cgroup: keep css_set and task lists in chronological order
[deliverable/linux.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
0dea1168
KS
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
ddbcc7e8
PM
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
ed3d261b
JP
29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
ddbcc7e8 31#include <linux/cgroup.h>
2ce9738b 32#include <linux/cred.h>
c6d57f33 33#include <linux/ctype.h>
ddbcc7e8 34#include <linux/errno.h>
2ce9738b 35#include <linux/init_task.h>
ddbcc7e8
PM
36#include <linux/kernel.h>
37#include <linux/list.h>
c9482a5b 38#include <linux/magic.h>
ddbcc7e8
PM
39#include <linux/mm.h>
40#include <linux/mutex.h>
41#include <linux/mount.h>
42#include <linux/pagemap.h>
a424316c 43#include <linux/proc_fs.h>
ddbcc7e8
PM
44#include <linux/rcupdate.h>
45#include <linux/sched.h>
ddbcc7e8 46#include <linux/slab.h>
ddbcc7e8 47#include <linux/spinlock.h>
96d365e0 48#include <linux/rwsem.h>
1ed13287 49#include <linux/percpu-rwsem.h>
ddbcc7e8 50#include <linux/string.h>
bbcb81d0 51#include <linux/sort.h>
81a6a5cd 52#include <linux/kmod.h>
846c7bb0
BS
53#include <linux/delayacct.h>
54#include <linux/cgroupstats.h>
0ac801fe 55#include <linux/hashtable.h>
096b7fe0 56#include <linux/pid_namespace.h>
2c6ab6d2 57#include <linux/idr.h>
d1d9fd33 58#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
c4c27fbd 59#include <linux/kthread.h>
776f02fa 60#include <linux/delay.h>
846c7bb0 61
60063497 62#include <linux/atomic.h>
ddbcc7e8 63
b1a21367
TH
64/*
65 * pidlists linger the following amount before being destroyed. The goal
66 * is avoiding frequent destruction in the middle of consecutive read calls
67 * Expiring in the middle is a performance problem not a correctness one.
68 * 1 sec should be enough.
69 */
70#define CGROUP_PIDLIST_DESTROY_DELAY HZ
71
8d7e6fb0
TH
72#define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
73 MAX_CFTYPE_NAME + 2)
74
e25e2cbb
TH
75/*
76 * cgroup_mutex is the master lock. Any modification to cgroup or its
77 * hierarchy must be performed while holding it.
78 *
0e1d768f
TH
79 * css_set_rwsem protects task->cgroups pointer, the list of css_set
80 * objects, and the chain of tasks off each css_set.
e25e2cbb 81 *
0e1d768f
TH
82 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
83 * cgroup.h can use them for lockdep annotations.
e25e2cbb 84 */
2219449a
TH
85#ifdef CONFIG_PROVE_RCU
86DEFINE_MUTEX(cgroup_mutex);
0e1d768f
TH
87DECLARE_RWSEM(css_set_rwsem);
88EXPORT_SYMBOL_GPL(cgroup_mutex);
89EXPORT_SYMBOL_GPL(css_set_rwsem);
2219449a 90#else
81a6a5cd 91static DEFINE_MUTEX(cgroup_mutex);
0e1d768f 92static DECLARE_RWSEM(css_set_rwsem);
2219449a
TH
93#endif
94
6fa4918d 95/*
15a4c835
TH
96 * Protects cgroup_idr and css_idr so that IDs can be released without
97 * grabbing cgroup_mutex.
6fa4918d
TH
98 */
99static DEFINE_SPINLOCK(cgroup_idr_lock);
100
69e943b7
TH
101/*
102 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
103 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
104 */
105static DEFINE_SPINLOCK(release_agent_path_lock);
81a6a5cd 106
1ed13287
TH
107struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
108
8353da1f 109#define cgroup_assert_mutex_or_rcu_locked() \
f78f5b90
PM
110 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
111 !lockdep_is_held(&cgroup_mutex), \
8353da1f 112 "cgroup_mutex or RCU read lock required");
780cd8b3 113
e5fca243
TH
114/*
115 * cgroup destruction makes heavy use of work items and there can be a lot
116 * of concurrent destructions. Use a separate workqueue so that cgroup
117 * destruction work items don't end up filling up max_active of system_wq
118 * which may lead to deadlock.
119 */
120static struct workqueue_struct *cgroup_destroy_wq;
121
b1a21367
TH
122/*
123 * pidlist destructions need to be flushed on cgroup destruction. Use a
124 * separate workqueue as flush domain.
125 */
126static struct workqueue_struct *cgroup_pidlist_destroy_wq;
127
3ed80a62 128/* generate an array of cgroup subsystem pointers */
073219e9 129#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
3ed80a62 130static struct cgroup_subsys *cgroup_subsys[] = {
ddbcc7e8
PM
131#include <linux/cgroup_subsys.h>
132};
073219e9
TH
133#undef SUBSYS
134
135/* array of cgroup subsystem names */
136#define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
137static const char *cgroup_subsys_name[] = {
ddbcc7e8
PM
138#include <linux/cgroup_subsys.h>
139};
073219e9 140#undef SUBSYS
ddbcc7e8 141
49d1dc4b
TH
142/* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
143#define SUBSYS(_x) \
144 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
145 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
146 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
147 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
148#include <linux/cgroup_subsys.h>
149#undef SUBSYS
150
151#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
152static struct static_key_true *cgroup_subsys_enabled_key[] = {
153#include <linux/cgroup_subsys.h>
154};
155#undef SUBSYS
156
157#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
158static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
159#include <linux/cgroup_subsys.h>
160};
161#undef SUBSYS
162
ddbcc7e8 163/*
3dd06ffa 164 * The default hierarchy, reserved for the subsystems that are otherwise
9871bf95
TH
165 * unattached - it never has more than a single cgroup, and all tasks are
166 * part of that cgroup.
ddbcc7e8 167 */
a2dd4247 168struct cgroup_root cgrp_dfl_root;
d0ec4230 169EXPORT_SYMBOL_GPL(cgrp_dfl_root);
9871bf95 170
a2dd4247
TH
171/*
172 * The default hierarchy always exists but is hidden until mounted for the
173 * first time. This is for backward compatibility.
174 */
175static bool cgrp_dfl_root_visible;
ddbcc7e8 176
a8ddc821
TH
177/*
178 * Set by the boot param of the same name and makes subsystems with NULL
179 * ->dfl_files to use ->legacy_files on the default hierarchy.
180 */
181static bool cgroup_legacy_files_on_dfl;
182
5533e011 183/* some controllers are not supported in the default hierarchy */
8ab456ac 184static unsigned long cgrp_dfl_root_inhibit_ss_mask;
5533e011 185
ddbcc7e8
PM
186/* The list of hierarchy roots */
187
9871bf95
TH
188static LIST_HEAD(cgroup_roots);
189static int cgroup_root_count;
ddbcc7e8 190
3417ae1f 191/* hierarchy ID allocation and mapping, protected by cgroup_mutex */
1a574231 192static DEFINE_IDR(cgroup_hierarchy_idr);
2c6ab6d2 193
794611a1 194/*
0cb51d71
TH
195 * Assign a monotonically increasing serial number to csses. It guarantees
196 * cgroups with bigger numbers are newer than those with smaller numbers.
197 * Also, as csses are always appended to the parent's ->children list, it
198 * guarantees that sibling csses are always sorted in the ascending serial
199 * number order on the list. Protected by cgroup_mutex.
794611a1 200 */
0cb51d71 201static u64 css_serial_nr_next = 1;
794611a1 202
cb4a3167
AS
203/*
204 * These bitmask flags indicate whether tasks in the fork and exit paths have
205 * fork/exit handlers to call. This avoids us having to do extra work in the
206 * fork/exit path to check which subsystems have fork/exit callbacks.
ddbcc7e8 207 */
cb4a3167
AS
208static unsigned long have_fork_callback __read_mostly;
209static unsigned long have_exit_callback __read_mostly;
ddbcc7e8 210
7e47682e
AS
211/* Ditto for the can_fork callback. */
212static unsigned long have_canfork_callback __read_mostly;
213
a14c6874
TH
214static struct cftype cgroup_dfl_base_files[];
215static struct cftype cgroup_legacy_base_files[];
628f7cd4 216
3dd06ffa 217static int rebind_subsystems(struct cgroup_root *dst_root,
8ab456ac 218 unsigned long ss_mask);
42809dd4 219static int cgroup_destroy_locked(struct cgroup *cgrp);
f63070d3
TH
220static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
221 bool visible);
9d755d33 222static void css_release(struct percpu_ref *ref);
f8f22e53 223static void kill_css(struct cgroup_subsys_state *css);
4df8dc90
TH
224static int cgroup_addrm_files(struct cgroup_subsys_state *css,
225 struct cgroup *cgrp, struct cftype cfts[],
2bb566cb 226 bool is_add);
42809dd4 227
fc5ed1e9
TH
228/**
229 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
230 * @ssid: subsys ID of interest
231 *
232 * cgroup_subsys_enabled() can only be used with literal subsys names which
233 * is fine for individual subsystems but unsuitable for cgroup core. This
234 * is slower static_key_enabled() based test indexed by @ssid.
235 */
236static bool cgroup_ssid_enabled(int ssid)
237{
238 return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
239}
240
9e10a130
TH
241/**
242 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
243 * @cgrp: the cgroup of interest
244 *
245 * The default hierarchy is the v2 interface of cgroup and this function
246 * can be used to test whether a cgroup is on the default hierarchy for
247 * cases where a subsystem should behave differnetly depending on the
248 * interface version.
249 *
250 * The set of behaviors which change on the default hierarchy are still
251 * being determined and the mount option is prefixed with __DEVEL__.
252 *
253 * List of changed behaviors:
254 *
255 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
256 * and "name" are disallowed.
257 *
258 * - When mounting an existing superblock, mount options should match.
259 *
260 * - Remount is disallowed.
261 *
262 * - rename(2) is disallowed.
263 *
264 * - "tasks" is removed. Everything should be at process granularity. Use
265 * "cgroup.procs" instead.
266 *
267 * - "cgroup.procs" is not sorted. pids will be unique unless they got
268 * recycled inbetween reads.
269 *
270 * - "release_agent" and "notify_on_release" are removed. Replacement
271 * notification mechanism will be implemented.
272 *
273 * - "cgroup.clone_children" is removed.
274 *
275 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
276 * and its descendants contain no task; otherwise, 1. The file also
277 * generates kernfs notification which can be monitored through poll and
278 * [di]notify when the value of the file changes.
279 *
280 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
281 * take masks of ancestors with non-empty cpus/mems, instead of being
282 * moved to an ancestor.
283 *
284 * - cpuset: a task can be moved into an empty cpuset, and again it takes
285 * masks of ancestors.
286 *
287 * - memcg: use_hierarchy is on by default and the cgroup file for the flag
288 * is not created.
289 *
290 * - blkcg: blk-throttle becomes properly hierarchical.
291 *
292 * - debug: disallowed on the default hierarchy.
293 */
294static bool cgroup_on_dfl(const struct cgroup *cgrp)
295{
296 return cgrp->root == &cgrp_dfl_root;
297}
298
6fa4918d
TH
299/* IDR wrappers which synchronize using cgroup_idr_lock */
300static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
301 gfp_t gfp_mask)
302{
303 int ret;
304
305 idr_preload(gfp_mask);
54504e97 306 spin_lock_bh(&cgroup_idr_lock);
cf780b7d 307 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_WAIT);
54504e97 308 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
309 idr_preload_end();
310 return ret;
311}
312
313static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
314{
315 void *ret;
316
54504e97 317 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 318 ret = idr_replace(idr, ptr, id);
54504e97 319 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
320 return ret;
321}
322
323static void cgroup_idr_remove(struct idr *idr, int id)
324{
54504e97 325 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 326 idr_remove(idr, id);
54504e97 327 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
328}
329
d51f39b0
TH
330static struct cgroup *cgroup_parent(struct cgroup *cgrp)
331{
332 struct cgroup_subsys_state *parent_css = cgrp->self.parent;
333
334 if (parent_css)
335 return container_of(parent_css, struct cgroup, self);
336 return NULL;
337}
338
95109b62
TH
339/**
340 * cgroup_css - obtain a cgroup's css for the specified subsystem
341 * @cgrp: the cgroup of interest
9d800df1 342 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
95109b62 343 *
ca8bdcaf
TH
344 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
345 * function must be called either under cgroup_mutex or rcu_read_lock() and
346 * the caller is responsible for pinning the returned css if it wants to
347 * keep accessing it outside the said locks. This function may return
348 * %NULL if @cgrp doesn't have @subsys_id enabled.
95109b62
TH
349 */
350static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
ca8bdcaf 351 struct cgroup_subsys *ss)
95109b62 352{
ca8bdcaf 353 if (ss)
aec25020 354 return rcu_dereference_check(cgrp->subsys[ss->id],
ace2bee8 355 lockdep_is_held(&cgroup_mutex));
ca8bdcaf 356 else
9d800df1 357 return &cgrp->self;
95109b62 358}
42809dd4 359
aec3dfcb
TH
360/**
361 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
362 * @cgrp: the cgroup of interest
9d800df1 363 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
aec3dfcb 364 *
d0f702e6 365 * Similar to cgroup_css() but returns the effective css, which is defined
aec3dfcb
TH
366 * as the matching css of the nearest ancestor including self which has @ss
367 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
368 * function is guaranteed to return non-NULL css.
369 */
370static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
371 struct cgroup_subsys *ss)
372{
373 lockdep_assert_held(&cgroup_mutex);
374
375 if (!ss)
9d800df1 376 return &cgrp->self;
aec3dfcb
TH
377
378 if (!(cgrp->root->subsys_mask & (1 << ss->id)))
379 return NULL;
380
eeecbd19
TH
381 /*
382 * This function is used while updating css associations and thus
383 * can't test the csses directly. Use ->child_subsys_mask.
384 */
d51f39b0
TH
385 while (cgroup_parent(cgrp) &&
386 !(cgroup_parent(cgrp)->child_subsys_mask & (1 << ss->id)))
387 cgrp = cgroup_parent(cgrp);
aec3dfcb
TH
388
389 return cgroup_css(cgrp, ss);
95109b62 390}
42809dd4 391
eeecbd19
TH
392/**
393 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
394 * @cgrp: the cgroup of interest
395 * @ss: the subsystem of interest
396 *
397 * Find and get the effective css of @cgrp for @ss. The effective css is
398 * defined as the matching css of the nearest ancestor including self which
399 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
400 * the root css is returned, so this function always returns a valid css.
401 * The returned css must be put using css_put().
402 */
403struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
404 struct cgroup_subsys *ss)
405{
406 struct cgroup_subsys_state *css;
407
408 rcu_read_lock();
409
410 do {
411 css = cgroup_css(cgrp, ss);
412
413 if (css && css_tryget_online(css))
414 goto out_unlock;
415 cgrp = cgroup_parent(cgrp);
416 } while (cgrp);
417
418 css = init_css_set.subsys[ss->id];
419 css_get(css);
420out_unlock:
421 rcu_read_unlock();
422 return css;
423}
424
ddbcc7e8 425/* convenient tests for these bits */
54766d4a 426static inline bool cgroup_is_dead(const struct cgroup *cgrp)
ddbcc7e8 427{
184faf32 428 return !(cgrp->self.flags & CSS_ONLINE);
ddbcc7e8
PM
429}
430
052c3f3a
TH
431static void cgroup_get(struct cgroup *cgrp)
432{
433 WARN_ON_ONCE(cgroup_is_dead(cgrp));
434 css_get(&cgrp->self);
435}
436
437static bool cgroup_tryget(struct cgroup *cgrp)
438{
439 return css_tryget(&cgrp->self);
440}
441
442static void cgroup_put(struct cgroup *cgrp)
443{
444 css_put(&cgrp->self);
445}
446
b4168640 447struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
59f5296b 448{
2bd59d48 449 struct cgroup *cgrp = of->kn->parent->priv;
b4168640 450 struct cftype *cft = of_cft(of);
2bd59d48
TH
451
452 /*
453 * This is open and unprotected implementation of cgroup_css().
454 * seq_css() is only called from a kernfs file operation which has
455 * an active reference on the file. Because all the subsystem
456 * files are drained before a css is disassociated with a cgroup,
457 * the matching css from the cgroup's subsys table is guaranteed to
458 * be and stay valid until the enclosing operation is complete.
459 */
460 if (cft->ss)
461 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
462 else
9d800df1 463 return &cgrp->self;
59f5296b 464}
b4168640 465EXPORT_SYMBOL_GPL(of_css);
59f5296b 466
78574cf9
LZ
467/**
468 * cgroup_is_descendant - test ancestry
469 * @cgrp: the cgroup to be tested
470 * @ancestor: possible ancestor of @cgrp
471 *
472 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
473 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
474 * and @ancestor are accessible.
475 */
476bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
477{
478 while (cgrp) {
479 if (cgrp == ancestor)
480 return true;
d51f39b0 481 cgrp = cgroup_parent(cgrp);
78574cf9
LZ
482 }
483 return false;
484}
ddbcc7e8 485
e9685a03 486static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 487{
bd89aabc 488 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
489}
490
1c6727af
TH
491/**
492 * for_each_css - iterate all css's of a cgroup
493 * @css: the iteration cursor
494 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
495 * @cgrp: the target cgroup to iterate css's of
496 *
aec3dfcb 497 * Should be called under cgroup_[tree_]mutex.
1c6727af
TH
498 */
499#define for_each_css(css, ssid, cgrp) \
500 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
501 if (!((css) = rcu_dereference_check( \
502 (cgrp)->subsys[(ssid)], \
503 lockdep_is_held(&cgroup_mutex)))) { } \
504 else
505
aec3dfcb
TH
506/**
507 * for_each_e_css - iterate all effective css's of a cgroup
508 * @css: the iteration cursor
509 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
510 * @cgrp: the target cgroup to iterate css's of
511 *
512 * Should be called under cgroup_[tree_]mutex.
513 */
514#define for_each_e_css(css, ssid, cgrp) \
515 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
516 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
517 ; \
518 else
519
30159ec7 520/**
3ed80a62 521 * for_each_subsys - iterate all enabled cgroup subsystems
30159ec7 522 * @ss: the iteration cursor
780cd8b3 523 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
30159ec7 524 */
780cd8b3 525#define for_each_subsys(ss, ssid) \
3ed80a62
TH
526 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
527 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
30159ec7 528
cb4a3167
AS
529/**
530 * for_each_subsys_which - filter for_each_subsys with a bitmask
531 * @ss: the iteration cursor
532 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
533 * @ss_maskp: a pointer to the bitmask
534 *
535 * The block will only run for cases where the ssid-th bit (1 << ssid) of
536 * mask is set to 1.
537 */
538#define for_each_subsys_which(ss, ssid, ss_maskp) \
539 if (!CGROUP_SUBSYS_COUNT) /* to avoid spurious gcc warning */ \
4a705c5c 540 (ssid) = 0; \
cb4a3167
AS
541 else \
542 for_each_set_bit(ssid, ss_maskp, CGROUP_SUBSYS_COUNT) \
543 if (((ss) = cgroup_subsys[ssid]) && false) \
544 break; \
545 else
546
985ed670
TH
547/* iterate across the hierarchies */
548#define for_each_root(root) \
5549c497 549 list_for_each_entry((root), &cgroup_roots, root_list)
ddbcc7e8 550
f8f22e53
TH
551/* iterate over child cgrps, lock should be held throughout iteration */
552#define cgroup_for_each_live_child(child, cgrp) \
d5c419b6 553 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
8353da1f 554 if (({ lockdep_assert_held(&cgroup_mutex); \
f8f22e53
TH
555 cgroup_is_dead(child); })) \
556 ; \
557 else
7ae1bad9 558
81a6a5cd 559static void cgroup_release_agent(struct work_struct *work);
bd89aabc 560static void check_for_release(struct cgroup *cgrp);
81a6a5cd 561
69d0206c
TH
562/*
563 * A cgroup can be associated with multiple css_sets as different tasks may
564 * belong to different cgroups on different hierarchies. In the other
565 * direction, a css_set is naturally associated with multiple cgroups.
566 * This M:N relationship is represented by the following link structure
567 * which exists for each association and allows traversing the associations
568 * from both sides.
569 */
570struct cgrp_cset_link {
571 /* the cgroup and css_set this link associates */
572 struct cgroup *cgrp;
573 struct css_set *cset;
574
575 /* list of cgrp_cset_links anchored at cgrp->cset_links */
576 struct list_head cset_link;
577
578 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
579 struct list_head cgrp_link;
817929ec
PM
580};
581
172a2c06
TH
582/*
583 * The default css_set - used by init and its children prior to any
817929ec
PM
584 * hierarchies being mounted. It contains a pointer to the root state
585 * for each subsystem. Also used to anchor the list of css_sets. Not
586 * reference-counted, to improve performance when child cgroups
587 * haven't been created.
588 */
5024ae29 589struct css_set init_css_set = {
172a2c06
TH
590 .refcount = ATOMIC_INIT(1),
591 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
592 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
593 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
594 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
595 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
596};
817929ec 597
172a2c06 598static int css_set_count = 1; /* 1 for init_css_set */
817929ec 599
0de0942d
TH
600/**
601 * css_set_populated - does a css_set contain any tasks?
602 * @cset: target css_set
603 */
604static bool css_set_populated(struct css_set *cset)
605{
606 lockdep_assert_held(&css_set_rwsem);
607
608 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
609}
610
842b597e
TH
611/**
612 * cgroup_update_populated - updated populated count of a cgroup
613 * @cgrp: the target cgroup
614 * @populated: inc or dec populated count
615 *
0de0942d
TH
616 * One of the css_sets associated with @cgrp is either getting its first
617 * task or losing the last. Update @cgrp->populated_cnt accordingly. The
618 * count is propagated towards root so that a given cgroup's populated_cnt
619 * is zero iff the cgroup and all its descendants don't contain any tasks.
842b597e
TH
620 *
621 * @cgrp's interface file "cgroup.populated" is zero if
622 * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt
623 * changes from or to zero, userland is notified that the content of the
624 * interface file has changed. This can be used to detect when @cgrp and
625 * its descendants become populated or empty.
626 */
627static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
628{
629 lockdep_assert_held(&css_set_rwsem);
630
631 do {
632 bool trigger;
633
634 if (populated)
635 trigger = !cgrp->populated_cnt++;
636 else
637 trigger = !--cgrp->populated_cnt;
638
639 if (!trigger)
640 break;
641
ad2ed2b3 642 check_for_release(cgrp);
6f60eade
TH
643 cgroup_file_notify(&cgrp->events_file);
644
d51f39b0 645 cgrp = cgroup_parent(cgrp);
842b597e
TH
646 } while (cgrp);
647}
648
0de0942d
TH
649/**
650 * css_set_update_populated - update populated state of a css_set
651 * @cset: target css_set
652 * @populated: whether @cset is populated or depopulated
653 *
654 * @cset is either getting the first task or losing the last. Update the
655 * ->populated_cnt of all associated cgroups accordingly.
656 */
657static void css_set_update_populated(struct css_set *cset, bool populated)
658{
659 struct cgrp_cset_link *link;
660
661 lockdep_assert_held(&css_set_rwsem);
662
663 list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
664 cgroup_update_populated(link->cgrp, populated);
665}
666
7717f7ba
PM
667/*
668 * hash table for cgroup groups. This improves the performance to find
669 * an existing css_set. This hash doesn't (currently) take into
670 * account cgroups in empty hierarchies.
671 */
472b1053 672#define CSS_SET_HASH_BITS 7
0ac801fe 673static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
472b1053 674
0ac801fe 675static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
472b1053 676{
0ac801fe 677 unsigned long key = 0UL;
30159ec7
TH
678 struct cgroup_subsys *ss;
679 int i;
472b1053 680
30159ec7 681 for_each_subsys(ss, i)
0ac801fe
LZ
682 key += (unsigned long)css[i];
683 key = (key >> 16) ^ key;
472b1053 684
0ac801fe 685 return key;
472b1053
LZ
686}
687
a25eb52e 688static void put_css_set_locked(struct css_set *cset)
b4f48b63 689{
69d0206c 690 struct cgrp_cset_link *link, *tmp_link;
2d8f243a
TH
691 struct cgroup_subsys *ss;
692 int ssid;
5abb8855 693
89c5509b
TH
694 lockdep_assert_held(&css_set_rwsem);
695
696 if (!atomic_dec_and_test(&cset->refcount))
146aa1bd 697 return;
81a6a5cd 698
2c6ab6d2 699 /* This css_set is dead. unlink it and release cgroup refcounts */
2d8f243a
TH
700 for_each_subsys(ss, ssid)
701 list_del(&cset->e_cset_node[ssid]);
5abb8855 702 hash_del(&cset->hlist);
2c6ab6d2
PM
703 css_set_count--;
704
69d0206c 705 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
69d0206c
TH
706 list_del(&link->cset_link);
707 list_del(&link->cgrp_link);
2ceb231b
TH
708 if (cgroup_parent(link->cgrp))
709 cgroup_put(link->cgrp);
2c6ab6d2 710 kfree(link);
81a6a5cd 711 }
2c6ab6d2 712
5abb8855 713 kfree_rcu(cset, rcu_head);
b4f48b63
PM
714}
715
a25eb52e 716static void put_css_set(struct css_set *cset)
89c5509b
TH
717{
718 /*
719 * Ensure that the refcount doesn't hit zero while any readers
720 * can see it. Similar to atomic_dec_and_lock(), but for an
721 * rwlock
722 */
723 if (atomic_add_unless(&cset->refcount, -1, 1))
724 return;
725
726 down_write(&css_set_rwsem);
a25eb52e 727 put_css_set_locked(cset);
89c5509b
TH
728 up_write(&css_set_rwsem);
729}
730
817929ec
PM
731/*
732 * refcounted get/put for css_set objects
733 */
5abb8855 734static inline void get_css_set(struct css_set *cset)
817929ec 735{
5abb8855 736 atomic_inc(&cset->refcount);
817929ec
PM
737}
738
b326f9d0 739/**
7717f7ba 740 * compare_css_sets - helper function for find_existing_css_set().
5abb8855
TH
741 * @cset: candidate css_set being tested
742 * @old_cset: existing css_set for a task
7717f7ba
PM
743 * @new_cgrp: cgroup that's being entered by the task
744 * @template: desired set of css pointers in css_set (pre-calculated)
745 *
6f4b7e63 746 * Returns true if "cset" matches "old_cset" except for the hierarchy
7717f7ba
PM
747 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
748 */
5abb8855
TH
749static bool compare_css_sets(struct css_set *cset,
750 struct css_set *old_cset,
7717f7ba
PM
751 struct cgroup *new_cgrp,
752 struct cgroup_subsys_state *template[])
753{
754 struct list_head *l1, *l2;
755
aec3dfcb
TH
756 /*
757 * On the default hierarchy, there can be csets which are
758 * associated with the same set of cgroups but different csses.
759 * Let's first ensure that csses match.
760 */
761 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
7717f7ba 762 return false;
7717f7ba
PM
763
764 /*
765 * Compare cgroup pointers in order to distinguish between
aec3dfcb
TH
766 * different cgroups in hierarchies. As different cgroups may
767 * share the same effective css, this comparison is always
768 * necessary.
7717f7ba 769 */
69d0206c
TH
770 l1 = &cset->cgrp_links;
771 l2 = &old_cset->cgrp_links;
7717f7ba 772 while (1) {
69d0206c 773 struct cgrp_cset_link *link1, *link2;
5abb8855 774 struct cgroup *cgrp1, *cgrp2;
7717f7ba
PM
775
776 l1 = l1->next;
777 l2 = l2->next;
778 /* See if we reached the end - both lists are equal length. */
69d0206c
TH
779 if (l1 == &cset->cgrp_links) {
780 BUG_ON(l2 != &old_cset->cgrp_links);
7717f7ba
PM
781 break;
782 } else {
69d0206c 783 BUG_ON(l2 == &old_cset->cgrp_links);
7717f7ba
PM
784 }
785 /* Locate the cgroups associated with these links. */
69d0206c
TH
786 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
787 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
788 cgrp1 = link1->cgrp;
789 cgrp2 = link2->cgrp;
7717f7ba 790 /* Hierarchies should be linked in the same order. */
5abb8855 791 BUG_ON(cgrp1->root != cgrp2->root);
7717f7ba
PM
792
793 /*
794 * If this hierarchy is the hierarchy of the cgroup
795 * that's changing, then we need to check that this
796 * css_set points to the new cgroup; if it's any other
797 * hierarchy, then this css_set should point to the
798 * same cgroup as the old css_set.
799 */
5abb8855
TH
800 if (cgrp1->root == new_cgrp->root) {
801 if (cgrp1 != new_cgrp)
7717f7ba
PM
802 return false;
803 } else {
5abb8855 804 if (cgrp1 != cgrp2)
7717f7ba
PM
805 return false;
806 }
807 }
808 return true;
809}
810
b326f9d0
TH
811/**
812 * find_existing_css_set - init css array and find the matching css_set
813 * @old_cset: the css_set that we're using before the cgroup transition
814 * @cgrp: the cgroup that we're moving into
815 * @template: out param for the new set of csses, should be clear on entry
817929ec 816 */
5abb8855
TH
817static struct css_set *find_existing_css_set(struct css_set *old_cset,
818 struct cgroup *cgrp,
819 struct cgroup_subsys_state *template[])
b4f48b63 820{
3dd06ffa 821 struct cgroup_root *root = cgrp->root;
30159ec7 822 struct cgroup_subsys *ss;
5abb8855 823 struct css_set *cset;
0ac801fe 824 unsigned long key;
b326f9d0 825 int i;
817929ec 826
aae8aab4
BB
827 /*
828 * Build the set of subsystem state objects that we want to see in the
829 * new css_set. while subsystems can change globally, the entries here
830 * won't change, so no need for locking.
