Merge tag 'ext4_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso...
[deliverable/linux.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
0dea1168
KS
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
ddbcc7e8
PM
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
ed3d261b
JP
29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
ddbcc7e8 31#include <linux/cgroup.h>
2ce9738b 32#include <linux/cred.h>
c6d57f33 33#include <linux/ctype.h>
ddbcc7e8 34#include <linux/errno.h>
2ce9738b 35#include <linux/init_task.h>
ddbcc7e8
PM
36#include <linux/kernel.h>
37#include <linux/list.h>
c9482a5b 38#include <linux/magic.h>
ddbcc7e8
PM
39#include <linux/mm.h>
40#include <linux/mutex.h>
41#include <linux/mount.h>
42#include <linux/pagemap.h>
a424316c 43#include <linux/proc_fs.h>
ddbcc7e8
PM
44#include <linux/rcupdate.h>
45#include <linux/sched.h>
ddbcc7e8 46#include <linux/slab.h>
ddbcc7e8 47#include <linux/spinlock.h>
1ed13287 48#include <linux/percpu-rwsem.h>
ddbcc7e8 49#include <linux/string.h>
bbcb81d0 50#include <linux/sort.h>
81a6a5cd 51#include <linux/kmod.h>
846c7bb0
BS
52#include <linux/delayacct.h>
53#include <linux/cgroupstats.h>
0ac801fe 54#include <linux/hashtable.h>
096b7fe0 55#include <linux/pid_namespace.h>
2c6ab6d2 56#include <linux/idr.h>
d1d9fd33 57#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
c4c27fbd 58#include <linux/kthread.h>
776f02fa 59#include <linux/delay.h>
60063497 60#include <linux/atomic.h>
e93ad19d 61#include <linux/cpuset.h>
a79a908f
AK
62#include <linux/proc_ns.h>
63#include <linux/nsproxy.h>
bd1060a1 64#include <net/sock.h>
ddbcc7e8 65
b1a21367
TH
66/*
67 * pidlists linger the following amount before being destroyed. The goal
68 * is avoiding frequent destruction in the middle of consecutive read calls
69 * Expiring in the middle is a performance problem not a correctness one.
70 * 1 sec should be enough.
71 */
72#define CGROUP_PIDLIST_DESTROY_DELAY HZ
73
8d7e6fb0
TH
74#define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
75 MAX_CFTYPE_NAME + 2)
76
e25e2cbb
TH
77/*
78 * cgroup_mutex is the master lock. Any modification to cgroup or its
79 * hierarchy must be performed while holding it.
80 *
f0d9a5f1 81 * css_set_lock protects task->cgroups pointer, the list of css_set
0e1d768f 82 * objects, and the chain of tasks off each css_set.
e25e2cbb 83 *
0e1d768f
TH
84 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
85 * cgroup.h can use them for lockdep annotations.
e25e2cbb 86 */
2219449a
TH
87#ifdef CONFIG_PROVE_RCU
88DEFINE_MUTEX(cgroup_mutex);
f0d9a5f1 89DEFINE_SPINLOCK(css_set_lock);
0e1d768f 90EXPORT_SYMBOL_GPL(cgroup_mutex);
f0d9a5f1 91EXPORT_SYMBOL_GPL(css_set_lock);
2219449a 92#else
81a6a5cd 93static DEFINE_MUTEX(cgroup_mutex);
f0d9a5f1 94static DEFINE_SPINLOCK(css_set_lock);
2219449a
TH
95#endif
96
6fa4918d 97/*
15a4c835
TH
98 * Protects cgroup_idr and css_idr so that IDs can be released without
99 * grabbing cgroup_mutex.
6fa4918d
TH
100 */
101static DEFINE_SPINLOCK(cgroup_idr_lock);
102
34c06254
TH
103/*
104 * Protects cgroup_file->kn for !self csses. It synchronizes notifications
105 * against file removal/re-creation across css hiding.
106 */
107static DEFINE_SPINLOCK(cgroup_file_kn_lock);
108
69e943b7
TH
109/*
110 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
111 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
112 */
113static DEFINE_SPINLOCK(release_agent_path_lock);
81a6a5cd 114
1ed13287
TH
115struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
116
8353da1f 117#define cgroup_assert_mutex_or_rcu_locked() \
f78f5b90
PM
118 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
119 !lockdep_is_held(&cgroup_mutex), \
8353da1f 120 "cgroup_mutex or RCU read lock required");
780cd8b3 121
e5fca243
TH
122/*
123 * cgroup destruction makes heavy use of work items and there can be a lot
124 * of concurrent destructions. Use a separate workqueue so that cgroup
125 * destruction work items don't end up filling up max_active of system_wq
126 * which may lead to deadlock.
127 */
128static struct workqueue_struct *cgroup_destroy_wq;
129
b1a21367
TH
130/*
131 * pidlist destructions need to be flushed on cgroup destruction. Use a
132 * separate workqueue as flush domain.
133 */
134static struct workqueue_struct *cgroup_pidlist_destroy_wq;
135
3ed80a62 136/* generate an array of cgroup subsystem pointers */
073219e9 137#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
3ed80a62 138static struct cgroup_subsys *cgroup_subsys[] = {
ddbcc7e8
PM
139#include <linux/cgroup_subsys.h>
140};
073219e9
TH
141#undef SUBSYS
142
143/* array of cgroup subsystem names */
144#define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
145static const char *cgroup_subsys_name[] = {
ddbcc7e8
PM
146#include <linux/cgroup_subsys.h>
147};
073219e9 148#undef SUBSYS
ddbcc7e8 149
49d1dc4b
TH
150/* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
151#define SUBSYS(_x) \
152 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
153 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
154 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
155 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
156#include <linux/cgroup_subsys.h>
157#undef SUBSYS
158
159#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
160static struct static_key_true *cgroup_subsys_enabled_key[] = {
161#include <linux/cgroup_subsys.h>
162};
163#undef SUBSYS
164
165#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
166static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
167#include <linux/cgroup_subsys.h>
168};
169#undef SUBSYS
170
ddbcc7e8 171/*
3dd06ffa 172 * The default hierarchy, reserved for the subsystems that are otherwise
9871bf95
TH
173 * unattached - it never has more than a single cgroup, and all tasks are
174 * part of that cgroup.
ddbcc7e8 175 */
a2dd4247 176struct cgroup_root cgrp_dfl_root;
d0ec4230 177EXPORT_SYMBOL_GPL(cgrp_dfl_root);
9871bf95 178
a2dd4247
TH
179/*
180 * The default hierarchy always exists but is hidden until mounted for the
181 * first time. This is for backward compatibility.
182 */
a7165264 183static bool cgrp_dfl_visible;
ddbcc7e8 184
223ffb29 185/* Controllers blocked by the commandline in v1 */
6e5c8307 186static u16 cgroup_no_v1_mask;
223ffb29 187
5533e011 188/* some controllers are not supported in the default hierarchy */
a7165264 189static u16 cgrp_dfl_inhibit_ss_mask;
5533e011 190
f6d635ad
TH
191/* some controllers are implicitly enabled on the default hierarchy */
192static unsigned long cgrp_dfl_implicit_ss_mask;
193
ddbcc7e8
PM
194/* The list of hierarchy roots */
195
9871bf95
TH
196static LIST_HEAD(cgroup_roots);
197static int cgroup_root_count;
ddbcc7e8 198
3417ae1f 199/* hierarchy ID allocation and mapping, protected by cgroup_mutex */
1a574231 200static DEFINE_IDR(cgroup_hierarchy_idr);
2c6ab6d2 201
794611a1 202/*
0cb51d71
TH
203 * Assign a monotonically increasing serial number to csses. It guarantees
204 * cgroups with bigger numbers are newer than those with smaller numbers.
205 * Also, as csses are always appended to the parent's ->children list, it
206 * guarantees that sibling csses are always sorted in the ascending serial
207 * number order on the list. Protected by cgroup_mutex.
794611a1 208 */
0cb51d71 209static u64 css_serial_nr_next = 1;
794611a1 210
cb4a3167
AS
211/*
212 * These bitmask flags indicate whether tasks in the fork and exit paths have
213 * fork/exit handlers to call. This avoids us having to do extra work in the
214 * fork/exit path to check which subsystems have fork/exit callbacks.
ddbcc7e8 215 */
6e5c8307
TH
216static u16 have_fork_callback __read_mostly;
217static u16 have_exit_callback __read_mostly;
218static u16 have_free_callback __read_mostly;
ddbcc7e8 219
a79a908f
AK
220/* cgroup namespace for init task */
221struct cgroup_namespace init_cgroup_ns = {
222 .count = { .counter = 2, },
223 .user_ns = &init_user_ns,
224 .ns.ops = &cgroupns_operations,
225 .ns.inum = PROC_CGROUP_INIT_INO,
226 .root_cset = &init_css_set,
227};
228
7e47682e 229/* Ditto for the can_fork callback. */
6e5c8307 230static u16 have_canfork_callback __read_mostly;
7e47682e 231
67e9c74b 232static struct file_system_type cgroup2_fs_type;
a14c6874
TH
233static struct cftype cgroup_dfl_base_files[];
234static struct cftype cgroup_legacy_base_files[];
628f7cd4 235
6e5c8307 236static int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask);
945ba199 237static void cgroup_lock_and_drain_offline(struct cgroup *cgrp);
334c3679
TH
238static int cgroup_apply_control(struct cgroup *cgrp);
239static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
ed27b9f7 240static void css_task_iter_advance(struct css_task_iter *it);
42809dd4 241static int cgroup_destroy_locked(struct cgroup *cgrp);
6cd0f5bb
TH
242static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
243 struct cgroup_subsys *ss);
9d755d33 244static void css_release(struct percpu_ref *ref);
f8f22e53 245static void kill_css(struct cgroup_subsys_state *css);
4df8dc90
TH
246static int cgroup_addrm_files(struct cgroup_subsys_state *css,
247 struct cgroup *cgrp, struct cftype cfts[],
2bb566cb 248 bool is_add);
42809dd4 249
fc5ed1e9
TH
250/**
251 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
252 * @ssid: subsys ID of interest
253 *
254 * cgroup_subsys_enabled() can only be used with literal subsys names which
255 * is fine for individual subsystems but unsuitable for cgroup core. This
256 * is slower static_key_enabled() based test indexed by @ssid.
257 */
258static bool cgroup_ssid_enabled(int ssid)
259{
cfe02a8a
AB
260 if (CGROUP_SUBSYS_COUNT == 0)
261 return false;
262
fc5ed1e9
TH
263 return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
264}
265
223ffb29
JW
266static bool cgroup_ssid_no_v1(int ssid)
267{
268 return cgroup_no_v1_mask & (1 << ssid);
269}
270
9e10a130
TH
271/**
272 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
273 * @cgrp: the cgroup of interest
274 *
275 * The default hierarchy is the v2 interface of cgroup and this function
276 * can be used to test whether a cgroup is on the default hierarchy for
277 * cases where a subsystem should behave differnetly depending on the
278 * interface version.
279 *
280 * The set of behaviors which change on the default hierarchy are still
281 * being determined and the mount option is prefixed with __DEVEL__.
282 *
283 * List of changed behaviors:
284 *
285 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
286 * and "name" are disallowed.
287 *
288 * - When mounting an existing superblock, mount options should match.
289 *
290 * - Remount is disallowed.
291 *
292 * - rename(2) is disallowed.
293 *
294 * - "tasks" is removed. Everything should be at process granularity. Use
295 * "cgroup.procs" instead.
296 *
297 * - "cgroup.procs" is not sorted. pids will be unique unless they got
298 * recycled inbetween reads.
299 *
300 * - "release_agent" and "notify_on_release" are removed. Replacement
301 * notification mechanism will be implemented.
302 *
303 * - "cgroup.clone_children" is removed.
304 *
305 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
306 * and its descendants contain no task; otherwise, 1. The file also
307 * generates kernfs notification which can be monitored through poll and
308 * [di]notify when the value of the file changes.
309 *
310 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
311 * take masks of ancestors with non-empty cpus/mems, instead of being
312 * moved to an ancestor.
313 *
314 * - cpuset: a task can be moved into an empty cpuset, and again it takes
315 * masks of ancestors.
316 *
317 * - memcg: use_hierarchy is on by default and the cgroup file for the flag
318 * is not created.
319 *
320 * - blkcg: blk-throttle becomes properly hierarchical.
321 *
322 * - debug: disallowed on the default hierarchy.
323 */
324static bool cgroup_on_dfl(const struct cgroup *cgrp)
325{
326 return cgrp->root == &cgrp_dfl_root;
327}
328
6fa4918d
TH
329/* IDR wrappers which synchronize using cgroup_idr_lock */
330static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
331 gfp_t gfp_mask)
332{
333 int ret;
334
335 idr_preload(gfp_mask);
54504e97 336 spin_lock_bh(&cgroup_idr_lock);
d0164adc 337 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
54504e97 338 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
339 idr_preload_end();
340 return ret;
341}
342
343static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
344{
345 void *ret;
346
54504e97 347 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 348 ret = idr_replace(idr, ptr, id);
54504e97 349 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
350 return ret;
351}
352
353static void cgroup_idr_remove(struct idr *idr, int id)
354{
54504e97 355 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 356 idr_remove(idr, id);
54504e97 357 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
358}
359
d51f39b0
TH
360static struct cgroup *cgroup_parent(struct cgroup *cgrp)
361{
362 struct cgroup_subsys_state *parent_css = cgrp->self.parent;
363
364 if (parent_css)
365 return container_of(parent_css, struct cgroup, self);
366 return NULL;
367}
368
5531dc91
TH
369/* subsystems visibly enabled on a cgroup */
370static u16 cgroup_control(struct cgroup *cgrp)
371{
372 struct cgroup *parent = cgroup_parent(cgrp);
373 u16 root_ss_mask = cgrp->root->subsys_mask;
374
375 if (parent)
376 return parent->subtree_control;
377
378 if (cgroup_on_dfl(cgrp))
f6d635ad
TH
379 root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
380 cgrp_dfl_implicit_ss_mask);
5531dc91
TH
381 return root_ss_mask;
382}
383
384/* subsystems enabled on a cgroup */
385static u16 cgroup_ss_mask(struct cgroup *cgrp)
386{
387 struct cgroup *parent = cgroup_parent(cgrp);
388
389 if (parent)
390 return parent->subtree_ss_mask;
391
392 return cgrp->root->subsys_mask;
393}
394
95109b62
TH
395/**
396 * cgroup_css - obtain a cgroup's css for the specified subsystem
397 * @cgrp: the cgroup of interest
9d800df1 398 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
95109b62 399 *
ca8bdcaf
TH
400 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
401 * function must be called either under cgroup_mutex or rcu_read_lock() and
402 * the caller is responsible for pinning the returned css if it wants to
403 * keep accessing it outside the said locks. This function may return
404 * %NULL if @cgrp doesn't have @subsys_id enabled.
95109b62
TH
405 */
406static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
ca8bdcaf 407 struct cgroup_subsys *ss)
95109b62 408{
ca8bdcaf 409 if (ss)
aec25020 410 return rcu_dereference_check(cgrp->subsys[ss->id],
ace2bee8 411 lockdep_is_held(&cgroup_mutex));
ca8bdcaf 412 else
9d800df1 413 return &cgrp->self;
95109b62 414}
42809dd4 415
aec3dfcb
TH
416/**
417 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
418 * @cgrp: the cgroup of interest
9d800df1 419 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
aec3dfcb 420 *
d0f702e6 421 * Similar to cgroup_css() but returns the effective css, which is defined
aec3dfcb
TH
422 * as the matching css of the nearest ancestor including self which has @ss
423 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
424 * function is guaranteed to return non-NULL css.
425 */
426static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
427 struct cgroup_subsys *ss)
428{
429 lockdep_assert_held(&cgroup_mutex);
430
431 if (!ss)
9d800df1 432 return &cgrp->self;
aec3dfcb 433
eeecbd19
TH
434 /*
435 * This function is used while updating css associations and thus
5531dc91 436 * can't test the csses directly. Test ss_mask.
eeecbd19 437 */
5531dc91 438 while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
d51f39b0 439 cgrp = cgroup_parent(cgrp);
5531dc91
TH
440 if (!cgrp)
441 return NULL;
442 }
aec3dfcb
TH
443
444 return cgroup_css(cgrp, ss);
95109b62 445}
42809dd4 446
eeecbd19
TH
447/**
448 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
449 * @cgrp: the cgroup of interest
450 * @ss: the subsystem of interest
451 *
452 * Find and get the effective css of @cgrp for @ss. The effective css is
453 * defined as the matching css of the nearest ancestor including self which
454 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
455 * the root css is returned, so this function always returns a valid css.
456 * The returned css must be put using css_put().
457 */
458struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
459 struct cgroup_subsys *ss)
460{
461 struct cgroup_subsys_state *css;
462
463 rcu_read_lock();
464
465 do {
466 css = cgroup_css(cgrp, ss);
467
468 if (css && css_tryget_online(css))
469 goto out_unlock;
470 cgrp = cgroup_parent(cgrp);
471 } while (cgrp);
472
473 css = init_css_set.subsys[ss->id];
474 css_get(css);
475out_unlock:
476 rcu_read_unlock();
477 return css;
478}
479
ddbcc7e8 480/* convenient tests for these bits */
54766d4a 481static inline bool cgroup_is_dead(const struct cgroup *cgrp)
ddbcc7e8 482{
184faf32 483 return !(cgrp->self.flags & CSS_ONLINE);
ddbcc7e8
PM
484}
485
052c3f3a
TH
486static void cgroup_get(struct cgroup *cgrp)
487{
488 WARN_ON_ONCE(cgroup_is_dead(cgrp));
489 css_get(&cgrp->self);
490}
491
492static bool cgroup_tryget(struct cgroup *cgrp)
493{
494 return css_tryget(&cgrp->self);
495}
496
b4168640 497struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
59f5296b 498{
2bd59d48 499 struct cgroup *cgrp = of->kn->parent->priv;
b4168640 500 struct cftype *cft = of_cft(of);
2bd59d48
TH
501
502 /*
503 * This is open and unprotected implementation of cgroup_css().
504 * seq_css() is only called from a kernfs file operation which has
505 * an active reference on the file. Because all the subsystem
506 * files are drained before a css is disassociated with a cgroup,
507 * the matching css from the cgroup's subsys table is guaranteed to
508 * be and stay valid until the enclosing operation is complete.
509 */
510 if (cft->ss)
511 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
512 else
9d800df1 513 return &cgrp->self;
59f5296b 514}
b4168640 515EXPORT_SYMBOL_GPL(of_css);
59f5296b 516
e9685a03 517static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 518{
bd89aabc 519 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
520}
521
1c6727af
TH
522/**
523 * for_each_css - iterate all css's of a cgroup
524 * @css: the iteration cursor
525 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
526 * @cgrp: the target cgroup to iterate css's of
527 *
aec3dfcb 528 * Should be called under cgroup_[tree_]mutex.
1c6727af
TH
529 */
530#define for_each_css(css, ssid, cgrp) \
531 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
532 if (!((css) = rcu_dereference_check( \
533 (cgrp)->subsys[(ssid)], \
534 lockdep_is_held(&cgroup_mutex)))) { } \
535 else
536
aec3dfcb
TH
537/**
538 * for_each_e_css - iterate all effective css's of a cgroup
539 * @css: the iteration cursor
540 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
541 * @cgrp: the target cgroup to iterate css's of
542 *
543 * Should be called under cgroup_[tree_]mutex.
544 */
545#define for_each_e_css(css, ssid, cgrp) \
546 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
547 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
548 ; \
549 else
550
30159ec7 551/**
3ed80a62 552 * for_each_subsys - iterate all enabled cgroup subsystems
30159ec7 553 * @ss: the iteration cursor
780cd8b3 554 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
30159ec7 555 */
780cd8b3 556#define for_each_subsys(ss, ssid) \
3ed80a62
TH
557 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
558 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
30159ec7 559
cb4a3167 560/**
b4e0eeaf 561 * do_each_subsys_mask - filter for_each_subsys with a bitmask
cb4a3167
AS
562 * @ss: the iteration cursor
563 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
b4e0eeaf 564 * @ss_mask: the bitmask
cb4a3167
AS
565 *
566 * The block will only run for cases where the ssid-th bit (1 << ssid) of
b4e0eeaf 567 * @ss_mask is set.
cb4a3167 568 */
b4e0eeaf
TH
569#define do_each_subsys_mask(ss, ssid, ss_mask) do { \
570 unsigned long __ss_mask = (ss_mask); \
571 if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */ \
4a705c5c 572 (ssid) = 0; \
b4e0eeaf
TH
573 break; \
574 } \
575 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \
576 (ss) = cgroup_subsys[ssid]; \
577 {
578
579#define while_each_subsys_mask() \
580 } \
581 } \
582} while (false)
cb4a3167 583
985ed670
TH
584/* iterate across the hierarchies */
585#define for_each_root(root) \
5549c497 586 list_for_each_entry((root), &cgroup_roots, root_list)
ddbcc7e8 587
f8f22e53
TH
588/* iterate over child cgrps, lock should be held throughout iteration */
589#define cgroup_for_each_live_child(child, cgrp) \
d5c419b6 590 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
8353da1f 591 if (({ lockdep_assert_held(&cgroup_mutex); \
f8f22e53
TH
592 cgroup_is_dead(child); })) \
593 ; \
594 else
7ae1bad9 595
ce3f1d9d
TH
596/* walk live descendants in preorder */
597#define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \
598 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \
599 if (({ lockdep_assert_held(&cgroup_mutex); \
600 (dsct) = (d_css)->cgroup; \
601 cgroup_is_dead(dsct); })) \
602 ; \
603 else
604
605/* walk live descendants in postorder */
606#define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \
607 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \
608 if (({ lockdep_assert_held(&cgroup_mutex); \
609 (dsct) = (d_css)->cgroup; \
610 cgroup_is_dead(dsct); })) \
611 ; \
612 else
613
81a6a5cd 614static void cgroup_release_agent(struct work_struct *work);
bd89aabc 615static void check_for_release(struct cgroup *cgrp);
81a6a5cd 616
69d0206c
TH
617/*
618 * A cgroup can be associated with multiple css_sets as different tasks may
619 * belong to different cgroups on different hierarchies. In the other
620 * direction, a css_set is naturally associated with multiple cgroups.
621 * This M:N relationship is represented by the following link structure
622 * which exists for each association and allows traversing the associations
623 * from both sides.
624 */
625struct cgrp_cset_link {
626 /* the cgroup and css_set this link associates */
627 struct cgroup *cgrp;
628 struct css_set *cset;
629
630 /* list of cgrp_cset_links anchored at cgrp->cset_links */
631 struct list_head cset_link;
632
633 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
634 struct list_head cgrp_link;
817929ec
PM
635};
636
172a2c06
TH
637/*
638 * The default css_set - used by init and its children prior to any
817929ec
PM
639 * hierarchies being mounted. It contains a pointer to the root state
640 * for each subsystem. Also used to anchor the list of css_sets. Not
641 * reference-counted, to improve performance when child cgroups
642 * haven't been created.
643 */
5024ae29 644struct css_set init_css_set = {
172a2c06
TH
645 .refcount = ATOMIC_INIT(1),
646 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
647 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
648 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
649 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
650 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
ed27b9f7 651 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters),
172a2c06 652};
817929ec 653
172a2c06 654static int css_set_count = 1; /* 1 for init_css_set */
817929ec 655
0de0942d
TH
656/**
657 * css_set_populated - does a css_set contain any tasks?
658 * @cset: target css_set
659 */
660static bool css_set_populated(struct css_set *cset)
661{
f0d9a5f1 662 lockdep_assert_held(&css_set_lock);
0de0942d
TH
663
664 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
665}
666
842b597e
TH
667/**
668 * cgroup_update_populated - updated populated count of a cgroup
669 * @cgrp: the target cgroup
670 * @populated: inc or dec populated count
671 *
0de0942d
TH
672 * One of the css_sets associated with @cgrp is either getting its first
673 * task or losing the last. Update @cgrp->populated_cnt accordingly. The
674 * count is propagated towards root so that a given cgroup's populated_cnt
675 * is zero iff the cgroup and all its descendants don't contain any tasks.
842b597e
TH
676 *
677 * @cgrp's interface file "cgroup.populated" is zero if
678 * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt
679 * changes from or to zero, userland is notified that the content of the
680 * interface file has changed. This can be used to detect when @cgrp and
681 * its descendants become populated or empty.
682 */
683static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
684{
f0d9a5f1 685 lockdep_assert_held(&css_set_lock);
842b597e
TH
686
687 do {
688 bool trigger;
689
690 if (populated)
691 trigger = !cgrp->populated_cnt++;
692 else
693 trigger = !--cgrp->populated_cnt;
694
695 if (!trigger)
696 break;
697
ad2ed2b3 698 check_for_release(cgrp);
6f60eade
TH
699 cgroup_file_notify(&cgrp->events_file);
700
d51f39b0 701 cgrp = cgroup_parent(cgrp);
842b597e
TH
702 } while (cgrp);
703}
704
0de0942d
TH
705/**
706 * css_set_update_populated - update populated state of a css_set
707 * @cset: target css_set
708 * @populated: whether @cset is populated or depopulated
709 *
710 * @cset is either getting the first task or losing the last. Update the
711 * ->populated_cnt of all associated cgroups accordingly.
712 */
713static void css_set_update_populated(struct css_set *cset, bool populated)
714{
715 struct cgrp_cset_link *link;
716
f0d9a5f1 717 lockdep_assert_held(&css_set_lock);
0de0942d
TH
718
719 list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
720 cgroup_update_populated(link->cgrp, populated);
721}
722
f6d7d049
TH
723/**
724 * css_set_move_task - move a task from one css_set to another
725 * @task: task being moved
726 * @from_cset: css_set @task currently belongs to (may be NULL)
727 * @to_cset: new css_set @task is being moved to (may be NULL)
728 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
729 *
730 * Move @task from @from_cset to @to_cset. If @task didn't belong to any
731 * css_set, @from_cset can be NULL. If @task is being disassociated
732 * instead of moved, @to_cset can be NULL.
733 *
ed27b9f7
TH
734 * This function automatically handles populated_cnt updates and
735 * css_task_iter adjustments but the caller is responsible for managing
736 * @from_cset and @to_cset's reference counts.
f6d7d049
TH
737 */
738static void css_set_move_task(struct task_struct *task,
739 struct css_set *from_cset, struct css_set *to_cset,
740 bool use_mg_tasks)
741{
f0d9a5f1 742 lockdep_assert_held(&css_set_lock);
f6d7d049 743
20b454a6
TH
744 if (to_cset && !css_set_populated(to_cset))
745 css_set_update_populated(to_cset, true);
746
f6d7d049 747 if (from_cset) {
ed27b9f7
TH
748 struct css_task_iter *it, *pos;
749
f6d7d049 750 WARN_ON_ONCE(list_empty(&task->cg_list));
ed27b9f7
TH
751
752 /*
753 * @task is leaving, advance task iterators which are
754 * pointing to it so that they can resume at the next
755 * position. Advancing an iterator might remove it from
756 * the list, use safe walk. See css_task_iter_advance*()
757 * for details.
758 */
759 list_for_each_entry_safe(it, pos, &from_cset->task_iters,
760 iters_node)
761 if (it->task_pos == &task->cg_list)
762 css_task_iter_advance(it);
763
f6d7d049
TH
764 list_del_init(&task->cg_list);
765 if (!css_set_populated(from_cset))
766 css_set_update_populated(from_cset, false);
767 } else {
768 WARN_ON_ONCE(!list_empty(&task->cg_list));
769 }
770
771 if (to_cset) {
772 /*
773 * We are synchronized through cgroup_threadgroup_rwsem
774 * against PF_EXITING setting such that we can't race
775 * against cgroup_exit() changing the css_set to
776 * init_css_set and dropping the old one.
777 */
778 WARN_ON_ONCE(task->flags & PF_EXITING);
779
f6d7d049
TH
780 rcu_assign_pointer(task->cgroups, to_cset);
781 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
782 &to_cset->tasks);
783 }
784}
785
7717f7ba
PM
786/*
787 * hash table for cgroup groups. This improves the performance to find
788 * an existing css_set. This hash doesn't (currently) take into
789 * account cgroups in empty hierarchies.
790 */
472b1053 791#define CSS_SET_HASH_BITS 7
0ac801fe 792static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
472b1053 793
0ac801fe 794static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
472b1053 795{
0ac801fe 796 unsigned long key = 0UL;
30159ec7
TH
797 struct cgroup_subsys *ss;
798 int i;
472b1053 799
30159ec7 800 for_each_subsys(ss, i)
0ac801fe
LZ
801 key += (unsigned long)css[i];
802 key = (key >> 16) ^ key;
472b1053 803
0ac801fe 804 return key;
472b1053
LZ
805}
806
a25eb52e 807static void put_css_set_locked(struct css_set *cset)
b4f48b63 808{
69d0206c 809 struct cgrp_cset_link *link, *tmp_link;
2d8f243a
TH
810 struct cgroup_subsys *ss;
811 int ssid;
5abb8855 812
f0d9a5f1 813 lockdep_assert_held(&css_set_lock);
89c5509b
TH
814
815 if (!atomic_dec_and_test(&cset->refcount))
146aa1bd 816 return;
81a6a5cd 817
53254f90
TH
818 /* This css_set is dead. unlink it and release cgroup and css refs */
819 for_each_subsys(ss, ssid) {
2d8f243a 820 list_del(&cset->e_cset_node[ssid]);
53254f90
TH
821 css_put(cset->subsys[ssid]);
822 }
5abb8855 823 hash_del(&cset->hlist);
2c6ab6d2
PM
824 css_set_count--;
825
69d0206c 826 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
69d0206c
TH
827 list_del(&link->cset_link);
828 list_del(&link->cgrp_link);
2ceb231b
TH
829 if (cgroup_parent(link->cgrp))
830 cgroup_put(link->cgrp);
2c6ab6d2 831 kfree(link);
81a6a5cd 832 }
2c6ab6d2 833
5abb8855 834 kfree_rcu(cset, rcu_head);
b4f48b63
PM
835}
836
a25eb52e 837static void put_css_set(struct css_set *cset)
89c5509b 838{
82d6489d
DBO
839 unsigned long flags;
840
89c5509b
TH
841 /*
842 * Ensure that the refcount doesn't hit zero while any readers
843 * can see it. Similar to atomic_dec_and_lock(), but for an
844 * rwlock
845 */
846 if (atomic_add_unless(&cset->refcount, -1, 1))
847 return;
848
82d6489d 849 spin_lock_irqsave(&css_set_lock, flags);
a25eb52e 850 put_css_set_locked(cset);
82d6489d 851 spin_unlock_irqrestore(&css_set_lock, flags);
89c5509b
TH
852}
853
817929ec
PM
854/*
855 * refcounted get/put for css_set objects
856 */
5abb8855 857static inline void get_css_set(struct css_set *cset)
817929ec 858{
5abb8855 859 atomic_inc(&cset->refcount);
817929ec
PM
860}
861
b326f9d0 862/**
7717f7ba 863 * compare_css_sets - helper function for find_existing_css_set().
5abb8855
TH
864 * @cset: candidate css_set being tested
865 * @old_cset: existing css_set for a task
7717f7ba
PM
866 * @new_cgrp: cgroup that's being entered by the task
867 * @template: desired set of css pointers in css_set (pre-calculated)
868 *
6f4b7e63 869 * Returns true if "cset" matches "old_cset" except for the hierarchy
7717f7ba
PM
870 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
871 */
5abb8855
TH
872static bool compare_css_sets(struct css_set *cset,
873 struct css_set *old_cset,
7717f7ba
PM
874 struct cgroup *new_cgrp,
875 struct cgroup_subsys_state *template[])
876{
877 struct list_head *l1, *l2;
878
aec3dfcb
TH
879 /*
880 * On the default hierarchy, there can be csets which are
881 * associated with the same set of cgroups but different csses.
882 * Let's first ensure that csses match.
883 */
884 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
7717f7ba 885 return false;
7717f7ba
PM
886
887 /*
888 * Compare cgroup pointers in order to distinguish between
aec3dfcb
TH
889 * different cgroups in hierarchies. As different cgroups may
890 * share the same effective css, this comparison is always
891 * necessary.
