cgroup: implement cgroup_subsys->depends_on
[deliverable/linux.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
0dea1168
KS
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
ddbcc7e8
PM
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
ed3d261b
JP
29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
ddbcc7e8 31#include <linux/cgroup.h>
2ce9738b 32#include <linux/cred.h>
c6d57f33 33#include <linux/ctype.h>
ddbcc7e8 34#include <linux/errno.h>
2ce9738b 35#include <linux/init_task.h>
ddbcc7e8
PM
36#include <linux/kernel.h>
37#include <linux/list.h>
c9482a5b 38#include <linux/magic.h>
ddbcc7e8
PM
39#include <linux/mm.h>
40#include <linux/mutex.h>
41#include <linux/mount.h>
42#include <linux/pagemap.h>
a424316c 43#include <linux/proc_fs.h>
ddbcc7e8
PM
44#include <linux/rcupdate.h>
45#include <linux/sched.h>
ddbcc7e8 46#include <linux/slab.h>
ddbcc7e8 47#include <linux/spinlock.h>
96d365e0 48#include <linux/rwsem.h>
ddbcc7e8 49#include <linux/string.h>
bbcb81d0 50#include <linux/sort.h>
81a6a5cd 51#include <linux/kmod.h>
846c7bb0
BS
52#include <linux/delayacct.h>
53#include <linux/cgroupstats.h>
0ac801fe 54#include <linux/hashtable.h>
096b7fe0 55#include <linux/pid_namespace.h>
2c6ab6d2 56#include <linux/idr.h>
d1d9fd33 57#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
c4c27fbd 58#include <linux/kthread.h>
776f02fa 59#include <linux/delay.h>
846c7bb0 60
60063497 61#include <linux/atomic.h>
ddbcc7e8 62
b1a21367
TH
63/*
64 * pidlists linger the following amount before being destroyed. The goal
65 * is avoiding frequent destruction in the middle of consecutive read calls
66 * Expiring in the middle is a performance problem not a correctness one.
67 * 1 sec should be enough.
68 */
69#define CGROUP_PIDLIST_DESTROY_DELAY HZ
70
8d7e6fb0
TH
71#define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
72 MAX_CFTYPE_NAME + 2)
73
e25e2cbb
TH
74/*
75 * cgroup_mutex is the master lock. Any modification to cgroup or its
76 * hierarchy must be performed while holding it.
77 *
0e1d768f
TH
78 * css_set_rwsem protects task->cgroups pointer, the list of css_set
79 * objects, and the chain of tasks off each css_set.
e25e2cbb 80 *
0e1d768f
TH
81 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
82 * cgroup.h can use them for lockdep annotations.
e25e2cbb 83 */
2219449a
TH
84#ifdef CONFIG_PROVE_RCU
85DEFINE_MUTEX(cgroup_mutex);
0e1d768f
TH
86DECLARE_RWSEM(css_set_rwsem);
87EXPORT_SYMBOL_GPL(cgroup_mutex);
88EXPORT_SYMBOL_GPL(css_set_rwsem);
2219449a 89#else
81a6a5cd 90static DEFINE_MUTEX(cgroup_mutex);
0e1d768f 91static DECLARE_RWSEM(css_set_rwsem);
2219449a
TH
92#endif
93
6fa4918d 94/*
15a4c835
TH
95 * Protects cgroup_idr and css_idr so that IDs can be released without
96 * grabbing cgroup_mutex.
6fa4918d
TH
97 */
98static DEFINE_SPINLOCK(cgroup_idr_lock);
99
69e943b7
TH
100/*
101 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
102 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
103 */
104static DEFINE_SPINLOCK(release_agent_path_lock);
81a6a5cd 105
8353da1f 106#define cgroup_assert_mutex_or_rcu_locked() \
87fb54f1
TH
107 rcu_lockdep_assert(rcu_read_lock_held() || \
108 lockdep_is_held(&cgroup_mutex), \
8353da1f 109 "cgroup_mutex or RCU read lock required");
780cd8b3 110
e5fca243
TH
111/*
112 * cgroup destruction makes heavy use of work items and there can be a lot
113 * of concurrent destructions. Use a separate workqueue so that cgroup
114 * destruction work items don't end up filling up max_active of system_wq
115 * which may lead to deadlock.
116 */
117static struct workqueue_struct *cgroup_destroy_wq;
118
b1a21367
TH
119/*
120 * pidlist destructions need to be flushed on cgroup destruction. Use a
121 * separate workqueue as flush domain.
122 */
123static struct workqueue_struct *cgroup_pidlist_destroy_wq;
124
3ed80a62 125/* generate an array of cgroup subsystem pointers */
073219e9 126#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
3ed80a62 127static struct cgroup_subsys *cgroup_subsys[] = {
ddbcc7e8
PM
128#include <linux/cgroup_subsys.h>
129};
073219e9
TH
130#undef SUBSYS
131
132/* array of cgroup subsystem names */
133#define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
134static const char *cgroup_subsys_name[] = {
ddbcc7e8
PM
135#include <linux/cgroup_subsys.h>
136};
073219e9 137#undef SUBSYS
ddbcc7e8 138
ddbcc7e8 139/*
3dd06ffa 140 * The default hierarchy, reserved for the subsystems that are otherwise
9871bf95
TH
141 * unattached - it never has more than a single cgroup, and all tasks are
142 * part of that cgroup.
ddbcc7e8 143 */
a2dd4247 144struct cgroup_root cgrp_dfl_root;
9871bf95 145
a2dd4247
TH
146/*
147 * The default hierarchy always exists but is hidden until mounted for the
148 * first time. This is for backward compatibility.
149 */
150static bool cgrp_dfl_root_visible;
ddbcc7e8 151
5533e011
TH
152/* some controllers are not supported in the default hierarchy */
153static const unsigned int cgrp_dfl_root_inhibit_ss_mask = 0
154#ifdef CONFIG_CGROUP_DEBUG
155 | (1 << debug_cgrp_id)
156#endif
157 ;
158
ddbcc7e8
PM
159/* The list of hierarchy roots */
160
9871bf95
TH
161static LIST_HEAD(cgroup_roots);
162static int cgroup_root_count;
ddbcc7e8 163
3417ae1f 164/* hierarchy ID allocation and mapping, protected by cgroup_mutex */
1a574231 165static DEFINE_IDR(cgroup_hierarchy_idr);
2c6ab6d2 166
794611a1 167/*
0cb51d71
TH
168 * Assign a monotonically increasing serial number to csses. It guarantees
169 * cgroups with bigger numbers are newer than those with smaller numbers.
170 * Also, as csses are always appended to the parent's ->children list, it
171 * guarantees that sibling csses are always sorted in the ascending serial
172 * number order on the list. Protected by cgroup_mutex.
794611a1 173 */
0cb51d71 174static u64 css_serial_nr_next = 1;
794611a1 175
ddbcc7e8 176/* This flag indicates whether tasks in the fork and exit paths should
a043e3b2
LZ
177 * check for fork/exit handlers to call. This avoids us having to do
178 * extra work in the fork/exit path if none of the subsystems need to
179 * be called.
ddbcc7e8 180 */
8947f9d5 181static int need_forkexit_callback __read_mostly;
ddbcc7e8 182
628f7cd4
TH
183static struct cftype cgroup_base_files[];
184
59f5296b 185static void cgroup_put(struct cgroup *cgrp);
3dd06ffa 186static int rebind_subsystems(struct cgroup_root *dst_root,
69dfa00c 187 unsigned int ss_mask);
42809dd4 188static int cgroup_destroy_locked(struct cgroup *cgrp);
f63070d3
TH
189static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
190 bool visible);
9d755d33 191static void css_release(struct percpu_ref *ref);
f8f22e53 192static void kill_css(struct cgroup_subsys_state *css);
2bb566cb
TH
193static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
194 bool is_add);
b1a21367 195static void cgroup_pidlist_destroy_all(struct cgroup *cgrp);
42809dd4 196
6fa4918d
TH
197/* IDR wrappers which synchronize using cgroup_idr_lock */
198static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
199 gfp_t gfp_mask)
200{
201 int ret;
202
203 idr_preload(gfp_mask);
54504e97 204 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 205 ret = idr_alloc(idr, ptr, start, end, gfp_mask);
54504e97 206 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
207 idr_preload_end();
208 return ret;
209}
210
211static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
212{
213 void *ret;
214
54504e97 215 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 216 ret = idr_replace(idr, ptr, id);
54504e97 217 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
218 return ret;
219}
220
221static void cgroup_idr_remove(struct idr *idr, int id)
222{
54504e97 223 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 224 idr_remove(idr, id);
54504e97 225 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
226}
227
d51f39b0
TH
228static struct cgroup *cgroup_parent(struct cgroup *cgrp)
229{
230 struct cgroup_subsys_state *parent_css = cgrp->self.parent;
231
232 if (parent_css)
233 return container_of(parent_css, struct cgroup, self);
234 return NULL;
235}
236
95109b62
TH
237/**
238 * cgroup_css - obtain a cgroup's css for the specified subsystem
239 * @cgrp: the cgroup of interest
9d800df1 240 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
95109b62 241 *
ca8bdcaf
TH
242 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
243 * function must be called either under cgroup_mutex or rcu_read_lock() and
244 * the caller is responsible for pinning the returned css if it wants to
245 * keep accessing it outside the said locks. This function may return
246 * %NULL if @cgrp doesn't have @subsys_id enabled.
95109b62
TH
247 */
248static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
ca8bdcaf 249 struct cgroup_subsys *ss)
95109b62 250{
ca8bdcaf 251 if (ss)
aec25020 252 return rcu_dereference_check(cgrp->subsys[ss->id],
ace2bee8 253 lockdep_is_held(&cgroup_mutex));
ca8bdcaf 254 else
9d800df1 255 return &cgrp->self;
95109b62 256}
42809dd4 257
aec3dfcb
TH
258/**
259 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
260 * @cgrp: the cgroup of interest
9d800df1 261 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
aec3dfcb
TH
262 *
263 * Similar to cgroup_css() but returns the effctive css, which is defined
264 * as the matching css of the nearest ancestor including self which has @ss
265 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
266 * function is guaranteed to return non-NULL css.
267 */
268static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
269 struct cgroup_subsys *ss)
270{
271 lockdep_assert_held(&cgroup_mutex);
272
273 if (!ss)
9d800df1 274 return &cgrp->self;
aec3dfcb
TH
275
276 if (!(cgrp->root->subsys_mask & (1 << ss->id)))
277 return NULL;
278
d51f39b0
TH
279 while (cgroup_parent(cgrp) &&
280 !(cgroup_parent(cgrp)->child_subsys_mask & (1 << ss->id)))
281 cgrp = cgroup_parent(cgrp);
aec3dfcb
TH
282
283 return cgroup_css(cgrp, ss);
95109b62 284}
42809dd4 285
ddbcc7e8 286/* convenient tests for these bits */
54766d4a 287static inline bool cgroup_is_dead(const struct cgroup *cgrp)
ddbcc7e8 288{
184faf32 289 return !(cgrp->self.flags & CSS_ONLINE);
ddbcc7e8
PM
290}
291
b4168640 292struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
59f5296b 293{
2bd59d48 294 struct cgroup *cgrp = of->kn->parent->priv;
b4168640 295 struct cftype *cft = of_cft(of);
2bd59d48
TH
296
297 /*
298 * This is open and unprotected implementation of cgroup_css().
299 * seq_css() is only called from a kernfs file operation which has
300 * an active reference on the file. Because all the subsystem
301 * files are drained before a css is disassociated with a cgroup,
302 * the matching css from the cgroup's subsys table is guaranteed to
303 * be and stay valid until the enclosing operation is complete.
304 */
305 if (cft->ss)
306 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
307 else
9d800df1 308 return &cgrp->self;
59f5296b 309}
b4168640 310EXPORT_SYMBOL_GPL(of_css);
59f5296b 311
78574cf9
LZ
312/**
313 * cgroup_is_descendant - test ancestry
314 * @cgrp: the cgroup to be tested
315 * @ancestor: possible ancestor of @cgrp
316 *
317 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
318 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
319 * and @ancestor are accessible.
320 */
321bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
322{
323 while (cgrp) {
324 if (cgrp == ancestor)
325 return true;
d51f39b0 326 cgrp = cgroup_parent(cgrp);
78574cf9
LZ
327 }
328 return false;
329}
ddbcc7e8 330
e9685a03 331static int cgroup_is_releasable(const struct cgroup *cgrp)
81a6a5cd
PM
332{
333 const int bits =
bd89aabc
PM
334 (1 << CGRP_RELEASABLE) |
335 (1 << CGRP_NOTIFY_ON_RELEASE);
336 return (cgrp->flags & bits) == bits;
81a6a5cd
PM
337}
338
e9685a03 339static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 340{
bd89aabc 341 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
342}
343
1c6727af
TH
344/**
345 * for_each_css - iterate all css's of a cgroup
346 * @css: the iteration cursor
347 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
348 * @cgrp: the target cgroup to iterate css's of
349 *
aec3dfcb 350 * Should be called under cgroup_[tree_]mutex.
1c6727af
TH
351 */
352#define for_each_css(css, ssid, cgrp) \
353 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
354 if (!((css) = rcu_dereference_check( \
355 (cgrp)->subsys[(ssid)], \
356 lockdep_is_held(&cgroup_mutex)))) { } \
357 else
358
aec3dfcb
TH
359/**
360 * for_each_e_css - iterate all effective css's of a cgroup
361 * @css: the iteration cursor
362 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
363 * @cgrp: the target cgroup to iterate css's of
364 *
365 * Should be called under cgroup_[tree_]mutex.
366 */
367#define for_each_e_css(css, ssid, cgrp) \
368 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
369 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
370 ; \
371 else
372
30159ec7 373/**
3ed80a62 374 * for_each_subsys - iterate all enabled cgroup subsystems
30159ec7 375 * @ss: the iteration cursor
780cd8b3 376 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
30159ec7 377 */
780cd8b3 378#define for_each_subsys(ss, ssid) \
3ed80a62
TH
379 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
380 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
30159ec7 381
985ed670
TH
382/* iterate across the hierarchies */
383#define for_each_root(root) \
5549c497 384 list_for_each_entry((root), &cgroup_roots, root_list)
ddbcc7e8 385
f8f22e53
TH
386/* iterate over child cgrps, lock should be held throughout iteration */
387#define cgroup_for_each_live_child(child, cgrp) \
d5c419b6 388 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
8353da1f 389 if (({ lockdep_assert_held(&cgroup_mutex); \
f8f22e53
TH
390 cgroup_is_dead(child); })) \
391 ; \
392 else
7ae1bad9 393
81a6a5cd
PM
394/* the list of cgroups eligible for automatic release. Protected by
395 * release_list_lock */
396static LIST_HEAD(release_list);
cdcc136f 397static DEFINE_RAW_SPINLOCK(release_list_lock);
81a6a5cd
PM
398static void cgroup_release_agent(struct work_struct *work);
399static DECLARE_WORK(release_agent_work, cgroup_release_agent);
bd89aabc 400static void check_for_release(struct cgroup *cgrp);
81a6a5cd 401
69d0206c
TH
402/*
403 * A cgroup can be associated with multiple css_sets as different tasks may
404 * belong to different cgroups on different hierarchies. In the other
405 * direction, a css_set is naturally associated with multiple cgroups.
406 * This M:N relationship is represented by the following link structure
407 * which exists for each association and allows traversing the associations
408 * from both sides.
409 */
410struct cgrp_cset_link {
411 /* the cgroup and css_set this link associates */
412 struct cgroup *cgrp;
413 struct css_set *cset;
414
415 /* list of cgrp_cset_links anchored at cgrp->cset_links */
416 struct list_head cset_link;
417
418 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
419 struct list_head cgrp_link;
817929ec
PM
420};
421
172a2c06
TH
422/*
423 * The default css_set - used by init and its children prior to any
817929ec
PM
424 * hierarchies being mounted. It contains a pointer to the root state
425 * for each subsystem. Also used to anchor the list of css_sets. Not
426 * reference-counted, to improve performance when child cgroups
427 * haven't been created.
428 */
5024ae29 429struct css_set init_css_set = {
172a2c06
TH
430 .refcount = ATOMIC_INIT(1),
431 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
432 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
433 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
434 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
435 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
436};
817929ec 437
172a2c06 438static int css_set_count = 1; /* 1 for init_css_set */
817929ec 439
842b597e
TH
440/**
441 * cgroup_update_populated - updated populated count of a cgroup
442 * @cgrp: the target cgroup
443 * @populated: inc or dec populated count
444 *
445 * @cgrp is either getting the first task (css_set) or losing the last.
446 * Update @cgrp->populated_cnt accordingly. The count is propagated
447 * towards root so that a given cgroup's populated_cnt is zero iff the
448 * cgroup and all its descendants are empty.
449 *
450 * @cgrp's interface file "cgroup.populated" is zero if
451 * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt
452 * changes from or to zero, userland is notified that the content of the
453 * interface file has changed. This can be used to detect when @cgrp and
454 * its descendants become populated or empty.
455 */
456static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
457{
458 lockdep_assert_held(&css_set_rwsem);
459
460 do {
461 bool trigger;
462
463 if (populated)
464 trigger = !cgrp->populated_cnt++;
465 else
466 trigger = !--cgrp->populated_cnt;
467
468 if (!trigger)
469 break;
470
471 if (cgrp->populated_kn)
472 kernfs_notify(cgrp->populated_kn);
d51f39b0 473 cgrp = cgroup_parent(cgrp);
842b597e
TH
474 } while (cgrp);
475}
476
7717f7ba
PM
477/*
478 * hash table for cgroup groups. This improves the performance to find
479 * an existing css_set. This hash doesn't (currently) take into
480 * account cgroups in empty hierarchies.
481 */
472b1053 482#define CSS_SET_HASH_BITS 7
0ac801fe 483static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
472b1053 484
0ac801fe 485static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
472b1053 486{
0ac801fe 487 unsigned long key = 0UL;
30159ec7
TH
488 struct cgroup_subsys *ss;
489 int i;
472b1053 490
30159ec7 491 for_each_subsys(ss, i)
0ac801fe
LZ
492 key += (unsigned long)css[i];
493 key = (key >> 16) ^ key;
472b1053 494
0ac801fe 495 return key;
472b1053
LZ
496}
497
89c5509b 498static void put_css_set_locked(struct css_set *cset, bool taskexit)
b4f48b63 499{
69d0206c 500 struct cgrp_cset_link *link, *tmp_link;
2d8f243a
TH
501 struct cgroup_subsys *ss;
502 int ssid;
5abb8855 503
89c5509b
TH
504 lockdep_assert_held(&css_set_rwsem);
505
506 if (!atomic_dec_and_test(&cset->refcount))
146aa1bd 507 return;
81a6a5cd 508
2c6ab6d2 509 /* This css_set is dead. unlink it and release cgroup refcounts */
2d8f243a
TH
510 for_each_subsys(ss, ssid)
511 list_del(&cset->e_cset_node[ssid]);
5abb8855 512 hash_del(&cset->hlist);
2c6ab6d2
PM
513 css_set_count--;
514
69d0206c 515 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
2c6ab6d2 516 struct cgroup *cgrp = link->cgrp;
5abb8855 517
69d0206c
TH
518 list_del(&link->cset_link);
519 list_del(&link->cgrp_link);
71b5707e 520
96d365e0 521 /* @cgrp can't go away while we're holding css_set_rwsem */
842b597e
TH
522 if (list_empty(&cgrp->cset_links)) {
523 cgroup_update_populated(cgrp, false);
524 if (notify_on_release(cgrp)) {
525 if (taskexit)
526 set_bit(CGRP_RELEASABLE, &cgrp->flags);
527 check_for_release(cgrp);
528 }
81a6a5cd 529 }
2c6ab6d2
PM
530
531 kfree(link);
81a6a5cd 532 }
2c6ab6d2 533
5abb8855 534 kfree_rcu(cset, rcu_head);
b4f48b63
PM
535}
536
89c5509b
TH
537static void put_css_set(struct css_set *cset, bool taskexit)
538{
539 /*
540 * Ensure that the refcount doesn't hit zero while any readers
541 * can see it. Similar to atomic_dec_and_lock(), but for an
542 * rwlock
543 */
544 if (atomic_add_unless(&cset->refcount, -1, 1))
545 return;
546
547 down_write(&css_set_rwsem);
548 put_css_set_locked(cset, taskexit);
549 up_write(&css_set_rwsem);
550}
551
817929ec
PM
552/*
553 * refcounted get/put for css_set objects
554 */
5abb8855 555static inline void get_css_set(struct css_set *cset)
817929ec 556{
5abb8855 557 atomic_inc(&cset->refcount);
817929ec
PM
558}
559
b326f9d0 560/**
7717f7ba 561 * compare_css_sets - helper function for find_existing_css_set().
5abb8855
TH
562 * @cset: candidate css_set being tested
563 * @old_cset: existing css_set for a task
7717f7ba
PM
564 * @new_cgrp: cgroup that's being entered by the task
565 * @template: desired set of css pointers in css_set (pre-calculated)
566 *
6f4b7e63 567 * Returns true if "cset" matches "old_cset" except for the hierarchy
7717f7ba
PM
568 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
569 */
5abb8855
TH
570static bool compare_css_sets(struct css_set *cset,
571 struct css_set *old_cset,
7717f7ba
PM
572 struct cgroup *new_cgrp,
573 struct cgroup_subsys_state *template[])
574{
575 struct list_head *l1, *l2;
576
aec3dfcb
TH
577 /*
578 * On the default hierarchy, there can be csets which are
579 * associated with the same set of cgroups but different csses.
580 * Let's first ensure that csses match.
581 */
582 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
7717f7ba 583 return false;
7717f7ba
PM
584
585 /*
586 * Compare cgroup pointers in order to distinguish between
aec3dfcb
TH
587 * different cgroups in hierarchies. As different cgroups may
588 * share the same effective css, this comparison is always
589 * necessary.
7717f7ba 590 */
69d0206c
TH
591 l1 = &cset->cgrp_links;
592 l2 = &old_cset->cgrp_links;
7717f7ba 593 while (1) {
69d0206c 594 struct cgrp_cset_link *link1, *link2;
5abb8855 595 struct cgroup *cgrp1, *cgrp2;
7717f7ba
PM
596
597 l1 = l1->next;
598 l2 = l2->next;
599 /* See if we reached the end - both lists are equal length. */
69d0206c
TH
600 if (l1 == &cset->cgrp_links) {
601 BUG_ON(l2 != &old_cset->cgrp_links);
7717f7ba
PM
602 break;
603 } else {
69d0206c 604 BUG_ON(l2 == &old_cset->cgrp_links);
7717f7ba
PM
605 }
606 /* Locate the cgroups associated with these links. */
69d0206c
TH
607 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
608 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
609 cgrp1 = link1->cgrp;
610 cgrp2 = link2->cgrp;
7717f7ba 611 /* Hierarchies should be linked in the same order. */
5abb8855 612 BUG_ON(cgrp1->root != cgrp2->root);
7717f7ba
PM
613
614 /*
615 * If this hierarchy is the hierarchy of the cgroup
616 * that's changing, then we need to check that this
617 * css_set points to the new cgroup; if it's any other
618 * hierarchy, then this css_set should point to the
619 * same cgroup as the old css_set.
620 */
5abb8855
TH
621 if (cgrp1->root == new_cgrp->root) {
622 if (cgrp1 != new_cgrp)
7717f7ba
PM
623 return false;
624 } else {
5abb8855 625 if (cgrp1 != cgrp2)
7717f7ba
PM
626 return false;
627 }
628 }
629 return true;
630}
631
b326f9d0
TH
632/**
633 * find_existing_css_set - init css array and find the matching css_set
634 * @old_cset: the css_set that we're using before the cgroup transition
635 * @cgrp: the cgroup that we're moving into
636 * @template: out param for the new set of csses, should be clear on entry
817929ec 637 */
5abb8855
TH
638static struct css_set *find_existing_css_set(struct css_set *old_cset,
639 struct cgroup *cgrp,
640 struct cgroup_subsys_state *template[])
b4f48b63 641{
3dd06ffa 642 struct cgroup_root *root = cgrp->root;
30159ec7 643 struct cgroup_subsys *ss;
5abb8855 644 struct css_set *cset;
0ac801fe 645 unsigned long key;
b326f9d0 646 int i;
817929ec 647
aae8aab4
BB
648 /*
649 * Build the set of subsystem state objects that we want to see in the
650 * new css_set. while subsystems can change globally, the entries here
651 * won't change, so no need for locking.
652 */
30159ec7 653 for_each_subsys(ss, i) {
f392e51c 654 if (root->subsys_mask & (1UL << i)) {
aec3dfcb
TH
655 /*
656 * @ss is in this hierarchy, so we want the
657 * effective css from @cgrp.
658 */
659 template[i] = cgroup_e_css(cgrp, ss);
817929ec 660 } else {
aec3dfcb
TH
661 /*
662 * @ss is not in this hierarchy, so we don't want
663 * to change the css.