831 */
30159ec7 832 for_each_subsys(ss, i) {
f392e51c 833 if (root->subsys_mask & (1UL << i)) {
aec3dfcb
TH
834 /*
835 * @ss is in this hierarchy, so we want the
836 * effective css from @cgrp.
837 */
838 template[i] = cgroup_e_css(cgrp, ss);
817929ec 839 } else {
aec3dfcb
TH
840 /*
841 * @ss is not in this hierarchy, so we don't want
842 * to change the css.
843 */
5abb8855 844 template[i] = old_cset->subsys[i];
817929ec
PM
845 }
846 }
847
0ac801fe 848 key = css_set_hash(template);
5abb8855
TH
849 hash_for_each_possible(css_set_table, cset, hlist, key) {
850 if (!compare_css_sets(cset, old_cset, cgrp, template))
7717f7ba
PM
851 continue;
852
853 /* This css_set matches what we need */
5abb8855 854 return cset;
472b1053 855 }
817929ec
PM
856
857 /* No existing cgroup group matched */
858 return NULL;
859}
860
69d0206c 861static void free_cgrp_cset_links(struct list_head *links_to_free)
36553434 862{
69d0206c 863 struct cgrp_cset_link *link, *tmp_link;
36553434 864
69d0206c
TH
865 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
866 list_del(&link->cset_link);
36553434
LZ
867 kfree(link);
868 }
869}
870
69d0206c
TH
871/**
872 * allocate_cgrp_cset_links - allocate cgrp_cset_links
873 * @count: the number of links to allocate
874 * @tmp_links: list_head the allocated links are put on
875 *
876 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
877 * through ->cset_link. Returns 0 on success or -errno.
817929ec 878 */
69d0206c 879static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
817929ec 880{
69d0206c 881 struct cgrp_cset_link *link;
817929ec 882 int i;
69d0206c
TH
883
884 INIT_LIST_HEAD(tmp_links);
885
817929ec 886 for (i = 0; i < count; i++) {
f4f4be2b 887 link = kzalloc(sizeof(*link), GFP_KERNEL);
817929ec 888 if (!link) {
69d0206c 889 free_cgrp_cset_links(tmp_links);
817929ec
PM
890 return -ENOMEM;
891 }
69d0206c 892 list_add(&link->cset_link, tmp_links);
817929ec
PM
893 }
894 return 0;
895}
896
c12f65d4
LZ
897/**
898 * link_css_set - a helper function to link a css_set to a cgroup
69d0206c 899 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
5abb8855 900 * @cset: the css_set to be linked
c12f65d4
LZ
901 * @cgrp: the destination cgroup
902 */
69d0206c
TH
903static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
904 struct cgroup *cgrp)
c12f65d4 905{
69d0206c 906 struct cgrp_cset_link *link;
c12f65d4 907
69d0206c 908 BUG_ON(list_empty(tmp_links));
6803c006
TH
909
910 if (cgroup_on_dfl(cgrp))
911 cset->dfl_cgrp = cgrp;
912
69d0206c
TH
913 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
914 link->cset = cset;
7717f7ba 915 link->cgrp = cgrp;
842b597e 916
7717f7ba 917 /*
389b9c1b
TH
918 * Always add links to the tail of the lists so that the lists are
919 * in choronological order.
7717f7ba 920 */
389b9c1b 921 list_move_tail(&link->cset_link, &cgrp->cset_links);
69d0206c 922 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
2ceb231b
TH
923
924 if (cgroup_parent(cgrp))
925 cgroup_get(cgrp);
c12f65d4
LZ
926}
927
b326f9d0
TH
928/**
929 * find_css_set - return a new css_set with one cgroup updated
930 * @old_cset: the baseline css_set
931 * @cgrp: the cgroup to be updated
932 *
933 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
934 * substituted into the appropriate hierarchy.
817929ec 935 */
5abb8855
TH
936static struct css_set *find_css_set(struct css_set *old_cset,
937 struct cgroup *cgrp)
817929ec 938{
b326f9d0 939 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
5abb8855 940 struct css_set *cset;
69d0206c
TH
941 struct list_head tmp_links;
942 struct cgrp_cset_link *link;
2d8f243a 943 struct cgroup_subsys *ss;
0ac801fe 944 unsigned long key;
2d8f243a 945 int ssid;
472b1053 946
b326f9d0
TH
947 lockdep_assert_held(&cgroup_mutex);
948
817929ec
PM
949 /* First see if we already have a cgroup group that matches
950 * the desired set */
96d365e0 951 down_read(&css_set_rwsem);
5abb8855
TH
952 cset = find_existing_css_set(old_cset, cgrp, template);
953 if (cset)
954 get_css_set(cset);
96d365e0 955 up_read(&css_set_rwsem);
817929ec 956
5abb8855
TH
957 if (cset)
958 return cset;
817929ec 959
f4f4be2b 960 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
5abb8855 961 if (!cset)
817929ec
PM
962 return NULL;
963
69d0206c 964 /* Allocate all the cgrp_cset_link objects that we'll need */
9871bf95 965 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
5abb8855 966 kfree(cset);
817929ec
PM
967 return NULL;
968 }
969
5abb8855 970 atomic_set(&cset->refcount, 1);
69d0206c 971 INIT_LIST_HEAD(&cset->cgrp_links);
5abb8855 972 INIT_LIST_HEAD(&cset->tasks);
c7561128 973 INIT_LIST_HEAD(&cset->mg_tasks);
1958d2d5 974 INIT_LIST_HEAD(&cset->mg_preload_node);
b3dc094e 975 INIT_LIST_HEAD(&cset->mg_node);
5abb8855 976 INIT_HLIST_NODE(&cset->hlist);
817929ec
PM
977
978 /* Copy the set of subsystem state objects generated in
979 * find_existing_css_set() */
5abb8855 980 memcpy(cset->subsys, template, sizeof(cset->subsys));
817929ec 981
96d365e0 982 down_write(&css_set_rwsem);
817929ec 983 /* Add reference counts and links from the new css_set. */
69d0206c 984 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
7717f7ba 985 struct cgroup *c = link->cgrp;
69d0206c 986
7717f7ba
PM
987 if (c->root == cgrp->root)
988 c = cgrp;
69d0206c 989 link_css_set(&tmp_links, cset, c);
7717f7ba 990 }
817929ec 991
69d0206c 992 BUG_ON(!list_empty(&tmp_links));
817929ec 993
817929ec 994 css_set_count++;
472b1053 995
2d8f243a 996 /* Add @cset to the hash table */
5abb8855
TH
997 key = css_set_hash(cset->subsys);
998 hash_add(css_set_table, &cset->hlist, key);
472b1053 999
2d8f243a
TH
1000 for_each_subsys(ss, ssid)
1001 list_add_tail(&cset->e_cset_node[ssid],
1002 &cset->subsys[ssid]->cgroup->e_csets[ssid]);
1003
96d365e0 1004 up_write(&css_set_rwsem);
817929ec 1005
5abb8855 1006 return cset;
b4f48b63
PM
1007}
1008
3dd06ffa 1009static struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
7717f7ba 1010{
3dd06ffa 1011 struct cgroup *root_cgrp = kf_root->kn->priv;
2bd59d48 1012
3dd06ffa 1013 return root_cgrp->root;
2bd59d48
TH
1014}
1015
3dd06ffa 1016static int cgroup_init_root_id(struct cgroup_root *root)
f2e85d57
TH
1017{
1018 int id;
1019
1020 lockdep_assert_held(&cgroup_mutex);
1021
985ed670 1022 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
f2e85d57
TH
1023 if (id < 0)
1024 return id;
1025
1026 root->hierarchy_id = id;
1027 return 0;
1028}
1029
3dd06ffa 1030static void cgroup_exit_root_id(struct cgroup_root *root)
f2e85d57
TH
1031{
1032 lockdep_assert_held(&cgroup_mutex);
1033
1034 if (root->hierarchy_id) {
1035 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1036 root->hierarchy_id = 0;
1037 }
1038}
1039
3dd06ffa 1040static void cgroup_free_root(struct cgroup_root *root)
f2e85d57
TH
1041{
1042 if (root) {
d0f702e6 1043 /* hierarchy ID should already have been released */
f2e85d57
TH
1044 WARN_ON_ONCE(root->hierarchy_id);
1045
1046 idr_destroy(&root->cgroup_idr);
1047 kfree(root);
1048 }
1049}
1050
3dd06ffa 1051static void cgroup_destroy_root(struct cgroup_root *root)
59f5296b 1052{
3dd06ffa 1053 struct cgroup *cgrp = &root->cgrp;
f2e85d57 1054 struct cgrp_cset_link *link, *tmp_link;
f2e85d57 1055
2bd59d48 1056 mutex_lock(&cgroup_mutex);
f2e85d57 1057
776f02fa 1058 BUG_ON(atomic_read(&root->nr_cgrps));
d5c419b6 1059 BUG_ON(!list_empty(&cgrp->self.children));
f2e85d57 1060
f2e85d57 1061 /* Rebind all subsystems back to the default hierarchy */
f392e51c 1062 rebind_subsystems(&cgrp_dfl_root, root->subsys_mask);
7717f7ba 1063
7717f7ba 1064 /*
f2e85d57
TH
1065 * Release all the links from cset_links to this hierarchy's
1066 * root cgroup
7717f7ba 1067 */
96d365e0 1068 down_write(&css_set_rwsem);
f2e85d57
TH
1069
1070 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1071 list_del(&link->cset_link);
1072 list_del(&link->cgrp_link);
1073 kfree(link);
1074 }
96d365e0 1075 up_write(&css_set_rwsem);
f2e85d57
TH
1076
1077 if (!list_empty(&root->root_list)) {
1078 list_del(&root->root_list);
1079 cgroup_root_count--;
1080 }
1081
1082 cgroup_exit_root_id(root);
1083
1084 mutex_unlock(&cgroup_mutex);
f2e85d57 1085
2bd59d48 1086 kernfs_destroy_root(root->kf_root);
f2e85d57
TH
1087 cgroup_free_root(root);
1088}
1089
ceb6a081
TH
1090/* look up cgroup associated with given css_set on the specified hierarchy */
1091static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
3dd06ffa 1092 struct cgroup_root *root)
7717f7ba 1093{
7717f7ba
PM
1094 struct cgroup *res = NULL;
1095
96d365e0
TH
1096 lockdep_assert_held(&cgroup_mutex);
1097 lockdep_assert_held(&css_set_rwsem);
1098
5abb8855 1099 if (cset == &init_css_set) {
3dd06ffa 1100 res = &root->cgrp;
7717f7ba 1101 } else {
69d0206c
TH
1102 struct cgrp_cset_link *link;
1103
1104 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 1105 struct cgroup *c = link->cgrp;
69d0206c 1106
7717f7ba
PM
1107 if (c->root == root) {
1108 res = c;
1109 break;
1110 }
1111 }
1112 }
96d365e0 1113
7717f7ba
PM
1114 BUG_ON(!res);
1115 return res;
1116}
1117
ddbcc7e8 1118/*
ceb6a081
TH
1119 * Return the cgroup for "task" from the given hierarchy. Must be
1120 * called with cgroup_mutex and css_set_rwsem held.
1121 */
1122static struct cgroup *task_cgroup_from_root(struct task_struct *task,
3dd06ffa 1123 struct cgroup_root *root)
ceb6a081
TH
1124{
1125 /*
1126 * No need to lock the task - since we hold cgroup_mutex the
1127 * task can't change groups, so the only thing that can happen
1128 * is that it exits and its css is set back to init_css_set.
1129 */
1130 return cset_cgroup_from_root(task_css_set(task), root);
1131}
1132
ddbcc7e8 1133/*
ddbcc7e8
PM
1134 * A task must hold cgroup_mutex to modify cgroups.
1135 *
1136 * Any task can increment and decrement the count field without lock.
1137 * So in general, code holding cgroup_mutex can't rely on the count
1138 * field not changing. However, if the count goes to zero, then only
956db3ca 1139 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
1140 * means that no tasks are currently attached, therefore there is no
1141 * way a task attached to that cgroup can fork (the other way to
1142 * increment the count). So code holding cgroup_mutex can safely
1143 * assume that if the count is zero, it will stay zero. Similarly, if
1144 * a task holds cgroup_mutex on a cgroup with zero count, it
1145 * knows that the cgroup won't be removed, as cgroup_rmdir()
1146 * needs that mutex.
1147 *
ddbcc7e8
PM
1148 * A cgroup can only be deleted if both its 'count' of using tasks
1149 * is zero, and its list of 'children' cgroups is empty. Since all
1150 * tasks in the system use _some_ cgroup, and since there is always at
3dd06ffa 1151 * least one task in the system (init, pid == 1), therefore, root cgroup
ddbcc7e8 1152 * always has either children cgroups and/or using tasks. So we don't
3dd06ffa 1153 * need a special hack to ensure that root cgroup cannot be deleted.
ddbcc7e8
PM
1154 *
1155 * P.S. One more locking exception. RCU is used to guard the
956db3ca 1156 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
1157 */
1158
2bd59d48 1159static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
828c0950 1160static const struct file_operations proc_cgroupstats_operations;
a424316c 1161
8d7e6fb0
TH
1162static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1163 char *buf)
ddbcc7e8 1164{
3e1d2eed
TH
1165 struct cgroup_subsys *ss = cft->ss;
1166
8d7e6fb0
TH
1167 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1168 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
1169 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
3e1d2eed
TH
1170 cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1171 cft->name);
8d7e6fb0
TH
1172 else
1173 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1174 return buf;
ddbcc7e8
PM
1175}
1176
f2e85d57
TH
1177/**
1178 * cgroup_file_mode - deduce file mode of a control file
1179 * @cft: the control file in question
1180 *
7dbdb199 1181 * S_IRUGO for read, S_IWUSR for write.
f2e85d57
TH
1182 */
1183static umode_t cgroup_file_mode(const struct cftype *cft)
65dff759 1184{
f2e85d57 1185 umode_t mode = 0;
65dff759 1186
f2e85d57
TH
1187 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1188 mode |= S_IRUGO;
1189
7dbdb199
TH
1190 if (cft->write_u64 || cft->write_s64 || cft->write) {
1191 if (cft->flags & CFTYPE_WORLD_WRITABLE)
1192 mode |= S_IWUGO;
1193 else
1194 mode |= S_IWUSR;
1195 }
f2e85d57
TH
1196
1197 return mode;
65dff759
LZ
1198}
1199
af0ba678 1200/**
0f060deb 1201 * cgroup_calc_child_subsys_mask - calculate child_subsys_mask
af0ba678 1202 * @cgrp: the target cgroup
0f060deb 1203 * @subtree_control: the new subtree_control mask to consider
af0ba678
TH
1204 *
1205 * On the default hierarchy, a subsystem may request other subsystems to be
1206 * enabled together through its ->depends_on mask. In such cases, more
1207 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1208 *
0f060deb
TH
1209 * This function calculates which subsystems need to be enabled if
1210 * @subtree_control is to be applied to @cgrp. The returned mask is always
1211 * a superset of @subtree_control and follows the usual hierarchy rules.
af0ba678 1212 */
8ab456ac
AS
1213static unsigned long cgroup_calc_child_subsys_mask(struct cgroup *cgrp,
1214 unsigned long subtree_control)
667c2491 1215{
af0ba678 1216 struct cgroup *parent = cgroup_parent(cgrp);
8ab456ac 1217 unsigned long cur_ss_mask = subtree_control;
af0ba678
TH
1218 struct cgroup_subsys *ss;
1219 int ssid;
1220
1221 lockdep_assert_held(&cgroup_mutex);
1222
0f060deb
TH
1223 if (!cgroup_on_dfl(cgrp))
1224 return cur_ss_mask;
af0ba678
TH
1225
1226 while (true) {
8ab456ac 1227 unsigned long new_ss_mask = cur_ss_mask;
af0ba678 1228
a966a4ed
AS
1229 for_each_subsys_which(ss, ssid, &cur_ss_mask)
1230 new_ss_mask |= ss->depends_on;
af0ba678
TH
1231
1232 /*
1233 * Mask out subsystems which aren't available. This can
1234 * happen only if some depended-upon subsystems were bound
1235 * to non-default hierarchies.
1236 */
1237 if (parent)
1238 new_ss_mask &= parent->child_subsys_mask;
1239 else
1240 new_ss_mask &= cgrp->root->subsys_mask;
1241
1242 if (new_ss_mask == cur_ss_mask)
1243 break;
1244 cur_ss_mask = new_ss_mask;
1245 }
1246
0f060deb
TH
1247 return cur_ss_mask;
1248}
1249
1250/**
1251 * cgroup_refresh_child_subsys_mask - update child_subsys_mask
1252 * @cgrp: the target cgroup
1253 *
1254 * Update @cgrp->child_subsys_mask according to the current
1255 * @cgrp->subtree_control using cgroup_calc_child_subsys_mask().
1256 */
1257static void cgroup_refresh_child_subsys_mask(struct cgroup *cgrp)
1258{
1259 cgrp->child_subsys_mask =
1260 cgroup_calc_child_subsys_mask(cgrp, cgrp->subtree_control);
667c2491
TH
1261}
1262
a9746d8d
TH
1263/**
1264 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1265 * @kn: the kernfs_node being serviced
1266 *
1267 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1268 * the method finishes if locking succeeded. Note that once this function
1269 * returns the cgroup returned by cgroup_kn_lock_live() may become
1270 * inaccessible any time. If the caller intends to continue to access the
1271 * cgroup, it should pin it before invoking this function.
1272 */
1273static void cgroup_kn_unlock(struct kernfs_node *kn)
ddbcc7e8 1274{
a9746d8d
TH
1275 struct cgroup *cgrp;
1276
1277 if (kernfs_type(kn) == KERNFS_DIR)
1278 cgrp = kn->priv;
1279 else
1280 cgrp = kn->parent->priv;
1281
1282 mutex_unlock(&cgroup_mutex);
a9746d8d
TH
1283
1284 kernfs_unbreak_active_protection(kn);
1285 cgroup_put(cgrp);
ddbcc7e8
PM
1286}
1287
a9746d8d
TH
1288/**
1289 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1290 * @kn: the kernfs_node being serviced
1291 *
1292 * This helper is to be used by a cgroup kernfs method currently servicing
1293 * @kn. It breaks the active protection, performs cgroup locking and
1294 * verifies that the associated cgroup is alive. Returns the cgroup if
1295 * alive; otherwise, %NULL. A successful return should be undone by a
1296 * matching cgroup_kn_unlock() invocation.
1297 *
1298 * Any cgroup kernfs method implementation which requires locking the
1299 * associated cgroup should use this helper. It avoids nesting cgroup
1300 * locking under kernfs active protection and allows all kernfs operations
1301 * including self-removal.
1302 */
1303static struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn)
05ef1d7c 1304{
a9746d8d
TH
1305 struct cgroup *cgrp;
1306
1307 if (kernfs_type(kn) == KERNFS_DIR)
1308 cgrp = kn->priv;
1309 else
1310 cgrp = kn->parent->priv;
05ef1d7c 1311
2739d3cc 1312 /*
01f6474c 1313 * We're gonna grab cgroup_mutex which nests outside kernfs
a9746d8d
TH
1314 * active_ref. cgroup liveliness check alone provides enough
1315 * protection against removal. Ensure @cgrp stays accessible and
1316 * break the active_ref protection.
2739d3cc 1317 */
aa32362f
LZ
1318 if (!cgroup_tryget(cgrp))
1319 return NULL;
a9746d8d
TH
1320 kernfs_break_active_protection(kn);
1321
2bd59d48 1322 mutex_lock(&cgroup_mutex);
05ef1d7c 1323
a9746d8d
TH
1324 if (!cgroup_is_dead(cgrp))
1325 return cgrp;
1326
1327 cgroup_kn_unlock(kn);
1328 return NULL;
ddbcc7e8 1329}
05ef1d7c 1330
2739d3cc 1331static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
05ef1d7c 1332{
2bd59d48 1333 char name[CGROUP_FILE_NAME_MAX];
05ef1d7c 1334
01f6474c 1335 lockdep_assert_held(&cgroup_mutex);
2bd59d48 1336 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
05ef1d7c
TH
1337}
1338
13af07df 1339/**
4df8dc90
TH
1340 * css_clear_dir - remove subsys files in a cgroup directory
1341 * @css: taget css
1342 * @cgrp_override: specify if target cgroup is different from css->cgroup
13af07df 1343 */
4df8dc90
TH
1344static void css_clear_dir(struct cgroup_subsys_state *css,
1345 struct cgroup *cgrp_override)
05ef1d7c 1346{
4df8dc90
TH
1347 struct cgroup *cgrp = cgrp_override ?: css->cgroup;
1348 struct cftype *cfts;
05ef1d7c 1349
4df8dc90
TH
1350 list_for_each_entry(cfts, &css->ss->cfts, node)
1351 cgroup_addrm_files(css, cgrp, cfts, false);
ddbcc7e8
PM
1352}
1353
ccdca218 1354/**
4df8dc90
TH
1355 * css_populate_dir - create subsys files in a cgroup directory
1356 * @css: target css
1357 * @cgrp_overried: specify if target cgroup is different from css->cgroup
ccdca218
TH
1358 *
1359 * On failure, no file is added.
1360 */
4df8dc90
TH
1361static int css_populate_dir(struct cgroup_subsys_state *css,
1362 struct cgroup *cgrp_override)
ccdca218 1363{
4df8dc90
TH
1364 struct cgroup *cgrp = cgrp_override ?: css->cgroup;
1365 struct cftype *cfts, *failed_cfts;
1366 int ret;
ccdca218 1367
4df8dc90
TH
1368 if (!css->ss) {
1369 if (cgroup_on_dfl(cgrp))
1370 cfts = cgroup_dfl_base_files;
1371 else
1372 cfts = cgroup_legacy_base_files;
ccdca218 1373
4df8dc90
TH
1374 return cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1375 }
ccdca218 1376
4df8dc90
TH
1377 list_for_each_entry(cfts, &css->ss->cfts, node) {
1378 ret = cgroup_addrm_files(css, cgrp, cfts, true);
1379 if (ret < 0) {
1380 failed_cfts = cfts;
1381 goto err;
ccdca218
TH
1382 }
1383 }
1384 return 0;
1385err:
4df8dc90
TH
1386 list_for_each_entry(cfts, &css->ss->cfts, node) {
1387 if (cfts == failed_cfts)
1388 break;
1389 cgroup_addrm_files(css, cgrp, cfts, false);
1390 }
ccdca218
TH
1391 return ret;
1392}
1393
8ab456ac
AS
1394static int rebind_subsystems(struct cgroup_root *dst_root,
1395 unsigned long ss_mask)
ddbcc7e8 1396{
1ada4838 1397 struct cgroup *dcgrp = &dst_root->cgrp;
30159ec7 1398 struct cgroup_subsys *ss;
8ab456ac 1399 unsigned long tmp_ss_mask;
2d8f243a 1400 int ssid, i, ret;
ddbcc7e8 1401
ace2bee8 1402 lockdep_assert_held(&cgroup_mutex);
ddbcc7e8 1403
a966a4ed 1404 for_each_subsys_which(ss, ssid, &ss_mask) {
7fd8c565
TH
1405 /* if @ss has non-root csses attached to it, can't move */
1406 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)))
3ed80a62 1407 return -EBUSY;
1d5be6b2 1408
5df36032 1409 /* can't move between two non-dummy roots either */
7fd8c565 1410 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
5df36032 1411 return -EBUSY;
ddbcc7e8
PM
1412 }
1413
5533e011
TH
1414 /* skip creating root files on dfl_root for inhibited subsystems */
1415 tmp_ss_mask = ss_mask;
1416 if (dst_root == &cgrp_dfl_root)
1417 tmp_ss_mask &= ~cgrp_dfl_root_inhibit_ss_mask;
1418
4df8dc90
TH
1419 for_each_subsys_which(ss, ssid, &tmp_ss_mask) {
1420 struct cgroup *scgrp = &ss->root->cgrp;
1421 int tssid;
1422
1423 ret = css_populate_dir(cgroup_css(scgrp, ss), dcgrp);
1424 if (!ret)
1425 continue;
ddbcc7e8 1426
a2dd4247
TH
1427 /*
1428 * Rebinding back to the default root is not allowed to
1429 * fail. Using both default and non-default roots should
1430 * be rare. Moving subsystems back and forth even more so.
1431 * Just warn about it and continue.
1432 */
4df8dc90
TH
1433 if (dst_root == &cgrp_dfl_root) {
1434 if (cgrp_dfl_root_visible) {
1435 pr_warn("failed to create files (%d) while rebinding 0x%lx to default root\n",
1436 ret, ss_mask);
1437 pr_warn("you may retry by moving them to a different hierarchy and unbinding\n");
1438 }
1439 continue;
a2dd4247 1440 }
4df8dc90
TH
1441
1442 for_each_subsys_which(ss, tssid, &tmp_ss_mask) {
1443 if (tssid == ssid)
1444 break;
1445 css_clear_dir(cgroup_css(scgrp, ss), dcgrp);
1446 }
1447 return ret;
5df36032 1448 }
3126121f
TH
1449
1450 /*
1451 * Nothing can fail from this point on. Remove files for the
1452 * removed subsystems and rebind each subsystem.
