrupt the hash
4446 * table state, so each changed css_set will need its hash recomputed.
4447 * this is all done under the css_set_lock.
4448 */
4449 write_lock(&css_set_lock);
b67bfe0d 4450 hash_for_each_safe(css_set_table, i, tmp, cg, hlist) {
0ac801fe
LZ
4451 /* skip entries that we already rehashed */
4452 if (cg->subsys[ss->subsys_id])
4453 continue;
4454 /* remove existing entry */
4455 hash_del(&cg->hlist);
4456 /* set new value */
4457 cg->subsys[ss->subsys_id] = css;
4458 /* recompute hash and restore entry */
4459 key = css_set_hash(cg->subsys);
b67bfe0d 4460 hash_add(css_set_table, &cg->hlist, key);
e6a1105b
BB
4461 }
4462 write_unlock(&css_set_lock);
4463
e6a1105b 4464 ss->active = 1;
b1929db4
TH
4465 ret = online_css(ss, dummytop);
4466 if (ret)
4467 goto err_unload;
a8638030 4468
e6a1105b
BB
4469 /* success! */
4470 mutex_unlock(&cgroup_mutex);
4471 return 0;
d19e19de
TH
4472
4473err_unload:
4474 mutex_unlock(&cgroup_mutex);
4475 /* @ss can't be mounted here as try_module_get() would fail */
4476 cgroup_unload_subsys(ss);
4477 return ret;
ddbcc7e8 4478}
e6a1105b 4479EXPORT_SYMBOL_GPL(cgroup_load_subsys);
ddbcc7e8 4480
cf5d5941
BB
4481/**
4482 * cgroup_unload_subsys: unload a modular subsystem
4483 * @ss: the subsystem to unload
4484 *
4485 * This function should be called in a modular subsystem's exitcall. When this
4486 * function is invoked, the refcount on the subsystem's module will be 0, so
4487 * the subsystem will not be attached to any hierarchy.
4488 */
4489void cgroup_unload_subsys(struct cgroup_subsys *ss)
4490{
4491 struct cg_cgroup_link *link;
cf5d5941
BB
4492
4493 BUG_ON(ss->module == NULL);
4494
4495 /*
4496 * we shouldn't be called if the subsystem is in use, and the use of
4497 * try_module_get in parse_cgroupfs_options should ensure that it
4498 * doesn't start being used while we're killing it off.
4499 */
4500 BUG_ON(ss->root != &rootnode);
4501
4502 mutex_lock(&cgroup_mutex);
02ae7486 4503
a31f2d3f 4504 offline_css(ss, dummytop);
02ae7486
TH
4505 ss->active = 0;
4506
c897ff68 4507 if (ss->use_id)
02ae7486 4508 idr_destroy(&ss->idr);
02ae7486 4509
cf5d5941 4510 /* deassign the subsys_id */
cf5d5941
BB
4511 subsys[ss->subsys_id] = NULL;
4512
4513 /* remove subsystem from rootnode's list of subsystems */
8d258797 4514 list_del_init(&ss->sibling);
cf5d5941
BB
4515
4516 /*
4517 * disentangle the css from all css_sets attached to the dummytop. as
4518 * in loading, we need to pay our respects to the hashtable gods.
4519 */
4520 write_lock(&css_set_lock);
4521 list_for_each_entry(link, &dummytop->css_sets, cgrp_link_list) {
4522 struct css_set *cg = link->cg;
0ac801fe 4523 unsigned long key;
cf5d5941 4524
0ac801fe 4525 hash_del(&cg->hlist);
cf5d5941 4526 cg->subsys[ss->subsys_id] = NULL;
0ac801fe
LZ
4527 key = css_set_hash(cg->subsys);
4528 hash_add(css_set_table, &cg->hlist, key);
cf5d5941
BB
4529 }
4530 write_unlock(&css_set_lock);
4531
4532 /*
92fb9748
TH
4533 * remove subsystem's css from the dummytop and free it - need to
4534 * free before marking as null because ss->css_free needs the
4535 * cgrp->subsys pointer to find their state. note that this also
4536 * takes care of freeing the css_id.
cf5d5941 4537 */
92fb9748 4538 ss->css_free(dummytop);
cf5d5941
BB
4539 dummytop->subsys[ss->subsys_id] = NULL;
4540
4541 mutex_unlock(&cgroup_mutex);
4542}
4543EXPORT_SYMBOL_GPL(cgroup_unload_subsys);
4544
ddbcc7e8 4545/**
a043e3b2
LZ
4546 * cgroup_init_early - cgroup initialization at system boot
4547 *
4548 * Initialize cgroups at system boot, and initialize any
4549 * subsystems that request early init.