664 */
5abb8855 665 template[i] = old_cset->subsys[i];
817929ec
PM
666 }
667 }
668
0ac801fe 669 key = css_set_hash(template);
5abb8855
TH
670 hash_for_each_possible(css_set_table, cset, hlist, key) {
671 if (!compare_css_sets(cset, old_cset, cgrp, template))
7717f7ba
PM
672 continue;
673
674 /* This css_set matches what we need */
5abb8855 675 return cset;
472b1053 676 }
817929ec
PM
677
678 /* No existing cgroup group matched */
679 return NULL;
680}
681
69d0206c 682static void free_cgrp_cset_links(struct list_head *links_to_free)
36553434 683{
69d0206c 684 struct cgrp_cset_link *link, *tmp_link;
36553434 685
69d0206c
TH
686 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
687 list_del(&link->cset_link);
36553434
LZ
688 kfree(link);
689 }
690}
691
69d0206c
TH
692/**
693 * allocate_cgrp_cset_links - allocate cgrp_cset_links
694 * @count: the number of links to allocate
695 * @tmp_links: list_head the allocated links are put on
696 *
697 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
698 * through ->cset_link. Returns 0 on success or -errno.
817929ec 699 */
69d0206c 700static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
817929ec 701{
69d0206c 702 struct cgrp_cset_link *link;
817929ec 703 int i;
69d0206c
TH
704
705 INIT_LIST_HEAD(tmp_links);
706
817929ec 707 for (i = 0; i < count; i++) {
f4f4be2b 708 link = kzalloc(sizeof(*link), GFP_KERNEL);
817929ec 709 if (!link) {
69d0206c 710 free_cgrp_cset_links(tmp_links);
817929ec
PM
711 return -ENOMEM;
712 }
69d0206c 713 list_add(&link->cset_link, tmp_links);
817929ec
PM
714 }
715 return 0;
716}
717
c12f65d4
LZ
718/**
719 * link_css_set - a helper function to link a css_set to a cgroup
69d0206c 720 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
5abb8855 721 * @cset: the css_set to be linked
c12f65d4
LZ
722 * @cgrp: the destination cgroup
723 */
69d0206c
TH
724static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
725 struct cgroup *cgrp)
c12f65d4 726{
69d0206c 727 struct cgrp_cset_link *link;
c12f65d4 728
69d0206c 729 BUG_ON(list_empty(tmp_links));
6803c006
TH
730
731 if (cgroup_on_dfl(cgrp))
732 cset->dfl_cgrp = cgrp;
733
69d0206c
TH
734 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
735 link->cset = cset;
7717f7ba 736 link->cgrp = cgrp;
842b597e
TH
737
738 if (list_empty(&cgrp->cset_links))
739 cgroup_update_populated(cgrp, true);
69d0206c 740 list_move(&link->cset_link, &cgrp->cset_links);
842b597e 741
7717f7ba
PM
742 /*
743 * Always add links to the tail of the list so that the list
744 * is sorted by order of hierarchy creation
745 */
69d0206c 746 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
c12f65d4
LZ
747}
748
b326f9d0
TH
749/**
750 * find_css_set - return a new css_set with one cgroup updated
751 * @old_cset: the baseline css_set
752 * @cgrp: the cgroup to be updated
753 *
754 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
755 * substituted into the appropriate hierarchy.
817929ec 756 */
5abb8855
TH
757static struct css_set *find_css_set(struct css_set *old_cset,
758 struct cgroup *cgrp)
817929ec 759{
b326f9d0 760 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
5abb8855 761 struct css_set *cset;
69d0206c
TH
762 struct list_head tmp_links;
763 struct cgrp_cset_link *link;
2d8f243a 764 struct cgroup_subsys *ss;
0ac801fe 765 unsigned long key;
2d8f243a 766 int ssid;
472b1053 767
b326f9d0
TH
768 lockdep_assert_held(&cgroup_mutex);
769
817929ec
PM
770 /* First see if we already have a cgroup group that matches
771 * the desired set */
96d365e0 772 down_read(&css_set_rwsem);
5abb8855
TH
773 cset = find_existing_css_set(old_cset, cgrp, template);
774 if (cset)
775 get_css_set(cset);
96d365e0 776 up_read(&css_set_rwsem);
817929ec 777
5abb8855
TH
778 if (cset)
779 return cset;
817929ec 780
f4f4be2b 781 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
5abb8855 782 if (!cset)
817929ec
PM
783 return NULL;
784
69d0206c 785 /* Allocate all the cgrp_cset_link objects that we'll need */
9871bf95 786 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
5abb8855 787 kfree(cset);
817929ec
PM
788 return NULL;
789 }
790
5abb8855 791 atomic_set(&cset->refcount, 1);
69d0206c 792 INIT_LIST_HEAD(&cset->cgrp_links);
5abb8855 793 INIT_LIST_HEAD(&cset->tasks);
c7561128 794 INIT_LIST_HEAD(&cset->mg_tasks);
1958d2d5 795 INIT_LIST_HEAD(&cset->mg_preload_node);
b3dc094e 796 INIT_LIST_HEAD(&cset->mg_node);
5abb8855 797 INIT_HLIST_NODE(&cset->hlist);
817929ec
PM
798
799 /* Copy the set of subsystem state objects generated in
800 * find_existing_css_set() */
5abb8855 801 memcpy(cset->subsys, template, sizeof(cset->subsys));
817929ec 802
96d365e0 803 down_write(&css_set_rwsem);
817929ec 804 /* Add reference counts and links from the new css_set. */
69d0206c 805 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
7717f7ba 806 struct cgroup *c = link->cgrp;
69d0206c 807
7717f7ba
PM
808 if (c->root == cgrp->root)
809 c = cgrp;
69d0206c 810 link_css_set(&tmp_links, cset, c);
7717f7ba 811 }
817929ec 812
69d0206c 813 BUG_ON(!list_empty(&tmp_links));
817929ec 814
817929ec 815 css_set_count++;
472b1053 816
2d8f243a 817 /* Add @cset to the hash table */
5abb8855
TH
818 key = css_set_hash(cset->subsys);
819 hash_add(css_set_table, &cset->hlist, key);
472b1053 820
2d8f243a
TH
821 for_each_subsys(ss, ssid)
822 list_add_tail(&cset->e_cset_node[ssid],
823 &cset->subsys[ssid]->cgroup->e_csets[ssid]);
824
96d365e0 825 up_write(&css_set_rwsem);
817929ec 826
5abb8855 827 return cset;
b4f48b63
PM
828}
829
3dd06ffa 830static struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
7717f7ba 831{
3dd06ffa 832 struct cgroup *root_cgrp = kf_root->kn->priv;
2bd59d48 833
3dd06ffa 834 return root_cgrp->root;
2bd59d48
TH
835}
836
3dd06ffa 837static int cgroup_init_root_id(struct cgroup_root *root)
f2e85d57
TH
838{
839 int id;
840
841 lockdep_assert_held(&cgroup_mutex);
842
985ed670 843 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
f2e85d57
TH
844 if (id < 0)
845 return id;
846
847 root->hierarchy_id = id;
848 return 0;
849}
850
3dd06ffa 851static void cgroup_exit_root_id(struct cgroup_root *root)
f2e85d57
TH
852{
853 lockdep_assert_held(&cgroup_mutex);
854
855 if (root->hierarchy_id) {
856 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
857 root->hierarchy_id = 0;
858 }
859}
860
3dd06ffa 861static void cgroup_free_root(struct cgroup_root *root)
f2e85d57
TH
862{
863 if (root) {
864 /* hierarhcy ID shoulid already have been released */
865 WARN_ON_ONCE(root->hierarchy_id);
866
867 idr_destroy(&root->cgroup_idr);
868 kfree(root);
869 }
870}
871
3dd06ffa 872static void cgroup_destroy_root(struct cgroup_root *root)
59f5296b 873{
3dd06ffa 874 struct cgroup *cgrp = &root->cgrp;
f2e85d57 875 struct cgrp_cset_link *link, *tmp_link;
f2e85d57 876
2bd59d48 877 mutex_lock(&cgroup_mutex);
f2e85d57 878
776f02fa 879 BUG_ON(atomic_read(&root->nr_cgrps));
d5c419b6 880 BUG_ON(!list_empty(&cgrp->self.children));
f2e85d57 881
f2e85d57 882 /* Rebind all subsystems back to the default hierarchy */
f392e51c 883 rebind_subsystems(&cgrp_dfl_root, root->subsys_mask);
7717f7ba 884
7717f7ba 885 /*
f2e85d57
TH
886 * Release all the links from cset_links to this hierarchy's
887 * root cgroup
7717f7ba 888 */
96d365e0 889 down_write(&css_set_rwsem);
f2e85d57
TH
890
891 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
892 list_del(&link->cset_link);
893 list_del(&link->cgrp_link);
894 kfree(link);
895 }
96d365e0 896 up_write(&css_set_rwsem);
f2e85d57
TH
897
898 if (!list_empty(&root->root_list)) {
899 list_del(&root->root_list);
900 cgroup_root_count--;
901 }
902
903 cgroup_exit_root_id(root);
904
905 mutex_unlock(&cgroup_mutex);
f2e85d57 906
2bd59d48 907 kernfs_destroy_root(root->kf_root);
f2e85d57
TH
908 cgroup_free_root(root);
909}
910
ceb6a081
TH
911/* look up cgroup associated with given css_set on the specified hierarchy */
912static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
3dd06ffa 913 struct cgroup_root *root)
7717f7ba 914{
7717f7ba
PM
915 struct cgroup *res = NULL;
916
96d365e0
TH
917 lockdep_assert_held(&cgroup_mutex);
918 lockdep_assert_held(&css_set_rwsem);
919
5abb8855 920 if (cset == &init_css_set) {
3dd06ffa 921 res = &root->cgrp;
7717f7ba 922 } else {
69d0206c
TH
923 struct cgrp_cset_link *link;
924
925 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 926 struct cgroup *c = link->cgrp;
69d0206c 927
7717f7ba
PM
928 if (c->root == root) {
929 res = c;
930 break;
931 }
932 }
933 }
96d365e0 934
7717f7ba
PM
935 BUG_ON(!res);
936 return res;
937}
938
ddbcc7e8 939/*
ceb6a081
TH
940 * Return the cgroup for "task" from the given hierarchy. Must be
941 * called with cgroup_mutex and css_set_rwsem held.
942 */
943static struct cgroup *task_cgroup_from_root(struct task_struct *task,
3dd06ffa 944 struct cgroup_root *root)
ceb6a081
TH
945{
946 /*
947 * No need to lock the task - since we hold cgroup_mutex the
948 * task can't change groups, so the only thing that can happen
949 * is that it exits and its css is set back to init_css_set.
950 */
951 return cset_cgroup_from_root(task_css_set(task), root);
952}
953
ddbcc7e8 954/*
ddbcc7e8
PM
955 * A task must hold cgroup_mutex to modify cgroups.
956 *
957 * Any task can increment and decrement the count field without lock.
958 * So in general, code holding cgroup_mutex can't rely on the count
959 * field not changing. However, if the count goes to zero, then only
956db3ca 960 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
961 * means that no tasks are currently attached, therefore there is no
962 * way a task attached to that cgroup can fork (the other way to
963 * increment the count). So code holding cgroup_mutex can safely
964 * assume that if the count is zero, it will stay zero. Similarly, if
965 * a task holds cgroup_mutex on a cgroup with zero count, it
966 * knows that the cgroup won't be removed, as cgroup_rmdir()
967 * needs that mutex.
968 *
ddbcc7e8
PM
969 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
970 * (usually) take cgroup_mutex. These are the two most performance
971 * critical pieces of code here. The exception occurs on cgroup_exit(),
972 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
973 * is taken, and if the cgroup count is zero, a usermode call made
a043e3b2
LZ
974 * to the release agent with the name of the cgroup (path relative to
975 * the root of cgroup file system) as the argument.
ddbcc7e8
PM
976 *
977 * A cgroup can only be deleted if both its 'count' of using tasks
978 * is zero, and its list of 'children' cgroups is empty. Since all
979 * tasks in the system use _some_ cgroup, and since there is always at
3dd06ffa 980 * least one task in the system (init, pid == 1), therefore, root cgroup
ddbcc7e8 981 * always has either children cgroups and/or using tasks. So we don't
3dd06ffa 982 * need a special hack to ensure that root cgroup cannot be deleted.
ddbcc7e8
PM
983 *
984 * P.S. One more locking exception. RCU is used to guard the
956db3ca 985 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
986 */
987
69dfa00c 988static int cgroup_populate_dir(struct cgroup *cgrp, unsigned int subsys_mask);
2bd59d48 989static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
828c0950 990static const struct file_operations proc_cgroupstats_operations;
a424316c 991
8d7e6fb0
TH
992static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
993 char *buf)
ddbcc7e8 994{
8d7e6fb0
TH
995 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
996 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
997 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
998 cft->ss->name, cft->name);
999 else
1000 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1001 return buf;
ddbcc7e8
PM
1002}
1003
f2e85d57
TH
1004/**
1005 * cgroup_file_mode - deduce file mode of a control file
1006 * @cft: the control file in question
1007 *
1008 * returns cft->mode if ->mode is not 0
1009 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
1010 * returns S_IRUGO if it has only a read handler
1011 * returns S_IWUSR if it has only a write hander
1012 */
1013static umode_t cgroup_file_mode(const struct cftype *cft)
65dff759 1014{
f2e85d57 1015 umode_t mode = 0;
65dff759 1016
f2e85d57
TH
1017 if (cft->mode)
1018 return cft->mode;
1019
1020 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1021 mode |= S_IRUGO;
1022
6770c64e 1023 if (cft->write_u64 || cft->write_s64 || cft->write)
f2e85d57
TH
1024 mode |= S_IWUSR;
1025
1026 return mode;
65dff759
LZ
1027}
1028
59f5296b 1029static void cgroup_get(struct cgroup *cgrp)
be445626 1030{
2bd59d48 1031 WARN_ON_ONCE(cgroup_is_dead(cgrp));
9d755d33 1032 css_get(&cgrp->self);
be445626
LZ
1033}
1034
59f5296b 1035static void cgroup_put(struct cgroup *cgrp)
be445626 1036{
9d755d33 1037 css_put(&cgrp->self);
be445626
LZ
1038}
1039
af0ba678
TH
1040/**
1041 * cgroup_refresh_child_subsys_mask - update child_subsys_mask
1042 * @cgrp: the target cgroup
1043 *
1044 * On the default hierarchy, a subsystem may request other subsystems to be
1045 * enabled together through its ->depends_on mask. In such cases, more
1046 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1047 *
1048 * This function determines which subsystems need to be enabled given the
1049 * current @cgrp->subtree_control and records it in
1050 * @cgrp->child_subsys_mask. The resulting mask is always a superset of
1051 * @cgrp->subtree_control and follows the usual hierarchy rules.
1052 */
667c2491
TH
1053static void cgroup_refresh_child_subsys_mask(struct cgroup *cgrp)
1054{
af0ba678
TH
1055 struct cgroup *parent = cgroup_parent(cgrp);
1056 unsigned int cur_ss_mask = cgrp->subtree_control;
1057 struct cgroup_subsys *ss;
1058 int ssid;
1059
1060 lockdep_assert_held(&cgroup_mutex);
1061
1062 if (!cgroup_on_dfl(cgrp)) {
1063 cgrp->child_subsys_mask = cur_ss_mask;
1064 return;
1065 }
1066
1067 while (true) {
1068 unsigned int new_ss_mask = cur_ss_mask;
1069
1070 for_each_subsys(ss, ssid)
1071 if (cur_ss_mask & (1 << ssid))
1072 new_ss_mask |= ss->depends_on;
1073
1074 /*
1075 * Mask out subsystems which aren't available. This can
1076 * happen only if some depended-upon subsystems were bound
1077 * to non-default hierarchies.
1078 */
1079 if (parent)
1080 new_ss_mask &= parent->child_subsys_mask;
1081 else
1082 new_ss_mask &= cgrp->root->subsys_mask;
1083
1084 if (new_ss_mask == cur_ss_mask)
1085 break;
1086 cur_ss_mask = new_ss_mask;
1087 }
1088
1089 cgrp->child_subsys_mask = cur_ss_mask;
667c2491
TH
1090}
1091
a9746d8d
TH
1092/**
1093 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1094 * @kn: the kernfs_node being serviced
1095 *
1096 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1097 * the method finishes if locking succeeded. Note that once this function
1098 * returns the cgroup returned by cgroup_kn_lock_live() may become
1099 * inaccessible any time. If the caller intends to continue to access the
1100 * cgroup, it should pin it before invoking this function.
1101 */
1102static void cgroup_kn_unlock(struct kernfs_node *kn)
ddbcc7e8 1103{
a9746d8d
TH
1104 struct cgroup *cgrp;
1105
1106 if (kernfs_type(kn) == KERNFS_DIR)
1107 cgrp = kn->priv;
1108 else
1109 cgrp = kn->parent->priv;
1110
1111 mutex_unlock(&cgroup_mutex);
a9746d8d
TH
1112
1113 kernfs_unbreak_active_protection(kn);
1114 cgroup_put(cgrp);
ddbcc7e8
PM
1115}
1116
a9746d8d
TH
1117/**
1118 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1119 * @kn: the kernfs_node being serviced
1120 *
1121 * This helper is to be used by a cgroup kernfs method currently servicing
1122 * @kn. It breaks the active protection, performs cgroup locking and
1123 * verifies that the associated cgroup is alive. Returns the cgroup if
1124 * alive; otherwise, %NULL. A successful return should be undone by a
1125 * matching cgroup_kn_unlock() invocation.
1126 *
1127 * Any cgroup kernfs method implementation which requires locking the
1128 * associated cgroup should use this helper. It avoids nesting cgroup
1129 * locking under kernfs active protection and allows all kernfs operations
1130 * including self-removal.
1131 */
1132static struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn)
05ef1d7c 1133{
a9746d8d
TH
1134 struct cgroup *cgrp;
1135
1136 if (kernfs_type(kn) == KERNFS_DIR)
1137 cgrp = kn->priv;
1138 else
1139 cgrp = kn->parent->priv;
05ef1d7c 1140
2739d3cc 1141 /*
01f6474c 1142 * We're gonna grab cgroup_mutex which nests outside kernfs
a9746d8d
TH
1143 * active_ref. cgroup liveliness check alone provides enough
1144 * protection against removal. Ensure @cgrp stays accessible and
1145 * break the active_ref protection.
2739d3cc 1146 */
a9746d8d
TH
1147 cgroup_get(cgrp);
1148 kernfs_break_active_protection(kn);
1149
2bd59d48 1150 mutex_lock(&cgroup_mutex);
05ef1d7c 1151
a9746d8d
TH
1152 if (!cgroup_is_dead(cgrp))
1153 return cgrp;
1154
1155 cgroup_kn_unlock(kn);
1156 return NULL;
ddbcc7e8 1157}
05ef1d7c 1158
2739d3cc 1159static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
05ef1d7c 1160{
2bd59d48 1161 char name[CGROUP_FILE_NAME_MAX];
05ef1d7c 1162
01f6474c 1163 lockdep_assert_held(&cgroup_mutex);
2bd59d48 1164 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
05ef1d7c
TH
1165}
1166
13af07df 1167/**
628f7cd4 1168 * cgroup_clear_dir - remove subsys files in a cgroup directory
8f89140a 1169 * @cgrp: target cgroup
13af07df
AR
1170 * @subsys_mask: mask of the subsystem ids whose files should be removed
1171 */
69dfa00c 1172static void cgroup_clear_dir(struct cgroup *cgrp, unsigned int subsys_mask)
05ef1d7c 1173{
13af07df 1174 struct cgroup_subsys *ss;
b420ba7d 1175 int i;
05ef1d7c 1176
b420ba7d 1177 for_each_subsys(ss, i) {
0adb0704 1178 struct cftype *cfts;
b420ba7d 1179
69dfa00c 1180 if (!(subsys_mask & (1 << i)))
13af07df 1181 continue;
0adb0704
TH
1182 list_for_each_entry(cfts, &ss->cfts, node)
1183 cgroup_addrm_files(cgrp, cfts, false);
13af07df 1184 }
ddbcc7e8
PM
1185}
1186
69dfa00c 1187static int rebind_subsystems(struct cgroup_root *dst_root, unsigned int ss_mask)
ddbcc7e8 1188{
30159ec7 1189 struct cgroup_subsys *ss;
5533e011 1190 unsigned int tmp_ss_mask;
2d8f243a 1191 int ssid, i, ret;
ddbcc7e8 1192
ace2bee8 1193 lockdep_assert_held(&cgroup_mutex);
ddbcc7e8 1194
5df36032
TH
1195 for_each_subsys(ss, ssid) {
1196 if (!(ss_mask & (1 << ssid)))
1197 continue;
aae8aab4 1198
7fd8c565
TH
1199 /* if @ss has non-root csses attached to it, can't move */
1200 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)))
3ed80a62 1201 return -EBUSY;
1d5be6b2 1202
5df36032 1203 /* can't move between two non-dummy roots either */
7fd8c565 1204 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
5df36032 1205 return -EBUSY;
ddbcc7e8
PM
1206 }
1207
5533e011
TH
1208 /* skip creating root files on dfl_root for inhibited subsystems */
1209 tmp_ss_mask = ss_mask;
1210 if (dst_root == &cgrp_dfl_root)
1211 tmp_ss_mask &= ~cgrp_dfl_root_inhibit_ss_mask;
1212
1213 ret = cgroup_populate_dir(&dst_root->cgrp, tmp_ss_mask);
a2dd4247
TH
1214 if (ret) {
1215 if (dst_root != &cgrp_dfl_root)
5df36032 1216 return ret;
ddbcc7e8 1217
a2dd4247
TH
1218 /*
1219 * Rebinding back to the default root is not allowed to
1220 * fail. Using both default and non-default roots should
1221 * be rare. Moving subsystems back and forth even more so.
1222 * Just warn about it and continue.
1223 */
1224 if (cgrp_dfl_root_visible) {
69dfa00c 1225 pr_warn("failed to create files (%d) while rebinding 0x%x to default root\n",
a2a1f9ea 1226 ret, ss_mask);
ed3d261b 1227 pr_warn("you may retry by moving them to a different hierarchy and unbinding\n");
a2dd4247 1228 }
5df36032 1229 }
3126121f
TH
1230
1231 /*
1232 * Nothing can fail from this point on. Remove files for the
1233 * removed subsystems and rebind each subsystem.