7717f7ba 892 */
69d0206c
TH
893 l1 = &cset->cgrp_links;
894 l2 = &old_cset->cgrp_links;
7717f7ba 895 while (1) {
69d0206c 896 struct cgrp_cset_link *link1, *link2;
5abb8855 897 struct cgroup *cgrp1, *cgrp2;
7717f7ba
PM
898
899 l1 = l1->next;
900 l2 = l2->next;
901 /* See if we reached the end - both lists are equal length. */
69d0206c
TH
902 if (l1 == &cset->cgrp_links) {
903 BUG_ON(l2 != &old_cset->cgrp_links);
7717f7ba
PM
904 break;
905 } else {
69d0206c 906 BUG_ON(l2 == &old_cset->cgrp_links);
7717f7ba
PM
907 }
908 /* Locate the cgroups associated with these links. */
69d0206c
TH
909 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
910 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
911 cgrp1 = link1->cgrp;
912 cgrp2 = link2->cgrp;
7717f7ba 913 /* Hierarchies should be linked in the same order. */
5abb8855 914 BUG_ON(cgrp1->root != cgrp2->root);
7717f7ba
PM
915
916 /*
917 * If this hierarchy is the hierarchy of the cgroup
918 * that's changing, then we need to check that this
919 * css_set points to the new cgroup; if it's any other
920 * hierarchy, then this css_set should point to the
921 * same cgroup as the old css_set.
922 */
5abb8855
TH
923 if (cgrp1->root == new_cgrp->root) {
924 if (cgrp1 != new_cgrp)
7717f7ba
PM
925 return false;
926 } else {
5abb8855 927 if (cgrp1 != cgrp2)
7717f7ba
PM
928 return false;
929 }
930 }
931 return true;
932}
933
b326f9d0
TH
934/**
935 * find_existing_css_set - init css array and find the matching css_set
936 * @old_cset: the css_set that we're using before the cgroup transition
937 * @cgrp: the cgroup that we're moving into
938 * @template: out param for the new set of csses, should be clear on entry
817929ec 939 */
5abb8855
TH
940static struct css_set *find_existing_css_set(struct css_set *old_cset,
941 struct cgroup *cgrp,
942 struct cgroup_subsys_state *template[])
b4f48b63 943{
3dd06ffa 944 struct cgroup_root *root = cgrp->root;
30159ec7 945 struct cgroup_subsys *ss;
5abb8855 946 struct css_set *cset;
0ac801fe 947 unsigned long key;
b326f9d0 948 int i;
817929ec 949
aae8aab4
BB
950 /*
951 * Build the set of subsystem state objects that we want to see in the
952 * new css_set. while subsystems can change globally, the entries here
953 * won't change, so no need for locking.
954 */
30159ec7 955 for_each_subsys(ss, i) {
f392e51c 956 if (root->subsys_mask & (1UL << i)) {
aec3dfcb
TH
957 /*
958 * @ss is in this hierarchy, so we want the
959 * effective css from @cgrp.
960 */
961 template[i] = cgroup_e_css(cgrp, ss);
817929ec 962 } else {
aec3dfcb
TH
963 /*
964 * @ss is not in this hierarchy, so we don't want
965 * to change the css.
966 */
5abb8855 967 template[i] = old_cset->subsys[i];
817929ec
PM
968 }
969 }
970
0ac801fe 971 key = css_set_hash(template);
5abb8855
TH
972 hash_for_each_possible(css_set_table, cset, hlist, key) {
973 if (!compare_css_sets(cset, old_cset, cgrp, template))
7717f7ba
PM
974 continue;
975
976 /* This css_set matches what we need */
5abb8855 977 return cset;
472b1053 978 }
817929ec
PM
979
980 /* No existing cgroup group matched */
981 return NULL;
982}
983
69d0206c 984static void free_cgrp_cset_links(struct list_head *links_to_free)
36553434 985{
69d0206c 986 struct cgrp_cset_link *link, *tmp_link;
36553434 987
69d0206c
TH
988 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
989 list_del(&link->cset_link);
36553434
LZ
990 kfree(link);
991 }
992}
993
69d0206c
TH
994/**
995 * allocate_cgrp_cset_links - allocate cgrp_cset_links
996 * @count: the number of links to allocate
997 * @tmp_links: list_head the allocated links are put on
998 *
999 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1000 * through ->cset_link. Returns 0 on success or -errno.
817929ec 1001 */
69d0206c 1002static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
817929ec 1003{
69d0206c 1004 struct cgrp_cset_link *link;
817929ec 1005 int i;
69d0206c
TH
1006
1007 INIT_LIST_HEAD(tmp_links);
1008
817929ec 1009 for (i = 0; i < count; i++) {
f4f4be2b 1010 link = kzalloc(sizeof(*link), GFP_KERNEL);
817929ec 1011 if (!link) {
69d0206c 1012 free_cgrp_cset_links(tmp_links);
817929ec
PM
1013 return -ENOMEM;
1014 }
69d0206c 1015 list_add(&link->cset_link, tmp_links);
817929ec
PM
1016 }
1017 return 0;
1018}
1019
c12f65d4
LZ
1020/**
1021 * link_css_set - a helper function to link a css_set to a cgroup
69d0206c 1022 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
5abb8855 1023 * @cset: the css_set to be linked
c12f65d4
LZ
1024 * @cgrp: the destination cgroup
1025 */
69d0206c
TH
1026static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1027 struct cgroup *cgrp)
c12f65d4 1028{
69d0206c 1029 struct cgrp_cset_link *link;
c12f65d4 1030
69d0206c 1031 BUG_ON(list_empty(tmp_links));
6803c006
TH
1032
1033 if (cgroup_on_dfl(cgrp))
1034 cset->dfl_cgrp = cgrp;
1035
69d0206c
TH
1036 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1037 link->cset = cset;
7717f7ba 1038 link->cgrp = cgrp;
842b597e 1039
7717f7ba 1040 /*
389b9c1b
TH
1041 * Always add links to the tail of the lists so that the lists are
1042 * in choronological order.
7717f7ba 1043 */
389b9c1b 1044 list_move_tail(&link->cset_link, &cgrp->cset_links);
69d0206c 1045 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
2ceb231b
TH
1046
1047 if (cgroup_parent(cgrp))
1048 cgroup_get(cgrp);
c12f65d4
LZ
1049}
1050
b326f9d0
TH
1051/**
1052 * find_css_set - return a new css_set with one cgroup updated
1053 * @old_cset: the baseline css_set
1054 * @cgrp: the cgroup to be updated
1055 *
1056 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1057 * substituted into the appropriate hierarchy.
817929ec 1058 */
5abb8855
TH
1059static struct css_set *find_css_set(struct css_set *old_cset,
1060 struct cgroup *cgrp)
817929ec 1061{
b326f9d0 1062 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
5abb8855 1063 struct css_set *cset;
69d0206c
TH
1064 struct list_head tmp_links;
1065 struct cgrp_cset_link *link;
2d8f243a 1066 struct cgroup_subsys *ss;
0ac801fe 1067 unsigned long key;
2d8f243a 1068 int ssid;
472b1053 1069
b326f9d0
TH
1070 lockdep_assert_held(&cgroup_mutex);
1071
817929ec
PM
1072 /* First see if we already have a cgroup group that matches
1073 * the desired set */
82d6489d 1074 spin_lock_irq(&css_set_lock);
5abb8855
TH
1075 cset = find_existing_css_set(old_cset, cgrp, template);
1076 if (cset)
1077 get_css_set(cset);
82d6489d 1078 spin_unlock_irq(&css_set_lock);
817929ec 1079
5abb8855
TH
1080 if (cset)
1081 return cset;
817929ec 1082
f4f4be2b 1083 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
5abb8855 1084 if (!cset)
817929ec
PM
1085 return NULL;
1086
69d0206c 1087 /* Allocate all the cgrp_cset_link objects that we'll need */
9871bf95 1088 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
5abb8855 1089 kfree(cset);
817929ec
PM
1090 return NULL;
1091 }
1092
5abb8855 1093 atomic_set(&cset->refcount, 1);
69d0206c 1094 INIT_LIST_HEAD(&cset->cgrp_links);
5abb8855 1095 INIT_LIST_HEAD(&cset->tasks);
c7561128 1096 INIT_LIST_HEAD(&cset->mg_tasks);
1958d2d5 1097 INIT_LIST_HEAD(&cset->mg_preload_node);
b3dc094e 1098 INIT_LIST_HEAD(&cset->mg_node);
ed27b9f7 1099 INIT_LIST_HEAD(&cset->task_iters);
5abb8855 1100 INIT_HLIST_NODE(&cset->hlist);
817929ec
PM
1101
1102 /* Copy the set of subsystem state objects generated in
1103 * find_existing_css_set() */
5abb8855 1104 memcpy(cset->subsys, template, sizeof(cset->subsys));
817929ec 1105
82d6489d 1106 spin_lock_irq(&css_set_lock);
817929ec 1107 /* Add reference counts and links from the new css_set. */
69d0206c 1108 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
7717f7ba 1109 struct cgroup *c = link->cgrp;
69d0206c 1110
7717f7ba
PM
1111 if (c->root == cgrp->root)
1112 c = cgrp;
69d0206c 1113 link_css_set(&tmp_links, cset, c);
7717f7ba 1114 }
817929ec 1115
69d0206c 1116 BUG_ON(!list_empty(&tmp_links));
817929ec 1117
817929ec 1118 css_set_count++;
472b1053 1119
2d8f243a 1120 /* Add @cset to the hash table */
5abb8855
TH
1121 key = css_set_hash(cset->subsys);
1122 hash_add(css_set_table, &cset->hlist, key);
472b1053 1123
53254f90
TH
1124 for_each_subsys(ss, ssid) {
1125 struct cgroup_subsys_state *css = cset->subsys[ssid];
1126
2d8f243a 1127 list_add_tail(&cset->e_cset_node[ssid],
53254f90
TH
1128 &css->cgroup->e_csets[ssid]);
1129 css_get(css);
1130 }
2d8f243a 1131
82d6489d 1132 spin_unlock_irq(&css_set_lock);
817929ec 1133
5abb8855 1134 return cset;
b4f48b63
PM
1135}
1136
3dd06ffa 1137static struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
7717f7ba 1138{
3dd06ffa 1139 struct cgroup *root_cgrp = kf_root->kn->priv;
2bd59d48 1140
3dd06ffa 1141 return root_cgrp->root;
2bd59d48
TH
1142}
1143
3dd06ffa 1144static int cgroup_init_root_id(struct cgroup_root *root)
f2e85d57
TH
1145{
1146 int id;
1147
1148 lockdep_assert_held(&cgroup_mutex);
1149
985ed670 1150 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
f2e85d57
TH
1151 if (id < 0)
1152 return id;
1153
1154 root->hierarchy_id = id;
1155 return 0;
1156}
1157
3dd06ffa 1158static void cgroup_exit_root_id(struct cgroup_root *root)
f2e85d57
TH
1159{
1160 lockdep_assert_held(&cgroup_mutex);
1161
8c8a5502 1162 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
f2e85d57
TH
1163}
1164
3dd06ffa 1165static void cgroup_free_root(struct cgroup_root *root)
f2e85d57
TH
1166{
1167 if (root) {
f2e85d57
TH
1168 idr_destroy(&root->cgroup_idr);
1169 kfree(root);
1170 }
1171}
1172
3dd06ffa 1173static void cgroup_destroy_root(struct cgroup_root *root)
59f5296b 1174{
3dd06ffa 1175 struct cgroup *cgrp = &root->cgrp;
f2e85d57 1176 struct cgrp_cset_link *link, *tmp_link;
f2e85d57 1177
334c3679 1178 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
f2e85d57 1179
776f02fa 1180 BUG_ON(atomic_read(&root->nr_cgrps));
d5c419b6 1181 BUG_ON(!list_empty(&cgrp->self.children));
f2e85d57 1182
f2e85d57 1183 /* Rebind all subsystems back to the default hierarchy */
334c3679 1184 WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
7717f7ba 1185
7717f7ba 1186 /*
f2e85d57
TH
1187 * Release all the links from cset_links to this hierarchy's
1188 * root cgroup
7717f7ba 1189 */
82d6489d 1190 spin_lock_irq(&css_set_lock);
f2e85d57
TH
1191
1192 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1193 list_del(&link->cset_link);
1194 list_del(&link->cgrp_link);
1195 kfree(link);
1196 }
f0d9a5f1 1197
82d6489d 1198 spin_unlock_irq(&css_set_lock);
f2e85d57
TH
1199
1200 if (!list_empty(&root->root_list)) {
1201 list_del(&root->root_list);
1202 cgroup_root_count--;
1203 }
1204
1205 cgroup_exit_root_id(root);
1206
1207 mutex_unlock(&cgroup_mutex);
f2e85d57 1208
2bd59d48 1209 kernfs_destroy_root(root->kf_root);
f2e85d57
TH
1210 cgroup_free_root(root);
1211}
1212
4f41fc59
SH
1213/*
1214 * look up cgroup associated with current task's cgroup namespace on the
1215 * specified hierarchy
1216 */
1217static struct cgroup *
1218current_cgns_cgroup_from_root(struct cgroup_root *root)
1219{
1220 struct cgroup *res = NULL;
1221 struct css_set *cset;
1222
1223 lockdep_assert_held(&css_set_lock);
1224
1225 rcu_read_lock();
1226
1227 cset = current->nsproxy->cgroup_ns->root_cset;
1228 if (cset == &init_css_set) {
1229 res = &root->cgrp;
1230 } else {
1231 struct cgrp_cset_link *link;
1232
1233 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1234 struct cgroup *c = link->cgrp;
1235
1236 if (c->root == root) {
1237 res = c;
1238 break;
1239 }
1240 }
1241 }
1242 rcu_read_unlock();
1243
1244 BUG_ON(!res);
1245 return res;
1246}
1247
ceb6a081
TH
1248/* look up cgroup associated with given css_set on the specified hierarchy */
1249static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
3dd06ffa 1250 struct cgroup_root *root)
7717f7ba 1251{
7717f7ba
PM
1252 struct cgroup *res = NULL;
1253
96d365e0 1254 lockdep_assert_held(&cgroup_mutex);
f0d9a5f1 1255 lockdep_assert_held(&css_set_lock);
96d365e0 1256
5abb8855 1257 if (cset == &init_css_set) {
3dd06ffa 1258 res = &root->cgrp;
7717f7ba 1259 } else {
69d0206c
TH
1260 struct cgrp_cset_link *link;
1261
1262 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 1263 struct cgroup *c = link->cgrp;
69d0206c 1264
7717f7ba
PM
1265 if (c->root == root) {
1266 res = c;
1267 break;
1268 }
1269 }
1270 }
96d365e0 1271
7717f7ba
PM
1272 BUG_ON(!res);
1273 return res;
1274}
1275
ddbcc7e8 1276/*
ceb6a081 1277 * Return the cgroup for "task" from the given hierarchy. Must be
f0d9a5f1 1278 * called with cgroup_mutex and css_set_lock held.
ceb6a081
TH
1279 */
1280static struct cgroup *task_cgroup_from_root(struct task_struct *task,
3dd06ffa 1281 struct cgroup_root *root)
ceb6a081
TH
1282{
1283 /*
1284 * No need to lock the task - since we hold cgroup_mutex the
1285 * task can't change groups, so the only thing that can happen
1286 * is that it exits and its css is set back to init_css_set.
1287 */
1288 return cset_cgroup_from_root(task_css_set(task), root);
1289}
1290
ddbcc7e8 1291/*
ddbcc7e8
PM
1292 * A task must hold cgroup_mutex to modify cgroups.
1293 *
1294 * Any task can increment and decrement the count field without lock.
1295 * So in general, code holding cgroup_mutex can't rely on the count
1296 * field not changing. However, if the count goes to zero, then only
956db3ca 1297 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
1298 * means that no tasks are currently attached, therefore there is no
1299 * way a task attached to that cgroup can fork (the other way to
1300 * increment the count). So code holding cgroup_mutex can safely
1301 * assume that if the count is zero, it will stay zero. Similarly, if
1302 * a task holds cgroup_mutex on a cgroup with zero count, it
1303 * knows that the cgroup won't be removed, as cgroup_rmdir()
1304 * needs that mutex.
1305 *
ddbcc7e8
PM
1306 * A cgroup can only be deleted if both its 'count' of using tasks
1307 * is zero, and its list of 'children' cgroups is empty. Since all
1308 * tasks in the system use _some_ cgroup, and since there is always at
3dd06ffa 1309 * least one task in the system (init, pid == 1), therefore, root cgroup
ddbcc7e8 1310 * always has either children cgroups and/or using tasks. So we don't
3dd06ffa 1311 * need a special hack to ensure that root cgroup cannot be deleted.
ddbcc7e8
PM
1312 *
1313 * P.S. One more locking exception. RCU is used to guard the
956db3ca 1314 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
1315 */
1316
2bd59d48 1317static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
828c0950 1318static const struct file_operations proc_cgroupstats_operations;
a424316c 1319
8d7e6fb0
TH
1320static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1321 char *buf)
ddbcc7e8 1322{
3e1d2eed
TH
1323 struct cgroup_subsys *ss = cft->ss;
1324
8d7e6fb0
TH
1325 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1326 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
1327 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
3e1d2eed
TH
1328 cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1329 cft->name);
8d7e6fb0
TH
1330 else
1331 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1332 return buf;
ddbcc7e8
PM
1333}
1334
f2e85d57
TH
1335/**
1336 * cgroup_file_mode - deduce file mode of a control file
1337 * @cft: the control file in question
1338 *
7dbdb199 1339 * S_IRUGO for read, S_IWUSR for write.
f2e85d57
TH
1340 */
1341static umode_t cgroup_file_mode(const struct cftype *cft)
65dff759 1342{
f2e85d57 1343 umode_t mode = 0;
65dff759 1344
f2e85d57
TH
1345 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1346 mode |= S_IRUGO;
1347
7dbdb199
TH
1348 if (cft->write_u64 || cft->write_s64 || cft->write) {
1349 if (cft->flags & CFTYPE_WORLD_WRITABLE)
1350 mode |= S_IWUGO;
1351 else
1352 mode |= S_IWUSR;
1353 }
f2e85d57
TH
1354
1355 return mode;
65dff759
LZ
1356}
1357
af0ba678 1358/**
8699b776 1359 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
0f060deb 1360 * @subtree_control: the new subtree_control mask to consider
5ced2518 1361 * @this_ss_mask: available subsystems
af0ba678
TH
1362 *
1363 * On the default hierarchy, a subsystem may request other subsystems to be
1364 * enabled together through its ->depends_on mask. In such cases, more
1365 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1366 *
0f060deb 1367 * This function calculates which subsystems need to be enabled if
5ced2518 1368 * @subtree_control is to be applied while restricted to @this_ss_mask.
af0ba678 1369 */
5ced2518 1370static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
667c2491 1371{
6e5c8307 1372 u16 cur_ss_mask = subtree_control;
af0ba678
TH
1373 struct cgroup_subsys *ss;
1374 int ssid;
1375
1376 lockdep_assert_held(&cgroup_mutex);
1377
f6d635ad
TH
1378 cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1379
af0ba678 1380 while (true) {
6e5c8307 1381 u16 new_ss_mask = cur_ss_mask;
af0ba678 1382
b4e0eeaf 1383 do_each_subsys_mask(ss, ssid, cur_ss_mask) {
a966a4ed 1384 new_ss_mask |= ss->depends_on;
b4e0eeaf 1385 } while_each_subsys_mask();
af0ba678
TH
1386
1387 /*
1388 * Mask out subsystems which aren't available. This can
1389 * happen only if some depended-upon subsystems were bound
1390 * to non-default hierarchies.
1391 */
5ced2518 1392 new_ss_mask &= this_ss_mask;
af0ba678
TH
1393
1394 if (new_ss_mask == cur_ss_mask)
1395 break;
1396 cur_ss_mask = new_ss_mask;
1397 }
1398
0f060deb
TH
1399 return cur_ss_mask;
1400}
1401
a9746d8d
TH
1402/**
1403 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1404 * @kn: the kernfs_node being serviced
1405 *
1406 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1407 * the method finishes if locking succeeded. Note that once this function
1408 * returns the cgroup returned by cgroup_kn_lock_live() may become
1409 * inaccessible any time. If the caller intends to continue to access the
1410 * cgroup, it should pin it before invoking this function.
1411 */
1412static void cgroup_kn_unlock(struct kernfs_node *kn)
ddbcc7e8 1413{
a9746d8d
TH
1414 struct cgroup *cgrp;
1415
1416 if (kernfs_type(kn) == KERNFS_DIR)
1417 cgrp = kn->priv;
1418 else
1419 cgrp = kn->parent->priv;
1420
1421 mutex_unlock(&cgroup_mutex);
a9746d8d
TH
1422
1423 kernfs_unbreak_active_protection(kn);
1424 cgroup_put(cgrp);
ddbcc7e8
PM
1425}
1426
a9746d8d
TH
1427/**
1428 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1429 * @kn: the kernfs_node being serviced
945ba199 1430 * @drain_offline: perform offline draining on the cgroup
a9746d8d
TH
1431 *
1432 * This helper is to be used by a cgroup kernfs method currently servicing
1433 * @kn. It breaks the active protection, performs cgroup locking and
1434 * verifies that the associated cgroup is alive. Returns the cgroup if
1435 * alive; otherwise, %NULL. A successful return should be undone by a
945ba199
TH
1436 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the
1437 * cgroup is drained of offlining csses before return.
a9746d8d
TH
1438 *
1439 * Any cgroup kernfs method implementation which requires locking the
1440 * associated cgroup should use this helper. It avoids nesting cgroup
1441 * locking under kernfs active protection and allows all kernfs operations
1442 * including self-removal.
1443 */
945ba199
TH
1444static struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn,
1445 bool drain_offline)
05ef1d7c 1446{
a9746d8d
TH
1447 struct cgroup *cgrp;
1448
1449 if (kernfs_type(kn) == KERNFS_DIR)
1450 cgrp = kn->priv;
1451 else
1452 cgrp = kn->parent->priv;
05ef1d7c 1453
2739d3cc 1454 /*
01f6474c 1455 * We're gonna grab cgroup_mutex which nests outside kernfs
a9746d8d
TH
1456 * active_ref. cgroup liveliness check alone provides enough
1457 * protection against removal. Ensure @cgrp stays accessible and
1458 * break the active_ref protection.
2739d3cc 1459 */
aa32362f
LZ
1460 if (!cgroup_tryget(cgrp))
1461 return NULL;
a9746d8d
TH
1462 kernfs_break_active_protection(kn);
1463
945ba199
TH
1464 if (drain_offline)
1465 cgroup_lock_and_drain_offline(cgrp);
1466 else
1467 mutex_lock(&cgroup_mutex);
05ef1d7c 1468
a9746d8d
TH
1469 if (!cgroup_is_dead(cgrp))
1470 return cgrp;
1471
1472 cgroup_kn_unlock(kn);
1473 return NULL;
ddbcc7e8 1474}
05ef1d7c 1475
2739d3cc 1476static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
05ef1d7c 1477{
2bd59d48 1478 char name[CGROUP_FILE_NAME_MAX];
05ef1d7c 1479
01f6474c 1480 lockdep_assert_held(&cgroup_mutex);
34c06254
TH
1481
1482 if (cft->file_offset) {
1483 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1484 struct cgroup_file *cfile = (void *)css + cft->file_offset;
1485
1486 spin_lock_irq(&cgroup_file_kn_lock);
1487 cfile->kn = NULL;
1488 spin_unlock_irq(&cgroup_file_kn_lock);
1489 }
1490
2bd59d48 1491 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
05ef1d7c
TH
1492}
1493
13af07df 1494/**
4df8dc90
TH
1495 * css_clear_dir - remove subsys files in a cgroup directory
1496 * @css: taget css
13af07df 1497 */
334c3679 1498static void css_clear_dir(struct cgroup_subsys_state *css)
05ef1d7c 1499{
334c3679 1500 struct cgroup *cgrp = css->cgroup;
4df8dc90 1501 struct cftype *cfts;
05ef1d7c 1502
88cb04b9
TH
1503 if (!(css->flags & CSS_VISIBLE))
1504 return;
1505
1506 css->flags &= ~CSS_VISIBLE;
1507
4df8dc90
TH
1508 list_for_each_entry(cfts, &css->ss->cfts, node)
1509 cgroup_addrm_files(css, cgrp, cfts, false);
ddbcc7e8
PM
1510}
1511
ccdca218 1512/**
4df8dc90
TH
1513 * css_populate_dir - create subsys files in a cgroup directory
1514 * @css: target css
ccdca218
TH
1515 *
1516 * On failure, no file is added.
1517 */
334c3679 1518static int css_populate_dir(struct cgroup_subsys_state *css)
ccdca218 1519{
334c3679 1520 struct cgroup *cgrp = css->cgroup;
4df8dc90
TH
1521 struct cftype *cfts, *failed_cfts;
1522 int ret;
ccdca218 1523
03970d3c 1524 if ((css->flags & CSS_VISIBLE) || !cgrp->kn)
88cb04b9
TH
1525 return 0;
1526
4df8dc90
TH
1527 if (!css->ss) {
1528 if (cgroup_on_dfl(cgrp))
1529 cfts = cgroup_dfl_base_files;
1530 else
1531 cfts = cgroup_legacy_base_files;
ccdca218 1532
4df8dc90
TH
1533 return cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1534 }
ccdca218 1535
4df8dc90
TH
1536 list_for_each_entry(cfts, &css->ss->cfts, node) {
1537 ret = cgroup_addrm_files(css, cgrp, cfts, true);
1538 if (ret < 0) {
1539 failed_cfts = cfts;
1540 goto err;
ccdca218
TH
1541 }
1542 }
88cb04b9
TH
1543
1544 css->flags |= CSS_VISIBLE;
1545
ccdca218
TH
1546 return 0;
1547err:
4df8dc90
TH
1548 list_for_each_entry(cfts, &css->ss->cfts, node) {
1549 if (cfts == failed_cfts)
1550 break;
1551 cgroup_addrm_files(css, cgrp, cfts, false);
1552 }
ccdca218
TH
1553 return ret;
1554}
1555
6e5c8307 1556static int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
ddbcc7e8 1557{
1ada4838 1558 struct cgroup *dcgrp = &dst_root->cgrp;
30159ec7 1559 struct cgroup_subsys *ss;
2d8f243a 1560 int ssid, i, ret;
ddbcc7e8 1561
ace2bee8 1562 lockdep_assert_held(&cgroup_mutex);
ddbcc7e8 1563
b4e0eeaf 1564 do_each_subsys_mask(ss, ssid, ss_mask) {
f6d635ad
TH
1565 /*
1566 * If @ss has non-root csses attached to it, can't move.
1567 * If @ss is an implicit controller, it is exempt from this
1568 * rule and can be stolen.
1569 */
1570 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1571 !ss->implicit_on_dfl)
3ed80a62 1572 return -EBUSY;
1d5be6b2 1573
5df36032 1574 /* can't move between two non-dummy roots either */
7fd8c565 1575 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
5df36032 1576 return -EBUSY;
b4e0eeaf 1577 } while_each_subsys_mask();
ddbcc7e8 1578
b4e0eeaf 1579 do_each_subsys_mask(ss, ssid, ss_mask) {
1ada4838
TH
1580 struct cgroup_root *src_root = ss->root;
1581 struct cgroup *scgrp = &src_root->cgrp;
1582 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
2d8f243a 1583 struct css_set *cset;
a8a648c4 1584
1ada4838 1585 WARN_ON(!css || cgroup_css(dcgrp, ss));
a8a648c4 1586
334c3679
TH
1587 /* disable from the source */
1588 src_root->subsys_mask &= ~(1 << ssid);
1589 WARN_ON(cgroup_apply_control(scgrp));
1590 cgroup_finalize_control(scgrp, 0);
4df8dc90 1591
334c3679 1592 /* rebind */
1ada4838
TH
1593 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1594 rcu_assign_pointer(dcgrp->subsys[ssid], css);
5df36032 1595 ss->root = dst_root;
1ada4838 1596 css->cgroup = dcgrp;
73e80ed8 1597
82d6489d 1598 spin_lock_irq(&css_set_lock);
2d8f243a
TH
1599 hash_for_each(css_set_table, i, cset, hlist)
1600 list_move_tail(&cset->e_cset_node[ss->id],
1ada4838 1601 &dcgrp->e_csets[ss->id]);
82d6489d 1602 spin_unlock_irq(&css_set_lock);
2d8f243a 1603
bd53d617 1604 /* default hierarchy doesn't enable controllers by default */
f392e51c 1605 dst_root->subsys_mask |= 1 << ssid;
49d1dc4b
TH
1606 if (dst_root == &cgrp_dfl_root) {
1607 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1608 } else {
1ada4838 1609 dcgrp->subtree_control |= 1 << ssid;
49d1dc4b 1610 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
667c2491 1611 }
a8a648c4 1612
334c3679
TH
1613 ret = cgroup_apply_control(dcgrp);
1614 if (ret)
1615 pr_warn("partial failure to rebind %s controller (err=%d)\n",
1616 ss->name, ret);
1617
5df36032
TH
1618 if (ss->bind)
1619 ss->bind(css);
b4e0eeaf 1620 } while_each_subsys_mask();
ddbcc7e8 1621
1ada4838 1622 kernfs_activate(dcgrp->kn);
ddbcc7e8
PM
1623 return 0;
1624}
1625
4f41fc59
SH
1626static int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1627 struct kernfs_root *kf_root)
1628{
09be4c82 1629 int len = 0;
4f41fc59
SH
1630 char *buf = NULL;
1631 struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1632 struct cgroup *ns_cgroup;
1633
1634 buf = kmalloc(PATH_MAX, GFP_KERNEL);
1635 if (!buf)
1636 return -ENOMEM;
1637
82d6489d 1638 spin_lock_irq(&css_set_lock);
4f41fc59
SH
1639 ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1640 len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
82d6489d 1641 spin_unlock_irq(&css_set_lock);
4f41fc59
SH
1642
1643 if (len >= PATH_MAX)
1644 len = -ERANGE;
1645 else if (len > 0) {
1646 seq_escape(sf, buf, " \t\n\\");
1647 len = 0;
1648 }
1649 kfree(buf);
1650 return len;
1651}
1652
2bd59d48
TH
1653static int cgroup_show_options(struct seq_file *seq,
1654 struct kernfs_root *kf_root)
ddbcc7e8 1655{
3dd06ffa 1656 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1657 struct cgroup_subsys *ss;
b85d2040 1658 int ssid;
ddbcc7e8 1659
d98817d4
TH
1660 if (root != &cgrp_dfl_root)
1661 for_each_subsys(ss, ssid)
1662 if (root->subsys_mask & (1 << ssid))
61e57c0c 1663 seq_show_option(seq, ss->legacy_name, NULL);
93438629 1664 if (root->flags & CGRP_ROOT_NOPREFIX)
ddbcc7e8 1665 seq_puts(seq, ",noprefix");
93438629 1666 if (root->flags & CGRP_ROOT_XATTR)
03b1cde6 1667 seq_puts(seq, ",xattr");
69e943b7
TH
1668
1669 spin_lock(&release_agent_path_lock);
81a6a5cd 1670 if (strlen(root->release_agent_path))
a068acf2
KC
1671 seq_show_option(seq, "release_agent",
1672 root->release_agent_path);
69e943b7
TH
1673 spin_unlock(&release_agent_path_lock);
1674
3dd06ffa 1675 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
97978e6d 1676 seq_puts(seq, ",clone_children");
c6d57f33 1677 if (strlen(root->name))
a068acf2 1678 seq_show_option(seq, "name", root->name);
ddbcc7e8
PM
1679 return 0;
1680}
1681
1682struct cgroup_sb_opts {
6e5c8307 1683 u16 subsys_mask;
69dfa00c 1684 unsigned int flags;
81a6a5cd 1685 char *release_agent;
2260e7fc 1686 bool cpuset_clone_children;
c6d57f33 1687 char *name;
2c6ab6d2
PM
1688 /* User explicitly requested empty subsystem */
1689 bool none;
ddbcc7e8
PM
1690};
1691
cf5d5941 1692static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
ddbcc7e8 1693{
32a8cf23
DL
1694 char *token, *o = data;
1695 bool all_ss = false, one_ss = false;
6e5c8307 1696 u16 mask = U16_MAX;
30159ec7 1697 struct cgroup_subsys *ss;
7b9a6ba5 1698 int nr_opts = 0;
30159ec7 1699 int i;
f9ab5b5b
LZ
1700
1701#ifdef CONFIG_CPUSETS
6e5c8307 1702 mask = ~((u16)1 << cpuset_cgrp_id);
f9ab5b5b 1703#endif
ddbcc7e8 1704
c6d57f33 1705 memset(opts, 0, sizeof(*opts));
ddbcc7e8
PM
1706
1707 while ((token = strsep(&o, ",")) != NULL) {
7b9a6ba5
TH
1708 nr_opts++;
1709
ddbcc7e8
PM
1710 if (!*token)
1711 return -EINVAL;
32a8cf23 1712 if (!strcmp(token, "none")) {
2c6ab6d2
PM
1713 /* Explicitly have no subsystems */
1714 opts->none = true;
32a8cf23
DL
1715 continue;
1716 }
1717 if (!strcmp(token, "all")) {
1718 /* Mutually exclusive option 'all' + subsystem name */
1719 if (one_ss)
1720 return -EINVAL;
1721 all_ss = true;
1722 continue;
1723 }
1724 if (!strcmp(token, "noprefix")) {
93438629 1725 opts->flags |= CGRP_ROOT_NOPREFIX;
32a8cf23
DL
1726 continue;
1727 }
1728 if (!strcmp(token, "clone_children")) {
2260e7fc 1729 opts->cpuset_clone_children = true;
32a8cf23
DL
1730 continue;
1731 }
03b1cde6 1732 if (!strcmp(token, "xattr")) {
93438629 1733 opts->flags |= CGRP_ROOT_XATTR;
03b1cde6
AR
1734 continue;
1735 }
32a8cf23 1736 if (!strncmp(token, "release_agent=", 14)) {
81a6a5cd
PM
1737 /* Specifying two release agents is forbidden */
1738 if (opts->release_agent)
1739 return -EINVAL;
c6d57f33 1740 opts->release_agent =
e400c285 1741 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
81a6a5cd
PM
1742 if (!opts->release_agent)
1743 return -ENOMEM;
32a8cf23
DL
1744 continue;
1745 }
1746 if (!strncmp(token, "name=", 5)) {
c6d57f33
PM
1747 const char *name = token + 5;
1748 /* Can't specify an empty name */
1749 if (!strlen(name))
1750 return -EINVAL;
1751 /* Must match [\w.-]+ */
1752 for (i = 0; i < strlen(name); i++) {
1753 char c = name[i];
1754 if (isalnum(c))
1755 continue;
1756 if ((c == '.') || (c == '-') || (c == '_'))
1757 continue;
1758 return -EINVAL;
1759 }
1760 /* Specifying two names is forbidden */
1761 if (opts->name)
1762 return -EINVAL;
1763 opts->name = kstrndup(name,
e400c285 1764 MAX_CGROUP_ROOT_NAMELEN - 1,
c6d57f33
PM
1765 GFP_KERNEL);
1766 if (!opts->name)
1767 return -ENOMEM;
32a8cf23
DL
1768
1769 continue;
1770 }
1771
30159ec7 1772 for_each_subsys(ss, i) {
3e1d2eed 1773 if (strcmp(token, ss->legacy_name))
32a8cf23 1774 continue;
fc5ed1e9 1775 if (!cgroup_ssid_enabled(i))
32a8cf23 1776 continue;
223ffb29
JW
1777 if (cgroup_ssid_no_v1(i))
1778 continue;
32a8cf23
DL
1779
1780 /* Mutually exclusive option 'all' + subsystem name */
1781 if (all_ss)
1782 return -EINVAL;
69dfa00c 1783 opts->subsys_mask |= (1 << i);
32a8cf23
DL
1784 one_ss = true;
1785
1786 break;
1787 }
1788 if (i == CGROUP_SUBSYS_COUNT)
1789 return -ENOENT;
1790 }
1791
7b9a6ba5
TH
1792 /*
1793 * If the 'all' option was specified select all the subsystems,
1794 * otherwise if 'none', 'name=' and a subsystem name options were
1795 * not specified, let's default to 'all'
1796 */
1797 if (all_ss || (!one_ss && !opts->none && !opts->name))
1798 for_each_subsys(ss, i)
223ffb29 1799 if (cgroup_ssid_enabled(i) && !cgroup_ssid_no_v1(i))
7b9a6ba5
TH
1800 opts->subsys_mask |= (1 << i);
1801
1802 /*
1803 * We either have to specify by name or by subsystems. (So all
1804 * empty hierarchies must have a name).