1453 */
a966a4ed 1454 for_each_subsys_which(ss, ssid, &ss_mask) {
1ada4838
TH
1455 struct cgroup_root *src_root = ss->root;
1456 struct cgroup *scgrp = &src_root->cgrp;
1457 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
2d8f243a 1458 struct css_set *cset;
a8a648c4 1459
1ada4838 1460 WARN_ON(!css || cgroup_css(dcgrp, ss));
a8a648c4 1461
4df8dc90
TH
1462 css_clear_dir(css, NULL);
1463
1ada4838
TH
1464 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1465 rcu_assign_pointer(dcgrp->subsys[ssid], css);
5df36032 1466 ss->root = dst_root;
1ada4838 1467 css->cgroup = dcgrp;
73e80ed8 1468
2d8f243a
TH
1469 down_write(&css_set_rwsem);
1470 hash_for_each(css_set_table, i, cset, hlist)
1471 list_move_tail(&cset->e_cset_node[ss->id],
1ada4838 1472 &dcgrp->e_csets[ss->id]);
2d8f243a
TH
1473 up_write(&css_set_rwsem);
1474
f392e51c 1475 src_root->subsys_mask &= ~(1 << ssid);
1ada4838
TH
1476 scgrp->subtree_control &= ~(1 << ssid);
1477 cgroup_refresh_child_subsys_mask(scgrp);
f392e51c 1478
bd53d617 1479 /* default hierarchy doesn't enable controllers by default */
f392e51c 1480 dst_root->subsys_mask |= 1 << ssid;
49d1dc4b
TH
1481 if (dst_root == &cgrp_dfl_root) {
1482 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1483 } else {
1ada4838
TH
1484 dcgrp->subtree_control |= 1 << ssid;
1485 cgroup_refresh_child_subsys_mask(dcgrp);
49d1dc4b 1486 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
667c2491 1487 }
a8a648c4 1488
5df36032
TH
1489 if (ss->bind)
1490 ss->bind(css);
ddbcc7e8 1491 }
ddbcc7e8 1492
1ada4838 1493 kernfs_activate(dcgrp->kn);
ddbcc7e8
PM
1494 return 0;
1495}
1496
2bd59d48
TH
1497static int cgroup_show_options(struct seq_file *seq,
1498 struct kernfs_root *kf_root)
ddbcc7e8 1499{
3dd06ffa 1500 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1501 struct cgroup_subsys *ss;
b85d2040 1502 int ssid;
ddbcc7e8 1503
d98817d4
TH
1504 if (root != &cgrp_dfl_root)
1505 for_each_subsys(ss, ssid)
1506 if (root->subsys_mask & (1 << ssid))
61e57c0c 1507 seq_show_option(seq, ss->legacy_name, NULL);
93438629 1508 if (root->flags & CGRP_ROOT_NOPREFIX)
ddbcc7e8 1509 seq_puts(seq, ",noprefix");
93438629 1510 if (root->flags & CGRP_ROOT_XATTR)
03b1cde6 1511 seq_puts(seq, ",xattr");
69e943b7
TH
1512
1513 spin_lock(&release_agent_path_lock);
81a6a5cd 1514 if (strlen(root->release_agent_path))
a068acf2
KC
1515 seq_show_option(seq, "release_agent",
1516 root->release_agent_path);
69e943b7
TH
1517 spin_unlock(&release_agent_path_lock);
1518
3dd06ffa 1519 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
97978e6d 1520 seq_puts(seq, ",clone_children");
c6d57f33 1521 if (strlen(root->name))
a068acf2 1522 seq_show_option(seq, "name", root->name);
ddbcc7e8
PM
1523 return 0;
1524}
1525
1526struct cgroup_sb_opts {
8ab456ac 1527 unsigned long subsys_mask;
69dfa00c 1528 unsigned int flags;
81a6a5cd 1529 char *release_agent;
2260e7fc 1530 bool cpuset_clone_children;
c6d57f33 1531 char *name;
2c6ab6d2
PM
1532 /* User explicitly requested empty subsystem */
1533 bool none;
ddbcc7e8
PM
1534};
1535
cf5d5941 1536static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
ddbcc7e8 1537{
32a8cf23
DL
1538 char *token, *o = data;
1539 bool all_ss = false, one_ss = false;
8ab456ac 1540 unsigned long mask = -1UL;
30159ec7 1541 struct cgroup_subsys *ss;
7b9a6ba5 1542 int nr_opts = 0;
30159ec7 1543 int i;
f9ab5b5b
LZ
1544
1545#ifdef CONFIG_CPUSETS
69dfa00c 1546 mask = ~(1U << cpuset_cgrp_id);
f9ab5b5b 1547#endif
ddbcc7e8 1548
c6d57f33 1549 memset(opts, 0, sizeof(*opts));
ddbcc7e8
PM
1550
1551 while ((token = strsep(&o, ",")) != NULL) {
7b9a6ba5
TH
1552 nr_opts++;
1553
ddbcc7e8
PM
1554 if (!*token)
1555 return -EINVAL;
32a8cf23 1556 if (!strcmp(token, "none")) {
2c6ab6d2
PM
1557 /* Explicitly have no subsystems */
1558 opts->none = true;
32a8cf23
DL
1559 continue;
1560 }
1561 if (!strcmp(token, "all")) {
1562 /* Mutually exclusive option 'all' + subsystem name */
1563 if (one_ss)
1564 return -EINVAL;
1565 all_ss = true;
1566 continue;
1567 }
873fe09e
TH
1568 if (!strcmp(token, "__DEVEL__sane_behavior")) {
1569 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1570 continue;
1571 }
32a8cf23 1572 if (!strcmp(token, "noprefix")) {
93438629 1573 opts->flags |= CGRP_ROOT_NOPREFIX;
32a8cf23
DL
1574 continue;
1575 }
1576 if (!strcmp(token, "clone_children")) {
2260e7fc 1577 opts->cpuset_clone_children = true;
32a8cf23
DL
1578 continue;
1579 }
03b1cde6 1580 if (!strcmp(token, "xattr")) {
93438629 1581 opts->flags |= CGRP_ROOT_XATTR;
03b1cde6
AR
1582 continue;
1583 }
32a8cf23 1584 if (!strncmp(token, "release_agent=", 14)) {
81a6a5cd
PM
1585 /* Specifying two release agents is forbidden */
1586 if (opts->release_agent)
1587 return -EINVAL;
c6d57f33 1588 opts->release_agent =
e400c285 1589 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
81a6a5cd
PM
1590 if (!opts->release_agent)
1591 return -ENOMEM;
32a8cf23
DL
1592 continue;
1593 }
1594 if (!strncmp(token, "name=", 5)) {
c6d57f33
PM
1595 const char *name = token + 5;
1596 /* Can't specify an empty name */
1597 if (!strlen(name))
1598 return -EINVAL;
1599 /* Must match [\w.-]+ */
1600 for (i = 0; i < strlen(name); i++) {
1601 char c = name[i];
1602 if (isalnum(c))
1603 continue;
1604 if ((c == '.') || (c == '-') || (c == '_'))
1605 continue;
1606 return -EINVAL;
1607 }
1608 /* Specifying two names is forbidden */
1609 if (opts->name)
1610 return -EINVAL;
1611 opts->name = kstrndup(name,
e400c285 1612 MAX_CGROUP_ROOT_NAMELEN - 1,
c6d57f33
PM
1613 GFP_KERNEL);
1614 if (!opts->name)
1615 return -ENOMEM;
32a8cf23
DL
1616
1617 continue;
1618 }
1619
30159ec7 1620 for_each_subsys(ss, i) {
3e1d2eed 1621 if (strcmp(token, ss->legacy_name))
32a8cf23 1622 continue;
fc5ed1e9 1623 if (!cgroup_ssid_enabled(i))
32a8cf23
DL
1624 continue;
1625
1626 /* Mutually exclusive option 'all' + subsystem name */
1627 if (all_ss)
1628 return -EINVAL;
69dfa00c 1629 opts->subsys_mask |= (1 << i);
32a8cf23
DL
1630 one_ss = true;
1631
1632 break;
1633 }
1634 if (i == CGROUP_SUBSYS_COUNT)
1635 return -ENOENT;
1636 }
1637
873fe09e 1638 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
ed3d261b 1639 pr_warn("sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
7b9a6ba5
TH
1640 if (nr_opts != 1) {
1641 pr_err("sane_behavior: no other mount options allowed\n");
873fe09e
TH
1642 return -EINVAL;
1643 }
7b9a6ba5 1644 return 0;
873fe09e
TH
1645 }
1646
7b9a6ba5
TH
1647 /*
1648 * If the 'all' option was specified select all the subsystems,
1649 * otherwise if 'none', 'name=' and a subsystem name options were
1650 * not specified, let's default to 'all'
1651 */
1652 if (all_ss || (!one_ss && !opts->none && !opts->name))
1653 for_each_subsys(ss, i)
fc5ed1e9 1654 if (cgroup_ssid_enabled(i))
7b9a6ba5
TH
1655 opts->subsys_mask |= (1 << i);
1656
1657 /*
1658 * We either have to specify by name or by subsystems. (So all
1659 * empty hierarchies must have a name).
1660 */
1661 if (!opts->subsys_mask && !opts->name)
1662 return -EINVAL;
1663
f9ab5b5b
LZ
1664 /*
1665 * Option noprefix was introduced just for backward compatibility
1666 * with the old cpuset, so we allow noprefix only if mounting just
1667 * the cpuset subsystem.
1668 */
93438629 1669 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
f9ab5b5b
LZ
1670 return -EINVAL;
1671
2c6ab6d2 1672 /* Can't specify "none" and some subsystems */
a1a71b45 1673 if (opts->subsys_mask && opts->none)
2c6ab6d2
PM
1674 return -EINVAL;
1675
ddbcc7e8
PM
1676 return 0;
1677}
1678
2bd59d48 1679static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
ddbcc7e8
PM
1680{
1681 int ret = 0;
3dd06ffa 1682 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1683 struct cgroup_sb_opts opts;
8ab456ac 1684 unsigned long added_mask, removed_mask;
ddbcc7e8 1685
aa6ec29b
TH
1686 if (root == &cgrp_dfl_root) {
1687 pr_err("remount is not allowed\n");
873fe09e
TH
1688 return -EINVAL;
1689 }
1690
ddbcc7e8
PM
1691 mutex_lock(&cgroup_mutex);
1692
1693 /* See what subsystems are wanted */
1694 ret = parse_cgroupfs_options(data, &opts);
1695 if (ret)
1696 goto out_unlock;
1697
f392e51c 1698 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
ed3d261b 1699 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
a2a1f9ea 1700 task_tgid_nr(current), current->comm);
8b5a5a9d 1701
f392e51c
TH
1702 added_mask = opts.subsys_mask & ~root->subsys_mask;
1703 removed_mask = root->subsys_mask & ~opts.subsys_mask;
13af07df 1704
cf5d5941 1705 /* Don't allow flags or name to change at remount */
7450e90b 1706 if ((opts.flags ^ root->flags) ||
cf5d5941 1707 (opts.name && strcmp(opts.name, root->name))) {
69dfa00c 1708 pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
7450e90b 1709 opts.flags, opts.name ?: "", root->flags, root->name);
c6d57f33
PM
1710 ret = -EINVAL;
1711 goto out_unlock;
1712 }
1713
f172e67c 1714 /* remounting is not allowed for populated hierarchies */
d5c419b6 1715 if (!list_empty(&root->cgrp.self.children)) {
f172e67c 1716 ret = -EBUSY;
0670e08b 1717 goto out_unlock;
cf5d5941 1718 }
ddbcc7e8 1719
5df36032 1720 ret = rebind_subsystems(root, added_mask);
3126121f 1721 if (ret)
0670e08b 1722 goto out_unlock;
ddbcc7e8 1723
3dd06ffa 1724 rebind_subsystems(&cgrp_dfl_root, removed_mask);
5df36032 1725
69e943b7
TH
1726 if (opts.release_agent) {
1727 spin_lock(&release_agent_path_lock);
81a6a5cd 1728 strcpy(root->release_agent_path, opts.release_agent);
69e943b7
TH
1729 spin_unlock(&release_agent_path_lock);
1730 }
ddbcc7e8 1731 out_unlock:
66bdc9cf 1732 kfree(opts.release_agent);
c6d57f33 1733 kfree(opts.name);
ddbcc7e8 1734 mutex_unlock(&cgroup_mutex);
ddbcc7e8
PM
1735 return ret;
1736}
1737
afeb0f9f
TH
1738/*
1739 * To reduce the fork() overhead for systems that are not actually using
1740 * their cgroups capability, we don't maintain the lists running through
1741 * each css_set to its tasks until we see the list actually used - in other
1742 * words after the first mount.
1743 */
1744static bool use_task_css_set_links __read_mostly;
1745
1746static void cgroup_enable_task_cg_lists(void)
1747{
1748 struct task_struct *p, *g;
1749
96d365e0 1750 down_write(&css_set_rwsem);
afeb0f9f
TH
1751
1752 if (use_task_css_set_links)
1753 goto out_unlock;
1754
1755 use_task_css_set_links = true;
1756
1757 /*
1758 * We need tasklist_lock because RCU is not safe against
1759 * while_each_thread(). Besides, a forking task that has passed
1760 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1761 * is not guaranteed to have its child immediately visible in the
1762 * tasklist if we walk through it with RCU.
1763 */
1764 read_lock(&tasklist_lock);
1765 do_each_thread(g, p) {
afeb0f9f
TH
1766 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1767 task_css_set(p) != &init_css_set);
1768
1769 /*
1770 * We should check if the process is exiting, otherwise
1771 * it will race with cgroup_exit() in that the list
1772 * entry won't be deleted though the process has exited.
f153ad11
TH
1773 * Do it while holding siglock so that we don't end up
1774 * racing against cgroup_exit().
afeb0f9f 1775 */
f153ad11 1776 spin_lock_irq(&p->sighand->siglock);
eaf797ab
TH
1777 if (!(p->flags & PF_EXITING)) {
1778 struct css_set *cset = task_css_set(p);
1779
0de0942d
TH
1780 if (!css_set_populated(cset))
1781 css_set_update_populated(cset, true);
389b9c1b 1782 list_add_tail(&p->cg_list, &cset->tasks);
eaf797ab
TH
1783 get_css_set(cset);
1784 }
f153ad11 1785 spin_unlock_irq(&p->sighand->siglock);
afeb0f9f
TH
1786 } while_each_thread(g, p);
1787 read_unlock(&tasklist_lock);
1788out_unlock:
96d365e0 1789 up_write(&css_set_rwsem);
afeb0f9f 1790}
ddbcc7e8 1791
cc31edce
PM
1792static void init_cgroup_housekeeping(struct cgroup *cgrp)
1793{
2d8f243a
TH
1794 struct cgroup_subsys *ss;
1795 int ssid;
1796
d5c419b6
TH
1797 INIT_LIST_HEAD(&cgrp->self.sibling);
1798 INIT_LIST_HEAD(&cgrp->self.children);
6f60eade 1799 INIT_LIST_HEAD(&cgrp->self.files);
69d0206c 1800 INIT_LIST_HEAD(&cgrp->cset_links);
72a8cb30
BB
1801 INIT_LIST_HEAD(&cgrp->pidlists);
1802 mutex_init(&cgrp->pidlist_mutex);
9d800df1 1803 cgrp->self.cgroup = cgrp;
184faf32 1804 cgrp->self.flags |= CSS_ONLINE;
2d8f243a
TH
1805
1806 for_each_subsys(ss, ssid)
1807 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
f8f22e53
TH
1808
1809 init_waitqueue_head(&cgrp->offline_waitq);
971ff493 1810 INIT_WORK(&cgrp->release_agent_work, cgroup_release_agent);
cc31edce 1811}
c6d57f33 1812
3dd06ffa 1813static void init_cgroup_root(struct cgroup_root *root,
172a2c06 1814 struct cgroup_sb_opts *opts)
ddbcc7e8 1815{
3dd06ffa 1816 struct cgroup *cgrp = &root->cgrp;
b0ca5a84 1817
ddbcc7e8 1818 INIT_LIST_HEAD(&root->root_list);
3c9c825b 1819 atomic_set(&root->nr_cgrps, 1);
bd89aabc 1820 cgrp->root = root;
cc31edce 1821 init_cgroup_housekeeping(cgrp);
4e96ee8e 1822 idr_init(&root->cgroup_idr);
c6d57f33 1823
c6d57f33
PM
1824 root->flags = opts->flags;
1825 if (opts->release_agent)
1826 strcpy(root->release_agent_path, opts->release_agent);
1827 if (opts->name)
1828 strcpy(root->name, opts->name);
2260e7fc 1829 if (opts->cpuset_clone_children)
3dd06ffa 1830 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
c6d57f33
PM
1831}
1832
8ab456ac 1833static int cgroup_setup_root(struct cgroup_root *root, unsigned long ss_mask)
2c6ab6d2 1834{
d427dfeb 1835 LIST_HEAD(tmp_links);
3dd06ffa 1836 struct cgroup *root_cgrp = &root->cgrp;
d427dfeb 1837 struct css_set *cset;
d427dfeb 1838 int i, ret;
2c6ab6d2 1839
d427dfeb 1840 lockdep_assert_held(&cgroup_mutex);
c6d57f33 1841
cf780b7d 1842 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL);
d427dfeb 1843 if (ret < 0)
2bd59d48 1844 goto out;
d427dfeb 1845 root_cgrp->id = ret;
c6d57f33 1846
2aad2a86
TH
1847 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 0,
1848 GFP_KERNEL);
9d755d33
TH
1849 if (ret)
1850 goto out;
1851
d427dfeb 1852 /*
96d365e0 1853 * We're accessing css_set_count without locking css_set_rwsem here,
d427dfeb
TH
1854 * but that's OK - it can only be increased by someone holding
1855 * cgroup_lock, and that's us. The worst that can happen is that we
1856 * have some link structures left over
1857 */
1858 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
1859 if (ret)
9d755d33 1860 goto cancel_ref;
ddbcc7e8 1861
985ed670 1862 ret = cgroup_init_root_id(root);
ddbcc7e8 1863 if (ret)
9d755d33 1864 goto cancel_ref;
ddbcc7e8 1865
2bd59d48
TH
1866 root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
1867 KERNFS_ROOT_CREATE_DEACTIVATED,
1868 root_cgrp);
1869 if (IS_ERR(root->kf_root)) {
1870 ret = PTR_ERR(root->kf_root);
1871 goto exit_root_id;
1872 }
1873 root_cgrp->kn = root->kf_root->kn;
ddbcc7e8 1874
4df8dc90 1875 ret = css_populate_dir(&root_cgrp->self, NULL);
d427dfeb 1876 if (ret)
2bd59d48 1877 goto destroy_root;
ddbcc7e8 1878
5df36032 1879 ret = rebind_subsystems(root, ss_mask);
d427dfeb 1880 if (ret)
2bd59d48 1881 goto destroy_root;
ddbcc7e8 1882
d427dfeb
TH
1883 /*
1884 * There must be no failure case after here, since rebinding takes
1885 * care of subsystems' refcounts, which are explicitly dropped in
1886 * the failure exit path.
1887 */
1888 list_add(&root->root_list, &cgroup_roots);
1889 cgroup_root_count++;
0df6a63f 1890
d427dfeb 1891 /*
3dd06ffa 1892 * Link the root cgroup in this hierarchy into all the css_set
d427dfeb
TH
1893 * objects.
1894 */
96d365e0 1895 down_write(&css_set_rwsem);
0de0942d 1896 hash_for_each(css_set_table, i, cset, hlist) {
d427dfeb 1897 link_css_set(&tmp_links, cset, root_cgrp);
0de0942d
TH
1898 if (css_set_populated(cset))
1899 cgroup_update_populated(root_cgrp, true);
1900 }
96d365e0 1901 up_write(&css_set_rwsem);
ddbcc7e8 1902
d5c419b6 1903 BUG_ON(!list_empty(&root_cgrp->self.children));
3c9c825b 1904 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
ddbcc7e8 1905
2bd59d48 1906 kernfs_activate(root_cgrp->kn);
d427dfeb 1907 ret = 0;
2bd59d48 1908 goto out;
d427dfeb 1909
2bd59d48
TH
1910destroy_root:
1911 kernfs_destroy_root(root->kf_root);
1912 root->kf_root = NULL;
1913exit_root_id:
d427dfeb 1914 cgroup_exit_root_id(root);
9d755d33 1915cancel_ref:
9a1049da 1916 percpu_ref_exit(&root_cgrp->self.refcnt);
2bd59d48 1917out:
d427dfeb
TH
1918 free_cgrp_cset_links(&tmp_links);
1919 return ret;
ddbcc7e8
PM
1920}
1921
f7e83571 1922static struct dentry *cgroup_mount(struct file_system_type *fs_type,
ddbcc7e8 1923 int flags, const char *unused_dev_name,
f7e83571 1924 void *data)
ddbcc7e8 1925{
3a32bd72 1926 struct super_block *pinned_sb = NULL;
970317aa 1927 struct cgroup_subsys *ss;
3dd06ffa 1928 struct cgroup_root *root;
ddbcc7e8 1929 struct cgroup_sb_opts opts;
2bd59d48 1930 struct dentry *dentry;
8e30e2b8 1931 int ret;
970317aa 1932 int i;
c6b3d5bc 1933 bool new_sb;
ddbcc7e8 1934
56fde9e0
TH
1935 /*
1936 * The first time anyone tries to mount a cgroup, enable the list
1937 * linking each css_set to its tasks and fix up all existing tasks.
1938 */
1939 if (!use_task_css_set_links)
1940 cgroup_enable_task_cg_lists();
e37a06f1 1941
aae8aab4 1942 mutex_lock(&cgroup_mutex);
8e30e2b8
TH
1943
1944 /* First find the desired set of subsystems */
ddbcc7e8 1945 ret = parse_cgroupfs_options(data, &opts);
c6d57f33 1946 if (ret)
8e30e2b8 1947 goto out_unlock;
a015edd2 1948
2bd59d48 1949 /* look for a matching existing root */
7b9a6ba5 1950 if (opts.flags & CGRP_ROOT_SANE_BEHAVIOR) {
a2dd4247
TH
1951 cgrp_dfl_root_visible = true;
1952 root = &cgrp_dfl_root;
1953 cgroup_get(&root->cgrp);
1954 ret = 0;
1955 goto out_unlock;
ddbcc7e8
PM
1956 }
1957
970317aa
LZ
1958 /*
1959 * Destruction of cgroup root is asynchronous, so subsystems may
1960 * still be dying after the previous unmount. Let's drain the
1961 * dying subsystems. We just need to ensure that the ones
1962 * unmounted previously finish dying and don't care about new ones
1963 * starting. Testing ref liveliness is good enough.
1964 */
1965 for_each_subsys(ss, i) {
1966 if (!(opts.subsys_mask & (1 << i)) ||
1967 ss->root == &cgrp_dfl_root)
1968 continue;
1969
1970 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) {
1971 mutex_unlock(&cgroup_mutex);
1972 msleep(10);
1973 ret = restart_syscall();
1974 goto out_free;
1975 }
1976 cgroup_put(&ss->root->cgrp);
1977 }
1978
985ed670 1979 for_each_root(root) {
2bd59d48 1980 bool name_match = false;
3126121f 1981
3dd06ffa 1982 if (root == &cgrp_dfl_root)
985ed670 1983 continue;
3126121f 1984
cf5d5941 1985 /*
2bd59d48
TH
1986 * If we asked for a name then it must match. Also, if
1987 * name matches but sybsys_mask doesn't, we should fail.
1988 * Remember whether name matched.
cf5d5941 1989 */
2bd59d48
TH
1990 if (opts.name) {
1991 if (strcmp(opts.name, root->name))
1992 continue;
1993 name_match = true;
1994 }
ddbcc7e8 1995
c6d57f33 1996 /*
2bd59d48
TH
1997 * If we asked for subsystems (or explicitly for no
1998 * subsystems) then they must match.
c6d57f33 1999 */
2bd59d48 2000 if ((opts.subsys_mask || opts.none) &&
f392e51c 2001 (opts.subsys_mask != root->subsys_mask)) {
2bd59d48
TH
2002 if (!name_match)
2003 continue;
2004 ret = -EBUSY;
2005 goto out_unlock;
2006 }
873fe09e 2007
7b9a6ba5
TH
2008 if (root->flags ^ opts.flags)
2009 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
ddbcc7e8 2010
776f02fa 2011 /*
3a32bd72
LZ
2012 * We want to reuse @root whose lifetime is governed by its
2013 * ->cgrp. Let's check whether @root is alive and keep it
2014 * that way. As cgroup_kill_sb() can happen anytime, we
2015 * want to block it by pinning the sb so that @root doesn't
2016 * get killed before mount is complete.
2017 *
2018 * With the sb pinned, tryget_live can reliably indicate
2019 * whether @root can be reused. If it's being killed,
2020 * drain it. We can use wait_queue for the wait but this
2021 * path is super cold. Let's just sleep a bit and retry.
776f02fa 2022 */
3a32bd72
LZ
2023 pinned_sb = kernfs_pin_sb(root->kf_root, NULL);
2024 if (IS_ERR(pinned_sb) ||
2025 !percpu_ref_tryget_live(&root->cgrp.self.refcnt)) {
776f02fa 2026 mutex_unlock(&cgroup_mutex);
3a32bd72
LZ
2027 if (!IS_ERR_OR_NULL(pinned_sb))
2028 deactivate_super(pinned_sb);
776f02fa 2029 msleep(10);
a015edd2
TH
2030 ret = restart_syscall();
2031 goto out_free;
776f02fa 2032 }
ddbcc7e8 2033
776f02fa 2034 ret = 0;
2bd59d48 2035 goto out_unlock;
ddbcc7e8 2036 }
ddbcc7e8 2037
817929ec 2038 /*
172a2c06
TH
2039 * No such thing, create a new one. name= matching without subsys
2040 * specification is allowed for already existing hierarchies but we
2041 * can't create new one without subsys specification.
817929ec 2042 */
172a2c06
TH
2043 if (!opts.subsys_mask && !opts.none) {
2044 ret = -EINVAL;
2045 goto out_unlock;
817929ec 2046 }
817929ec 2047
172a2c06
TH
2048 root = kzalloc(sizeof(*root), GFP_KERNEL);
2049 if (!root) {
2050 ret = -ENOMEM;
2bd59d48 2051 goto out_unlock;
839ec545 2052 }
e5f6a860 2053
172a2c06
TH
2054 init_cgroup_root(root, &opts);
2055
35585573 2056 ret = cgroup_setup_root(root, opts.subsys_mask);
2bd59d48
TH
2057 if (ret)
2058 cgroup_free_root(root);
fa3ca07e 2059
8e30e2b8 2060out_unlock:
ddbcc7e8 2061 mutex_unlock(&cgroup_mutex);
a015edd2 2062out_free:
c6d57f33
PM
2063 kfree(opts.release_agent);
2064 kfree(opts.name);
03b1cde6 2065
2bd59d48 2066 if (ret)
8e30e2b8 2067 return ERR_PTR(ret);
2bd59d48 2068
c9482a5b
JZ
2069 dentry = kernfs_mount(fs_type, flags, root->kf_root,
2070 CGROUP_SUPER_MAGIC, &new_sb);
c6b3d5bc 2071 if (IS_ERR(dentry) || !new_sb)
3dd06ffa 2072 cgroup_put(&root->cgrp);
3a32bd72
LZ
2073
2074 /*
2075 * If @pinned_sb, we're reusing an existing root and holding an
2076 * extra ref on its sb. Mount is complete. Put the extra ref.
2077 */
2078 if (pinned_sb) {
2079 WARN_ON(new_sb);
2080 deactivate_super(pinned_sb);
2081 }
2082
2bd59d48
TH
2083 return dentry;
2084}
2085
2086static void cgroup_kill_sb(struct super_block *sb)
2087{
2088 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
3dd06ffa 2089 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2bd59d48 2090
9d755d33
TH
2091 /*
2092 * If @root doesn't have any mounts or children, start killing it.
2093 * This prevents new mounts by disabling percpu_ref_tryget_live().
2094 * cgroup_mount() may wait for @root's release.
1f779fb2
LZ
2095 *
2096 * And don't kill the default root.
9d755d33 2097 */
3c606d35 2098 if (!list_empty(&root->cgrp.self.children) ||
1f779fb2 2099 root == &cgrp_dfl_root)
9d755d33
TH
2100 cgroup_put(&root->cgrp);
2101 else
2102 percpu_ref_kill(&root->cgrp.self.refcnt);
2103
2bd59d48 2104 kernfs_kill_sb(sb);
ddbcc7e8
PM
2105}
2106
2107static struct file_system_type cgroup_fs_type = {
2108 .name = "cgroup",
f7e83571 2109 .mount = cgroup_mount,
ddbcc7e8
PM
2110 .kill_sb = cgroup_kill_sb,
2111};
2112
857a2beb 2113/**
913ffdb5 2114 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
857a2beb 2115 * @task: target task
857a2beb
TH
2116 * @buf: the buffer to write the path into
2117 * @buflen: the length of the buffer
2118 *
913ffdb5
TH
2119 * Determine @task's cgroup on the first (the one with the lowest non-zero
2120 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
2121 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2122 * cgroup controller callbacks.
2123 *
e61734c5 2124 * Return value is the same as kernfs_path().
857a2beb 2125 */
e61734c5 2126char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
857a2beb 2127{
3dd06ffa 2128 struct cgroup_root *root;
913ffdb5 2129 struct cgroup *cgrp;
e61734c5
TH
2130 int hierarchy_id = 1;
2131 char *path = NULL;
857a2beb
TH
2132
2133 mutex_lock(&cgroup_mutex);
96d365e0 2134 down_read(&css_set_rwsem);
857a2beb 2135
913ffdb5
TH
2136 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2137
857a2beb
TH
2138 if (root) {
2139 cgrp = task_cgroup_from_root(task, root);
e61734c5 2140 path = cgroup_path(cgrp, buf, buflen);
913ffdb5
TH
2141 } else {
2142 /* if no hierarchy exists, everyone is in "/" */
e61734c5
TH
2143 if (strlcpy(buf, "/", buflen) < buflen)
2144 path = buf;
857a2beb
TH
2145 }
2146
96d365e0 2147 up_read(&css_set_rwsem);
857a2beb 2148 mutex_unlock(&cgroup_mutex);
e61734c5 2149 return path;
857a2beb 2150}
913ffdb5 2151EXPORT_SYMBOL_GPL(task_cgroup_path);
857a2beb 2152
b3dc094e 2153/* used to track tasks and other necessary states during migration */
2f7ee569 2154struct cgroup_taskset {
b3dc094e
TH
2155 /* the src and dst cset list running through cset->mg_node */
2156 struct list_head src_csets;
2157 struct list_head dst_csets;
2158
2159 /*
2160 * Fields for cgroup_taskset_*() iteration.
2161 *
2162 * Before migration is committed, the target migration tasks are on
2163 * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of
2164 * the csets on ->dst_csets. ->csets point to either ->src_csets
2165 * or ->dst_csets depending on whether migration is committed.
2166 *
2167 * ->cur_csets and ->cur_task point to the current task position
2168 * during iteration.
2169 */
2170 struct list_head *csets;
2171 struct css_set *cur_cset;
2172 struct task_struct *cur_task;
2f7ee569
TH
2173};
2174
adaae5dc
TH
2175#define CGROUP_TASKSET_INIT(tset) (struct cgroup_taskset){ \
2176 .src_csets = LIST_HEAD_INIT(tset.src_csets), \
2177 .dst_csets = LIST_HEAD_INIT(tset.dst_csets), \
2178 .csets = &tset.src_csets, \
2179}
2180
2181/**
2182 * cgroup_taskset_add - try to add a migration target task to a taskset
2183 * @task: target task
2184 * @tset: target taskset
2185 *
2186 * Add @task, which is a migration target, to @tset. This function becomes
2187 * noop if @task doesn't need to be migrated. @task's css_set should have
2188 * been added as a migration source and @task->cg_list will be moved from
2189 * the css_set's tasks list to mg_tasks one.
2190 */
2191static void cgroup_taskset_add(struct task_struct *task,
2192 struct cgroup_taskset *tset)
2193{
2194 struct css_set *cset;
2195
2196 lockdep_assert_held(&css_set_rwsem);
2197
2198 /* @task either already exited or can't exit until the end */
2199 if (task->flags & PF_EXITING)
2200 return;
2201
2202 /* leave @task alone if post_fork() hasn't linked it yet */
2203 if (list_empty(&task->cg_list))
2204 return;
2205
2206 cset = task_css_set(task);
2207 if (!cset->mg_src_cgrp)
2208 return;
2209
2210 list_move_tail(&task->cg_list, &cset->mg_tasks);
2211 if (list_empty(&cset->mg_node))
2212 list_add_tail(&cset->mg_node, &tset->src_csets);
2213 if (list_empty(&cset->mg_dst_cset->mg_node))
2214 list_move_tail(&cset->mg_dst_cset->mg_node,
2215 &tset->dst_csets);
2216}
2217
2f7ee569
TH
2218/**
2219 * cgroup_taskset_first - reset taskset and return the first task
2220 * @tset: taskset of interest
2221 *
2222 * @tset iteration is initialized and the first task is returned.
2223 */
2224struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
2225{
b3dc094e
TH
2226 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2227 tset->cur_task = NULL;
2228
2229 return cgroup_taskset_next(tset);
2f7ee569 2230}
2f7ee569
TH
2231
2232/**
2233 * cgroup_taskset_next - iterate to the next task in taskset
2234 * @tset: taskset of interest
2235 *
2236 * Return the next task in @tset. Iteration must have been initialized
2237 * with cgroup_taskset_first().