1234 */
5df36032 1235 for_each_subsys(ss, ssid)
a2dd4247 1236 if (ss_mask & (1 << ssid))
3dd06ffa 1237 cgroup_clear_dir(&ss->root->cgrp, 1 << ssid);
a8a648c4 1238
5df36032 1239 for_each_subsys(ss, ssid) {
3dd06ffa 1240 struct cgroup_root *src_root;
5df36032 1241 struct cgroup_subsys_state *css;
2d8f243a 1242 struct css_set *cset;
a8a648c4 1243
5df36032
TH
1244 if (!(ss_mask & (1 << ssid)))
1245 continue;
a8a648c4 1246
5df36032 1247 src_root = ss->root;
3dd06ffa 1248 css = cgroup_css(&src_root->cgrp, ss);
a8a648c4 1249
3dd06ffa 1250 WARN_ON(!css || cgroup_css(&dst_root->cgrp, ss));
73e80ed8 1251
3dd06ffa
TH
1252 RCU_INIT_POINTER(src_root->cgrp.subsys[ssid], NULL);
1253 rcu_assign_pointer(dst_root->cgrp.subsys[ssid], css);
5df36032 1254 ss->root = dst_root;
3dd06ffa 1255 css->cgroup = &dst_root->cgrp;
73e80ed8 1256
2d8f243a
TH
1257 down_write(&css_set_rwsem);
1258 hash_for_each(css_set_table, i, cset, hlist)
1259 list_move_tail(&cset->e_cset_node[ss->id],
1260 &dst_root->cgrp.e_csets[ss->id]);
1261 up_write(&css_set_rwsem);
1262
f392e51c 1263 src_root->subsys_mask &= ~(1 << ssid);
667c2491
TH
1264 src_root->cgrp.subtree_control &= ~(1 << ssid);
1265 cgroup_refresh_child_subsys_mask(&src_root->cgrp);
f392e51c 1266
bd53d617 1267 /* default hierarchy doesn't enable controllers by default */
f392e51c 1268 dst_root->subsys_mask |= 1 << ssid;
667c2491
TH
1269 if (dst_root != &cgrp_dfl_root) {
1270 dst_root->cgrp.subtree_control |= 1 << ssid;
1271 cgroup_refresh_child_subsys_mask(&dst_root->cgrp);
1272 }
a8a648c4 1273
5df36032
TH
1274 if (ss->bind)
1275 ss->bind(css);
ddbcc7e8 1276 }
ddbcc7e8 1277
a2dd4247 1278 kernfs_activate(dst_root->cgrp.kn);
ddbcc7e8
PM
1279 return 0;
1280}
1281
2bd59d48
TH
1282static int cgroup_show_options(struct seq_file *seq,
1283 struct kernfs_root *kf_root)
ddbcc7e8 1284{
3dd06ffa 1285 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1286 struct cgroup_subsys *ss;
b85d2040 1287 int ssid;
ddbcc7e8 1288
b85d2040 1289 for_each_subsys(ss, ssid)
f392e51c 1290 if (root->subsys_mask & (1 << ssid))
b85d2040 1291 seq_printf(seq, ",%s", ss->name);
873fe09e
TH
1292 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR)
1293 seq_puts(seq, ",sane_behavior");
93438629 1294 if (root->flags & CGRP_ROOT_NOPREFIX)
ddbcc7e8 1295 seq_puts(seq, ",noprefix");
93438629 1296 if (root->flags & CGRP_ROOT_XATTR)
03b1cde6 1297 seq_puts(seq, ",xattr");
69e943b7
TH
1298
1299 spin_lock(&release_agent_path_lock);
81a6a5cd
PM
1300 if (strlen(root->release_agent_path))
1301 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
69e943b7
TH
1302 spin_unlock(&release_agent_path_lock);
1303
3dd06ffa 1304 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
97978e6d 1305 seq_puts(seq, ",clone_children");
c6d57f33
PM
1306 if (strlen(root->name))
1307 seq_printf(seq, ",name=%s", root->name);
ddbcc7e8
PM
1308 return 0;
1309}
1310
1311struct cgroup_sb_opts {
69dfa00c
TH
1312 unsigned int subsys_mask;
1313 unsigned int flags;
81a6a5cd 1314 char *release_agent;
2260e7fc 1315 bool cpuset_clone_children;
c6d57f33 1316 char *name;
2c6ab6d2
PM
1317 /* User explicitly requested empty subsystem */
1318 bool none;
ddbcc7e8
PM
1319};
1320
cf5d5941 1321static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
ddbcc7e8 1322{
32a8cf23
DL
1323 char *token, *o = data;
1324 bool all_ss = false, one_ss = false;
69dfa00c 1325 unsigned int mask = -1U;
30159ec7
TH
1326 struct cgroup_subsys *ss;
1327 int i;
f9ab5b5b
LZ
1328
1329#ifdef CONFIG_CPUSETS
69dfa00c 1330 mask = ~(1U << cpuset_cgrp_id);
f9ab5b5b 1331#endif
ddbcc7e8 1332
c6d57f33 1333 memset(opts, 0, sizeof(*opts));
ddbcc7e8
PM
1334
1335 while ((token = strsep(&o, ",")) != NULL) {
1336 if (!*token)
1337 return -EINVAL;
32a8cf23 1338 if (!strcmp(token, "none")) {
2c6ab6d2
PM
1339 /* Explicitly have no subsystems */
1340 opts->none = true;
32a8cf23
DL
1341 continue;
1342 }
1343 if (!strcmp(token, "all")) {
1344 /* Mutually exclusive option 'all' + subsystem name */
1345 if (one_ss)
1346 return -EINVAL;
1347 all_ss = true;
1348 continue;
1349 }
873fe09e
TH
1350 if (!strcmp(token, "__DEVEL__sane_behavior")) {
1351 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1352 continue;
1353 }
32a8cf23 1354 if (!strcmp(token, "noprefix")) {
93438629 1355 opts->flags |= CGRP_ROOT_NOPREFIX;
32a8cf23
DL
1356 continue;
1357 }
1358 if (!strcmp(token, "clone_children")) {
2260e7fc 1359 opts->cpuset_clone_children = true;
32a8cf23
DL
1360 continue;
1361 }
03b1cde6 1362 if (!strcmp(token, "xattr")) {
93438629 1363 opts->flags |= CGRP_ROOT_XATTR;
03b1cde6
AR
1364 continue;
1365 }
32a8cf23 1366 if (!strncmp(token, "release_agent=", 14)) {
81a6a5cd
PM
1367 /* Specifying two release agents is forbidden */
1368 if (opts->release_agent)
1369 return -EINVAL;
c6d57f33 1370 opts->release_agent =
e400c285 1371 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
81a6a5cd
PM
1372 if (!opts->release_agent)
1373 return -ENOMEM;
32a8cf23
DL
1374 continue;
1375 }
1376 if (!strncmp(token, "name=", 5)) {
c6d57f33
PM
1377 const char *name = token + 5;
1378 /* Can't specify an empty name */
1379 if (!strlen(name))
1380 return -EINVAL;
1381 /* Must match [\w.-]+ */
1382 for (i = 0; i < strlen(name); i++) {
1383 char c = name[i];
1384 if (isalnum(c))
1385 continue;
1386 if ((c == '.') || (c == '-') || (c == '_'))
1387 continue;
1388 return -EINVAL;
1389 }
1390 /* Specifying two names is forbidden */
1391 if (opts->name)
1392 return -EINVAL;
1393 opts->name = kstrndup(name,
e400c285 1394 MAX_CGROUP_ROOT_NAMELEN - 1,
c6d57f33
PM
1395 GFP_KERNEL);
1396 if (!opts->name)
1397 return -ENOMEM;
32a8cf23
DL
1398
1399 continue;
1400 }
1401
30159ec7 1402 for_each_subsys(ss, i) {
32a8cf23
DL
1403 if (strcmp(token, ss->name))
1404 continue;
1405 if (ss->disabled)
1406 continue;
1407
1408 /* Mutually exclusive option 'all' + subsystem name */
1409 if (all_ss)
1410 return -EINVAL;
69dfa00c 1411 opts->subsys_mask |= (1 << i);
32a8cf23
DL
1412 one_ss = true;
1413
1414 break;
1415 }
1416 if (i == CGROUP_SUBSYS_COUNT)
1417 return -ENOENT;
1418 }
1419
2c6ab6d2
PM
1420 /* Consistency checks */
1421
873fe09e 1422 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
ed3d261b 1423 pr_warn("sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
873fe09e 1424
d3ba07c3
TH
1425 if ((opts->flags & (CGRP_ROOT_NOPREFIX | CGRP_ROOT_XATTR)) ||
1426 opts->cpuset_clone_children || opts->release_agent ||
1427 opts->name) {
ed3d261b 1428 pr_err("sane_behavior: noprefix, xattr, clone_children, release_agent and name are not allowed\n");
873fe09e
TH
1429 return -EINVAL;
1430 }
a2dd4247
TH
1431 } else {
1432 /*
1433 * If the 'all' option was specified select all the
1434 * subsystems, otherwise if 'none', 'name=' and a subsystem
1435 * name options were not specified, let's default to 'all'
1436 */
1437 if (all_ss || (!one_ss && !opts->none && !opts->name))
1438 for_each_subsys(ss, i)
1439 if (!ss->disabled)
69dfa00c 1440 opts->subsys_mask |= (1 << i);
873fe09e 1441
a2dd4247
TH
1442 /*
1443 * We either have to specify by name or by subsystems. (So
1444 * all empty hierarchies must have a name).
1445 */
1446 if (!opts->subsys_mask && !opts->name)
873fe09e 1447 return -EINVAL;
873fe09e
TH
1448 }
1449
f9ab5b5b
LZ
1450 /*
1451 * Option noprefix was introduced just for backward compatibility
1452 * with the old cpuset, so we allow noprefix only if mounting just
1453 * the cpuset subsystem.
1454 */
93438629 1455 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
f9ab5b5b
LZ
1456 return -EINVAL;
1457
2c6ab6d2
PM
1458
1459 /* Can't specify "none" and some subsystems */
a1a71b45 1460 if (opts->subsys_mask && opts->none)
2c6ab6d2
PM
1461 return -EINVAL;
1462
ddbcc7e8
PM
1463 return 0;
1464}
1465
2bd59d48 1466static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
ddbcc7e8
PM
1467{
1468 int ret = 0;
3dd06ffa 1469 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1470 struct cgroup_sb_opts opts;
69dfa00c 1471 unsigned int added_mask, removed_mask;
ddbcc7e8 1472
873fe09e 1473 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR) {
ed3d261b 1474 pr_err("sane_behavior: remount is not allowed\n");
873fe09e
TH
1475 return -EINVAL;
1476 }
1477
ddbcc7e8
PM
1478 mutex_lock(&cgroup_mutex);
1479
1480 /* See what subsystems are wanted */
1481 ret = parse_cgroupfs_options(data, &opts);
1482 if (ret)
1483 goto out_unlock;
1484
f392e51c 1485 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
ed3d261b 1486 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
a2a1f9ea 1487 task_tgid_nr(current), current->comm);
8b5a5a9d 1488
f392e51c
TH
1489 added_mask = opts.subsys_mask & ~root->subsys_mask;
1490 removed_mask = root->subsys_mask & ~opts.subsys_mask;
13af07df 1491
cf5d5941 1492 /* Don't allow flags or name to change at remount */
0ce6cba3 1493 if (((opts.flags ^ root->flags) & CGRP_ROOT_OPTION_MASK) ||
cf5d5941 1494 (opts.name && strcmp(opts.name, root->name))) {
69dfa00c 1495 pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
0ce6cba3
TH
1496 opts.flags & CGRP_ROOT_OPTION_MASK, opts.name ?: "",
1497 root->flags & CGRP_ROOT_OPTION_MASK, root->name);
c6d57f33
PM
1498 ret = -EINVAL;
1499 goto out_unlock;
1500 }
1501
f172e67c 1502 /* remounting is not allowed for populated hierarchies */
d5c419b6 1503 if (!list_empty(&root->cgrp.self.children)) {
f172e67c 1504 ret = -EBUSY;
0670e08b 1505 goto out_unlock;
cf5d5941 1506 }
ddbcc7e8 1507
5df36032 1508 ret = rebind_subsystems(root, added_mask);
3126121f 1509 if (ret)
0670e08b 1510 goto out_unlock;
ddbcc7e8 1511
3dd06ffa 1512 rebind_subsystems(&cgrp_dfl_root, removed_mask);
5df36032 1513
69e943b7
TH
1514 if (opts.release_agent) {
1515 spin_lock(&release_agent_path_lock);
81a6a5cd 1516 strcpy(root->release_agent_path, opts.release_agent);
69e943b7
TH
1517 spin_unlock(&release_agent_path_lock);
1518 }
ddbcc7e8 1519 out_unlock:
66bdc9cf 1520 kfree(opts.release_agent);
c6d57f33 1521 kfree(opts.name);
ddbcc7e8 1522 mutex_unlock(&cgroup_mutex);
ddbcc7e8
PM
1523 return ret;
1524}
1525
afeb0f9f
TH
1526/*
1527 * To reduce the fork() overhead for systems that are not actually using
1528 * their cgroups capability, we don't maintain the lists running through
1529 * each css_set to its tasks until we see the list actually used - in other
1530 * words after the first mount.
1531 */
1532static bool use_task_css_set_links __read_mostly;
1533
1534static void cgroup_enable_task_cg_lists(void)
1535{
1536 struct task_struct *p, *g;
1537
96d365e0 1538 down_write(&css_set_rwsem);
afeb0f9f
TH
1539
1540 if (use_task_css_set_links)
1541 goto out_unlock;
1542
1543 use_task_css_set_links = true;
1544
1545 /*
1546 * We need tasklist_lock because RCU is not safe against
1547 * while_each_thread(). Besides, a forking task that has passed
1548 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1549 * is not guaranteed to have its child immediately visible in the
1550 * tasklist if we walk through it with RCU.
1551 */
1552 read_lock(&tasklist_lock);
1553 do_each_thread(g, p) {
afeb0f9f
TH
1554 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1555 task_css_set(p) != &init_css_set);
1556
1557 /*
1558 * We should check if the process is exiting, otherwise
1559 * it will race with cgroup_exit() in that the list
1560 * entry won't be deleted though the process has exited.
f153ad11
TH
1561 * Do it while holding siglock so that we don't end up
1562 * racing against cgroup_exit().
afeb0f9f 1563 */
f153ad11 1564 spin_lock_irq(&p->sighand->siglock);
eaf797ab
TH
1565 if (!(p->flags & PF_EXITING)) {
1566 struct css_set *cset = task_css_set(p);
1567
1568 list_add(&p->cg_list, &cset->tasks);
1569 get_css_set(cset);
1570 }
f153ad11 1571 spin_unlock_irq(&p->sighand->siglock);
afeb0f9f
TH
1572 } while_each_thread(g, p);
1573 read_unlock(&tasklist_lock);
1574out_unlock:
96d365e0 1575 up_write(&css_set_rwsem);
afeb0f9f 1576}
ddbcc7e8 1577
cc31edce
PM
1578static void init_cgroup_housekeeping(struct cgroup *cgrp)
1579{
2d8f243a
TH
1580 struct cgroup_subsys *ss;
1581 int ssid;
1582
d5c419b6
TH
1583 INIT_LIST_HEAD(&cgrp->self.sibling);
1584 INIT_LIST_HEAD(&cgrp->self.children);
69d0206c 1585 INIT_LIST_HEAD(&cgrp->cset_links);
cc31edce 1586 INIT_LIST_HEAD(&cgrp->release_list);
72a8cb30
BB
1587 INIT_LIST_HEAD(&cgrp->pidlists);
1588 mutex_init(&cgrp->pidlist_mutex);
9d800df1 1589 cgrp->self.cgroup = cgrp;
184faf32 1590 cgrp->self.flags |= CSS_ONLINE;
2d8f243a
TH
1591
1592 for_each_subsys(ss, ssid)
1593 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
f8f22e53
TH
1594
1595 init_waitqueue_head(&cgrp->offline_waitq);
cc31edce 1596}
c6d57f33 1597
3dd06ffa 1598static void init_cgroup_root(struct cgroup_root *root,
172a2c06 1599 struct cgroup_sb_opts *opts)
ddbcc7e8 1600{
3dd06ffa 1601 struct cgroup *cgrp = &root->cgrp;
b0ca5a84 1602
ddbcc7e8 1603 INIT_LIST_HEAD(&root->root_list);
3c9c825b 1604 atomic_set(&root->nr_cgrps, 1);
bd89aabc 1605 cgrp->root = root;
cc31edce 1606 init_cgroup_housekeeping(cgrp);
4e96ee8e 1607 idr_init(&root->cgroup_idr);
c6d57f33 1608
c6d57f33
PM
1609 root->flags = opts->flags;
1610 if (opts->release_agent)
1611 strcpy(root->release_agent_path, opts->release_agent);
1612 if (opts->name)
1613 strcpy(root->name, opts->name);
2260e7fc 1614 if (opts->cpuset_clone_children)
3dd06ffa 1615 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
c6d57f33
PM
1616}
1617
69dfa00c 1618static int cgroup_setup_root(struct cgroup_root *root, unsigned int ss_mask)
2c6ab6d2 1619{
d427dfeb 1620 LIST_HEAD(tmp_links);
3dd06ffa 1621 struct cgroup *root_cgrp = &root->cgrp;
d427dfeb 1622 struct css_set *cset;
d427dfeb 1623 int i, ret;
2c6ab6d2 1624
d427dfeb 1625 lockdep_assert_held(&cgroup_mutex);
c6d57f33 1626
6fa4918d 1627 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_NOWAIT);
d427dfeb 1628 if (ret < 0)
2bd59d48 1629 goto out;
d427dfeb 1630 root_cgrp->id = ret;
c6d57f33 1631
9d755d33
TH
1632 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release);
1633 if (ret)
1634 goto out;
1635
d427dfeb 1636 /*
96d365e0 1637 * We're accessing css_set_count without locking css_set_rwsem here,
d427dfeb
TH
1638 * but that's OK - it can only be increased by someone holding
1639 * cgroup_lock, and that's us. The worst that can happen is that we
1640 * have some link structures left over
1641 */
1642 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
1643 if (ret)
9d755d33 1644 goto cancel_ref;
ddbcc7e8 1645
985ed670 1646 ret = cgroup_init_root_id(root);
ddbcc7e8 1647 if (ret)
9d755d33 1648 goto cancel_ref;
ddbcc7e8 1649
2bd59d48
TH
1650 root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
1651 KERNFS_ROOT_CREATE_DEACTIVATED,
1652 root_cgrp);
1653 if (IS_ERR(root->kf_root)) {
1654 ret = PTR_ERR(root->kf_root);
1655 goto exit_root_id;
1656 }
1657 root_cgrp->kn = root->kf_root->kn;
ddbcc7e8 1658
d427dfeb
TH
1659 ret = cgroup_addrm_files(root_cgrp, cgroup_base_files, true);
1660 if (ret)
2bd59d48 1661 goto destroy_root;
ddbcc7e8 1662
5df36032 1663 ret = rebind_subsystems(root, ss_mask);
d427dfeb 1664 if (ret)
2bd59d48 1665 goto destroy_root;
ddbcc7e8 1666
d427dfeb
TH
1667 /*
1668 * There must be no failure case after here, since rebinding takes
1669 * care of subsystems' refcounts, which are explicitly dropped in
1670 * the failure exit path.
1671 */
1672 list_add(&root->root_list, &cgroup_roots);
1673 cgroup_root_count++;
0df6a63f 1674
d427dfeb 1675 /*
3dd06ffa 1676 * Link the root cgroup in this hierarchy into all the css_set
d427dfeb
TH
1677 * objects.
1678 */
96d365e0 1679 down_write(&css_set_rwsem);
d427dfeb
TH
1680 hash_for_each(css_set_table, i, cset, hlist)
1681 link_css_set(&tmp_links, cset, root_cgrp);
96d365e0 1682 up_write(&css_set_rwsem);
ddbcc7e8 1683
d5c419b6 1684 BUG_ON(!list_empty(&root_cgrp->self.children));
3c9c825b 1685 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
ddbcc7e8 1686
2bd59d48 1687 kernfs_activate(root_cgrp->kn);
d427dfeb 1688 ret = 0;
2bd59d48 1689 goto out;
d427dfeb 1690
2bd59d48
TH
1691destroy_root:
1692 kernfs_destroy_root(root->kf_root);
1693 root->kf_root = NULL;
1694exit_root_id:
d427dfeb 1695 cgroup_exit_root_id(root);
9d755d33
TH
1696cancel_ref:
1697 percpu_ref_cancel_init(&root_cgrp->self.refcnt);
2bd59d48 1698out:
d427dfeb
TH
1699 free_cgrp_cset_links(&tmp_links);
1700 return ret;
ddbcc7e8
PM
1701}
1702
f7e83571 1703static struct dentry *cgroup_mount(struct file_system_type *fs_type,
ddbcc7e8 1704 int flags, const char *unused_dev_name,
f7e83571 1705 void *data)
ddbcc7e8 1706{
3dd06ffa 1707 struct cgroup_root *root;
ddbcc7e8 1708 struct cgroup_sb_opts opts;
2bd59d48 1709 struct dentry *dentry;
8e30e2b8 1710 int ret;
c6b3d5bc 1711 bool new_sb;
ddbcc7e8 1712
56fde9e0
TH
1713 /*
1714 * The first time anyone tries to mount a cgroup, enable the list
1715 * linking each css_set to its tasks and fix up all existing tasks.
1716 */
1717 if (!use_task_css_set_links)
1718 cgroup_enable_task_cg_lists();
e37a06f1 1719
aae8aab4 1720 mutex_lock(&cgroup_mutex);
8e30e2b8
TH
1721
1722 /* First find the desired set of subsystems */
ddbcc7e8 1723 ret = parse_cgroupfs_options(data, &opts);
c6d57f33 1724 if (ret)
8e30e2b8 1725 goto out_unlock;
a015edd2 1726
2bd59d48 1727 /* look for a matching existing root */
a2dd4247
TH
1728 if (!opts.subsys_mask && !opts.none && !opts.name) {
1729 cgrp_dfl_root_visible = true;
1730 root = &cgrp_dfl_root;
1731 cgroup_get(&root->cgrp);
1732 ret = 0;
1733 goto out_unlock;
ddbcc7e8
PM
1734 }
1735
985ed670 1736 for_each_root(root) {
2bd59d48 1737 bool name_match = false;
3126121f 1738
3dd06ffa 1739 if (root == &cgrp_dfl_root)
985ed670 1740 continue;
3126121f 1741
cf5d5941 1742 /*
2bd59d48
TH
1743 * If we asked for a name then it must match. Also, if
1744 * name matches but sybsys_mask doesn't, we should fail.
1745 * Remember whether name matched.
cf5d5941 1746 */
2bd59d48
TH
1747 if (opts.name) {
1748 if (strcmp(opts.name, root->name))
1749 continue;
1750 name_match = true;
1751 }
ddbcc7e8 1752
c6d57f33 1753 /*
2bd59d48
TH
1754 * If we asked for subsystems (or explicitly for no
1755 * subsystems) then they must match.
c6d57f33 1756 */
2bd59d48 1757 if ((opts.subsys_mask || opts.none) &&
f392e51c 1758 (opts.subsys_mask != root->subsys_mask)) {
2bd59d48
TH
1759 if (!name_match)
1760 continue;
1761 ret = -EBUSY;
1762 goto out_unlock;
1763 }
873fe09e 1764
c7ba8287 1765 if ((root->flags ^ opts.flags) & CGRP_ROOT_OPTION_MASK) {
2a0ff3fb 1766 if ((root->flags | opts.flags) & CGRP_ROOT_SANE_BEHAVIOR) {
ed3d261b 1767 pr_err("sane_behavior: new mount options should match the existing superblock\n");
2a0ff3fb 1768 ret = -EINVAL;
8e30e2b8 1769 goto out_unlock;
2a0ff3fb 1770 } else {
ed3d261b 1771 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
2a0ff3fb 1772 }
873fe09e 1773 }
ddbcc7e8 1774
776f02fa 1775 /*
9d755d33
TH
1776 * A root's lifetime is governed by its root cgroup.
1777 * tryget_live failure indicate that the root is being
1778 * destroyed. Wait for destruction to complete so that the
1779 * subsystems are free. We can use wait_queue for the wait
1780 * but this path is super cold. Let's just sleep for a bit
1781 * and retry.
776f02fa 1782 */
9d755d33 1783 if (!percpu_ref_tryget_live(&root->cgrp.self.refcnt)) {
776f02fa 1784 mutex_unlock(&cgroup_mutex);
776f02fa 1785 msleep(10);
a015edd2
TH
1786 ret = restart_syscall();
1787 goto out_free;
776f02fa 1788 }
ddbcc7e8 1789
776f02fa 1790 ret = 0;
2bd59d48 1791 goto out_unlock;
ddbcc7e8 1792 }
ddbcc7e8 1793
817929ec 1794 /*
172a2c06
TH
1795 * No such thing, create a new one. name= matching without subsys
1796 * specification is allowed for already existing hierarchies but we
1797 * can't create new one without subsys specification.
817929ec 1798 */
172a2c06
TH
1799 if (!opts.subsys_mask && !opts.none) {
1800 ret = -EINVAL;
1801 goto out_unlock;
817929ec 1802 }
817929ec 1803
172a2c06
TH
1804 root = kzalloc(sizeof(*root), GFP_KERNEL);
1805 if (!root) {
1806 ret = -ENOMEM;
2bd59d48 1807 goto out_unlock;
839ec545 1808 }
e5f6a860 1809
172a2c06
TH
1810 init_cgroup_root(root, &opts);
1811
35585573 1812 ret = cgroup_setup_root(root, opts.subsys_mask);
2bd59d48
TH
1813 if (ret)
1814 cgroup_free_root(root);
fa3ca07e 1815
8e30e2b8 1816out_unlock:
ddbcc7e8 1817 mutex_unlock(&cgroup_mutex);
a015edd2 1818out_free:
c6d57f33
PM
1819 kfree(opts.release_agent);
1820 kfree(opts.name);
03b1cde6 1821
2bd59d48 1822 if (ret)
8e30e2b8 1823 return ERR_PTR(ret);
2bd59d48 1824
c9482a5b
JZ
1825 dentry = kernfs_mount(fs_type, flags, root->kf_root,
1826 CGROUP_SUPER_MAGIC, &new_sb);
c6b3d5bc 1827 if (IS_ERR(dentry) || !new_sb)
3dd06ffa 1828 cgroup_put(&root->cgrp);
2bd59d48
TH
1829 return dentry;
1830}
1831
1832static void cgroup_kill_sb(struct super_block *sb)
1833{
1834 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
3dd06ffa 1835 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2bd59d48 1836
9d755d33
TH
1837 /*
1838 * If @root doesn't have any mounts or children, start killing it.
1839 * This prevents new mounts by disabling percpu_ref_tryget_live().
1840 * cgroup_mount() may wait for @root's release.
1f779fb2
LZ
1841 *
1842 * And don't kill the default root.
9d755d33 1843 */
1f779fb2
LZ
1844 if (css_has_online_children(&root->cgrp.self) ||
1845 root == &cgrp_dfl_root)
9d755d33
TH
1846 cgroup_put(&root->cgrp);
1847 else
1848 percpu_ref_kill(&root->cgrp.self.refcnt);
1849
2bd59d48 1850 kernfs_kill_sb(sb);
ddbcc7e8
PM
1851}
1852
1853static struct file_system_type cgroup_fs_type = {
1854 .name = "cgroup",
f7e83571 1855 .mount = cgroup_mount,
ddbcc7e8
PM
1856 .kill_sb = cgroup_kill_sb,
1857};
1858
676db4af
GK
1859static struct kobject *cgroup_kobj;
1860
857a2beb 1861/**
913ffdb5 1862 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
857a2beb 1863 * @task: target task
857a2beb
TH
1864 * @buf: the buffer to write the path into
1865 * @buflen: the length of the buffer
1866 *
913ffdb5
TH
1867 * Determine @task's cgroup on the first (the one with the lowest non-zero
1868 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
1869 * function grabs cgroup_mutex and shouldn't be used inside locks used by
1870 * cgroup controller callbacks.