ddbcc7e8
PM
4550 */
4551int __init cgroup_init_early(void)
4552{
4553 int i;
146aa1bd 4554 atomic_set(&init_css_set.refcount, 1);
817929ec
PM
4555 INIT_LIST_HEAD(&init_css_set.cg_links);
4556 INIT_LIST_HEAD(&init_css_set.tasks);
472b1053 4557 INIT_HLIST_NODE(&init_css_set.hlist);
817929ec 4558 css_set_count = 1;
ddbcc7e8 4559 init_cgroup_root(&rootnode);
817929ec
PM
4560 root_count = 1;
4561 init_task.cgroups = &init_css_set;
4562
4563 init_css_set_link.cg = &init_css_set;
7717f7ba 4564 init_css_set_link.cgrp = dummytop;
bd89aabc 4565 list_add(&init_css_set_link.cgrp_link_list,
817929ec
PM
4566 &rootnode.top_cgroup.css_sets);
4567 list_add(&init_css_set_link.cg_link_list,
4568 &init_css_set.cg_links);
ddbcc7e8 4569
be45c900 4570 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
ddbcc7e8
PM
4571 struct cgroup_subsys *ss = subsys[i];
4572
be45c900
DW
4573 /* at bootup time, we don't worry about modular subsystems */
4574 if (!ss || ss->module)
4575 continue;
4576
ddbcc7e8
PM
4577 BUG_ON(!ss->name);
4578 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
92fb9748
TH
4579 BUG_ON(!ss->css_alloc);
4580 BUG_ON(!ss->css_free);
ddbcc7e8 4581 if (ss->subsys_id != i) {
cfe36bde 4582 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
ddbcc7e8
PM
4583 ss->name, ss->subsys_id);
4584 BUG();
4585 }
4586
4587 if (ss->early_init)
4588 cgroup_init_subsys(ss);
4589 }
4590 return 0;
4591}
4592
4593/**
a043e3b2
LZ
4594 * cgroup_init - cgroup initialization
4595 *
4596 * Register cgroup filesystem and /proc file, and initialize
4597 * any subsystems that didn't request early init.
ddbcc7e8
PM
4598 */
4599int __init cgroup_init(void)
4600{
4601 int err;
4602 int i;
0ac801fe 4603 unsigned long key;
a424316c
PM
4604
4605 err = bdi_init(&cgroup_backing_dev_info);
4606 if (err)
4607 return err;
ddbcc7e8 4608
be45c900 4609 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
ddbcc7e8 4610 struct cgroup_subsys *ss = subsys[i];
be45c900
DW
4611
4612 /* at bootup time, we don't worry about modular subsystems */
4613 if (!ss || ss->module)
4614 continue;
ddbcc7e8
PM
4615 if (!ss->early_init)
4616 cgroup_init_subsys(ss);
38460b48 4617 if (ss->use_id)
e6a1105b 4618 cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]);
ddbcc7e8
PM
4619 }
4620
472b1053 4621 /* Add init_css_set to the hash table */
0ac801fe
LZ
4622 key = css_set_hash(init_css_set.subsys);
4623 hash_add(css_set_table, &init_css_set.hlist, key);
2c6ab6d2 4624 BUG_ON(!init_root_id(&rootnode));
676db4af
GK
4625
4626 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
4627 if (!cgroup_kobj) {
4628 err = -ENOMEM;
4629 goto out;
4630 }
4631
ddbcc7e8 4632 err = register_filesystem(&cgroup_fs_type);
676db4af
GK
4633 if (err < 0) {
4634 kobject_put(cgroup_kobj);
ddbcc7e8 4635 goto out;
676db4af 4636 }
ddbcc7e8 4637
46ae220b 4638 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
a424316c 4639
ddbcc7e8 4640out:
a424316c
PM
4641 if (err)
4642 bdi_destroy(&cgroup_backing_dev_info);
4643
ddbcc7e8
PM
4644 return err;
4645}
b4f48b63 4646
a424316c
PM
4647/*
4648 * proc_cgroup_show()
4649 * - Print task's cgroup paths into seq_file, one line for each hierarchy
4650 * - Used for /proc/<pid>/cgroup.
4651 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
4652 * doesn't really matter if tsk->cgroup changes after we read it,
956db3ca 4653 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
a424316c
PM
4654 * anyway. No need to check that tsk->cgroup != NULL, thanks to
4655 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
4656 * cgroup to top_cgroup.