2238 */
2239struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
2240{
b3dc094e
TH
2241 struct css_set *cset = tset->cur_cset;
2242 struct task_struct *task = tset->cur_task;
2f7ee569 2243
b3dc094e
TH
2244 while (&cset->mg_node != tset->csets) {
2245 if (!task)
2246 task = list_first_entry(&cset->mg_tasks,
2247 struct task_struct, cg_list);
2248 else
2249 task = list_next_entry(task, cg_list);
2f7ee569 2250
b3dc094e
TH
2251 if (&task->cg_list != &cset->mg_tasks) {
2252 tset->cur_cset = cset;
2253 tset->cur_task = task;
2254 return task;
2255 }
2f7ee569 2256
b3dc094e
TH
2257 cset = list_next_entry(cset, mg_node);
2258 task = NULL;
2259 }
2f7ee569 2260
b3dc094e 2261 return NULL;
2f7ee569 2262}
2f7ee569 2263
cb0f1fe9 2264/**
74a1166d 2265 * cgroup_task_migrate - move a task from one cgroup to another.
cb0f1fe9
TH
2266 * @tsk: the task being migrated
2267 * @new_cset: the new css_set @tsk is being attached to
74a1166d 2268 *
cb0f1fe9 2269 * Must be called with cgroup_mutex, threadgroup and css_set_rwsem locked.
74a1166d 2270 */
b309e5b7 2271static void cgroup_task_migrate(struct task_struct *tsk,
5abb8855 2272 struct css_set *new_cset)
74a1166d 2273{
5abb8855 2274 struct css_set *old_cset;
74a1166d 2275
cb0f1fe9
TH
2276 lockdep_assert_held(&cgroup_mutex);
2277 lockdep_assert_held(&css_set_rwsem);
2278
74a1166d 2279 /*
1ed13287
TH
2280 * We are synchronized through cgroup_threadgroup_rwsem against
2281 * PF_EXITING setting such that we can't race against cgroup_exit()
2282 * changing the css_set to init_css_set and dropping the old one.
74a1166d 2283 */
c84cdf75 2284 WARN_ON_ONCE(tsk->flags & PF_EXITING);
a8ad805c 2285 old_cset = task_css_set(tsk);
74a1166d 2286
0de0942d
TH
2287 if (!css_set_populated(new_cset))
2288 css_set_update_populated(new_cset, true);
2289
b3dc094e 2290 get_css_set(new_cset);
5abb8855 2291 rcu_assign_pointer(tsk->cgroups, new_cset);
1b9aba49 2292 list_move_tail(&tsk->cg_list, &new_cset->mg_tasks);
74a1166d 2293
0de0942d
TH
2294 if (!css_set_populated(old_cset))
2295 css_set_update_populated(old_cset, false);
2296
74a1166d 2297 /*
5abb8855
TH
2298 * We just gained a reference on old_cset by taking it from the
2299 * task. As trading it for new_cset is protected by cgroup_mutex,
2300 * we're safe to drop it here; it will be freed under RCU.
74a1166d 2301 */
a25eb52e 2302 put_css_set_locked(old_cset);
74a1166d
BB
2303}
2304
adaae5dc
TH
2305/**
2306 * cgroup_taskset_migrate - migrate a taskset to a cgroup
2307 * @tset: taget taskset
2308 * @dst_cgrp: destination cgroup
2309 *
2310 * Migrate tasks in @tset to @dst_cgrp. This function fails iff one of the
2311 * ->can_attach callbacks fails and guarantees that either all or none of
2312 * the tasks in @tset are migrated. @tset is consumed regardless of
2313 * success.
2314 */
2315static int cgroup_taskset_migrate(struct cgroup_taskset *tset,
2316 struct cgroup *dst_cgrp)
2317{
2318 struct cgroup_subsys_state *css, *failed_css = NULL;
2319 struct task_struct *task, *tmp_task;
2320 struct css_set *cset, *tmp_cset;
2321 int i, ret;
2322
2323 /* methods shouldn't be called if no task is actually migrating */
2324 if (list_empty(&tset->src_csets))
2325 return 0;
2326
2327 /* check that we can legitimately attach to the cgroup */
2328 for_each_e_css(css, i, dst_cgrp) {
2329 if (css->ss->can_attach) {
2330 ret = css->ss->can_attach(css, tset);
2331 if (ret) {
2332 failed_css = css;
2333 goto out_cancel_attach;
2334 }
2335 }
2336 }
2337
2338 /*
2339 * Now that we're guaranteed success, proceed to move all tasks to
2340 * the new cgroup. There are no failure cases after here, so this
2341 * is the commit point.
2342 */
2343 down_write(&css_set_rwsem);
2344 list_for_each_entry(cset, &tset->src_csets, mg_node) {
2345 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list)
b309e5b7 2346 cgroup_task_migrate(task, cset->mg_dst_cset);
adaae5dc
TH
2347 }
2348 up_write(&css_set_rwsem);
2349
2350 /*
2351 * Migration is committed, all target tasks are now on dst_csets.
2352 * Nothing is sensitive to fork() after this point. Notify
2353 * controllers that migration is complete.
2354 */
2355 tset->csets = &tset->dst_csets;
2356
2357 for_each_e_css(css, i, dst_cgrp)
2358 if (css->ss->attach)
2359 css->ss->attach(css, tset);
2360
2361 ret = 0;
2362 goto out_release_tset;
2363
2364out_cancel_attach:
2365 for_each_e_css(css, i, dst_cgrp) {
2366 if (css == failed_css)
2367 break;
2368 if (css->ss->cancel_attach)
2369 css->ss->cancel_attach(css, tset);
2370 }
2371out_release_tset:
2372 down_write(&css_set_rwsem);
2373 list_splice_init(&tset->dst_csets, &tset->src_csets);
2374 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2375 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2376 list_del_init(&cset->mg_node);
2377 }
2378 up_write(&css_set_rwsem);
2379 return ret;
2380}
2381
a043e3b2 2382/**
1958d2d5
TH
2383 * cgroup_migrate_finish - cleanup after attach
2384 * @preloaded_csets: list of preloaded css_sets
74a1166d 2385 *
1958d2d5
TH
2386 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2387 * those functions for details.
74a1166d 2388 */
1958d2d5 2389static void cgroup_migrate_finish(struct list_head *preloaded_csets)
74a1166d 2390{
1958d2d5 2391 struct css_set *cset, *tmp_cset;
74a1166d 2392
1958d2d5
TH
2393 lockdep_assert_held(&cgroup_mutex);
2394
2395 down_write(&css_set_rwsem);
2396 list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) {
2397 cset->mg_src_cgrp = NULL;
2398 cset->mg_dst_cset = NULL;
2399 list_del_init(&cset->mg_preload_node);
a25eb52e 2400 put_css_set_locked(cset);
1958d2d5
TH
2401 }
2402 up_write(&css_set_rwsem);
2403}
2404
2405/**
2406 * cgroup_migrate_add_src - add a migration source css_set
2407 * @src_cset: the source css_set to add
2408 * @dst_cgrp: the destination cgroup
2409 * @preloaded_csets: list of preloaded css_sets
2410 *
2411 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2412 * @src_cset and add it to @preloaded_csets, which should later be cleaned
2413 * up by cgroup_migrate_finish().
2414 *
1ed13287
TH
2415 * This function may be called without holding cgroup_threadgroup_rwsem
2416 * even if the target is a process. Threads may be created and destroyed
2417 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2418 * into play and the preloaded css_sets are guaranteed to cover all
2419 * migrations.
1958d2d5
TH
2420 */
2421static void cgroup_migrate_add_src(struct css_set *src_cset,
2422 struct cgroup *dst_cgrp,
2423 struct list_head *preloaded_csets)
2424{
2425 struct cgroup *src_cgrp;
2426
2427 lockdep_assert_held(&cgroup_mutex);
2428 lockdep_assert_held(&css_set_rwsem);
2429
2430 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2431
1958d2d5
TH
2432 if (!list_empty(&src_cset->mg_preload_node))
2433 return;
2434
2435 WARN_ON(src_cset->mg_src_cgrp);
2436 WARN_ON(!list_empty(&src_cset->mg_tasks));
2437 WARN_ON(!list_empty(&src_cset->mg_node));
2438
2439 src_cset->mg_src_cgrp = src_cgrp;
2440 get_css_set(src_cset);
2441 list_add(&src_cset->mg_preload_node, preloaded_csets);
2442}
2443
2444/**
2445 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
f817de98 2446 * @dst_cgrp: the destination cgroup (may be %NULL)
1958d2d5
TH
2447 * @preloaded_csets: list of preloaded source css_sets
2448 *
2449 * Tasks are about to be moved to @dst_cgrp and all the source css_sets
2450 * have been preloaded to @preloaded_csets. This function looks up and
f817de98
TH
2451 * pins all destination css_sets, links each to its source, and append them
2452 * to @preloaded_csets. If @dst_cgrp is %NULL, the destination of each
2453 * source css_set is assumed to be its cgroup on the default hierarchy.
1958d2d5
TH
2454 *
2455 * This function must be called after cgroup_migrate_add_src() has been
2456 * called on each migration source css_set. After migration is performed
2457 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2458 * @preloaded_csets.
2459 */
2460static int cgroup_migrate_prepare_dst(struct cgroup *dst_cgrp,
2461 struct list_head *preloaded_csets)
2462{
2463 LIST_HEAD(csets);
f817de98 2464 struct css_set *src_cset, *tmp_cset;
1958d2d5
TH
2465
2466 lockdep_assert_held(&cgroup_mutex);
2467
f8f22e53
TH
2468 /*
2469 * Except for the root, child_subsys_mask must be zero for a cgroup
2470 * with tasks so that child cgroups don't compete against tasks.
2471 */
d51f39b0 2472 if (dst_cgrp && cgroup_on_dfl(dst_cgrp) && cgroup_parent(dst_cgrp) &&
f8f22e53
TH
2473 dst_cgrp->child_subsys_mask)
2474 return -EBUSY;
2475
1958d2d5 2476 /* look up the dst cset for each src cset and link it to src */
f817de98 2477 list_for_each_entry_safe(src_cset, tmp_cset, preloaded_csets, mg_preload_node) {
1958d2d5
TH
2478 struct css_set *dst_cset;
2479
f817de98
TH
2480 dst_cset = find_css_set(src_cset,
2481 dst_cgrp ?: src_cset->dfl_cgrp);
1958d2d5
TH
2482 if (!dst_cset)
2483 goto err;
2484
2485 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
f817de98
TH
2486
2487 /*
2488 * If src cset equals dst, it's noop. Drop the src.
2489 * cgroup_migrate() will skip the cset too. Note that we
2490 * can't handle src == dst as some nodes are used by both.
2491 */
2492 if (src_cset == dst_cset) {
2493 src_cset->mg_src_cgrp = NULL;
2494 list_del_init(&src_cset->mg_preload_node);
a25eb52e
ZL
2495 put_css_set(src_cset);
2496 put_css_set(dst_cset);
f817de98
TH
2497 continue;
2498 }
2499
1958d2d5
TH
2500 src_cset->mg_dst_cset = dst_cset;
2501
2502 if (list_empty(&dst_cset->mg_preload_node))
2503 list_add(&dst_cset->mg_preload_node, &csets);
2504 else
a25eb52e 2505 put_css_set(dst_cset);
1958d2d5
TH
2506 }
2507
f817de98 2508 list_splice_tail(&csets, preloaded_csets);
1958d2d5
TH
2509 return 0;
2510err:
2511 cgroup_migrate_finish(&csets);
2512 return -ENOMEM;
2513}
2514
2515/**
2516 * cgroup_migrate - migrate a process or task to a cgroup
1958d2d5
TH
2517 * @leader: the leader of the process or the task to migrate
2518 * @threadgroup: whether @leader points to the whole process or a single task
9af2ec45 2519 * @cgrp: the destination cgroup
1958d2d5
TH
2520 *
2521 * Migrate a process or task denoted by @leader to @cgrp. If migrating a
1ed13287 2522 * process, the caller must be holding cgroup_threadgroup_rwsem. The
1958d2d5
TH
2523 * caller is also responsible for invoking cgroup_migrate_add_src() and
2524 * cgroup_migrate_prepare_dst() on the targets before invoking this
2525 * function and following up with cgroup_migrate_finish().
2526 *
2527 * As long as a controller's ->can_attach() doesn't fail, this function is
2528 * guaranteed to succeed. This means that, excluding ->can_attach()
2529 * failure, when migrating multiple targets, the success or failure can be
2530 * decided for all targets by invoking group_migrate_prepare_dst() before
2531 * actually starting migrating.
2532 */
9af2ec45
TH
2533static int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2534 struct cgroup *cgrp)
74a1166d 2535{
adaae5dc
TH
2536 struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
2537 struct task_struct *task;
74a1166d 2538
fb5d2b4c
MSB
2539 /*
2540 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2541 * already PF_EXITING could be freed from underneath us unless we
2542 * take an rcu_read_lock.
2543 */
b3dc094e 2544 down_write(&css_set_rwsem);
fb5d2b4c 2545 rcu_read_lock();
9db8de37 2546 task = leader;
74a1166d 2547 do {
adaae5dc 2548 cgroup_taskset_add(task, &tset);
081aa458
LZ
2549 if (!threadgroup)
2550 break;
9db8de37 2551 } while_each_thread(leader, task);
fb5d2b4c 2552 rcu_read_unlock();
b3dc094e 2553 up_write(&css_set_rwsem);
74a1166d 2554
adaae5dc 2555 return cgroup_taskset_migrate(&tset, cgrp);
74a1166d
BB
2556}
2557
1958d2d5
TH
2558/**
2559 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2560 * @dst_cgrp: the cgroup to attach to
2561 * @leader: the task or the leader of the threadgroup to be attached
2562 * @threadgroup: attach the whole threadgroup?
2563 *
1ed13287 2564 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
1958d2d5
TH
2565 */
2566static int cgroup_attach_task(struct cgroup *dst_cgrp,
2567 struct task_struct *leader, bool threadgroup)
2568{
2569 LIST_HEAD(preloaded_csets);
2570 struct task_struct *task;
2571 int ret;
2572
2573 /* look up all src csets */
2574 down_read(&css_set_rwsem);
2575 rcu_read_lock();
2576 task = leader;
2577 do {
2578 cgroup_migrate_add_src(task_css_set(task), dst_cgrp,
2579 &preloaded_csets);
2580 if (!threadgroup)
2581 break;
2582 } while_each_thread(leader, task);
2583 rcu_read_unlock();
2584 up_read(&css_set_rwsem);
2585
2586 /* prepare dst csets and commit */
2587 ret = cgroup_migrate_prepare_dst(dst_cgrp, &preloaded_csets);
2588 if (!ret)
9af2ec45 2589 ret = cgroup_migrate(leader, threadgroup, dst_cgrp);
1958d2d5
TH
2590
2591 cgroup_migrate_finish(&preloaded_csets);
2592 return ret;
74a1166d
BB
2593}
2594
187fe840
TH
2595static int cgroup_procs_write_permission(struct task_struct *task,
2596 struct cgroup *dst_cgrp,
2597 struct kernfs_open_file *of)
dedf22e9
TH
2598{
2599 const struct cred *cred = current_cred();
2600 const struct cred *tcred = get_task_cred(task);
2601 int ret = 0;
2602
2603 /*
2604 * even if we're attaching all tasks in the thread group, we only
2605 * need to check permissions on one of them.
2606 */
2607 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2608 !uid_eq(cred->euid, tcred->uid) &&
2609 !uid_eq(cred->euid, tcred->suid))
2610 ret = -EACCES;
2611
187fe840
TH
2612 if (!ret && cgroup_on_dfl(dst_cgrp)) {
2613 struct super_block *sb = of->file->f_path.dentry->d_sb;
2614 struct cgroup *cgrp;
2615 struct inode *inode;
2616
2617 down_read(&css_set_rwsem);
2618 cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
2619 up_read(&css_set_rwsem);
2620
2621 while (!cgroup_is_descendant(dst_cgrp, cgrp))
2622 cgrp = cgroup_parent(cgrp);
2623
2624 ret = -ENOMEM;
6f60eade 2625 inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
187fe840
TH
2626 if (inode) {
2627 ret = inode_permission(inode, MAY_WRITE);
2628 iput(inode);
2629 }
2630 }
2631
dedf22e9
TH
2632 put_cred(tcred);
2633 return ret;
2634}
2635
74a1166d
BB
2636/*
2637 * Find the task_struct of the task to attach by vpid and pass it along to the
cd3d0952 2638 * function to attach either it or all tasks in its threadgroup. Will lock
0e1d768f 2639 * cgroup_mutex and threadgroup.
bbcb81d0 2640 */
acbef755
TH
2641static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
2642 size_t nbytes, loff_t off, bool threadgroup)
bbcb81d0 2643{
bbcb81d0 2644 struct task_struct *tsk;
e76ecaee 2645 struct cgroup *cgrp;
acbef755 2646 pid_t pid;
bbcb81d0
PM
2647 int ret;
2648
acbef755
TH
2649 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2650 return -EINVAL;
2651
e76ecaee
TH
2652 cgrp = cgroup_kn_lock_live(of->kn);
2653 if (!cgrp)
74a1166d
BB
2654 return -ENODEV;
2655
3014dde7 2656 percpu_down_write(&cgroup_threadgroup_rwsem);
b78949eb 2657 rcu_read_lock();
bbcb81d0 2658 if (pid) {
73507f33 2659 tsk = find_task_by_vpid(pid);
74a1166d 2660 if (!tsk) {
dd4b0a46 2661 ret = -ESRCH;
3014dde7 2662 goto out_unlock_rcu;
bbcb81d0 2663 }
dedf22e9 2664 } else {
b78949eb 2665 tsk = current;
dedf22e9 2666 }
cd3d0952
TH
2667
2668 if (threadgroup)
b78949eb 2669 tsk = tsk->group_leader;
c4c27fbd
MG
2670
2671 /*
14a40ffc 2672 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
c4c27fbd
MG
2673 * trapped in a cpuset, or RT worker may be born in a cgroup
2674 * with no rt_runtime allocated. Just say no.
2675 */
14a40ffc 2676 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
c4c27fbd 2677 ret = -EINVAL;
3014dde7 2678 goto out_unlock_rcu;
c4c27fbd
MG
2679 }
2680
b78949eb
MSB
2681 get_task_struct(tsk);
2682 rcu_read_unlock();
2683
187fe840 2684 ret = cgroup_procs_write_permission(tsk, cgrp, of);
dedf22e9
TH
2685 if (!ret)
2686 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
081aa458 2687
f9f9e7b7 2688 put_task_struct(tsk);
3014dde7
TH
2689 goto out_unlock_threadgroup;
2690
2691out_unlock_rcu:
2692 rcu_read_unlock();
2693out_unlock_threadgroup:
2694 percpu_up_write(&cgroup_threadgroup_rwsem);
e76ecaee 2695 cgroup_kn_unlock(of->kn);
acbef755 2696 return ret ?: nbytes;
bbcb81d0
PM
2697}
2698
7ae1bad9
TH
2699/**
2700 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2701 * @from: attach to all cgroups of a given task
2702 * @tsk: the task to be attached
2703 */
2704int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2705{
3dd06ffa 2706 struct cgroup_root *root;
7ae1bad9
TH
2707 int retval = 0;
2708
47cfcd09 2709 mutex_lock(&cgroup_mutex);
985ed670 2710 for_each_root(root) {
96d365e0
TH
2711 struct cgroup *from_cgrp;
2712
3dd06ffa 2713 if (root == &cgrp_dfl_root)
985ed670
TH
2714 continue;
2715
96d365e0
TH
2716 down_read(&css_set_rwsem);
2717 from_cgrp = task_cgroup_from_root(from, root);
2718 up_read(&css_set_rwsem);
7ae1bad9 2719
6f4b7e63 2720 retval = cgroup_attach_task(from_cgrp, tsk, false);
7ae1bad9
TH
2721 if (retval)
2722 break;
2723 }
47cfcd09 2724 mutex_unlock(&cgroup_mutex);
7ae1bad9
TH
2725
2726 return retval;
2727}
2728EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2729
acbef755
TH
2730static ssize_t cgroup_tasks_write(struct kernfs_open_file *of,
2731 char *buf, size_t nbytes, loff_t off)
74a1166d 2732{
acbef755 2733 return __cgroup_procs_write(of, buf, nbytes, off, false);
74a1166d
BB
2734}
2735
acbef755
TH
2736static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
2737 char *buf, size_t nbytes, loff_t off)
af351026 2738{
acbef755 2739 return __cgroup_procs_write(of, buf, nbytes, off, true);
af351026
PM
2740}
2741
451af504
TH
2742static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
2743 char *buf, size_t nbytes, loff_t off)
e788e066 2744{
e76ecaee 2745 struct cgroup *cgrp;
5f469907 2746
e76ecaee 2747 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
5f469907 2748
e76ecaee
TH
2749 cgrp = cgroup_kn_lock_live(of->kn);
2750 if (!cgrp)
e788e066 2751 return -ENODEV;
69e943b7 2752 spin_lock(&release_agent_path_lock);
e76ecaee
TH
2753 strlcpy(cgrp->root->release_agent_path, strstrip(buf),
2754 sizeof(cgrp->root->release_agent_path));
69e943b7 2755 spin_unlock(&release_agent_path_lock);
e76ecaee 2756 cgroup_kn_unlock(of->kn);
451af504 2757 return nbytes;
e788e066
PM
2758}
2759
2da8ca82 2760static int cgroup_release_agent_show(struct seq_file *seq, void *v)
e788e066 2761{
2da8ca82 2762 struct cgroup *cgrp = seq_css(seq)->cgroup;
182446d0 2763
46cfeb04 2764 spin_lock(&release_agent_path_lock);
e788e066 2765 seq_puts(seq, cgrp->root->release_agent_path);
46cfeb04 2766 spin_unlock(&release_agent_path_lock);
e788e066 2767 seq_putc(seq, '\n');
e788e066
PM
2768 return 0;
2769}
2770
2da8ca82 2771static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
873fe09e 2772{
c1d5d42e 2773 seq_puts(seq, "0\n");
e788e066
PM
2774 return 0;
2775}
2776
8ab456ac 2777static void cgroup_print_ss_mask(struct seq_file *seq, unsigned long ss_mask)
355e0c48 2778{
f8f22e53
TH
2779 struct cgroup_subsys *ss;
2780 bool printed = false;
2781 int ssid;
a742c59d 2782
a966a4ed
AS
2783 for_each_subsys_which(ss, ssid, &ss_mask) {
2784 if (printed)
2785 seq_putc(seq, ' ');
2786 seq_printf(seq, "%s", ss->name);
2787 printed = true;
e73d2c61 2788 }
f8f22e53
TH
2789 if (printed)
2790 seq_putc(seq, '\n');
355e0c48
PM
2791}
2792
f8f22e53
TH
2793/* show controllers which are currently attached to the default hierarchy */
2794static int cgroup_root_controllers_show(struct seq_file *seq, void *v)
db3b1497 2795{
f8f22e53
TH
2796 struct cgroup *cgrp = seq_css(seq)->cgroup;
2797
5533e011
TH
2798 cgroup_print_ss_mask(seq, cgrp->root->subsys_mask &
2799 ~cgrp_dfl_root_inhibit_ss_mask);
f8f22e53 2800 return 0;
db3b1497
PM
2801}
2802
f8f22e53
TH
2803/* show controllers which are enabled from the parent */
2804static int cgroup_controllers_show(struct seq_file *seq, void *v)
ddbcc7e8 2805{
f8f22e53
TH
2806 struct cgroup *cgrp = seq_css(seq)->cgroup;
2807
667c2491 2808 cgroup_print_ss_mask(seq, cgroup_parent(cgrp)->subtree_control);
f8f22e53 2809 return 0;
ddbcc7e8
PM
2810}
2811
f8f22e53
TH
2812/* show controllers which are enabled for a given cgroup's children */
2813static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
ddbcc7e8 2814{
f8f22e53
TH
2815 struct cgroup *cgrp = seq_css(seq)->cgroup;
2816
667c2491 2817 cgroup_print_ss_mask(seq, cgrp->subtree_control);
f8f22e53
TH
2818 return 0;
2819}
2820
2821/**
2822 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2823 * @cgrp: root of the subtree to update csses for
2824 *
2825 * @cgrp's child_subsys_mask has changed and its subtree's (self excluded)
2826 * css associations need to be updated accordingly. This function looks up
2827 * all css_sets which are attached to the subtree, creates the matching
2828 * updated css_sets and migrates the tasks to the new ones.
2829 */
2830static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2831{
2832 LIST_HEAD(preloaded_csets);
10265075 2833 struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
f8f22e53
TH
2834 struct cgroup_subsys_state *css;
2835 struct css_set *src_cset;
2836 int ret;
2837
f8f22e53
TH
2838 lockdep_assert_held(&cgroup_mutex);
2839
3014dde7
TH
2840 percpu_down_write(&cgroup_threadgroup_rwsem);
2841
f8f22e53
TH
2842 /* look up all csses currently attached to @cgrp's subtree */
2843 down_read(&css_set_rwsem);
2844 css_for_each_descendant_pre(css, cgroup_css(cgrp, NULL)) {
2845 struct cgrp_cset_link *link;
2846
2847 /* self is not affected by child_subsys_mask change */
2848 if (css->cgroup == cgrp)
2849 continue;
2850
2851 list_for_each_entry(link, &css->cgroup->cset_links, cset_link)
2852 cgroup_migrate_add_src(link->cset, cgrp,
2853 &preloaded_csets);
2854 }
2855 up_read(&css_set_rwsem);
2856
2857 /* NULL dst indicates self on default hierarchy */
2858 ret = cgroup_migrate_prepare_dst(NULL, &preloaded_csets);
2859 if (ret)
2860 goto out_finish;
2861
10265075 2862 down_write(&css_set_rwsem);
f8f22e53 2863 list_for_each_entry(src_cset, &preloaded_csets, mg_preload_node) {
10265075 2864 struct task_struct *task, *ntask;
f8f22e53
TH
2865
2866 /* src_csets precede dst_csets, break on the first dst_cset */
2867 if (!src_cset->mg_src_cgrp)
2868 break;
2869
10265075
TH
2870 /* all tasks in src_csets need to be migrated */
2871 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
2872 cgroup_taskset_add(task, &tset);
f8f22e53 2873 }
10265075 2874 up_write(&css_set_rwsem);
f8f22e53 2875
10265075 2876 ret = cgroup_taskset_migrate(&tset, cgrp);
f8f22e53
TH
2877out_finish:
2878 cgroup_migrate_finish(&preloaded_csets);
3014dde7 2879 percpu_up_write(&cgroup_threadgroup_rwsem);
f8f22e53
TH
2880 return ret;
2881}
2882
2883/* change the enabled child controllers for a cgroup in the default hierarchy */
451af504
TH
2884static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
2885 char *buf, size_t nbytes,
2886 loff_t off)
f8f22e53 2887{
8ab456ac
AS
2888 unsigned long enable = 0, disable = 0;
2889 unsigned long css_enable, css_disable, old_sc, new_sc, old_ss, new_ss;
a9746d8d 2890 struct cgroup *cgrp, *child;
f8f22e53 2891 struct cgroup_subsys *ss;
451af504 2892 char *tok;
f8f22e53
TH
2893 int ssid, ret;
2894
2895 /*
d37167ab
TH
2896 * Parse input - space separated list of subsystem names prefixed
2897 * with either + or -.
f8f22e53 2898 */
451af504
TH
2899 buf = strstrip(buf);
2900 while ((tok = strsep(&buf, " "))) {
a966a4ed
AS
2901 unsigned long tmp_ss_mask = ~cgrp_dfl_root_inhibit_ss_mask;
2902
d37167ab
TH
2903 if (tok[0] == '\0')
2904 continue;
a966a4ed 2905 for_each_subsys_which(ss, ssid, &tmp_ss_mask) {
fc5ed1e9
TH
2906 if (!cgroup_ssid_enabled(ssid) ||
2907 strcmp(tok + 1, ss->name))
f8f22e53
TH
2908 continue;
2909
2910 if (*tok == '+') {
7d331fa9
TH
2911 enable |= 1 << ssid;
2912 disable &= ~(1 << ssid);
f8f22e53 2913 } else if (*tok == '-') {
7d331fa9
TH
2914 disable |= 1 << ssid;
2915 enable &= ~(1 << ssid);
f8f22e53
TH
2916 } else {
2917 return -EINVAL;
2918 }
2919 break;
2920 }
2921 if (ssid == CGROUP_SUBSYS_COUNT)
2922 return -EINVAL;
2923 }
2924
a9746d8d
TH
2925 cgrp = cgroup_kn_lock_live(of->kn);
2926 if (!cgrp)
2927 return -ENODEV;
f8f22e53
TH
2928
2929 for_each_subsys(ss, ssid) {
2930 if (enable & (1 << ssid)) {
667c2491 2931 if (cgrp->subtree_control & (1 << ssid)) {
f8f22e53
TH
2932 enable &= ~(1 << ssid);
2933 continue;
2934 }
2935
c29adf24
TH
2936 /* unavailable or not enabled on the parent? */
2937 if (!(cgrp_dfl_root.subsys_mask & (1 << ssid)) ||
2938 (cgroup_parent(cgrp) &&
667c2491 2939 !(cgroup_parent(cgrp)->subtree_control & (1 << ssid)))) {
c29adf24
TH
2940 ret = -ENOENT;
2941 goto out_unlock;
2942 }
f8f22e53 2943 } else if (disable & (1 << ssid)) {
667c2491 2944 if (!(cgrp->subtree_control & (1 << ssid))) {
f8f22e53
TH
2945 disable &= ~(1 << ssid);
2946 continue;
2947 }
2948
2949 /* a child has it enabled? */
2950 cgroup_for_each_live_child(child, cgrp) {
667c2491 2951 if (child->subtree_control & (1 << ssid)) {
f8f22e53 2952 ret = -EBUSY;
ddab2b6e 2953 goto out_unlock;
f8f22e53
TH
2954 }
2955 }
2956 }
2957 }
2958
2959 if (!enable && !disable) {
2960 ret = 0;
ddab2b6e 2961 goto out_unlock;
f8f22e53
TH
2962 }
2963
2964 /*
667c2491 2965 * Except for the root, subtree_control must be zero for a cgroup
f8f22e53
TH
2966 * with tasks so that child cgroups don't compete against tasks.