1871 *
e61734c5 1872 * Return value is the same as kernfs_path().
857a2beb 1873 */
e61734c5 1874char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
857a2beb 1875{
3dd06ffa 1876 struct cgroup_root *root;
913ffdb5 1877 struct cgroup *cgrp;
e61734c5
TH
1878 int hierarchy_id = 1;
1879 char *path = NULL;
857a2beb
TH
1880
1881 mutex_lock(&cgroup_mutex);
96d365e0 1882 down_read(&css_set_rwsem);
857a2beb 1883
913ffdb5
TH
1884 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
1885
857a2beb
TH
1886 if (root) {
1887 cgrp = task_cgroup_from_root(task, root);
e61734c5 1888 path = cgroup_path(cgrp, buf, buflen);
913ffdb5
TH
1889 } else {
1890 /* if no hierarchy exists, everyone is in "/" */
e61734c5
TH
1891 if (strlcpy(buf, "/", buflen) < buflen)
1892 path = buf;
857a2beb
TH
1893 }
1894
96d365e0 1895 up_read(&css_set_rwsem);
857a2beb 1896 mutex_unlock(&cgroup_mutex);
e61734c5 1897 return path;
857a2beb 1898}
913ffdb5 1899EXPORT_SYMBOL_GPL(task_cgroup_path);
857a2beb 1900
b3dc094e 1901/* used to track tasks and other necessary states during migration */
2f7ee569 1902struct cgroup_taskset {
b3dc094e
TH
1903 /* the src and dst cset list running through cset->mg_node */
1904 struct list_head src_csets;
1905 struct list_head dst_csets;
1906
1907 /*
1908 * Fields for cgroup_taskset_*() iteration.
1909 *
1910 * Before migration is committed, the target migration tasks are on
1911 * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of
1912 * the csets on ->dst_csets. ->csets point to either ->src_csets
1913 * or ->dst_csets depending on whether migration is committed.
1914 *
1915 * ->cur_csets and ->cur_task point to the current task position
1916 * during iteration.
1917 */
1918 struct list_head *csets;
1919 struct css_set *cur_cset;
1920 struct task_struct *cur_task;
2f7ee569
TH
1921};
1922
1923/**
1924 * cgroup_taskset_first - reset taskset and return the first task
1925 * @tset: taskset of interest
1926 *
1927 * @tset iteration is initialized and the first task is returned.
1928 */
1929struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
1930{
b3dc094e
TH
1931 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
1932 tset->cur_task = NULL;
1933
1934 return cgroup_taskset_next(tset);
2f7ee569 1935}
2f7ee569
TH
1936
1937/**
1938 * cgroup_taskset_next - iterate to the next task in taskset
1939 * @tset: taskset of interest
1940 *
1941 * Return the next task in @tset. Iteration must have been initialized
1942 * with cgroup_taskset_first().
1943 */
1944struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
1945{
b3dc094e
TH
1946 struct css_set *cset = tset->cur_cset;
1947 struct task_struct *task = tset->cur_task;
2f7ee569 1948
b3dc094e
TH
1949 while (&cset->mg_node != tset->csets) {
1950 if (!task)
1951 task = list_first_entry(&cset->mg_tasks,
1952 struct task_struct, cg_list);
1953 else
1954 task = list_next_entry(task, cg_list);
2f7ee569 1955
b3dc094e
TH
1956 if (&task->cg_list != &cset->mg_tasks) {
1957 tset->cur_cset = cset;
1958 tset->cur_task = task;
1959 return task;
1960 }
2f7ee569 1961
b3dc094e
TH
1962 cset = list_next_entry(cset, mg_node);
1963 task = NULL;
1964 }
2f7ee569 1965
b3dc094e 1966 return NULL;
2f7ee569 1967}
2f7ee569 1968
cb0f1fe9 1969/**
74a1166d 1970 * cgroup_task_migrate - move a task from one cgroup to another.
60106946 1971 * @old_cgrp: the cgroup @tsk is being migrated from
cb0f1fe9
TH
1972 * @tsk: the task being migrated
1973 * @new_cset: the new css_set @tsk is being attached to
74a1166d 1974 *
cb0f1fe9 1975 * Must be called with cgroup_mutex, threadgroup and css_set_rwsem locked.
74a1166d 1976 */
5abb8855
TH
1977static void cgroup_task_migrate(struct cgroup *old_cgrp,
1978 struct task_struct *tsk,
1979 struct css_set *new_cset)
74a1166d 1980{
5abb8855 1981 struct css_set *old_cset;
74a1166d 1982
cb0f1fe9
TH
1983 lockdep_assert_held(&cgroup_mutex);
1984 lockdep_assert_held(&css_set_rwsem);
1985
74a1166d 1986 /*
026085ef
MSB
1987 * We are synchronized through threadgroup_lock() against PF_EXITING
1988 * setting such that we can't race against cgroup_exit() changing the
1989 * css_set to init_css_set and dropping the old one.
74a1166d 1990 */
c84cdf75 1991 WARN_ON_ONCE(tsk->flags & PF_EXITING);
a8ad805c 1992 old_cset = task_css_set(tsk);
74a1166d 1993
b3dc094e 1994 get_css_set(new_cset);
5abb8855 1995 rcu_assign_pointer(tsk->cgroups, new_cset);
74a1166d 1996
1b9aba49
TH
1997 /*
1998 * Use move_tail so that cgroup_taskset_first() still returns the
1999 * leader after migration. This works because cgroup_migrate()
2000 * ensures that the dst_cset of the leader is the first on the
2001 * tset's dst_csets list.
2002 */
2003 list_move_tail(&tsk->cg_list, &new_cset->mg_tasks);
74a1166d
BB
2004
2005 /*
5abb8855
TH
2006 * We just gained a reference on old_cset by taking it from the
2007 * task. As trading it for new_cset is protected by cgroup_mutex,
2008 * we're safe to drop it here; it will be freed under RCU.
74a1166d 2009 */
5abb8855 2010 set_bit(CGRP_RELEASABLE, &old_cgrp->flags);
cb0f1fe9 2011 put_css_set_locked(old_cset, false);
74a1166d
BB
2012}
2013
a043e3b2 2014/**
1958d2d5
TH
2015 * cgroup_migrate_finish - cleanup after attach
2016 * @preloaded_csets: list of preloaded css_sets
74a1166d 2017 *
1958d2d5
TH
2018 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2019 * those functions for details.
74a1166d 2020 */
1958d2d5 2021static void cgroup_migrate_finish(struct list_head *preloaded_csets)
74a1166d 2022{
1958d2d5 2023 struct css_set *cset, *tmp_cset;
74a1166d 2024
1958d2d5
TH
2025 lockdep_assert_held(&cgroup_mutex);
2026
2027 down_write(&css_set_rwsem);
2028 list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) {
2029 cset->mg_src_cgrp = NULL;
2030 cset->mg_dst_cset = NULL;
2031 list_del_init(&cset->mg_preload_node);
2032 put_css_set_locked(cset, false);
2033 }
2034 up_write(&css_set_rwsem);
2035}
2036
2037/**
2038 * cgroup_migrate_add_src - add a migration source css_set
2039 * @src_cset: the source css_set to add
2040 * @dst_cgrp: the destination cgroup
2041 * @preloaded_csets: list of preloaded css_sets
2042 *
2043 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2044 * @src_cset and add it to @preloaded_csets, which should later be cleaned
2045 * up by cgroup_migrate_finish().
2046 *
2047 * This function may be called without holding threadgroup_lock even if the
2048 * target is a process. Threads may be created and destroyed but as long
2049 * as cgroup_mutex is not dropped, no new css_set can be put into play and
2050 * the preloaded css_sets are guaranteed to cover all migrations.
2051 */
2052static void cgroup_migrate_add_src(struct css_set *src_cset,
2053 struct cgroup *dst_cgrp,
2054 struct list_head *preloaded_csets)
2055{
2056 struct cgroup *src_cgrp;
2057
2058 lockdep_assert_held(&cgroup_mutex);
2059 lockdep_assert_held(&css_set_rwsem);
2060
2061 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2062
1958d2d5
TH
2063 if (!list_empty(&src_cset->mg_preload_node))
2064 return;
2065
2066 WARN_ON(src_cset->mg_src_cgrp);
2067 WARN_ON(!list_empty(&src_cset->mg_tasks));
2068 WARN_ON(!list_empty(&src_cset->mg_node));
2069
2070 src_cset->mg_src_cgrp = src_cgrp;
2071 get_css_set(src_cset);
2072 list_add(&src_cset->mg_preload_node, preloaded_csets);
2073}
2074
2075/**
2076 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
f817de98 2077 * @dst_cgrp: the destination cgroup (may be %NULL)
1958d2d5
TH
2078 * @preloaded_csets: list of preloaded source css_sets
2079 *
2080 * Tasks are about to be moved to @dst_cgrp and all the source css_sets
2081 * have been preloaded to @preloaded_csets. This function looks up and
f817de98
TH
2082 * pins all destination css_sets, links each to its source, and append them
2083 * to @preloaded_csets. If @dst_cgrp is %NULL, the destination of each
2084 * source css_set is assumed to be its cgroup on the default hierarchy.
1958d2d5
TH
2085 *
2086 * This function must be called after cgroup_migrate_add_src() has been
2087 * called on each migration source css_set. After migration is performed
2088 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2089 * @preloaded_csets.
2090 */
2091static int cgroup_migrate_prepare_dst(struct cgroup *dst_cgrp,
2092 struct list_head *preloaded_csets)
2093{
2094 LIST_HEAD(csets);
f817de98 2095 struct css_set *src_cset, *tmp_cset;
1958d2d5
TH
2096
2097 lockdep_assert_held(&cgroup_mutex);
2098
f8f22e53
TH
2099 /*
2100 * Except for the root, child_subsys_mask must be zero for a cgroup
2101 * with tasks so that child cgroups don't compete against tasks.
2102 */
d51f39b0 2103 if (dst_cgrp && cgroup_on_dfl(dst_cgrp) && cgroup_parent(dst_cgrp) &&
f8f22e53
TH
2104 dst_cgrp->child_subsys_mask)
2105 return -EBUSY;
2106
1958d2d5 2107 /* look up the dst cset for each src cset and link it to src */
f817de98 2108 list_for_each_entry_safe(src_cset, tmp_cset, preloaded_csets, mg_preload_node) {
1958d2d5
TH
2109 struct css_set *dst_cset;
2110
f817de98
TH
2111 dst_cset = find_css_set(src_cset,
2112 dst_cgrp ?: src_cset->dfl_cgrp);
1958d2d5
TH
2113 if (!dst_cset)
2114 goto err;
2115
2116 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
f817de98
TH
2117
2118 /*
2119 * If src cset equals dst, it's noop. Drop the src.
2120 * cgroup_migrate() will skip the cset too. Note that we
2121 * can't handle src == dst as some nodes are used by both.
2122 */
2123 if (src_cset == dst_cset) {
2124 src_cset->mg_src_cgrp = NULL;
2125 list_del_init(&src_cset->mg_preload_node);
2126 put_css_set(src_cset, false);
2127 put_css_set(dst_cset, false);
2128 continue;
2129 }
2130
1958d2d5
TH
2131 src_cset->mg_dst_cset = dst_cset;
2132
2133 if (list_empty(&dst_cset->mg_preload_node))
2134 list_add(&dst_cset->mg_preload_node, &csets);
2135 else
2136 put_css_set(dst_cset, false);
2137 }
2138
f817de98 2139 list_splice_tail(&csets, preloaded_csets);
1958d2d5
TH
2140 return 0;
2141err:
2142 cgroup_migrate_finish(&csets);
2143 return -ENOMEM;
2144}
2145
2146/**
2147 * cgroup_migrate - migrate a process or task to a cgroup
2148 * @cgrp: the destination cgroup
2149 * @leader: the leader of the process or the task to migrate
2150 * @threadgroup: whether @leader points to the whole process or a single task
2151 *
2152 * Migrate a process or task denoted by @leader to @cgrp. If migrating a
2153 * process, the caller must be holding threadgroup_lock of @leader. The
2154 * caller is also responsible for invoking cgroup_migrate_add_src() and
2155 * cgroup_migrate_prepare_dst() on the targets before invoking this
2156 * function and following up with cgroup_migrate_finish().
2157 *
2158 * As long as a controller's ->can_attach() doesn't fail, this function is
2159 * guaranteed to succeed. This means that, excluding ->can_attach()
2160 * failure, when migrating multiple targets, the success or failure can be
2161 * decided for all targets by invoking group_migrate_prepare_dst() before
2162 * actually starting migrating.
2163 */
2164static int cgroup_migrate(struct cgroup *cgrp, struct task_struct *leader,
2165 bool threadgroup)
74a1166d 2166{
b3dc094e
TH
2167 struct cgroup_taskset tset = {
2168 .src_csets = LIST_HEAD_INIT(tset.src_csets),
2169 .dst_csets = LIST_HEAD_INIT(tset.dst_csets),
2170 .csets = &tset.src_csets,
2171 };
1c6727af 2172 struct cgroup_subsys_state *css, *failed_css = NULL;
b3dc094e
TH
2173 struct css_set *cset, *tmp_cset;
2174 struct task_struct *task, *tmp_task;
2175 int i, ret;
74a1166d 2176
fb5d2b4c
MSB
2177 /*
2178 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2179 * already PF_EXITING could be freed from underneath us unless we
2180 * take an rcu_read_lock.
2181 */
b3dc094e 2182 down_write(&css_set_rwsem);
fb5d2b4c 2183 rcu_read_lock();
9db8de37 2184 task = leader;
74a1166d 2185 do {
9db8de37
TH
2186 /* @task either already exited or can't exit until the end */
2187 if (task->flags & PF_EXITING)
ea84753c 2188 goto next;
134d3373 2189
eaf797ab
TH
2190 /* leave @task alone if post_fork() hasn't linked it yet */
2191 if (list_empty(&task->cg_list))
ea84753c 2192 goto next;
cd3d0952 2193
b3dc094e 2194 cset = task_css_set(task);
1958d2d5 2195 if (!cset->mg_src_cgrp)
ea84753c 2196 goto next;
b3dc094e 2197
61d1d219 2198 /*
1b9aba49
TH
2199 * cgroup_taskset_first() must always return the leader.
2200 * Take care to avoid disturbing the ordering.
61d1d219 2201 */
1b9aba49
TH
2202 list_move_tail(&task->cg_list, &cset->mg_tasks);
2203 if (list_empty(&cset->mg_node))
2204 list_add_tail(&cset->mg_node, &tset.src_csets);
2205 if (list_empty(&cset->mg_dst_cset->mg_node))
2206 list_move_tail(&cset->mg_dst_cset->mg_node,
2207 &tset.dst_csets);
ea84753c 2208 next:
081aa458
LZ
2209 if (!threadgroup)
2210 break;
9db8de37 2211 } while_each_thread(leader, task);
fb5d2b4c 2212 rcu_read_unlock();
b3dc094e 2213 up_write(&css_set_rwsem);
74a1166d 2214
134d3373 2215 /* methods shouldn't be called if no task is actually migrating */
b3dc094e
TH
2216 if (list_empty(&tset.src_csets))
2217 return 0;
134d3373 2218
1958d2d5 2219 /* check that we can legitimately attach to the cgroup */
aec3dfcb 2220 for_each_e_css(css, i, cgrp) {
1c6727af 2221 if (css->ss->can_attach) {
9db8de37
TH
2222 ret = css->ss->can_attach(css, &tset);
2223 if (ret) {
1c6727af 2224 failed_css = css;
74a1166d
BB
2225 goto out_cancel_attach;
2226 }
2227 }
74a1166d
BB
2228 }
2229
2230 /*
1958d2d5
TH
2231 * Now that we're guaranteed success, proceed to move all tasks to
2232 * the new cgroup. There are no failure cases after here, so this
2233 * is the commit point.
74a1166d 2234 */
cb0f1fe9 2235 down_write(&css_set_rwsem);
b3dc094e
TH
2236 list_for_each_entry(cset, &tset.src_csets, mg_node) {
2237 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list)
2238 cgroup_task_migrate(cset->mg_src_cgrp, task,
2239 cset->mg_dst_cset);
74a1166d 2240 }
cb0f1fe9 2241 up_write(&css_set_rwsem);
74a1166d
BB
2242
2243 /*
1958d2d5
TH
2244 * Migration is committed, all target tasks are now on dst_csets.
2245 * Nothing is sensitive to fork() after this point. Notify
2246 * controllers that migration is complete.
74a1166d 2247 */
1958d2d5 2248 tset.csets = &tset.dst_csets;
74a1166d 2249
aec3dfcb 2250 for_each_e_css(css, i, cgrp)
1c6727af
TH
2251 if (css->ss->attach)
2252 css->ss->attach(css, &tset);
74a1166d 2253
9db8de37 2254 ret = 0;
b3dc094e
TH
2255 goto out_release_tset;
2256
74a1166d 2257out_cancel_attach:
aec3dfcb 2258 for_each_e_css(css, i, cgrp) {
b3dc094e
TH
2259 if (css == failed_css)
2260 break;
2261 if (css->ss->cancel_attach)
2262 css->ss->cancel_attach(css, &tset);
74a1166d 2263 }
b3dc094e
TH
2264out_release_tset:
2265 down_write(&css_set_rwsem);
2266 list_splice_init(&tset.dst_csets, &tset.src_csets);
2267 list_for_each_entry_safe(cset, tmp_cset, &tset.src_csets, mg_node) {
1b9aba49 2268 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
b3dc094e 2269 list_del_init(&cset->mg_node);
b3dc094e
TH
2270 }
2271 up_write(&css_set_rwsem);
9db8de37 2272 return ret;
74a1166d
BB
2273}
2274
1958d2d5
TH
2275/**
2276 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2277 * @dst_cgrp: the cgroup to attach to
2278 * @leader: the task or the leader of the threadgroup to be attached
2279 * @threadgroup: attach the whole threadgroup?
2280 *
0e1d768f 2281 * Call holding cgroup_mutex and threadgroup_lock of @leader.
1958d2d5
TH
2282 */
2283static int cgroup_attach_task(struct cgroup *dst_cgrp,
2284 struct task_struct *leader, bool threadgroup)
2285{
2286 LIST_HEAD(preloaded_csets);
2287 struct task_struct *task;
2288 int ret;
2289
2290 /* look up all src csets */
2291 down_read(&css_set_rwsem);
2292 rcu_read_lock();
2293 task = leader;
2294 do {
2295 cgroup_migrate_add_src(task_css_set(task), dst_cgrp,
2296 &preloaded_csets);
2297 if (!threadgroup)
2298 break;
2299 } while_each_thread(leader, task);
2300 rcu_read_unlock();
2301 up_read(&css_set_rwsem);
2302
2303 /* prepare dst csets and commit */
2304 ret = cgroup_migrate_prepare_dst(dst_cgrp, &preloaded_csets);
2305 if (!ret)
2306 ret = cgroup_migrate(dst_cgrp, leader, threadgroup);
2307
2308 cgroup_migrate_finish(&preloaded_csets);
2309 return ret;
74a1166d
BB
2310}
2311
2312/*
2313 * Find the task_struct of the task to attach by vpid and pass it along to the
cd3d0952 2314 * function to attach either it or all tasks in its threadgroup. Will lock
0e1d768f 2315 * cgroup_mutex and threadgroup.
bbcb81d0 2316 */
acbef755
TH
2317static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
2318 size_t nbytes, loff_t off, bool threadgroup)
bbcb81d0 2319{
bbcb81d0 2320 struct task_struct *tsk;
c69e8d9c 2321 const struct cred *cred = current_cred(), *tcred;
e76ecaee 2322 struct cgroup *cgrp;
acbef755 2323 pid_t pid;
bbcb81d0
PM
2324 int ret;
2325
acbef755
TH
2326 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2327 return -EINVAL;
2328
e76ecaee
TH
2329 cgrp = cgroup_kn_lock_live(of->kn);
2330 if (!cgrp)
74a1166d
BB
2331 return -ENODEV;
2332
b78949eb
MSB
2333retry_find_task:
2334 rcu_read_lock();
bbcb81d0 2335 if (pid) {
73507f33 2336 tsk = find_task_by_vpid(pid);
74a1166d
BB
2337 if (!tsk) {
2338 rcu_read_unlock();
dd4b0a46 2339 ret = -ESRCH;
b78949eb 2340 goto out_unlock_cgroup;
bbcb81d0 2341 }
74a1166d
BB
2342 /*
2343 * even if we're attaching all tasks in the thread group, we
2344 * only need to check permissions on one of them.
2345 */
c69e8d9c 2346 tcred = __task_cred(tsk);
14a590c3
EB
2347 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2348 !uid_eq(cred->euid, tcred->uid) &&
2349 !uid_eq(cred->euid, tcred->suid)) {
c69e8d9c 2350 rcu_read_unlock();
b78949eb
MSB
2351 ret = -EACCES;
2352 goto out_unlock_cgroup;
bbcb81d0 2353 }
b78949eb
MSB
2354 } else
2355 tsk = current;
cd3d0952
TH
2356
2357 if (threadgroup)
b78949eb 2358 tsk = tsk->group_leader;
c4c27fbd
MG
2359
2360 /*
14a40ffc 2361 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
c4c27fbd
MG
2362 * trapped in a cpuset, or RT worker may be born in a cgroup
2363 * with no rt_runtime allocated. Just say no.
2364 */
14a40ffc 2365 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
c4c27fbd
MG
2366 ret = -EINVAL;
2367 rcu_read_unlock();
2368 goto out_unlock_cgroup;
2369 }
2370
b78949eb
MSB
2371 get_task_struct(tsk);
2372 rcu_read_unlock();
2373
2374 threadgroup_lock(tsk);
2375 if (threadgroup) {
2376 if (!thread_group_leader(tsk)) {
2377 /*
2378 * a race with de_thread from another thread's exec()
2379 * may strip us of our leadership, if this happens,
2380 * there is no choice but to throw this task away and
2381 * try again; this is
2382 * "double-double-toil-and-trouble-check locking".