4657 */
4658
4659/* TODO: Use a proper seq_file iterator */
4660static int proc_cgroup_show(struct seq_file *m, void *v)
4661{
4662 struct pid *pid;
4663 struct task_struct *tsk;
4664 char *buf;
4665 int retval;
4666 struct cgroupfs_root *root;
4667
4668 retval = -ENOMEM;
4669 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4670 if (!buf)
4671 goto out;
4672
4673 retval = -ESRCH;
4674 pid = m->private;
4675 tsk = get_pid_task(pid, PIDTYPE_PID);
4676 if (!tsk)
4677 goto out_free;
4678
4679 retval = 0;
4680
4681 mutex_lock(&cgroup_mutex);
4682
e5f6a860 4683 for_each_active_root(root) {
a424316c 4684 struct cgroup_subsys *ss;
bd89aabc 4685 struct cgroup *cgrp;
a424316c
PM
4686 int count = 0;
4687
2c6ab6d2 4688 seq_printf(m, "%d:", root->hierarchy_id);
a424316c
PM
4689 for_each_subsys(root, ss)
4690 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
c6d57f33
PM
4691 if (strlen(root->name))
4692 seq_printf(m, "%sname=%s", count ? "," : "",
4693 root->name);
a424316c 4694 seq_putc(m, ':');
7717f7ba 4695 cgrp = task_cgroup_from_root(tsk, root);
bd89aabc 4696 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
a424316c
PM
4697 if (retval < 0)
4698 goto out_unlock;
4699 seq_puts(m, buf);
4700 seq_putc(m, '\n');
4701 }
4702
4703out_unlock:
4704 mutex_unlock(&cgroup_mutex);
4705 put_task_struct(tsk);
4706out_free:
4707 kfree(buf);
4708out:
4709 return retval;
4710}
4711
4712static int cgroup_open(struct inode *inode, struct file *file)
4713{
4714 struct pid *pid = PROC_I(inode)->pid;
4715 return single_open(file, proc_cgroup_show, pid);
4716}
4717
828c0950 4718const struct file_operations proc_cgroup_operations = {
a424316c
PM
4719 .open = cgroup_open,
4720 .read = seq_read,
4721 .llseek = seq_lseek,
4722 .release = single_release,
4723};
4724
4725/* Display information about each subsystem and each hierarchy */
4726static int proc_cgroupstats_show(struct seq_file *m, void *v)
4727{
4728 int i;
a424316c 4729
8bab8dde 4730 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
aae8aab4
BB
4731 /*
4732 * ideally we don't want subsystems moving around while we do this.
4733 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4734 * subsys/hierarchy state.
4735 */
a424316c 4736 mutex_lock(&cgroup_mutex);
a424316c
PM
4737 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4738 struct cgroup_subsys *ss = subsys[i];
aae8aab4
BB
4739 if (ss == NULL)
4740 continue;
2c6ab6d2
PM
4741 seq_printf(m, "%s\t%d\t%d\t%d\n",
4742 ss->name, ss->root->hierarchy_id,
8bab8dde 4743 ss->root->number_of_cgroups, !ss->disabled);
a424316c
PM
4744 }
4745 mutex_unlock(&cgroup_mutex);
4746 return 0;
4747}
4748
4749static int cgroupstats_open(struct inode *inode, struct file *file)
4750{
9dce07f1 4751 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
4752}
4753
828c0950 4754static const struct file_operations proc_cgroupstats_operations = {
a424316c
PM
4755 .open = cgroupstats_open,
4756 .read = seq_read,
4757 .llseek = seq_lseek,
4758 .release = single_release,
4759};
4760
b4f48b63
PM
4761/**
4762 * cgroup_fork - attach newly forked task to its parents cgroup.
a043e3b2 4763 * @child: pointer to task_struct of forking parent process.
b4f48b63
PM
4764 *
4765 * Description: A task inherits its parent's cgroup at fork().
4766 *
4767 * A pointer to the shared css_set was automatically copied in
4768 * fork.c by dup_task_struct(). However, we ignore that copy, since
9bb71308
TH
4769 * it was not made under the protection of RCU or cgroup_mutex, so
4770 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
4771 * have already changed current->cgroups, allowing the previously
4772 * referenced cgroup group to be removed and freed.
b4f48b63
PM
4773 *
4774 * At the point that cgroup_fork() is called, 'current' is the parent
4775 * task, and the passed argument 'child' points to the child task.
4776 */
4777void cgroup_fork(struct task_struct *child)
4778{
9bb71308 4779 task_lock(current);
817929ec
PM
4780 child->cgroups = current->cgroups;
4781 get_css_set(child->cgroups);
9bb71308 4782 task_unlock(current);
817929ec 4783 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
4784}
4785
817929ec 4786/**
a043e3b2
LZ
4787 * cgroup_post_fork - called on a new task after adding it to the task list
4788 * @child: the task in question
4789 *
5edee61e
TH
4790 * Adds the task to the list running through its css_set if necessary and
4791 * call the subsystem fork() callbacks. Has to be after the task is
4792 * visible on the task list in case we race with the first call to
4793 * cgroup_iter_start() - to guarantee that the new task ends up on its
4794 * list.
a043e3b2 4795 */
817929ec
PM
4796void cgroup_post_fork(struct task_struct *child)
4797{
5edee61e
TH
4798 int i;
4799
3ce3230a
FW
4800 /*
4801 * use_task_css_set_links is set to 1 before we walk the tasklist
4802 * under the tasklist_lock and we read it here after we added the child
4803 * to the tasklist under the tasklist_lock as well. If the child wasn't
4804 * yet in the tasklist when we walked through it from
4805 * cgroup_enable_task_cg_lists(), then use_task_css_set_links value
4806 * should be visible now due to the paired locking and barriers implied
4807 * by LOCK/UNLOCK: it is written before the tasklist_lock unlock
4808 * in cgroup_enable_task_cg_lists() and read here after the tasklist_lock
4809 * lock on fork.