1805 */
1806 if (!opts->subsys_mask && !opts->name)
1807 return -EINVAL;
1808
f9ab5b5b
LZ
1809 /*
1810 * Option noprefix was introduced just for backward compatibility
1811 * with the old cpuset, so we allow noprefix only if mounting just
1812 * the cpuset subsystem.
1813 */
93438629 1814 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
f9ab5b5b
LZ
1815 return -EINVAL;
1816
2c6ab6d2 1817 /* Can't specify "none" and some subsystems */
a1a71b45 1818 if (opts->subsys_mask && opts->none)
2c6ab6d2
PM
1819 return -EINVAL;
1820
ddbcc7e8
PM
1821 return 0;
1822}
1823
2bd59d48 1824static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
ddbcc7e8
PM
1825{
1826 int ret = 0;
3dd06ffa 1827 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1828 struct cgroup_sb_opts opts;
6e5c8307 1829 u16 added_mask, removed_mask;
ddbcc7e8 1830
aa6ec29b
TH
1831 if (root == &cgrp_dfl_root) {
1832 pr_err("remount is not allowed\n");
873fe09e
TH
1833 return -EINVAL;
1834 }
1835
334c3679 1836 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
ddbcc7e8
PM
1837
1838 /* See what subsystems are wanted */
1839 ret = parse_cgroupfs_options(data, &opts);
1840 if (ret)
1841 goto out_unlock;
1842
f392e51c 1843 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
ed3d261b 1844 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
a2a1f9ea 1845 task_tgid_nr(current), current->comm);
8b5a5a9d 1846
f392e51c
TH
1847 added_mask = opts.subsys_mask & ~root->subsys_mask;
1848 removed_mask = root->subsys_mask & ~opts.subsys_mask;
13af07df 1849
cf5d5941 1850 /* Don't allow flags or name to change at remount */
7450e90b 1851 if ((opts.flags ^ root->flags) ||
cf5d5941 1852 (opts.name && strcmp(opts.name, root->name))) {
69dfa00c 1853 pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
7450e90b 1854 opts.flags, opts.name ?: "", root->flags, root->name);
c6d57f33
PM
1855 ret = -EINVAL;
1856 goto out_unlock;
1857 }
1858
f172e67c 1859 /* remounting is not allowed for populated hierarchies */
d5c419b6 1860 if (!list_empty(&root->cgrp.self.children)) {
f172e67c 1861 ret = -EBUSY;
0670e08b 1862 goto out_unlock;
cf5d5941 1863 }
ddbcc7e8 1864
5df36032 1865 ret = rebind_subsystems(root, added_mask);
3126121f 1866 if (ret)
0670e08b 1867 goto out_unlock;
ddbcc7e8 1868
334c3679 1869 WARN_ON(rebind_subsystems(&cgrp_dfl_root, removed_mask));
5df36032 1870
69e943b7
TH
1871 if (opts.release_agent) {
1872 spin_lock(&release_agent_path_lock);
81a6a5cd 1873 strcpy(root->release_agent_path, opts.release_agent);
69e943b7
TH
1874 spin_unlock(&release_agent_path_lock);
1875 }
ddbcc7e8 1876 out_unlock:
66bdc9cf 1877 kfree(opts.release_agent);
c6d57f33 1878 kfree(opts.name);
ddbcc7e8 1879 mutex_unlock(&cgroup_mutex);
ddbcc7e8
PM
1880 return ret;
1881}
1882
afeb0f9f
TH
1883/*
1884 * To reduce the fork() overhead for systems that are not actually using
1885 * their cgroups capability, we don't maintain the lists running through
1886 * each css_set to its tasks until we see the list actually used - in other
1887 * words after the first mount.
1888 */
1889static bool use_task_css_set_links __read_mostly;
1890
1891static void cgroup_enable_task_cg_lists(void)
1892{
1893 struct task_struct *p, *g;
1894
82d6489d 1895 spin_lock_irq(&css_set_lock);
afeb0f9f
TH
1896
1897 if (use_task_css_set_links)
1898 goto out_unlock;
1899
1900 use_task_css_set_links = true;
1901
1902 /*
1903 * We need tasklist_lock because RCU is not safe against
1904 * while_each_thread(). Besides, a forking task that has passed
1905 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1906 * is not guaranteed to have its child immediately visible in the
1907 * tasklist if we walk through it with RCU.
1908 */
1909 read_lock(&tasklist_lock);
1910 do_each_thread(g, p) {
afeb0f9f
TH
1911 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1912 task_css_set(p) != &init_css_set);
1913
1914 /*
1915 * We should check if the process is exiting, otherwise
1916 * it will race with cgroup_exit() in that the list
1917 * entry won't be deleted though the process has exited.
f153ad11
TH
1918 * Do it while holding siglock so that we don't end up
1919 * racing against cgroup_exit().
82d6489d
DBO
1920 *
1921 * Interrupts were already disabled while acquiring
1922 * the css_set_lock, so we do not need to disable it
1923 * again when acquiring the sighand->siglock here.
afeb0f9f 1924 */
82d6489d 1925 spin_lock(&p->sighand->siglock);
eaf797ab
TH
1926 if (!(p->flags & PF_EXITING)) {
1927 struct css_set *cset = task_css_set(p);
1928
0de0942d
TH
1929 if (!css_set_populated(cset))
1930 css_set_update_populated(cset, true);
389b9c1b 1931 list_add_tail(&p->cg_list, &cset->tasks);
eaf797ab
TH
1932 get_css_set(cset);
1933 }
82d6489d 1934 spin_unlock(&p->sighand->siglock);
afeb0f9f
TH
1935 } while_each_thread(g, p);
1936 read_unlock(&tasklist_lock);
1937out_unlock:
82d6489d 1938 spin_unlock_irq(&css_set_lock);
afeb0f9f 1939}
ddbcc7e8 1940
cc31edce
PM
1941static void init_cgroup_housekeeping(struct cgroup *cgrp)
1942{
2d8f243a
TH
1943 struct cgroup_subsys *ss;
1944 int ssid;
1945
d5c419b6
TH
1946 INIT_LIST_HEAD(&cgrp->self.sibling);
1947 INIT_LIST_HEAD(&cgrp->self.children);
69d0206c 1948 INIT_LIST_HEAD(&cgrp->cset_links);
72a8cb30
BB
1949 INIT_LIST_HEAD(&cgrp->pidlists);
1950 mutex_init(&cgrp->pidlist_mutex);
9d800df1 1951 cgrp->self.cgroup = cgrp;
184faf32 1952 cgrp->self.flags |= CSS_ONLINE;
2d8f243a
TH
1953
1954 for_each_subsys(ss, ssid)
1955 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
f8f22e53
TH
1956
1957 init_waitqueue_head(&cgrp->offline_waitq);
971ff493 1958 INIT_WORK(&cgrp->release_agent_work, cgroup_release_agent);
cc31edce 1959}
c6d57f33 1960
3dd06ffa 1961static void init_cgroup_root(struct cgroup_root *root,
172a2c06 1962 struct cgroup_sb_opts *opts)
ddbcc7e8 1963{
3dd06ffa 1964 struct cgroup *cgrp = &root->cgrp;
b0ca5a84 1965
ddbcc7e8 1966 INIT_LIST_HEAD(&root->root_list);
3c9c825b 1967 atomic_set(&root->nr_cgrps, 1);
bd89aabc 1968 cgrp->root = root;
cc31edce 1969 init_cgroup_housekeeping(cgrp);
4e96ee8e 1970 idr_init(&root->cgroup_idr);
c6d57f33 1971
c6d57f33
PM
1972 root->flags = opts->flags;
1973 if (opts->release_agent)
1974 strcpy(root->release_agent_path, opts->release_agent);
1975 if (opts->name)
1976 strcpy(root->name, opts->name);
2260e7fc 1977 if (opts->cpuset_clone_children)
3dd06ffa 1978 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
c6d57f33
PM
1979}
1980
6e5c8307 1981static int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask)
2c6ab6d2 1982{
d427dfeb 1983 LIST_HEAD(tmp_links);
3dd06ffa 1984 struct cgroup *root_cgrp = &root->cgrp;
d427dfeb 1985 struct css_set *cset;
d427dfeb 1986 int i, ret;
2c6ab6d2 1987
d427dfeb 1988 lockdep_assert_held(&cgroup_mutex);
c6d57f33 1989
cf780b7d 1990 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL);
d427dfeb 1991 if (ret < 0)
2bd59d48 1992 goto out;
d427dfeb 1993 root_cgrp->id = ret;
b11cfb58 1994 root_cgrp->ancestor_ids[0] = ret;
c6d57f33 1995
2aad2a86
TH
1996 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 0,
1997 GFP_KERNEL);
9d755d33
TH
1998 if (ret)
1999 goto out;
2000
d427dfeb 2001 /*
f0d9a5f1 2002 * We're accessing css_set_count without locking css_set_lock here,
d427dfeb 2003 * but that's OK - it can only be increased by someone holding
04313591
TH
2004 * cgroup_lock, and that's us. Later rebinding may disable
2005 * controllers on the default hierarchy and thus create new csets,
2006 * which can't be more than the existing ones. Allocate 2x.
d427dfeb 2007 */
04313591 2008 ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
d427dfeb 2009 if (ret)
9d755d33 2010 goto cancel_ref;
ddbcc7e8 2011
985ed670 2012 ret = cgroup_init_root_id(root);
ddbcc7e8 2013 if (ret)
9d755d33 2014 goto cancel_ref;
ddbcc7e8 2015
2bd59d48
TH
2016 root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
2017 KERNFS_ROOT_CREATE_DEACTIVATED,
2018 root_cgrp);
2019 if (IS_ERR(root->kf_root)) {
2020 ret = PTR_ERR(root->kf_root);
2021 goto exit_root_id;
2022 }
2023 root_cgrp->kn = root->kf_root->kn;
ddbcc7e8 2024
334c3679 2025 ret = css_populate_dir(&root_cgrp->self);
d427dfeb 2026 if (ret)
2bd59d48 2027 goto destroy_root;
ddbcc7e8 2028
5df36032 2029 ret = rebind_subsystems(root, ss_mask);
d427dfeb 2030 if (ret)
2bd59d48 2031 goto destroy_root;
ddbcc7e8 2032
d427dfeb
TH
2033 /*
2034 * There must be no failure case after here, since rebinding takes
2035 * care of subsystems' refcounts, which are explicitly dropped in
2036 * the failure exit path.
2037 */
2038 list_add(&root->root_list, &cgroup_roots);
2039 cgroup_root_count++;
0df6a63f 2040
d427dfeb 2041 /*
3dd06ffa 2042 * Link the root cgroup in this hierarchy into all the css_set
d427dfeb
TH
2043 * objects.
2044 */
82d6489d 2045 spin_lock_irq(&css_set_lock);
0de0942d 2046 hash_for_each(css_set_table, i, cset, hlist) {
d427dfeb 2047 link_css_set(&tmp_links, cset, root_cgrp);
0de0942d
TH
2048 if (css_set_populated(cset))
2049 cgroup_update_populated(root_cgrp, true);
2050 }
82d6489d 2051 spin_unlock_irq(&css_set_lock);
ddbcc7e8 2052
d5c419b6 2053 BUG_ON(!list_empty(&root_cgrp->self.children));
3c9c825b 2054 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
ddbcc7e8 2055
2bd59d48 2056 kernfs_activate(root_cgrp->kn);
d427dfeb 2057 ret = 0;
2bd59d48 2058 goto out;
d427dfeb 2059
2bd59d48
TH
2060destroy_root:
2061 kernfs_destroy_root(root->kf_root);
2062 root->kf_root = NULL;
2063exit_root_id:
d427dfeb 2064 cgroup_exit_root_id(root);
9d755d33 2065cancel_ref:
9a1049da 2066 percpu_ref_exit(&root_cgrp->self.refcnt);
2bd59d48 2067out:
d427dfeb
TH
2068 free_cgrp_cset_links(&tmp_links);
2069 return ret;
ddbcc7e8
PM
2070}
2071
f7e83571 2072static struct dentry *cgroup_mount(struct file_system_type *fs_type,
ddbcc7e8 2073 int flags, const char *unused_dev_name,
f7e83571 2074 void *data)
ddbcc7e8 2075{
67e9c74b 2076 bool is_v2 = fs_type == &cgroup2_fs_type;
3a32bd72 2077 struct super_block *pinned_sb = NULL;
ed82571b 2078 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
970317aa 2079 struct cgroup_subsys *ss;
3dd06ffa 2080 struct cgroup_root *root;
ddbcc7e8 2081 struct cgroup_sb_opts opts;
2bd59d48 2082 struct dentry *dentry;
8e30e2b8 2083 int ret;
970317aa 2084 int i;
c6b3d5bc 2085 bool new_sb;
ddbcc7e8 2086
ed82571b
SH
2087 get_cgroup_ns(ns);
2088
2089 /* Check if the caller has permission to mount. */
2090 if (!ns_capable(ns->user_ns, CAP_SYS_ADMIN)) {
2091 put_cgroup_ns(ns);
2092 return ERR_PTR(-EPERM);
2093 }
2094
56fde9e0
TH
2095 /*
2096 * The first time anyone tries to mount a cgroup, enable the list
2097 * linking each css_set to its tasks and fix up all existing tasks.
2098 */
2099 if (!use_task_css_set_links)
2100 cgroup_enable_task_cg_lists();
e37a06f1 2101
67e9c74b
TH
2102 if (is_v2) {
2103 if (data) {
2104 pr_err("cgroup2: unknown option \"%s\"\n", (char *)data);
ed82571b 2105 put_cgroup_ns(ns);
67e9c74b
TH
2106 return ERR_PTR(-EINVAL);
2107 }
a7165264 2108 cgrp_dfl_visible = true;
67e9c74b
TH
2109 root = &cgrp_dfl_root;
2110 cgroup_get(&root->cgrp);
2111 goto out_mount;
2112 }
2113
334c3679 2114 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
8e30e2b8
TH
2115
2116 /* First find the desired set of subsystems */
ddbcc7e8 2117 ret = parse_cgroupfs_options(data, &opts);
c6d57f33 2118 if (ret)
8e30e2b8 2119 goto out_unlock;
a015edd2 2120
970317aa
LZ
2121 /*
2122 * Destruction of cgroup root is asynchronous, so subsystems may
2123 * still be dying after the previous unmount. Let's drain the
2124 * dying subsystems. We just need to ensure that the ones
2125 * unmounted previously finish dying and don't care about new ones
2126 * starting. Testing ref liveliness is good enough.
2127 */
2128 for_each_subsys(ss, i) {
2129 if (!(opts.subsys_mask & (1 << i)) ||
2130 ss->root == &cgrp_dfl_root)
2131 continue;
2132
2133 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) {
2134 mutex_unlock(&cgroup_mutex);
2135 msleep(10);
2136 ret = restart_syscall();
2137 goto out_free;
2138 }
2139 cgroup_put(&ss->root->cgrp);
2140 }
2141
985ed670 2142 for_each_root(root) {
2bd59d48 2143 bool name_match = false;
3126121f 2144
3dd06ffa 2145 if (root == &cgrp_dfl_root)
985ed670 2146 continue;
3126121f 2147
cf5d5941 2148 /*
2bd59d48
TH
2149 * If we asked for a name then it must match. Also, if
2150 * name matches but sybsys_mask doesn't, we should fail.
2151 * Remember whether name matched.
cf5d5941 2152 */
2bd59d48
TH
2153 if (opts.name) {
2154 if (strcmp(opts.name, root->name))
2155 continue;
2156 name_match = true;
2157 }
ddbcc7e8 2158
c6d57f33 2159 /*
2bd59d48
TH
2160 * If we asked for subsystems (or explicitly for no
2161 * subsystems) then they must match.
c6d57f33 2162 */
2bd59d48 2163 if ((opts.subsys_mask || opts.none) &&
f392e51c 2164 (opts.subsys_mask != root->subsys_mask)) {
2bd59d48
TH
2165 if (!name_match)
2166 continue;
2167 ret = -EBUSY;
2168 goto out_unlock;
2169 }
873fe09e 2170
7b9a6ba5
TH
2171 if (root->flags ^ opts.flags)
2172 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
ddbcc7e8 2173
776f02fa 2174 /*
3a32bd72
LZ
2175 * We want to reuse @root whose lifetime is governed by its
2176 * ->cgrp. Let's check whether @root is alive and keep it
2177 * that way. As cgroup_kill_sb() can happen anytime, we
2178 * want to block it by pinning the sb so that @root doesn't
2179 * get killed before mount is complete.
2180 *
2181 * With the sb pinned, tryget_live can reliably indicate
2182 * whether @root can be reused. If it's being killed,
2183 * drain it. We can use wait_queue for the wait but this
2184 * path is super cold. Let's just sleep a bit and retry.
776f02fa 2185 */
3a32bd72
LZ
2186 pinned_sb = kernfs_pin_sb(root->kf_root, NULL);
2187 if (IS_ERR(pinned_sb) ||
2188 !percpu_ref_tryget_live(&root->cgrp.self.refcnt)) {
776f02fa 2189 mutex_unlock(&cgroup_mutex);
3a32bd72
LZ
2190 if (!IS_ERR_OR_NULL(pinned_sb))
2191 deactivate_super(pinned_sb);
776f02fa 2192 msleep(10);
a015edd2
TH
2193 ret = restart_syscall();
2194 goto out_free;
776f02fa 2195 }
ddbcc7e8 2196
776f02fa 2197 ret = 0;
2bd59d48 2198 goto out_unlock;
ddbcc7e8 2199 }
ddbcc7e8 2200
817929ec 2201 /*
172a2c06
TH
2202 * No such thing, create a new one. name= matching without subsys
2203 * specification is allowed for already existing hierarchies but we
2204 * can't create new one without subsys specification.
817929ec 2205 */
172a2c06
TH
2206 if (!opts.subsys_mask && !opts.none) {
2207 ret = -EINVAL;
2208 goto out_unlock;
817929ec 2209 }
817929ec 2210
ed82571b
SH
2211 /*
2212 * We know this subsystem has not yet been bound. Users in a non-init
2213 * user namespace may only mount hierarchies with no bound subsystems,
2214 * i.e. 'none,name=user1'
2215 */
2216 if (!opts.none && !capable(CAP_SYS_ADMIN)) {
2217 ret = -EPERM;
2218 goto out_unlock;
2219 }
2220
172a2c06
TH
2221 root = kzalloc(sizeof(*root), GFP_KERNEL);
2222 if (!root) {
2223 ret = -ENOMEM;
2bd59d48 2224 goto out_unlock;
839ec545 2225 }
e5f6a860 2226
172a2c06
TH
2227 init_cgroup_root(root, &opts);
2228
35585573 2229 ret = cgroup_setup_root(root, opts.subsys_mask);
2bd59d48
TH
2230 if (ret)
2231 cgroup_free_root(root);
fa3ca07e 2232
8e30e2b8 2233out_unlock:
ddbcc7e8 2234 mutex_unlock(&cgroup_mutex);
a015edd2 2235out_free:
c6d57f33
PM
2236 kfree(opts.release_agent);
2237 kfree(opts.name);
03b1cde6 2238
ed82571b
SH
2239 if (ret) {
2240 put_cgroup_ns(ns);
8e30e2b8 2241 return ERR_PTR(ret);
ed82571b 2242 }
67e9c74b 2243out_mount:
c9482a5b 2244 dentry = kernfs_mount(fs_type, flags, root->kf_root,
67e9c74b
TH
2245 is_v2 ? CGROUP2_SUPER_MAGIC : CGROUP_SUPER_MAGIC,
2246 &new_sb);
ed82571b
SH
2247
2248 /*
2249 * In non-init cgroup namespace, instead of root cgroup's
2250 * dentry, we return the dentry corresponding to the
2251 * cgroupns->root_cgrp.
2252 */
2253 if (!IS_ERR(dentry) && ns != &init_cgroup_ns) {
2254 struct dentry *nsdentry;
2255 struct cgroup *cgrp;
2256
2257 mutex_lock(&cgroup_mutex);
82d6489d 2258 spin_lock_irq(&css_set_lock);
ed82571b
SH
2259
2260 cgrp = cset_cgroup_from_root(ns->root_cset, root);
2261
82d6489d 2262 spin_unlock_irq(&css_set_lock);
ed82571b
SH
2263 mutex_unlock(&cgroup_mutex);
2264
2265 nsdentry = kernfs_node_dentry(cgrp->kn, dentry->d_sb);
2266 dput(dentry);
2267 dentry = nsdentry;
2268 }
2269
c6b3d5bc 2270 if (IS_ERR(dentry) || !new_sb)
3dd06ffa 2271 cgroup_put(&root->cgrp);
3a32bd72
LZ
2272
2273 /*
2274 * If @pinned_sb, we're reusing an existing root and holding an
2275 * extra ref on its sb. Mount is complete. Put the extra ref.
2276 */
2277 if (pinned_sb) {
2278 WARN_ON(new_sb);
2279 deactivate_super(pinned_sb);
2280 }
2281
ed82571b 2282 put_cgroup_ns(ns);
2bd59d48
TH
2283 return dentry;
2284}
2285
2286static void cgroup_kill_sb(struct super_block *sb)
2287{
2288 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
3dd06ffa 2289 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2bd59d48 2290
9d755d33
TH
2291 /*
2292 * If @root doesn't have any mounts or children, start killing it.
2293 * This prevents new mounts by disabling percpu_ref_tryget_live().
2294 * cgroup_mount() may wait for @root's release.
1f779fb2
LZ
2295 *
2296 * And don't kill the default root.
9d755d33 2297 */
3c606d35 2298 if (!list_empty(&root->cgrp.self.children) ||
1f779fb2 2299 root == &cgrp_dfl_root)
9d755d33
TH
2300 cgroup_put(&root->cgrp);
2301 else
2302 percpu_ref_kill(&root->cgrp.self.refcnt);
2303
2bd59d48 2304 kernfs_kill_sb(sb);
ddbcc7e8
PM
2305}
2306
2307static struct file_system_type cgroup_fs_type = {
2308 .name = "cgroup",
f7e83571 2309 .mount = cgroup_mount,
ddbcc7e8 2310 .kill_sb = cgroup_kill_sb,
1c53753e 2311 .fs_flags = FS_USERNS_MOUNT,
ddbcc7e8
PM
2312};
2313
67e9c74b
TH
2314static struct file_system_type cgroup2_fs_type = {
2315 .name = "cgroup2",
2316 .mount = cgroup_mount,
2317 .kill_sb = cgroup_kill_sb,
1c53753e 2318 .fs_flags = FS_USERNS_MOUNT,
67e9c74b
TH
2319};
2320
a79a908f
AK
2321static char *cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2322 struct cgroup_namespace *ns)
2323{
2324 struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2325 int ret;
2326
2327 ret = kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2328 if (ret < 0 || ret >= buflen)
2329 return NULL;
2330 return buf;
2331}
2332
2333char *cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2334 struct cgroup_namespace *ns)
2335{
2336 char *ret;
2337
2338 mutex_lock(&cgroup_mutex);
82d6489d 2339 spin_lock_irq(&css_set_lock);
a79a908f
AK
2340
2341 ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2342
82d6489d 2343 spin_unlock_irq(&css_set_lock);
a79a908f
AK
2344 mutex_unlock(&cgroup_mutex);
2345
2346 return ret;
2347}
2348EXPORT_SYMBOL_GPL(cgroup_path_ns);
2349
857a2beb 2350/**
913ffdb5 2351 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
857a2beb 2352 * @task: target task
857a2beb
TH
2353 * @buf: the buffer to write the path into
2354 * @buflen: the length of the buffer
2355 *
913ffdb5
TH
2356 * Determine @task's cgroup on the first (the one with the lowest non-zero
2357 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
2358 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2359 * cgroup controller callbacks.
2360 *
e61734c5 2361 * Return value is the same as kernfs_path().
857a2beb 2362 */
e61734c5 2363char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
857a2beb 2364{
3dd06ffa 2365 struct cgroup_root *root;
913ffdb5 2366 struct cgroup *cgrp;
e61734c5
TH
2367 int hierarchy_id = 1;
2368 char *path = NULL;
857a2beb
TH
2369
2370 mutex_lock(&cgroup_mutex);
82d6489d 2371 spin_lock_irq(&css_set_lock);
857a2beb 2372
913ffdb5
TH
2373 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2374
857a2beb
TH
2375 if (root) {
2376 cgrp = task_cgroup_from_root(task, root);
a79a908f 2377 path = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns);
913ffdb5
TH
2378 } else {
2379 /* if no hierarchy exists, everyone is in "/" */
e61734c5
TH
2380 if (strlcpy(buf, "/", buflen) < buflen)
2381 path = buf;
857a2beb
TH
2382 }
2383
82d6489d 2384 spin_unlock_irq(&css_set_lock);
857a2beb 2385 mutex_unlock(&cgroup_mutex);
e61734c5 2386 return path;
857a2beb 2387}
913ffdb5 2388EXPORT_SYMBOL_GPL(task_cgroup_path);
857a2beb 2389
b3dc094e 2390/* used to track tasks and other necessary states during migration */
2f7ee569 2391struct cgroup_taskset {
b3dc094e
TH
2392 /* the src and dst cset list running through cset->mg_node */
2393 struct list_head src_csets;
2394 struct list_head dst_csets;
2395
1f7dd3e5
TH
2396 /* the subsys currently being processed */
2397 int ssid;
2398
b3dc094e
TH
2399 /*
2400 * Fields for cgroup_taskset_*() iteration.
2401 *
2402 * Before migration is committed, the target migration tasks are on
2403 * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of
2404 * the csets on ->dst_csets. ->csets point to either ->src_csets
2405 * or ->dst_csets depending on whether migration is committed.
2406 *
2407 * ->cur_csets and ->cur_task point to the current task position
2408 * during iteration.
2409 */
2410 struct list_head *csets;
2411 struct css_set *cur_cset;
2412 struct task_struct *cur_task;
2f7ee569
TH
2413};
2414
adaae5dc
TH
2415#define CGROUP_TASKSET_INIT(tset) (struct cgroup_taskset){ \
2416 .src_csets = LIST_HEAD_INIT(tset.src_csets), \
2417 .dst_csets = LIST_HEAD_INIT(tset.dst_csets), \
2418 .csets = &tset.src_csets, \
2419}
2420
2421/**
2422 * cgroup_taskset_add - try to add a migration target task to a taskset
2423 * @task: target task
2424 * @tset: target taskset
2425 *
2426 * Add @task, which is a migration target, to @tset. This function becomes
2427 * noop if @task doesn't need to be migrated. @task's css_set should have
2428 * been added as a migration source and @task->cg_list will be moved from
2429 * the css_set's tasks list to mg_tasks one.
2430 */
2431static void cgroup_taskset_add(struct task_struct *task,
2432 struct cgroup_taskset *tset)
2433{
2434 struct css_set *cset;
2435
f0d9a5f1 2436 lockdep_assert_held(&css_set_lock);
adaae5dc
TH
2437
2438 /* @task either already exited or can't exit until the end */
2439 if (task->flags & PF_EXITING)
2440 return;
2441
2442 /* leave @task alone if post_fork() hasn't linked it yet */
2443 if (list_empty(&task->cg_list))
2444 return;
2445
2446 cset = task_css_set(task);
2447 if (!cset->mg_src_cgrp)
2448 return;
2449
2450 list_move_tail(&task->cg_list, &cset->mg_tasks);
2451 if (list_empty(&cset->mg_node))
2452 list_add_tail(&cset->mg_node, &tset->src_csets);
2453 if (list_empty(&cset->mg_dst_cset->mg_node))
2454 list_move_tail(&cset->mg_dst_cset->mg_node,
2455 &tset->dst_csets);
2456}
2457
2f7ee569
TH
2458/**
2459 * cgroup_taskset_first - reset taskset and return the first task
2460 * @tset: taskset of interest
1f7dd3e5 2461 * @dst_cssp: output variable for the destination css
2f7ee569
TH
2462 *
2463 * @tset iteration is initialized and the first task is returned.
2464 */
1f7dd3e5
TH
2465struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2466 struct cgroup_subsys_state **dst_cssp)
2f7ee569 2467{
b3dc094e
TH
2468 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2469 tset->cur_task = NULL;
2470
1f7dd3e5 2471 return cgroup_taskset_next(tset, dst_cssp);
2f7ee569 2472}
2f7ee569
TH
2473
2474/**
2475 * cgroup_taskset_next - iterate to the next task in taskset
2476 * @tset: taskset of interest
1f7dd3e5 2477 * @dst_cssp: output variable for the destination css
2f7ee569
TH
2478 *
2479 * Return the next task in @tset. Iteration must have been initialized
2480 * with cgroup_taskset_first().