2383 */
2384 threadgroup_unlock(tsk);
2385 put_task_struct(tsk);
2386 goto retry_find_task;
2387 }
081aa458
LZ
2388 }
2389
2390 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
2391
cd3d0952
TH
2392 threadgroup_unlock(tsk);
2393
bbcb81d0 2394 put_task_struct(tsk);
b78949eb 2395out_unlock_cgroup:
e76ecaee 2396 cgroup_kn_unlock(of->kn);
acbef755 2397 return ret ?: nbytes;
bbcb81d0
PM
2398}
2399
7ae1bad9
TH
2400/**
2401 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2402 * @from: attach to all cgroups of a given task
2403 * @tsk: the task to be attached
2404 */
2405int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2406{
3dd06ffa 2407 struct cgroup_root *root;
7ae1bad9
TH
2408 int retval = 0;
2409
47cfcd09 2410 mutex_lock(&cgroup_mutex);
985ed670 2411 for_each_root(root) {
96d365e0
TH
2412 struct cgroup *from_cgrp;
2413
3dd06ffa 2414 if (root == &cgrp_dfl_root)
985ed670
TH
2415 continue;
2416
96d365e0
TH
2417 down_read(&css_set_rwsem);
2418 from_cgrp = task_cgroup_from_root(from, root);
2419 up_read(&css_set_rwsem);
7ae1bad9 2420
6f4b7e63 2421 retval = cgroup_attach_task(from_cgrp, tsk, false);
7ae1bad9
TH
2422 if (retval)
2423 break;
2424 }
47cfcd09 2425 mutex_unlock(&cgroup_mutex);
7ae1bad9
TH
2426
2427 return retval;
2428}
2429EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2430
acbef755
TH
2431static ssize_t cgroup_tasks_write(struct kernfs_open_file *of,
2432 char *buf, size_t nbytes, loff_t off)
74a1166d 2433{
acbef755 2434 return __cgroup_procs_write(of, buf, nbytes, off, false);
74a1166d
BB
2435}
2436
acbef755
TH
2437static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
2438 char *buf, size_t nbytes, loff_t off)
af351026 2439{
acbef755 2440 return __cgroup_procs_write(of, buf, nbytes, off, true);
af351026
PM
2441}
2442
451af504
TH
2443static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
2444 char *buf, size_t nbytes, loff_t off)
e788e066 2445{
e76ecaee 2446 struct cgroup *cgrp;
5f469907 2447
e76ecaee 2448 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
5f469907 2449
e76ecaee
TH
2450 cgrp = cgroup_kn_lock_live(of->kn);
2451 if (!cgrp)
e788e066 2452 return -ENODEV;
69e943b7 2453 spin_lock(&release_agent_path_lock);
e76ecaee
TH
2454 strlcpy(cgrp->root->release_agent_path, strstrip(buf),
2455 sizeof(cgrp->root->release_agent_path));
69e943b7 2456 spin_unlock(&release_agent_path_lock);
e76ecaee 2457 cgroup_kn_unlock(of->kn);
451af504 2458 return nbytes;
e788e066
PM
2459}
2460
2da8ca82 2461static int cgroup_release_agent_show(struct seq_file *seq, void *v)
e788e066 2462{
2da8ca82 2463 struct cgroup *cgrp = seq_css(seq)->cgroup;
182446d0 2464
46cfeb04 2465 spin_lock(&release_agent_path_lock);
e788e066 2466 seq_puts(seq, cgrp->root->release_agent_path);
46cfeb04 2467 spin_unlock(&release_agent_path_lock);
e788e066 2468 seq_putc(seq, '\n');
e788e066
PM
2469 return 0;
2470}
2471
2da8ca82 2472static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
873fe09e 2473{
2da8ca82
TH
2474 struct cgroup *cgrp = seq_css(seq)->cgroup;
2475
2476 seq_printf(seq, "%d\n", cgroup_sane_behavior(cgrp));
e788e066
PM
2477 return 0;
2478}
2479
f8f22e53 2480static void cgroup_print_ss_mask(struct seq_file *seq, unsigned int ss_mask)
355e0c48 2481{
f8f22e53
TH
2482 struct cgroup_subsys *ss;
2483 bool printed = false;
2484 int ssid;
a742c59d 2485
f8f22e53
TH
2486 for_each_subsys(ss, ssid) {
2487 if (ss_mask & (1 << ssid)) {
2488 if (printed)
2489 seq_putc(seq, ' ');
2490 seq_printf(seq, "%s", ss->name);
2491 printed = true;
2492 }
e73d2c61 2493 }
f8f22e53
TH
2494 if (printed)
2495 seq_putc(seq, '\n');
355e0c48
PM
2496}
2497
f8f22e53
TH
2498/* show controllers which are currently attached to the default hierarchy */
2499static int cgroup_root_controllers_show(struct seq_file *seq, void *v)
db3b1497 2500{
f8f22e53
TH
2501 struct cgroup *cgrp = seq_css(seq)->cgroup;
2502
5533e011
TH
2503 cgroup_print_ss_mask(seq, cgrp->root->subsys_mask &
2504 ~cgrp_dfl_root_inhibit_ss_mask);
f8f22e53 2505 return 0;
db3b1497
PM
2506}
2507
f8f22e53
TH
2508/* show controllers which are enabled from the parent */
2509static int cgroup_controllers_show(struct seq_file *seq, void *v)
ddbcc7e8 2510{
f8f22e53
TH
2511 struct cgroup *cgrp = seq_css(seq)->cgroup;
2512
667c2491 2513 cgroup_print_ss_mask(seq, cgroup_parent(cgrp)->subtree_control);
f8f22e53 2514 return 0;
ddbcc7e8
PM
2515}
2516
f8f22e53
TH
2517/* show controllers which are enabled for a given cgroup's children */
2518static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
ddbcc7e8 2519{
f8f22e53
TH
2520 struct cgroup *cgrp = seq_css(seq)->cgroup;
2521
667c2491 2522 cgroup_print_ss_mask(seq, cgrp->subtree_control);
f8f22e53
TH
2523 return 0;
2524}
2525
2526/**
2527 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2528 * @cgrp: root of the subtree to update csses for
2529 *
2530 * @cgrp's child_subsys_mask has changed and its subtree's (self excluded)
2531 * css associations need to be updated accordingly. This function looks up
2532 * all css_sets which are attached to the subtree, creates the matching
2533 * updated css_sets and migrates the tasks to the new ones.
2534 */
2535static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2536{
2537 LIST_HEAD(preloaded_csets);
2538 struct cgroup_subsys_state *css;
2539 struct css_set *src_cset;
2540 int ret;
2541
f8f22e53
TH
2542 lockdep_assert_held(&cgroup_mutex);
2543
2544 /* look up all csses currently attached to @cgrp's subtree */
2545 down_read(&css_set_rwsem);
2546 css_for_each_descendant_pre(css, cgroup_css(cgrp, NULL)) {
2547 struct cgrp_cset_link *link;
2548
2549 /* self is not affected by child_subsys_mask change */
2550 if (css->cgroup == cgrp)
2551 continue;
2552
2553 list_for_each_entry(link, &css->cgroup->cset_links, cset_link)
2554 cgroup_migrate_add_src(link->cset, cgrp,
2555 &preloaded_csets);
2556 }
2557 up_read(&css_set_rwsem);
2558
2559 /* NULL dst indicates self on default hierarchy */
2560 ret = cgroup_migrate_prepare_dst(NULL, &preloaded_csets);
2561 if (ret)
2562 goto out_finish;
2563
2564 list_for_each_entry(src_cset, &preloaded_csets, mg_preload_node) {
2565 struct task_struct *last_task = NULL, *task;
2566
2567 /* src_csets precede dst_csets, break on the first dst_cset */
2568 if (!src_cset->mg_src_cgrp)
2569 break;
2570
2571 /*
2572 * All tasks in src_cset need to be migrated to the
2573 * matching dst_cset. Empty it process by process. We
2574 * walk tasks but migrate processes. The leader might even
2575 * belong to a different cset but such src_cset would also
2576 * be among the target src_csets because the default
2577 * hierarchy enforces per-process membership.
2578 */
2579 while (true) {
2580 down_read(&css_set_rwsem);
2581 task = list_first_entry_or_null(&src_cset->tasks,
2582 struct task_struct, cg_list);
2583 if (task) {
2584 task = task->group_leader;
2585 WARN_ON_ONCE(!task_css_set(task)->mg_src_cgrp);
2586 get_task_struct(task);
2587 }
2588 up_read(&css_set_rwsem);
2589
2590 if (!task)
2591 break;
2592
2593 /* guard against possible infinite loop */
2594 if (WARN(last_task == task,
2595 "cgroup: update_dfl_csses failed to make progress, aborting in inconsistent state\n"))
2596 goto out_finish;
2597 last_task = task;
2598
2599 threadgroup_lock(task);
2600 /* raced against de_thread() from another thread? */
2601 if (!thread_group_leader(task)) {
2602 threadgroup_unlock(task);
2603 put_task_struct(task);
2604 continue;
2605 }
2606
2607 ret = cgroup_migrate(src_cset->dfl_cgrp, task, true);
2608
2609 threadgroup_unlock(task);
2610 put_task_struct(task);
2611
2612 if (WARN(ret, "cgroup: failed to update controllers for the default hierarchy (%d), further operations may crash or hang\n", ret))
2613 goto out_finish;
2614 }
2615 }
2616
2617out_finish:
2618 cgroup_migrate_finish(&preloaded_csets);
2619 return ret;
2620}
2621
2622/* change the enabled child controllers for a cgroup in the default hierarchy */
451af504
TH
2623static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
2624 char *buf, size_t nbytes,
2625 loff_t off)
f8f22e53 2626{
7d331fa9 2627 unsigned int enable = 0, disable = 0;
f63070d3 2628 unsigned int css_enable, css_disable, old_ctrl, new_ctrl;
a9746d8d 2629 struct cgroup *cgrp, *child;
f8f22e53 2630 struct cgroup_subsys *ss;
451af504 2631 char *tok;
f8f22e53
TH
2632 int ssid, ret;
2633
2634 /*
d37167ab
TH
2635 * Parse input - space separated list of subsystem names prefixed
2636 * with either + or -.
f8f22e53 2637 */
451af504
TH
2638 buf = strstrip(buf);
2639 while ((tok = strsep(&buf, " "))) {
d37167ab
TH
2640 if (tok[0] == '\0')
2641 continue;
f8f22e53 2642 for_each_subsys(ss, ssid) {
5533e011
TH
2643 if (ss->disabled || strcmp(tok + 1, ss->name) ||
2644 ((1 << ss->id) & cgrp_dfl_root_inhibit_ss_mask))
f8f22e53
TH
2645 continue;
2646
2647 if (*tok == '+') {
7d331fa9
TH
2648 enable |= 1 << ssid;
2649 disable &= ~(1 << ssid);
f8f22e53 2650 } else if (*tok == '-') {
7d331fa9
TH
2651 disable |= 1 << ssid;
2652 enable &= ~(1 << ssid);
f8f22e53
TH
2653 } else {
2654 return -EINVAL;
2655 }
2656 break;
2657 }
2658 if (ssid == CGROUP_SUBSYS_COUNT)
2659 return -EINVAL;
2660 }
2661
a9746d8d
TH
2662 cgrp = cgroup_kn_lock_live(of->kn);
2663 if (!cgrp)
2664 return -ENODEV;
f8f22e53
TH
2665
2666 for_each_subsys(ss, ssid) {
2667 if (enable & (1 << ssid)) {
667c2491 2668 if (cgrp->subtree_control & (1 << ssid)) {
f8f22e53
TH
2669 enable &= ~(1 << ssid);
2670 continue;
2671 }
2672
c29adf24
TH
2673 /* unavailable or not enabled on the parent? */
2674 if (!(cgrp_dfl_root.subsys_mask & (1 << ssid)) ||
2675 (cgroup_parent(cgrp) &&
667c2491 2676 !(cgroup_parent(cgrp)->subtree_control & (1 << ssid)))) {
c29adf24
TH
2677 ret = -ENOENT;
2678 goto out_unlock;
2679 }
2680
f63070d3
TH
2681 /*
2682 * @ss is already enabled through dependency and
2683 * we'll just make it visible. Skip draining.
2684 */
2685 if (cgrp->child_subsys_mask & (1 << ssid))
2686 continue;
2687
f8f22e53
TH
2688 /*
2689 * Because css offlining is asynchronous, userland
2690 * might try to re-enable the same controller while
2691 * the previous instance is still around. In such
2692 * cases, wait till it's gone using offline_waitq.
2693 */
2694 cgroup_for_each_live_child(child, cgrp) {
0cee8b77 2695 DEFINE_WAIT(wait);
f8f22e53
TH
2696
2697 if (!cgroup_css(child, ss))
2698 continue;
2699
0cee8b77 2700 cgroup_get(child);
f8f22e53
TH
2701 prepare_to_wait(&child->offline_waitq, &wait,
2702 TASK_UNINTERRUPTIBLE);
a9746d8d 2703 cgroup_kn_unlock(of->kn);
f8f22e53
TH
2704 schedule();
2705 finish_wait(&child->offline_waitq, &wait);
0cee8b77 2706 cgroup_put(child);
7d331fa9 2707
a9746d8d 2708 return restart_syscall();
f8f22e53 2709 }
f8f22e53 2710 } else if (disable & (1 << ssid)) {
667c2491 2711 if (!(cgrp->subtree_control & (1 << ssid))) {
f8f22e53
TH
2712 disable &= ~(1 << ssid);
2713 continue;
2714 }
2715
2716 /* a child has it enabled? */
2717 cgroup_for_each_live_child(child, cgrp) {
667c2491 2718 if (child->subtree_control & (1 << ssid)) {
f8f22e53 2719 ret = -EBUSY;
ddab2b6e 2720 goto out_unlock;
f8f22e53
TH
2721 }
2722 }
2723 }
2724 }
2725
2726 if (!enable && !disable) {
2727 ret = 0;
ddab2b6e 2728 goto out_unlock;
f8f22e53
TH
2729 }
2730
2731 /*
667c2491 2732 * Except for the root, subtree_control must be zero for a cgroup
f8f22e53
TH
2733 * with tasks so that child cgroups don't compete against tasks.
2734 */
d51f39b0 2735 if (enable && cgroup_parent(cgrp) && !list_empty(&cgrp->cset_links)) {
f8f22e53
TH
2736 ret = -EBUSY;
2737 goto out_unlock;
2738 }
2739
f63070d3
TH
2740 /*
2741 * Update subsys masks and calculate what needs to be done. More
2742 * subsystems than specified may need to be enabled or disabled
2743 * depending on subsystem dependencies.
2744 */
667c2491
TH
2745 cgrp->subtree_control |= enable;
2746 cgrp->subtree_control &= ~disable;
f63070d3
TH
2747
2748 old_ctrl = cgrp->child_subsys_mask;
667c2491 2749 cgroup_refresh_child_subsys_mask(cgrp);
f63070d3
TH
2750 new_ctrl = cgrp->child_subsys_mask;
2751
2752 css_enable = ~old_ctrl & new_ctrl;
2753 css_disable = old_ctrl & ~new_ctrl;
2754 enable |= css_enable;
2755 disable |= css_disable;
c29adf24 2756
f63070d3
TH
2757 /*
2758 * Create new csses or make the existing ones visible. A css is
2759 * created invisible if it's being implicitly enabled through
2760 * dependency. An invisible css is made visible when the userland
2761 * explicitly enables it.
2762 */
f8f22e53
TH
2763 for_each_subsys(ss, ssid) {
2764 if (!(enable & (1 << ssid)))
2765 continue;
2766
2767 cgroup_for_each_live_child(child, cgrp) {
f63070d3
TH
2768 if (css_enable & (1 << ssid))
2769 ret = create_css(child, ss,
2770 cgrp->subtree_control & (1 << ssid));
2771 else
2772 ret = cgroup_populate_dir(child, 1 << ssid);
f8f22e53
TH
2773 if (ret)
2774 goto err_undo_css;
2775 }
2776 }
2777
c29adf24
TH
2778 /*
2779 * At this point, cgroup_e_css() results reflect the new csses
2780 * making the following cgroup_update_dfl_csses() properly update
2781 * css associations of all tasks in the subtree.
2782 */
f8f22e53
TH
2783 ret = cgroup_update_dfl_csses(cgrp);
2784 if (ret)
2785 goto err_undo_css;
2786
f63070d3
TH
2787 /*
2788 * All tasks are migrated out of disabled csses. Kill or hide
2789 * them. A css is hidden when the userland requests it to be
b4536f0c
TH
2790 * disabled while other subsystems are still depending on it. The
2791 * css must not actively control resources and be in the vanilla
2792 * state if it's made visible again later. Controllers which may
2793 * be depended upon should provide ->css_reset() for this purpose.
f63070d3 2794 */
f8f22e53
TH
2795 for_each_subsys(ss, ssid) {
2796 if (!(disable & (1 << ssid)))
2797 continue;
2798
f63070d3 2799 cgroup_for_each_live_child(child, cgrp) {
b4536f0c
TH
2800 struct cgroup_subsys_state *css = cgroup_css(child, ss);
2801
2802 if (css_disable & (1 << ssid)) {
2803 kill_css(css);
2804 } else {
f63070d3 2805 cgroup_clear_dir(child, 1 << ssid);
b4536f0c
TH
2806 if (ss->css_reset)
2807 ss->css_reset(css);
2808 }
f63070d3 2809 }
f8f22e53
TH
2810 }
2811
2812 kernfs_activate(cgrp->kn);
2813 ret = 0;
2814out_unlock:
a9746d8d 2815 cgroup_kn_unlock(of->kn);
451af504 2816 return ret ?: nbytes;
f8f22e53
TH
2817
2818err_undo_css:
667c2491
TH
2819 cgrp->subtree_control &= ~enable;
2820 cgrp->subtree_control |= disable;
2821 cgroup_refresh_child_subsys_mask(cgrp);
f8f22e53
TH
2822
2823 for_each_subsys(ss, ssid) {
2824 if (!(enable & (1 << ssid)))
2825 continue;
2826
2827 cgroup_for_each_live_child(child, cgrp) {
2828 struct cgroup_subsys_state *css = cgroup_css(child, ss);
f63070d3
TH
2829
2830 if (!css)
2831 continue;
2832
2833 if (css_enable & (1 << ssid))
f8f22e53 2834 kill_css(css);
f63070d3
TH
2835 else
2836 cgroup_clear_dir(child, 1 << ssid);
f8f22e53
TH
2837 }
2838 }
2839 goto out_unlock;
2840}
2841
842b597e
TH
2842static int cgroup_populated_show(struct seq_file *seq, void *v)
2843{
2844 seq_printf(seq, "%d\n", (bool)seq_css(seq)->cgroup->populated_cnt);
2845 return 0;
2846}
2847
2bd59d48
TH
2848static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
2849 size_t nbytes, loff_t off)
355e0c48 2850{
2bd59d48
TH
2851 struct cgroup *cgrp = of->kn->parent->priv;
2852 struct cftype *cft = of->kn->priv;
2853 struct cgroup_subsys_state *css;
a742c59d 2854 int ret;
355e0c48 2855
b4168640
TH
2856 if (cft->write)
2857 return cft->write(of, buf, nbytes, off);
2858
2bd59d48
TH
2859 /*
2860 * kernfs guarantees that a file isn't deleted with operations in
2861 * flight, which means that the matching css is and stays alive and
2862 * doesn't need to be pinned. The RCU locking is not necessary
2863 * either. It's just for the convenience of using cgroup_css().
2864 */
2865 rcu_read_lock();
2866 css = cgroup_css(cgrp, cft->ss);
2867 rcu_read_unlock();
a742c59d 2868
451af504 2869 if (cft->write_u64) {
a742c59d
TH
2870 unsigned long long v;
2871 ret = kstrtoull(buf, 0, &v);
2872 if (!ret)
2873 ret = cft->write_u64(css, cft, v);
2874 } else if (cft->write_s64) {
2875 long long v;
2876 ret = kstrtoll(buf, 0, &v);
2877 if (!ret)
2878 ret = cft->write_s64(css, cft, v);
e73d2c61 2879 } else {
a742c59d 2880 ret = -EINVAL;
e73d2c61 2881 }
2bd59d48 2882
a742c59d 2883 return ret ?: nbytes;
355e0c48
PM
2884}
2885
6612f05b 2886static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
db3b1497 2887{
2bd59d48 2888 return seq_cft(seq)->seq_start(seq, ppos);
db3b1497
PM
2889}
2890
6612f05b 2891static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
ddbcc7e8 2892{
2bd59d48 2893 return seq_cft(seq)->seq_next(seq, v, ppos);
ddbcc7e8
PM
2894}
2895
6612f05b 2896static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
ddbcc7e8 2897{
2bd59d48 2898 seq_cft(seq)->seq_stop(seq, v);
ddbcc7e8
PM
2899}
2900
91796569 2901static int cgroup_seqfile_show(struct seq_file *m, void *arg)
e73d2c61 2902{
7da11279
TH
2903 struct cftype *cft = seq_cft(m);
2904 struct cgroup_subsys_state *css = seq_css(m);
e73d2c61 2905
2da8ca82
TH
2906 if (cft->seq_show)
2907 return cft->seq_show(m, arg);
e73d2c61 2908
f4c753b7 2909 if (cft->read_u64)
896f5199
TH
2910 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
2911 else if (cft->read_s64)
2912 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
2913 else
2914 return -EINVAL;
2915 return 0;
91796569
PM
2916}
2917
2bd59d48
TH
2918static struct kernfs_ops cgroup_kf_single_ops = {
2919 .atomic_write_len = PAGE_SIZE,
2920 .write = cgroup_file_write,
2921 .seq_show = cgroup_seqfile_show,
91796569
PM
2922};
2923
2bd59d48
TH
2924static struct kernfs_ops cgroup_kf_ops = {
2925 .atomic_write_len = PAGE_SIZE,
2926 .write = cgroup_file_write,
2927 .seq_start = cgroup_seqfile_start,
2928 .seq_next = cgroup_seqfile_next,
2929 .seq_stop = cgroup_seqfile_stop,
2930 .seq_show = cgroup_seqfile_show,
2931};
ddbcc7e8
PM
2932
2933/*
2934 * cgroup_rename - Only allow simple rename of directories in place.
2935 */
2bd59d48
TH
2936static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
2937 const char *new_name_str)
ddbcc7e8 2938{
2bd59d48 2939 struct cgroup *cgrp = kn->priv;
65dff759 2940 int ret;
65dff759 2941
2bd59d48 2942 if (kernfs_type(kn) != KERNFS_DIR)
ddbcc7e8 2943 return -ENOTDIR;
2bd59d48 2944 if (kn->parent != new_parent)
ddbcc7e8 2945 return -EIO;
65dff759 2946
6db8e85c
TH
2947 /*
2948 * This isn't a proper migration and its usefulness is very
2949 * limited. Disallow if sane_behavior.
2950 */
2951 if (cgroup_sane_behavior(cgrp))
2952 return -EPERM;
099fca32 2953
e1b2dc17 2954 /*
8353da1f 2955 * We're gonna grab cgroup_mutex which nests outside kernfs
e1b2dc17 2956 * active_ref. kernfs_rename() doesn't require active_ref
8353da1f 2957 * protection. Break them before grabbing cgroup_mutex.
e1b2dc17
TH
2958 */
2959 kernfs_break_active_protection(new_parent);
2960 kernfs_break_active_protection(kn);
099fca32 2961
2bd59d48 2962 mutex_lock(&cgroup_mutex);
099fca32 2963
2bd59d48 2964 ret = kernfs_rename(kn, new_parent, new_name_str);
099fca32 2965
2bd59d48 2966 mutex_unlock(&cgroup_mutex);
e1b2dc17
TH
2967
2968 kernfs_unbreak_active_protection(kn);
2969 kernfs_unbreak_active_protection(new_parent);
2bd59d48 2970 return ret;
099fca32
LZ
2971}
2972
49957f8e
TH
2973/* set uid and gid of cgroup dirs and files to that of the creator */
2974static int cgroup_kn_set_ugid(struct kernfs_node *kn)
2975{
2976 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
2977 .ia_uid = current_fsuid(),
2978 .ia_gid = current_fsgid(), };
2979
2980 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
2981 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
2982 return 0;
2983
2984 return kernfs_setattr(kn, &iattr);
2985}
2986
2bb566cb 2987static int cgroup_add_file(struct cgroup *cgrp, struct cftype *cft)
ddbcc7e8 2988{
8d7e6fb0 2989 char name[CGROUP_FILE_NAME_MAX];
2bd59d48
TH
2990 struct kernfs_node *kn;
2991 struct lock_class_key *key = NULL;
49957f8e 2992 int ret;
05ef1d7c 2993
2bd59d48
TH
2994#ifdef CONFIG_DEBUG_LOCK_ALLOC
2995 key = &cft->lockdep_key;
2996#endif
2997 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
2998 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
2999 NULL, false, key);
49957f8e
TH
3000 if (IS_ERR(kn))
3001 return PTR_ERR(kn);
3002
3003 ret = cgroup_kn_set_ugid(kn);
f8f22e53 3004 if (ret) {
49957f8e 3005 kernfs_remove(kn);
f8f22e53
TH
3006 return ret;
3007 }
3008
b7fc5ad2 3009 if (cft->seq_show == cgroup_populated_show)
842b597e 3010 cgrp->populated_kn = kn;
f8f22e53 3011 return 0;
ddbcc7e8
PM
3012}
3013
b1f28d31
TH
3014/**
3015 * cgroup_addrm_files - add or remove files to a cgroup directory
3016 * @cgrp: the target cgroup
b1f28d31
TH
3017 * @cfts: array of cftypes to be added
3018 * @is_add: whether to add or remove
3019 *
3020 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
2bb566cb
TH
3021 * For removals, this function never fails. If addition fails, this
3022 * function doesn't remove files already added. The caller is responsible
3023 * for cleaning up.
b1f28d31 3024 */
2bb566cb
TH
3025static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
3026 bool is_add)
ddbcc7e8 3027{
03b1cde6 3028 struct cftype *cft;
b1f28d31
TH
3029 int ret;
3030
01f6474c 3031 lockdep_assert_held(&cgroup_mutex);
db0416b6
TH
3032
3033 for (cft = cfts; cft->name[0] != '\0'; cft++) {
f33fddc2 3034 /* does cft->flags tell us to skip this file on @cgrp? */
8cbbf2c9
TH
3035 if ((cft->flags & CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
3036 continue;
873fe09e
TH
3037 if ((cft->flags & CFTYPE_INSANE) && cgroup_sane_behavior(cgrp))
3038 continue;
d51f39b0 3039 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
f33fddc2 3040 continue;
d51f39b0 3041 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
f33fddc2
G
3042 continue;
3043
2739d3cc 3044 if (is_add) {
2bb566cb 3045 ret = cgroup_add_file(cgrp, cft);
b1f28d31 3046 if (ret) {
ed3d261b
JP
3047 pr_warn("%s: failed to add %s, err=%d\n",
3048 __func__, cft->name, ret);
b1f28d31
TH
3049 return ret;
3050 }
2739d3cc
LZ
3051 } else {
3052 cgroup_rm_file(cgrp, cft);
db0416b6 3053 }
ddbcc7e8 3054 }
b1f28d31 3055 return 0;
ddbcc7e8
PM
3056}
3057
21a2d343 3058static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
8e3f6541
TH
3059{
3060 LIST_HEAD(pending);
2bb566cb 3061 struct cgroup_subsys *ss = cfts[0].ss;
3dd06ffa 3062 struct cgroup *root = &ss->root->cgrp;
492eb21b 3063 struct cgroup_subsys_state *css;
9ccece80 3064 int ret = 0;
8e3f6541 3065
01f6474c 3066 lockdep_assert_held(&cgroup_mutex);
e8c82d20 3067
e8c82d20 3068 /* add/rm files for all cgroups created before */
ca8bdcaf 3069 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
492eb21b
TH
3070 struct cgroup *cgrp = css->cgroup;
3071
e8c82d20
LZ
3072 if (cgroup_is_dead(cgrp))
3073 continue;
3074
21a2d343 3075 ret = cgroup_addrm_files(cgrp, cfts, is_add);
9ccece80
TH
3076 if (ret)
3077 break;
8e3f6541 3078 }
21a2d343
TH
3079
3080 if (is_add && !ret)
3081 kernfs_activate(root->kn);
9ccece80 3082 return ret;
8e3f6541
TH
3083}
3084
2da440a2 3085static void cgroup_exit_cftypes(struct cftype *cfts)
8e3f6541 3086{
2bb566cb 3087 struct cftype *cft;
8e3f6541 3088
2bd59d48
TH
3089 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3090 /* free copy for custom atomic_write_len, see init_cftypes() */
3091 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3092 kfree(cft->kf_ops);
3093 cft->kf_ops = NULL;
2da440a2 3094 cft->ss = NULL;
2bd59d48 3095 }
2da440a2
TH
3096}
3097
2bd59d48 3098static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2da440a2
TH
3099{
3100 struct cftype *cft;
3101
2bd59d48
TH
3102 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3103 struct kernfs_ops *kf_ops;
3104
0adb0704
TH
3105 WARN_ON(cft->ss || cft->kf_ops);
3106
2bd59d48
TH
3107 if (cft->seq_start)
3108 kf_ops = &cgroup_kf_ops;
3109 else
3110 kf_ops = &cgroup_kf_single_ops;
3111
3112 /*
3113 * Ugh... if @cft wants a custom max_write_len, we need to
3114 * make a copy of kf_ops to set its atomic_write_len.