2967 */
d51f39b0 2968 if (enable && cgroup_parent(cgrp) && !list_empty(&cgrp->cset_links)) {
f8f22e53
TH
2969 ret = -EBUSY;
2970 goto out_unlock;
2971 }
2972
2973 /*
f63070d3
TH
2974 * Update subsys masks and calculate what needs to be done. More
2975 * subsystems than specified may need to be enabled or disabled
2976 * depending on subsystem dependencies.
2977 */
755bf5ee
TH
2978 old_sc = cgrp->subtree_control;
2979 old_ss = cgrp->child_subsys_mask;
2980 new_sc = (old_sc | enable) & ~disable;
2981 new_ss = cgroup_calc_child_subsys_mask(cgrp, new_sc);
f63070d3 2982
755bf5ee
TH
2983 css_enable = ~old_ss & new_ss;
2984 css_disable = old_ss & ~new_ss;
f63070d3
TH
2985 enable |= css_enable;
2986 disable |= css_disable;
c29adf24 2987
db6e3053
TH
2988 /*
2989 * Because css offlining is asynchronous, userland might try to
2990 * re-enable the same controller while the previous instance is
2991 * still around. In such cases, wait till it's gone using
2992 * offline_waitq.
2993 */
a966a4ed 2994 for_each_subsys_which(ss, ssid, &css_enable) {
db6e3053
TH
2995 cgroup_for_each_live_child(child, cgrp) {
2996 DEFINE_WAIT(wait);
2997
2998 if (!cgroup_css(child, ss))
2999 continue;
3000
3001 cgroup_get(child);
3002 prepare_to_wait(&child->offline_waitq, &wait,
3003 TASK_UNINTERRUPTIBLE);
3004 cgroup_kn_unlock(of->kn);
3005 schedule();
3006 finish_wait(&child->offline_waitq, &wait);
3007 cgroup_put(child);
3008
3009 return restart_syscall();
3010 }
3011 }
3012
755bf5ee
TH
3013 cgrp->subtree_control = new_sc;
3014 cgrp->child_subsys_mask = new_ss;
3015
f63070d3
TH
3016 /*
3017 * Create new csses or make the existing ones visible. A css is
3018 * created invisible if it's being implicitly enabled through
3019 * dependency. An invisible css is made visible when the userland
3020 * explicitly enables it.
f8f22e53
TH
3021 */
3022 for_each_subsys(ss, ssid) {
3023 if (!(enable & (1 << ssid)))
3024 continue;
3025
3026 cgroup_for_each_live_child(child, cgrp) {
f63070d3
TH
3027 if (css_enable & (1 << ssid))
3028 ret = create_css(child, ss,
3029 cgrp->subtree_control & (1 << ssid));
3030 else
4df8dc90
TH
3031 ret = css_populate_dir(cgroup_css(child, ss),
3032 NULL);
f8f22e53
TH
3033 if (ret)
3034 goto err_undo_css;
3035 }
3036 }
3037
c29adf24
TH
3038 /*
3039 * At this point, cgroup_e_css() results reflect the new csses
3040 * making the following cgroup_update_dfl_csses() properly update
3041 * css associations of all tasks in the subtree.
3042 */
f8f22e53
TH
3043 ret = cgroup_update_dfl_csses(cgrp);
3044 if (ret)
3045 goto err_undo_css;
3046
f63070d3
TH
3047 /*
3048 * All tasks are migrated out of disabled csses. Kill or hide
3049 * them. A css is hidden when the userland requests it to be
b4536f0c
TH
3050 * disabled while other subsystems are still depending on it. The
3051 * css must not actively control resources and be in the vanilla
3052 * state if it's made visible again later. Controllers which may
3053 * be depended upon should provide ->css_reset() for this purpose.
f63070d3 3054 */
f8f22e53
TH
3055 for_each_subsys(ss, ssid) {
3056 if (!(disable & (1 << ssid)))
3057 continue;
3058
f63070d3 3059 cgroup_for_each_live_child(child, cgrp) {
b4536f0c
TH
3060 struct cgroup_subsys_state *css = cgroup_css(child, ss);
3061
3062 if (css_disable & (1 << ssid)) {
3063 kill_css(css);
3064 } else {
4df8dc90 3065 css_clear_dir(css, NULL);
b4536f0c
TH
3066 if (ss->css_reset)
3067 ss->css_reset(css);
3068 }
f63070d3 3069 }
f8f22e53
TH
3070 }
3071
56c807ba
TH
3072 /*
3073 * The effective csses of all the descendants (excluding @cgrp) may
3074 * have changed. Subsystems can optionally subscribe to this event
3075 * by implementing ->css_e_css_changed() which is invoked if any of
3076 * the effective csses seen from the css's cgroup may have changed.
3077 */
3078 for_each_subsys(ss, ssid) {
3079 struct cgroup_subsys_state *this_css = cgroup_css(cgrp, ss);
3080 struct cgroup_subsys_state *css;
3081
3082 if (!ss->css_e_css_changed || !this_css)
3083 continue;
3084
3085 css_for_each_descendant_pre(css, this_css)
3086 if (css != this_css)
3087 ss->css_e_css_changed(css);
3088 }
3089
f8f22e53
TH
3090 kernfs_activate(cgrp->kn);
3091 ret = 0;
3092out_unlock:
a9746d8d 3093 cgroup_kn_unlock(of->kn);
451af504 3094 return ret ?: nbytes;
f8f22e53
TH
3095
3096err_undo_css:
755bf5ee
TH
3097 cgrp->subtree_control = old_sc;
3098 cgrp->child_subsys_mask = old_ss;
f8f22e53
TH
3099
3100 for_each_subsys(ss, ssid) {
3101 if (!(enable & (1 << ssid)))
3102 continue;
3103
3104 cgroup_for_each_live_child(child, cgrp) {
3105 struct cgroup_subsys_state *css = cgroup_css(child, ss);
f63070d3
TH
3106
3107 if (!css)
3108 continue;
3109
3110 if (css_enable & (1 << ssid))
f8f22e53 3111 kill_css(css);
f63070d3 3112 else
4df8dc90 3113 css_clear_dir(css, NULL);
f8f22e53
TH
3114 }
3115 }
3116 goto out_unlock;
3117}
3118
4a07c222 3119static int cgroup_events_show(struct seq_file *seq, void *v)
842b597e 3120{
4a07c222 3121 seq_printf(seq, "populated %d\n",
27bd4dbb 3122 cgroup_is_populated(seq_css(seq)->cgroup));
842b597e
TH
3123 return 0;
3124}
3125
2bd59d48
TH
3126static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3127 size_t nbytes, loff_t off)
355e0c48 3128{
2bd59d48
TH
3129 struct cgroup *cgrp = of->kn->parent->priv;
3130 struct cftype *cft = of->kn->priv;
3131 struct cgroup_subsys_state *css;
a742c59d 3132 int ret;
355e0c48 3133
b4168640
TH
3134 if (cft->write)
3135 return cft->write(of, buf, nbytes, off);
3136
2bd59d48
TH
3137 /*
3138 * kernfs guarantees that a file isn't deleted with operations in
3139 * flight, which means that the matching css is and stays alive and
3140 * doesn't need to be pinned. The RCU locking is not necessary
3141 * either. It's just for the convenience of using cgroup_css().
3142 */
3143 rcu_read_lock();
3144 css = cgroup_css(cgrp, cft->ss);
3145 rcu_read_unlock();
a742c59d 3146
451af504 3147 if (cft->write_u64) {
a742c59d
TH
3148 unsigned long long v;
3149 ret = kstrtoull(buf, 0, &v);
3150 if (!ret)
3151 ret = cft->write_u64(css, cft, v);
3152 } else if (cft->write_s64) {
3153 long long v;
3154 ret = kstrtoll(buf, 0, &v);
3155 if (!ret)
3156 ret = cft->write_s64(css, cft, v);
e73d2c61 3157 } else {
a742c59d 3158 ret = -EINVAL;
e73d2c61 3159 }
2bd59d48 3160
a742c59d 3161 return ret ?: nbytes;
355e0c48
PM
3162}
3163
6612f05b 3164static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
db3b1497 3165{
2bd59d48 3166 return seq_cft(seq)->seq_start(seq, ppos);
db3b1497
PM
3167}
3168
6612f05b 3169static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
ddbcc7e8 3170{
2bd59d48 3171 return seq_cft(seq)->seq_next(seq, v, ppos);
ddbcc7e8
PM
3172}
3173
6612f05b 3174static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
ddbcc7e8 3175{
2bd59d48 3176 seq_cft(seq)->seq_stop(seq, v);
ddbcc7e8
PM
3177}
3178
91796569 3179static int cgroup_seqfile_show(struct seq_file *m, void *arg)
e73d2c61 3180{
7da11279
TH
3181 struct cftype *cft = seq_cft(m);
3182 struct cgroup_subsys_state *css = seq_css(m);
e73d2c61 3183
2da8ca82
TH
3184 if (cft->seq_show)
3185 return cft->seq_show(m, arg);
e73d2c61 3186
f4c753b7 3187 if (cft->read_u64)
896f5199
TH
3188 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3189 else if (cft->read_s64)
3190 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3191 else
3192 return -EINVAL;
3193 return 0;
91796569
PM
3194}
3195
2bd59d48
TH
3196static struct kernfs_ops cgroup_kf_single_ops = {
3197 .atomic_write_len = PAGE_SIZE,
3198 .write = cgroup_file_write,
3199 .seq_show = cgroup_seqfile_show,
91796569
PM
3200};
3201
2bd59d48
TH
3202static struct kernfs_ops cgroup_kf_ops = {
3203 .atomic_write_len = PAGE_SIZE,
3204 .write = cgroup_file_write,
3205 .seq_start = cgroup_seqfile_start,
3206 .seq_next = cgroup_seqfile_next,
3207 .seq_stop = cgroup_seqfile_stop,
3208 .seq_show = cgroup_seqfile_show,
3209};
ddbcc7e8
PM
3210
3211/*
3212 * cgroup_rename - Only allow simple rename of directories in place.
3213 */
2bd59d48
TH
3214static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
3215 const char *new_name_str)
ddbcc7e8 3216{
2bd59d48 3217 struct cgroup *cgrp = kn->priv;
65dff759 3218 int ret;
65dff759 3219
2bd59d48 3220 if (kernfs_type(kn) != KERNFS_DIR)
ddbcc7e8 3221 return -ENOTDIR;
2bd59d48 3222 if (kn->parent != new_parent)
ddbcc7e8 3223 return -EIO;
65dff759 3224
6db8e85c
TH
3225 /*
3226 * This isn't a proper migration and its usefulness is very
aa6ec29b 3227 * limited. Disallow on the default hierarchy.
6db8e85c 3228 */
aa6ec29b 3229 if (cgroup_on_dfl(cgrp))
6db8e85c 3230 return -EPERM;
099fca32 3231
e1b2dc17 3232 /*
8353da1f 3233 * We're gonna grab cgroup_mutex which nests outside kernfs
e1b2dc17 3234 * active_ref. kernfs_rename() doesn't require active_ref
8353da1f 3235 * protection. Break them before grabbing cgroup_mutex.
e1b2dc17
TH
3236 */
3237 kernfs_break_active_protection(new_parent);
3238 kernfs_break_active_protection(kn);
099fca32 3239
2bd59d48 3240 mutex_lock(&cgroup_mutex);
099fca32 3241
2bd59d48 3242 ret = kernfs_rename(kn, new_parent, new_name_str);
099fca32 3243
2bd59d48 3244 mutex_unlock(&cgroup_mutex);
e1b2dc17
TH
3245
3246 kernfs_unbreak_active_protection(kn);
3247 kernfs_unbreak_active_protection(new_parent);
2bd59d48 3248 return ret;
099fca32
LZ
3249}
3250
49957f8e
TH
3251/* set uid and gid of cgroup dirs and files to that of the creator */
3252static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3253{
3254 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3255 .ia_uid = current_fsuid(),
3256 .ia_gid = current_fsgid(), };
3257
3258 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3259 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3260 return 0;
3261
3262 return kernfs_setattr(kn, &iattr);
3263}
3264
4df8dc90
TH
3265static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3266 struct cftype *cft)
ddbcc7e8 3267{
8d7e6fb0 3268 char name[CGROUP_FILE_NAME_MAX];
2bd59d48
TH
3269 struct kernfs_node *kn;
3270 struct lock_class_key *key = NULL;
49957f8e 3271 int ret;
05ef1d7c 3272
2bd59d48
TH
3273#ifdef CONFIG_DEBUG_LOCK_ALLOC
3274 key = &cft->lockdep_key;
3275#endif
3276 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3277 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
dfeb0750 3278 NULL, key);
49957f8e
TH
3279 if (IS_ERR(kn))
3280 return PTR_ERR(kn);
3281
3282 ret = cgroup_kn_set_ugid(kn);
f8f22e53 3283 if (ret) {
49957f8e 3284 kernfs_remove(kn);
f8f22e53
TH
3285 return ret;
3286 }
3287
6f60eade
TH
3288 if (cft->file_offset) {
3289 struct cgroup_file *cfile = (void *)css + cft->file_offset;
3290
3291 kernfs_get(kn);
3292 cfile->kn = kn;
3293 list_add(&cfile->node, &css->files);
3294 }
3295
f8f22e53 3296 return 0;
ddbcc7e8
PM
3297}
3298
b1f28d31
TH
3299/**
3300 * cgroup_addrm_files - add or remove files to a cgroup directory
4df8dc90
TH
3301 * @css: the target css
3302 * @cgrp: the target cgroup (usually css->cgroup)
b1f28d31
TH
3303 * @cfts: array of cftypes to be added
3304 * @is_add: whether to add or remove
3305 *
3306 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
6732ed85 3307 * For removals, this function never fails.
b1f28d31 3308 */
4df8dc90
TH
3309static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3310 struct cgroup *cgrp, struct cftype cfts[],
2bb566cb 3311 bool is_add)
ddbcc7e8 3312{
6732ed85 3313 struct cftype *cft, *cft_end = NULL;
b1f28d31
TH
3314 int ret;
3315
01f6474c 3316 lockdep_assert_held(&cgroup_mutex);
db0416b6 3317
6732ed85
TH
3318restart:
3319 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
f33fddc2 3320 /* does cft->flags tell us to skip this file on @cgrp? */
05ebb6e6 3321 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
8cbbf2c9 3322 continue;
05ebb6e6 3323 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
873fe09e 3324 continue;
d51f39b0 3325 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
f33fddc2 3326 continue;
d51f39b0 3327 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
f33fddc2
G
3328 continue;
3329
2739d3cc 3330 if (is_add) {
4df8dc90 3331 ret = cgroup_add_file(css, cgrp, cft);
b1f28d31 3332 if (ret) {
ed3d261b
JP
3333 pr_warn("%s: failed to add %s, err=%d\n",
3334 __func__, cft->name, ret);
6732ed85
TH
3335 cft_end = cft;
3336 is_add = false;
3337 goto restart;
b1f28d31 3338 }
2739d3cc
LZ
3339 } else {
3340 cgroup_rm_file(cgrp, cft);
db0416b6 3341 }
ddbcc7e8 3342 }
b1f28d31 3343 return 0;
ddbcc7e8
PM
3344}
3345
21a2d343 3346static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
8e3f6541
TH
3347{
3348 LIST_HEAD(pending);
2bb566cb 3349 struct cgroup_subsys *ss = cfts[0].ss;
3dd06ffa 3350 struct cgroup *root = &ss->root->cgrp;
492eb21b 3351 struct cgroup_subsys_state *css;
9ccece80 3352 int ret = 0;
8e3f6541 3353
01f6474c 3354 lockdep_assert_held(&cgroup_mutex);
e8c82d20 3355
e8c82d20 3356 /* add/rm files for all cgroups created before */
ca8bdcaf 3357 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
492eb21b
TH
3358 struct cgroup *cgrp = css->cgroup;
3359
e8c82d20
LZ
3360 if (cgroup_is_dead(cgrp))
3361 continue;
3362
4df8dc90 3363 ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
9ccece80
TH
3364 if (ret)
3365 break;
8e3f6541 3366 }
21a2d343
TH
3367
3368 if (is_add && !ret)
3369 kernfs_activate(root->kn);
9ccece80 3370 return ret;
8e3f6541
TH
3371}
3372
2da440a2 3373static void cgroup_exit_cftypes(struct cftype *cfts)
8e3f6541 3374{
2bb566cb 3375 struct cftype *cft;
8e3f6541 3376
2bd59d48
TH
3377 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3378 /* free copy for custom atomic_write_len, see init_cftypes() */
3379 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3380 kfree(cft->kf_ops);
3381 cft->kf_ops = NULL;
2da440a2 3382 cft->ss = NULL;
a8ddc821
TH
3383
3384 /* revert flags set by cgroup core while adding @cfts */
05ebb6e6 3385 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
2bd59d48 3386 }
2da440a2
TH
3387}
3388
2bd59d48 3389static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2da440a2
TH
3390{
3391 struct cftype *cft;
3392
2bd59d48
TH
3393 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3394 struct kernfs_ops *kf_ops;
3395
0adb0704
TH
3396 WARN_ON(cft->ss || cft->kf_ops);
3397
2bd59d48
TH
3398 if (cft->seq_start)
3399 kf_ops = &cgroup_kf_ops;
3400 else
3401 kf_ops = &cgroup_kf_single_ops;
3402
3403 /*
3404 * Ugh... if @cft wants a custom max_write_len, we need to
3405 * make a copy of kf_ops to set its atomic_write_len.
3406 */
3407 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3408 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3409 if (!kf_ops) {
3410 cgroup_exit_cftypes(cfts);
3411 return -ENOMEM;
3412 }
3413 kf_ops->atomic_write_len = cft->max_write_len;
3414 }
8e3f6541 3415
2bd59d48 3416 cft->kf_ops = kf_ops;
2bb566cb 3417 cft->ss = ss;
2bd59d48 3418 }
2bb566cb 3419
2bd59d48 3420 return 0;
2da440a2
TH
3421}
3422
21a2d343
TH
3423static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3424{
01f6474c 3425 lockdep_assert_held(&cgroup_mutex);
21a2d343
TH
3426
3427 if (!cfts || !cfts[0].ss)
3428 return -ENOENT;
3429
3430 list_del(&cfts->node);
3431 cgroup_apply_cftypes(cfts, false);
3432 cgroup_exit_cftypes(cfts);
3433 return 0;
8e3f6541 3434}
8e3f6541 3435
79578621
TH
3436/**
3437 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
79578621
TH
3438 * @cfts: zero-length name terminated array of cftypes
3439 *
2bb566cb
TH
3440 * Unregister @cfts. Files described by @cfts are removed from all
3441 * existing cgroups and all future cgroups won't have them either. This
3442 * function can be called anytime whether @cfts' subsys is attached or not.
79578621
TH
3443 *
3444 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2bb566cb 3445 * registered.
79578621 3446 */
2bb566cb 3447int cgroup_rm_cftypes(struct cftype *cfts)
79578621 3448{
21a2d343 3449 int ret;
79578621 3450
01f6474c 3451 mutex_lock(&cgroup_mutex);
21a2d343 3452 ret = cgroup_rm_cftypes_locked(cfts);
01f6474c 3453 mutex_unlock(&cgroup_mutex);
21a2d343 3454 return ret;
80b13586
TH
3455}
3456
8e3f6541
TH
3457/**
3458 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3459 * @ss: target cgroup subsystem
3460 * @cfts: zero-length name terminated array of cftypes
3461 *
3462 * Register @cfts to @ss. Files described by @cfts are created for all
3463 * existing cgroups to which @ss is attached and all future cgroups will
3464 * have them too. This function can be called anytime whether @ss is
3465 * attached or not.
3466 *
3467 * Returns 0 on successful registration, -errno on failure. Note that this
3468 * function currently returns 0 as long as @cfts registration is successful
3469 * even if some file creation attempts on existing cgroups fail.
3470 */
2cf669a5 3471static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
8e3f6541 3472{
9ccece80 3473 int ret;
8e3f6541 3474
fc5ed1e9 3475 if (!cgroup_ssid_enabled(ss->id))
c731ae1d
LZ
3476 return 0;
3477
dc5736ed
LZ
3478 if (!cfts || cfts[0].name[0] == '\0')
3479 return 0;
2bb566cb 3480
2bd59d48
TH
3481 ret = cgroup_init_cftypes(ss, cfts);
3482 if (ret)
3483 return ret;
79578621 3484
01f6474c 3485 mutex_lock(&cgroup_mutex);
21a2d343 3486
0adb0704 3487 list_add_tail(&cfts->node, &ss->cfts);
21a2d343 3488 ret = cgroup_apply_cftypes(cfts, true);
9ccece80 3489 if (ret)
21a2d343 3490 cgroup_rm_cftypes_locked(cfts);
79578621 3491
01f6474c 3492 mutex_unlock(&cgroup_mutex);
9ccece80 3493 return ret;
79578621
TH
3494}
3495
a8ddc821
TH
3496/**
3497 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3498 * @ss: target cgroup subsystem
3499 * @cfts: zero-length name terminated array of cftypes
3500 *
3501 * Similar to cgroup_add_cftypes() but the added files are only used for
3502 * the default hierarchy.
3503 */
3504int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3505{
3506 struct cftype *cft;
3507
3508 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
05ebb6e6 3509 cft->flags |= __CFTYPE_ONLY_ON_DFL;
a8ddc821
TH
3510 return cgroup_add_cftypes(ss, cfts);
3511}
3512
3513/**
3514 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3515 * @ss: target cgroup subsystem
3516 * @cfts: zero-length name terminated array of cftypes
3517 *
3518 * Similar to cgroup_add_cftypes() but the added files are only used for
3519 * the legacy hierarchies.
3520 */
2cf669a5
TH
3521int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3522{
a8ddc821
TH
3523 struct cftype *cft;
3524
fa8137be
VG
3525 /*
3526 * If legacy_flies_on_dfl, we want to show the legacy files on the
3527 * dfl hierarchy but iff the target subsystem hasn't been updated
3528 * for the dfl hierarchy yet.
3529 */
3530 if (!cgroup_legacy_files_on_dfl ||
3531 ss->dfl_cftypes != ss->legacy_cftypes) {
3532 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3533 cft->flags |= __CFTYPE_NOT_ON_DFL;
3534 }
3535
2cf669a5
TH
3536 return cgroup_add_cftypes(ss, cfts);
3537}
3538
a043e3b2
LZ
3539/**
3540 * cgroup_task_count - count the number of tasks in a cgroup.
3541 * @cgrp: the cgroup in question
3542 *
3543 * Return the number of tasks in the cgroup.
3544 */
07bc356e 3545static int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
3546{
3547 int count = 0;
69d0206c 3548 struct cgrp_cset_link *link;
817929ec 3549
96d365e0 3550 down_read(&css_set_rwsem);
69d0206c
TH
3551 list_for_each_entry(link, &cgrp->cset_links, cset_link)
3552 count += atomic_read(&link->cset->refcount);
96d365e0 3553 up_read(&css_set_rwsem);
bbcb81d0
PM
3554 return count;
3555}
3556
53fa5261 3557/**
492eb21b 3558 * css_next_child - find the next child of a given css
c2931b70
TH
3559 * @pos: the current position (%NULL to initiate traversal)
3560 * @parent: css whose children to walk
53fa5261 3561 *
c2931b70 3562 * This function returns the next child of @parent and should be called
87fb54f1 3563 * under either cgroup_mutex or RCU read lock. The only requirement is
c2931b70
TH
3564 * that @parent and @pos are accessible. The next sibling is guaranteed to
3565 * be returned regardless of their states.
3566 *
3567 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3568 * css which finished ->css_online() is guaranteed to be visible in the
3569 * future iterations and will stay visible until the last reference is put.
3570 * A css which hasn't finished ->css_online() or already finished
3571 * ->css_offline() may show up during traversal. It's each subsystem's
3572 * responsibility to synchronize against on/offlining.
53fa5261 3573 */
c2931b70
TH
3574struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3575 struct cgroup_subsys_state *parent)
53fa5261 3576{
c2931b70 3577 struct cgroup_subsys_state *next;
53fa5261 3578
8353da1f 3579 cgroup_assert_mutex_or_rcu_locked();
53fa5261
TH
3580
3581 /*
de3f0341
TH
3582 * @pos could already have been unlinked from the sibling list.
3583 * Once a cgroup is removed, its ->sibling.next is no longer
3584 * updated when its next sibling changes. CSS_RELEASED is set when
3585 * @pos is taken off list, at which time its next pointer is valid,
3586 * and, as releases are serialized, the one pointed to by the next
3587 * pointer is guaranteed to not have started release yet. This
3588 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3589 * critical section, the one pointed to by its next pointer is
3590 * guaranteed to not have finished its RCU grace period even if we
3591 * have dropped rcu_read_lock() inbetween iterations.
3b287a50 3592 *
de3f0341
TH
3593 * If @pos has CSS_RELEASED set, its next pointer can't be
3594 * dereferenced; however, as each css is given a monotonically
3595 * increasing unique serial number and always appended to the
3596 * sibling list, the next one can be found by walking the parent's
3597 * children until the first css with higher serial number than
3598 * @pos's. While this path can be slower, it happens iff iteration
3599 * races against release and the race window is very small.
53fa5261 3600 */
3b287a50 3601 if (!pos) {
c2931b70
TH
3602 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3603 } else if (likely(!(pos->flags & CSS_RELEASED))) {
3604 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3b287a50 3605 } else {
c2931b70 3606 list_for_each_entry_rcu(next, &parent->children, sibling)
3b287a50
TH
3607 if (next->serial_nr > pos->serial_nr)
3608 break;
53fa5261
TH
3609 }
3610
3b281afb
TH
3611 /*
3612 * @next, if not pointing to the head, can be dereferenced and is
c2931b70 3613 * the next sibling.
3b281afb 3614 */
c2931b70
TH
3615 if (&next->sibling != &parent->children)
3616 return next;
3b281afb 3617 return NULL;
53fa5261 3618}
53fa5261 3619
574bd9f7 3620/**
492eb21b 3621 * css_next_descendant_pre - find the next descendant for pre-order walk
574bd9f7 3622 * @pos: the current position (%NULL to initiate traversal)
492eb21b 3623 * @root: css whose descendants to walk
574bd9f7 3624 *
492eb21b 3625 * To be used by css_for_each_descendant_pre(). Find the next descendant
bd8815a6
TH
3626 * to visit for pre-order traversal of @root's descendants. @root is
3627 * included in the iteration and the first node to be visited.
75501a6d 3628 *
87fb54f1
TH
3629 * While this function requires cgroup_mutex or RCU read locking, it
3630 * doesn't require the whole traversal to be contained in a single critical
3631 * section. This function will return the correct next descendant as long
3632 * as both @pos and @root are accessible and @pos is a descendant of @root.
c2931b70
TH
3633 *
3634 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3635 * css which finished ->css_online() is guaranteed to be visible in the
3636 * future iterations and will stay visible until the last reference is put.
3637 * A css which hasn't finished ->css_online() or already finished
3638 * ->css_offline() may show up during traversal. It's each subsystem's
3639 * responsibility to synchronize against on/offlining.
574bd9f7 3640 */
492eb21b
TH
3641struct cgroup_subsys_state *
3642css_next_descendant_pre(struct cgroup_subsys_state *pos,
3643 struct cgroup_subsys_state *root)
574bd9f7 3644{
492eb21b 3645 struct cgroup_subsys_state *next;
574bd9f7 3646
8353da1f 3647 cgroup_assert_mutex_or_rcu_locked();
574bd9f7 3648
bd8815a6 3649 /* if first iteration, visit @root */
7805d000 3650 if (!pos)
bd8815a6 3651 return root;
574bd9f7
TH
3652
3653 /* visit the first child if exists */
492eb21b 3654 next = css_next_child(NULL, pos);
574bd9f7
TH
3655 if (next)
3656 return next;
3657
3658 /* no child, visit my or the closest ancestor's next sibling */
492eb21b 3659 while (pos != root) {
5c9d535b 3660 next = css_next_child(pos, pos->parent);
75501a6d 3661 if (next)
574bd9f7 3662 return next;
5c9d535b 3663 pos = pos->parent;
7805d000 3664 }
574bd9f7
TH
3665
3666 return NULL;
3667}
574bd9f7 3668
12a9d2fe 3669/**
492eb21b
TH
3670 * css_rightmost_descendant - return the rightmost descendant of a css
3671 * @pos: css of interest
12a9d2fe 3672 *
492eb21b
TH
3673 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3674 * is returned. This can be used during pre-order traversal to skip
12a9d2fe 3675 * subtree of @pos.