4810 */
817929ec
PM
4811 if (use_task_css_set_links) {
4812 write_lock(&css_set_lock);
d8783832
TH
4813 task_lock(child);
4814 if (list_empty(&child->cg_list))
817929ec 4815 list_add(&child->cg_list, &child->cgroups->tasks);
d8783832 4816 task_unlock(child);
817929ec
PM
4817 write_unlock(&css_set_lock);
4818 }
5edee61e
TH
4819
4820 /*
4821 * Call ss->fork(). This must happen after @child is linked on
4822 * css_set; otherwise, @child might change state between ->fork()
4823 * and addition to css_set.
4824 */
4825 if (need_forkexit_callback) {
7d8e0bf5
LZ
4826 /*
4827 * fork/exit callbacks are supported only for builtin
4828 * subsystems, and the builtin section of the subsys
4829 * array is immutable, so we don't need to lock the
4830 * subsys array here. On the other hand, modular section
4831 * of the array can be freed at module unload, so we
4832 * can't touch that.
4833 */
4834 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
5edee61e
TH
4835 struct cgroup_subsys *ss = subsys[i];
4836
5edee61e
TH
4837 if (ss->fork)
4838 ss->fork(child);
4839 }
4840 }
817929ec 4841}
5edee61e 4842
b4f48b63
PM
4843/**
4844 * cgroup_exit - detach cgroup from exiting task
4845 * @tsk: pointer to task_struct of exiting process
a043e3b2 4846 * @run_callback: run exit callbacks?
b4f48b63
PM
4847 *
4848 * Description: Detach cgroup from @tsk and release it.
4849 *
4850 * Note that cgroups marked notify_on_release force every task in
4851 * them to take the global cgroup_mutex mutex when exiting.
4852 * This could impact scaling on very large systems. Be reluctant to
4853 * use notify_on_release cgroups where very high task exit scaling
4854 * is required on large systems.
4855 *
4856 * the_top_cgroup_hack:
4857 *
4858 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
4859 *
4860 * We call cgroup_exit() while the task is still competent to
4861 * handle notify_on_release(), then leave the task attached to the
4862 * root cgroup in each hierarchy for the remainder of its exit.
4863 *
4864 * To do this properly, we would increment the reference count on
4865 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
4866 * code we would add a second cgroup function call, to drop that
4867 * reference. This would just create an unnecessary hot spot on
4868 * the top_cgroup reference count, to no avail.
4869 *
4870 * Normally, holding a reference to a cgroup without bumping its
4871 * count is unsafe. The cgroup could go away, or someone could
4872 * attach us to a different cgroup, decrementing the count on
4873 * the first cgroup that we never incremented. But in this case,
4874 * top_cgroup isn't going away, and either task has PF_EXITING set,
956db3ca
CW
4875 * which wards off any cgroup_attach_task() attempts, or task is a failed
4876 * fork, never visible to cgroup_attach_task.
b4f48b63
PM
4877 */
4878void cgroup_exit(struct task_struct *tsk, int run_callbacks)
4879{
817929ec 4880 struct css_set *cg;
d41d5a01 4881 int i;
817929ec
PM
4882
4883 /*
4884 * Unlink from the css_set task list if necessary.
4885 * Optimistically check cg_list before taking
4886 * css_set_lock
4887 */
4888 if (!list_empty(&tsk->cg_list)) {
4889 write_lock(&css_set_lock);
4890 if (!list_empty(&tsk->cg_list))
8d258797 4891 list_del_init(&tsk->cg_list);
817929ec
PM
4892 write_unlock(&css_set_lock);
4893 }
4894
b4f48b63
PM
4895 /* Reassign the task to the init_css_set. */
4896 task_lock(tsk);
817929ec
PM
4897 cg = tsk->cgroups;
4898 tsk->cgroups = &init_css_set;
d41d5a01
PZ
4899
4900 if (run_callbacks && need_forkexit_callback) {
7d8e0bf5
LZ
4901 /*
4902 * fork/exit callbacks are supported only for builtin
4903 * subsystems, see cgroup_post_fork() for details.