3115 */
3116 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3117 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3118 if (!kf_ops) {
3119 cgroup_exit_cftypes(cfts);
3120 return -ENOMEM;
3121 }
3122 kf_ops->atomic_write_len = cft->max_write_len;
3123 }
8e3f6541 3124
2bd59d48 3125 cft->kf_ops = kf_ops;
2bb566cb 3126 cft->ss = ss;
2bd59d48 3127 }
2bb566cb 3128
2bd59d48 3129 return 0;
2da440a2
TH
3130}
3131
21a2d343
TH
3132static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3133{
01f6474c 3134 lockdep_assert_held(&cgroup_mutex);
21a2d343
TH
3135
3136 if (!cfts || !cfts[0].ss)
3137 return -ENOENT;
3138
3139 list_del(&cfts->node);
3140 cgroup_apply_cftypes(cfts, false);
3141 cgroup_exit_cftypes(cfts);
3142 return 0;
8e3f6541 3143}
8e3f6541 3144
79578621
TH
3145/**
3146 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
79578621
TH
3147 * @cfts: zero-length name terminated array of cftypes
3148 *
2bb566cb
TH
3149 * Unregister @cfts. Files described by @cfts are removed from all
3150 * existing cgroups and all future cgroups won't have them either. This
3151 * function can be called anytime whether @cfts' subsys is attached or not.
79578621
TH
3152 *
3153 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2bb566cb 3154 * registered.
79578621 3155 */
2bb566cb 3156int cgroup_rm_cftypes(struct cftype *cfts)
79578621 3157{
21a2d343 3158 int ret;
79578621 3159
01f6474c 3160 mutex_lock(&cgroup_mutex);
21a2d343 3161 ret = cgroup_rm_cftypes_locked(cfts);
01f6474c 3162 mutex_unlock(&cgroup_mutex);
21a2d343 3163 return ret;
80b13586
TH
3164}
3165
8e3f6541
TH
3166/**
3167 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3168 * @ss: target cgroup subsystem
3169 * @cfts: zero-length name terminated array of cftypes
3170 *
3171 * Register @cfts to @ss. Files described by @cfts are created for all
3172 * existing cgroups to which @ss is attached and all future cgroups will
3173 * have them too. This function can be called anytime whether @ss is
3174 * attached or not.
3175 *
3176 * Returns 0 on successful registration, -errno on failure. Note that this
3177 * function currently returns 0 as long as @cfts registration is successful
3178 * even if some file creation attempts on existing cgroups fail.
3179 */
03b1cde6 3180int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
8e3f6541 3181{
9ccece80 3182 int ret;
8e3f6541 3183
c731ae1d
LZ
3184 if (ss->disabled)
3185 return 0;
3186
dc5736ed
LZ
3187 if (!cfts || cfts[0].name[0] == '\0')
3188 return 0;
2bb566cb 3189
2bd59d48
TH
3190 ret = cgroup_init_cftypes(ss, cfts);
3191 if (ret)
3192 return ret;
79578621 3193
01f6474c 3194 mutex_lock(&cgroup_mutex);
21a2d343 3195
0adb0704 3196 list_add_tail(&cfts->node, &ss->cfts);
21a2d343 3197 ret = cgroup_apply_cftypes(cfts, true);
9ccece80 3198 if (ret)
21a2d343 3199 cgroup_rm_cftypes_locked(cfts);
79578621 3200
01f6474c 3201 mutex_unlock(&cgroup_mutex);
9ccece80 3202 return ret;
79578621
TH
3203}
3204
a043e3b2
LZ
3205/**
3206 * cgroup_task_count - count the number of tasks in a cgroup.
3207 * @cgrp: the cgroup in question
3208 *
3209 * Return the number of tasks in the cgroup.
3210 */
07bc356e 3211static int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
3212{
3213 int count = 0;
69d0206c 3214 struct cgrp_cset_link *link;
817929ec 3215
96d365e0 3216 down_read(&css_set_rwsem);
69d0206c
TH
3217 list_for_each_entry(link, &cgrp->cset_links, cset_link)
3218 count += atomic_read(&link->cset->refcount);
96d365e0 3219 up_read(&css_set_rwsem);
bbcb81d0
PM
3220 return count;
3221}
3222
53fa5261 3223/**
492eb21b 3224 * css_next_child - find the next child of a given css
c2931b70
TH
3225 * @pos: the current position (%NULL to initiate traversal)
3226 * @parent: css whose children to walk
53fa5261 3227 *
c2931b70 3228 * This function returns the next child of @parent and should be called
87fb54f1 3229 * under either cgroup_mutex or RCU read lock. The only requirement is
c2931b70
TH
3230 * that @parent and @pos are accessible. The next sibling is guaranteed to
3231 * be returned regardless of their states.
3232 *
3233 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3234 * css which finished ->css_online() is guaranteed to be visible in the
3235 * future iterations and will stay visible until the last reference is put.
3236 * A css which hasn't finished ->css_online() or already finished
3237 * ->css_offline() may show up during traversal. It's each subsystem's
3238 * responsibility to synchronize against on/offlining.
53fa5261 3239 */
c2931b70
TH
3240struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3241 struct cgroup_subsys_state *parent)
53fa5261 3242{
c2931b70 3243 struct cgroup_subsys_state *next;
53fa5261 3244
8353da1f 3245 cgroup_assert_mutex_or_rcu_locked();
53fa5261
TH
3246
3247 /*
de3f0341
TH
3248 * @pos could already have been unlinked from the sibling list.
3249 * Once a cgroup is removed, its ->sibling.next is no longer
3250 * updated when its next sibling changes. CSS_RELEASED is set when
3251 * @pos is taken off list, at which time its next pointer is valid,
3252 * and, as releases are serialized, the one pointed to by the next
3253 * pointer is guaranteed to not have started release yet. This
3254 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3255 * critical section, the one pointed to by its next pointer is
3256 * guaranteed to not have finished its RCU grace period even if we
3257 * have dropped rcu_read_lock() inbetween iterations.
3b287a50 3258 *
de3f0341
TH
3259 * If @pos has CSS_RELEASED set, its next pointer can't be
3260 * dereferenced; however, as each css is given a monotonically
3261 * increasing unique serial number and always appended to the
3262 * sibling list, the next one can be found by walking the parent's
3263 * children until the first css with higher serial number than
3264 * @pos's. While this path can be slower, it happens iff iteration
3265 * races against release and the race window is very small.
53fa5261 3266 */
3b287a50 3267 if (!pos) {
c2931b70
TH
3268 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3269 } else if (likely(!(pos->flags & CSS_RELEASED))) {
3270 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3b287a50 3271 } else {
c2931b70 3272 list_for_each_entry_rcu(next, &parent->children, sibling)
3b287a50
TH
3273 if (next->serial_nr > pos->serial_nr)
3274 break;
53fa5261
TH
3275 }
3276
3b281afb
TH
3277 /*
3278 * @next, if not pointing to the head, can be dereferenced and is
c2931b70 3279 * the next sibling.
3b281afb 3280 */
c2931b70
TH
3281 if (&next->sibling != &parent->children)
3282 return next;
3b281afb 3283 return NULL;
53fa5261 3284}
53fa5261 3285
574bd9f7 3286/**
492eb21b 3287 * css_next_descendant_pre - find the next descendant for pre-order walk
574bd9f7 3288 * @pos: the current position (%NULL to initiate traversal)
492eb21b 3289 * @root: css whose descendants to walk
574bd9f7 3290 *
492eb21b 3291 * To be used by css_for_each_descendant_pre(). Find the next descendant
bd8815a6
TH
3292 * to visit for pre-order traversal of @root's descendants. @root is
3293 * included in the iteration and the first node to be visited.
75501a6d 3294 *
87fb54f1
TH
3295 * While this function requires cgroup_mutex or RCU read locking, it
3296 * doesn't require the whole traversal to be contained in a single critical
3297 * section. This function will return the correct next descendant as long
3298 * as both @pos and @root are accessible and @pos is a descendant of @root.
c2931b70
TH
3299 *
3300 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3301 * css which finished ->css_online() is guaranteed to be visible in the
3302 * future iterations and will stay visible until the last reference is put.
3303 * A css which hasn't finished ->css_online() or already finished
3304 * ->css_offline() may show up during traversal. It's each subsystem's
3305 * responsibility to synchronize against on/offlining.
574bd9f7 3306 */
492eb21b
TH
3307struct cgroup_subsys_state *
3308css_next_descendant_pre(struct cgroup_subsys_state *pos,
3309 struct cgroup_subsys_state *root)
574bd9f7 3310{
492eb21b 3311 struct cgroup_subsys_state *next;
574bd9f7 3312
8353da1f 3313 cgroup_assert_mutex_or_rcu_locked();
574bd9f7 3314
bd8815a6 3315 /* if first iteration, visit @root */
7805d000 3316 if (!pos)
bd8815a6 3317 return root;
574bd9f7
TH
3318
3319 /* visit the first child if exists */
492eb21b 3320 next = css_next_child(NULL, pos);
574bd9f7
TH
3321 if (next)
3322 return next;
3323
3324 /* no child, visit my or the closest ancestor's next sibling */
492eb21b 3325 while (pos != root) {
5c9d535b 3326 next = css_next_child(pos, pos->parent);
75501a6d 3327 if (next)
574bd9f7 3328 return next;
5c9d535b 3329 pos = pos->parent;
7805d000 3330 }
574bd9f7
TH
3331
3332 return NULL;
3333}
574bd9f7 3334
12a9d2fe 3335/**
492eb21b
TH
3336 * css_rightmost_descendant - return the rightmost descendant of a css
3337 * @pos: css of interest
12a9d2fe 3338 *
492eb21b
TH
3339 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3340 * is returned. This can be used during pre-order traversal to skip
12a9d2fe 3341 * subtree of @pos.
75501a6d 3342 *
87fb54f1
TH
3343 * While this function requires cgroup_mutex or RCU read locking, it
3344 * doesn't require the whole traversal to be contained in a single critical
3345 * section. This function will return the correct rightmost descendant as
3346 * long as @pos is accessible.
12a9d2fe 3347 */
492eb21b
TH
3348struct cgroup_subsys_state *
3349css_rightmost_descendant(struct cgroup_subsys_state *pos)
12a9d2fe 3350{
492eb21b 3351 struct cgroup_subsys_state *last, *tmp;
12a9d2fe 3352
8353da1f 3353 cgroup_assert_mutex_or_rcu_locked();
12a9d2fe
TH
3354
3355 do {
3356 last = pos;
3357 /* ->prev isn't RCU safe, walk ->next till the end */
3358 pos = NULL;
492eb21b 3359 css_for_each_child(tmp, last)
12a9d2fe
TH
3360 pos = tmp;
3361 } while (pos);
3362
3363 return last;
3364}
12a9d2fe 3365
492eb21b
TH
3366static struct cgroup_subsys_state *
3367css_leftmost_descendant(struct cgroup_subsys_state *pos)
574bd9f7 3368{
492eb21b 3369 struct cgroup_subsys_state *last;
574bd9f7
TH
3370
3371 do {
3372 last = pos;
492eb21b 3373 pos = css_next_child(NULL, pos);
574bd9f7
TH
3374 } while (pos);
3375
3376 return last;
3377}
3378
3379/**
492eb21b 3380 * css_next_descendant_post - find the next descendant for post-order walk
574bd9f7 3381 * @pos: the current position (%NULL to initiate traversal)
492eb21b 3382 * @root: css whose descendants to walk
574bd9f7 3383 *
492eb21b 3384 * To be used by css_for_each_descendant_post(). Find the next descendant
bd8815a6
TH
3385 * to visit for post-order traversal of @root's descendants. @root is
3386 * included in the iteration and the last node to be visited.
75501a6d 3387 *
87fb54f1
TH
3388 * While this function requires cgroup_mutex or RCU read locking, it
3389 * doesn't require the whole traversal to be contained in a single critical
3390 * section. This function will return the correct next descendant as long
3391 * as both @pos and @cgroup are accessible and @pos is a descendant of
3392 * @cgroup.
c2931b70
TH
3393 *
3394 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3395 * css which finished ->css_online() is guaranteed to be visible in the
3396 * future iterations and will stay visible until the last reference is put.
3397 * A css which hasn't finished ->css_online() or already finished
3398 * ->css_offline() may show up during traversal. It's each subsystem's
3399 * responsibility to synchronize against on/offlining.
574bd9f7 3400 */
492eb21b
TH
3401struct cgroup_subsys_state *
3402css_next_descendant_post(struct cgroup_subsys_state *pos,
3403 struct cgroup_subsys_state *root)
574bd9f7 3404{
492eb21b 3405 struct cgroup_subsys_state *next;
574bd9f7 3406
8353da1f 3407 cgroup_assert_mutex_or_rcu_locked();
574bd9f7 3408
58b79a91
TH
3409 /* if first iteration, visit leftmost descendant which may be @root */
3410 if (!pos)
3411 return css_leftmost_descendant(root);
574bd9f7 3412
bd8815a6
TH
3413 /* if we visited @root, we're done */
3414 if (pos == root)
3415 return NULL;
3416
574bd9f7 3417 /* if there's an unvisited sibling, visit its leftmost descendant */
5c9d535b 3418 next = css_next_child(pos, pos->parent);
75501a6d 3419 if (next)
492eb21b 3420 return css_leftmost_descendant(next);
574bd9f7
TH
3421
3422 /* no sibling left, visit parent */
5c9d535b 3423 return pos->parent;
574bd9f7 3424}
574bd9f7 3425
f3d46500
TH
3426/**
3427 * css_has_online_children - does a css have online children
3428 * @css: the target css
3429 *
3430 * Returns %true if @css has any online children; otherwise, %false. This
3431 * function can be called from any context but the caller is responsible
3432 * for synchronizing against on/offlining as necessary.
3433 */
3434bool css_has_online_children(struct cgroup_subsys_state *css)
cbc125ef 3435{
f3d46500
TH
3436 struct cgroup_subsys_state *child;
3437 bool ret = false;
cbc125ef
TH
3438
3439 rcu_read_lock();
f3d46500
TH
3440 css_for_each_child(child, css) {
3441 if (css->flags & CSS_ONLINE) {
3442 ret = true;
3443 break;
cbc125ef
TH
3444 }
3445 }
3446 rcu_read_unlock();
f3d46500 3447 return ret;
574bd9f7 3448}
574bd9f7 3449
0942eeee 3450/**
72ec7029 3451 * css_advance_task_iter - advance a task itererator to the next css_set
0942eeee
TH
3452 * @it: the iterator to advance
3453 *
3454 * Advance @it to the next css_set to walk.
d515876e 3455 */
72ec7029 3456static void css_advance_task_iter(struct css_task_iter *it)
d515876e 3457{
0f0a2b4f 3458 struct list_head *l = it->cset_pos;
d515876e
TH
3459 struct cgrp_cset_link *link;
3460 struct css_set *cset;
3461
3462 /* Advance to the next non-empty css_set */
3463 do {
3464 l = l->next;
0f0a2b4f
TH
3465 if (l == it->cset_head) {
3466 it->cset_pos = NULL;
d515876e
TH
3467 return;
3468 }
3ebb2b6e
TH
3469
3470 if (it->ss) {
3471 cset = container_of(l, struct css_set,
3472 e_cset_node[it->ss->id]);
3473 } else {
3474 link = list_entry(l, struct cgrp_cset_link, cset_link);
3475 cset = link->cset;
3476 }
c7561128
TH
3477 } while (list_empty(&cset->tasks) && list_empty(&cset->mg_tasks));
3478
0f0a2b4f 3479 it->cset_pos = l;
c7561128
TH
3480
3481 if (!list_empty(&cset->tasks))
0f0a2b4f 3482 it->task_pos = cset->tasks.next;
c7561128 3483 else
0f0a2b4f
TH
3484 it->task_pos = cset->mg_tasks.next;
3485
3486 it->tasks_head = &cset->tasks;
3487 it->mg_tasks_head = &cset->mg_tasks;
d515876e
TH
3488}
3489
0942eeee 3490/**
72ec7029
TH
3491 * css_task_iter_start - initiate task iteration
3492 * @css: the css to walk tasks of
0942eeee
TH
3493 * @it: the task iterator to use
3494 *
72ec7029
TH
3495 * Initiate iteration through the tasks of @css. The caller can call
3496 * css_task_iter_next() to walk through the tasks until the function
3497 * returns NULL. On completion of iteration, css_task_iter_end() must be
3498 * called.
0942eeee
TH
3499 *
3500 * Note that this function acquires a lock which is released when the
3501 * iteration finishes. The caller can't sleep while iteration is in
3502 * progress.
3503 */
72ec7029
TH
3504void css_task_iter_start(struct cgroup_subsys_state *css,
3505 struct css_task_iter *it)
96d365e0 3506 __acquires(css_set_rwsem)
817929ec 3507{
56fde9e0
TH
3508 /* no one should try to iterate before mounting cgroups */
3509 WARN_ON_ONCE(!use_task_css_set_links);
31a7df01 3510
96d365e0 3511 down_read(&css_set_rwsem);
c59cd3d8 3512
3ebb2b6e
TH
3513 it->ss = css->ss;
3514
3515 if (it->ss)
3516 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
3517 else
3518 it->cset_pos = &css->cgroup->cset_links;
3519
0f0a2b4f 3520 it->cset_head = it->cset_pos;
c59cd3d8 3521
72ec7029 3522 css_advance_task_iter(it);
817929ec
PM
3523}
3524
0942eeee 3525/**
72ec7029 3526 * css_task_iter_next - return the next task for the iterator
0942eeee
TH
3527 * @it: the task iterator being iterated
3528 *
3529 * The "next" function for task iteration. @it should have been
72ec7029
TH
3530 * initialized via css_task_iter_start(). Returns NULL when the iteration
3531 * reaches the end.
0942eeee 3532 */
72ec7029 3533struct task_struct *css_task_iter_next(struct css_task_iter *it)
817929ec
PM
3534{
3535 struct task_struct *res;
0f0a2b4f 3536 struct list_head *l = it->task_pos;
817929ec
PM
3537
3538 /* If the iterator cg is NULL, we have no tasks */
0f0a2b4f 3539 if (!it->cset_pos)
817929ec
PM
3540 return NULL;
3541 res = list_entry(l, struct task_struct, cg_list);
c7561128
TH
3542
3543 /*
3544 * Advance iterator to find next entry. cset->tasks is consumed
3545 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
3546 * next cset.
3547 */
817929ec 3548 l = l->next;
c7561128 3549
0f0a2b4f
TH
3550 if (l == it->tasks_head)
3551 l = it->mg_tasks_head->next;
c7561128 3552
0f0a2b4f 3553 if (l == it->mg_tasks_head)
72ec7029 3554 css_advance_task_iter(it);
c7561128 3555 else
0f0a2b4f 3556 it->task_pos = l;
c7561128 3557
817929ec
PM
3558 return res;
3559}
3560
0942eeee 3561/**
72ec7029 3562 * css_task_iter_end - finish task iteration
0942eeee
TH
3563 * @it: the task iterator to finish
3564 *
72ec7029 3565 * Finish task iteration started by css_task_iter_start().
0942eeee 3566 */
72ec7029 3567void css_task_iter_end(struct css_task_iter *it)
96d365e0 3568 __releases(css_set_rwsem)
31a7df01 3569{
96d365e0 3570 up_read(&css_set_rwsem);
31a7df01
CW
3571}
3572
3573/**
8cc99345
TH
3574 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
3575 * @to: cgroup to which the tasks will be moved
3576 * @from: cgroup in which the tasks currently reside
31a7df01 3577 *
eaf797ab
TH
3578 * Locking rules between cgroup_post_fork() and the migration path
3579 * guarantee that, if a task is forking while being migrated, the new child
3580 * is guaranteed to be either visible in the source cgroup after the
3581 * parent's migration is complete or put into the target cgroup. No task
3582 * can slip out of migration through forking.
31a7df01 3583 */
8cc99345 3584int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
31a7df01 3585{
952aaa12
TH
3586 LIST_HEAD(preloaded_csets);
3587 struct cgrp_cset_link *link;
72ec7029 3588 struct css_task_iter it;
e406d1cf 3589 struct task_struct *task;
952aaa12 3590 int ret;
31a7df01 3591
952aaa12 3592 mutex_lock(&cgroup_mutex);
31a7df01 3593
952aaa12
TH
3594 /* all tasks in @from are being moved, all csets are source */
3595 down_read(&css_set_rwsem);
3596 list_for_each_entry(link, &from->cset_links, cset_link)
3597 cgroup_migrate_add_src(link->cset, to, &preloaded_csets);
3598 up_read(&css_set_rwsem);
31a7df01 3599
952aaa12
TH
3600 ret = cgroup_migrate_prepare_dst(to, &preloaded_csets);
3601 if (ret)
3602 goto out_err;
8cc99345 3603
952aaa12
TH
3604 /*
3605 * Migrate tasks one-by-one until @form is empty. This fails iff
3606 * ->can_attach() fails.
3607 */
e406d1cf 3608 do {
9d800df1 3609 css_task_iter_start(&from->self, &it);
e406d1cf
TH
3610 task = css_task_iter_next(&it);
3611 if (task)
3612 get_task_struct(task);
3613 css_task_iter_end(&it);
3614
3615 if (task) {
952aaa12 3616 ret = cgroup_migrate(to, task, false);
e406d1cf
TH
3617 put_task_struct(task);
3618 }
3619 } while (task && !ret);
952aaa12
TH
3620out_err:
3621 cgroup_migrate_finish(&preloaded_csets);
47cfcd09 3622 mutex_unlock(&cgroup_mutex);
e406d1cf 3623 return ret;
8cc99345
TH
3624}
3625
bbcb81d0 3626/*
102a775e 3627 * Stuff for reading the 'tasks'/'procs' files.
bbcb81d0
PM
3628 *
3629 * Reading this file can return large amounts of data if a cgroup has
3630 * *lots* of attached tasks. So it may need several calls to read(),
3631 * but we cannot guarantee that the information we produce is correct
3632 * unless we produce it entirely atomically.
3633 *
bbcb81d0 3634 */
bbcb81d0 3635
24528255
LZ
3636/* which pidlist file are we talking about? */
3637enum cgroup_filetype {
3638 CGROUP_FILE_PROCS,
3639 CGROUP_FILE_TASKS,
3640};
3641
3642/*
3643 * A pidlist is a list of pids that virtually represents the contents of one
3644 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3645 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3646 * to the cgroup.
3647 */
3648struct cgroup_pidlist {
3649 /*
3650 * used to find which pidlist is wanted. doesn't change as long as
3651 * this particular list stays in the list.
3652 */
3653 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
3654 /* array of xids */
3655 pid_t *list;
3656 /* how many elements the above list has */
3657 int length;
24528255
LZ
3658 /* each of these stored in a list by its cgroup */
3659 struct list_head links;
3660 /* pointer to the cgroup we belong to, for list removal purposes */
3661 struct cgroup *owner;
b1a21367
TH
3662 /* for delayed destruction */
3663 struct delayed_work destroy_dwork;
24528255
LZ
3664};
3665
d1d9fd33
BB
3666/*
3667 * The following two functions "fix" the issue where there are more pids
3668 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3669 * TODO: replace with a kernel-wide solution to this problem
3670 */
3671#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3672static void *pidlist_allocate(int count)
3673{
3674 if (PIDLIST_TOO_LARGE(count))
3675 return vmalloc(count * sizeof(pid_t));
3676 else
3677 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3678}
b1a21367 3679
d1d9fd33
BB
3680static void pidlist_free(void *p)
3681{
3682 if (is_vmalloc_addr(p))
3683 vfree(p);
3684 else
3685 kfree(p);
3686}
d1d9fd33 3687
b1a21367
TH
3688/*
3689 * Used to destroy all pidlists lingering waiting for destroy timer. None
3690 * should be left afterwards.