75501a6d 3676 *
87fb54f1
TH
3677 * While this function requires cgroup_mutex or RCU read locking, it
3678 * doesn't require the whole traversal to be contained in a single critical
3679 * section. This function will return the correct rightmost descendant as
3680 * long as @pos is accessible.
12a9d2fe 3681 */
492eb21b
TH
3682struct cgroup_subsys_state *
3683css_rightmost_descendant(struct cgroup_subsys_state *pos)
12a9d2fe 3684{
492eb21b 3685 struct cgroup_subsys_state *last, *tmp;
12a9d2fe 3686
8353da1f 3687 cgroup_assert_mutex_or_rcu_locked();
12a9d2fe
TH
3688
3689 do {
3690 last = pos;
3691 /* ->prev isn't RCU safe, walk ->next till the end */
3692 pos = NULL;
492eb21b 3693 css_for_each_child(tmp, last)
12a9d2fe
TH
3694 pos = tmp;
3695 } while (pos);
3696
3697 return last;
3698}
12a9d2fe 3699
492eb21b
TH
3700static struct cgroup_subsys_state *
3701css_leftmost_descendant(struct cgroup_subsys_state *pos)
574bd9f7 3702{
492eb21b 3703 struct cgroup_subsys_state *last;
574bd9f7
TH
3704
3705 do {
3706 last = pos;
492eb21b 3707 pos = css_next_child(NULL, pos);
574bd9f7
TH
3708 } while (pos);
3709
3710 return last;
3711}
3712
3713/**
492eb21b 3714 * css_next_descendant_post - find the next descendant for post-order walk
574bd9f7 3715 * @pos: the current position (%NULL to initiate traversal)
492eb21b 3716 * @root: css whose descendants to walk
574bd9f7 3717 *
492eb21b 3718 * To be used by css_for_each_descendant_post(). Find the next descendant
bd8815a6
TH
3719 * to visit for post-order traversal of @root's descendants. @root is
3720 * included in the iteration and the last node to be visited.
75501a6d 3721 *
87fb54f1
TH
3722 * While this function requires cgroup_mutex or RCU read locking, it
3723 * doesn't require the whole traversal to be contained in a single critical
3724 * section. This function will return the correct next descendant as long
3725 * as both @pos and @cgroup are accessible and @pos is a descendant of
3726 * @cgroup.
c2931b70
TH
3727 *
3728 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3729 * css which finished ->css_online() is guaranteed to be visible in the
3730 * future iterations and will stay visible until the last reference is put.
3731 * A css which hasn't finished ->css_online() or already finished
3732 * ->css_offline() may show up during traversal. It's each subsystem's
3733 * responsibility to synchronize against on/offlining.
574bd9f7 3734 */
492eb21b
TH
3735struct cgroup_subsys_state *
3736css_next_descendant_post(struct cgroup_subsys_state *pos,
3737 struct cgroup_subsys_state *root)
574bd9f7 3738{
492eb21b 3739 struct cgroup_subsys_state *next;
574bd9f7 3740
8353da1f 3741 cgroup_assert_mutex_or_rcu_locked();
574bd9f7 3742
58b79a91
TH
3743 /* if first iteration, visit leftmost descendant which may be @root */
3744 if (!pos)
3745 return css_leftmost_descendant(root);
574bd9f7 3746
bd8815a6
TH
3747 /* if we visited @root, we're done */
3748 if (pos == root)
3749 return NULL;
3750
574bd9f7 3751 /* if there's an unvisited sibling, visit its leftmost descendant */
5c9d535b 3752 next = css_next_child(pos, pos->parent);
75501a6d 3753 if (next)
492eb21b 3754 return css_leftmost_descendant(next);
574bd9f7
TH
3755
3756 /* no sibling left, visit parent */
5c9d535b 3757 return pos->parent;
574bd9f7 3758}
574bd9f7 3759
f3d46500
TH
3760/**
3761 * css_has_online_children - does a css have online children
3762 * @css: the target css
3763 *
3764 * Returns %true if @css has any online children; otherwise, %false. This
3765 * function can be called from any context but the caller is responsible
3766 * for synchronizing against on/offlining as necessary.
3767 */
3768bool css_has_online_children(struct cgroup_subsys_state *css)
cbc125ef 3769{
f3d46500
TH
3770 struct cgroup_subsys_state *child;
3771 bool ret = false;
cbc125ef
TH
3772
3773 rcu_read_lock();
f3d46500 3774 css_for_each_child(child, css) {
99bae5f9 3775 if (child->flags & CSS_ONLINE) {
f3d46500
TH
3776 ret = true;
3777 break;
cbc125ef
TH
3778 }
3779 }
3780 rcu_read_unlock();
f3d46500 3781 return ret;
574bd9f7 3782}
574bd9f7 3783
0942eeee 3784/**
72ec7029 3785 * css_advance_task_iter - advance a task itererator to the next css_set
0942eeee
TH
3786 * @it: the iterator to advance
3787 *
3788 * Advance @it to the next css_set to walk.
d515876e 3789 */
72ec7029 3790static void css_advance_task_iter(struct css_task_iter *it)
d515876e 3791{
0f0a2b4f 3792 struct list_head *l = it->cset_pos;
d515876e
TH
3793 struct cgrp_cset_link *link;
3794 struct css_set *cset;
3795
3796 /* Advance to the next non-empty css_set */
3797 do {
3798 l = l->next;
0f0a2b4f
TH
3799 if (l == it->cset_head) {
3800 it->cset_pos = NULL;
d515876e
TH
3801 return;
3802 }
3ebb2b6e
TH
3803
3804 if (it->ss) {
3805 cset = container_of(l, struct css_set,
3806 e_cset_node[it->ss->id]);
3807 } else {
3808 link = list_entry(l, struct cgrp_cset_link, cset_link);
3809 cset = link->cset;
3810 }
0de0942d 3811 } while (!css_set_populated(cset));
c7561128 3812
0f0a2b4f 3813 it->cset_pos = l;
c7561128
TH
3814
3815 if (!list_empty(&cset->tasks))
0f0a2b4f 3816 it->task_pos = cset->tasks.next;
c7561128 3817 else
0f0a2b4f
TH
3818 it->task_pos = cset->mg_tasks.next;
3819
3820 it->tasks_head = &cset->tasks;
3821 it->mg_tasks_head = &cset->mg_tasks;
d515876e
TH
3822}
3823
0942eeee 3824/**
72ec7029
TH
3825 * css_task_iter_start - initiate task iteration
3826 * @css: the css to walk tasks of
0942eeee
TH
3827 * @it: the task iterator to use
3828 *
72ec7029
TH
3829 * Initiate iteration through the tasks of @css. The caller can call
3830 * css_task_iter_next() to walk through the tasks until the function
3831 * returns NULL. On completion of iteration, css_task_iter_end() must be
3832 * called.
0942eeee
TH
3833 *
3834 * Note that this function acquires a lock which is released when the
3835 * iteration finishes. The caller can't sleep while iteration is in
3836 * progress.
3837 */
72ec7029
TH
3838void css_task_iter_start(struct cgroup_subsys_state *css,
3839 struct css_task_iter *it)
96d365e0 3840 __acquires(css_set_rwsem)
817929ec 3841{
56fde9e0
TH
3842 /* no one should try to iterate before mounting cgroups */
3843 WARN_ON_ONCE(!use_task_css_set_links);
31a7df01 3844
96d365e0 3845 down_read(&css_set_rwsem);
c59cd3d8 3846
3ebb2b6e
TH
3847 it->ss = css->ss;
3848
3849 if (it->ss)
3850 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
3851 else
3852 it->cset_pos = &css->cgroup->cset_links;
3853
0f0a2b4f 3854 it->cset_head = it->cset_pos;
c59cd3d8 3855
72ec7029 3856 css_advance_task_iter(it);
817929ec
PM
3857}
3858
0942eeee 3859/**
72ec7029 3860 * css_task_iter_next - return the next task for the iterator
0942eeee
TH
3861 * @it: the task iterator being iterated
3862 *
3863 * The "next" function for task iteration. @it should have been
72ec7029
TH
3864 * initialized via css_task_iter_start(). Returns NULL when the iteration
3865 * reaches the end.
0942eeee 3866 */
72ec7029 3867struct task_struct *css_task_iter_next(struct css_task_iter *it)
817929ec
PM
3868{
3869 struct task_struct *res;
0f0a2b4f 3870 struct list_head *l = it->task_pos;
817929ec
PM
3871
3872 /* If the iterator cg is NULL, we have no tasks */
0f0a2b4f 3873 if (!it->cset_pos)
817929ec
PM
3874 return NULL;
3875 res = list_entry(l, struct task_struct, cg_list);
c7561128
TH
3876
3877 /*
3878 * Advance iterator to find next entry. cset->tasks is consumed
3879 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
3880 * next cset.
3881 */
817929ec 3882 l = l->next;
c7561128 3883
0f0a2b4f
TH
3884 if (l == it->tasks_head)
3885 l = it->mg_tasks_head->next;
c7561128 3886
0f0a2b4f 3887 if (l == it->mg_tasks_head)
72ec7029 3888 css_advance_task_iter(it);
c7561128 3889 else
0f0a2b4f 3890 it->task_pos = l;
c7561128 3891
817929ec
PM
3892 return res;
3893}
3894
0942eeee 3895/**
72ec7029 3896 * css_task_iter_end - finish task iteration
0942eeee
TH
3897 * @it: the task iterator to finish
3898 *
72ec7029 3899 * Finish task iteration started by css_task_iter_start().
0942eeee 3900 */
72ec7029 3901void css_task_iter_end(struct css_task_iter *it)
96d365e0 3902 __releases(css_set_rwsem)
31a7df01 3903{
96d365e0 3904 up_read(&css_set_rwsem);
31a7df01
CW
3905}
3906
3907/**
8cc99345
TH
3908 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
3909 * @to: cgroup to which the tasks will be moved
3910 * @from: cgroup in which the tasks currently reside
31a7df01 3911 *
eaf797ab
TH
3912 * Locking rules between cgroup_post_fork() and the migration path
3913 * guarantee that, if a task is forking while being migrated, the new child
3914 * is guaranteed to be either visible in the source cgroup after the
3915 * parent's migration is complete or put into the target cgroup. No task
3916 * can slip out of migration through forking.
31a7df01 3917 */
8cc99345 3918int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
31a7df01 3919{
952aaa12
TH
3920 LIST_HEAD(preloaded_csets);
3921 struct cgrp_cset_link *link;
72ec7029 3922 struct css_task_iter it;
e406d1cf 3923 struct task_struct *task;
952aaa12 3924 int ret;
31a7df01 3925
952aaa12 3926 mutex_lock(&cgroup_mutex);
31a7df01 3927
952aaa12
TH
3928 /* all tasks in @from are being moved, all csets are source */
3929 down_read(&css_set_rwsem);
3930 list_for_each_entry(link, &from->cset_links, cset_link)
3931 cgroup_migrate_add_src(link->cset, to, &preloaded_csets);
3932 up_read(&css_set_rwsem);
31a7df01 3933
952aaa12
TH
3934 ret = cgroup_migrate_prepare_dst(to, &preloaded_csets);
3935 if (ret)
3936 goto out_err;
8cc99345 3937
952aaa12
TH
3938 /*
3939 * Migrate tasks one-by-one until @form is empty. This fails iff
3940 * ->can_attach() fails.
3941 */
e406d1cf 3942 do {
9d800df1 3943 css_task_iter_start(&from->self, &it);
e406d1cf
TH
3944 task = css_task_iter_next(&it);
3945 if (task)
3946 get_task_struct(task);
3947 css_task_iter_end(&it);
3948
3949 if (task) {
9af2ec45 3950 ret = cgroup_migrate(task, false, to);
e406d1cf
TH
3951 put_task_struct(task);
3952 }
3953 } while (task && !ret);
952aaa12
TH
3954out_err:
3955 cgroup_migrate_finish(&preloaded_csets);
47cfcd09 3956 mutex_unlock(&cgroup_mutex);
e406d1cf 3957 return ret;
8cc99345
TH
3958}
3959
bbcb81d0 3960/*
102a775e 3961 * Stuff for reading the 'tasks'/'procs' files.
bbcb81d0
PM
3962 *
3963 * Reading this file can return large amounts of data if a cgroup has
3964 * *lots* of attached tasks. So it may need several calls to read(),
3965 * but we cannot guarantee that the information we produce is correct
3966 * unless we produce it entirely atomically.
3967 *
bbcb81d0 3968 */
bbcb81d0 3969
24528255
LZ
3970/* which pidlist file are we talking about? */
3971enum cgroup_filetype {
3972 CGROUP_FILE_PROCS,
3973 CGROUP_FILE_TASKS,
3974};
3975
3976/*
3977 * A pidlist is a list of pids that virtually represents the contents of one
3978 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3979 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3980 * to the cgroup.
3981 */
3982struct cgroup_pidlist {
3983 /*
3984 * used to find which pidlist is wanted. doesn't change as long as
3985 * this particular list stays in the list.
3986 */
3987 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
3988 /* array of xids */
3989 pid_t *list;
3990 /* how many elements the above list has */
3991 int length;
24528255
LZ
3992 /* each of these stored in a list by its cgroup */
3993 struct list_head links;
3994 /* pointer to the cgroup we belong to, for list removal purposes */
3995 struct cgroup *owner;
b1a21367
TH
3996 /* for delayed destruction */
3997 struct delayed_work destroy_dwork;
24528255
LZ
3998};
3999
d1d9fd33
BB
4000/*
4001 * The following two functions "fix" the issue where there are more pids
4002 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
4003 * TODO: replace with a kernel-wide solution to this problem
4004 */
4005#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
4006static void *pidlist_allocate(int count)
4007{
4008 if (PIDLIST_TOO_LARGE(count))
4009 return vmalloc(count * sizeof(pid_t));
4010 else
4011 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
4012}
b1a21367 4013
d1d9fd33
BB
4014static void pidlist_free(void *p)
4015{
58794514 4016 kvfree(p);
d1d9fd33 4017}
d1d9fd33 4018
b1a21367
TH
4019/*
4020 * Used to destroy all pidlists lingering waiting for destroy timer. None
4021 * should be left afterwards.
4022 */
4023static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
4024{
4025 struct cgroup_pidlist *l, *tmp_l;
4026
4027 mutex_lock(&cgrp->pidlist_mutex);
4028 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
4029 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
4030 mutex_unlock(&cgrp->pidlist_mutex);
4031
4032 flush_workqueue(cgroup_pidlist_destroy_wq);
4033 BUG_ON(!list_empty(&cgrp->pidlists));
4034}
4035
4036static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
4037{
4038 struct delayed_work *dwork = to_delayed_work(work);
4039 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
4040 destroy_dwork);
4041 struct cgroup_pidlist *tofree = NULL;
4042
4043 mutex_lock(&l->owner->pidlist_mutex);
b1a21367
TH
4044
4045 /*
04502365
TH
4046 * Destroy iff we didn't get queued again. The state won't change
4047 * as destroy_dwork can only be queued while locked.
b1a21367 4048 */
04502365 4049 if (!delayed_work_pending(dwork)) {
b1a21367
TH
4050 list_del(&l->links);
4051 pidlist_free(l->list);
4052 put_pid_ns(l->key.ns);
4053 tofree = l;
4054 }
4055
b1a21367
TH
4056 mutex_unlock(&l->owner->pidlist_mutex);
4057 kfree(tofree);
4058}
4059
bbcb81d0 4060/*
102a775e 4061 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
6ee211ad 4062 * Returns the number of unique elements.
bbcb81d0 4063 */
6ee211ad 4064static int pidlist_uniq(pid_t *list, int length)
bbcb81d0 4065{
102a775e 4066 int src, dest = 1;
102a775e
BB
4067
4068 /*
4069 * we presume the 0th element is unique, so i starts at 1. trivial
4070 * edge cases first; no work needs to be done for either
4071 */
4072 if (length == 0 || length == 1)
4073 return length;
4074 /* src and dest walk down the list; dest counts unique elements */
4075 for (src = 1; src < length; src++) {
4076 /* find next unique element */
4077 while (list[src] == list[src-1]) {
4078 src++;
4079 if (src == length)
4080 goto after;
4081 }
4082 /* dest always points to where the next unique element goes */
4083 list[dest] = list[src];
4084 dest++;
4085 }
4086after:
102a775e
BB
4087 return dest;
4088}
4089
afb2bc14
TH
4090/*
4091 * The two pid files - task and cgroup.procs - guaranteed that the result
4092 * is sorted, which forced this whole pidlist fiasco. As pid order is
4093 * different per namespace, each namespace needs differently sorted list,
4094 * making it impossible to use, for example, single rbtree of member tasks
4095 * sorted by task pointer. As pidlists can be fairly large, allocating one
4096 * per open file is dangerous, so cgroup had to implement shared pool of
4097 * pidlists keyed by cgroup and namespace.
4098 *
4099 * All this extra complexity was caused by the original implementation
4100 * committing to an entirely unnecessary property. In the long term, we
aa6ec29b
TH
4101 * want to do away with it. Explicitly scramble sort order if on the
4102 * default hierarchy so that no such expectation exists in the new
4103 * interface.
afb2bc14
TH
4104 *
4105 * Scrambling is done by swapping every two consecutive bits, which is
4106 * non-identity one-to-one mapping which disturbs sort order sufficiently.
4107 */
4108static pid_t pid_fry(pid_t pid)
4109{
4110 unsigned a = pid & 0x55555555;
4111 unsigned b = pid & 0xAAAAAAAA;
4112
4113 return (a << 1) | (b >> 1);
4114}
4115
4116static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
4117{
aa6ec29b 4118 if (cgroup_on_dfl(cgrp))
afb2bc14
TH
4119 return pid_fry(pid);
4120 else
4121 return pid;
4122}
4123
102a775e
BB
4124static int cmppid(const void *a, const void *b)
4125{
4126 return *(pid_t *)a - *(pid_t *)b;
4127}
4128
afb2bc14
TH
4129static int fried_cmppid(const void *a, const void *b)
4130{
4131 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
4132}
4133
e6b81710
TH
4134static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
4135 enum cgroup_filetype type)
4136{
4137 struct cgroup_pidlist *l;
4138 /* don't need task_nsproxy() if we're looking at ourself */
4139 struct pid_namespace *ns = task_active_pid_ns(current);
4140
4141 lockdep_assert_held(&cgrp->pidlist_mutex);
4142
4143 list_for_each_entry(l, &cgrp->pidlists, links)
4144 if (l->key.type == type && l->key.ns == ns)
4145 return l;
4146 return NULL;
4147}
4148
72a8cb30
BB
4149/*
4150 * find the appropriate pidlist for our purpose (given procs vs tasks)
4151 * returns with the lock on that pidlist already held, and takes care
4152 * of the use count, or returns NULL with no locks held if we're out of
4153 * memory.
4154 */
e6b81710
TH
4155static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
4156 enum cgroup_filetype type)
72a8cb30
BB
4157{
4158 struct cgroup_pidlist *l;
b70cc5fd 4159
e6b81710
TH
4160 lockdep_assert_held(&cgrp->pidlist_mutex);
4161
4162 l = cgroup_pidlist_find(cgrp, type);
4163 if (l)
4164 return l;
4165
72a8cb30 4166 /* entry not found; create a new one */
f4f4be2b 4167 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
e6b81710 4168 if (!l)
72a8cb30 4169 return l;
e6b81710 4170
b1a21367 4171 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
72a8cb30 4172 l->key.type = type;
e6b81710
TH
4173 /* don't need task_nsproxy() if we're looking at ourself */
4174 l->key.ns = get_pid_ns(task_active_pid_ns(current));
72a8cb30
BB
4175 l->owner = cgrp;
4176 list_add(&l->links, &cgrp->pidlists);
72a8cb30
BB
4177 return l;
4178}
4179
102a775e
BB
4180/*
4181 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
4182 */
72a8cb30
BB
4183static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
4184 struct cgroup_pidlist **lp)
102a775e
BB
4185{
4186 pid_t *array;
4187 int length;
4188 int pid, n = 0; /* used for populating the array */
72ec7029 4189 struct css_task_iter it;
817929ec 4190 struct task_struct *tsk;
102a775e
BB
4191 struct cgroup_pidlist *l;
4192
4bac00d1
TH
4193 lockdep_assert_held(&cgrp->pidlist_mutex);
4194
102a775e
BB
4195 /*
4196 * If cgroup gets more users after we read count, we won't have
4197 * enough space - tough. This race is indistinguishable to the
4198 * caller from the case that the additional cgroup users didn't
4199 * show up until sometime later on.
4200 */
4201 length = cgroup_task_count(cgrp);
d1d9fd33 4202 array = pidlist_allocate(length);
102a775e
BB
4203 if (!array)
4204 return -ENOMEM;
4205 /* now, populate the array */
9d800df1 4206 css_task_iter_start(&cgrp->self, &it);
72ec7029 4207 while ((tsk = css_task_iter_next(&it))) {
102a775e 4208 if (unlikely(n == length))
817929ec 4209 break;
102a775e 4210 /* get tgid or pid for procs or tasks file respectively */
72a8cb30
BB
4211 if (type == CGROUP_FILE_PROCS)
4212 pid = task_tgid_vnr(tsk);
4213 else
4214 pid = task_pid_vnr(tsk);
102a775e
BB
4215 if (pid > 0) /* make sure to only use valid results */
4216 array[n++] = pid;
817929ec 4217 }
72ec7029 4218 css_task_iter_end(&it);
102a775e
BB
4219 length = n;
4220 /* now sort & (if procs) strip out duplicates */
aa6ec29b 4221 if (cgroup_on_dfl(cgrp))
afb2bc14
TH
4222 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
4223 else
4224 sort(array, length, sizeof(pid_t), cmppid, NULL);
72a8cb30 4225 if (type == CGROUP_FILE_PROCS)
6ee211ad 4226 length = pidlist_uniq(array, length);
e6b81710 4227
e6b81710 4228 l = cgroup_pidlist_find_create(cgrp, type);
72a8cb30 4229 if (!l) {
d1d9fd33 4230 pidlist_free(array);
72a8cb30 4231 return -ENOMEM;
102a775e 4232 }
e6b81710
TH
4233
4234 /* store array, freeing old if necessary */
d1d9fd33 4235 pidlist_free(l->list);
102a775e
BB
4236 l->list = array;
4237 l->length = length;
72a8cb30 4238 *lp = l;
102a775e 4239 return 0;
bbcb81d0
PM
4240}
4241
846c7bb0 4242/**
a043e3b2 4243 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
4244 * @stats: cgroupstats to fill information into
4245 * @dentry: A dentry entry belonging to the cgroup for which stats have
4246 * been requested.
a043e3b2
LZ
4247 *
4248 * Build and fill cgroupstats so that taskstats can export it to user
4249 * space.
846c7bb0
BS
4250 */
4251int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
4252{
2bd59d48 4253 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
bd89aabc 4254 struct cgroup *cgrp;
72ec7029 4255 struct css_task_iter it;
846c7bb0 4256 struct task_struct *tsk;
33d283be 4257
2bd59d48
TH
4258 /* it should be kernfs_node belonging to cgroupfs and is a directory */
4259 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
4260 kernfs_type(kn) != KERNFS_DIR)
4261 return -EINVAL;
4262
bad34660
LZ
4263 mutex_lock(&cgroup_mutex);
4264
846c7bb0 4265 /*
2bd59d48 4266 * We aren't being called from kernfs and there's no guarantee on
ec903c0c 4267 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
2bd59d48 4268 * @kn->priv is RCU safe. Let's do the RCU dancing.
846c7bb0 4269 */
2bd59d48
TH
4270 rcu_read_lock();
4271 cgrp = rcu_dereference(kn->priv);
bad34660 4272 if (!cgrp || cgroup_is_dead(cgrp)) {
2bd59d48 4273 rcu_read_unlock();
bad34660 4274 mutex_unlock(&cgroup_mutex);
2bd59d48
TH
4275 return -ENOENT;
4276 }
bad34660 4277 rcu_read_unlock();
846c7bb0 4278
9d800df1 4279 css_task_iter_start(&cgrp->self, &it);
72ec7029 4280 while ((tsk = css_task_iter_next(&it))) {
846c7bb0
BS
4281 switch (tsk->state) {
4282 case TASK_RUNNING:
4283 stats->nr_running++;
4284 break;
4285 case TASK_INTERRUPTIBLE:
4286 stats->nr_sleeping++;
4287 break;
4288 case TASK_UNINTERRUPTIBLE:
4289 stats->nr_uninterruptible++;
4290 break;
4291 case TASK_STOPPED:
4292 stats->nr_stopped++;
4293 break;
4294 default:
4295 if (delayacct_is_task_waiting_on_io(tsk))
4296 stats->nr_io_wait++;
4297 break;
4298 }
4299 }
72ec7029 4300 css_task_iter_end(&it);
846c7bb0 4301
bad34660 4302 mutex_unlock(&cgroup_mutex);
2bd59d48 4303 return 0;
846c7bb0
BS
4304}
4305
8f3ff208 4306
bbcb81d0 4307/*
102a775e 4308 * seq_file methods for the tasks/procs files. The seq_file position is the
cc31edce 4309 * next pid to display; the seq_file iterator is a pointer to the pid
102a775e 4310 * in the cgroup->l->list array.
bbcb81d0 4311 */
cc31edce 4312
102a775e 4313static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
bbcb81d0 4314{
cc31edce
PM
4315 /*
4316 * Initially we receive a position value that corresponds to
4317 * one more than the last pid shown (or 0 on the first call or
4318 * after a seek to the start). Use a binary-search to find the
4319 * next pid to display, if any
4320 */
2bd59d48 4321 struct kernfs_open_file *of = s->private;
7da11279 4322 struct cgroup *cgrp = seq_css(s)->cgroup;
4bac00d1 4323 struct cgroup_pidlist *l;
7da11279 4324 enum cgroup_filetype type = seq_cft(s)->private;
cc31edce 4325 int index = 0, pid = *pos;
4bac00d1
TH
4326 int *iter, ret;
4327
4328 mutex_lock(&cgrp->pidlist_mutex);
4329
4330 /*
5d22444f 4331 * !NULL @of->priv indicates that this isn't the first start()
4bac00d1 4332 * after open. If the matching pidlist is around, we can use that.
5d22444f 4333 * Look for it. Note that @of->priv can't be used directly. It
4bac00d1
TH
4334 * could already have been destroyed.
4335 */
5d22444f
TH
4336 if (of->priv)
4337 of->priv = cgroup_pidlist_find(cgrp, type);
4bac00d1
TH
4338
4339 /*
4340 * Either this is the first start() after open or the matching
4341 * pidlist has been destroyed inbetween. Create a new one.