4904 */
4905 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
d41d5a01 4906 struct cgroup_subsys *ss = subsys[i];
be45c900 4907
d41d5a01
PZ
4908 if (ss->exit) {
4909 struct cgroup *old_cgrp =
4910 rcu_dereference_raw(cg->subsys[i])->cgroup;
4911 struct cgroup *cgrp = task_cgroup(tsk, i);
761b3ef5 4912 ss->exit(cgrp, old_cgrp, tsk);
d41d5a01
PZ
4913 }
4914 }
4915 }
b4f48b63 4916 task_unlock(tsk);
d41d5a01 4917
b5d646f5 4918 put_css_set_taskexit(cg);
b4f48b63 4919}
697f4161 4920
bd89aabc 4921static void check_for_release(struct cgroup *cgrp)
81a6a5cd
PM
4922{
4923 /* All of these checks rely on RCU to keep the cgroup
4924 * structure alive */
f50daa70
LZ
4925 if (cgroup_is_releasable(cgrp) &&
4926 !atomic_read(&cgrp->count) && list_empty(&cgrp->children)) {
4927 /*
4928 * Control Group is currently removeable. If it's not
81a6a5cd 4929 * already queued for a userspace notification, queue
f50daa70
LZ
4930 * it now
4931 */
81a6a5cd 4932 int need_schedule_work = 0;
f50daa70 4933
cdcc136f 4934 raw_spin_lock(&release_list_lock);
bd89aabc
PM
4935 if (!cgroup_is_removed(cgrp) &&
4936 list_empty(&cgrp->release_list)) {
4937 list_add(&cgrp->release_list, &release_list);
81a6a5cd
PM
4938 need_schedule_work = 1;
4939 }
cdcc136f 4940 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
4941 if (need_schedule_work)
4942 schedule_work(&release_agent_work);
4943 }
4944}
4945
d7b9fff7 4946/* Caller must verify that the css is not for root cgroup */
28b4c27b
TH
4947bool __css_tryget(struct cgroup_subsys_state *css)
4948{
e9316080
TH
4949 while (true) {
4950 int t, v;
28b4c27b 4951
e9316080
TH
4952 v = css_refcnt(css);
4953 t = atomic_cmpxchg(&css->refcnt, v, v + 1);
4954 if (likely(t == v))
28b4c27b 4955 return true;
e9316080
TH
4956 else if (t < 0)
4957 return false;
28b4c27b 4958 cpu_relax();
e9316080 4959 }
28b4c27b
TH
4960}
4961EXPORT_SYMBOL_GPL(__css_tryget);
4962
4963/* Caller must verify that the css is not for root cgroup */
4964void __css_put(struct cgroup_subsys_state *css)
81a6a5cd 4965{
8e3bbf42 4966 int v;
28b4c27b 4967
8e3bbf42 4968 v = css_unbias_refcnt(atomic_dec_return(&css->refcnt));
f50daa70 4969 if (v == 0)
ed957793 4970 schedule_work(&css->dput_work);
81a6a5cd 4971}
67523c48 4972EXPORT_SYMBOL_GPL(__css_put);
81a6a5cd
PM
4973
4974/*
4975 * Notify userspace when a cgroup is released, by running the
4976 * configured release agent with the name of the cgroup (path
4977 * relative to the root of cgroup file system) as the argument.
4978 *
4979 * Most likely, this user command will try to rmdir this cgroup.
4980 *
4981 * This races with the possibility that some other task will be
4982 * attached to this cgroup before it is removed, or that some other
4983 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
4984 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
4985 * unused, and this cgroup will be reprieved from its death sentence,
4986 * to continue to serve a useful existence. Next time it's released,
4987 * we will get notified again, if it still has 'notify_on_release' set.
4988 *
4989 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
4990 * means only wait until the task is successfully execve()'d. The
4991 * separate release agent task is forked by call_usermodehelper(),
4992 * then control in this thread returns here, without waiting for the
4993 * release agent task. We don't bother to wait because the caller of
4994 * this routine has no use for the exit status of the release agent
4995 * task, so no sense holding our caller up for that.
81a6a5cd 4996 */
81a6a5cd
PM
4997static void cgroup_release_agent(struct work_struct *work)
4998{
4999 BUG_ON(work != &release_agent_work);
5000 mutex_lock(&cgroup_mutex);
cdcc136f 5001 raw_spin_lock(&release_list_lock);
81a6a5cd
PM
5002 while (!list_empty(&release_list)) {
5003 char *argv[3], *envp[3];
5004 int i;
e788e066 5005 char *pathbuf = NULL, *agentbuf = NULL;
bd89aabc 5006 struct cgroup *cgrp = list_entry(release_list.next,
81a6a5cd
PM
5007 struct cgroup,
5008 release_list);
bd89aabc 5009 list_del_init(&cgrp->release_list);
cdcc136f 5010 raw_spin_unlock(&release_list_lock);
81a6a5cd 5011 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
e788e066
PM
5012 if (!pathbuf)
5013 goto continue_free;
5014 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
5015 goto continue_free;
5016 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5017 if (!agentbuf)
5018 goto continue_free;
81a6a5cd
PM
5019
5020 i = 0;
e788e066
PM
5021 argv[i++] = agentbuf;
5022 argv[i++] = pathbuf;
81a6a5cd
PM
5023 argv[i] = NULL;
5024
5025 i = 0;
5026 /* minimal command environment */
5027 envp[i++] = "HOME=/";
5028 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5029 envp[i] = NULL;
5030
5031 /* Drop the lock while we invoke the usermode helper,
5032 * since the exec could involve hitting disk and hence
5033 * be a slow process */
5034 mutex_unlock(&cgroup_mutex);
5035 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
81a6a5cd 5036 mutex_lock(&cgroup_mutex);
e788e066
PM
5037 continue_free:
5038 kfree(pathbuf);
5039 kfree(agentbuf);
cdcc136f 5040 raw_spin_lock(&release_list_lock);
81a6a5cd 5041 }
cdcc136f 5042 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
5043 mutex_unlock(&cgroup_mutex);
5044}
8bab8dde
PM
5045
5046static int __init cgroup_disable(char *str)
5047{
5048 int i;
5049 char *token;
5050
5051 while ((token = strsep(&str, ",")) != NULL) {
5052 if (!*token)
5053 continue;
be45c900 5054 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
8bab8dde
PM
5055 struct cgroup_subsys *ss = subsys[i];
5056
be45c900
DW
5057 /*
5058 * cgroup_disable, being at boot time, can't
5059 * know about module subsystems, so we don't
5060 * worry about them.