3691 */
3692static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
3693{
3694 struct cgroup_pidlist *l, *tmp_l;
3695
3696 mutex_lock(&cgrp->pidlist_mutex);
3697 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
3698 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
3699 mutex_unlock(&cgrp->pidlist_mutex);
3700
3701 flush_workqueue(cgroup_pidlist_destroy_wq);
3702 BUG_ON(!list_empty(&cgrp->pidlists));
3703}
3704
3705static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
3706{
3707 struct delayed_work *dwork = to_delayed_work(work);
3708 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
3709 destroy_dwork);
3710 struct cgroup_pidlist *tofree = NULL;
3711
3712 mutex_lock(&l->owner->pidlist_mutex);
b1a21367
TH
3713
3714 /*
04502365
TH
3715 * Destroy iff we didn't get queued again. The state won't change
3716 * as destroy_dwork can only be queued while locked.
b1a21367 3717 */
04502365 3718 if (!delayed_work_pending(dwork)) {
b1a21367
TH
3719 list_del(&l->links);
3720 pidlist_free(l->list);
3721 put_pid_ns(l->key.ns);
3722 tofree = l;
3723 }
3724
b1a21367
TH
3725 mutex_unlock(&l->owner->pidlist_mutex);
3726 kfree(tofree);
3727}
3728
bbcb81d0 3729/*
102a775e 3730 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
6ee211ad 3731 * Returns the number of unique elements.
bbcb81d0 3732 */
6ee211ad 3733static int pidlist_uniq(pid_t *list, int length)
bbcb81d0 3734{
102a775e 3735 int src, dest = 1;
102a775e
BB
3736
3737 /*
3738 * we presume the 0th element is unique, so i starts at 1. trivial
3739 * edge cases first; no work needs to be done for either
3740 */
3741 if (length == 0 || length == 1)
3742 return length;
3743 /* src and dest walk down the list; dest counts unique elements */
3744 for (src = 1; src < length; src++) {
3745 /* find next unique element */
3746 while (list[src] == list[src-1]) {
3747 src++;
3748 if (src == length)
3749 goto after;
3750 }
3751 /* dest always points to where the next unique element goes */
3752 list[dest] = list[src];
3753 dest++;
3754 }
3755after:
102a775e
BB
3756 return dest;
3757}
3758
afb2bc14
TH
3759/*
3760 * The two pid files - task and cgroup.procs - guaranteed that the result
3761 * is sorted, which forced this whole pidlist fiasco. As pid order is
3762 * different per namespace, each namespace needs differently sorted list,
3763 * making it impossible to use, for example, single rbtree of member tasks
3764 * sorted by task pointer. As pidlists can be fairly large, allocating one
3765 * per open file is dangerous, so cgroup had to implement shared pool of
3766 * pidlists keyed by cgroup and namespace.
3767 *
3768 * All this extra complexity was caused by the original implementation
3769 * committing to an entirely unnecessary property. In the long term, we
3770 * want to do away with it. Explicitly scramble sort order if
3771 * sane_behavior so that no such expectation exists in the new interface.
3772 *
3773 * Scrambling is done by swapping every two consecutive bits, which is
3774 * non-identity one-to-one mapping which disturbs sort order sufficiently.
3775 */
3776static pid_t pid_fry(pid_t pid)
3777{
3778 unsigned a = pid & 0x55555555;
3779 unsigned b = pid & 0xAAAAAAAA;
3780
3781 return (a << 1) | (b >> 1);
3782}
3783
3784static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
3785{
3786 if (cgroup_sane_behavior(cgrp))
3787 return pid_fry(pid);
3788 else
3789 return pid;
3790}
3791
102a775e
BB
3792static int cmppid(const void *a, const void *b)
3793{
3794 return *(pid_t *)a - *(pid_t *)b;
3795}
3796
afb2bc14
TH
3797static int fried_cmppid(const void *a, const void *b)
3798{
3799 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
3800}
3801
e6b81710
TH
3802static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3803 enum cgroup_filetype type)
3804{
3805 struct cgroup_pidlist *l;
3806 /* don't need task_nsproxy() if we're looking at ourself */
3807 struct pid_namespace *ns = task_active_pid_ns(current);
3808
3809 lockdep_assert_held(&cgrp->pidlist_mutex);
3810
3811 list_for_each_entry(l, &cgrp->pidlists, links)
3812 if (l->key.type == type && l->key.ns == ns)
3813 return l;
3814 return NULL;
3815}
3816
72a8cb30
BB
3817/*
3818 * find the appropriate pidlist for our purpose (given procs vs tasks)
3819 * returns with the lock on that pidlist already held, and takes care
3820 * of the use count, or returns NULL with no locks held if we're out of
3821 * memory.
3822 */
e6b81710
TH
3823static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
3824 enum cgroup_filetype type)
72a8cb30
BB
3825{
3826 struct cgroup_pidlist *l;
b70cc5fd 3827
e6b81710
TH
3828 lockdep_assert_held(&cgrp->pidlist_mutex);
3829
3830 l = cgroup_pidlist_find(cgrp, type);
3831 if (l)
3832 return l;
3833
72a8cb30 3834 /* entry not found; create a new one */
f4f4be2b 3835 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
e6b81710 3836 if (!l)
72a8cb30 3837 return l;
e6b81710 3838
b1a21367 3839 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
72a8cb30 3840 l->key.type = type;
e6b81710
TH
3841 /* don't need task_nsproxy() if we're looking at ourself */
3842 l->key.ns = get_pid_ns(task_active_pid_ns(current));
72a8cb30
BB
3843 l->owner = cgrp;
3844 list_add(&l->links, &cgrp->pidlists);
72a8cb30
BB
3845 return l;
3846}
3847
102a775e
BB
3848/*
3849 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3850 */
72a8cb30
BB
3851static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3852 struct cgroup_pidlist **lp)
102a775e
BB
3853{
3854 pid_t *array;
3855 int length;
3856 int pid, n = 0; /* used for populating the array */
72ec7029 3857 struct css_task_iter it;
817929ec 3858 struct task_struct *tsk;
102a775e
BB
3859 struct cgroup_pidlist *l;
3860
4bac00d1
TH
3861 lockdep_assert_held(&cgrp->pidlist_mutex);
3862
102a775e
BB
3863 /*
3864 * If cgroup gets more users after we read count, we won't have
3865 * enough space - tough. This race is indistinguishable to the
3866 * caller from the case that the additional cgroup users didn't
3867 * show up until sometime later on.
3868 */
3869 length = cgroup_task_count(cgrp);
d1d9fd33 3870 array = pidlist_allocate(length);
102a775e
BB
3871 if (!array)
3872 return -ENOMEM;
3873 /* now, populate the array */
9d800df1 3874 css_task_iter_start(&cgrp->self, &it);
72ec7029 3875 while ((tsk = css_task_iter_next(&it))) {
102a775e 3876 if (unlikely(n == length))
817929ec 3877 break;
102a775e 3878 /* get tgid or pid for procs or tasks file respectively */
72a8cb30
BB
3879 if (type == CGROUP_FILE_PROCS)
3880 pid = task_tgid_vnr(tsk);
3881 else
3882 pid = task_pid_vnr(tsk);
102a775e
BB
3883 if (pid > 0) /* make sure to only use valid results */
3884 array[n++] = pid;
817929ec 3885 }
72ec7029 3886 css_task_iter_end(&it);
102a775e
BB
3887 length = n;
3888 /* now sort & (if procs) strip out duplicates */
afb2bc14
TH
3889 if (cgroup_sane_behavior(cgrp))
3890 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
3891 else
3892 sort(array, length, sizeof(pid_t), cmppid, NULL);
72a8cb30 3893 if (type == CGROUP_FILE_PROCS)
6ee211ad 3894 length = pidlist_uniq(array, length);
e6b81710 3895
e6b81710 3896 l = cgroup_pidlist_find_create(cgrp, type);
72a8cb30 3897 if (!l) {
e6b81710 3898 mutex_unlock(&cgrp->pidlist_mutex);
d1d9fd33 3899 pidlist_free(array);
72a8cb30 3900 return -ENOMEM;
102a775e 3901 }
e6b81710
TH
3902
3903 /* store array, freeing old if necessary */
d1d9fd33 3904 pidlist_free(l->list);
102a775e
BB
3905 l->list = array;
3906 l->length = length;
72a8cb30 3907 *lp = l;
102a775e 3908 return 0;
bbcb81d0
PM
3909}
3910
846c7bb0 3911/**
a043e3b2 3912 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
3913 * @stats: cgroupstats to fill information into
3914 * @dentry: A dentry entry belonging to the cgroup for which stats have
3915 * been requested.
a043e3b2
LZ
3916 *
3917 * Build and fill cgroupstats so that taskstats can export it to user
3918 * space.
846c7bb0
BS
3919 */
3920int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3921{
2bd59d48 3922 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
bd89aabc 3923 struct cgroup *cgrp;
72ec7029 3924 struct css_task_iter it;
846c7bb0 3925 struct task_struct *tsk;
33d283be 3926
2bd59d48
TH
3927 /* it should be kernfs_node belonging to cgroupfs and is a directory */
3928 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
3929 kernfs_type(kn) != KERNFS_DIR)
3930 return -EINVAL;
3931
bad34660
LZ
3932 mutex_lock(&cgroup_mutex);
3933
846c7bb0 3934 /*
2bd59d48 3935 * We aren't being called from kernfs and there's no guarantee on
ec903c0c 3936 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
2bd59d48 3937 * @kn->priv is RCU safe. Let's do the RCU dancing.
846c7bb0 3938 */
2bd59d48
TH
3939 rcu_read_lock();
3940 cgrp = rcu_dereference(kn->priv);
bad34660 3941 if (!cgrp || cgroup_is_dead(cgrp)) {
2bd59d48 3942 rcu_read_unlock();
bad34660 3943 mutex_unlock(&cgroup_mutex);
2bd59d48
TH
3944 return -ENOENT;
3945 }
bad34660 3946 rcu_read_unlock();
846c7bb0 3947
9d800df1 3948 css_task_iter_start(&cgrp->self, &it);
72ec7029 3949 while ((tsk = css_task_iter_next(&it))) {
846c7bb0
BS
3950 switch (tsk->state) {
3951 case TASK_RUNNING:
3952 stats->nr_running++;
3953 break;
3954 case TASK_INTERRUPTIBLE:
3955 stats->nr_sleeping++;
3956 break;
3957 case TASK_UNINTERRUPTIBLE:
3958 stats->nr_uninterruptible++;
3959 break;
3960 case TASK_STOPPED:
3961 stats->nr_stopped++;
3962 break;
3963 default:
3964 if (delayacct_is_task_waiting_on_io(tsk))
3965 stats->nr_io_wait++;
3966 break;
3967 }
3968 }
72ec7029 3969 css_task_iter_end(&it);
846c7bb0 3970
bad34660 3971 mutex_unlock(&cgroup_mutex);
2bd59d48 3972 return 0;
846c7bb0
BS
3973}
3974
8f3ff208 3975
bbcb81d0 3976/*
102a775e 3977 * seq_file methods for the tasks/procs files. The seq_file position is the
cc31edce 3978 * next pid to display; the seq_file iterator is a pointer to the pid
102a775e 3979 * in the cgroup->l->list array.
bbcb81d0 3980 */
cc31edce 3981
102a775e 3982static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
bbcb81d0 3983{
cc31edce
PM
3984 /*
3985 * Initially we receive a position value that corresponds to
3986 * one more than the last pid shown (or 0 on the first call or
3987 * after a seek to the start). Use a binary-search to find the
3988 * next pid to display, if any
3989 */
2bd59d48 3990 struct kernfs_open_file *of = s->private;
7da11279 3991 struct cgroup *cgrp = seq_css(s)->cgroup;
4bac00d1 3992 struct cgroup_pidlist *l;
7da11279 3993 enum cgroup_filetype type = seq_cft(s)->private;
cc31edce 3994 int index = 0, pid = *pos;
4bac00d1
TH
3995 int *iter, ret;
3996
3997 mutex_lock(&cgrp->pidlist_mutex);
3998
3999 /*
5d22444f 4000 * !NULL @of->priv indicates that this isn't the first start()
4bac00d1 4001 * after open. If the matching pidlist is around, we can use that.
5d22444f 4002 * Look for it. Note that @of->priv can't be used directly. It
4bac00d1
TH
4003 * could already have been destroyed.
4004 */
5d22444f
TH
4005 if (of->priv)
4006 of->priv = cgroup_pidlist_find(cgrp, type);
4bac00d1
TH
4007
4008 /*
4009 * Either this is the first start() after open or the matching
4010 * pidlist has been destroyed inbetween. Create a new one.
4011 */
5d22444f
TH
4012 if (!of->priv) {
4013 ret = pidlist_array_load(cgrp, type,
4014 (struct cgroup_pidlist **)&of->priv);
4bac00d1
TH
4015 if (ret)
4016 return ERR_PTR(ret);
4017 }
5d22444f 4018 l = of->priv;
cc31edce 4019
cc31edce 4020 if (pid) {
102a775e 4021 int end = l->length;
20777766 4022
cc31edce
PM
4023 while (index < end) {
4024 int mid = (index + end) / 2;
afb2bc14 4025 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
cc31edce
PM
4026 index = mid;
4027 break;
afb2bc14 4028 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
cc31edce
PM
4029 index = mid + 1;
4030 else
4031 end = mid;
4032 }
4033 }
4034 /* If we're off the end of the array, we're done */
102a775e 4035 if (index >= l->length)
cc31edce
PM
4036 return NULL;
4037 /* Update the abstract position to be the actual pid that we found */
102a775e 4038 iter = l->list + index;
afb2bc14 4039 *pos = cgroup_pid_fry(cgrp, *iter);
cc31edce
PM
4040 return iter;
4041}
4042
102a775e 4043static void cgroup_pidlist_stop(struct seq_file *s, void *v)
cc31edce 4044{
2bd59d48 4045 struct kernfs_open_file *of = s->private;
5d22444f 4046 struct cgroup_pidlist *l = of->priv;
62236858 4047
5d22444f
TH
4048 if (l)
4049 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
04502365 4050 CGROUP_PIDLIST_DESTROY_DELAY);
7da11279 4051 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
cc31edce
PM
4052}
4053
102a775e 4054static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
cc31edce 4055{
2bd59d48 4056 struct kernfs_open_file *of = s->private;
5d22444f 4057 struct cgroup_pidlist *l = of->priv;
102a775e
BB
4058 pid_t *p = v;
4059 pid_t *end = l->list + l->length;
cc31edce
PM
4060 /*
4061 * Advance to the next pid in the array. If this goes off the
4062 * end, we're done
4063 */
4064 p++;
4065 if (p >= end) {
4066 return NULL;
4067 } else {
7da11279 4068 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
cc31edce
PM
4069 return p;
4070 }
4071}
4072
102a775e 4073static int cgroup_pidlist_show(struct seq_file *s, void *v)
cc31edce
PM
4074{
4075 return seq_printf(s, "%d\n", *(int *)v);
4076}
bbcb81d0 4077
182446d0
TH
4078static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
4079 struct cftype *cft)
81a6a5cd 4080{
182446d0 4081 return notify_on_release(css->cgroup);
81a6a5cd
PM
4082}
4083
182446d0
TH
4084static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
4085 struct cftype *cft, u64 val)
6379c106 4086{
182446d0 4087 clear_bit(CGRP_RELEASABLE, &css->cgroup->flags);
6379c106 4088 if (val)
182446d0 4089 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106 4090 else
182446d0 4091 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106
PM
4092 return 0;
4093}
4094
182446d0
TH
4095static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
4096 struct cftype *cft)
97978e6d 4097{
182446d0 4098 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
4099}
4100
182446d0
TH
4101static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
4102 struct cftype *cft, u64 val)
97978e6d
DL
4103{
4104 if (val)
182446d0 4105 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d 4106 else
182446d0 4107 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
4108 return 0;
4109}
4110
d5c56ced 4111static struct cftype cgroup_base_files[] = {
81a6a5cd 4112 {
d5c56ced 4113 .name = "cgroup.procs",
6612f05b
TH
4114 .seq_start = cgroup_pidlist_start,
4115 .seq_next = cgroup_pidlist_next,
4116 .seq_stop = cgroup_pidlist_stop,
4117 .seq_show = cgroup_pidlist_show,
5d22444f 4118 .private = CGROUP_FILE_PROCS,
acbef755 4119 .write = cgroup_procs_write,
74a1166d 4120 .mode = S_IRUGO | S_IWUSR,
102a775e 4121 },
97978e6d
DL
4122 {
4123 .name = "cgroup.clone_children",
873fe09e 4124 .flags = CFTYPE_INSANE,
97978e6d
DL
4125 .read_u64 = cgroup_clone_children_read,
4126 .write_u64 = cgroup_clone_children_write,
4127 },
873fe09e
TH
4128 {
4129 .name = "cgroup.sane_behavior",
4130 .flags = CFTYPE_ONLY_ON_ROOT,
2da8ca82 4131 .seq_show = cgroup_sane_behavior_show,
873fe09e 4132 },
f8f22e53
TH
4133 {
4134 .name = "cgroup.controllers",
4135 .flags = CFTYPE_ONLY_ON_DFL | CFTYPE_ONLY_ON_ROOT,
4136 .seq_show = cgroup_root_controllers_show,
4137 },
4138 {
4139 .name = "cgroup.controllers",
4140 .flags = CFTYPE_ONLY_ON_DFL | CFTYPE_NOT_ON_ROOT,
4141 .seq_show = cgroup_controllers_show,
4142 },
4143 {
4144 .name = "cgroup.subtree_control",
4145 .flags = CFTYPE_ONLY_ON_DFL,
4146 .seq_show = cgroup_subtree_control_show,
451af504 4147 .write = cgroup_subtree_control_write,
f8f22e53 4148 },
842b597e
TH
4149 {
4150 .name = "cgroup.populated",
4151 .flags = CFTYPE_ONLY_ON_DFL | CFTYPE_NOT_ON_ROOT,
4152 .seq_show = cgroup_populated_show,
4153 },
d5c56ced
TH
4154
4155 /*
4156 * Historical crazy stuff. These don't have "cgroup." prefix and
4157 * don't exist if sane_behavior. If you're depending on these, be
4158 * prepared to be burned.
4159 */
4160 {
4161 .name = "tasks",
4162 .flags = CFTYPE_INSANE, /* use "procs" instead */
6612f05b
TH
4163 .seq_start = cgroup_pidlist_start,
4164 .seq_next = cgroup_pidlist_next,
4165 .seq_stop = cgroup_pidlist_stop,
4166 .seq_show = cgroup_pidlist_show,
5d22444f 4167 .private = CGROUP_FILE_TASKS,
acbef755 4168 .write = cgroup_tasks_write,
d5c56ced
TH
4169 .mode = S_IRUGO | S_IWUSR,
4170 },
4171 {
4172 .name = "notify_on_release",
4173 .flags = CFTYPE_INSANE,
4174 .read_u64 = cgroup_read_notify_on_release,
4175 .write_u64 = cgroup_write_notify_on_release,
4176 },
6e6ff25b
TH
4177 {
4178 .name = "release_agent",
cc5943a7 4179 .flags = CFTYPE_INSANE | CFTYPE_ONLY_ON_ROOT,
2da8ca82 4180 .seq_show = cgroup_release_agent_show,
451af504 4181 .write = cgroup_release_agent_write,
5f469907 4182 .max_write_len = PATH_MAX - 1,
6e6ff25b 4183 },
db0416b6 4184 { } /* terminate */
bbcb81d0
PM
4185};
4186
13af07df 4187/**
628f7cd4 4188 * cgroup_populate_dir - create subsys files in a cgroup directory
13af07df 4189 * @cgrp: target cgroup
13af07df 4190 * @subsys_mask: mask of the subsystem ids whose files should be added
bee55099
TH
4191 *
4192 * On failure, no file is added.
13af07df 4193 */
69dfa00c 4194static int cgroup_populate_dir(struct cgroup *cgrp, unsigned int subsys_mask)
ddbcc7e8 4195{
ddbcc7e8 4196 struct cgroup_subsys *ss;
b420ba7d 4197 int i, ret = 0;
bbcb81d0 4198
8e3f6541 4199 /* process cftsets of each subsystem */
b420ba7d 4200 for_each_subsys(ss, i) {
0adb0704 4201 struct cftype *cfts;
b420ba7d 4202
69dfa00c 4203 if (!(subsys_mask & (1 << i)))
13af07df 4204 continue;
8e3f6541 4205
0adb0704
TH
4206 list_for_each_entry(cfts, &ss->cfts, node) {
4207 ret = cgroup_addrm_files(cgrp, cfts, true);
bee55099
TH
4208 if (ret < 0)
4209 goto err;
4210 }
ddbcc7e8 4211 }
ddbcc7e8 4212 return 0;
bee55099
TH
4213err:
4214 cgroup_clear_dir(cgrp, subsys_mask);
4215 return ret;
ddbcc7e8
PM
4216}
4217
0c21ead1
TH
4218/*
4219 * css destruction is four-stage process.
4220 *
4221 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4222 * Implemented in kill_css().
4223 *
4224 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
ec903c0c
TH
4225 * and thus css_tryget_online() is guaranteed to fail, the css can be
4226 * offlined by invoking offline_css(). After offlining, the base ref is
4227 * put. Implemented in css_killed_work_fn().
0c21ead1
TH
4228 *
4229 * 3. When the percpu_ref reaches zero, the only possible remaining
4230 * accessors are inside RCU read sections. css_release() schedules the
4231 * RCU callback.
4232 *
4233 * 4. After the grace period, the css can be freed. Implemented in
4234 * css_free_work_fn().
4235 *
4236 * It is actually hairier because both step 2 and 4 require process context
4237 * and thus involve punting to css->destroy_work adding two additional
4238 * steps to the already complex sequence.
4239 */
35ef10da 4240static void css_free_work_fn(struct work_struct *work)
48ddbe19
TH
4241{
4242 struct cgroup_subsys_state *css =
35ef10da 4243 container_of(work, struct cgroup_subsys_state, destroy_work);
0c21ead1 4244 struct cgroup *cgrp = css->cgroup;
48ddbe19 4245
9d755d33
TH
4246 if (css->ss) {
4247 /* css free path */
4248 if (css->parent)
4249 css_put(css->parent);
0ae78e0b 4250
9d755d33
TH
4251 css->ss->css_free(css);
4252 cgroup_put(cgrp);
4253 } else {
4254 /* cgroup free path */
4255 atomic_dec(&cgrp->root->nr_cgrps);
4256 cgroup_pidlist_destroy_all(cgrp);
4257
d51f39b0 4258 if (cgroup_parent(cgrp)) {
9d755d33
TH
4259 /*
4260 * We get a ref to the parent, and put the ref when
4261 * this cgroup is being freed, so it's guaranteed
4262 * that the parent won't be destroyed before its
4263 * children.
4264 */
d51f39b0 4265 cgroup_put(cgroup_parent(cgrp));
9d755d33
TH
4266 kernfs_put(cgrp->kn);
4267 kfree(cgrp);
4268 } else {
4269 /*
4270 * This is root cgroup's refcnt reaching zero,
4271 * which indicates that the root should be
4272 * released.