2481 */
1f7dd3e5
TH
2482struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2483 struct cgroup_subsys_state **dst_cssp)
2f7ee569 2484{
b3dc094e
TH
2485 struct css_set *cset = tset->cur_cset;
2486 struct task_struct *task = tset->cur_task;
2f7ee569 2487
b3dc094e
TH
2488 while (&cset->mg_node != tset->csets) {
2489 if (!task)
2490 task = list_first_entry(&cset->mg_tasks,
2491 struct task_struct, cg_list);
2492 else
2493 task = list_next_entry(task, cg_list);
2f7ee569 2494
b3dc094e
TH
2495 if (&task->cg_list != &cset->mg_tasks) {
2496 tset->cur_cset = cset;
2497 tset->cur_task = task;
1f7dd3e5
TH
2498
2499 /*
2500 * This function may be called both before and
2501 * after cgroup_taskset_migrate(). The two cases
2502 * can be distinguished by looking at whether @cset
2503 * has its ->mg_dst_cset set.
2504 */
2505 if (cset->mg_dst_cset)
2506 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2507 else
2508 *dst_cssp = cset->subsys[tset->ssid];
2509
b3dc094e
TH
2510 return task;
2511 }
2f7ee569 2512
b3dc094e
TH
2513 cset = list_next_entry(cset, mg_node);
2514 task = NULL;
2515 }
2f7ee569 2516
b3dc094e 2517 return NULL;
2f7ee569 2518}
2f7ee569 2519
adaae5dc 2520/**
37ff9f8f 2521 * cgroup_taskset_migrate - migrate a taskset
adaae5dc 2522 * @tset: taget taskset
37ff9f8f 2523 * @root: cgroup root the migration is taking place on
adaae5dc 2524 *
37ff9f8f
TH
2525 * Migrate tasks in @tset as setup by migration preparation functions.
2526 * This function fails iff one of the ->can_attach callbacks fails and
2527 * guarantees that either all or none of the tasks in @tset are migrated.
2528 * @tset is consumed regardless of success.
adaae5dc
TH
2529 */
2530static int cgroup_taskset_migrate(struct cgroup_taskset *tset,
37ff9f8f 2531 struct cgroup_root *root)
adaae5dc 2532{
37ff9f8f 2533 struct cgroup_subsys *ss;
adaae5dc
TH
2534 struct task_struct *task, *tmp_task;
2535 struct css_set *cset, *tmp_cset;
37ff9f8f 2536 int ssid, failed_ssid, ret;
adaae5dc
TH
2537
2538 /* methods shouldn't be called if no task is actually migrating */
2539 if (list_empty(&tset->src_csets))
2540 return 0;
2541
2542 /* check that we can legitimately attach to the cgroup */
37ff9f8f
TH
2543 do_each_subsys_mask(ss, ssid, root->subsys_mask) {
2544 if (ss->can_attach) {
2545 tset->ssid = ssid;
2546 ret = ss->can_attach(tset);
adaae5dc 2547 if (ret) {
37ff9f8f 2548 failed_ssid = ssid;
adaae5dc
TH
2549 goto out_cancel_attach;
2550 }
2551 }
37ff9f8f 2552 } while_each_subsys_mask();
adaae5dc
TH
2553
2554 /*
2555 * Now that we're guaranteed success, proceed to move all tasks to
2556 * the new cgroup. There are no failure cases after here, so this
2557 * is the commit point.
2558 */
82d6489d 2559 spin_lock_irq(&css_set_lock);
adaae5dc 2560 list_for_each_entry(cset, &tset->src_csets, mg_node) {
f6d7d049
TH
2561 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2562 struct css_set *from_cset = task_css_set(task);
2563 struct css_set *to_cset = cset->mg_dst_cset;
2564
2565 get_css_set(to_cset);
2566 css_set_move_task(task, from_cset, to_cset, true);
2567 put_css_set_locked(from_cset);
2568 }
adaae5dc 2569 }
82d6489d 2570 spin_unlock_irq(&css_set_lock);
adaae5dc
TH
2571
2572 /*
2573 * Migration is committed, all target tasks are now on dst_csets.
2574 * Nothing is sensitive to fork() after this point. Notify
2575 * controllers that migration is complete.
2576 */
2577 tset->csets = &tset->dst_csets;
2578
37ff9f8f
TH
2579 do_each_subsys_mask(ss, ssid, root->subsys_mask) {
2580 if (ss->attach) {
2581 tset->ssid = ssid;
2582 ss->attach(tset);
1f7dd3e5 2583 }
37ff9f8f 2584 } while_each_subsys_mask();
adaae5dc
TH
2585
2586 ret = 0;
2587 goto out_release_tset;
2588
2589out_cancel_attach:
37ff9f8f
TH
2590 do_each_subsys_mask(ss, ssid, root->subsys_mask) {
2591 if (ssid == failed_ssid)
adaae5dc 2592 break;
37ff9f8f
TH
2593 if (ss->cancel_attach) {
2594 tset->ssid = ssid;
2595 ss->cancel_attach(tset);
1f7dd3e5 2596 }
37ff9f8f 2597 } while_each_subsys_mask();
adaae5dc 2598out_release_tset:
82d6489d 2599 spin_lock_irq(&css_set_lock);
adaae5dc
TH
2600 list_splice_init(&tset->dst_csets, &tset->src_csets);
2601 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2602 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2603 list_del_init(&cset->mg_node);
2604 }
82d6489d 2605 spin_unlock_irq(&css_set_lock);
adaae5dc
TH
2606 return ret;
2607}
2608
6c694c88
TH
2609/**
2610 * cgroup_may_migrate_to - verify whether a cgroup can be migration destination
2611 * @dst_cgrp: destination cgroup to test
2612 *
2613 * On the default hierarchy, except for the root, subtree_control must be
2614 * zero for migration destination cgroups with tasks so that child cgroups
2615 * don't compete against tasks.
2616 */
2617static bool cgroup_may_migrate_to(struct cgroup *dst_cgrp)
2618{
2619 return !cgroup_on_dfl(dst_cgrp) || !cgroup_parent(dst_cgrp) ||
2620 !dst_cgrp->subtree_control;
2621}
2622
a043e3b2 2623/**
1958d2d5
TH
2624 * cgroup_migrate_finish - cleanup after attach
2625 * @preloaded_csets: list of preloaded css_sets
74a1166d 2626 *
1958d2d5
TH
2627 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2628 * those functions for details.
74a1166d 2629 */
1958d2d5 2630static void cgroup_migrate_finish(struct list_head *preloaded_csets)
74a1166d 2631{
1958d2d5 2632 struct css_set *cset, *tmp_cset;
74a1166d 2633
1958d2d5
TH
2634 lockdep_assert_held(&cgroup_mutex);
2635
82d6489d 2636 spin_lock_irq(&css_set_lock);
1958d2d5
TH
2637 list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) {
2638 cset->mg_src_cgrp = NULL;
e4857982 2639 cset->mg_dst_cgrp = NULL;
1958d2d5
TH
2640 cset->mg_dst_cset = NULL;
2641 list_del_init(&cset->mg_preload_node);
a25eb52e 2642 put_css_set_locked(cset);
1958d2d5 2643 }
82d6489d 2644 spin_unlock_irq(&css_set_lock);
1958d2d5
TH
2645}
2646
2647/**
2648 * cgroup_migrate_add_src - add a migration source css_set
2649 * @src_cset: the source css_set to add
2650 * @dst_cgrp: the destination cgroup
2651 * @preloaded_csets: list of preloaded css_sets
2652 *
2653 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2654 * @src_cset and add it to @preloaded_csets, which should later be cleaned
2655 * up by cgroup_migrate_finish().
2656 *
1ed13287
TH
2657 * This function may be called without holding cgroup_threadgroup_rwsem
2658 * even if the target is a process. Threads may be created and destroyed
2659 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2660 * into play and the preloaded css_sets are guaranteed to cover all
2661 * migrations.
1958d2d5
TH
2662 */
2663static void cgroup_migrate_add_src(struct css_set *src_cset,
2664 struct cgroup *dst_cgrp,
2665 struct list_head *preloaded_csets)
2666{
2667 struct cgroup *src_cgrp;
2668
2669 lockdep_assert_held(&cgroup_mutex);
f0d9a5f1 2670 lockdep_assert_held(&css_set_lock);
1958d2d5 2671
2b021cbf
TH
2672 /*
2673 * If ->dead, @src_set is associated with one or more dead cgroups
2674 * and doesn't contain any migratable tasks. Ignore it early so
2675 * that the rest of migration path doesn't get confused by it.
2676 */
2677 if (src_cset->dead)
2678 return;
2679
1958d2d5
TH
2680 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2681
1958d2d5
TH
2682 if (!list_empty(&src_cset->mg_preload_node))
2683 return;
2684
2685 WARN_ON(src_cset->mg_src_cgrp);
e4857982 2686 WARN_ON(src_cset->mg_dst_cgrp);
1958d2d5
TH
2687 WARN_ON(!list_empty(&src_cset->mg_tasks));
2688 WARN_ON(!list_empty(&src_cset->mg_node));
2689
2690 src_cset->mg_src_cgrp = src_cgrp;
e4857982 2691 src_cset->mg_dst_cgrp = dst_cgrp;
1958d2d5
TH
2692 get_css_set(src_cset);
2693 list_add(&src_cset->mg_preload_node, preloaded_csets);
2694}
2695
2696/**
2697 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
1958d2d5
TH
2698 * @preloaded_csets: list of preloaded source css_sets
2699 *
e4857982
TH
2700 * Tasks are about to be moved and all the source css_sets have been
2701 * preloaded to @preloaded_csets. This function looks up and pins all
2702 * destination css_sets, links each to its source, and append them to
2703 * @preloaded_csets.
1958d2d5
TH
2704 *
2705 * This function must be called after cgroup_migrate_add_src() has been
2706 * called on each migration source css_set. After migration is performed
2707 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2708 * @preloaded_csets.
2709 */
e4857982 2710static int cgroup_migrate_prepare_dst(struct list_head *preloaded_csets)
1958d2d5
TH
2711{
2712 LIST_HEAD(csets);
f817de98 2713 struct css_set *src_cset, *tmp_cset;
1958d2d5
TH
2714
2715 lockdep_assert_held(&cgroup_mutex);
2716
2717 /* look up the dst cset for each src cset and link it to src */
f817de98 2718 list_for_each_entry_safe(src_cset, tmp_cset, preloaded_csets, mg_preload_node) {
1958d2d5
TH
2719 struct css_set *dst_cset;
2720
e4857982 2721 dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
1958d2d5
TH
2722 if (!dst_cset)
2723 goto err;
2724
2725 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
f817de98
TH
2726
2727 /*
2728 * If src cset equals dst, it's noop. Drop the src.
2729 * cgroup_migrate() will skip the cset too. Note that we
2730 * can't handle src == dst as some nodes are used by both.
2731 */
2732 if (src_cset == dst_cset) {
2733 src_cset->mg_src_cgrp = NULL;
e4857982 2734 src_cset->mg_dst_cgrp = NULL;
f817de98 2735 list_del_init(&src_cset->mg_preload_node);
a25eb52e
ZL
2736 put_css_set(src_cset);
2737 put_css_set(dst_cset);
f817de98
TH
2738 continue;
2739 }
2740
1958d2d5
TH
2741 src_cset->mg_dst_cset = dst_cset;
2742
2743 if (list_empty(&dst_cset->mg_preload_node))
2744 list_add(&dst_cset->mg_preload_node, &csets);
2745 else
a25eb52e 2746 put_css_set(dst_cset);
1958d2d5
TH
2747 }
2748
f817de98 2749 list_splice_tail(&csets, preloaded_csets);
1958d2d5
TH
2750 return 0;
2751err:
2752 cgroup_migrate_finish(&csets);
2753 return -ENOMEM;
2754}
2755
2756/**
2757 * cgroup_migrate - migrate a process or task to a cgroup
1958d2d5
TH
2758 * @leader: the leader of the process or the task to migrate
2759 * @threadgroup: whether @leader points to the whole process or a single task
37ff9f8f 2760 * @root: cgroup root migration is taking place on
1958d2d5 2761 *
37ff9f8f
TH
2762 * Migrate a process or task denoted by @leader. If migrating a process,
2763 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also
2764 * responsible for invoking cgroup_migrate_add_src() and
1958d2d5
TH
2765 * cgroup_migrate_prepare_dst() on the targets before invoking this
2766 * function and following up with cgroup_migrate_finish().
2767 *
2768 * As long as a controller's ->can_attach() doesn't fail, this function is
2769 * guaranteed to succeed. This means that, excluding ->can_attach()
2770 * failure, when migrating multiple targets, the success or failure can be
2771 * decided for all targets by invoking group_migrate_prepare_dst() before
2772 * actually starting migrating.
2773 */
9af2ec45 2774static int cgroup_migrate(struct task_struct *leader, bool threadgroup,
37ff9f8f 2775 struct cgroup_root *root)
74a1166d 2776{
adaae5dc
TH
2777 struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
2778 struct task_struct *task;
74a1166d 2779
fb5d2b4c
MSB
2780 /*
2781 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2782 * already PF_EXITING could be freed from underneath us unless we
2783 * take an rcu_read_lock.
2784 */
82d6489d 2785 spin_lock_irq(&css_set_lock);
fb5d2b4c 2786 rcu_read_lock();
9db8de37 2787 task = leader;
74a1166d 2788 do {
adaae5dc 2789 cgroup_taskset_add(task, &tset);
081aa458
LZ
2790 if (!threadgroup)
2791 break;
9db8de37 2792 } while_each_thread(leader, task);
fb5d2b4c 2793 rcu_read_unlock();
82d6489d 2794 spin_unlock_irq(&css_set_lock);
74a1166d 2795
37ff9f8f 2796 return cgroup_taskset_migrate(&tset, root);
74a1166d
BB
2797}
2798
1958d2d5
TH
2799/**
2800 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2801 * @dst_cgrp: the cgroup to attach to
2802 * @leader: the task or the leader of the threadgroup to be attached
2803 * @threadgroup: attach the whole threadgroup?
2804 *
1ed13287 2805 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
1958d2d5
TH
2806 */
2807static int cgroup_attach_task(struct cgroup *dst_cgrp,
2808 struct task_struct *leader, bool threadgroup)
2809{
2810 LIST_HEAD(preloaded_csets);
2811 struct task_struct *task;
2812 int ret;
2813
6c694c88
TH
2814 if (!cgroup_may_migrate_to(dst_cgrp))
2815 return -EBUSY;
2816
1958d2d5 2817 /* look up all src csets */
82d6489d 2818 spin_lock_irq(&css_set_lock);
1958d2d5
TH
2819 rcu_read_lock();
2820 task = leader;
2821 do {
2822 cgroup_migrate_add_src(task_css_set(task), dst_cgrp,
2823 &preloaded_csets);
2824 if (!threadgroup)
2825 break;
2826 } while_each_thread(leader, task);
2827 rcu_read_unlock();
82d6489d 2828 spin_unlock_irq(&css_set_lock);
1958d2d5
TH
2829
2830 /* prepare dst csets and commit */
e4857982 2831 ret = cgroup_migrate_prepare_dst(&preloaded_csets);
1958d2d5 2832 if (!ret)
37ff9f8f 2833 ret = cgroup_migrate(leader, threadgroup, dst_cgrp->root);
1958d2d5
TH
2834
2835 cgroup_migrate_finish(&preloaded_csets);
2836 return ret;
74a1166d
BB
2837}
2838
187fe840
TH
2839static int cgroup_procs_write_permission(struct task_struct *task,
2840 struct cgroup *dst_cgrp,
2841 struct kernfs_open_file *of)
dedf22e9
TH
2842{
2843 const struct cred *cred = current_cred();
2844 const struct cred *tcred = get_task_cred(task);
2845 int ret = 0;
2846
2847 /*
2848 * even if we're attaching all tasks in the thread group, we only
2849 * need to check permissions on one of them.
2850 */
2851 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2852 !uid_eq(cred->euid, tcred->uid) &&
2853 !uid_eq(cred->euid, tcred->suid))
2854 ret = -EACCES;
2855
187fe840
TH
2856 if (!ret && cgroup_on_dfl(dst_cgrp)) {
2857 struct super_block *sb = of->file->f_path.dentry->d_sb;
2858 struct cgroup *cgrp;
2859 struct inode *inode;
2860
82d6489d 2861 spin_lock_irq(&css_set_lock);
187fe840 2862 cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
82d6489d 2863 spin_unlock_irq(&css_set_lock);
187fe840
TH
2864
2865 while (!cgroup_is_descendant(dst_cgrp, cgrp))
2866 cgrp = cgroup_parent(cgrp);
2867
2868 ret = -ENOMEM;
6f60eade 2869 inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
187fe840
TH
2870 if (inode) {
2871 ret = inode_permission(inode, MAY_WRITE);
2872 iput(inode);
2873 }
2874 }
2875
dedf22e9
TH
2876 put_cred(tcred);
2877 return ret;
2878}
2879
74a1166d
BB
2880/*
2881 * Find the task_struct of the task to attach by vpid and pass it along to the
cd3d0952 2882 * function to attach either it or all tasks in its threadgroup. Will lock
0e1d768f 2883 * cgroup_mutex and threadgroup.
bbcb81d0 2884 */
acbef755
TH
2885static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
2886 size_t nbytes, loff_t off, bool threadgroup)
bbcb81d0 2887{
bbcb81d0 2888 struct task_struct *tsk;
5cf1cacb 2889 struct cgroup_subsys *ss;
e76ecaee 2890 struct cgroup *cgrp;
acbef755 2891 pid_t pid;
5cf1cacb 2892 int ssid, ret;
bbcb81d0 2893
acbef755
TH
2894 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2895 return -EINVAL;
2896
945ba199 2897 cgrp = cgroup_kn_lock_live(of->kn, false);
e76ecaee 2898 if (!cgrp)
74a1166d
BB
2899 return -ENODEV;
2900
3014dde7 2901 percpu_down_write(&cgroup_threadgroup_rwsem);
b78949eb 2902 rcu_read_lock();
bbcb81d0 2903 if (pid) {
73507f33 2904 tsk = find_task_by_vpid(pid);
74a1166d 2905 if (!tsk) {
dd4b0a46 2906 ret = -ESRCH;
3014dde7 2907 goto out_unlock_rcu;
bbcb81d0 2908 }
dedf22e9 2909 } else {
b78949eb 2910 tsk = current;
dedf22e9 2911 }
cd3d0952
TH
2912
2913 if (threadgroup)
b78949eb 2914 tsk = tsk->group_leader;
c4c27fbd
MG
2915
2916 /*
14a40ffc 2917 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
c4c27fbd
MG
2918 * trapped in a cpuset, or RT worker may be born in a cgroup
2919 * with no rt_runtime allocated. Just say no.
2920 */
14a40ffc 2921 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
c4c27fbd 2922 ret = -EINVAL;
3014dde7 2923 goto out_unlock_rcu;
c4c27fbd
MG
2924 }
2925
b78949eb
MSB
2926 get_task_struct(tsk);
2927 rcu_read_unlock();
2928
187fe840 2929 ret = cgroup_procs_write_permission(tsk, cgrp, of);
dedf22e9
TH
2930 if (!ret)
2931 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
081aa458 2932
f9f9e7b7 2933 put_task_struct(tsk);
3014dde7
TH
2934 goto out_unlock_threadgroup;
2935
2936out_unlock_rcu:
2937 rcu_read_unlock();
2938out_unlock_threadgroup:
2939 percpu_up_write(&cgroup_threadgroup_rwsem);
5cf1cacb
TH
2940 for_each_subsys(ss, ssid)
2941 if (ss->post_attach)
2942 ss->post_attach();
e76ecaee 2943 cgroup_kn_unlock(of->kn);
acbef755 2944 return ret ?: nbytes;
bbcb81d0
PM
2945}
2946
7ae1bad9
TH
2947/**
2948 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2949 * @from: attach to all cgroups of a given task
2950 * @tsk: the task to be attached
2951 */
2952int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2953{
3dd06ffa 2954 struct cgroup_root *root;
7ae1bad9
TH
2955 int retval = 0;
2956
47cfcd09 2957 mutex_lock(&cgroup_mutex);
985ed670 2958 for_each_root(root) {
96d365e0
TH
2959 struct cgroup *from_cgrp;
2960
3dd06ffa 2961 if (root == &cgrp_dfl_root)
985ed670
TH
2962 continue;
2963
82d6489d 2964 spin_lock_irq(&css_set_lock);
96d365e0 2965 from_cgrp = task_cgroup_from_root(from, root);
82d6489d 2966 spin_unlock_irq(&css_set_lock);
7ae1bad9 2967
6f4b7e63 2968 retval = cgroup_attach_task(from_cgrp, tsk, false);
7ae1bad9
TH
2969 if (retval)
2970 break;
2971 }
47cfcd09 2972 mutex_unlock(&cgroup_mutex);
7ae1bad9
TH
2973
2974 return retval;
2975}
2976EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2977
acbef755
TH
2978static ssize_t cgroup_tasks_write(struct kernfs_open_file *of,
2979 char *buf, size_t nbytes, loff_t off)
74a1166d 2980{
acbef755 2981 return __cgroup_procs_write(of, buf, nbytes, off, false);
74a1166d
BB
2982}
2983
acbef755
TH
2984static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
2985 char *buf, size_t nbytes, loff_t off)
af351026 2986{
acbef755 2987 return __cgroup_procs_write(of, buf, nbytes, off, true);
af351026
PM
2988}
2989
451af504
TH
2990static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
2991 char *buf, size_t nbytes, loff_t off)
e788e066 2992{
e76ecaee 2993 struct cgroup *cgrp;
5f469907 2994
e76ecaee 2995 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
5f469907 2996
945ba199 2997 cgrp = cgroup_kn_lock_live(of->kn, false);
e76ecaee 2998 if (!cgrp)
e788e066 2999 return -ENODEV;
69e943b7 3000 spin_lock(&release_agent_path_lock);
e76ecaee
TH
3001 strlcpy(cgrp->root->release_agent_path, strstrip(buf),
3002 sizeof(cgrp->root->release_agent_path));
69e943b7 3003 spin_unlock(&release_agent_path_lock);
e76ecaee 3004 cgroup_kn_unlock(of->kn);
451af504 3005 return nbytes;
e788e066
PM
3006}
3007
2da8ca82 3008static int cgroup_release_agent_show(struct seq_file *seq, void *v)
e788e066 3009{
2da8ca82 3010 struct cgroup *cgrp = seq_css(seq)->cgroup;
182446d0 3011
46cfeb04 3012 spin_lock(&release_agent_path_lock);
e788e066 3013 seq_puts(seq, cgrp->root->release_agent_path);
46cfeb04 3014 spin_unlock(&release_agent_path_lock);
e788e066 3015 seq_putc(seq, '\n');
e788e066
PM
3016 return 0;
3017}
3018
2da8ca82 3019static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
873fe09e 3020{
c1d5d42e 3021 seq_puts(seq, "0\n");
e788e066
PM
3022 return 0;
3023}
3024
6e5c8307 3025static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
355e0c48 3026{
f8f22e53
TH
3027 struct cgroup_subsys *ss;
3028 bool printed = false;
3029 int ssid;
a742c59d 3030
b4e0eeaf 3031 do_each_subsys_mask(ss, ssid, ss_mask) {
a966a4ed
AS
3032 if (printed)
3033 seq_putc(seq, ' ');
3034 seq_printf(seq, "%s", ss->name);
3035 printed = true;
b4e0eeaf 3036 } while_each_subsys_mask();
f8f22e53
TH
3037 if (printed)
3038 seq_putc(seq, '\n');
355e0c48
PM
3039}
3040
f8f22e53
TH
3041/* show controllers which are enabled from the parent */
3042static int cgroup_controllers_show(struct seq_file *seq, void *v)
ddbcc7e8 3043{
f8f22e53
TH
3044 struct cgroup *cgrp = seq_css(seq)->cgroup;
3045
5531dc91 3046 cgroup_print_ss_mask(seq, cgroup_control(cgrp));
f8f22e53 3047 return 0;
ddbcc7e8
PM
3048}
3049
f8f22e53
TH
3050/* show controllers which are enabled for a given cgroup's children */
3051static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
ddbcc7e8 3052{
f8f22e53
TH
3053 struct cgroup *cgrp = seq_css(seq)->cgroup;
3054
667c2491 3055 cgroup_print_ss_mask(seq, cgrp->subtree_control);
f8f22e53
TH
3056 return 0;
3057}
3058
3059/**
3060 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
3061 * @cgrp: root of the subtree to update csses for
3062 *
54962604
TH
3063 * @cgrp's control masks have changed and its subtree's css associations
3064 * need to be updated accordingly. This function looks up all css_sets
3065 * which are attached to the subtree, creates the matching updated css_sets
3066 * and migrates the tasks to the new ones.
f8f22e53
TH
3067 */
3068static int cgroup_update_dfl_csses(struct cgroup *cgrp)
3069{
3070 LIST_HEAD(preloaded_csets);
10265075 3071 struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
54962604
TH
3072 struct cgroup_subsys_state *d_css;
3073 struct cgroup *dsct;
f8f22e53
TH
3074 struct css_set *src_cset;
3075 int ret;
3076
f8f22e53
TH
3077 lockdep_assert_held(&cgroup_mutex);
3078
3014dde7
TH
3079 percpu_down_write(&cgroup_threadgroup_rwsem);
3080
f8f22e53 3081 /* look up all csses currently attached to @cgrp's subtree */
82d6489d 3082 spin_lock_irq(&css_set_lock);
54962604 3083 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
f8f22e53
TH
3084 struct cgrp_cset_link *link;
3085
54962604 3086 list_for_each_entry(link, &dsct->cset_links, cset_link)
58cdb1ce 3087 cgroup_migrate_add_src(link->cset, dsct,
f8f22e53
TH
3088 &preloaded_csets);
3089 }
82d6489d 3090 spin_unlock_irq(&css_set_lock);
f8f22e53
TH
3091
3092 /* NULL dst indicates self on default hierarchy */
e4857982 3093 ret = cgroup_migrate_prepare_dst(&preloaded_csets);
f8f22e53
TH
3094 if (ret)
3095 goto out_finish;
3096
82d6489d 3097 spin_lock_irq(&css_set_lock);
f8f22e53 3098 list_for_each_entry(src_cset, &preloaded_csets, mg_preload_node) {
10265075 3099 struct task_struct *task, *ntask;
f8f22e53
TH
3100
3101 /* src_csets precede dst_csets, break on the first dst_cset */
3102 if (!src_cset->mg_src_cgrp)
3103 break;
3104
10265075
TH
3105 /* all tasks in src_csets need to be migrated */
3106 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
3107 cgroup_taskset_add(task, &tset);
f8f22e53 3108 }
82d6489d 3109 spin_unlock_irq(&css_set_lock);
f8f22e53 3110
37ff9f8f 3111 ret = cgroup_taskset_migrate(&tset, cgrp->root);
f8f22e53
TH
3112out_finish:
3113 cgroup_migrate_finish(&preloaded_csets);
3014dde7 3114 percpu_up_write(&cgroup_threadgroup_rwsem);
f8f22e53
TH
3115 return ret;
3116}
3117
1b9b96a1 3118/**
945ba199 3119 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
ce3f1d9d 3120 * @cgrp: root of the target subtree
1b9b96a1
TH
3121 *
3122 * Because css offlining is asynchronous, userland may try to re-enable a
945ba199
TH
3123 * controller while the previous css is still around. This function grabs
3124 * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
1b9b96a1 3125 */
945ba199
TH
3126static void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
3127 __acquires(&cgroup_mutex)
1b9b96a1
TH
3128{
3129 struct cgroup *dsct;
ce3f1d9d 3130 struct cgroup_subsys_state *d_css;
1b9b96a1
TH
3131 struct cgroup_subsys *ss;
3132 int ssid;
3133
945ba199
TH
3134restart:
3135 mutex_lock(&cgroup_mutex);
1b9b96a1 3136
ce3f1d9d 3137 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
1b9b96a1
TH
3138 for_each_subsys(ss, ssid) {
3139 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3140 DEFINE_WAIT(wait);
3141
ce3f1d9d 3142 if (!css || !percpu_ref_is_dying(&css->refcnt))
1b9b96a1
TH
3143 continue;
3144
3145 cgroup_get(dsct);
3146 prepare_to_wait(&dsct->offline_waitq, &wait,
3147 TASK_UNINTERRUPTIBLE);
3148
3149 mutex_unlock(&cgroup_mutex);
3150 schedule();
3151 finish_wait(&dsct->offline_waitq, &wait);
1b9b96a1
TH
3152
3153 cgroup_put(dsct);
945ba199 3154 goto restart;
1b9b96a1
TH
3155 }
3156 }
1b9b96a1
TH
3157}
3158
15a27c36
TH
3159/**
3160 * cgroup_save_control - save control masks of a subtree
3161 * @cgrp: root of the target subtree
3162 *
3163 * Save ->subtree_control and ->subtree_ss_mask to the respective old_
3164 * prefixed fields for @cgrp's subtree including @cgrp itself.
3165 */
3166static void cgroup_save_control(struct cgroup *cgrp)
3167{
3168 struct cgroup *dsct;
3169 struct cgroup_subsys_state *d_css;
3170
3171 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3172 dsct->old_subtree_control = dsct->subtree_control;
3173 dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
3174 }
3175}
3176
3177/**
3178 * cgroup_propagate_control - refresh control masks of a subtree
3179 * @cgrp: root of the target subtree
3180 *
3181 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
3182 * ->subtree_control and propagate controller availability through the
3183 * subtree so that descendants don't have unavailable controllers enabled.
3184 */
3185static void cgroup_propagate_control(struct cgroup *cgrp)
3186{
3187 struct cgroup *dsct;
3188 struct cgroup_subsys_state *d_css;
3189
3190 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3191 dsct->subtree_control &= cgroup_control(dsct);
5ced2518
TH
3192 dsct->subtree_ss_mask =
3193 cgroup_calc_subtree_ss_mask(dsct->subtree_control,
3194 cgroup_ss_mask(dsct));
15a27c36
TH
3195 }
3196}
3197
3198/**
3199 * cgroup_restore_control - restore control masks of a subtree
3200 * @cgrp: root of the target subtree
3201 *
3202 * Restore ->subtree_control and ->subtree_ss_mask from the respective old_
3203 * prefixed fields for @cgrp's subtree including @cgrp itself.
3204 */
3205static void cgroup_restore_control(struct cgroup *cgrp)
3206{
3207 struct cgroup *dsct;
3208 struct cgroup_subsys_state *d_css;
3209
3210 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3211 dsct->subtree_control = dsct->old_subtree_control;
3212 dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
3213 }
3214}
3215
f6d635ad
TH
3216static bool css_visible(struct cgroup_subsys_state *css)
3217{
3218 struct cgroup_subsys *ss = css->ss;
3219 struct cgroup *cgrp = css->cgroup;
3220
3221 if (cgroup_control(cgrp) & (1 << ss->id))
3222 return true;
3223 if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
3224 return false;
3225 return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
3226}
3227
bdb53bd7
TH
3228/**
3229 * cgroup_apply_control_enable - enable or show csses according to control
ce3f1d9d 3230 * @cgrp: root of the target subtree
bdb53bd7 3231 *
ce3f1d9d 3232 * Walk @cgrp's subtree and create new csses or make the existing ones
bdb53bd7
TH
3233 * visible. A css is created invisible if it's being implicitly enabled
3234 * through dependency. An invisible css is made visible when the userland
3235 * explicitly enables it.
3236 *
3237 * Returns 0 on success, -errno on failure. On failure, csses which have
3238 * been processed already aren't cleaned up. The caller is responsible for
3239 * cleaning up with cgroup_apply_control_disble().
3240 */
3241static int cgroup_apply_control_enable(struct cgroup *cgrp)
3242{
3243 struct cgroup *dsct;
ce3f1d9d 3244 struct cgroup_subsys_state *d_css;
bdb53bd7
TH
3245 struct cgroup_subsys *ss;
3246 int ssid, ret;
3247
ce3f1d9d 3248 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
bdb53bd7
TH
3249 for_each_subsys(ss, ssid) {
3250 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3251
945ba199
TH
3252 WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
3253
bdb53bd7
TH
3254 if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
3255 continue;
3256
3257 if (!css) {
3258 css = css_create(dsct, ss);
3259 if (IS_ERR(css))
3260 return PTR_ERR(css);
3261 }
3262
f6d635ad 3263 if (css_visible(css)) {
334c3679 3264 ret = css_populate_dir(css);
bdb53bd7
TH
3265 if (ret)
3266 return ret;
3267 }
3268 }
3269 }
3270
3271 return 0;
3272}
3273
12b3bb6a
TH
3274/**
3275 * cgroup_apply_control_disable - kill or hide csses according to control
ce3f1d9d 3276 * @cgrp: root of the target subtree
12b3bb6a 3277 *
ce3f1d9d 3278 * Walk @cgrp's subtree and kill and hide csses so that they match
12b3bb6a
TH
3279 * cgroup_ss_mask() and cgroup_visible_mask().