5061 */
5062 if (!ss || ss->module)
5063 continue;
5064
8bab8dde
PM
5065 if (!strcmp(token, ss->name)) {
5066 ss->disabled = 1;
5067 printk(KERN_INFO "Disabling %s control group"
5068 " subsystem\n", ss->name);
5069 break;
5070 }
5071 }
5072 }
5073 return 1;
5074}
5075__setup("cgroup_disable=", cgroup_disable);
38460b48
KH
5076
5077/*
5078 * Functons for CSS ID.
5079 */
5080
5081/*
5082 *To get ID other than 0, this should be called when !cgroup_is_removed().
5083 */
5084unsigned short css_id(struct cgroup_subsys_state *css)
5085{
7f0f1546
KH
5086 struct css_id *cssid;
5087
5088 /*
5089 * This css_id() can return correct value when somone has refcnt
5090 * on this or this is under rcu_read_lock(). Once css->id is allocated,
5091 * it's unchanged until freed.
5092 */
28b4c27b 5093 cssid = rcu_dereference_check(css->id, css_refcnt(css));
38460b48
KH
5094
5095 if (cssid)
5096 return cssid->id;
5097 return 0;
5098}
67523c48 5099EXPORT_SYMBOL_GPL(css_id);
38460b48
KH
5100
5101unsigned short css_depth(struct cgroup_subsys_state *css)
5102{
7f0f1546
KH
5103 struct css_id *cssid;
5104
28b4c27b 5105 cssid = rcu_dereference_check(css->id, css_refcnt(css));
38460b48
KH
5106
5107 if (cssid)
5108 return cssid->depth;
5109 return 0;
5110}
67523c48 5111EXPORT_SYMBOL_GPL(css_depth);
38460b48 5112
747388d7
KH
5113/**
5114 * css_is_ancestor - test "root" css is an ancestor of "child"
5115 * @child: the css to be tested.
5116 * @root: the css supporsed to be an ancestor of the child.
5117 *
5118 * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
91c63734 5119 * this function reads css->id, the caller must hold rcu_read_lock().
747388d7
KH
5120 * But, considering usual usage, the csses should be valid objects after test.
5121 * Assuming that the caller will do some action to the child if this returns
5122 * returns true, the caller must take "child";s reference count.
5123 * If "child" is valid object and this returns true, "root" is valid, too.
5124 */
5125
38460b48 5126bool css_is_ancestor(struct cgroup_subsys_state *child,
0b7f569e 5127 const struct cgroup_subsys_state *root)
38460b48 5128{
747388d7
KH
5129 struct css_id *child_id;
5130 struct css_id *root_id;
38460b48 5131
747388d7 5132 child_id = rcu_dereference(child->id);
91c63734
JW
5133 if (!child_id)
5134 return false;
747388d7 5135 root_id = rcu_dereference(root->id);
91c63734
JW
5136 if (!root_id)
5137 return false;
5138 if (child_id->depth < root_id->depth)
5139 return false;
5140 if (child_id->stack[root_id->depth] != root_id->id)
5141 return false;
5142 return true;
38460b48
KH
5143}
5144
38460b48
KH
5145void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
5146{
5147 struct css_id *id = css->id;
5148 /* When this is called before css_id initialization, id can be NULL */
5149 if (!id)
5150 return;
5151
5152 BUG_ON(!ss->use_id);
5153
5154 rcu_assign_pointer(id->css, NULL);
5155 rcu_assign_pointer(css->id, NULL);
42aee6c4 5156 spin_lock(&ss->id_lock);
38460b48 5157 idr_remove(&ss->idr, id->id);
42aee6c4 5158 spin_unlock(&ss->id_lock);
025cea99 5159 kfree_rcu(id, rcu_head);
38460b48 5160}
67523c48 5161EXPORT_SYMBOL_GPL(free_css_id);
38460b48
KH
5162
5163/*
5164 * This is called by init or create(). Then, calls to this function are
5165 * always serialized (By cgroup_mutex() at create()).