4342 */
5d22444f
TH
4343 if (!of->priv) {
4344 ret = pidlist_array_load(cgrp, type,
4345 (struct cgroup_pidlist **)&of->priv);
4bac00d1
TH
4346 if (ret)
4347 return ERR_PTR(ret);
4348 }
5d22444f 4349 l = of->priv;
cc31edce 4350
cc31edce 4351 if (pid) {
102a775e 4352 int end = l->length;
20777766 4353
cc31edce
PM
4354 while (index < end) {
4355 int mid = (index + end) / 2;
afb2bc14 4356 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
cc31edce
PM
4357 index = mid;
4358 break;
afb2bc14 4359 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
cc31edce
PM
4360 index = mid + 1;
4361 else
4362 end = mid;
4363 }
4364 }
4365 /* If we're off the end of the array, we're done */
102a775e 4366 if (index >= l->length)
cc31edce
PM
4367 return NULL;
4368 /* Update the abstract position to be the actual pid that we found */
102a775e 4369 iter = l->list + index;
afb2bc14 4370 *pos = cgroup_pid_fry(cgrp, *iter);
cc31edce
PM
4371 return iter;
4372}
4373
102a775e 4374static void cgroup_pidlist_stop(struct seq_file *s, void *v)
cc31edce 4375{
2bd59d48 4376 struct kernfs_open_file *of = s->private;
5d22444f 4377 struct cgroup_pidlist *l = of->priv;
62236858 4378
5d22444f
TH
4379 if (l)
4380 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
04502365 4381 CGROUP_PIDLIST_DESTROY_DELAY);
7da11279 4382 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
cc31edce
PM
4383}
4384
102a775e 4385static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
cc31edce 4386{
2bd59d48 4387 struct kernfs_open_file *of = s->private;
5d22444f 4388 struct cgroup_pidlist *l = of->priv;
102a775e
BB
4389 pid_t *p = v;
4390 pid_t *end = l->list + l->length;
cc31edce
PM
4391 /*
4392 * Advance to the next pid in the array. If this goes off the
4393 * end, we're done
4394 */
4395 p++;
4396 if (p >= end) {
4397 return NULL;
4398 } else {
7da11279 4399 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
cc31edce
PM
4400 return p;
4401 }
4402}
4403
102a775e 4404static int cgroup_pidlist_show(struct seq_file *s, void *v)
cc31edce 4405{
94ff212d
JP
4406 seq_printf(s, "%d\n", *(int *)v);
4407
4408 return 0;
cc31edce 4409}
bbcb81d0 4410
182446d0
TH
4411static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
4412 struct cftype *cft)
81a6a5cd 4413{
182446d0 4414 return notify_on_release(css->cgroup);
81a6a5cd
PM
4415}
4416
182446d0
TH
4417static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
4418 struct cftype *cft, u64 val)
6379c106 4419{
6379c106 4420 if (val)
182446d0 4421 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106 4422 else
182446d0 4423 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106
PM
4424 return 0;
4425}
4426
182446d0
TH
4427static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
4428 struct cftype *cft)
97978e6d 4429{
182446d0 4430 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
4431}
4432
182446d0
TH
4433static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
4434 struct cftype *cft, u64 val)
97978e6d
DL
4435{
4436 if (val)
182446d0 4437 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d 4438 else
182446d0 4439 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
4440 return 0;
4441}
4442
a14c6874
TH
4443/* cgroup core interface files for the default hierarchy */
4444static struct cftype cgroup_dfl_base_files[] = {
81a6a5cd 4445 {
d5c56ced 4446 .name = "cgroup.procs",
6f60eade 4447 .file_offset = offsetof(struct cgroup, procs_file),
6612f05b
TH
4448 .seq_start = cgroup_pidlist_start,
4449 .seq_next = cgroup_pidlist_next,
4450 .seq_stop = cgroup_pidlist_stop,
4451 .seq_show = cgroup_pidlist_show,
5d22444f 4452 .private = CGROUP_FILE_PROCS,
acbef755 4453 .write = cgroup_procs_write,
102a775e 4454 },
f8f22e53
TH
4455 {
4456 .name = "cgroup.controllers",
a14c6874 4457 .flags = CFTYPE_ONLY_ON_ROOT,
f8f22e53
TH
4458 .seq_show = cgroup_root_controllers_show,
4459 },
4460 {
4461 .name = "cgroup.controllers",
a14c6874 4462 .flags = CFTYPE_NOT_ON_ROOT,
f8f22e53
TH
4463 .seq_show = cgroup_controllers_show,
4464 },
4465 {
4466 .name = "cgroup.subtree_control",
f8f22e53 4467 .seq_show = cgroup_subtree_control_show,
451af504 4468 .write = cgroup_subtree_control_write,
f8f22e53 4469 },
842b597e 4470 {
4a07c222 4471 .name = "cgroup.events",
a14c6874 4472 .flags = CFTYPE_NOT_ON_ROOT,
6f60eade 4473 .file_offset = offsetof(struct cgroup, events_file),
4a07c222 4474 .seq_show = cgroup_events_show,
842b597e 4475 },
a14c6874
TH
4476 { } /* terminate */
4477};
d5c56ced 4478
a14c6874
TH
4479/* cgroup core interface files for the legacy hierarchies */
4480static struct cftype cgroup_legacy_base_files[] = {
4481 {
4482 .name = "cgroup.procs",
4483 .seq_start = cgroup_pidlist_start,
4484 .seq_next = cgroup_pidlist_next,
4485 .seq_stop = cgroup_pidlist_stop,
4486 .seq_show = cgroup_pidlist_show,
4487 .private = CGROUP_FILE_PROCS,
4488 .write = cgroup_procs_write,
a14c6874
TH
4489 },
4490 {
4491 .name = "cgroup.clone_children",
4492 .read_u64 = cgroup_clone_children_read,
4493 .write_u64 = cgroup_clone_children_write,
4494 },
4495 {
4496 .name = "cgroup.sane_behavior",
4497 .flags = CFTYPE_ONLY_ON_ROOT,
4498 .seq_show = cgroup_sane_behavior_show,
4499 },
d5c56ced
TH
4500 {
4501 .name = "tasks",
6612f05b
TH
4502 .seq_start = cgroup_pidlist_start,
4503 .seq_next = cgroup_pidlist_next,
4504 .seq_stop = cgroup_pidlist_stop,
4505 .seq_show = cgroup_pidlist_show,
5d22444f 4506 .private = CGROUP_FILE_TASKS,
acbef755 4507 .write = cgroup_tasks_write,
d5c56ced
TH
4508 },
4509 {
4510 .name = "notify_on_release",
d5c56ced
TH
4511 .read_u64 = cgroup_read_notify_on_release,
4512 .write_u64 = cgroup_write_notify_on_release,
4513 },
6e6ff25b
TH
4514 {
4515 .name = "release_agent",
a14c6874 4516 .flags = CFTYPE_ONLY_ON_ROOT,
2da8ca82 4517 .seq_show = cgroup_release_agent_show,
451af504 4518 .write = cgroup_release_agent_write,
5f469907 4519 .max_write_len = PATH_MAX - 1,
6e6ff25b 4520 },
db0416b6 4521 { } /* terminate */
bbcb81d0
PM
4522};
4523
0c21ead1
TH
4524/*
4525 * css destruction is four-stage process.
4526 *
4527 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4528 * Implemented in kill_css().
4529 *
4530 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
ec903c0c
TH
4531 * and thus css_tryget_online() is guaranteed to fail, the css can be
4532 * offlined by invoking offline_css(). After offlining, the base ref is
4533 * put. Implemented in css_killed_work_fn().
0c21ead1
TH
4534 *
4535 * 3. When the percpu_ref reaches zero, the only possible remaining
4536 * accessors are inside RCU read sections. css_release() schedules the
4537 * RCU callback.
4538 *
4539 * 4. After the grace period, the css can be freed. Implemented in
4540 * css_free_work_fn().
4541 *
4542 * It is actually hairier because both step 2 and 4 require process context
4543 * and thus involve punting to css->destroy_work adding two additional
4544 * steps to the already complex sequence.
4545 */
35ef10da 4546static void css_free_work_fn(struct work_struct *work)
48ddbe19
TH
4547{
4548 struct cgroup_subsys_state *css =
35ef10da 4549 container_of(work, struct cgroup_subsys_state, destroy_work);
01e58659 4550 struct cgroup_subsys *ss = css->ss;
0c21ead1 4551 struct cgroup *cgrp = css->cgroup;
6f60eade 4552 struct cgroup_file *cfile;
48ddbe19 4553
9a1049da
TH
4554 percpu_ref_exit(&css->refcnt);
4555
6f60eade
TH
4556 list_for_each_entry(cfile, &css->files, node)
4557 kernfs_put(cfile->kn);
4558
01e58659 4559 if (ss) {
9d755d33 4560 /* css free path */
01e58659
VD
4561 int id = css->id;
4562
9d755d33
TH
4563 if (css->parent)
4564 css_put(css->parent);
0ae78e0b 4565
01e58659
VD
4566 ss->css_free(css);
4567 cgroup_idr_remove(&ss->css_idr, id);
9d755d33
TH
4568 cgroup_put(cgrp);
4569 } else {
4570 /* cgroup free path */
4571 atomic_dec(&cgrp->root->nr_cgrps);
4572 cgroup_pidlist_destroy_all(cgrp);
971ff493 4573 cancel_work_sync(&cgrp->release_agent_work);
9d755d33 4574
d51f39b0 4575 if (cgroup_parent(cgrp)) {
9d755d33
TH
4576 /*
4577 * We get a ref to the parent, and put the ref when
4578 * this cgroup is being freed, so it's guaranteed
4579 * that the parent won't be destroyed before its
4580 * children.
4581 */
d51f39b0 4582 cgroup_put(cgroup_parent(cgrp));
9d755d33
TH
4583 kernfs_put(cgrp->kn);
4584 kfree(cgrp);
4585 } else {
4586 /*
4587 * This is root cgroup's refcnt reaching zero,
4588 * which indicates that the root should be
4589 * released.
4590 */
4591 cgroup_destroy_root(cgrp->root);
4592 }
4593 }
48ddbe19
TH
4594}
4595
0c21ead1 4596static void css_free_rcu_fn(struct rcu_head *rcu_head)
d3daf28d
TH
4597{
4598 struct cgroup_subsys_state *css =
0c21ead1 4599 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
d3daf28d 4600
35ef10da 4601 INIT_WORK(&css->destroy_work, css_free_work_fn);
e5fca243 4602 queue_work(cgroup_destroy_wq, &css->destroy_work);
48ddbe19
TH
4603}
4604
25e15d83 4605static void css_release_work_fn(struct work_struct *work)
d3daf28d
TH
4606{
4607 struct cgroup_subsys_state *css =
25e15d83 4608 container_of(work, struct cgroup_subsys_state, destroy_work);
15a4c835 4609 struct cgroup_subsys *ss = css->ss;
9d755d33 4610 struct cgroup *cgrp = css->cgroup;
15a4c835 4611
1fed1b2e
TH
4612 mutex_lock(&cgroup_mutex);
4613
de3f0341 4614 css->flags |= CSS_RELEASED;
1fed1b2e
TH
4615 list_del_rcu(&css->sibling);
4616
9d755d33
TH
4617 if (ss) {
4618 /* css release path */
01e58659 4619 cgroup_idr_replace(&ss->css_idr, NULL, css->id);
7d172cc8
TH
4620 if (ss->css_released)
4621 ss->css_released(css);
9d755d33
TH
4622 } else {
4623 /* cgroup release path */
9d755d33
TH
4624 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4625 cgrp->id = -1;
a4189487
LZ
4626
4627 /*
4628 * There are two control paths which try to determine
4629 * cgroup from dentry without going through kernfs -
4630 * cgroupstats_build() and css_tryget_online_from_dir().
4631 * Those are supported by RCU protecting clearing of
4632 * cgrp->kn->priv backpointer.
4633 */
4634 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, NULL);
9d755d33 4635 }
d3daf28d 4636
1fed1b2e
TH
4637 mutex_unlock(&cgroup_mutex);
4638
0c21ead1 4639 call_rcu(&css->rcu_head, css_free_rcu_fn);
d3daf28d
TH
4640}
4641
d3daf28d
TH
4642static void css_release(struct percpu_ref *ref)
4643{
4644 struct cgroup_subsys_state *css =
4645 container_of(ref, struct cgroup_subsys_state, refcnt);
4646
25e15d83
TH
4647 INIT_WORK(&css->destroy_work, css_release_work_fn);
4648 queue_work(cgroup_destroy_wq, &css->destroy_work);
d3daf28d
TH
4649}
4650
ddfcadab
TH
4651static void init_and_link_css(struct cgroup_subsys_state *css,
4652 struct cgroup_subsys *ss, struct cgroup *cgrp)
ddbcc7e8 4653{
0cb51d71
TH
4654 lockdep_assert_held(&cgroup_mutex);
4655
ddfcadab
TH
4656 cgroup_get(cgrp);
4657
d5c419b6 4658 memset(css, 0, sizeof(*css));
bd89aabc 4659 css->cgroup = cgrp;
72c97e54 4660 css->ss = ss;
d5c419b6
TH
4661 INIT_LIST_HEAD(&css->sibling);
4662 INIT_LIST_HEAD(&css->children);
6f60eade 4663 INIT_LIST_HEAD(&css->files);
0cb51d71 4664 css->serial_nr = css_serial_nr_next++;
0ae78e0b 4665
d51f39b0
TH
4666 if (cgroup_parent(cgrp)) {
4667 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
ddfcadab 4668 css_get(css->parent);
ddfcadab 4669 }
48ddbe19 4670
ca8bdcaf 4671 BUG_ON(cgroup_css(cgrp, ss));
ddbcc7e8
PM
4672}
4673
2a4ac633 4674/* invoke ->css_online() on a new CSS and mark it online if successful */
623f926b 4675static int online_css(struct cgroup_subsys_state *css)
a31f2d3f 4676{
623f926b 4677 struct cgroup_subsys *ss = css->ss;
b1929db4
TH
4678 int ret = 0;
4679
a31f2d3f
TH
4680 lockdep_assert_held(&cgroup_mutex);
4681
92fb9748 4682 if (ss->css_online)
eb95419b 4683 ret = ss->css_online(css);
ae7f164a 4684 if (!ret) {
eb95419b 4685 css->flags |= CSS_ONLINE;
aec25020 4686 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
ae7f164a 4687 }
b1929db4 4688 return ret;
a31f2d3f
TH
4689}
4690
2a4ac633 4691/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
623f926b 4692static void offline_css(struct cgroup_subsys_state *css)
a31f2d3f 4693{
623f926b 4694 struct cgroup_subsys *ss = css->ss;
a31f2d3f
TH
4695
4696 lockdep_assert_held(&cgroup_mutex);
4697
4698 if (!(css->flags & CSS_ONLINE))
4699 return;
4700
d7eeac19 4701 if (ss->css_offline)
eb95419b 4702 ss->css_offline(css);
a31f2d3f 4703
eb95419b 4704 css->flags &= ~CSS_ONLINE;
e3297803 4705 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
f8f22e53
TH
4706
4707 wake_up_all(&css->cgroup->offline_waitq);
a31f2d3f
TH
4708}
4709
c81c925a
TH
4710/**
4711 * create_css - create a cgroup_subsys_state
4712 * @cgrp: the cgroup new css will be associated with
4713 * @ss: the subsys of new css
f63070d3 4714 * @visible: whether to create control knobs for the new css or not
c81c925a
TH
4715 *
4716 * Create a new css associated with @cgrp - @ss pair. On success, the new
f63070d3
TH
4717 * css is online and installed in @cgrp with all interface files created if
4718 * @visible. Returns 0 on success, -errno on failure.
c81c925a 4719 */
f63070d3
TH
4720static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
4721 bool visible)
c81c925a 4722{
d51f39b0 4723 struct cgroup *parent = cgroup_parent(cgrp);
1fed1b2e 4724 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
c81c925a
TH
4725 struct cgroup_subsys_state *css;
4726 int err;
4727
c81c925a
TH
4728 lockdep_assert_held(&cgroup_mutex);
4729
1fed1b2e 4730 css = ss->css_alloc(parent_css);
c81c925a
TH
4731 if (IS_ERR(css))
4732 return PTR_ERR(css);
4733
ddfcadab 4734 init_and_link_css(css, ss, cgrp);
a2bed820 4735
2aad2a86 4736 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
c81c925a 4737 if (err)
3eb59ec6 4738 goto err_free_css;
c81c925a 4739
cf780b7d 4740 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
15a4c835
TH
4741 if (err < 0)
4742 goto err_free_percpu_ref;
4743 css->id = err;
c81c925a 4744
f63070d3 4745 if (visible) {
4df8dc90 4746 err = css_populate_dir(css, NULL);
f63070d3
TH
4747 if (err)
4748 goto err_free_id;
4749 }
15a4c835
TH
4750
4751 /* @css is ready to be brought online now, make it visible */
1fed1b2e 4752 list_add_tail_rcu(&css->sibling, &parent_css->children);
15a4c835 4753 cgroup_idr_replace(&ss->css_idr, css, css->id);
c81c925a
TH
4754
4755 err = online_css(css);
4756 if (err)
1fed1b2e 4757 goto err_list_del;
94419627 4758
c81c925a 4759 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
d51f39b0 4760 cgroup_parent(parent)) {
ed3d261b 4761 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
a2a1f9ea 4762 current->comm, current->pid, ss->name);
c81c925a 4763 if (!strcmp(ss->name, "memory"))
ed3d261b 4764 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
c81c925a
TH
4765 ss->warned_broken_hierarchy = true;
4766 }
4767
4768 return 0;
4769
1fed1b2e
TH
4770err_list_del:
4771 list_del_rcu(&css->sibling);
4df8dc90 4772 css_clear_dir(css, NULL);
15a4c835
TH
4773err_free_id:
4774 cgroup_idr_remove(&ss->css_idr, css->id);
3eb59ec6 4775err_free_percpu_ref:
9a1049da 4776 percpu_ref_exit(&css->refcnt);
3eb59ec6 4777err_free_css:
a2bed820 4778 call_rcu(&css->rcu_head, css_free_rcu_fn);
c81c925a
TH
4779 return err;
4780}
4781
b3bfd983
TH
4782static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
4783 umode_t mode)
ddbcc7e8 4784{
a9746d8d
TH
4785 struct cgroup *parent, *cgrp;
4786 struct cgroup_root *root;
ddbcc7e8 4787 struct cgroup_subsys *ss;
2bd59d48 4788 struct kernfs_node *kn;
b3bfd983 4789 int ssid, ret;
ddbcc7e8 4790
71b1fb5c
AC
4791 /* Do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable.
4792 */
4793 if (strchr(name, '\n'))
4794 return -EINVAL;
4795
a9746d8d
TH
4796 parent = cgroup_kn_lock_live(parent_kn);
4797 if (!parent)
4798 return -ENODEV;
4799 root = parent->root;
ddbcc7e8 4800
0a950f65 4801 /* allocate the cgroup and its ID, 0 is reserved for the root */
bd89aabc 4802 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
ba0f4d76
TH
4803 if (!cgrp) {
4804 ret = -ENOMEM;
4805 goto out_unlock;
0ab02ca8
LZ
4806 }
4807
2aad2a86 4808 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
9d755d33
TH
4809 if (ret)
4810 goto out_free_cgrp;
4811
0ab02ca8
LZ
4812 /*
4813 * Temporarily set the pointer to NULL, so idr_find() won't return
4814 * a half-baked cgroup.
4815 */
cf780b7d 4816 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL);
0ab02ca8 4817 if (cgrp->id < 0) {
ba0f4d76 4818 ret = -ENOMEM;
9d755d33 4819 goto out_cancel_ref;
976c06bc
TH
4820 }
4821
cc31edce 4822 init_cgroup_housekeeping(cgrp);
ddbcc7e8 4823
9d800df1 4824 cgrp->self.parent = &parent->self;
ba0f4d76 4825 cgrp->root = root;
ddbcc7e8 4826
b6abdb0e
LZ
4827 if (notify_on_release(parent))
4828 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4829
2260e7fc
TH
4830 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4831 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d 4832
2bd59d48 4833 /* create the directory */
e61734c5 4834 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
2bd59d48 4835 if (IS_ERR(kn)) {
ba0f4d76
TH
4836 ret = PTR_ERR(kn);
4837 goto out_free_id;
2bd59d48
TH
4838 }
4839 cgrp->kn = kn;
ddbcc7e8 4840
4e139afc 4841 /*
6f30558f
TH
4842 * This extra ref will be put in cgroup_free_fn() and guarantees
4843 * that @cgrp->kn is always accessible.
4e139afc 4844 */
6f30558f 4845 kernfs_get(kn);
ddbcc7e8 4846
0cb51d71 4847 cgrp->self.serial_nr = css_serial_nr_next++;
53fa5261 4848
4e139afc 4849 /* allocation complete, commit to creation */
d5c419b6 4850 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
3c9c825b 4851 atomic_inc(&root->nr_cgrps);
59f5296b 4852 cgroup_get(parent);
415cf07a 4853
0d80255e
TH
4854 /*
4855 * @cgrp is now fully operational. If something fails after this
4856 * point, it'll be released via the normal destruction path.
4857 */
6fa4918d 4858 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4e96ee8e 4859
ba0f4d76
TH
4860 ret = cgroup_kn_set_ugid(kn);
4861 if (ret)
4862 goto out_destroy;
49957f8e 4863
4df8dc90 4864 ret = css_populate_dir(&cgrp->self, NULL);
ba0f4d76
TH
4865 if (ret)
4866 goto out_destroy;
628f7cd4 4867
9d403e99 4868 /* let's create and online css's */
b85d2040 4869 for_each_subsys(ss, ssid) {
f392e51c 4870 if (parent->child_subsys_mask & (1 << ssid)) {
f63070d3
TH
4871 ret = create_css(cgrp, ss,
4872 parent->subtree_control & (1 << ssid));
ba0f4d76
TH
4873 if (ret)
4874 goto out_destroy;
b85d2040 4875 }
a8638030 4876 }
ddbcc7e8 4877
bd53d617
TH
4878 /*
4879 * On the default hierarchy, a child doesn't automatically inherit
667c2491 4880 * subtree_control from the parent. Each is configured manually.
bd53d617 4881 */
667c2491
TH
4882 if (!cgroup_on_dfl(cgrp)) {
4883 cgrp->subtree_control = parent->subtree_control;
4884 cgroup_refresh_child_subsys_mask(cgrp);
4885 }
2bd59d48 4886
2bd59d48 4887 kernfs_activate(kn);
ddbcc7e8 4888
ba0f4d76
TH
4889 ret = 0;
4890 goto out_unlock;
ddbcc7e8 4891
ba0f4d76 4892out_free_id:
6fa4918d 4893 cgroup_idr_remove(&root->cgroup_idr, cgrp->id);
9d755d33 4894out_cancel_ref:
9a1049da 4895 percpu_ref_exit(&cgrp->self.refcnt);
ba0f4d76 4896out_free_cgrp:
bd89aabc 4897 kfree(cgrp);
ba0f4d76 4898out_unlock:
a9746d8d 4899 cgroup_kn_unlock(parent_kn);
ba0f4d76 4900 return ret;
4b8b47eb 4901
ba0f4d76 4902out_destroy:
4b8b47eb 4903 cgroup_destroy_locked(cgrp);
ba0f4d76 4904 goto out_unlock;
ddbcc7e8
PM
4905}
4906
223dbc38
TH
4907/*
4908 * This is called when the refcnt of a css is confirmed to be killed.
249f3468
TH
4909 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
4910 * initate destruction and put the css ref from kill_css().
223dbc38
TH
4911 */
4912static void css_killed_work_fn(struct work_struct *work)
d3daf28d 4913{
223dbc38
TH
4914 struct cgroup_subsys_state *css =
4915 container_of(work, struct cgroup_subsys_state, destroy_work);
d3daf28d 4916
f20104de 4917 mutex_lock(&cgroup_mutex);
09a503ea 4918 offline_css(css);
f20104de 4919 mutex_unlock(&cgroup_mutex);
09a503ea 4920
09a503ea 4921 css_put(css);
d3daf28d
TH
4922}
4923
223dbc38
TH
4924/* css kill confirmation processing requires process context, bounce */
4925static void css_killed_ref_fn(struct percpu_ref *ref)
d3daf28d
TH
4926{
4927 struct cgroup_subsys_state *css =
4928 container_of(ref, struct cgroup_subsys_state, refcnt);
4929
223dbc38 4930 INIT_WORK(&css->destroy_work, css_killed_work_fn);
e5fca243 4931 queue_work(cgroup_destroy_wq, &css->destroy_work);
d3daf28d
TH
4932}
4933
f392e51c
TH
4934/**
4935 * kill_css - destroy a css
4936 * @css: css to destroy
4937 *
4938 * This function initiates destruction of @css by removing cgroup interface
4939 * files and putting its base reference. ->css_offline() will be invoked
ec903c0c
TH
4940 * asynchronously once css_tryget_online() is guaranteed to fail and when
4941 * the reference count reaches zero, @css will be released.
f392e51c
TH
4942 */
4943static void kill_css(struct cgroup_subsys_state *css)
edae0c33 4944{
01f6474c 4945 lockdep_assert_held(&cgroup_mutex);
94419627 4946
2bd59d48
TH
4947 /*
4948 * This must happen before css is disassociated with its cgroup.
4949 * See seq_css() for details.
4950 */
4df8dc90 4951 css_clear_dir(css, NULL);
3c14f8b4 4952
edae0c33
TH
4953 /*
4954 * Killing would put the base ref, but we need to keep it alive
4955 * until after ->css_offline().
4956 */
4957 css_get(css);
4958
4959 /*
4960 * cgroup core guarantees that, by the time ->css_offline() is
4961 * invoked, no new css reference will be given out via
ec903c0c 4962 * css_tryget_online(). We can't simply call percpu_ref_kill() and
edae0c33
TH
4963 * proceed to offlining css's because percpu_ref_kill() doesn't
4964 * guarantee that the ref is seen as killed on all CPUs on return.
4965 *
4966 * Use percpu_ref_kill_and_confirm() to get notifications as each
4967 * css is confirmed to be seen as killed on all CPUs.
4968 */
4969 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
d3daf28d
TH
4970}
4971
4972/**
4973 * cgroup_destroy_locked - the first stage of cgroup destruction
4974 * @cgrp: cgroup to be destroyed
4975 *
4976 * css's make use of percpu refcnts whose killing latency shouldn't be
4977 * exposed to userland and are RCU protected. Also, cgroup core needs to
ec903c0c
TH
4978 * guarantee that css_tryget_online() won't succeed by the time
4979 * ->css_offline() is invoked. To satisfy all the requirements,
4980 * destruction is implemented in the following two steps.
d3daf28d
TH
4981 *
4982 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
4983 * userland visible parts and start killing the percpu refcnts of
4984 * css's. Set up so that the next stage will be kicked off once all
4985 * the percpu refcnts are confirmed to be killed.
4986 *
4987 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
4988 * rest of destruction. Once all cgroup references are gone, the
4989 * cgroup is RCU-freed.
4990 *
4991 * This function implements s1. After this step, @cgrp is gone as far as
4992 * the userland is concerned and a new cgroup with the same name may be
4993 * created. As cgroup doesn't care about the names internally, this
4994 * doesn't cause any problem.
4995 */
42809dd4
TH
4996static int cgroup_destroy_locked(struct cgroup *cgrp)
4997 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
ddbcc7e8 4998{
2bd59d48 4999 struct cgroup_subsys_state *css;
1c6727af 5000 int ssid;
ddbcc7e8 5001
42809dd4
TH
5002 lockdep_assert_held(&cgroup_mutex);
5003
91486f61
TH
5004 /*
5005 * Only migration can raise populated from zero and we're already
5006 * holding cgroup_mutex.
5007 */
5008 if (cgroup_is_populated(cgrp))
ddbcc7e8 5009 return -EBUSY;
a043e3b2 5010
bb78a92f 5011 /*
d5c419b6
TH
5012 * Make sure there's no live children. We can't test emptiness of
5013 * ->self.children as dead children linger on it while being
5014 * drained; otherwise, "rmdir parent/child parent" may fail.
bb78a92f 5015 */
f3d46500 5016 if (css_has_online_children(&cgrp->self))
bb78a92f
HD
5017 return -EBUSY;
5018
455050d2
TH
5019 /*
5020 * Mark @cgrp dead. This prevents further task migration and child
de3f0341 5021 * creation by disabling cgroup_lock_live_group().
455050d2 5022 */
184faf32 5023 cgrp->self.flags &= ~CSS_ONLINE;
ddbcc7e8 5024
249f3468 5025 /* initiate massacre of all css's */
1c6727af
TH
5026 for_each_css(css, ssid, cgrp)
5027 kill_css(css);
455050d2 5028
455050d2 5029 /*
01f6474c
TH
5030 * Remove @cgrp directory along with the base files. @cgrp has an
5031 * extra ref on its kn.
f20104de 5032 */
01f6474c 5033 kernfs_remove(cgrp->kn);
f20104de 5034
d51f39b0 5035 check_for_release(cgroup_parent(cgrp));
2bd59d48 5036
249f3468 5037 /* put the base reference */
9d755d33 5038 percpu_ref_kill(&cgrp->self.refcnt);
455050d2 5039
ea15f8cc
TH
5040 return 0;
5041};
5042
2bd59d48 5043static int cgroup_rmdir(struct kernfs_node *kn)
42809dd4 5044{
a9746d8d 5045 struct cgroup *cgrp;
2bd59d48 5046 int ret = 0;
42809dd4 5047
a9746d8d
TH
5048 cgrp = cgroup_kn_lock_live(kn);
5049 if (!cgrp)
5050 return 0;
42809dd4 5051
a9746d8d 5052 ret = cgroup_destroy_locked(cgrp);
2bb566cb 5053
a9746d8d 5054 cgroup_kn_unlock(kn);
42809dd4 5055 return ret;
8e3f6541
TH
5056}
5057
2bd59d48
TH
5058static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5059 .remount_fs = cgroup_remount,
5060 .show_options = cgroup_show_options,
5061 .mkdir = cgroup_mkdir,
5062 .rmdir = cgroup_rmdir,
5063 .rename = cgroup_rename,
5064};
5065
15a4c835 5066static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
ddbcc7e8 5067{
ddbcc7e8 5068 struct cgroup_subsys_state *css;
cfe36bde
DC
5069
5070 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8 5071
648bb56d
TH
5072 mutex_lock(&cgroup_mutex);
5073
15a4c835 5074 idr_init(&ss->css_idr);
0adb0704 5075 INIT_LIST_HEAD(&ss->cfts);
8e3f6541 5076
3dd06ffa
TH
5077 /* Create the root cgroup state for this subsystem */
5078 ss->root = &cgrp_dfl_root;
5079 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
ddbcc7e8
PM
5080 /* We don't handle early failures gracefully */
5081 BUG_ON(IS_ERR(css));
ddfcadab 5082 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
3b514d24
TH
5083
5084 /*
5085 * Root csses are never destroyed and we can't initialize
5086 * percpu_ref during early init. Disable refcnting.