3280 *
3281 * A css is hidden when the userland requests it to be disabled while other
3282 * subsystems are still depending on it. The css must not actively control
3283 * resources and be in the vanilla state if it's made visible again later.
3284 * Controllers which may be depended upon should provide ->css_reset() for
3285 * this purpose.
3286 */
3287static void cgroup_apply_control_disable(struct cgroup *cgrp)
3288{
3289 struct cgroup *dsct;
ce3f1d9d 3290 struct cgroup_subsys_state *d_css;
12b3bb6a
TH
3291 struct cgroup_subsys *ss;
3292 int ssid;
3293
ce3f1d9d 3294 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
12b3bb6a
TH
3295 for_each_subsys(ss, ssid) {
3296 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3297
945ba199
TH
3298 WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
3299
12b3bb6a
TH
3300 if (!css)
3301 continue;
3302
334c3679
TH
3303 if (css->parent &&
3304 !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
12b3bb6a 3305 kill_css(css);
f6d635ad 3306 } else if (!css_visible(css)) {
334c3679 3307 css_clear_dir(css);
12b3bb6a
TH
3308 if (ss->css_reset)
3309 ss->css_reset(css);
3310 }
3311 }
3312 }
3313}
3314
f7b2814b
TH
3315/**
3316 * cgroup_apply_control - apply control mask updates to the subtree
3317 * @cgrp: root of the target subtree
3318 *
3319 * subsystems can be enabled and disabled in a subtree using the following
3320 * steps.
3321 *
3322 * 1. Call cgroup_save_control() to stash the current state.
3323 * 2. Update ->subtree_control masks in the subtree as desired.
3324 * 3. Call cgroup_apply_control() to apply the changes.
3325 * 4. Optionally perform other related operations.
3326 * 5. Call cgroup_finalize_control() to finish up.
3327 *
3328 * This function implements step 3 and propagates the mask changes
3329 * throughout @cgrp's subtree, updates csses accordingly and perform
3330 * process migrations.
3331 */
3332static int cgroup_apply_control(struct cgroup *cgrp)
3333{
3334 int ret;
3335
3336 cgroup_propagate_control(cgrp);
3337
3338 ret = cgroup_apply_control_enable(cgrp);
3339 if (ret)
3340 return ret;
3341
3342 /*
3343 * At this point, cgroup_e_css() results reflect the new csses
3344 * making the following cgroup_update_dfl_csses() properly update
3345 * css associations of all tasks in the subtree.
3346 */
3347 ret = cgroup_update_dfl_csses(cgrp);
3348 if (ret)
3349 return ret;
3350
3351 return 0;
3352}
3353
3354/**
3355 * cgroup_finalize_control - finalize control mask update
3356 * @cgrp: root of the target subtree
3357 * @ret: the result of the update
3358 *
3359 * Finalize control mask update. See cgroup_apply_control() for more info.
3360 */
3361static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3362{
3363 if (ret) {
3364 cgroup_restore_control(cgrp);
3365 cgroup_propagate_control(cgrp);
3366 }
3367
3368 cgroup_apply_control_disable(cgrp);
3369}
3370
f8f22e53 3371/* change the enabled child controllers for a cgroup in the default hierarchy */
451af504
TH
3372static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3373 char *buf, size_t nbytes,
3374 loff_t off)
f8f22e53 3375{
6e5c8307 3376 u16 enable = 0, disable = 0;
a9746d8d 3377 struct cgroup *cgrp, *child;
f8f22e53 3378 struct cgroup_subsys *ss;
451af504 3379 char *tok;
f8f22e53
TH
3380 int ssid, ret;
3381
3382 /*
d37167ab
TH
3383 * Parse input - space separated list of subsystem names prefixed
3384 * with either + or -.
f8f22e53 3385 */
451af504
TH
3386 buf = strstrip(buf);
3387 while ((tok = strsep(&buf, " "))) {
d37167ab
TH
3388 if (tok[0] == '\0')
3389 continue;
a7165264 3390 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
fc5ed1e9
TH
3391 if (!cgroup_ssid_enabled(ssid) ||
3392 strcmp(tok + 1, ss->name))
f8f22e53
TH
3393 continue;
3394
3395 if (*tok == '+') {
7d331fa9
TH
3396 enable |= 1 << ssid;
3397 disable &= ~(1 << ssid);
f8f22e53 3398 } else if (*tok == '-') {
7d331fa9
TH
3399 disable |= 1 << ssid;
3400 enable &= ~(1 << ssid);
f8f22e53
TH
3401 } else {
3402 return -EINVAL;
3403 }
3404 break;
b4e0eeaf 3405 } while_each_subsys_mask();
f8f22e53
TH
3406 if (ssid == CGROUP_SUBSYS_COUNT)
3407 return -EINVAL;
3408 }
3409
945ba199 3410 cgrp = cgroup_kn_lock_live(of->kn, true);
a9746d8d
TH
3411 if (!cgrp)
3412 return -ENODEV;
f8f22e53
TH
3413
3414 for_each_subsys(ss, ssid) {
3415 if (enable & (1 << ssid)) {
667c2491 3416 if (cgrp->subtree_control & (1 << ssid)) {
f8f22e53
TH
3417 enable &= ~(1 << ssid);
3418 continue;
3419 }
3420
5531dc91 3421 if (!(cgroup_control(cgrp) & (1 << ssid))) {
c29adf24
TH
3422 ret = -ENOENT;
3423 goto out_unlock;
3424 }
f8f22e53 3425 } else if (disable & (1 << ssid)) {
667c2491 3426 if (!(cgrp->subtree_control & (1 << ssid))) {
f8f22e53
TH
3427 disable &= ~(1 << ssid);
3428 continue;
3429 }
3430
3431 /* a child has it enabled? */
3432 cgroup_for_each_live_child(child, cgrp) {
667c2491 3433 if (child->subtree_control & (1 << ssid)) {
f8f22e53 3434 ret = -EBUSY;
ddab2b6e 3435 goto out_unlock;
f8f22e53
TH
3436 }
3437 }
3438 }
3439 }
3440
3441 if (!enable && !disable) {
3442 ret = 0;
ddab2b6e 3443 goto out_unlock;
f8f22e53
TH
3444 }
3445
3446 /*
667c2491 3447 * Except for the root, subtree_control must be zero for a cgroup
f8f22e53
TH
3448 * with tasks so that child cgroups don't compete against tasks.
3449 */
d51f39b0 3450 if (enable && cgroup_parent(cgrp) && !list_empty(&cgrp->cset_links)) {
f8f22e53
TH
3451 ret = -EBUSY;
3452 goto out_unlock;
3453 }
3454
15a27c36
TH
3455 /* save and update control masks and prepare csses */
3456 cgroup_save_control(cgrp);
f63070d3 3457
15a27c36
TH
3458 cgrp->subtree_control |= enable;
3459 cgrp->subtree_control &= ~disable;
c29adf24 3460
f7b2814b 3461 ret = cgroup_apply_control(cgrp);
f8f22e53 3462
f7b2814b 3463 cgroup_finalize_control(cgrp, ret);
f8f22e53
TH
3464
3465 kernfs_activate(cgrp->kn);
3466 ret = 0;
3467out_unlock:
a9746d8d 3468 cgroup_kn_unlock(of->kn);
451af504 3469 return ret ?: nbytes;
f8f22e53
TH
3470}
3471
4a07c222 3472static int cgroup_events_show(struct seq_file *seq, void *v)
842b597e 3473{
4a07c222 3474 seq_printf(seq, "populated %d\n",
27bd4dbb 3475 cgroup_is_populated(seq_css(seq)->cgroup));
842b597e
TH
3476 return 0;
3477}
3478
2bd59d48
TH
3479static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3480 size_t nbytes, loff_t off)
355e0c48 3481{
2bd59d48
TH
3482 struct cgroup *cgrp = of->kn->parent->priv;
3483 struct cftype *cft = of->kn->priv;
3484 struct cgroup_subsys_state *css;
a742c59d 3485 int ret;
355e0c48 3486
b4168640
TH
3487 if (cft->write)
3488 return cft->write(of, buf, nbytes, off);
3489
2bd59d48
TH
3490 /*
3491 * kernfs guarantees that a file isn't deleted with operations in
3492 * flight, which means that the matching css is and stays alive and
3493 * doesn't need to be pinned. The RCU locking is not necessary
3494 * either. It's just for the convenience of using cgroup_css().
3495 */
3496 rcu_read_lock();
3497 css = cgroup_css(cgrp, cft->ss);
3498 rcu_read_unlock();
a742c59d 3499
451af504 3500 if (cft->write_u64) {
a742c59d
TH
3501 unsigned long long v;
3502 ret = kstrtoull(buf, 0, &v);
3503 if (!ret)
3504 ret = cft->write_u64(css, cft, v);
3505 } else if (cft->write_s64) {
3506 long long v;
3507 ret = kstrtoll(buf, 0, &v);
3508 if (!ret)
3509 ret = cft->write_s64(css, cft, v);
e73d2c61 3510 } else {
a742c59d 3511 ret = -EINVAL;
e73d2c61 3512 }
2bd59d48 3513
a742c59d 3514 return ret ?: nbytes;
355e0c48
PM
3515}
3516
6612f05b 3517static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
db3b1497 3518{
2bd59d48 3519 return seq_cft(seq)->seq_start(seq, ppos);
db3b1497
PM
3520}
3521
6612f05b 3522static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
ddbcc7e8 3523{
2bd59d48 3524 return seq_cft(seq)->seq_next(seq, v, ppos);
ddbcc7e8
PM
3525}
3526
6612f05b 3527static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
ddbcc7e8 3528{
2bd59d48 3529 seq_cft(seq)->seq_stop(seq, v);
ddbcc7e8
PM
3530}
3531
91796569 3532static int cgroup_seqfile_show(struct seq_file *m, void *arg)
e73d2c61 3533{
7da11279
TH
3534 struct cftype *cft = seq_cft(m);
3535 struct cgroup_subsys_state *css = seq_css(m);
e73d2c61 3536
2da8ca82
TH
3537 if (cft->seq_show)
3538 return cft->seq_show(m, arg);
e73d2c61 3539
f4c753b7 3540 if (cft->read_u64)
896f5199
TH
3541 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3542 else if (cft->read_s64)
3543 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3544 else
3545 return -EINVAL;
3546 return 0;
91796569
PM
3547}
3548
2bd59d48
TH
3549static struct kernfs_ops cgroup_kf_single_ops = {
3550 .atomic_write_len = PAGE_SIZE,
3551 .write = cgroup_file_write,
3552 .seq_show = cgroup_seqfile_show,
91796569
PM
3553};
3554
2bd59d48
TH
3555static struct kernfs_ops cgroup_kf_ops = {
3556 .atomic_write_len = PAGE_SIZE,
3557 .write = cgroup_file_write,
3558 .seq_start = cgroup_seqfile_start,
3559 .seq_next = cgroup_seqfile_next,
3560 .seq_stop = cgroup_seqfile_stop,
3561 .seq_show = cgroup_seqfile_show,
3562};
ddbcc7e8
PM
3563
3564/*
3565 * cgroup_rename - Only allow simple rename of directories in place.
3566 */
2bd59d48
TH
3567static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
3568 const char *new_name_str)
ddbcc7e8 3569{
2bd59d48 3570 struct cgroup *cgrp = kn->priv;
65dff759 3571 int ret;
65dff759 3572
2bd59d48 3573 if (kernfs_type(kn) != KERNFS_DIR)
ddbcc7e8 3574 return -ENOTDIR;
2bd59d48 3575 if (kn->parent != new_parent)
ddbcc7e8 3576 return -EIO;
65dff759 3577
6db8e85c
TH
3578 /*
3579 * This isn't a proper migration and its usefulness is very
aa6ec29b 3580 * limited. Disallow on the default hierarchy.
6db8e85c 3581 */
aa6ec29b 3582 if (cgroup_on_dfl(cgrp))
6db8e85c 3583 return -EPERM;
099fca32 3584
e1b2dc17 3585 /*
8353da1f 3586 * We're gonna grab cgroup_mutex which nests outside kernfs
e1b2dc17 3587 * active_ref. kernfs_rename() doesn't require active_ref
8353da1f 3588 * protection. Break them before grabbing cgroup_mutex.
e1b2dc17
TH
3589 */
3590 kernfs_break_active_protection(new_parent);
3591 kernfs_break_active_protection(kn);
099fca32 3592
2bd59d48 3593 mutex_lock(&cgroup_mutex);
099fca32 3594
2bd59d48 3595 ret = kernfs_rename(kn, new_parent, new_name_str);
099fca32 3596
2bd59d48 3597 mutex_unlock(&cgroup_mutex);
e1b2dc17
TH
3598
3599 kernfs_unbreak_active_protection(kn);
3600 kernfs_unbreak_active_protection(new_parent);
2bd59d48 3601 return ret;
099fca32
LZ
3602}
3603
49957f8e
TH
3604/* set uid and gid of cgroup dirs and files to that of the creator */
3605static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3606{
3607 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3608 .ia_uid = current_fsuid(),
3609 .ia_gid = current_fsgid(), };
3610
3611 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3612 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3613 return 0;
3614
3615 return kernfs_setattr(kn, &iattr);
3616}
3617
4df8dc90
TH
3618static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3619 struct cftype *cft)
ddbcc7e8 3620{
8d7e6fb0 3621 char name[CGROUP_FILE_NAME_MAX];
2bd59d48
TH
3622 struct kernfs_node *kn;
3623 struct lock_class_key *key = NULL;
49957f8e 3624 int ret;
05ef1d7c 3625
2bd59d48
TH
3626#ifdef CONFIG_DEBUG_LOCK_ALLOC
3627 key = &cft->lockdep_key;
3628#endif
3629 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3630 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
dfeb0750 3631 NULL, key);
49957f8e
TH
3632 if (IS_ERR(kn))
3633 return PTR_ERR(kn);
3634
3635 ret = cgroup_kn_set_ugid(kn);
f8f22e53 3636 if (ret) {
49957f8e 3637 kernfs_remove(kn);
f8f22e53
TH
3638 return ret;
3639 }
3640
6f60eade
TH
3641 if (cft->file_offset) {
3642 struct cgroup_file *cfile = (void *)css + cft->file_offset;
3643
34c06254 3644 spin_lock_irq(&cgroup_file_kn_lock);
6f60eade 3645 cfile->kn = kn;
34c06254 3646 spin_unlock_irq(&cgroup_file_kn_lock);
6f60eade
TH
3647 }
3648
f8f22e53 3649 return 0;
ddbcc7e8
PM
3650}
3651
b1f28d31
TH
3652/**
3653 * cgroup_addrm_files - add or remove files to a cgroup directory
4df8dc90
TH
3654 * @css: the target css
3655 * @cgrp: the target cgroup (usually css->cgroup)
b1f28d31
TH
3656 * @cfts: array of cftypes to be added
3657 * @is_add: whether to add or remove
3658 *
3659 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
6732ed85 3660 * For removals, this function never fails.
b1f28d31 3661 */
4df8dc90
TH
3662static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3663 struct cgroup *cgrp, struct cftype cfts[],
2bb566cb 3664 bool is_add)
ddbcc7e8 3665{
6732ed85 3666 struct cftype *cft, *cft_end = NULL;
b598dde3 3667 int ret = 0;
b1f28d31 3668
01f6474c 3669 lockdep_assert_held(&cgroup_mutex);
db0416b6 3670
6732ed85
TH
3671restart:
3672 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
f33fddc2 3673 /* does cft->flags tell us to skip this file on @cgrp? */
05ebb6e6 3674 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
8cbbf2c9 3675 continue;
05ebb6e6 3676 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
873fe09e 3677 continue;
d51f39b0 3678 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
f33fddc2 3679 continue;
d51f39b0 3680 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
f33fddc2
G
3681 continue;
3682
2739d3cc 3683 if (is_add) {
4df8dc90 3684 ret = cgroup_add_file(css, cgrp, cft);
b1f28d31 3685 if (ret) {
ed3d261b
JP
3686 pr_warn("%s: failed to add %s, err=%d\n",
3687 __func__, cft->name, ret);
6732ed85
TH
3688 cft_end = cft;
3689 is_add = false;
3690 goto restart;
b1f28d31 3691 }
2739d3cc
LZ
3692 } else {
3693 cgroup_rm_file(cgrp, cft);
db0416b6 3694 }
ddbcc7e8 3695 }
b598dde3 3696 return ret;
ddbcc7e8
PM
3697}
3698
21a2d343 3699static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
8e3f6541
TH
3700{
3701 LIST_HEAD(pending);
2bb566cb 3702 struct cgroup_subsys *ss = cfts[0].ss;
3dd06ffa 3703 struct cgroup *root = &ss->root->cgrp;
492eb21b 3704 struct cgroup_subsys_state *css;
9ccece80 3705 int ret = 0;
8e3f6541 3706
01f6474c 3707 lockdep_assert_held(&cgroup_mutex);
e8c82d20 3708
e8c82d20 3709 /* add/rm files for all cgroups created before */
ca8bdcaf 3710 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
492eb21b
TH
3711 struct cgroup *cgrp = css->cgroup;
3712
88cb04b9 3713 if (!(css->flags & CSS_VISIBLE))
e8c82d20
LZ
3714 continue;
3715
4df8dc90 3716 ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
9ccece80
TH
3717 if (ret)
3718 break;
8e3f6541 3719 }
21a2d343
TH
3720
3721 if (is_add && !ret)
3722 kernfs_activate(root->kn);
9ccece80 3723 return ret;
8e3f6541
TH
3724}
3725
2da440a2 3726static void cgroup_exit_cftypes(struct cftype *cfts)
8e3f6541 3727{
2bb566cb 3728 struct cftype *cft;
8e3f6541 3729
2bd59d48
TH
3730 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3731 /* free copy for custom atomic_write_len, see init_cftypes() */
3732 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3733 kfree(cft->kf_ops);
3734 cft->kf_ops = NULL;
2da440a2 3735 cft->ss = NULL;
a8ddc821
TH
3736
3737 /* revert flags set by cgroup core while adding @cfts */
05ebb6e6 3738 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
2bd59d48 3739 }
2da440a2
TH
3740}
3741
2bd59d48 3742static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2da440a2
TH
3743{
3744 struct cftype *cft;
3745
2bd59d48
TH
3746 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3747 struct kernfs_ops *kf_ops;
3748
0adb0704
TH
3749 WARN_ON(cft->ss || cft->kf_ops);
3750
2bd59d48
TH
3751 if (cft->seq_start)
3752 kf_ops = &cgroup_kf_ops;
3753 else
3754 kf_ops = &cgroup_kf_single_ops;
3755
3756 /*
3757 * Ugh... if @cft wants a custom max_write_len, we need to
3758 * make a copy of kf_ops to set its atomic_write_len.
3759 */
3760 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3761 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3762 if (!kf_ops) {
3763 cgroup_exit_cftypes(cfts);
3764 return -ENOMEM;
3765 }
3766 kf_ops->atomic_write_len = cft->max_write_len;
3767 }
8e3f6541 3768
2bd59d48 3769 cft->kf_ops = kf_ops;
2bb566cb 3770 cft->ss = ss;
2bd59d48 3771 }
2bb566cb 3772
2bd59d48 3773 return 0;
2da440a2
TH
3774}
3775
21a2d343
TH
3776static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3777{
01f6474c 3778 lockdep_assert_held(&cgroup_mutex);
21a2d343
TH
3779
3780 if (!cfts || !cfts[0].ss)
3781 return -ENOENT;
3782
3783 list_del(&cfts->node);
3784 cgroup_apply_cftypes(cfts, false);
3785 cgroup_exit_cftypes(cfts);
3786 return 0;
8e3f6541 3787}
8e3f6541 3788
79578621
TH
3789/**
3790 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
79578621
TH
3791 * @cfts: zero-length name terminated array of cftypes
3792 *
2bb566cb
TH
3793 * Unregister @cfts. Files described by @cfts are removed from all
3794 * existing cgroups and all future cgroups won't have them either. This
3795 * function can be called anytime whether @cfts' subsys is attached or not.
79578621
TH
3796 *
3797 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2bb566cb 3798 * registered.
79578621 3799 */
2bb566cb 3800int cgroup_rm_cftypes(struct cftype *cfts)
79578621 3801{
21a2d343 3802 int ret;
79578621 3803
01f6474c 3804 mutex_lock(&cgroup_mutex);
21a2d343 3805 ret = cgroup_rm_cftypes_locked(cfts);
01f6474c 3806 mutex_unlock(&cgroup_mutex);
21a2d343 3807 return ret;
80b13586
TH
3808}
3809
8e3f6541
TH
3810/**
3811 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3812 * @ss: target cgroup subsystem
3813 * @cfts: zero-length name terminated array of cftypes
3814 *
3815 * Register @cfts to @ss. Files described by @cfts are created for all
3816 * existing cgroups to which @ss is attached and all future cgroups will
3817 * have them too. This function can be called anytime whether @ss is
3818 * attached or not.
3819 *
3820 * Returns 0 on successful registration, -errno on failure. Note that this
3821 * function currently returns 0 as long as @cfts registration is successful
3822 * even if some file creation attempts on existing cgroups fail.
3823 */
2cf669a5 3824static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
8e3f6541 3825{
9ccece80 3826 int ret;
8e3f6541 3827
fc5ed1e9 3828 if (!cgroup_ssid_enabled(ss->id))
c731ae1d
LZ
3829 return 0;
3830
dc5736ed
LZ
3831 if (!cfts || cfts[0].name[0] == '\0')
3832 return 0;
2bb566cb 3833
2bd59d48
TH
3834 ret = cgroup_init_cftypes(ss, cfts);
3835 if (ret)
3836 return ret;
79578621 3837
01f6474c 3838 mutex_lock(&cgroup_mutex);
21a2d343 3839
0adb0704 3840 list_add_tail(&cfts->node, &ss->cfts);
21a2d343 3841 ret = cgroup_apply_cftypes(cfts, true);
9ccece80 3842 if (ret)
21a2d343 3843 cgroup_rm_cftypes_locked(cfts);
79578621 3844
01f6474c 3845 mutex_unlock(&cgroup_mutex);
9ccece80 3846 return ret;
79578621
TH
3847}
3848
a8ddc821
TH
3849/**
3850 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3851 * @ss: target cgroup subsystem
3852 * @cfts: zero-length name terminated array of cftypes
3853 *
3854 * Similar to cgroup_add_cftypes() but the added files are only used for
3855 * the default hierarchy.
3856 */
3857int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3858{
3859 struct cftype *cft;
3860
3861 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
05ebb6e6 3862 cft->flags |= __CFTYPE_ONLY_ON_DFL;
a8ddc821
TH
3863 return cgroup_add_cftypes(ss, cfts);
3864}
3865
3866/**
3867 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3868 * @ss: target cgroup subsystem
3869 * @cfts: zero-length name terminated array of cftypes
3870 *
3871 * Similar to cgroup_add_cftypes() but the added files are only used for
3872 * the legacy hierarchies.
3873 */
2cf669a5
TH
3874int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3875{
a8ddc821
TH
3876 struct cftype *cft;
3877
e4b7037c
TH
3878 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3879 cft->flags |= __CFTYPE_NOT_ON_DFL;
2cf669a5
TH
3880 return cgroup_add_cftypes(ss, cfts);
3881}
3882
34c06254
TH
3883/**
3884 * cgroup_file_notify - generate a file modified event for a cgroup_file
3885 * @cfile: target cgroup_file
3886 *
3887 * @cfile must have been obtained by setting cftype->file_offset.
3888 */
3889void cgroup_file_notify(struct cgroup_file *cfile)
3890{
3891 unsigned long flags;
3892
3893 spin_lock_irqsave(&cgroup_file_kn_lock, flags);
3894 if (cfile->kn)
3895 kernfs_notify(cfile->kn);
3896 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
3897}
3898
a043e3b2
LZ
3899/**
3900 * cgroup_task_count - count the number of tasks in a cgroup.
3901 * @cgrp: the cgroup in question
3902 *
3903 * Return the number of tasks in the cgroup.
3904 */
07bc356e 3905static int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
3906{
3907 int count = 0;
69d0206c 3908 struct cgrp_cset_link *link;
817929ec 3909
82d6489d 3910 spin_lock_irq(&css_set_lock);
69d0206c
TH
3911 list_for_each_entry(link, &cgrp->cset_links, cset_link)
3912 count += atomic_read(&link->cset->refcount);
82d6489d 3913 spin_unlock_irq(&css_set_lock);
bbcb81d0
PM
3914 return count;
3915}
3916
53fa5261 3917/**
492eb21b 3918 * css_next_child - find the next child of a given css
c2931b70
TH
3919 * @pos: the current position (%NULL to initiate traversal)
3920 * @parent: css whose children to walk
53fa5261 3921 *
c2931b70 3922 * This function returns the next child of @parent and should be called
87fb54f1 3923 * under either cgroup_mutex or RCU read lock. The only requirement is
c2931b70
TH
3924 * that @parent and @pos are accessible. The next sibling is guaranteed to
3925 * be returned regardless of their states.
3926 *
3927 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3928 * css which finished ->css_online() is guaranteed to be visible in the
3929 * future iterations and will stay visible until the last reference is put.
3930 * A css which hasn't finished ->css_online() or already finished
3931 * ->css_offline() may show up during traversal. It's each subsystem's
3932 * responsibility to synchronize against on/offlining.
53fa5261 3933 */
c2931b70
TH
3934struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3935 struct cgroup_subsys_state *parent)
53fa5261 3936{
c2931b70 3937 struct cgroup_subsys_state *next;
53fa5261 3938
8353da1f 3939 cgroup_assert_mutex_or_rcu_locked();
53fa5261
TH
3940
3941 /*
de3f0341
TH
3942 * @pos could already have been unlinked from the sibling list.
3943 * Once a cgroup is removed, its ->sibling.next is no longer
3944 * updated when its next sibling changes. CSS_RELEASED is set when
3945 * @pos is taken off list, at which time its next pointer is valid,
3946 * and, as releases are serialized, the one pointed to by the next
3947 * pointer is guaranteed to not have started release yet. This
3948 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3949 * critical section, the one pointed to by its next pointer is
3950 * guaranteed to not have finished its RCU grace period even if we
3951 * have dropped rcu_read_lock() inbetween iterations.
3b287a50 3952 *
de3f0341
TH
3953 * If @pos has CSS_RELEASED set, its next pointer can't be
3954 * dereferenced; however, as each css is given a monotonically
3955 * increasing unique serial number and always appended to the
3956 * sibling list, the next one can be found by walking the parent's
3957 * children until the first css with higher serial number than
3958 * @pos's. While this path can be slower, it happens iff iteration
3959 * races against release and the race window is very small.
53fa5261 3960 */
3b287a50 3961 if (!pos) {
c2931b70
TH
3962 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3963 } else if (likely(!(pos->flags & CSS_RELEASED))) {
3964 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3b287a50 3965 } else {
c2931b70 3966 list_for_each_entry_rcu(next, &parent->children, sibling)
3b287a50
TH
3967 if (next->serial_nr > pos->serial_nr)
3968 break;
53fa5261
TH
3969 }
3970
3b281afb
TH
3971 /*
3972 * @next, if not pointing to the head, can be dereferenced and is
c2931b70 3973 * the next sibling.
3b281afb 3974 */
c2931b70
TH
3975 if (&next->sibling != &parent->children)
3976 return next;
3b281afb 3977 return NULL;
53fa5261 3978}
53fa5261 3979
574bd9f7 3980/**
492eb21b 3981 * css_next_descendant_pre - find the next descendant for pre-order walk
574bd9f7 3982 * @pos: the current position (%NULL to initiate traversal)
492eb21b 3983 * @root: css whose descendants to walk
574bd9f7 3984 *
492eb21b 3985 * To be used by css_for_each_descendant_pre(). Find the next descendant
bd8815a6
TH
3986 * to visit for pre-order traversal of @root's descendants. @root is
3987 * included in the iteration and the first node to be visited.
75501a6d 3988 *
87fb54f1
TH
3989 * While this function requires cgroup_mutex or RCU read locking, it
3990 * doesn't require the whole traversal to be contained in a single critical
3991 * section. This function will return the correct next descendant as long
3992 * as both @pos and @root are accessible and @pos is a descendant of @root.
c2931b70
TH
3993 *
3994 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3995 * css which finished ->css_online() is guaranteed to be visible in the
3996 * future iterations and will stay visible until the last reference is put.
3997 * A css which hasn't finished ->css_online() or already finished
3998 * ->css_offline() may show up during traversal. It's each subsystem's
3999 * responsibility to synchronize against on/offlining.
574bd9f7 4000 */
492eb21b
TH
4001struct cgroup_subsys_state *
4002css_next_descendant_pre(struct cgroup_subsys_state *pos,
4003 struct cgroup_subsys_state *root)
574bd9f7 4004{
492eb21b 4005 struct cgroup_subsys_state *next;
574bd9f7 4006
8353da1f 4007 cgroup_assert_mutex_or_rcu_locked();
574bd9f7 4008
bd8815a6 4009 /* if first iteration, visit @root */
7805d000 4010 if (!pos)
bd8815a6 4011 return root;
574bd9f7
TH
4012
4013 /* visit the first child if exists */
492eb21b 4014 next = css_next_child(NULL, pos);
574bd9f7
TH
4015 if (next)
4016 return next;
4017
4018 /* no child, visit my or the closest ancestor's next sibling */
492eb21b 4019 while (pos != root) {
5c9d535b 4020 next = css_next_child(pos, pos->parent);
75501a6d 4021 if (next)
574bd9f7 4022 return next;
5c9d535b 4023 pos = pos->parent;
7805d000 4024 }
574bd9f7
TH
4025
4026 return NULL;
4027}
574bd9f7 4028
12a9d2fe 4029/**
492eb21b
TH
4030 * css_rightmost_descendant - return the rightmost descendant of a css
4031 * @pos: css of interest
12a9d2fe 4032 *
492eb21b
TH
4033 * Return the rightmost descendant of @pos. If there's no descendant, @pos
4034 * is returned. This can be used during pre-order traversal to skip
12a9d2fe 4035 * subtree of @pos.
75501a6d 4036 *
87fb54f1
TH
4037 * While this function requires cgroup_mutex or RCU read locking, it
4038 * doesn't require the whole traversal to be contained in a single critical
4039 * section. This function will return the correct rightmost descendant as
4040 * long as @pos is accessible.
12a9d2fe 4041 */
492eb21b
TH
4042struct cgroup_subsys_state *
4043css_rightmost_descendant(struct cgroup_subsys_state *pos)
12a9d2fe 4044{
492eb21b 4045 struct cgroup_subsys_state *last, *tmp;
12a9d2fe 4046
8353da1f 4047 cgroup_assert_mutex_or_rcu_locked();
12a9d2fe
TH
4048
4049 do {
4050 last = pos;
4051 /* ->prev isn't RCU safe, walk ->next till the end */
4052 pos = NULL;
492eb21b 4053 css_for_each_child(tmp, last)
12a9d2fe
TH
4054 pos = tmp;
4055 } while (pos);
4056
4057 return last;
4058}
12a9d2fe 4059
492eb21b
TH
4060static struct cgroup_subsys_state *
4061css_leftmost_descendant(struct cgroup_subsys_state *pos)
574bd9f7 4062{
492eb21b 4063 struct cgroup_subsys_state *last;
574bd9f7
TH
4064
4065 do {
4066 last = pos;
492eb21b 4067 pos = css_next_child(NULL, pos);
574bd9f7
TH
4068 } while (pos);
4069
4070 return last;
4071}
4072
4073/**
492eb21b 4074 * css_next_descendant_post - find the next descendant for post-order walk
574bd9f7 4075 * @pos: the current position (%NULL to initiate traversal)
492eb21b 4076 * @root: css whose descendants to walk
574bd9f7 4077 *
492eb21b 4078 * To be used by css_for_each_descendant_post(). Find the next descendant
bd8815a6
TH
4079 * to visit for post-order traversal of @root's descendants. @root is
4080 * included in the iteration and the last node to be visited.