5166 */
5167
5168static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
5169{
5170 struct css_id *newid;
d228d9ec 5171 int ret, size;
38460b48
KH
5172
5173 BUG_ON(!ss->use_id);
5174
5175 size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
5176 newid = kzalloc(size, GFP_KERNEL);
5177 if (!newid)
5178 return ERR_PTR(-ENOMEM);
d228d9ec
TH
5179
5180 idr_preload(GFP_KERNEL);
42aee6c4 5181 spin_lock(&ss->id_lock);
38460b48 5182 /* Don't use 0. allocates an ID of 1-65535 */
d228d9ec 5183 ret = idr_alloc(&ss->idr, newid, 1, CSS_ID_MAX + 1, GFP_NOWAIT);
42aee6c4 5184 spin_unlock(&ss->id_lock);
d228d9ec 5185 idr_preload_end();
38460b48
KH
5186
5187 /* Returns error when there are no free spaces for new ID.*/
d228d9ec 5188 if (ret < 0)
38460b48 5189 goto err_out;
38460b48 5190
d228d9ec 5191 newid->id = ret;
38460b48
KH
5192 newid->depth = depth;
5193 return newid;
38460b48
KH
5194err_out:
5195 kfree(newid);
d228d9ec 5196 return ERR_PTR(ret);
38460b48
KH
5197
5198}
5199
e6a1105b
BB
5200static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss,
5201 struct cgroup_subsys_state *rootcss)
38460b48
KH
5202{
5203 struct css_id *newid;
38460b48 5204
42aee6c4 5205 spin_lock_init(&ss->id_lock);
38460b48
KH
5206 idr_init(&ss->idr);
5207
38460b48
KH
5208 newid = get_new_cssid(ss, 0);
5209 if (IS_ERR(newid))
5210 return PTR_ERR(newid);
5211
5212 newid->stack[0] = newid->id;
5213 newid->css = rootcss;
5214 rootcss->id = newid;
5215 return 0;
5216}
5217
5218static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
5219 struct cgroup *child)
5220{
5221 int subsys_id, i, depth = 0;
5222 struct cgroup_subsys_state *parent_css, *child_css;
fae9c791 5223 struct css_id *child_id, *parent_id;
38460b48
KH
5224
5225 subsys_id = ss->subsys_id;
5226 parent_css = parent->subsys[subsys_id];
5227 child_css = child->subsys[subsys_id];
38460b48 5228 parent_id = parent_css->id;
94b3dd0f 5229 depth = parent_id->depth + 1;
38460b48
KH
5230
5231 child_id = get_new_cssid(ss, depth);
5232 if (IS_ERR(child_id))
5233 return PTR_ERR(child_id);
5234
5235 for (i = 0; i < depth; i++)
5236 child_id->stack[i] = parent_id->stack[i];
5237 child_id->stack[depth] = child_id->id;
5238 /*
5239 * child_id->css pointer will be set after this cgroup is available
5240 * see cgroup_populate_dir()
5241 */
5242 rcu_assign_pointer(child_css->id, child_id);
5243
5244 return 0;
5245}
5246
5247/**
5248 * css_lookup - lookup css by id
5249 * @ss: cgroup subsys to be looked into.
5250 * @id: the id
5251 *
5252 * Returns pointer to cgroup_subsys_state if there is valid one with id.
5253 * NULL if not. Should be called under rcu_read_lock()
5254 */
5255struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
5256{
5257 struct css_id *cssid = NULL;
5258
5259 BUG_ON(!ss->use_id);
5260 cssid = idr_find(&ss->idr, id);
5261
5262 if (unlikely(!cssid))
5263 return NULL;
5264
5265 return rcu_dereference(cssid->css);
5266}
67523c48 5267EXPORT_SYMBOL_GPL(css_lookup);
38460b48
KH
5268
5269/**
5270 * css_get_next - lookup next cgroup under specified hierarchy.
5271 * @ss: pointer to subsystem
5272 * @id: current position of iteration.
5273 * @root: pointer to css. search tree under this.
5274 * @foundid: position of found object.
5275 *
5276 * Search next css under the specified hierarchy of rootid. Calling under
5277 * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
5278 */
5279struct cgroup_subsys_state *
5280css_get_next(struct cgroup_subsys *ss, int id,
5281 struct cgroup_subsys_state *root, int *foundid)
5282{
5283 struct cgroup_subsys_state *ret = NULL;
5284 struct css_id *tmp;
5285 int tmpid;
5286 int rootid = css_id(root);
5287 int depth = css_depth(root);
5288
5289 if (!rootid)
5290 return NULL;
5291
5292 BUG_ON(!ss->use_id);
ca464d69
HD
5293 WARN_ON_ONCE(!rcu_read_lock_held());
5294
38460b48
KH
5295 /* fill start point for scan */
5296 tmpid = id;
5297 while (1) {
5298 /*
5299 * scan next entry from bitmap(tree), tmpid is updated after
5300 * idr_get_next().