5087 */
5088 css->flags |= CSS_NO_REF;
5089
15a4c835 5090 if (early) {
9395a450 5091 /* allocation can't be done safely during early init */
15a4c835
TH
5092 css->id = 1;
5093 } else {
5094 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5095 BUG_ON(css->id < 0);
5096 }
ddbcc7e8 5097
e8d55fde 5098 /* Update the init_css_set to contain a subsys
817929ec 5099 * pointer to this state - since the subsystem is
e8d55fde 5100 * newly registered, all tasks and hence the
3dd06ffa 5101 * init_css_set is in the subsystem's root cgroup. */
aec25020 5102 init_css_set.subsys[ss->id] = css;
ddbcc7e8 5103
cb4a3167
AS
5104 have_fork_callback |= (bool)ss->fork << ss->id;
5105 have_exit_callback |= (bool)ss->exit << ss->id;
7e47682e 5106 have_canfork_callback |= (bool)ss->can_fork << ss->id;
ddbcc7e8 5107
e8d55fde
LZ
5108 /* At system boot, before all subsystems have been
5109 * registered, no tasks have been forked, so we don't
5110 * need to invoke fork callbacks here. */
5111 BUG_ON(!list_empty(&init_task.tasks));
5112
ae7f164a 5113 BUG_ON(online_css(css));
a8638030 5114
cf5d5941
BB
5115 mutex_unlock(&cgroup_mutex);
5116}
cf5d5941 5117
ddbcc7e8 5118/**
a043e3b2
LZ
5119 * cgroup_init_early - cgroup initialization at system boot
5120 *
5121 * Initialize cgroups at system boot, and initialize any
5122 * subsystems that request early init.
ddbcc7e8
PM
5123 */
5124int __init cgroup_init_early(void)
5125{
7b9a6ba5 5126 static struct cgroup_sb_opts __initdata opts;
30159ec7 5127 struct cgroup_subsys *ss;
ddbcc7e8 5128 int i;
30159ec7 5129
3dd06ffa 5130 init_cgroup_root(&cgrp_dfl_root, &opts);
3b514d24
TH
5131 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5132
a4ea1cc9 5133 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
817929ec 5134
3ed80a62 5135 for_each_subsys(ss, i) {
aec25020 5136 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
073219e9
TH
5137 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p name:id=%d:%s\n",
5138 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
aec25020 5139 ss->id, ss->name);
073219e9
TH
5140 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5141 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5142
aec25020 5143 ss->id = i;
073219e9 5144 ss->name = cgroup_subsys_name[i];
3e1d2eed
TH
5145 if (!ss->legacy_name)
5146 ss->legacy_name = cgroup_subsys_name[i];
ddbcc7e8
PM
5147
5148 if (ss->early_init)
15a4c835 5149 cgroup_init_subsys(ss, true);
ddbcc7e8
PM
5150 }
5151 return 0;
5152}
5153
a3e72739
TH
5154static unsigned long cgroup_disable_mask __initdata;
5155
ddbcc7e8 5156/**
a043e3b2
LZ
5157 * cgroup_init - cgroup initialization
5158 *
5159 * Register cgroup filesystem and /proc file, and initialize
5160 * any subsystems that didn't request early init.
ddbcc7e8
PM
5161 */
5162int __init cgroup_init(void)
5163{
30159ec7 5164 struct cgroup_subsys *ss;
0ac801fe 5165 unsigned long key;
172a2c06 5166 int ssid, err;
ddbcc7e8 5167
1ed13287 5168 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem));
a14c6874
TH
5169 BUG_ON(cgroup_init_cftypes(NULL, cgroup_dfl_base_files));
5170 BUG_ON(cgroup_init_cftypes(NULL, cgroup_legacy_base_files));
ddbcc7e8 5171
54e7b4eb 5172 mutex_lock(&cgroup_mutex);
54e7b4eb 5173
82fe9b0d
TH
5174 /* Add init_css_set to the hash table */
5175 key = css_set_hash(init_css_set.subsys);
5176 hash_add(css_set_table, &init_css_set.hlist, key);
5177
3dd06ffa 5178 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
4e96ee8e 5179
54e7b4eb
TH
5180 mutex_unlock(&cgroup_mutex);
5181
172a2c06 5182 for_each_subsys(ss, ssid) {
15a4c835
TH
5183 if (ss->early_init) {
5184 struct cgroup_subsys_state *css =
5185 init_css_set.subsys[ss->id];
5186
5187 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5188 GFP_KERNEL);
5189 BUG_ON(css->id < 0);
5190 } else {
5191 cgroup_init_subsys(ss, false);
5192 }
172a2c06 5193
2d8f243a
TH
5194 list_add_tail(&init_css_set.e_cset_node[ssid],
5195 &cgrp_dfl_root.cgrp.e_csets[ssid]);
172a2c06
TH
5196
5197 /*
c731ae1d
LZ
5198 * Setting dfl_root subsys_mask needs to consider the
5199 * disabled flag and cftype registration needs kmalloc,
5200 * both of which aren't available during early_init.
172a2c06 5201 */
a3e72739
TH
5202 if (cgroup_disable_mask & (1 << ssid)) {
5203 static_branch_disable(cgroup_subsys_enabled_key[ssid]);
5204 printk(KERN_INFO "Disabling %s control group subsystem\n",
5205 ss->name);
a8ddc821 5206 continue;
a3e72739 5207 }
a8ddc821
TH
5208
5209 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5210
5211 if (cgroup_legacy_files_on_dfl && !ss->dfl_cftypes)
5212 ss->dfl_cftypes = ss->legacy_cftypes;
5213
5de4fa13
TH
5214 if (!ss->dfl_cftypes)
5215 cgrp_dfl_root_inhibit_ss_mask |= 1 << ss->id;
5216
a8ddc821
TH
5217 if (ss->dfl_cftypes == ss->legacy_cftypes) {
5218 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5219 } else {
5220 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5221 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
c731ae1d 5222 }
295458e6
VD
5223
5224 if (ss->bind)
5225 ss->bind(init_css_set.subsys[ssid]);
676db4af
GK
5226 }
5227
f9bb4882
EB
5228 err = sysfs_create_mount_point(fs_kobj, "cgroup");
5229 if (err)
5230 return err;
676db4af 5231
ddbcc7e8 5232 err = register_filesystem(&cgroup_fs_type);
676db4af 5233 if (err < 0) {
f9bb4882 5234 sysfs_remove_mount_point(fs_kobj, "cgroup");
2bd59d48 5235 return err;
676db4af 5236 }
ddbcc7e8 5237
46ae220b 5238 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
2bd59d48 5239 return 0;
ddbcc7e8 5240}
b4f48b63 5241
e5fca243
TH
5242static int __init cgroup_wq_init(void)
5243{
5244 /*
5245 * There isn't much point in executing destruction path in
5246 * parallel. Good chunk is serialized with cgroup_mutex anyway.
1a11533f 5247 * Use 1 for @max_active.
e5fca243
TH
5248 *
5249 * We would prefer to do this in cgroup_init() above, but that
5250 * is called before init_workqueues(): so leave this until after.
5251 */
1a11533f 5252 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
e5fca243 5253 BUG_ON(!cgroup_destroy_wq);
b1a21367
TH
5254
5255 /*
5256 * Used to destroy pidlists and separate to serve as flush domain.
5257 * Cap @max_active to 1 too.
5258 */
5259 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
5260 0, 1);
5261 BUG_ON(!cgroup_pidlist_destroy_wq);
5262
e5fca243
TH
5263 return 0;
5264}
5265core_initcall(cgroup_wq_init);
5266
a424316c
PM
5267/*
5268 * proc_cgroup_show()
5269 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5270 * - Used for /proc/<pid>/cgroup.
a424316c 5271 */
006f4ac4
ZL
5272int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5273 struct pid *pid, struct task_struct *tsk)
a424316c 5274{
e61734c5 5275 char *buf, *path;
a424316c 5276 int retval;
3dd06ffa 5277 struct cgroup_root *root;
a424316c
PM
5278
5279 retval = -ENOMEM;
e61734c5 5280 buf = kmalloc(PATH_MAX, GFP_KERNEL);
a424316c
PM
5281 if (!buf)
5282 goto out;
5283
a424316c 5284 mutex_lock(&cgroup_mutex);
96d365e0 5285 down_read(&css_set_rwsem);
a424316c 5286
985ed670 5287 for_each_root(root) {
a424316c 5288 struct cgroup_subsys *ss;
bd89aabc 5289 struct cgroup *cgrp;
b85d2040 5290 int ssid, count = 0;
a424316c 5291
a2dd4247 5292 if (root == &cgrp_dfl_root && !cgrp_dfl_root_visible)
985ed670
TH
5293 continue;
5294
2c6ab6d2 5295 seq_printf(m, "%d:", root->hierarchy_id);
d98817d4
TH
5296 if (root != &cgrp_dfl_root)
5297 for_each_subsys(ss, ssid)
5298 if (root->subsys_mask & (1 << ssid))
5299 seq_printf(m, "%s%s", count++ ? "," : "",
3e1d2eed 5300 ss->legacy_name);
c6d57f33
PM
5301 if (strlen(root->name))
5302 seq_printf(m, "%sname=%s", count ? "," : "",
5303 root->name);
a424316c 5304 seq_putc(m, ':');
7717f7ba 5305 cgrp = task_cgroup_from_root(tsk, root);
e61734c5
TH
5306 path = cgroup_path(cgrp, buf, PATH_MAX);
5307 if (!path) {
5308 retval = -ENAMETOOLONG;
a424316c 5309 goto out_unlock;
e61734c5
TH
5310 }
5311 seq_puts(m, path);
a424316c
PM
5312 seq_putc(m, '\n');
5313 }
5314
006f4ac4 5315 retval = 0;
a424316c 5316out_unlock:
96d365e0 5317 up_read(&css_set_rwsem);
a424316c 5318 mutex_unlock(&cgroup_mutex);
a424316c
PM
5319 kfree(buf);
5320out:
5321 return retval;
5322}
5323
a424316c
PM
5324/* Display information about each subsystem and each hierarchy */
5325static int proc_cgroupstats_show(struct seq_file *m, void *v)
5326{
30159ec7 5327 struct cgroup_subsys *ss;
a424316c 5328 int i;
a424316c 5329
8bab8dde 5330 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
aae8aab4
BB
5331 /*
5332 * ideally we don't want subsystems moving around while we do this.
5333 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5334 * subsys/hierarchy state.
5335 */
a424316c 5336 mutex_lock(&cgroup_mutex);
30159ec7
TH
5337
5338 for_each_subsys(ss, i)
2c6ab6d2 5339 seq_printf(m, "%s\t%d\t%d\t%d\n",
3e1d2eed 5340 ss->legacy_name, ss->root->hierarchy_id,
fc5ed1e9
TH
5341 atomic_read(&ss->root->nr_cgrps),
5342 cgroup_ssid_enabled(i));
30159ec7 5343
a424316c
PM
5344 mutex_unlock(&cgroup_mutex);
5345 return 0;
5346}
5347
5348static int cgroupstats_open(struct inode *inode, struct file *file)
5349{
9dce07f1 5350 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
5351}
5352
828c0950 5353static const struct file_operations proc_cgroupstats_operations = {
a424316c
PM
5354 .open = cgroupstats_open,
5355 .read = seq_read,
5356 .llseek = seq_lseek,
5357 .release = single_release,
5358};
5359
7e47682e
AS
5360static void **subsys_canfork_priv_p(void *ss_priv[CGROUP_CANFORK_COUNT], int i)
5361{
5362 if (CGROUP_CANFORK_START <= i && i < CGROUP_CANFORK_END)
5363 return &ss_priv[i - CGROUP_CANFORK_START];
5364 return NULL;
5365}
5366
5367static void *subsys_canfork_priv(void *ss_priv[CGROUP_CANFORK_COUNT], int i)
5368{
5369 void **private = subsys_canfork_priv_p(ss_priv, i);
5370 return private ? *private : NULL;
5371}
5372
b4f48b63 5373/**
eaf797ab 5374 * cgroup_fork - initialize cgroup related fields during copy_process()
a043e3b2 5375 * @child: pointer to task_struct of forking parent process.
b4f48b63 5376 *
eaf797ab
TH
5377 * A task is associated with the init_css_set until cgroup_post_fork()
5378 * attaches it to the parent's css_set. Empty cg_list indicates that
5379 * @child isn't holding reference to its css_set.
b4f48b63
PM
5380 */
5381void cgroup_fork(struct task_struct *child)
5382{
eaf797ab 5383 RCU_INIT_POINTER(child->cgroups, &init_css_set);
817929ec 5384 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
5385}
5386
7e47682e
AS
5387/**
5388 * cgroup_can_fork - called on a new task before the process is exposed
5389 * @child: the task in question.
5390 *
5391 * This calls the subsystem can_fork() callbacks. If the can_fork() callback
5392 * returns an error, the fork aborts with that error code. This allows for
5393 * a cgroup subsystem to conditionally allow or deny new forks.
5394 */
5395int cgroup_can_fork(struct task_struct *child,
5396 void *ss_priv[CGROUP_CANFORK_COUNT])
5397{
5398 struct cgroup_subsys *ss;
5399 int i, j, ret;
5400
5401 for_each_subsys_which(ss, i, &have_canfork_callback) {
5402 ret = ss->can_fork(child, subsys_canfork_priv_p(ss_priv, i));
5403 if (ret)
5404 goto out_revert;
5405 }
5406
5407 return 0;
5408
5409out_revert:
5410 for_each_subsys(ss, j) {
5411 if (j >= i)
5412 break;
5413 if (ss->cancel_fork)
5414 ss->cancel_fork(child, subsys_canfork_priv(ss_priv, j));
5415 }
5416
5417 return ret;
5418}
5419
5420/**
5421 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
5422 * @child: the task in question
5423 *
5424 * This calls the cancel_fork() callbacks if a fork failed *after*
5425 * cgroup_can_fork() succeded.
5426 */
5427void cgroup_cancel_fork(struct task_struct *child,
5428 void *ss_priv[CGROUP_CANFORK_COUNT])
5429{
5430 struct cgroup_subsys *ss;
5431 int i;
5432
5433 for_each_subsys(ss, i)
5434 if (ss->cancel_fork)
5435 ss->cancel_fork(child, subsys_canfork_priv(ss_priv, i));
5436}
5437
817929ec 5438/**
a043e3b2
LZ
5439 * cgroup_post_fork - called on a new task after adding it to the task list
5440 * @child: the task in question
5441 *
5edee61e
TH
5442 * Adds the task to the list running through its css_set if necessary and
5443 * call the subsystem fork() callbacks. Has to be after the task is
5444 * visible on the task list in case we race with the first call to
0942eeee 5445 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5edee61e 5446 * list.
a043e3b2 5447 */
7e47682e
AS
5448void cgroup_post_fork(struct task_struct *child,
5449 void *old_ss_priv[CGROUP_CANFORK_COUNT])
817929ec 5450{
30159ec7 5451 struct cgroup_subsys *ss;
5edee61e
TH
5452 int i;
5453
3ce3230a 5454 /*
251f8c03 5455 * This may race against cgroup_enable_task_cg_lists(). As that
eaf797ab
TH
5456 * function sets use_task_css_set_links before grabbing
5457 * tasklist_lock and we just went through tasklist_lock to add
5458 * @child, it's guaranteed that either we see the set
5459 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5460 * @child during its iteration.
5461 *
5462 * If we won the race, @child is associated with %current's
5463 * css_set. Grabbing css_set_rwsem guarantees both that the
5464 * association is stable, and, on completion of the parent's
5465 * migration, @child is visible in the source of migration or
5466 * already in the destination cgroup. This guarantee is necessary
5467 * when implementing operations which need to migrate all tasks of
5468 * a cgroup to another.
5469 *
251f8c03 5470 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
eaf797ab
TH
5471 * will remain in init_css_set. This is safe because all tasks are
5472 * in the init_css_set before cg_links is enabled and there's no
5473 * operation which transfers all tasks out of init_css_set.
3ce3230a 5474 */
817929ec 5475 if (use_task_css_set_links) {
eaf797ab
TH
5476 struct css_set *cset;
5477
96d365e0 5478 down_write(&css_set_rwsem);
0e1d768f 5479 cset = task_css_set(current);
eaf797ab
TH
5480 if (list_empty(&child->cg_list)) {
5481 rcu_assign_pointer(child->cgroups, cset);
389b9c1b 5482 list_add_tail(&child->cg_list, &cset->tasks);
eaf797ab
TH
5483 get_css_set(cset);
5484 }
96d365e0 5485 up_write(&css_set_rwsem);
817929ec 5486 }
5edee61e
TH
5487
5488 /*
5489 * Call ss->fork(). This must happen after @child is linked on
5490 * css_set; otherwise, @child might change state between ->fork()
5491 * and addition to css_set.
5492 */
cb4a3167 5493 for_each_subsys_which(ss, i, &have_fork_callback)
7e47682e 5494 ss->fork(child, subsys_canfork_priv(old_ss_priv, i));
817929ec 5495}
5edee61e 5496
b4f48b63
PM
5497/**
5498 * cgroup_exit - detach cgroup from exiting task
5499 * @tsk: pointer to task_struct of exiting process
5500 *
5501 * Description: Detach cgroup from @tsk and release it.
5502 *
5503 * Note that cgroups marked notify_on_release force every task in
5504 * them to take the global cgroup_mutex mutex when exiting.
5505 * This could impact scaling on very large systems. Be reluctant to
5506 * use notify_on_release cgroups where very high task exit scaling
5507 * is required on large systems.
5508 *
0e1d768f
TH
5509 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
5510 * call cgroup_exit() while the task is still competent to handle
5511 * notify_on_release(), then leave the task attached to the root cgroup in
5512 * each hierarchy for the remainder of its exit. No need to bother with
5513 * init_css_set refcnting. init_css_set never goes away and we can't race
e8604cb4 5514 * with migration path - PF_EXITING is visible to migration path.
b4f48b63 5515 */
1ec41830 5516void cgroup_exit(struct task_struct *tsk)
b4f48b63 5517{
30159ec7 5518 struct cgroup_subsys *ss;
5abb8855 5519 struct css_set *cset;
eaf797ab 5520 bool put_cset = false;
d41d5a01 5521 int i;
817929ec
PM
5522
5523 /*
0e1d768f 5524 * Unlink from @tsk from its css_set. As migration path can't race
0de0942d 5525 * with us, we can check css_set and cg_list without synchronization.
817929ec 5526 */
0de0942d
TH
5527 cset = task_css_set(tsk);
5528
817929ec 5529 if (!list_empty(&tsk->cg_list)) {
96d365e0 5530 down_write(&css_set_rwsem);
0e1d768f 5531 list_del_init(&tsk->cg_list);
0de0942d
TH
5532 if (!css_set_populated(cset))
5533 css_set_update_populated(cset, false);
96d365e0 5534 up_write(&css_set_rwsem);
0e1d768f 5535 put_cset = true;
817929ec
PM
5536 }
5537
b4f48b63 5538 /* Reassign the task to the init_css_set. */
a8ad805c 5539 RCU_INIT_POINTER(tsk->cgroups, &init_css_set);
d41d5a01 5540
cb4a3167
AS
5541 /* see cgroup_post_fork() for details */
5542 for_each_subsys_which(ss, i, &have_exit_callback) {
5543 struct cgroup_subsys_state *old_css = cset->subsys[i];
5544 struct cgroup_subsys_state *css = task_css(tsk, i);
30159ec7 5545
cb4a3167 5546 ss->exit(css, old_css, tsk);
d41d5a01 5547 }
d41d5a01 5548
eaf797ab 5549 if (put_cset)
a25eb52e 5550 put_css_set(cset);
b4f48b63 5551}
697f4161 5552
bd89aabc 5553static void check_for_release(struct cgroup *cgrp)
81a6a5cd 5554{
27bd4dbb 5555 if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) &&
971ff493
ZL
5556 !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
5557 schedule_work(&cgrp->release_agent_work);
81a6a5cd
PM
5558}
5559
81a6a5cd
PM
5560/*
5561 * Notify userspace when a cgroup is released, by running the
5562 * configured release agent with the name of the cgroup (path
5563 * relative to the root of cgroup file system) as the argument.
5564 *
5565 * Most likely, this user command will try to rmdir this cgroup.
5566 *
5567 * This races with the possibility that some other task will be
5568 * attached to this cgroup before it is removed, or that some other
5569 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5570 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5571 * unused, and this cgroup will be reprieved from its death sentence,
5572 * to continue to serve a useful existence. Next time it's released,
5573 * we will get notified again, if it still has 'notify_on_release' set.
5574 *
5575 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5576 * means only wait until the task is successfully execve()'d. The
5577 * separate release agent task is forked by call_usermodehelper(),
5578 * then control in this thread returns here, without waiting for the
5579 * release agent task. We don't bother to wait because the caller of
5580 * this routine has no use for the exit status of the release agent
5581 * task, so no sense holding our caller up for that.
81a6a5cd 5582 */
81a6a5cd
PM
5583static void cgroup_release_agent(struct work_struct *work)
5584{
971ff493
ZL
5585 struct cgroup *cgrp =
5586 container_of(work, struct cgroup, release_agent_work);
5587 char *pathbuf = NULL, *agentbuf = NULL, *path;
5588 char *argv[3], *envp[3];
5589
81a6a5cd 5590 mutex_lock(&cgroup_mutex);
971ff493
ZL
5591
5592 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
5593 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5594 if (!pathbuf || !agentbuf)
5595 goto out;
5596
5597 path = cgroup_path(cgrp, pathbuf, PATH_MAX);
5598 if (!path)
5599 goto out;
5600
5601 argv[0] = agentbuf;
5602 argv[1] = path;
5603 argv[2] = NULL;
5604
5605 /* minimal command environment */
5606 envp[0] = "HOME=/";
5607 envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5608 envp[2] = NULL;
5609
81a6a5cd 5610 mutex_unlock(&cgroup_mutex);
971ff493 5611 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
3e2cd91a 5612 goto out_free;
971ff493 5613out:
81a6a5cd 5614 mutex_unlock(&cgroup_mutex);
3e2cd91a 5615out_free:
971ff493
ZL
5616 kfree(agentbuf);
5617 kfree(pathbuf);
81a6a5cd 5618}
8bab8dde
PM
5619
5620static int __init cgroup_disable(char *str)
5621{
30159ec7 5622 struct cgroup_subsys *ss;
8bab8dde 5623 char *token;
30159ec7 5624 int i;
8bab8dde
PM
5625
5626 while ((token = strsep(&str, ",")) != NULL) {
5627 if (!*token)
5628 continue;
be45c900 5629
3ed80a62 5630 for_each_subsys(ss, i) {
3e1d2eed
TH
5631 if (strcmp(token, ss->name) &&
5632 strcmp(token, ss->legacy_name))
5633 continue;
a3e72739 5634 cgroup_disable_mask |= 1 << i;
8bab8dde
PM
5635 }
5636 }
5637 return 1;
5638}
5639__setup("cgroup_disable=", cgroup_disable);
38460b48 5640
a8ddc821
TH
5641static int __init cgroup_set_legacy_files_on_dfl(char *str)
5642{
5643 printk("cgroup: using legacy files on the default hierarchy\n");
5644 cgroup_legacy_files_on_dfl = true;
5645 return 0;
5646}
5647__setup("cgroup__DEVEL__legacy_files_on_dfl", cgroup_set_legacy_files_on_dfl);
5648
b77d7b60 5649/**
ec903c0c 5650 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
35cf0836
TH
5651 * @dentry: directory dentry of interest
5652 * @ss: subsystem of interest
b77d7b60 5653 *
5a17f543
TH
5654 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5655 * to get the corresponding css and return it. If such css doesn't exist
5656 * or can't be pinned, an ERR_PTR value is returned.
e5d1367f 5657 */
ec903c0c
TH
5658struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
5659 struct cgroup_subsys *ss)
e5d1367f 5660{
2bd59d48
TH
5661 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
5662 struct cgroup_subsys_state *css = NULL;
e5d1367f 5663 struct cgroup *cgrp;
e5d1367f 5664
35cf0836 5665 /* is @dentry a cgroup dir? */
2bd59d48
TH
5666 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
5667 kernfs_type(kn) != KERNFS_DIR)
e5d1367f
SE
5668 return ERR_PTR(-EBADF);
5669
5a17f543
TH
5670 rcu_read_lock();
5671
2bd59d48
TH
5672 /*
5673 * This path doesn't originate from kernfs and @kn could already
5674 * have been or be removed at any point. @kn->priv is RCU
a4189487 5675 * protected for this access. See css_release_work_fn() for details.
2bd59d48
TH
5676 */
5677 cgrp = rcu_dereference(kn->priv);
5678 if (cgrp)
5679 css = cgroup_css(cgrp, ss);
5a17f543 5680
ec903c0c 5681 if (!css || !css_tryget_online(css))
5a17f543
TH
5682 css = ERR_PTR(-ENOENT);
5683
5684 rcu_read_unlock();
5685 return css;
e5d1367f 5686}
e5d1367f 5687
1cb650b9
LZ
5688/**
5689 * css_from_id - lookup css by id
5690 * @id: the cgroup id
5691 * @ss: cgroup subsys to be looked into
5692 *
5693 * Returns the css if there's valid one with @id, otherwise returns NULL.
5694 * Should be called under rcu_read_lock().
5695 */
5696struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
5697{
6fa4918d 5698 WARN_ON_ONCE(!rcu_read_lock_held());
adbe427b 5699 return id > 0 ? idr_find(&ss->css_idr, id) : NULL;
e5d1367f
SE
5700}
5701
fe693435 5702#ifdef CONFIG_CGROUP_DEBUG
eb95419b
TH
5703static struct cgroup_subsys_state *
5704debug_css_alloc(struct cgroup_subsys_state *parent_css)
fe693435
PM
5705{
5706 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5707
5708 if (!css)
5709 return ERR_PTR(-ENOMEM);
5710
5711 return css;
5712}
5713
eb95419b 5714static void debug_css_free(struct cgroup_subsys_state *css)
fe693435 5715{
eb95419b 5716 kfree(css);
fe693435
PM
5717}
5718
182446d0
TH
5719static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
5720 struct cftype *cft)
fe693435 5721{
182446d0 5722 return cgroup_task_count(css->cgroup);
fe693435
PM
5723}
5724
182446d0
TH
5725static u64 current_css_set_read(struct cgroup_subsys_state *css,
5726 struct cftype *cft)
fe693435
PM
5727{
5728 return (u64)(unsigned long)current->cgroups;
5729}
5730
182446d0 5731static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
03c78cbe 5732 struct cftype *cft)
fe693435
PM
5733{
5734 u64 count;
5735
5736 rcu_read_lock();
a8ad805c 5737 count = atomic_read(&task_css_set(current)->refcount);
fe693435
PM
5738 rcu_read_unlock();
5739 return count;
5740}
5741
2da8ca82 5742static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
7717f7ba 5743{
69d0206c 5744 struct cgrp_cset_link *link;
5abb8855 5745 struct css_set *cset;
e61734c5
TH
5746 char *name_buf;
5747
5748 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
5749 if (!name_buf)
5750 return -ENOMEM;
7717f7ba 5751
96d365e0 5752 down_read(&css_set_rwsem);
7717f7ba 5753 rcu_read_lock();
5abb8855 5754 cset = rcu_dereference(current->cgroups);
69d0206c 5755 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 5756 struct cgroup *c = link->cgrp;
7717f7ba 5757
a2dd4247 5758 cgroup_name(c, name_buf, NAME_MAX + 1);
2c6ab6d2 5759 seq_printf(seq, "Root %d group %s\n",
a2dd4247 5760 c->root->hierarchy_id, name_buf);
7717f7ba
PM
5761 }
5762 rcu_read_unlock();
96d365e0 5763 up_read(&css_set_rwsem);
e61734c5 5764 kfree(name_buf);
7717f7ba
PM
5765 return 0;
5766}
5767
5768#define MAX_TASKS_SHOWN_PER_CSS 25
2da8ca82 5769static int cgroup_css_links_read(struct seq_file *seq, void *v)
7717f7ba 5770{
2da8ca82 5771 struct cgroup_subsys_state *css = seq_css(seq);
69d0206c 5772 struct cgrp_cset_link *link;
7717f7ba 5773
96d365e0 5774 down_read(&css_set_rwsem);
182446d0 5775 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
69d0206c 5776 struct css_set *cset = link->cset;
7717f7ba
PM
5777 struct task_struct *task;
5778 int count = 0;
c7561128 5779
5abb8855 5780 seq_printf(seq, "css_set %p\n", cset);
c7561128 5781
5abb8855 5782 list_for_each_entry(task, &cset->tasks, cg_list) {
c7561128
TH
5783 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5784 goto overflow;
5785 seq_printf(seq, " task %d\n", task_pid_vnr(task));
5786 }
5787
5788 list_for_each_entry(task, &cset->mg_tasks, cg_list) {
5789 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5790 goto overflow;
5791 seq_printf(seq, " task %d\n", task_pid_vnr(task));
7717f7ba 5792 }
c7561128
TH
5793 continue;
5794 overflow:
5795 seq_puts(seq, " ...\n");
7717f7ba 5796 }
96d365e0 5797 up_read(&css_set_rwsem);
7717f7ba
PM
5798 return 0;
5799}
5800
182446d0 5801static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
fe693435 5802{
27bd4dbb 5803 return (!cgroup_is_populated(css->cgroup) &&
a25eb52e 5804 !css_has_online_children(&css->cgroup->self));
fe693435
PM
5805}
5806
5807static struct cftype debug_files[] = {
fe693435
PM
5808 {
5809 .name = "taskcount",
5810 .read_u64 = debug_taskcount_read,
5811 },
5812
5813 {
5814 .name = "current_css_set",
5815 .read_u64 = current_css_set_read,
5816 },
5817
5818 {
5819 .name = "current_css_set_refcount",
5820 .read_u64 = current_css_set_refcount_read,
5821 },
5822
7717f7ba
PM
5823 {
5824 .name = "current_css_set_cg_links",
2da8ca82 5825 .seq_show = current_css_set_cg_links_read,
7717f7ba
PM
5826 },
5827
5828 {
5829 .name = "cgroup_css_links",
2da8ca82 5830 .seq_show = cgroup_css_links_read,
7717f7ba
PM
5831 },
5832
fe693435
PM
5833 {
5834 .name = "releasable",
5835 .read_u64 = releasable_read,
5836 },
fe693435 5837
4baf6e33
TH
5838 { } /* terminate */
5839};
fe693435 5840
073219e9 5841struct cgroup_subsys debug_cgrp_subsys = {
92fb9748
TH
5842 .css_alloc = debug_css_alloc,
5843 .css_free = debug_css_free,
5577964e 5844 .legacy_cftypes = debug_files,
fe693435
PM
5845};
5846#endif /* CONFIG_CGROUP_DEBUG */
This page took 1.727772 seconds and 5 git commands to generate.