75501a6d 4081 *
87fb54f1
TH
4082 * While this function requires cgroup_mutex or RCU read locking, it
4083 * doesn't require the whole traversal to be contained in a single critical
4084 * section. This function will return the correct next descendant as long
4085 * as both @pos and @cgroup are accessible and @pos is a descendant of
4086 * @cgroup.
c2931b70
TH
4087 *
4088 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4089 * css which finished ->css_online() is guaranteed to be visible in the
4090 * future iterations and will stay visible until the last reference is put.
4091 * A css which hasn't finished ->css_online() or already finished
4092 * ->css_offline() may show up during traversal. It's each subsystem's
4093 * responsibility to synchronize against on/offlining.
574bd9f7 4094 */
492eb21b
TH
4095struct cgroup_subsys_state *
4096css_next_descendant_post(struct cgroup_subsys_state *pos,
4097 struct cgroup_subsys_state *root)
574bd9f7 4098{
492eb21b 4099 struct cgroup_subsys_state *next;
574bd9f7 4100
8353da1f 4101 cgroup_assert_mutex_or_rcu_locked();
574bd9f7 4102
58b79a91
TH
4103 /* if first iteration, visit leftmost descendant which may be @root */
4104 if (!pos)
4105 return css_leftmost_descendant(root);
574bd9f7 4106
bd8815a6
TH
4107 /* if we visited @root, we're done */
4108 if (pos == root)
4109 return NULL;
4110
574bd9f7 4111 /* if there's an unvisited sibling, visit its leftmost descendant */
5c9d535b 4112 next = css_next_child(pos, pos->parent);
75501a6d 4113 if (next)
492eb21b 4114 return css_leftmost_descendant(next);
574bd9f7
TH
4115
4116 /* no sibling left, visit parent */
5c9d535b 4117 return pos->parent;
574bd9f7 4118}
574bd9f7 4119
f3d46500
TH
4120/**
4121 * css_has_online_children - does a css have online children
4122 * @css: the target css
4123 *
4124 * Returns %true if @css has any online children; otherwise, %false. This
4125 * function can be called from any context but the caller is responsible
4126 * for synchronizing against on/offlining as necessary.
4127 */
4128bool css_has_online_children(struct cgroup_subsys_state *css)
cbc125ef 4129{
f3d46500
TH
4130 struct cgroup_subsys_state *child;
4131 bool ret = false;
cbc125ef
TH
4132
4133 rcu_read_lock();
f3d46500 4134 css_for_each_child(child, css) {
99bae5f9 4135 if (child->flags & CSS_ONLINE) {
f3d46500
TH
4136 ret = true;
4137 break;
cbc125ef
TH
4138 }
4139 }
4140 rcu_read_unlock();
f3d46500 4141 return ret;
574bd9f7 4142}
574bd9f7 4143
0942eeee 4144/**
ecb9d535 4145 * css_task_iter_advance_css_set - advance a task itererator to the next css_set
0942eeee
TH
4146 * @it: the iterator to advance
4147 *
4148 * Advance @it to the next css_set to walk.
d515876e 4149 */
ecb9d535 4150static void css_task_iter_advance_css_set(struct css_task_iter *it)
d515876e 4151{
0f0a2b4f 4152 struct list_head *l = it->cset_pos;
d515876e
TH
4153 struct cgrp_cset_link *link;
4154 struct css_set *cset;
4155
f0d9a5f1 4156 lockdep_assert_held(&css_set_lock);
ed27b9f7 4157
d515876e
TH
4158 /* Advance to the next non-empty css_set */
4159 do {
4160 l = l->next;
0f0a2b4f
TH
4161 if (l == it->cset_head) {
4162 it->cset_pos = NULL;
ecb9d535 4163 it->task_pos = NULL;
d515876e
TH
4164 return;
4165 }
3ebb2b6e
TH
4166
4167 if (it->ss) {
4168 cset = container_of(l, struct css_set,
4169 e_cset_node[it->ss->id]);
4170 } else {
4171 link = list_entry(l, struct cgrp_cset_link, cset_link);
4172 cset = link->cset;
4173 }
0de0942d 4174 } while (!css_set_populated(cset));
c7561128 4175
0f0a2b4f 4176 it->cset_pos = l;
c7561128
TH
4177
4178 if (!list_empty(&cset->tasks))
0f0a2b4f 4179 it->task_pos = cset->tasks.next;
c7561128 4180 else
0f0a2b4f
TH
4181 it->task_pos = cset->mg_tasks.next;
4182
4183 it->tasks_head = &cset->tasks;
4184 it->mg_tasks_head = &cset->mg_tasks;
ed27b9f7
TH
4185
4186 /*
4187 * We don't keep css_sets locked across iteration steps and thus
4188 * need to take steps to ensure that iteration can be resumed after
4189 * the lock is re-acquired. Iteration is performed at two levels -
4190 * css_sets and tasks in them.
4191 *
4192 * Once created, a css_set never leaves its cgroup lists, so a
4193 * pinned css_set is guaranteed to stay put and we can resume
4194 * iteration afterwards.
4195 *
4196 * Tasks may leave @cset across iteration steps. This is resolved
4197 * by registering each iterator with the css_set currently being
4198 * walked and making css_set_move_task() advance iterators whose
4199 * next task is leaving.
4200 */
4201 if (it->cur_cset) {
4202 list_del(&it->iters_node);
4203 put_css_set_locked(it->cur_cset);
4204 }
4205 get_css_set(cset);
4206 it->cur_cset = cset;
4207 list_add(&it->iters_node, &cset->task_iters);
d515876e
TH
4208}
4209
ecb9d535
TH
4210static void css_task_iter_advance(struct css_task_iter *it)
4211{
4212 struct list_head *l = it->task_pos;
4213
f0d9a5f1 4214 lockdep_assert_held(&css_set_lock);
ecb9d535
TH
4215 WARN_ON_ONCE(!l);
4216
4217 /*
4218 * Advance iterator to find next entry. cset->tasks is consumed
4219 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
4220 * next cset.
4221 */
4222 l = l->next;
4223
4224 if (l == it->tasks_head)
4225 l = it->mg_tasks_head->next;
4226
4227 if (l == it->mg_tasks_head)
4228 css_task_iter_advance_css_set(it);
4229 else
4230 it->task_pos = l;
4231}
4232
0942eeee 4233/**
72ec7029
TH
4234 * css_task_iter_start - initiate task iteration
4235 * @css: the css to walk tasks of
0942eeee
TH
4236 * @it: the task iterator to use
4237 *
72ec7029
TH
4238 * Initiate iteration through the tasks of @css. The caller can call
4239 * css_task_iter_next() to walk through the tasks until the function
4240 * returns NULL. On completion of iteration, css_task_iter_end() must be
4241 * called.
0942eeee 4242 */
72ec7029
TH
4243void css_task_iter_start(struct cgroup_subsys_state *css,
4244 struct css_task_iter *it)
817929ec 4245{
56fde9e0
TH
4246 /* no one should try to iterate before mounting cgroups */
4247 WARN_ON_ONCE(!use_task_css_set_links);
31a7df01 4248
ed27b9f7
TH
4249 memset(it, 0, sizeof(*it));
4250
82d6489d 4251 spin_lock_irq(&css_set_lock);
c59cd3d8 4252
3ebb2b6e
TH
4253 it->ss = css->ss;
4254
4255 if (it->ss)
4256 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4257 else
4258 it->cset_pos = &css->cgroup->cset_links;
4259
0f0a2b4f 4260 it->cset_head = it->cset_pos;
c59cd3d8 4261
ecb9d535 4262 css_task_iter_advance_css_set(it);
ed27b9f7 4263
82d6489d 4264 spin_unlock_irq(&css_set_lock);
817929ec
PM
4265}
4266
0942eeee 4267/**
72ec7029 4268 * css_task_iter_next - return the next task for the iterator
0942eeee
TH
4269 * @it: the task iterator being iterated
4270 *
4271 * The "next" function for task iteration. @it should have been
72ec7029
TH
4272 * initialized via css_task_iter_start(). Returns NULL when the iteration
4273 * reaches the end.
0942eeee 4274 */
72ec7029 4275struct task_struct *css_task_iter_next(struct css_task_iter *it)
817929ec 4276{
d5745675 4277 if (it->cur_task) {
ed27b9f7 4278 put_task_struct(it->cur_task);
d5745675
TH
4279 it->cur_task = NULL;
4280 }
ed27b9f7 4281
82d6489d 4282 spin_lock_irq(&css_set_lock);
ed27b9f7 4283
d5745675
TH
4284 if (it->task_pos) {
4285 it->cur_task = list_entry(it->task_pos, struct task_struct,
4286 cg_list);
4287 get_task_struct(it->cur_task);
4288 css_task_iter_advance(it);
4289 }
ed27b9f7 4290
82d6489d 4291 spin_unlock_irq(&css_set_lock);
ed27b9f7
TH
4292
4293 return it->cur_task;
817929ec
PM
4294}
4295
0942eeee 4296/**
72ec7029 4297 * css_task_iter_end - finish task iteration
0942eeee
TH
4298 * @it: the task iterator to finish
4299 *
72ec7029 4300 * Finish task iteration started by css_task_iter_start().
0942eeee 4301 */
72ec7029 4302void css_task_iter_end(struct css_task_iter *it)
31a7df01 4303{
ed27b9f7 4304 if (it->cur_cset) {
82d6489d 4305 spin_lock_irq(&css_set_lock);
ed27b9f7
TH
4306 list_del(&it->iters_node);
4307 put_css_set_locked(it->cur_cset);
82d6489d 4308 spin_unlock_irq(&css_set_lock);
ed27b9f7
TH
4309 }
4310
4311 if (it->cur_task)
4312 put_task_struct(it->cur_task);
31a7df01
CW
4313}
4314
4315/**
8cc99345
TH
4316 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
4317 * @to: cgroup to which the tasks will be moved
4318 * @from: cgroup in which the tasks currently reside
31a7df01 4319 *
eaf797ab
TH
4320 * Locking rules between cgroup_post_fork() and the migration path
4321 * guarantee that, if a task is forking while being migrated, the new child
4322 * is guaranteed to be either visible in the source cgroup after the
4323 * parent's migration is complete or put into the target cgroup. No task
4324 * can slip out of migration through forking.
31a7df01 4325 */
8cc99345 4326int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
31a7df01 4327{
952aaa12
TH
4328 LIST_HEAD(preloaded_csets);
4329 struct cgrp_cset_link *link;
72ec7029 4330 struct css_task_iter it;
e406d1cf 4331 struct task_struct *task;
952aaa12 4332 int ret;
31a7df01 4333
6c694c88
TH
4334 if (!cgroup_may_migrate_to(to))
4335 return -EBUSY;
4336
952aaa12 4337 mutex_lock(&cgroup_mutex);
31a7df01 4338
952aaa12 4339 /* all tasks in @from are being moved, all csets are source */
82d6489d 4340 spin_lock_irq(&css_set_lock);
952aaa12
TH
4341 list_for_each_entry(link, &from->cset_links, cset_link)
4342 cgroup_migrate_add_src(link->cset, to, &preloaded_csets);
82d6489d 4343 spin_unlock_irq(&css_set_lock);
31a7df01 4344
e4857982 4345 ret = cgroup_migrate_prepare_dst(&preloaded_csets);
952aaa12
TH
4346 if (ret)
4347 goto out_err;
8cc99345 4348
952aaa12 4349 /*
2cfa2b19 4350 * Migrate tasks one-by-one until @from is empty. This fails iff
952aaa12
TH
4351 * ->can_attach() fails.
4352 */
e406d1cf 4353 do {
9d800df1 4354 css_task_iter_start(&from->self, &it);
e406d1cf
TH
4355 task = css_task_iter_next(&it);
4356 if (task)
4357 get_task_struct(task);
4358 css_task_iter_end(&it);
4359
4360 if (task) {
37ff9f8f 4361 ret = cgroup_migrate(task, false, to->root);
e406d1cf
TH
4362 put_task_struct(task);
4363 }
4364 } while (task && !ret);
952aaa12
TH
4365out_err:
4366 cgroup_migrate_finish(&preloaded_csets);
47cfcd09 4367 mutex_unlock(&cgroup_mutex);
e406d1cf 4368 return ret;
8cc99345
TH
4369}
4370
bbcb81d0 4371/*
102a775e 4372 * Stuff for reading the 'tasks'/'procs' files.
bbcb81d0
PM
4373 *
4374 * Reading this file can return large amounts of data if a cgroup has
4375 * *lots* of attached tasks. So it may need several calls to read(),
4376 * but we cannot guarantee that the information we produce is correct
4377 * unless we produce it entirely atomically.
4378 *
bbcb81d0 4379 */
bbcb81d0 4380
24528255
LZ
4381/* which pidlist file are we talking about? */
4382enum cgroup_filetype {
4383 CGROUP_FILE_PROCS,
4384 CGROUP_FILE_TASKS,
4385};
4386
4387/*
4388 * A pidlist is a list of pids that virtually represents the contents of one
4389 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
4390 * a pair (one each for procs, tasks) for each pid namespace that's relevant
4391 * to the cgroup.
4392 */
4393struct cgroup_pidlist {
4394 /*
4395 * used to find which pidlist is wanted. doesn't change as long as
4396 * this particular list stays in the list.
4397 */
4398 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
4399 /* array of xids */
4400 pid_t *list;
4401 /* how many elements the above list has */
4402 int length;
24528255
LZ
4403 /* each of these stored in a list by its cgroup */
4404 struct list_head links;
4405 /* pointer to the cgroup we belong to, for list removal purposes */
4406 struct cgroup *owner;
b1a21367
TH
4407 /* for delayed destruction */
4408 struct delayed_work destroy_dwork;
24528255
LZ
4409};
4410
d1d9fd33
BB
4411/*
4412 * The following two functions "fix" the issue where there are more pids
4413 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
4414 * TODO: replace with a kernel-wide solution to this problem
4415 */
4416#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
4417static void *pidlist_allocate(int count)
4418{
4419 if (PIDLIST_TOO_LARGE(count))
4420 return vmalloc(count * sizeof(pid_t));
4421 else
4422 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
4423}
b1a21367 4424
d1d9fd33
BB
4425static void pidlist_free(void *p)
4426{
58794514 4427 kvfree(p);
d1d9fd33 4428}
d1d9fd33 4429
b1a21367
TH
4430/*
4431 * Used to destroy all pidlists lingering waiting for destroy timer. None
4432 * should be left afterwards.
4433 */
4434static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
4435{
4436 struct cgroup_pidlist *l, *tmp_l;
4437
4438 mutex_lock(&cgrp->pidlist_mutex);
4439 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
4440 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
4441 mutex_unlock(&cgrp->pidlist_mutex);
4442
4443 flush_workqueue(cgroup_pidlist_destroy_wq);
4444 BUG_ON(!list_empty(&cgrp->pidlists));
4445}
4446
4447static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
4448{
4449 struct delayed_work *dwork = to_delayed_work(work);
4450 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
4451 destroy_dwork);
4452 struct cgroup_pidlist *tofree = NULL;
4453
4454 mutex_lock(&l->owner->pidlist_mutex);
b1a21367
TH
4455
4456 /*
04502365
TH
4457 * Destroy iff we didn't get queued again. The state won't change
4458 * as destroy_dwork can only be queued while locked.
b1a21367 4459 */
04502365 4460 if (!delayed_work_pending(dwork)) {
b1a21367
TH
4461 list_del(&l->links);
4462 pidlist_free(l->list);
4463 put_pid_ns(l->key.ns);
4464 tofree = l;
4465 }
4466
b1a21367
TH
4467 mutex_unlock(&l->owner->pidlist_mutex);
4468 kfree(tofree);
4469}
4470
bbcb81d0 4471/*
102a775e 4472 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
6ee211ad 4473 * Returns the number of unique elements.
bbcb81d0 4474 */
6ee211ad 4475static int pidlist_uniq(pid_t *list, int length)
bbcb81d0 4476{
102a775e 4477 int src, dest = 1;
102a775e
BB
4478
4479 /*
4480 * we presume the 0th element is unique, so i starts at 1. trivial
4481 * edge cases first; no work needs to be done for either
4482 */
4483 if (length == 0 || length == 1)
4484 return length;
4485 /* src and dest walk down the list; dest counts unique elements */
4486 for (src = 1; src < length; src++) {
4487 /* find next unique element */
4488 while (list[src] == list[src-1]) {
4489 src++;
4490 if (src == length)
4491 goto after;
4492 }
4493 /* dest always points to where the next unique element goes */
4494 list[dest] = list[src];
4495 dest++;
4496 }
4497after:
102a775e
BB
4498 return dest;
4499}
4500
afb2bc14
TH
4501/*
4502 * The two pid files - task and cgroup.procs - guaranteed that the result
4503 * is sorted, which forced this whole pidlist fiasco. As pid order is
4504 * different per namespace, each namespace needs differently sorted list,
4505 * making it impossible to use, for example, single rbtree of member tasks
4506 * sorted by task pointer. As pidlists can be fairly large, allocating one
4507 * per open file is dangerous, so cgroup had to implement shared pool of
4508 * pidlists keyed by cgroup and namespace.
4509 *
4510 * All this extra complexity was caused by the original implementation
4511 * committing to an entirely unnecessary property. In the long term, we
aa6ec29b
TH
4512 * want to do away with it. Explicitly scramble sort order if on the
4513 * default hierarchy so that no such expectation exists in the new
4514 * interface.
afb2bc14
TH
4515 *
4516 * Scrambling is done by swapping every two consecutive bits, which is
4517 * non-identity one-to-one mapping which disturbs sort order sufficiently.
4518 */
4519static pid_t pid_fry(pid_t pid)
4520{
4521 unsigned a = pid & 0x55555555;
4522 unsigned b = pid & 0xAAAAAAAA;
4523
4524 return (a << 1) | (b >> 1);
4525}
4526
4527static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
4528{
aa6ec29b 4529 if (cgroup_on_dfl(cgrp))
afb2bc14
TH
4530 return pid_fry(pid);
4531 else
4532 return pid;
4533}
4534
102a775e
BB
4535static int cmppid(const void *a, const void *b)
4536{
4537 return *(pid_t *)a - *(pid_t *)b;
4538}
4539
afb2bc14
TH
4540static int fried_cmppid(const void *a, const void *b)
4541{
4542 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
4543}
4544
e6b81710
TH
4545static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
4546 enum cgroup_filetype type)
4547{
4548 struct cgroup_pidlist *l;
4549 /* don't need task_nsproxy() if we're looking at ourself */
4550 struct pid_namespace *ns = task_active_pid_ns(current);
4551
4552 lockdep_assert_held(&cgrp->pidlist_mutex);
4553
4554 list_for_each_entry(l, &cgrp->pidlists, links)
4555 if (l->key.type == type && l->key.ns == ns)
4556 return l;
4557 return NULL;
4558}
4559
72a8cb30
BB
4560/*
4561 * find the appropriate pidlist for our purpose (given procs vs tasks)
4562 * returns with the lock on that pidlist already held, and takes care
4563 * of the use count, or returns NULL with no locks held if we're out of
4564 * memory.
4565 */
e6b81710
TH
4566static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
4567 enum cgroup_filetype type)
72a8cb30
BB
4568{
4569 struct cgroup_pidlist *l;
b70cc5fd 4570
e6b81710
TH
4571 lockdep_assert_held(&cgrp->pidlist_mutex);
4572
4573 l = cgroup_pidlist_find(cgrp, type);
4574 if (l)
4575 return l;
4576
72a8cb30 4577 /* entry not found; create a new one */
f4f4be2b 4578 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
e6b81710 4579 if (!l)
72a8cb30 4580 return l;
e6b81710 4581
b1a21367 4582 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
72a8cb30 4583 l->key.type = type;
e6b81710
TH
4584 /* don't need task_nsproxy() if we're looking at ourself */
4585 l->key.ns = get_pid_ns(task_active_pid_ns(current));
72a8cb30
BB
4586 l->owner = cgrp;
4587 list_add(&l->links, &cgrp->pidlists);
72a8cb30
BB
4588 return l;
4589}
4590
102a775e
BB
4591/*
4592 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
4593 */
72a8cb30
BB
4594static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
4595 struct cgroup_pidlist **lp)
102a775e
BB
4596{
4597 pid_t *array;
4598 int length;
4599 int pid, n = 0; /* used for populating the array */
72ec7029 4600 struct css_task_iter it;
817929ec 4601 struct task_struct *tsk;
102a775e
BB
4602 struct cgroup_pidlist *l;
4603
4bac00d1
TH
4604 lockdep_assert_held(&cgrp->pidlist_mutex);
4605
102a775e
BB
4606 /*
4607 * If cgroup gets more users after we read count, we won't have
4608 * enough space - tough. This race is indistinguishable to the
4609 * caller from the case that the additional cgroup users didn't
4610 * show up until sometime later on.
4611 */
4612 length = cgroup_task_count(cgrp);
d1d9fd33 4613 array = pidlist_allocate(length);
102a775e
BB
4614 if (!array)
4615 return -ENOMEM;
4616 /* now, populate the array */
9d800df1 4617 css_task_iter_start(&cgrp->self, &it);
72ec7029 4618 while ((tsk = css_task_iter_next(&it))) {
102a775e 4619 if (unlikely(n == length))
817929ec 4620 break;
102a775e 4621 /* get tgid or pid for procs or tasks file respectively */
72a8cb30
BB
4622 if (type == CGROUP_FILE_PROCS)
4623 pid = task_tgid_vnr(tsk);
4624 else
4625 pid = task_pid_vnr(tsk);
102a775e
BB
4626 if (pid > 0) /* make sure to only use valid results */
4627 array[n++] = pid;
817929ec 4628 }
72ec7029 4629 css_task_iter_end(&it);
102a775e
BB
4630 length = n;
4631 /* now sort & (if procs) strip out duplicates */
aa6ec29b 4632 if (cgroup_on_dfl(cgrp))
afb2bc14
TH
4633 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
4634 else
4635 sort(array, length, sizeof(pid_t), cmppid, NULL);
72a8cb30 4636 if (type == CGROUP_FILE_PROCS)
6ee211ad 4637 length = pidlist_uniq(array, length);
e6b81710 4638
e6b81710 4639 l = cgroup_pidlist_find_create(cgrp, type);
72a8cb30 4640 if (!l) {
d1d9fd33 4641 pidlist_free(array);
72a8cb30 4642 return -ENOMEM;
102a775e 4643 }
e6b81710
TH
4644
4645 /* store array, freeing old if necessary */
d1d9fd33 4646 pidlist_free(l->list);
102a775e
BB
4647 l->list = array;
4648 l->length = length;
72a8cb30 4649 *lp = l;
102a775e 4650 return 0;
bbcb81d0
PM
4651}
4652
846c7bb0 4653/**
a043e3b2 4654 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
4655 * @stats: cgroupstats to fill information into
4656 * @dentry: A dentry entry belonging to the cgroup for which stats have
4657 * been requested.
a043e3b2
LZ
4658 *
4659 * Build and fill cgroupstats so that taskstats can export it to user
4660 * space.
846c7bb0
BS
4661 */
4662int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
4663{
2bd59d48 4664 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
bd89aabc 4665 struct cgroup *cgrp;
72ec7029 4666 struct css_task_iter it;
846c7bb0 4667 struct task_struct *tsk;
33d283be 4668
2bd59d48
TH
4669 /* it should be kernfs_node belonging to cgroupfs and is a directory */
4670 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
4671 kernfs_type(kn) != KERNFS_DIR)
4672 return -EINVAL;
4673
bad34660
LZ
4674 mutex_lock(&cgroup_mutex);
4675
846c7bb0 4676 /*
2bd59d48 4677 * We aren't being called from kernfs and there's no guarantee on
ec903c0c 4678 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
2bd59d48 4679 * @kn->priv is RCU safe. Let's do the RCU dancing.
846c7bb0 4680 */
2bd59d48
TH
4681 rcu_read_lock();
4682 cgrp = rcu_dereference(kn->priv);
bad34660 4683 if (!cgrp || cgroup_is_dead(cgrp)) {
2bd59d48 4684 rcu_read_unlock();
bad34660 4685 mutex_unlock(&cgroup_mutex);
2bd59d48
TH
4686 return -ENOENT;
4687 }
bad34660 4688 rcu_read_unlock();
846c7bb0 4689
9d800df1 4690 css_task_iter_start(&cgrp->self, &it);
72ec7029 4691 while ((tsk = css_task_iter_next(&it))) {
846c7bb0
BS
4692 switch (tsk->state) {
4693 case TASK_RUNNING:
4694 stats->nr_running++;
4695 break;
4696 case TASK_INTERRUPTIBLE:
4697 stats->nr_sleeping++;
4698 break;
4699 case TASK_UNINTERRUPTIBLE:
4700 stats->nr_uninterruptible++;
4701 break;
4702 case TASK_STOPPED:
4703 stats->nr_stopped++;
4704 break;
4705 default:
4706 if (delayacct_is_task_waiting_on_io(tsk))
4707 stats->nr_io_wait++;
4708 break;
4709 }
4710 }
72ec7029 4711 css_task_iter_end(&it);
846c7bb0 4712
bad34660 4713 mutex_unlock(&cgroup_mutex);
2bd59d48 4714 return 0;
846c7bb0
BS
4715}
4716
8f3ff208 4717
bbcb81d0 4718/*
102a775e 4719 * seq_file methods for the tasks/procs files. The seq_file position is the
cc31edce 4720 * next pid to display; the seq_file iterator is a pointer to the pid
102a775e 4721 * in the cgroup->l->list array.
bbcb81d0 4722 */
cc31edce 4723
102a775e 4724static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
bbcb81d0 4725{
cc31edce
PM
4726 /*
4727 * Initially we receive a position value that corresponds to
4728 * one more than the last pid shown (or 0 on the first call or
4729 * after a seek to the start). Use a binary-search to find the
4730 * next pid to display, if any
4731 */
2bd59d48 4732 struct kernfs_open_file *of = s->private;
7da11279 4733 struct cgroup *cgrp = seq_css(s)->cgroup;
4bac00d1 4734 struct cgroup_pidlist *l;
7da11279 4735 enum cgroup_filetype type = seq_cft(s)->private;
cc31edce 4736 int index = 0, pid = *pos;
4bac00d1
TH
4737 int *iter, ret;
4738
4739 mutex_lock(&cgrp->pidlist_mutex);
4740
4741 /*
5d22444f 4742 * !NULL @of->priv indicates that this isn't the first start()
4bac00d1 4743 * after open. If the matching pidlist is around, we can use that.
5d22444f 4744 * Look for it. Note that @of->priv can't be used directly. It
4bac00d1
TH
4745 * could already have been destroyed.
4746 */
5d22444f
TH
4747 if (of->priv)
4748 of->priv = cgroup_pidlist_find(cgrp, type);
4bac00d1
TH
4749
4750 /*
4751 * Either this is the first start() after open or the matching
4752 * pidlist has been destroyed inbetween. Create a new one.
4753 */
5d22444f
TH
4754 if (!of->priv) {
4755 ret = pidlist_array_load(cgrp, type,
4756 (struct cgroup_pidlist **)&of->priv);
4bac00d1
TH
4757 if (ret)
4758 return ERR_PTR(ret);
4759 }
5d22444f 4760 l = of->priv;
cc31edce 4761
cc31edce 4762 if (pid) {
102a775e 4763 int end = l->length;
20777766 4764
cc31edce
PM
4765 while (index < end) {
4766 int mid = (index + end) / 2;
afb2bc14 4767 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
cc31edce
PM
4768 index = mid;
4769 break;
afb2bc14 4770 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
cc31edce
PM
4771 index = mid + 1;
4772 else
4773 end = mid;
4774 }
4775 }
4776 /* If we're off the end of the array, we're done */
102a775e 4777 if (index >= l->length)
cc31edce
PM
4778 return NULL;
4779 /* Update the abstract position to be the actual pid that we found */
102a775e 4780 iter = l->list + index;
afb2bc14 4781 *pos = cgroup_pid_fry(cgrp, *iter);
cc31edce
PM
4782 return iter;
4783}
4784
102a775e 4785static void cgroup_pidlist_stop(struct seq_file *s, void *v)
cc31edce 4786{
2bd59d48 4787 struct kernfs_open_file *of = s->private;
5d22444f 4788 struct cgroup_pidlist *l = of->priv;
62236858 4789
5d22444f
TH
4790 if (l)
4791 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
04502365 4792 CGROUP_PIDLIST_DESTROY_DELAY);
7da11279 4793 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
cc31edce
PM
4794}
4795
102a775e 4796static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
cc31edce 4797{
2bd59d48 4798 struct kernfs_open_file *of = s->private;
5d22444f 4799 struct cgroup_pidlist *l = of->priv;
102a775e
BB
4800 pid_t *p = v;
4801 pid_t *end = l->list + l->length;
cc31edce
PM
4802 /*
4803 * Advance to the next pid in the array. If this goes off the
4804 * end, we're done
4805 */
4806 p++;
4807 if (p >= end) {
4808 return NULL;
4809 } else {
7da11279 4810 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
cc31edce
PM
4811 return p;
4812 }
4813}
4814
102a775e 4815static int cgroup_pidlist_show(struct seq_file *s, void *v)
cc31edce 4816{
94ff212d
JP
4817 seq_printf(s, "%d\n", *(int *)v);
4818
4819 return 0;
cc31edce 4820}
bbcb81d0 4821
182446d0
TH
4822static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
4823 struct cftype *cft)
81a6a5cd 4824{
182446d0 4825 return notify_on_release(css->cgroup);
81a6a5cd
PM
4826}
4827
182446d0
TH
4828static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
4829 struct cftype *cft, u64 val)
6379c106 4830{
6379c106 4831 if (val)
182446d0 4832 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106 4833 else
182446d0 4834 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106
PM
4835 return 0;
4836}
4837
182446d0
TH
4838static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
4839 struct cftype *cft)
97978e6d 4840{
182446d0 4841 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
4842}
4843
182446d0
TH
4844static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
4845 struct cftype *cft, u64 val)
97978e6d
DL
4846{
4847 if (val)
182446d0 4848 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d 4849 else
182446d0 4850 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
4851 return 0;
4852}
4853
a14c6874
TH
4854/* cgroup core interface files for the default hierarchy */
4855static struct cftype cgroup_dfl_base_files[] = {
81a6a5cd 4856 {
d5c56ced 4857 .name = "cgroup.procs",
6f60eade 4858 .file_offset = offsetof(struct cgroup, procs_file),
6612f05b
TH
4859 .seq_start = cgroup_pidlist_start,
4860 .seq_next = cgroup_pidlist_next,
4861 .seq_stop = cgroup_pidlist_stop,
4862 .seq_show = cgroup_pidlist_show,
5d22444f 4863 .private = CGROUP_FILE_PROCS,
acbef755 4864 .write = cgroup_procs_write,
102a775e 4865 },
f8f22e53
TH
4866 {
4867 .name = "cgroup.controllers",
f8f22e53
TH
4868 .seq_show = cgroup_controllers_show,
4869 },
4870 {
4871 .name = "cgroup.subtree_control",
f8f22e53 4872 .seq_show = cgroup_subtree_control_show,
451af504 4873 .write = cgroup_subtree_control_write,
f8f22e53 4874 },
842b597e 4875 {
4a07c222 4876 .name = "cgroup.events",
a14c6874 4877 .flags = CFTYPE_NOT_ON_ROOT,
6f60eade 4878 .file_offset = offsetof(struct cgroup, events_file),
4a07c222 4879 .seq_show = cgroup_events_show,
842b597e 4880 },
a14c6874
TH
4881 { } /* terminate */
4882};
d5c56ced 4883
a14c6874
TH
4884/* cgroup core interface files for the legacy hierarchies */
4885static struct cftype cgroup_legacy_base_files[] = {
4886 {
4887 .name = "cgroup.procs",
4888 .seq_start = cgroup_pidlist_start,
4889 .seq_next = cgroup_pidlist_next,
4890 .seq_stop = cgroup_pidlist_stop,
4891 .seq_show = cgroup_pidlist_show,
4892 .private = CGROUP_FILE_PROCS,
4893 .write = cgroup_procs_write,
a14c6874
TH
4894 },
4895 {
4896 .name = "cgroup.clone_children",
4897 .read_u64 = cgroup_clone_children_read,
4898 .write_u64 = cgroup_clone_children_write,
4899 },
4900 {
4901 .name = "cgroup.sane_behavior",
4902 .flags = CFTYPE_ONLY_ON_ROOT,
4903 .seq_show = cgroup_sane_behavior_show,
4904 },
d5c56ced
TH
4905 {
4906 .name = "tasks",
6612f05b
TH
4907 .seq_start = cgroup_pidlist_start,
4908 .seq_next = cgroup_pidlist_next,
4909 .seq_stop = cgroup_pidlist_stop,
4910 .seq_show = cgroup_pidlist_show,
5d22444f 4911 .private = CGROUP_FILE_TASKS,
acbef755 4912 .write = cgroup_tasks_write,
d5c56ced
TH
4913 },
4914 {
4915 .name = "notify_on_release",
d5c56ced
TH
4916 .read_u64 = cgroup_read_notify_on_release,
4917 .write_u64 = cgroup_write_notify_on_release,
4918 },
6e6ff25b
TH
4919 {
4920 .name = "release_agent",
a14c6874 4921 .flags = CFTYPE_ONLY_ON_ROOT,
2da8ca82 4922 .seq_show = cgroup_release_agent_show,
451af504 4923 .write = cgroup_release_agent_write,
5f469907 4924 .max_write_len = PATH_MAX - 1,
6e6ff25b 4925 },
db0416b6 4926 { } /* terminate */
bbcb81d0
PM
4927};
4928
0c21ead1
TH
4929/*
4930 * css destruction is four-stage process.