5301 */
38460b48 5302 tmp = idr_get_next(&ss->idr, &tmpid);
38460b48
KH
5303 if (!tmp)
5304 break;
5305 if (tmp->depth >= depth && tmp->stack[depth] == rootid) {
5306 ret = rcu_dereference(tmp->css);
5307 if (ret) {
5308 *foundid = tmpid;
5309 break;
5310 }
5311 }
5312 /* continue to scan from next id */
5313 tmpid = tmpid + 1;
5314 }
5315 return ret;
5316}
5317
e5d1367f
SE
5318/*
5319 * get corresponding css from file open on cgroupfs directory
5320 */
5321struct cgroup_subsys_state *cgroup_css_from_dir(struct file *f, int id)
5322{
5323 struct cgroup *cgrp;
5324 struct inode *inode;
5325 struct cgroup_subsys_state *css;
5326
496ad9aa 5327 inode = file_inode(f);
e5d1367f
SE
5328 /* check in cgroup filesystem dir */
5329 if (inode->i_op != &cgroup_dir_inode_operations)
5330 return ERR_PTR(-EBADF);
5331
5332 if (id < 0 || id >= CGROUP_SUBSYS_COUNT)
5333 return ERR_PTR(-EINVAL);
5334
5335 /* get cgroup */
5336 cgrp = __d_cgrp(f->f_dentry);
5337 css = cgrp->subsys[id];
5338 return css ? css : ERR_PTR(-ENOENT);
5339}
5340
fe693435 5341#ifdef CONFIG_CGROUP_DEBUG
92fb9748 5342static struct cgroup_subsys_state *debug_css_alloc(struct cgroup *cont)
fe693435
PM
5343{
5344 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5345
5346 if (!css)
5347 return ERR_PTR(-ENOMEM);
5348
5349 return css;
5350}
5351
92fb9748 5352static void debug_css_free(struct cgroup *cont)
fe693435
PM
5353{
5354 kfree(cont->subsys[debug_subsys_id]);
5355}
5356
5357static u64 cgroup_refcount_read(struct cgroup *cont, struct cftype *cft)
5358{
5359 return atomic_read(&cont->count);
5360}
5361
5362static u64 debug_taskcount_read(struct cgroup *cont, struct cftype *cft)
5363{
5364 return cgroup_task_count(cont);
5365}
5366
5367static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft)
5368{
5369 return (u64)(unsigned long)current->cgroups;
5370}
5371
5372static u64 current_css_set_refcount_read(struct cgroup *cont,
5373 struct cftype *cft)
5374{
5375 u64 count;
5376
5377 rcu_read_lock();
5378 count = atomic_read(&current->cgroups->refcount);
5379 rcu_read_unlock();
5380 return count;
5381}
5382
7717f7ba
PM
5383static int current_css_set_cg_links_read(struct cgroup *cont,
5384 struct cftype *cft,
5385 struct seq_file *seq)
5386{
5387 struct cg_cgroup_link *link;
5388 struct css_set *cg;
5389
5390 read_lock(&css_set_lock);
5391 rcu_read_lock();
5392 cg = rcu_dereference(current->cgroups);
5393 list_for_each_entry(link, &cg->cg_links, cg_link_list) {
5394 struct cgroup *c = link->cgrp;
5395 const char *name;
5396
5397 if (c->dentry)
5398 name = c->dentry->d_name.name;
5399 else
5400 name = "?";
2c6ab6d2
PM
5401 seq_printf(seq, "Root %d group %s\n",
5402 c->root->hierarchy_id, name);
7717f7ba
PM
5403 }
5404 rcu_read_unlock();
5405 read_unlock(&css_set_lock);
5406 return 0;
5407}
5408
5409#define MAX_TASKS_SHOWN_PER_CSS 25
5410static int cgroup_css_links_read(struct cgroup *cont,
5411 struct cftype *cft,
5412 struct seq_file *seq)
5413{
5414 struct cg_cgroup_link *link;
5415
5416 read_lock(&css_set_lock);
5417 list_for_each_entry(link, &cont->css_sets, cgrp_link_list) {
5418 struct css_set *cg = link->cg;
5419 struct task_struct *task;
5420 int count = 0;
5421 seq_printf(seq, "css_set %p\n", cg);
5422 list_for_each_entry(task, &cg->tasks, cg_list) {
5423 if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
5424 seq_puts(seq, " ...\n");
5425 break;
5426 } else {
5427 seq_printf(seq, " task %d\n",
5428 task_pid_vnr(task));
5429 }
5430 }
5431 }
5432 read_unlock(&css_set_lock);
5433 return 0;
5434}
5435
fe693435
PM
5436static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
5437{
5438 return test_bit(CGRP_RELEASABLE, &cgrp->flags);
5439}
5440
5441static struct cftype debug_files[] = {
5442 {
5443 .name = "cgroup_refcount",
5444 .read_u64 = cgroup_refcount_read,
5445 },
5446 {
5447 .name = "taskcount",
5448 .read_u64 = debug_taskcount_read,
5449 },
5450
5451 {
5452 .name = "current_css_set",
5453 .read_u64 = current_css_set_read,
5454 },
5455
5456 {
5457 .name = "current_css_set_refcount",
5458 .read_u64 = current_css_set_refcount_read,
5459 },
5460
7717f7ba
PM
5461 {
5462 .name = "current_css_set_cg_links",
5463 .read_seq_string = current_css_set_cg_links_read,
5464 },
5465
5466 {
5467 .name = "cgroup_css_links",
5468 .read_seq_string = cgroup_css_links_read,
5469 },
5470
fe693435
PM
5471 {
5472 .name = "releasable",
5473 .read_u64 = releasable_read,
5474 },
fe693435 5475
4baf6e33
TH
5476 { } /* terminate */
5477};
fe693435
PM
5478
5479struct cgroup_subsys debug_subsys = {
5480 .name = "debug",
92fb9748
TH
5481 .css_alloc = debug_css_alloc,
5482 .css_free = debug_css_free,
fe693435 5483 .subsys_id = debug_subsys_id,
4baf6e33 5484 .base_cftypes = debug_files,
fe693435
PM
5485};
5486#endif /* CONFIG_CGROUP_DEBUG */
This page took 0.769175 seconds and 5 git commands to generate.