4931 *
4932 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4933 * Implemented in kill_css().
4934 *
4935 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
ec903c0c
TH
4936 * and thus css_tryget_online() is guaranteed to fail, the css can be
4937 * offlined by invoking offline_css(). After offlining, the base ref is
4938 * put. Implemented in css_killed_work_fn().
0c21ead1
TH
4939 *
4940 * 3. When the percpu_ref reaches zero, the only possible remaining
4941 * accessors are inside RCU read sections. css_release() schedules the
4942 * RCU callback.
4943 *
4944 * 4. After the grace period, the css can be freed. Implemented in
4945 * css_free_work_fn().
4946 *
4947 * It is actually hairier because both step 2 and 4 require process context
4948 * and thus involve punting to css->destroy_work adding two additional
4949 * steps to the already complex sequence.
4950 */
35ef10da 4951static void css_free_work_fn(struct work_struct *work)
48ddbe19
TH
4952{
4953 struct cgroup_subsys_state *css =
35ef10da 4954 container_of(work, struct cgroup_subsys_state, destroy_work);
01e58659 4955 struct cgroup_subsys *ss = css->ss;
0c21ead1 4956 struct cgroup *cgrp = css->cgroup;
48ddbe19 4957
9a1049da
TH
4958 percpu_ref_exit(&css->refcnt);
4959
01e58659 4960 if (ss) {
9d755d33 4961 /* css free path */
8bb5ef79 4962 struct cgroup_subsys_state *parent = css->parent;
01e58659
VD
4963 int id = css->id;
4964
01e58659
VD
4965 ss->css_free(css);
4966 cgroup_idr_remove(&ss->css_idr, id);
9d755d33 4967 cgroup_put(cgrp);
8bb5ef79
TH
4968
4969 if (parent)
4970 css_put(parent);
9d755d33
TH
4971 } else {
4972 /* cgroup free path */
4973 atomic_dec(&cgrp->root->nr_cgrps);
4974 cgroup_pidlist_destroy_all(cgrp);
971ff493 4975 cancel_work_sync(&cgrp->release_agent_work);
9d755d33 4976
d51f39b0 4977 if (cgroup_parent(cgrp)) {
9d755d33
TH
4978 /*
4979 * We get a ref to the parent, and put the ref when
4980 * this cgroup is being freed, so it's guaranteed
4981 * that the parent won't be destroyed before its
4982 * children.
4983 */
d51f39b0 4984 cgroup_put(cgroup_parent(cgrp));
9d755d33
TH
4985 kernfs_put(cgrp->kn);
4986 kfree(cgrp);
4987 } else {
4988 /*
4989 * This is root cgroup's refcnt reaching zero,
4990 * which indicates that the root should be
4991 * released.
4992 */
4993 cgroup_destroy_root(cgrp->root);
4994 }
4995 }
48ddbe19
TH
4996}
4997
0c21ead1 4998static void css_free_rcu_fn(struct rcu_head *rcu_head)
d3daf28d
TH
4999{
5000 struct cgroup_subsys_state *css =
0c21ead1 5001 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
d3daf28d 5002
35ef10da 5003 INIT_WORK(&css->destroy_work, css_free_work_fn);
e5fca243 5004 queue_work(cgroup_destroy_wq, &css->destroy_work);
48ddbe19
TH
5005}
5006
25e15d83 5007static void css_release_work_fn(struct work_struct *work)
d3daf28d
TH
5008{
5009 struct cgroup_subsys_state *css =
25e15d83 5010 container_of(work, struct cgroup_subsys_state, destroy_work);
15a4c835 5011 struct cgroup_subsys *ss = css->ss;
9d755d33 5012 struct cgroup *cgrp = css->cgroup;
15a4c835 5013
1fed1b2e
TH
5014 mutex_lock(&cgroup_mutex);
5015
de3f0341 5016 css->flags |= CSS_RELEASED;
1fed1b2e
TH
5017 list_del_rcu(&css->sibling);
5018
9d755d33
TH
5019 if (ss) {
5020 /* css release path */
01e58659 5021 cgroup_idr_replace(&ss->css_idr, NULL, css->id);
7d172cc8
TH
5022 if (ss->css_released)
5023 ss->css_released(css);
9d755d33
TH
5024 } else {
5025 /* cgroup release path */
9d755d33
TH
5026 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
5027 cgrp->id = -1;
a4189487
LZ
5028
5029 /*
5030 * There are two control paths which try to determine
5031 * cgroup from dentry without going through kernfs -
5032 * cgroupstats_build() and css_tryget_online_from_dir().
5033 * Those are supported by RCU protecting clearing of
5034 * cgrp->kn->priv backpointer.
5035 */
6cd0f5bb
TH
5036 if (cgrp->kn)
5037 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
5038 NULL);
9d755d33 5039 }
d3daf28d 5040
1fed1b2e
TH
5041 mutex_unlock(&cgroup_mutex);
5042
0c21ead1 5043 call_rcu(&css->rcu_head, css_free_rcu_fn);
d3daf28d
TH
5044}
5045
d3daf28d
TH
5046static void css_release(struct percpu_ref *ref)
5047{
5048 struct cgroup_subsys_state *css =
5049 container_of(ref, struct cgroup_subsys_state, refcnt);
5050
25e15d83
TH
5051 INIT_WORK(&css->destroy_work, css_release_work_fn);
5052 queue_work(cgroup_destroy_wq, &css->destroy_work);
d3daf28d
TH
5053}
5054
ddfcadab
TH
5055static void init_and_link_css(struct cgroup_subsys_state *css,
5056 struct cgroup_subsys *ss, struct cgroup *cgrp)
ddbcc7e8 5057{
0cb51d71
TH
5058 lockdep_assert_held(&cgroup_mutex);
5059
ddfcadab
TH
5060 cgroup_get(cgrp);
5061
d5c419b6 5062 memset(css, 0, sizeof(*css));
bd89aabc 5063 css->cgroup = cgrp;
72c97e54 5064 css->ss = ss;
8fa3b8d6 5065 css->id = -1;
d5c419b6
TH
5066 INIT_LIST_HEAD(&css->sibling);
5067 INIT_LIST_HEAD(&css->children);
0cb51d71 5068 css->serial_nr = css_serial_nr_next++;
aa226ff4 5069 atomic_set(&css->online_cnt, 0);
0ae78e0b 5070
d51f39b0
TH
5071 if (cgroup_parent(cgrp)) {
5072 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
ddfcadab 5073 css_get(css->parent);
ddfcadab 5074 }
48ddbe19 5075
ca8bdcaf 5076 BUG_ON(cgroup_css(cgrp, ss));
ddbcc7e8
PM
5077}
5078
2a4ac633 5079/* invoke ->css_online() on a new CSS and mark it online if successful */
623f926b 5080static int online_css(struct cgroup_subsys_state *css)
a31f2d3f 5081{
623f926b 5082 struct cgroup_subsys *ss = css->ss;
b1929db4
TH
5083 int ret = 0;
5084
a31f2d3f
TH
5085 lockdep_assert_held(&cgroup_mutex);
5086
92fb9748 5087 if (ss->css_online)
eb95419b 5088 ret = ss->css_online(css);
ae7f164a 5089 if (!ret) {
eb95419b 5090 css->flags |= CSS_ONLINE;
aec25020 5091 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
aa226ff4
TH
5092
5093 atomic_inc(&css->online_cnt);
5094 if (css->parent)
5095 atomic_inc(&css->parent->online_cnt);
ae7f164a 5096 }
b1929db4 5097 return ret;
a31f2d3f
TH
5098}
5099
2a4ac633 5100/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
623f926b 5101static void offline_css(struct cgroup_subsys_state *css)
a31f2d3f 5102{
623f926b 5103 struct cgroup_subsys *ss = css->ss;
a31f2d3f
TH
5104
5105 lockdep_assert_held(&cgroup_mutex);
5106
5107 if (!(css->flags & CSS_ONLINE))
5108 return;
5109
fa06235b
VD
5110 if (ss->css_reset)
5111 ss->css_reset(css);
5112
d7eeac19 5113 if (ss->css_offline)
eb95419b 5114 ss->css_offline(css);
a31f2d3f 5115
eb95419b 5116 css->flags &= ~CSS_ONLINE;
e3297803 5117 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
f8f22e53
TH
5118
5119 wake_up_all(&css->cgroup->offline_waitq);
a31f2d3f
TH
5120}
5121
c81c925a 5122/**
6cd0f5bb 5123 * css_create - create a cgroup_subsys_state
c81c925a
TH
5124 * @cgrp: the cgroup new css will be associated with
5125 * @ss: the subsys of new css
5126 *
5127 * Create a new css associated with @cgrp - @ss pair. On success, the new
6cd0f5bb
TH
5128 * css is online and installed in @cgrp. This function doesn't create the
5129 * interface files. Returns 0 on success, -errno on failure.
c81c925a 5130 */
6cd0f5bb
TH
5131static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
5132 struct cgroup_subsys *ss)
c81c925a 5133{
d51f39b0 5134 struct cgroup *parent = cgroup_parent(cgrp);
1fed1b2e 5135 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
c81c925a
TH
5136 struct cgroup_subsys_state *css;
5137 int err;
5138
c81c925a
TH
5139 lockdep_assert_held(&cgroup_mutex);
5140
1fed1b2e 5141 css = ss->css_alloc(parent_css);
e7e15b87
TH
5142 if (!css)
5143 css = ERR_PTR(-ENOMEM);
c81c925a 5144 if (IS_ERR(css))
6cd0f5bb 5145 return css;
c81c925a 5146
ddfcadab 5147 init_and_link_css(css, ss, cgrp);
a2bed820 5148
2aad2a86 5149 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
c81c925a 5150 if (err)
3eb59ec6 5151 goto err_free_css;
c81c925a 5152
cf780b7d 5153 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
15a4c835 5154 if (err < 0)
b00c52da 5155 goto err_free_css;
15a4c835 5156 css->id = err;
c81c925a 5157
15a4c835 5158 /* @css is ready to be brought online now, make it visible */
1fed1b2e 5159 list_add_tail_rcu(&css->sibling, &parent_css->children);
15a4c835 5160 cgroup_idr_replace(&ss->css_idr, css, css->id);
c81c925a
TH
5161
5162 err = online_css(css);
5163 if (err)
1fed1b2e 5164 goto err_list_del;
94419627 5165
c81c925a 5166 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
d51f39b0 5167 cgroup_parent(parent)) {
ed3d261b 5168 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
a2a1f9ea 5169 current->comm, current->pid, ss->name);
c81c925a 5170 if (!strcmp(ss->name, "memory"))
ed3d261b 5171 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
c81c925a
TH
5172 ss->warned_broken_hierarchy = true;
5173 }
5174
6cd0f5bb 5175 return css;
c81c925a 5176
1fed1b2e
TH
5177err_list_del:
5178 list_del_rcu(&css->sibling);
3eb59ec6 5179err_free_css:
a2bed820 5180 call_rcu(&css->rcu_head, css_free_rcu_fn);
6cd0f5bb 5181 return ERR_PTR(err);
c81c925a
TH
5182}
5183
a5bca215 5184static struct cgroup *cgroup_create(struct cgroup *parent)
ddbcc7e8 5185{
a5bca215 5186 struct cgroup_root *root = parent->root;
a5bca215
TH
5187 struct cgroup *cgrp, *tcgrp;
5188 int level = parent->level + 1;
03970d3c 5189 int ret;
ddbcc7e8 5190
0a950f65 5191 /* allocate the cgroup and its ID, 0 is reserved for the root */
b11cfb58
TH
5192 cgrp = kzalloc(sizeof(*cgrp) +
5193 sizeof(cgrp->ancestor_ids[0]) * (level + 1), GFP_KERNEL);
a5bca215
TH
5194 if (!cgrp)
5195 return ERR_PTR(-ENOMEM);
0ab02ca8 5196
2aad2a86 5197 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
9d755d33
TH
5198 if (ret)
5199 goto out_free_cgrp;
5200
0ab02ca8
LZ
5201 /*
5202 * Temporarily set the pointer to NULL, so idr_find() won't return
5203 * a half-baked cgroup.
5204 */
cf780b7d 5205 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL);
0ab02ca8 5206 if (cgrp->id < 0) {
ba0f4d76 5207 ret = -ENOMEM;
9d755d33 5208 goto out_cancel_ref;
976c06bc
TH
5209 }
5210
cc31edce 5211 init_cgroup_housekeeping(cgrp);
ddbcc7e8 5212
9d800df1 5213 cgrp->self.parent = &parent->self;
ba0f4d76 5214 cgrp->root = root;
b11cfb58
TH
5215 cgrp->level = level;
5216
5217 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp))
5218 cgrp->ancestor_ids[tcgrp->level] = tcgrp->id;
ddbcc7e8 5219
b6abdb0e
LZ
5220 if (notify_on_release(parent))
5221 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
5222
2260e7fc
TH
5223 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
5224 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d 5225
0cb51d71 5226 cgrp->self.serial_nr = css_serial_nr_next++;
53fa5261 5227
4e139afc 5228 /* allocation complete, commit to creation */
d5c419b6 5229 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
3c9c825b 5230 atomic_inc(&root->nr_cgrps);
59f5296b 5231 cgroup_get(parent);
415cf07a 5232
0d80255e
TH
5233 /*
5234 * @cgrp is now fully operational. If something fails after this
5235 * point, it'll be released via the normal destruction path.
5236 */
6fa4918d 5237 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4e96ee8e 5238
bd53d617
TH
5239 /*
5240 * On the default hierarchy, a child doesn't automatically inherit
667c2491 5241 * subtree_control from the parent. Each is configured manually.
bd53d617 5242 */
03970d3c 5243 if (!cgroup_on_dfl(cgrp))
5531dc91 5244 cgrp->subtree_control = cgroup_control(cgrp);
03970d3c
TH
5245
5246 cgroup_propagate_control(cgrp);
5247
5248 /* @cgrp doesn't have dir yet so the following will only create csses */
5249 ret = cgroup_apply_control_enable(cgrp);
5250 if (ret)
5251 goto out_destroy;
2bd59d48 5252
a5bca215
TH
5253 return cgrp;
5254
5255out_cancel_ref:
5256 percpu_ref_exit(&cgrp->self.refcnt);
5257out_free_cgrp:
5258 kfree(cgrp);
5259 return ERR_PTR(ret);
5260out_destroy:
5261 cgroup_destroy_locked(cgrp);
5262 return ERR_PTR(ret);
5263}
5264
5265static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
5266 umode_t mode)
5267{
5268 struct cgroup *parent, *cgrp;
a5bca215 5269 struct kernfs_node *kn;
03970d3c 5270 int ret;
a5bca215
TH
5271
5272 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
5273 if (strchr(name, '\n'))
5274 return -EINVAL;
5275
945ba199 5276 parent = cgroup_kn_lock_live(parent_kn, false);
a5bca215
TH
5277 if (!parent)
5278 return -ENODEV;
5279
5280 cgrp = cgroup_create(parent);
5281 if (IS_ERR(cgrp)) {
5282 ret = PTR_ERR(cgrp);
5283 goto out_unlock;
5284 }
5285
195e9b6c
TH
5286 /* create the directory */
5287 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
5288 if (IS_ERR(kn)) {
5289 ret = PTR_ERR(kn);
5290 goto out_destroy;
5291 }
5292 cgrp->kn = kn;
5293
5294 /*
5295 * This extra ref will be put in cgroup_free_fn() and guarantees
5296 * that @cgrp->kn is always accessible.
5297 */
5298 kernfs_get(kn);
5299
5300 ret = cgroup_kn_set_ugid(kn);
5301 if (ret)
5302 goto out_destroy;
5303
334c3679 5304 ret = css_populate_dir(&cgrp->self);
195e9b6c
TH
5305 if (ret)
5306 goto out_destroy;
5307
03970d3c
TH
5308 ret = cgroup_apply_control_enable(cgrp);
5309 if (ret)
5310 goto out_destroy;
195e9b6c
TH
5311
5312 /* let's create and online css's */
2bd59d48 5313 kernfs_activate(kn);
ddbcc7e8 5314
ba0f4d76
TH
5315 ret = 0;
5316 goto out_unlock;
ddbcc7e8 5317
a5bca215
TH
5318out_destroy:
5319 cgroup_destroy_locked(cgrp);
ba0f4d76 5320out_unlock:
a9746d8d 5321 cgroup_kn_unlock(parent_kn);
ba0f4d76 5322 return ret;
ddbcc7e8
PM
5323}
5324
223dbc38
TH
5325/*
5326 * This is called when the refcnt of a css is confirmed to be killed.
249f3468
TH
5327 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
5328 * initate destruction and put the css ref from kill_css().
223dbc38
TH
5329 */
5330static void css_killed_work_fn(struct work_struct *work)
d3daf28d 5331{
223dbc38
TH
5332 struct cgroup_subsys_state *css =
5333 container_of(work, struct cgroup_subsys_state, destroy_work);
d3daf28d 5334
f20104de 5335 mutex_lock(&cgroup_mutex);
09a503ea 5336
aa226ff4
TH
5337 do {
5338 offline_css(css);
5339 css_put(css);
5340 /* @css can't go away while we're holding cgroup_mutex */
5341 css = css->parent;
5342 } while (css && atomic_dec_and_test(&css->online_cnt));
5343
5344 mutex_unlock(&cgroup_mutex);
d3daf28d
TH
5345}
5346
223dbc38
TH
5347/* css kill confirmation processing requires process context, bounce */
5348static void css_killed_ref_fn(struct percpu_ref *ref)
d3daf28d
TH
5349{
5350 struct cgroup_subsys_state *css =
5351 container_of(ref, struct cgroup_subsys_state, refcnt);
5352
aa226ff4
TH
5353 if (atomic_dec_and_test(&css->online_cnt)) {
5354 INIT_WORK(&css->destroy_work, css_killed_work_fn);
5355 queue_work(cgroup_destroy_wq, &css->destroy_work);
5356 }
d3daf28d
TH
5357}
5358
f392e51c
TH
5359/**
5360 * kill_css - destroy a css
5361 * @css: css to destroy
5362 *
5363 * This function initiates destruction of @css by removing cgroup interface
5364 * files and putting its base reference. ->css_offline() will be invoked
ec903c0c
TH
5365 * asynchronously once css_tryget_online() is guaranteed to fail and when
5366 * the reference count reaches zero, @css will be released.
f392e51c
TH
5367 */
5368static void kill_css(struct cgroup_subsys_state *css)
edae0c33 5369{
01f6474c 5370 lockdep_assert_held(&cgroup_mutex);
94419627 5371
2bd59d48
TH
5372 /*
5373 * This must happen before css is disassociated with its cgroup.
5374 * See seq_css() for details.
5375 */
334c3679 5376 css_clear_dir(css);
3c14f8b4 5377
edae0c33
TH
5378 /*
5379 * Killing would put the base ref, but we need to keep it alive
5380 * until after ->css_offline().
5381 */
5382 css_get(css);
5383
5384 /*
5385 * cgroup core guarantees that, by the time ->css_offline() is
5386 * invoked, no new css reference will be given out via
ec903c0c 5387 * css_tryget_online(). We can't simply call percpu_ref_kill() and
edae0c33
TH
5388 * proceed to offlining css's because percpu_ref_kill() doesn't
5389 * guarantee that the ref is seen as killed on all CPUs on return.
5390 *
5391 * Use percpu_ref_kill_and_confirm() to get notifications as each
5392 * css is confirmed to be seen as killed on all CPUs.
5393 */
5394 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
d3daf28d
TH
5395}
5396
5397/**
5398 * cgroup_destroy_locked - the first stage of cgroup destruction
5399 * @cgrp: cgroup to be destroyed
5400 *
5401 * css's make use of percpu refcnts whose killing latency shouldn't be
5402 * exposed to userland and are RCU protected. Also, cgroup core needs to
ec903c0c
TH
5403 * guarantee that css_tryget_online() won't succeed by the time
5404 * ->css_offline() is invoked. To satisfy all the requirements,
5405 * destruction is implemented in the following two steps.
d3daf28d
TH
5406 *
5407 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
5408 * userland visible parts and start killing the percpu refcnts of
5409 * css's. Set up so that the next stage will be kicked off once all
5410 * the percpu refcnts are confirmed to be killed.
5411 *
5412 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5413 * rest of destruction. Once all cgroup references are gone, the
5414 * cgroup is RCU-freed.
5415 *
5416 * This function implements s1. After this step, @cgrp is gone as far as
5417 * the userland is concerned and a new cgroup with the same name may be
5418 * created. As cgroup doesn't care about the names internally, this
5419 * doesn't cause any problem.
5420 */
42809dd4
TH
5421static int cgroup_destroy_locked(struct cgroup *cgrp)
5422 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
ddbcc7e8 5423{
2bd59d48 5424 struct cgroup_subsys_state *css;
2b021cbf 5425 struct cgrp_cset_link *link;
1c6727af 5426 int ssid;
ddbcc7e8 5427
42809dd4
TH
5428 lockdep_assert_held(&cgroup_mutex);
5429
91486f61
TH
5430 /*
5431 * Only migration can raise populated from zero and we're already
5432 * holding cgroup_mutex.
5433 */
5434 if (cgroup_is_populated(cgrp))
ddbcc7e8 5435 return -EBUSY;
a043e3b2 5436
bb78a92f 5437 /*
d5c419b6
TH
5438 * Make sure there's no live children. We can't test emptiness of
5439 * ->self.children as dead children linger on it while being
5440 * drained; otherwise, "rmdir parent/child parent" may fail.
bb78a92f 5441 */
f3d46500 5442 if (css_has_online_children(&cgrp->self))
bb78a92f
HD
5443 return -EBUSY;
5444
455050d2 5445 /*
2b021cbf
TH
5446 * Mark @cgrp and the associated csets dead. The former prevents
5447 * further task migration and child creation by disabling
5448 * cgroup_lock_live_group(). The latter makes the csets ignored by
5449 * the migration path.
455050d2 5450 */
184faf32 5451 cgrp->self.flags &= ~CSS_ONLINE;
ddbcc7e8 5452
82d6489d 5453 spin_lock_irq(&css_set_lock);
2b021cbf
TH
5454 list_for_each_entry(link, &cgrp->cset_links, cset_link)
5455 link->cset->dead = true;
82d6489d 5456 spin_unlock_irq(&css_set_lock);
2b021cbf 5457
249f3468 5458 /* initiate massacre of all css's */
1c6727af
TH
5459 for_each_css(css, ssid, cgrp)
5460 kill_css(css);
455050d2 5461
455050d2 5462 /*
01f6474c
TH
5463 * Remove @cgrp directory along with the base files. @cgrp has an
5464 * extra ref on its kn.
f20104de 5465 */
01f6474c 5466 kernfs_remove(cgrp->kn);
f20104de 5467
d51f39b0 5468 check_for_release(cgroup_parent(cgrp));
2bd59d48 5469
249f3468 5470 /* put the base reference */
9d755d33 5471 percpu_ref_kill(&cgrp->self.refcnt);
455050d2 5472
ea15f8cc
TH
5473 return 0;
5474};
5475
2bd59d48 5476static int cgroup_rmdir(struct kernfs_node *kn)
42809dd4 5477{
a9746d8d 5478 struct cgroup *cgrp;
2bd59d48 5479 int ret = 0;
42809dd4 5480
945ba199 5481 cgrp = cgroup_kn_lock_live(kn, false);
a9746d8d
TH
5482 if (!cgrp)
5483 return 0;
42809dd4 5484
a9746d8d 5485 ret = cgroup_destroy_locked(cgrp);
2bb566cb 5486
a9746d8d 5487 cgroup_kn_unlock(kn);
42809dd4 5488 return ret;
8e3f6541
TH
5489}
5490
2bd59d48
TH
5491static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5492 .remount_fs = cgroup_remount,
5493 .show_options = cgroup_show_options,
5494 .mkdir = cgroup_mkdir,
5495 .rmdir = cgroup_rmdir,
5496 .rename = cgroup_rename,
4f41fc59 5497 .show_path = cgroup_show_path,
2bd59d48
TH
5498};
5499
15a4c835 5500static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
ddbcc7e8 5501{
ddbcc7e8 5502 struct cgroup_subsys_state *css;
cfe36bde 5503
a5ae9899 5504 pr_debug("Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8 5505
648bb56d
TH
5506 mutex_lock(&cgroup_mutex);
5507
15a4c835 5508 idr_init(&ss->css_idr);
0adb0704 5509 INIT_LIST_HEAD(&ss->cfts);
8e3f6541 5510
3dd06ffa
TH
5511 /* Create the root cgroup state for this subsystem */
5512 ss->root = &cgrp_dfl_root;
5513 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
ddbcc7e8
PM
5514 /* We don't handle early failures gracefully */
5515 BUG_ON(IS_ERR(css));
ddfcadab 5516 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
3b514d24
TH
5517
5518 /*
5519 * Root csses are never destroyed and we can't initialize
5520 * percpu_ref during early init. Disable refcnting.
5521 */
5522 css->flags |= CSS_NO_REF;
5523
15a4c835 5524 if (early) {
9395a450 5525 /* allocation can't be done safely during early init */
15a4c835
TH
5526 css->id = 1;
5527 } else {
5528 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5529 BUG_ON(css->id < 0);
5530 }
ddbcc7e8 5531
e8d55fde 5532 /* Update the init_css_set to contain a subsys
817929ec 5533 * pointer to this state - since the subsystem is
e8d55fde 5534 * newly registered, all tasks and hence the
3dd06ffa 5535 * init_css_set is in the subsystem's root cgroup. */
aec25020 5536 init_css_set.subsys[ss->id] = css;
ddbcc7e8 5537
cb4a3167
AS
5538 have_fork_callback |= (bool)ss->fork << ss->id;
5539 have_exit_callback |= (bool)ss->exit << ss->id;
afcf6c8b 5540 have_free_callback |= (bool)ss->free << ss->id;
7e47682e 5541 have_canfork_callback |= (bool)ss->can_fork << ss->id;
ddbcc7e8 5542
e8d55fde
LZ
5543 /* At system boot, before all subsystems have been
5544 * registered, no tasks have been forked, so we don't
5545 * need to invoke fork callbacks here. */
5546 BUG_ON(!list_empty(&init_task.tasks));
5547
ae7f164a 5548 BUG_ON(online_css(css));
a8638030 5549
cf5d5941
BB
5550 mutex_unlock(&cgroup_mutex);
5551}
cf5d5941 5552
ddbcc7e8 5553/**
a043e3b2
LZ
5554 * cgroup_init_early - cgroup initialization at system boot
5555 *
5556 * Initialize cgroups at system boot, and initialize any
5557 * subsystems that request early init.
ddbcc7e8
PM
5558 */
5559int __init cgroup_init_early(void)
5560{
7b9a6ba5 5561 static struct cgroup_sb_opts __initdata opts;
30159ec7 5562 struct cgroup_subsys *ss;
ddbcc7e8 5563 int i;
30159ec7 5564
3dd06ffa 5565 init_cgroup_root(&cgrp_dfl_root, &opts);
3b514d24
TH
5566 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5567
a4ea1cc9 5568 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
817929ec 5569
3ed80a62 5570 for_each_subsys(ss, i) {
aec25020 5571 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
63253ad8 5572 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
073219e9 5573 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
aec25020 5574 ss->id, ss->name);
073219e9
TH
5575 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5576 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5577
aec25020 5578 ss->id = i;
073219e9 5579 ss->name = cgroup_subsys_name[i];
3e1d2eed
TH
5580 if (!ss->legacy_name)
5581 ss->legacy_name = cgroup_subsys_name[i];
ddbcc7e8
PM
5582
5583 if (ss->early_init)
15a4c835 5584 cgroup_init_subsys(ss, true);
ddbcc7e8
PM
5585 }
5586 return 0;
5587}
5588
6e5c8307 5589static u16 cgroup_disable_mask __initdata;
a3e72739 5590
ddbcc7e8 5591/**
a043e3b2
LZ
5592 * cgroup_init - cgroup initialization
5593 *
5594 * Register cgroup filesystem and /proc file, and initialize
5595 * any subsystems that didn't request early init.
ddbcc7e8
PM
5596 */
5597int __init cgroup_init(void)
5598{
30159ec7 5599 struct cgroup_subsys *ss;
035f4f51 5600 int ssid;
ddbcc7e8 5601
6e5c8307 5602 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
1ed13287 5603 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem));
a14c6874
TH
5604 BUG_ON(cgroup_init_cftypes(NULL, cgroup_dfl_base_files));
5605 BUG_ON(cgroup_init_cftypes(NULL, cgroup_legacy_base_files));
ddbcc7e8 5606
a79a908f
AK
5607 get_user_ns(init_cgroup_ns.user_ns);
5608
54e7b4eb 5609 mutex_lock(&cgroup_mutex);
54e7b4eb 5610
2378d8b8
TH
5611 /*
5612 * Add init_css_set to the hash table so that dfl_root can link to
5613 * it during init.
5614 */
5615 hash_add(css_set_table, &init_css_set.hlist,
5616 css_set_hash(init_css_set.subsys));
82fe9b0d 5617
3dd06ffa 5618 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
4e96ee8e 5619
54e7b4eb
TH
5620 mutex_unlock(&cgroup_mutex);
5621
172a2c06 5622 for_each_subsys(ss, ssid) {
15a4c835
TH
5623 if (ss->early_init) {
5624 struct cgroup_subsys_state *css =
5625 init_css_set.subsys[ss->id];
5626
5627 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5628 GFP_KERNEL);
5629 BUG_ON(css->id < 0);
5630 } else {
5631 cgroup_init_subsys(ss, false);
5632 }
172a2c06 5633
2d8f243a
TH
5634 list_add_tail(&init_css_set.e_cset_node[ssid],
5635 &cgrp_dfl_root.cgrp.e_csets[ssid]);
172a2c06
TH
5636
5637 /*
c731ae1d
LZ
5638 * Setting dfl_root subsys_mask needs to consider the
5639 * disabled flag and cftype registration needs kmalloc,
5640 * both of which aren't available during early_init.
172a2c06 5641 */
a3e72739
TH
5642 if (cgroup_disable_mask & (1 << ssid)) {
5643 static_branch_disable(cgroup_subsys_enabled_key[ssid]);
5644 printk(KERN_INFO "Disabling %s control group subsystem\n",
5645 ss->name);
a8ddc821 5646 continue;
a3e72739 5647 }
a8ddc821 5648
223ffb29
JW
5649 if (cgroup_ssid_no_v1(ssid))
5650 printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
5651 ss->name);
5652
a8ddc821
TH
5653 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5654
f6d635ad
TH
5655 if (ss->implicit_on_dfl)
5656 cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
5657 else if (!ss->dfl_cftypes)
a7165264 5658 cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
5de4fa13 5659
a8ddc821
TH
5660 if (ss->dfl_cftypes == ss->legacy_cftypes) {
5661 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5662 } else {
5663 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5664 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
c731ae1d 5665 }
295458e6
VD
5666
5667 if (ss->bind)
5668 ss->bind(init_css_set.subsys[ssid]);
676db4af
GK
5669 }
5670
2378d8b8
TH
5671 /* init_css_set.subsys[] has been updated, re-hash */
5672 hash_del(&init_css_set.hlist);
5673 hash_add(css_set_table, &init_css_set.hlist,
5674 css_set_hash(init_css_set.subsys));
5675
035f4f51
TH
5676 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5677 WARN_ON(register_filesystem(&cgroup_fs_type));
67e9c74b 5678 WARN_ON(register_filesystem(&cgroup2_fs_type));
035f4f51 5679 WARN_ON(!proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations));
ddbcc7e8 5680
2bd59d48 5681 return 0;
ddbcc7e8 5682}
b4f48b63 5683
e5fca243
TH
5684static int __init cgroup_wq_init(void)
5685{
5686 /*
5687 * There isn't much point in executing destruction path in
5688 * parallel. Good chunk is serialized with cgroup_mutex anyway.
1a11533f 5689 * Use 1 for @max_active.
e5fca243
TH
5690 *
5691 * We would prefer to do this in cgroup_init() above, but that
5692 * is called before init_workqueues(): so leave this until after.
5693 */
1a11533f 5694 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
e5fca243 5695 BUG_ON(!cgroup_destroy_wq);
b1a21367
TH
5696
5697 /*
5698 * Used to destroy pidlists and separate to serve as flush domain.
5699 * Cap @max_active to 1 too.
5700 */
5701 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
5702 0, 1);
5703 BUG_ON(!cgroup_pidlist_destroy_wq);
5704
e5fca243
TH
5705 return 0;
5706}
5707core_initcall(cgroup_wq_init);
5708
a424316c
PM
5709/*
5710 * proc_cgroup_show()
5711 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5712 * - Used for /proc/<pid>/cgroup.
a424316c 5713 */
006f4ac4
ZL
5714int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5715 struct pid *pid, struct task_struct *tsk)
a424316c 5716{
e61734c5 5717 char *buf, *path;
a424316c 5718 int retval;
3dd06ffa 5719 struct cgroup_root *root;
a424316c
PM
5720
5721 retval = -ENOMEM;
e61734c5 5722 buf = kmalloc(PATH_MAX, GFP_KERNEL);
a424316c
PM
5723 if (!buf)
5724 goto out;
5725
a424316c 5726 mutex_lock(&cgroup_mutex);
82d6489d 5727 spin_lock_irq(&css_set_lock);
a424316c 5728
985ed670 5729 for_each_root(root) {
a424316c 5730 struct cgroup_subsys *ss;
bd89aabc 5731 struct cgroup *cgrp;
b85d2040 5732 int ssid, count = 0;
a424316c 5733
a7165264 5734 if (root == &cgrp_dfl_root && !cgrp_dfl_visible)
985ed670
TH
5735 continue;
5736
2c6ab6d2 5737 seq_printf(m, "%d:", root->hierarchy_id);
d98817d4
TH
5738 if (root != &cgrp_dfl_root)
5739 for_each_subsys(ss, ssid)
5740 if (root->subsys_mask & (1 << ssid))
5741 seq_printf(m, "%s%s", count++ ? "," : "",
3e1d2eed 5742 ss->legacy_name);
c6d57f33
PM
5743 if (strlen(root->name))
5744 seq_printf(m, "%sname=%s", count ? "," : "",
5745 root->name);
a424316c 5746 seq_putc(m, ':');
2e91fa7f 5747
7717f7ba 5748 cgrp = task_cgroup_from_root(tsk, root);
2e91fa7f
TH
5749
5750 /*
5751 * On traditional hierarchies, all zombie tasks show up as
5752 * belonging to the root cgroup. On the default hierarchy,
5753 * while a zombie doesn't show up in "cgroup.procs" and
5754 * thus can't be migrated, its /proc/PID/cgroup keeps
5755 * reporting the cgroup it belonged to before exiting. If
5756 * the cgroup is removed before the zombie is reaped,
5757 * " (deleted)" is appended to the cgroup path.
5758 */
5759 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
a79a908f
AK
5760 path = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
5761 current->nsproxy->cgroup_ns);
2e91fa7f
TH
5762 if (!path) {
5763 retval = -ENAMETOOLONG;
5764 goto out_unlock;
5765 }
5766 } else {
5767 path = "/";
e61734c5 5768 }
2e91fa7f 5769
e61734c5 5770 seq_puts(m, path);
2e91fa7f
TH
5771
5772 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
5773 seq_puts(m, " (deleted)\n");
5774 else
5775 seq_putc(m, '\n');
a424316c
PM
5776 }
5777
006f4ac4 5778 retval = 0;
a424316c 5779out_unlock:
82d6489d 5780 spin_unlock_irq(&css_set_lock);
a424316c 5781 mutex_unlock(&cgroup_mutex);
a424316c
PM
5782 kfree(buf);
5783out:
5784 return retval;
5785}
5786
a424316c
PM
5787/* Display information about each subsystem and each hierarchy */
5788static int proc_cgroupstats_show(struct seq_file *m, void *v)
5789{
30159ec7 5790 struct cgroup_subsys *ss;
a424316c 5791 int i;
a424316c 5792
8bab8dde 5793 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
aae8aab4
BB
5794 /*
5795 * ideally we don't want subsystems moving around while we do this.
5796 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5797 * subsys/hierarchy state.
5798 */
a424316c 5799 mutex_lock(&cgroup_mutex);
30159ec7
TH
5800
5801 for_each_subsys(ss, i)
2c6ab6d2 5802 seq_printf(m, "%s\t%d\t%d\t%d\n",
3e1d2eed 5803 ss->legacy_name, ss->root->hierarchy_id,
fc5ed1e9
TH
5804 atomic_read(&ss->root->nr_cgrps),
5805 cgroup_ssid_enabled(i));
30159ec7 5806
a424316c
PM
5807 mutex_unlock(&cgroup_mutex);
5808 return 0;
5809}
5810
5811static int cgroupstats_open(struct inode *inode, struct file *file)
5812{
9dce07f1 5813 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
5814}
5815
828c0950 5816static const struct file_operations proc_cgroupstats_operations = {
a424316c
PM
5817 .open = cgroupstats_open,
5818 .read = seq_read,
5819 .llseek = seq_lseek,
5820 .release = single_release,
5821};
5822
b4f48b63 5823/**
eaf797ab 5824 * cgroup_fork - initialize cgroup related fields during copy_process()
a043e3b2 5825 * @child: pointer to task_struct of forking parent process.
b4f48b63 5826 *
eaf797ab
TH
5827 * A task is associated with the init_css_set until cgroup_post_fork()
5828 * attaches it to the parent's css_set. Empty cg_list indicates that
5829 * @child isn't holding reference to its css_set.
b4f48b63
PM
5830 */
5831void cgroup_fork(struct task_struct *child)
5832{
eaf797ab 5833 RCU_INIT_POINTER(child->cgroups, &init_css_set);
817929ec 5834 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
5835}
5836
7e47682e
AS
5837/**
5838 * cgroup_can_fork - called on a new task before the process is exposed
5839 * @child: the task in question.
5840 *
5841 * This calls the subsystem can_fork() callbacks. If the can_fork() callback
5842 * returns an error, the fork aborts with that error code. This allows for
5843 * a cgroup subsystem to conditionally allow or deny new forks.
5844 */
b53202e6 5845int cgroup_can_fork(struct task_struct *child)
7e47682e
AS
5846{
5847 struct cgroup_subsys *ss;
5848 int i, j, ret;
5849
b4e0eeaf 5850 do_each_subsys_mask(ss, i, have_canfork_callback) {
b53202e6 5851 ret = ss->can_fork(child);
7e47682e
AS
5852 if (ret)
5853 goto out_revert;
b4e0eeaf 5854 } while_each_subsys_mask();
7e47682e
AS
5855
5856 return 0;
5857
5858out_revert:
5859 for_each_subsys(ss, j) {
5860 if (j >= i)
5861 break;
5862 if (ss->cancel_fork)
b53202e6 5863 ss->cancel_fork(child);
7e47682e
AS
5864 }
5865
5866 return ret;
5867}
5868
5869/**
5870 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
5871 * @child: the task in question
5872 *
5873 * This calls the cancel_fork() callbacks if a fork failed *after*
5874 * cgroup_can_fork() succeded.
5875 */
b53202e6 5876void cgroup_cancel_fork(struct task_struct *child)
7e47682e
AS
5877{
5878 struct cgroup_subsys *ss;
5879 int i;
5880
5881 for_each_subsys(ss, i)
5882 if (ss->cancel_fork)
b53202e6 5883 ss->cancel_fork(child);
7e47682e
AS
5884}
5885
817929ec 5886/**
a043e3b2
LZ
5887 * cgroup_post_fork - called on a new task after adding it to the task list
5888 * @child: the task in question
5889 *
5edee61e
TH
5890 * Adds the task to the list running through its css_set if necessary and
5891 * call the subsystem fork() callbacks. Has to be after the task is
5892 * visible on the task list in case we race with the first call to
0942eeee 5893 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5edee61e 5894 * list.
a043e3b2 5895 */
b53202e6 5896void cgroup_post_fork(struct task_struct *child)
817929ec 5897{
30159ec7 5898 struct cgroup_subsys *ss;
5edee61e
TH
5899 int i;
5900
3ce3230a 5901 /*
251f8c03 5902 * This may race against cgroup_enable_task_cg_lists(). As that
eaf797ab
TH
5903 * function sets use_task_css_set_links before grabbing
5904 * tasklist_lock and we just went through tasklist_lock to add
5905 * @child, it's guaranteed that either we see the set
5906 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5907 * @child during its iteration.
5908 *
5909 * If we won the race, @child is associated with %current's
f0d9a5f1 5910 * css_set. Grabbing css_set_lock guarantees both that the
eaf797ab
TH
5911 * association is stable, and, on completion of the parent's
5912 * migration, @child is visible in the source of migration or
5913 * already in the destination cgroup. This guarantee is necessary
5914 * when implementing operations which need to migrate all tasks of
5915 * a cgroup to another.
5916 *
251f8c03 5917 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
eaf797ab
TH
5918 * will remain in init_css_set. This is safe because all tasks are
5919 * in the init_css_set before cg_links is enabled and there's no
5920 * operation which transfers all tasks out of init_css_set.
3ce3230a 5921 */
817929ec 5922 if (use_task_css_set_links) {
eaf797ab
TH
5923 struct css_set *cset;
5924
82d6489d 5925 spin_lock_irq(&css_set_lock);
0e1d768f 5926 cset = task_css_set(current);
eaf797ab 5927 if (list_empty(&child->cg_list)) {
eaf797ab 5928 get_css_set(cset);
f6d7d049 5929 css_set_move_task(child, NULL, cset, false);
eaf797ab 5930 }
82d6489d 5931 spin_unlock_irq(&css_set_lock);
817929ec 5932 }
5edee61e
TH
5933
5934 /*
5935 * Call ss->fork(). This must happen after @child is linked on
5936 * css_set; otherwise, @child might change state between ->fork()
5937 * and addition to css_set.
5938 */
b4e0eeaf 5939 do_each_subsys_mask(ss, i, have_fork_callback) {
b53202e6 5940 ss->fork(child);
b4e0eeaf 5941 } while_each_subsys_mask();
817929ec 5942}
5edee61e 5943
b4f48b63
PM
5944/**
5945 * cgroup_exit - detach cgroup from exiting task
5946 * @tsk: pointer to task_struct of exiting process
5947 *
5948 * Description: Detach cgroup from @tsk and release it.
5949 *
5950 * Note that cgroups marked notify_on_release force every task in
5951 * them to take the global cgroup_mutex mutex when exiting.
5952 * This could impact scaling on very large systems. Be reluctant to
5953 * use notify_on_release cgroups where very high task exit scaling
5954 * is required on large systems.
5955 *
0e1d768f
TH
5956 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
5957 * call cgroup_exit() while the task is still competent to handle
5958 * notify_on_release(), then leave the task attached to the root cgroup in
5959 * each hierarchy for the remainder of its exit. No need to bother with
5960 * init_css_set refcnting. init_css_set never goes away and we can't race
e8604cb4 5961 * with migration path - PF_EXITING is visible to migration path.
b4f48b63 5962 */
1ec41830 5963void cgroup_exit(struct task_struct *tsk)
b4f48b63 5964{
30159ec7 5965 struct cgroup_subsys *ss;
5abb8855 5966 struct css_set *cset;
d41d5a01 5967 int i;
817929ec
PM
5968
5969 /*
0e1d768f 5970 * Unlink from @tsk from its css_set. As migration path can't race
0de0942d 5971 * with us, we can check css_set and cg_list without synchronization.
817929ec 5972 */
0de0942d
TH
5973 cset = task_css_set(tsk);
5974
817929ec 5975 if (!list_empty(&tsk->cg_list)) {
82d6489d 5976 spin_lock_irq(&css_set_lock);
f6d7d049 5977 css_set_move_task(tsk, cset, NULL, false);
82d6489d 5978 spin_unlock_irq(&css_set_lock);
2e91fa7f
TH
5979 } else {
5980 get_css_set(cset);
817929ec
PM
5981 }
5982
cb4a3167 5983 /* see cgroup_post_fork() for details */
b4e0eeaf 5984 do_each_subsys_mask(ss, i, have_exit_callback) {
2e91fa7f 5985 ss->exit(tsk);
b4e0eeaf 5986 } while_each_subsys_mask();
2e91fa7f 5987}
30159ec7 5988
2e91fa7f
TH
5989void cgroup_free(struct task_struct *task)
5990{
5991 struct css_set *cset = task_css_set(task);
afcf6c8b
TH
5992 struct cgroup_subsys *ss;
5993 int ssid;
5994
b4e0eeaf 5995 do_each_subsys_mask(ss, ssid, have_free_callback) {
afcf6c8b 5996 ss->free(task);
b4e0eeaf 5997 } while_each_subsys_mask();
d41d5a01 5998
2e91fa7f 5999 put_css_set(cset);
b4f48b63 6000}
697f4161 6001
bd89aabc 6002static void check_for_release(struct cgroup *cgrp)
81a6a5cd 6003{
27bd4dbb 6004 if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) &&
971ff493
ZL
6005 !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
6006 schedule_work(&cgrp->release_agent_work);
81a6a5cd
PM
6007}
6008
81a6a5cd
PM
6009/*
6010 * Notify userspace when a cgroup is released, by running the
6011 * configured release agent with the name of the cgroup (path
6012 * relative to the root of cgroup file system) as the argument.
6013 *
6014 * Most likely, this user command will try to rmdir this cgroup.
6015 *
6016 * This races with the possibility that some other task will be
6017 * attached to this cgroup before it is removed, or that some other
6018 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
6019 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
6020 * unused, and this cgroup will be reprieved from its death sentence,
6021 * to continue to serve a useful existence. Next time it's released,
6022 * we will get notified again, if it still has 'notify_on_release' set.
6023 *
6024 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
6025 * means only wait until the task is successfully execve()'d. The
6026 * separate release agent task is forked by call_usermodehelper(),
6027 * then control in this thread returns here, without waiting for the
6028 * release agent task. We don't bother to wait because the caller of
6029 * this routine has no use for the exit status of the release agent
6030 * task, so no sense holding our caller up for that.
81a6a5cd 6031 */
81a6a5cd
PM
6032static void cgroup_release_agent(struct work_struct *work)
6033{
971ff493
ZL
6034 struct cgroup *cgrp =
6035 container_of(work, struct cgroup, release_agent_work);
6036 char *pathbuf = NULL, *agentbuf = NULL, *path;
6037 char *argv[3], *envp[3];
6038
81a6a5cd 6039 mutex_lock(&cgroup_mutex);
971ff493
ZL
6040
6041 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
6042 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
6043 if (!pathbuf || !agentbuf)
6044 goto out;
6045
82d6489d 6046 spin_lock_irq(&css_set_lock);
a79a908f 6047 path = cgroup_path_ns_locked(cgrp, pathbuf, PATH_MAX, &init_cgroup_ns);
82d6489d 6048 spin_unlock_irq(&css_set_lock);
971ff493
ZL
6049 if (!path)
6050 goto out;
6051
6052 argv[0] = agentbuf;
6053 argv[1] = path;
6054 argv[2] = NULL;
6055
6056 /* minimal command environment */
6057 envp[0] = "HOME=/";
6058 envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
6059 envp[2] = NULL;
6060
81a6a5cd 6061 mutex_unlock(&cgroup_mutex);
971ff493 6062 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
3e2cd91a 6063 goto out_free;
971ff493 6064out:
81a6a5cd 6065 mutex_unlock(&cgroup_mutex);
3e2cd91a 6066out_free:
971ff493
ZL
6067 kfree(agentbuf);
6068 kfree(pathbuf);
81a6a5cd 6069}
8bab8dde
PM
6070
6071static int __init cgroup_disable(char *str)
6072{
30159ec7 6073 struct cgroup_subsys *ss;
8bab8dde 6074 char *token;
30159ec7 6075 int i;
8bab8dde
PM
6076
6077 while ((token = strsep(&str, ",")) != NULL) {
6078 if (!*token)
6079 continue;
be45c900 6080
3ed80a62 6081 for_each_subsys(ss, i) {
3e1d2eed
TH
6082 if (strcmp(token, ss->name) &&
6083 strcmp(token, ss->legacy_name))
6084 continue;
a3e72739 6085 cgroup_disable_mask |= 1 << i;
8bab8dde
PM
6086 }
6087 }
6088 return 1;
6089}
6090__setup("cgroup_disable=", cgroup_disable);
38460b48 6091
223ffb29
JW
6092static int __init cgroup_no_v1(char *str)
6093{
6094 struct cgroup_subsys *ss;
6095 char *token;
6096 int i;
6097
6098 while ((token = strsep(&str, ",")) != NULL) {
6099 if (!*token)
6100 continue;
6101
6102 if (!strcmp(token, "all")) {
6e5c8307 6103 cgroup_no_v1_mask = U16_MAX;
223ffb29
JW
6104 break;
6105 }
6106
6107 for_each_subsys(ss, i) {
6108 if (strcmp(token, ss->name) &&
6109 strcmp(token, ss->legacy_name))
6110 continue;
6111
6112 cgroup_no_v1_mask |= 1 << i;
6113 }
6114 }
6115 return 1;
6116}
6117__setup("cgroup_no_v1=", cgroup_no_v1);
6118
b77d7b60 6119/**
ec903c0c 6120 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
35cf0836
TH
6121 * @dentry: directory dentry of interest
6122 * @ss: subsystem of interest
b77d7b60 6123 *
5a17f543
TH
6124 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
6125 * to get the corresponding css and return it. If such css doesn't exist
6126 * or can't be pinned, an ERR_PTR value is returned.
e5d1367f 6127 */
ec903c0c
TH
6128struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
6129 struct cgroup_subsys *ss)
e5d1367f 6130{
2bd59d48 6131 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
f17fc25f 6132 struct file_system_type *s_type = dentry->d_sb->s_type;
2bd59d48 6133 struct cgroup_subsys_state *css = NULL;
e5d1367f 6134 struct cgroup *cgrp;
e5d1367f 6135
35cf0836 6136 /* is @dentry a cgroup dir? */
f17fc25f
TH
6137 if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
6138 !kn || kernfs_type(kn) != KERNFS_DIR)
e5d1367f
SE
6139 return ERR_PTR(-EBADF);
6140
5a17f543
TH
6141 rcu_read_lock();
6142
2bd59d48
TH
6143 /*
6144 * This path doesn't originate from kernfs and @kn could already
6145 * have been or be removed at any point. @kn->priv is RCU
a4189487 6146 * protected for this access. See css_release_work_fn() for details.
2bd59d48
TH
6147 */
6148 cgrp = rcu_dereference(kn->priv);
6149 if (cgrp)
6150 css = cgroup_css(cgrp, ss);
5a17f543 6151
ec903c0c 6152 if (!css || !css_tryget_online(css))
5a17f543
TH
6153 css = ERR_PTR(-ENOENT);
6154
6155 rcu_read_unlock();
6156 return css;
e5d1367f 6157}
e5d1367f 6158
1cb650b9
LZ
6159/**
6160 * css_from_id - lookup css by id
6161 * @id: the cgroup id
6162 * @ss: cgroup subsys to be looked into
6163 *
6164 * Returns the css if there's valid one with @id, otherwise returns NULL.
6165 * Should be called under rcu_read_lock().
6166 */
6167struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
6168{
6fa4918d 6169 WARN_ON_ONCE(!rcu_read_lock_held());
d6ccc55e 6170 return idr_find(&ss->css_idr, id);
e5d1367f
SE
6171}
6172
16af4396
TH
6173/**
6174 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
6175 * @path: path on the default hierarchy
6176 *
6177 * Find the cgroup at @path on the default hierarchy, increment its
6178 * reference count and return it. Returns pointer to the found cgroup on
6179 * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR)
6180 * if @path points to a non-directory.
6181 */
6182struct cgroup *cgroup_get_from_path(const char *path)
6183{
6184 struct kernfs_node *kn;
6185 struct cgroup *cgrp;
6186
6187 mutex_lock(&cgroup_mutex);
6188
6189 kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path);
6190 if (kn) {
6191 if (kernfs_type(kn) == KERNFS_DIR) {
6192 cgrp = kn->priv;
6193 cgroup_get(cgrp);
6194 } else {
6195 cgrp = ERR_PTR(-ENOTDIR);
6196 }
6197 kernfs_put(kn);
6198 } else {
6199 cgrp = ERR_PTR(-ENOENT);
6200 }
6201
6202 mutex_unlock(&cgroup_mutex);
6203 return cgrp;
6204}
6205EXPORT_SYMBOL_GPL(cgroup_get_from_path);
6206
bd1060a1
TH
6207/*
6208 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data
6209 * definition in cgroup-defs.h.
6210 */
6211#ifdef CONFIG_SOCK_CGROUP_DATA
6212
6213#if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID)
6214
3fa4cc9c 6215DEFINE_SPINLOCK(cgroup_sk_update_lock);
bd1060a1
TH
6216static bool cgroup_sk_alloc_disabled __read_mostly;
6217
6218void cgroup_sk_alloc_disable(void)
6219{
6220 if (cgroup_sk_alloc_disabled)
6221 return;
6222 pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n");
6223 cgroup_sk_alloc_disabled = true;
6224}
6225
6226#else
6227
6228#define cgroup_sk_alloc_disabled false
6229
6230#endif
6231
6232void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
6233{
6234 if (cgroup_sk_alloc_disabled)
6235 return;
6236
6237 rcu_read_lock();
6238
6239 while (true) {
6240 struct css_set *cset;
6241
6242 cset = task_css_set(current);
6243 if (likely(cgroup_tryget(cset->dfl_cgrp))) {
6244 skcd->val = (unsigned long)cset->dfl_cgrp;
6245 break;
6246 }
6247 cpu_relax();
6248 }
6249
6250 rcu_read_unlock();
6251}
6252
6253void cgroup_sk_free(struct sock_cgroup_data *skcd)
6254{
6255 cgroup_put(sock_cgroup_ptr(skcd));
6256}
6257
6258#endif /* CONFIG_SOCK_CGROUP_DATA */
6259
a79a908f
AK
6260/* cgroup namespaces */
6261
6262static struct cgroup_namespace *alloc_cgroup_ns(void)
6263{
6264 struct cgroup_namespace *new_ns;
6265 int ret;
6266
6267 new_ns = kzalloc(sizeof(struct cgroup_namespace), GFP_KERNEL);
6268 if (!new_ns)
6269 return ERR_PTR(-ENOMEM);
6270 ret = ns_alloc_inum(&new_ns->ns);
6271 if (ret) {
6272 kfree(new_ns);
6273 return ERR_PTR(ret);
6274 }
6275 atomic_set(&new_ns->count, 1);
6276 new_ns->ns.ops = &cgroupns_operations;
6277 return new_ns;
6278}
6279
6280void free_cgroup_ns(struct cgroup_namespace *ns)
6281{
6282 put_css_set(ns->root_cset);
6283 put_user_ns(ns->user_ns);
6284 ns_free_inum(&ns->ns);
6285 kfree(ns);
6286}
6287EXPORT_SYMBOL(free_cgroup_ns);
6288
6289struct cgroup_namespace *copy_cgroup_ns(unsigned long flags,
6290 struct user_namespace *user_ns,
6291 struct cgroup_namespace *old_ns)
6292{
fa5ff8a1
TH
6293 struct cgroup_namespace *new_ns;
6294 struct css_set *cset;
a79a908f
AK
6295
6296 BUG_ON(!old_ns);
6297
6298 if (!(flags & CLONE_NEWCGROUP)) {
6299 get_cgroup_ns(old_ns);
6300 return old_ns;
6301 }
6302
6303 /* Allow only sysadmin to create cgroup namespace. */
a79a908f 6304 if (!ns_capable(user_ns, CAP_SYS_ADMIN))
fa5ff8a1 6305 return ERR_PTR(-EPERM);
a79a908f
AK
6306
6307 mutex_lock(&cgroup_mutex);
82d6489d 6308 spin_lock_irq(&css_set_lock);
a79a908f
AK
6309
6310 cset = task_css_set(current);
6311 get_css_set(cset);
6312
82d6489d 6313 spin_unlock_irq(&css_set_lock);
a79a908f
AK
6314 mutex_unlock(&cgroup_mutex);
6315
a79a908f 6316 new_ns = alloc_cgroup_ns();
d2202557 6317 if (IS_ERR(new_ns)) {
fa5ff8a1
TH
6318 put_css_set(cset);
6319 return new_ns;
d2202557 6320 }
a79a908f
AK
6321
6322 new_ns->user_ns = get_user_ns(user_ns);
6323 new_ns->root_cset = cset;
6324
6325 return new_ns;
a79a908f
AK
6326}
6327
6328static inline struct cgroup_namespace *to_cg_ns(struct ns_common *ns)
6329{
6330 return container_of(ns, struct cgroup_namespace, ns);
6331}
6332
a0530e08 6333static int cgroupns_install(struct nsproxy *nsproxy, struct ns_common *ns)
a79a908f 6334{
a0530e08
AK
6335 struct cgroup_namespace *cgroup_ns = to_cg_ns(ns);
6336
6337 if (!ns_capable(current_user_ns(), CAP_SYS_ADMIN) ||
6338 !ns_capable(cgroup_ns->user_ns, CAP_SYS_ADMIN))
6339 return -EPERM;
6340
6341 /* Don't need to do anything if we are attaching to our own cgroupns. */
6342 if (cgroup_ns == nsproxy->cgroup_ns)
6343 return 0;
6344
6345 get_cgroup_ns(cgroup_ns);
6346 put_cgroup_ns(nsproxy->cgroup_ns);
6347 nsproxy->cgroup_ns = cgroup_ns;
6348
6349 return 0;
a79a908f
AK
6350}
6351
6352static struct ns_common *cgroupns_get(struct task_struct *task)
6353{
6354 struct cgroup_namespace *ns = NULL;
6355 struct nsproxy *nsproxy;
6356
6357 task_lock(task);
6358 nsproxy = task->nsproxy;
6359 if (nsproxy) {
6360 ns = nsproxy->cgroup_ns;
6361 get_cgroup_ns(ns);
6362 }
6363 task_unlock(task);
6364
6365 return ns ? &ns->ns : NULL;
6366}
6367
6368static void cgroupns_put(struct ns_common *ns)
6369{
6370 put_cgroup_ns(to_cg_ns(ns));
6371}
6372
6373const struct proc_ns_operations cgroupns_operations = {
6374 .name = "cgroup",
6375 .type = CLONE_NEWCGROUP,
6376 .get = cgroupns_get,
6377 .put = cgroupns_put,
6378 .install = cgroupns_install,
6379};
6380
6381static __init int cgroup_namespaces_init(void)
6382{
6383 return 0;
6384}
6385subsys_initcall(cgroup_namespaces_init);
6386
fe693435 6387#ifdef CONFIG_CGROUP_DEBUG
eb95419b
TH
6388static struct cgroup_subsys_state *
6389debug_css_alloc(struct cgroup_subsys_state *parent_css)
fe693435
PM
6390{
6391 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
6392
6393 if (!css)
6394 return ERR_PTR(-ENOMEM);
6395
6396 return css;
6397}
6398
eb95419b 6399static void debug_css_free(struct cgroup_subsys_state *css)
fe693435 6400{
eb95419b 6401 kfree(css);
fe693435
PM
6402}
6403
182446d0
TH
6404static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
6405 struct cftype *cft)
fe693435 6406{
182446d0 6407 return cgroup_task_count(css->cgroup);
fe693435
PM
6408}
6409
182446d0
TH
6410static u64 current_css_set_read(struct cgroup_subsys_state *css,
6411 struct cftype *cft)
fe693435
PM
6412{
6413 return (u64)(unsigned long)current->cgroups;
6414}
6415
182446d0 6416static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
03c78cbe 6417 struct cftype *cft)
fe693435
PM
6418{
6419 u64 count;
6420
6421 rcu_read_lock();
a8ad805c 6422 count = atomic_read(&task_css_set(current)->refcount);
fe693435
PM
6423 rcu_read_unlock();
6424 return count;
6425}
6426
2da8ca82 6427static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
7717f7ba 6428{
69d0206c 6429 struct cgrp_cset_link *link;
5abb8855 6430 struct css_set *cset;
e61734c5
TH
6431 char *name_buf;
6432
6433 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
6434 if (!name_buf)
6435 return -ENOMEM;
7717f7ba 6436
82d6489d 6437 spin_lock_irq(&css_set_lock);
7717f7ba 6438 rcu_read_lock();
5abb8855 6439 cset = rcu_dereference(current->cgroups);
69d0206c 6440 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 6441 struct cgroup *c = link->cgrp;
7717f7ba 6442
a2dd4247 6443 cgroup_name(c, name_buf, NAME_MAX + 1);
2c6ab6d2 6444 seq_printf(seq, "Root %d group %s\n",
a2dd4247 6445 c->root->hierarchy_id, name_buf);
7717f7ba
PM
6446 }
6447 rcu_read_unlock();
82d6489d 6448 spin_unlock_irq(&css_set_lock);
e61734c5 6449 kfree(name_buf);
7717f7ba
PM
6450 return 0;
6451}
6452
6453#define MAX_TASKS_SHOWN_PER_CSS 25
2da8ca82 6454static int cgroup_css_links_read(struct seq_file *seq, void *v)
7717f7ba 6455{
2da8ca82 6456 struct cgroup_subsys_state *css = seq_css(seq);
69d0206c 6457 struct cgrp_cset_link *link;
7717f7ba 6458
82d6489d 6459 spin_lock_irq(&css_set_lock);
182446d0 6460 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
69d0206c 6461 struct css_set *cset = link->cset;
7717f7ba
PM
6462 struct task_struct *task;
6463 int count = 0;
c7561128 6464
5abb8855 6465 seq_printf(seq, "css_set %p\n", cset);
c7561128 6466
5abb8855 6467 list_for_each_entry(task, &cset->tasks, cg_list) {
c7561128
TH
6468 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
6469 goto overflow;
6470 seq_printf(seq, " task %d\n", task_pid_vnr(task));
6471 }
6472
6473 list_for_each_entry(task, &cset->mg_tasks, cg_list) {
6474 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
6475 goto overflow;
6476 seq_printf(seq, " task %d\n", task_pid_vnr(task));
7717f7ba 6477 }
c7561128
TH
6478 continue;
6479 overflow:
6480 seq_puts(seq, " ...\n");
7717f7ba 6481 }
82d6489d 6482 spin_unlock_irq(&css_set_lock);
7717f7ba
PM
6483 return 0;
6484}
6485
182446d0 6486static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
fe693435 6487{
27bd4dbb 6488 return (!cgroup_is_populated(css->cgroup) &&
a25eb52e 6489 !css_has_online_children(&css->cgroup->self));
fe693435
PM
6490}
6491
6492static struct cftype debug_files[] = {
fe693435
PM
6493 {
6494 .name = "taskcount",
6495 .read_u64 = debug_taskcount_read,
6496 },
6497
6498 {
6499 .name = "current_css_set",
6500 .read_u64 = current_css_set_read,
6501 },
6502
6503 {
6504 .name = "current_css_set_refcount",
6505 .read_u64 = current_css_set_refcount_read,
6506 },
6507
7717f7ba
PM
6508 {
6509 .name = "current_css_set_cg_links",
2da8ca82 6510 .seq_show = current_css_set_cg_links_read,
7717f7ba
PM
6511 },
6512
6513 {
6514 .name = "cgroup_css_links",
2da8ca82 6515 .seq_show = cgroup_css_links_read,
7717f7ba
PM
6516 },
6517
fe693435
PM
6518 {
6519 .name = "releasable",
6520 .read_u64 = releasable_read,
6521 },
fe693435 6522
4baf6e33
TH
6523 { } /* terminate */
6524};
fe693435 6525
073219e9 6526struct cgroup_subsys debug_cgrp_subsys = {
92fb9748
TH
6527 .css_alloc = debug_css_alloc,
6528 .css_free = debug_css_free,
5577964e 6529 .legacy_cftypes = debug_files,
fe693435
PM
6530};
6531#endif /* CONFIG_CGROUP_DEBUG */
This page took 1.802138 seconds and 5 git commands to generate.