4273 */
4274 cgroup_destroy_root(cgrp->root);
4275 }
4276 }
48ddbe19
TH
4277}
4278
0c21ead1 4279static void css_free_rcu_fn(struct rcu_head *rcu_head)
d3daf28d
TH
4280{
4281 struct cgroup_subsys_state *css =
0c21ead1 4282 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
d3daf28d 4283
35ef10da 4284 INIT_WORK(&css->destroy_work, css_free_work_fn);
e5fca243 4285 queue_work(cgroup_destroy_wq, &css->destroy_work);
48ddbe19
TH
4286}
4287
25e15d83 4288static void css_release_work_fn(struct work_struct *work)
d3daf28d
TH
4289{
4290 struct cgroup_subsys_state *css =
25e15d83 4291 container_of(work, struct cgroup_subsys_state, destroy_work);
15a4c835 4292 struct cgroup_subsys *ss = css->ss;
9d755d33 4293 struct cgroup *cgrp = css->cgroup;
15a4c835 4294
1fed1b2e
TH
4295 mutex_lock(&cgroup_mutex);
4296
de3f0341 4297 css->flags |= CSS_RELEASED;
1fed1b2e
TH
4298 list_del_rcu(&css->sibling);
4299
9d755d33
TH
4300 if (ss) {
4301 /* css release path */
4302 cgroup_idr_remove(&ss->css_idr, css->id);
4303 } else {
4304 /* cgroup release path */
9d755d33
TH
4305 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4306 cgrp->id = -1;
4307 }
d3daf28d 4308
1fed1b2e
TH
4309 mutex_unlock(&cgroup_mutex);
4310
0c21ead1 4311 call_rcu(&css->rcu_head, css_free_rcu_fn);
d3daf28d
TH
4312}
4313
d3daf28d
TH
4314static void css_release(struct percpu_ref *ref)
4315{
4316 struct cgroup_subsys_state *css =
4317 container_of(ref, struct cgroup_subsys_state, refcnt);
4318
25e15d83
TH
4319 INIT_WORK(&css->destroy_work, css_release_work_fn);
4320 queue_work(cgroup_destroy_wq, &css->destroy_work);
d3daf28d
TH
4321}
4322
ddfcadab
TH
4323static void init_and_link_css(struct cgroup_subsys_state *css,
4324 struct cgroup_subsys *ss, struct cgroup *cgrp)
ddbcc7e8 4325{
0cb51d71
TH
4326 lockdep_assert_held(&cgroup_mutex);
4327
ddfcadab
TH
4328 cgroup_get(cgrp);
4329
d5c419b6 4330 memset(css, 0, sizeof(*css));
bd89aabc 4331 css->cgroup = cgrp;
72c97e54 4332 css->ss = ss;
d5c419b6
TH
4333 INIT_LIST_HEAD(&css->sibling);
4334 INIT_LIST_HEAD(&css->children);
0cb51d71 4335 css->serial_nr = css_serial_nr_next++;
0ae78e0b 4336
d51f39b0
TH
4337 if (cgroup_parent(cgrp)) {
4338 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
ddfcadab 4339 css_get(css->parent);
ddfcadab 4340 }
48ddbe19 4341
ca8bdcaf 4342 BUG_ON(cgroup_css(cgrp, ss));
ddbcc7e8
PM
4343}
4344
2a4ac633 4345/* invoke ->css_online() on a new CSS and mark it online if successful */
623f926b 4346static int online_css(struct cgroup_subsys_state *css)
a31f2d3f 4347{
623f926b 4348 struct cgroup_subsys *ss = css->ss;
b1929db4
TH
4349 int ret = 0;
4350
a31f2d3f
TH
4351 lockdep_assert_held(&cgroup_mutex);
4352
92fb9748 4353 if (ss->css_online)
eb95419b 4354 ret = ss->css_online(css);
ae7f164a 4355 if (!ret) {
eb95419b 4356 css->flags |= CSS_ONLINE;
aec25020 4357 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
ae7f164a 4358 }
b1929db4 4359 return ret;
a31f2d3f
TH
4360}
4361
2a4ac633 4362/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
623f926b 4363static void offline_css(struct cgroup_subsys_state *css)
a31f2d3f 4364{
623f926b 4365 struct cgroup_subsys *ss = css->ss;
a31f2d3f
TH
4366
4367 lockdep_assert_held(&cgroup_mutex);
4368
4369 if (!(css->flags & CSS_ONLINE))
4370 return;
4371
d7eeac19 4372 if (ss->css_offline)
eb95419b 4373 ss->css_offline(css);
a31f2d3f 4374
eb95419b 4375 css->flags &= ~CSS_ONLINE;
e3297803 4376 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
f8f22e53
TH
4377
4378 wake_up_all(&css->cgroup->offline_waitq);
a31f2d3f
TH
4379}
4380
c81c925a
TH
4381/**
4382 * create_css - create a cgroup_subsys_state
4383 * @cgrp: the cgroup new css will be associated with
4384 * @ss: the subsys of new css
f63070d3 4385 * @visible: whether to create control knobs for the new css or not
c81c925a
TH
4386 *
4387 * Create a new css associated with @cgrp - @ss pair. On success, the new
f63070d3
TH
4388 * css is online and installed in @cgrp with all interface files created if
4389 * @visible. Returns 0 on success, -errno on failure.
c81c925a 4390 */
f63070d3
TH
4391static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
4392 bool visible)
c81c925a 4393{
d51f39b0 4394 struct cgroup *parent = cgroup_parent(cgrp);
1fed1b2e 4395 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
c81c925a
TH
4396 struct cgroup_subsys_state *css;
4397 int err;
4398
c81c925a
TH
4399 lockdep_assert_held(&cgroup_mutex);
4400
1fed1b2e 4401 css = ss->css_alloc(parent_css);
c81c925a
TH
4402 if (IS_ERR(css))
4403 return PTR_ERR(css);
4404
ddfcadab 4405 init_and_link_css(css, ss, cgrp);
a2bed820 4406
c81c925a
TH
4407 err = percpu_ref_init(&css->refcnt, css_release);
4408 if (err)
3eb59ec6 4409 goto err_free_css;
c81c925a 4410
15a4c835
TH
4411 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_NOWAIT);
4412 if (err < 0)
4413 goto err_free_percpu_ref;
4414 css->id = err;
c81c925a 4415
f63070d3
TH
4416 if (visible) {
4417 err = cgroup_populate_dir(cgrp, 1 << ss->id);
4418 if (err)
4419 goto err_free_id;
4420 }
15a4c835
TH
4421
4422 /* @css is ready to be brought online now, make it visible */
1fed1b2e 4423 list_add_tail_rcu(&css->sibling, &parent_css->children);
15a4c835 4424 cgroup_idr_replace(&ss->css_idr, css, css->id);
c81c925a
TH
4425
4426 err = online_css(css);
4427 if (err)
1fed1b2e 4428 goto err_list_del;
94419627 4429
c81c925a 4430 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
d51f39b0 4431 cgroup_parent(parent)) {
ed3d261b 4432 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
a2a1f9ea 4433 current->comm, current->pid, ss->name);
c81c925a 4434 if (!strcmp(ss->name, "memory"))
ed3d261b 4435 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
c81c925a
TH
4436 ss->warned_broken_hierarchy = true;
4437 }
4438
4439 return 0;
4440
1fed1b2e
TH
4441err_list_del:
4442 list_del_rcu(&css->sibling);
32d01dc7 4443 cgroup_clear_dir(css->cgroup, 1 << css->ss->id);
15a4c835
TH
4444err_free_id:
4445 cgroup_idr_remove(&ss->css_idr, css->id);
3eb59ec6 4446err_free_percpu_ref:
c81c925a 4447 percpu_ref_cancel_init(&css->refcnt);
3eb59ec6 4448err_free_css:
a2bed820 4449 call_rcu(&css->rcu_head, css_free_rcu_fn);
c81c925a
TH
4450 return err;
4451}
4452
b3bfd983
TH
4453static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
4454 umode_t mode)
ddbcc7e8 4455{
a9746d8d
TH
4456 struct cgroup *parent, *cgrp;
4457 struct cgroup_root *root;
ddbcc7e8 4458 struct cgroup_subsys *ss;
2bd59d48 4459 struct kernfs_node *kn;
b3bfd983 4460 int ssid, ret;
ddbcc7e8 4461
a9746d8d
TH
4462 parent = cgroup_kn_lock_live(parent_kn);
4463 if (!parent)
4464 return -ENODEV;
4465 root = parent->root;
ddbcc7e8 4466
0a950f65 4467 /* allocate the cgroup and its ID, 0 is reserved for the root */
bd89aabc 4468 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
ba0f4d76
TH
4469 if (!cgrp) {
4470 ret = -ENOMEM;
4471 goto out_unlock;
0ab02ca8
LZ
4472 }
4473
9d755d33
TH
4474 ret = percpu_ref_init(&cgrp->self.refcnt, css_release);
4475 if (ret)
4476 goto out_free_cgrp;
4477
0ab02ca8
LZ
4478 /*
4479 * Temporarily set the pointer to NULL, so idr_find() won't return
4480 * a half-baked cgroup.
4481 */
6fa4918d 4482 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_NOWAIT);
0ab02ca8 4483 if (cgrp->id < 0) {
ba0f4d76 4484 ret = -ENOMEM;
9d755d33 4485 goto out_cancel_ref;
976c06bc
TH
4486 }
4487
cc31edce 4488 init_cgroup_housekeeping(cgrp);
ddbcc7e8 4489
9d800df1 4490 cgrp->self.parent = &parent->self;
ba0f4d76 4491 cgrp->root = root;
ddbcc7e8 4492
b6abdb0e
LZ
4493 if (notify_on_release(parent))
4494 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4495
2260e7fc
TH
4496 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4497 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d 4498
2bd59d48 4499 /* create the directory */
e61734c5 4500 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
2bd59d48 4501 if (IS_ERR(kn)) {
ba0f4d76
TH
4502 ret = PTR_ERR(kn);
4503 goto out_free_id;
2bd59d48
TH
4504 }
4505 cgrp->kn = kn;
ddbcc7e8 4506
4e139afc 4507 /*
6f30558f
TH
4508 * This extra ref will be put in cgroup_free_fn() and guarantees
4509 * that @cgrp->kn is always accessible.
4e139afc 4510 */
6f30558f 4511 kernfs_get(kn);
ddbcc7e8 4512
0cb51d71 4513 cgrp->self.serial_nr = css_serial_nr_next++;
53fa5261 4514
4e139afc 4515 /* allocation complete, commit to creation */
d5c419b6 4516 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
3c9c825b 4517 atomic_inc(&root->nr_cgrps);
59f5296b 4518 cgroup_get(parent);
415cf07a 4519
0d80255e
TH
4520 /*
4521 * @cgrp is now fully operational. If something fails after this
4522 * point, it'll be released via the normal destruction path.
4523 */
6fa4918d 4524 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4e96ee8e 4525
ba0f4d76
TH
4526 ret = cgroup_kn_set_ugid(kn);
4527 if (ret)
4528 goto out_destroy;
49957f8e 4529
ba0f4d76
TH
4530 ret = cgroup_addrm_files(cgrp, cgroup_base_files, true);
4531 if (ret)
4532 goto out_destroy;
628f7cd4 4533
9d403e99 4534 /* let's create and online css's */
b85d2040 4535 for_each_subsys(ss, ssid) {
f392e51c 4536 if (parent->child_subsys_mask & (1 << ssid)) {
f63070d3
TH
4537 ret = create_css(cgrp, ss,
4538 parent->subtree_control & (1 << ssid));
ba0f4d76
TH
4539 if (ret)
4540 goto out_destroy;
b85d2040 4541 }
a8638030 4542 }
ddbcc7e8 4543
bd53d617
TH
4544 /*
4545 * On the default hierarchy, a child doesn't automatically inherit
667c2491 4546 * subtree_control from the parent. Each is configured manually.
bd53d617 4547 */
667c2491
TH
4548 if (!cgroup_on_dfl(cgrp)) {
4549 cgrp->subtree_control = parent->subtree_control;
4550 cgroup_refresh_child_subsys_mask(cgrp);
4551 }
2bd59d48 4552
2bd59d48 4553 kernfs_activate(kn);
ddbcc7e8 4554
ba0f4d76
TH
4555 ret = 0;
4556 goto out_unlock;
ddbcc7e8 4557
ba0f4d76 4558out_free_id:
6fa4918d 4559 cgroup_idr_remove(&root->cgroup_idr, cgrp->id);
9d755d33
TH
4560out_cancel_ref:
4561 percpu_ref_cancel_init(&cgrp->self.refcnt);
ba0f4d76 4562out_free_cgrp:
bd89aabc 4563 kfree(cgrp);
ba0f4d76 4564out_unlock:
a9746d8d 4565 cgroup_kn_unlock(parent_kn);
ba0f4d76 4566 return ret;
4b8b47eb 4567
ba0f4d76 4568out_destroy:
4b8b47eb 4569 cgroup_destroy_locked(cgrp);
ba0f4d76 4570 goto out_unlock;
ddbcc7e8
PM
4571}
4572
223dbc38
TH
4573/*
4574 * This is called when the refcnt of a css is confirmed to be killed.
249f3468
TH
4575 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
4576 * initate destruction and put the css ref from kill_css().
223dbc38
TH
4577 */
4578static void css_killed_work_fn(struct work_struct *work)
d3daf28d 4579{
223dbc38
TH
4580 struct cgroup_subsys_state *css =
4581 container_of(work, struct cgroup_subsys_state, destroy_work);
d3daf28d 4582
f20104de 4583 mutex_lock(&cgroup_mutex);
09a503ea 4584 offline_css(css);
f20104de 4585 mutex_unlock(&cgroup_mutex);
09a503ea 4586
09a503ea 4587 css_put(css);
d3daf28d
TH
4588}
4589
223dbc38
TH
4590/* css kill confirmation processing requires process context, bounce */
4591static void css_killed_ref_fn(struct percpu_ref *ref)
d3daf28d
TH
4592{
4593 struct cgroup_subsys_state *css =
4594 container_of(ref, struct cgroup_subsys_state, refcnt);
4595
223dbc38 4596 INIT_WORK(&css->destroy_work, css_killed_work_fn);
e5fca243 4597 queue_work(cgroup_destroy_wq, &css->destroy_work);
d3daf28d
TH
4598}
4599
f392e51c
TH
4600/**
4601 * kill_css - destroy a css
4602 * @css: css to destroy
4603 *
4604 * This function initiates destruction of @css by removing cgroup interface
4605 * files and putting its base reference. ->css_offline() will be invoked
ec903c0c
TH
4606 * asynchronously once css_tryget_online() is guaranteed to fail and when
4607 * the reference count reaches zero, @css will be released.
f392e51c
TH
4608 */
4609static void kill_css(struct cgroup_subsys_state *css)
edae0c33 4610{
01f6474c 4611 lockdep_assert_held(&cgroup_mutex);
94419627 4612
2bd59d48
TH
4613 /*
4614 * This must happen before css is disassociated with its cgroup.
4615 * See seq_css() for details.
4616 */
aec25020 4617 cgroup_clear_dir(css->cgroup, 1 << css->ss->id);
3c14f8b4 4618
edae0c33
TH
4619 /*
4620 * Killing would put the base ref, but we need to keep it alive
4621 * until after ->css_offline().
4622 */
4623 css_get(css);
4624
4625 /*
4626 * cgroup core guarantees that, by the time ->css_offline() is
4627 * invoked, no new css reference will be given out via
ec903c0c 4628 * css_tryget_online(). We can't simply call percpu_ref_kill() and
edae0c33
TH
4629 * proceed to offlining css's because percpu_ref_kill() doesn't
4630 * guarantee that the ref is seen as killed on all CPUs on return.
4631 *
4632 * Use percpu_ref_kill_and_confirm() to get notifications as each
4633 * css is confirmed to be seen as killed on all CPUs.
4634 */
4635 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
d3daf28d
TH
4636}
4637
4638/**
4639 * cgroup_destroy_locked - the first stage of cgroup destruction
4640 * @cgrp: cgroup to be destroyed
4641 *
4642 * css's make use of percpu refcnts whose killing latency shouldn't be
4643 * exposed to userland and are RCU protected. Also, cgroup core needs to
ec903c0c
TH
4644 * guarantee that css_tryget_online() won't succeed by the time
4645 * ->css_offline() is invoked. To satisfy all the requirements,
4646 * destruction is implemented in the following two steps.
d3daf28d
TH
4647 *
4648 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
4649 * userland visible parts and start killing the percpu refcnts of
4650 * css's. Set up so that the next stage will be kicked off once all
4651 * the percpu refcnts are confirmed to be killed.
4652 *
4653 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
4654 * rest of destruction. Once all cgroup references are gone, the
4655 * cgroup is RCU-freed.
4656 *
4657 * This function implements s1. After this step, @cgrp is gone as far as
4658 * the userland is concerned and a new cgroup with the same name may be
4659 * created. As cgroup doesn't care about the names internally, this
4660 * doesn't cause any problem.
4661 */
42809dd4
TH
4662static int cgroup_destroy_locked(struct cgroup *cgrp)
4663 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
ddbcc7e8 4664{
2bd59d48 4665 struct cgroup_subsys_state *css;
ddd69148 4666 bool empty;
1c6727af 4667 int ssid;
ddbcc7e8 4668
42809dd4
TH
4669 lockdep_assert_held(&cgroup_mutex);
4670
ddd69148 4671 /*
96d365e0 4672 * css_set_rwsem synchronizes access to ->cset_links and prevents
89c5509b 4673 * @cgrp from being removed while put_css_set() is in progress.
ddd69148 4674 */
96d365e0 4675 down_read(&css_set_rwsem);
bb78a92f 4676 empty = list_empty(&cgrp->cset_links);
96d365e0 4677 up_read(&css_set_rwsem);
ddd69148 4678 if (!empty)
ddbcc7e8 4679 return -EBUSY;
a043e3b2 4680
bb78a92f 4681 /*
d5c419b6
TH
4682 * Make sure there's no live children. We can't test emptiness of
4683 * ->self.children as dead children linger on it while being
4684 * drained; otherwise, "rmdir parent/child parent" may fail.
bb78a92f 4685 */
f3d46500 4686 if (css_has_online_children(&cgrp->self))
bb78a92f
HD
4687 return -EBUSY;
4688
455050d2
TH
4689 /*
4690 * Mark @cgrp dead. This prevents further task migration and child
de3f0341 4691 * creation by disabling cgroup_lock_live_group().
455050d2 4692 */
184faf32 4693 cgrp->self.flags &= ~CSS_ONLINE;
ddbcc7e8 4694
249f3468 4695 /* initiate massacre of all css's */
1c6727af
TH
4696 for_each_css(css, ssid, cgrp)
4697 kill_css(css);
455050d2 4698
184faf32 4699 /* CSS_ONLINE is clear, remove from ->release_list for the last time */
455050d2
TH
4700 raw_spin_lock(&release_list_lock);
4701 if (!list_empty(&cgrp->release_list))
4702 list_del_init(&cgrp->release_list);
4703 raw_spin_unlock(&release_list_lock);
4704
4705 /*
01f6474c
TH
4706 * Remove @cgrp directory along with the base files. @cgrp has an
4707 * extra ref on its kn.
f20104de 4708 */
01f6474c 4709 kernfs_remove(cgrp->kn);
f20104de 4710
d51f39b0
TH
4711 set_bit(CGRP_RELEASABLE, &cgroup_parent(cgrp)->flags);
4712 check_for_release(cgroup_parent(cgrp));
2bd59d48 4713
249f3468 4714 /* put the base reference */
9d755d33 4715 percpu_ref_kill(&cgrp->self.refcnt);
455050d2 4716
ea15f8cc
TH
4717 return 0;
4718};
4719
2bd59d48 4720static int cgroup_rmdir(struct kernfs_node *kn)
42809dd4 4721{
a9746d8d 4722 struct cgroup *cgrp;
2bd59d48 4723 int ret = 0;
42809dd4 4724
a9746d8d
TH
4725 cgrp = cgroup_kn_lock_live(kn);
4726 if (!cgrp)
4727 return 0;
4728 cgroup_get(cgrp); /* for @kn->priv clearing */
42809dd4 4729
a9746d8d 4730 ret = cgroup_destroy_locked(cgrp);
2bb566cb 4731
a9746d8d 4732 cgroup_kn_unlock(kn);
8e3f6541
TH
4733
4734 /*
cfc79d5b
TH
4735 * There are two control paths which try to determine cgroup from
4736 * dentry without going through kernfs - cgroupstats_build() and
4737 * css_tryget_online_from_dir(). Those are supported by RCU
4738 * protecting clearing of cgrp->kn->priv backpointer, which should
4739 * happen after all files under it have been removed.
8e3f6541 4740 */
cfc79d5b
TH
4741 if (!ret)
4742 RCU_INIT_POINTER(*(void __rcu __force **)&kn->priv, NULL);
2bb566cb 4743
2bd59d48 4744 cgroup_put(cgrp);
42809dd4 4745 return ret;
8e3f6541
TH
4746}
4747
2bd59d48
TH
4748static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
4749 .remount_fs = cgroup_remount,
4750 .show_options = cgroup_show_options,
4751 .mkdir = cgroup_mkdir,
4752 .rmdir = cgroup_rmdir,
4753 .rename = cgroup_rename,
4754};
4755
15a4c835 4756static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
ddbcc7e8 4757{
ddbcc7e8 4758 struct cgroup_subsys_state *css;
cfe36bde
DC
4759
4760 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8 4761
648bb56d
TH
4762 mutex_lock(&cgroup_mutex);
4763
15a4c835 4764 idr_init(&ss->css_idr);
0adb0704 4765 INIT_LIST_HEAD(&ss->cfts);
8e3f6541 4766
3dd06ffa
TH
4767 /* Create the root cgroup state for this subsystem */
4768 ss->root = &cgrp_dfl_root;
4769 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
ddbcc7e8
PM
4770 /* We don't handle early failures gracefully */
4771 BUG_ON(IS_ERR(css));
ddfcadab 4772 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
3b514d24
TH
4773
4774 /*
4775 * Root csses are never destroyed and we can't initialize
4776 * percpu_ref during early init. Disable refcnting.
4777 */
4778 css->flags |= CSS_NO_REF;
4779
15a4c835 4780 if (early) {
9395a450 4781 /* allocation can't be done safely during early init */
15a4c835
TH
4782 css->id = 1;
4783 } else {
4784 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
4785 BUG_ON(css->id < 0);
4786 }
ddbcc7e8 4787
e8d55fde 4788 /* Update the init_css_set to contain a subsys
817929ec 4789 * pointer to this state - since the subsystem is
e8d55fde 4790 * newly registered, all tasks and hence the
3dd06ffa 4791 * init_css_set is in the subsystem's root cgroup. */
aec25020 4792 init_css_set.subsys[ss->id] = css;
ddbcc7e8
PM
4793
4794 need_forkexit_callback |= ss->fork || ss->exit;
4795
e8d55fde
LZ
4796 /* At system boot, before all subsystems have been
4797 * registered, no tasks have been forked, so we don't
4798 * need to invoke fork callbacks here. */
4799 BUG_ON(!list_empty(&init_task.tasks));
4800
ae7f164a 4801 BUG_ON(online_css(css));
a8638030 4802
cf5d5941
BB
4803 mutex_unlock(&cgroup_mutex);
4804}
cf5d5941 4805
ddbcc7e8 4806/**
a043e3b2
LZ
4807 * cgroup_init_early - cgroup initialization at system boot
4808 *
4809 * Initialize cgroups at system boot, and initialize any
4810 * subsystems that request early init.
ddbcc7e8
PM
4811 */
4812int __init cgroup_init_early(void)
4813{
a2dd4247
TH
4814 static struct cgroup_sb_opts __initdata opts =
4815 { .flags = CGRP_ROOT_SANE_BEHAVIOR };
30159ec7 4816 struct cgroup_subsys *ss;
ddbcc7e8 4817 int i;
30159ec7 4818
3dd06ffa 4819 init_cgroup_root(&cgrp_dfl_root, &opts);
3b514d24
TH
4820 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
4821
a4ea1cc9 4822 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
817929ec 4823
3ed80a62 4824 for_each_subsys(ss, i) {
aec25020 4825 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
073219e9
TH
4826 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p name:id=%d:%s\n",
4827 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
aec25020 4828 ss->id, ss->name);
073219e9
TH
4829 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
4830 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
4831
aec25020 4832 ss->id = i;
073219e9 4833 ss->name = cgroup_subsys_name[i];
ddbcc7e8
PM
4834
4835 if (ss->early_init)
15a4c835 4836 cgroup_init_subsys(ss, true);
ddbcc7e8
PM
4837 }
4838 return 0;
4839}
4840
4841/**
a043e3b2
LZ
4842 * cgroup_init - cgroup initialization
4843 *
4844 * Register cgroup filesystem and /proc file, and initialize
4845 * any subsystems that didn't request early init.
ddbcc7e8
PM
4846 */
4847int __init cgroup_init(void)
4848{
30159ec7 4849 struct cgroup_subsys *ss;
0ac801fe 4850 unsigned long key;
172a2c06 4851 int ssid, err;
ddbcc7e8 4852
2bd59d48 4853 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
ddbcc7e8 4854
54e7b4eb 4855 mutex_lock(&cgroup_mutex);
54e7b4eb 4856
82fe9b0d
TH
4857 /* Add init_css_set to the hash table */
4858 key = css_set_hash(init_css_set.subsys);
4859 hash_add(css_set_table, &init_css_set.hlist, key);
4860
3dd06ffa 4861 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
4e96ee8e 4862
54e7b4eb
TH
4863 mutex_unlock(&cgroup_mutex);
4864
172a2c06 4865 for_each_subsys(ss, ssid) {
15a4c835
TH
4866 if (ss->early_init) {
4867 struct cgroup_subsys_state *css =
4868 init_css_set.subsys[ss->id];
4869
4870 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
4871 GFP_KERNEL);
4872 BUG_ON(css->id < 0);
4873 } else {
4874 cgroup_init_subsys(ss, false);
4875 }
172a2c06 4876
2d8f243a
TH
4877 list_add_tail(&init_css_set.e_cset_node[ssid],
4878 &cgrp_dfl_root.cgrp.e_csets[ssid]);
172a2c06
TH
4879
4880 /*
c731ae1d
LZ
4881 * Setting dfl_root subsys_mask needs to consider the
4882 * disabled flag and cftype registration needs kmalloc,
4883 * both of which aren't available during early_init.
172a2c06 4884 */
c731ae1d
LZ
4885 if (!ss->disabled) {
4886 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
172a2c06 4887 WARN_ON(cgroup_add_cftypes(ss, ss->base_cftypes));
c731ae1d 4888 }
676db4af
GK
4889 }
4890
676db4af 4891 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
2bd59d48
TH
4892 if (!cgroup_kobj)
4893 return -ENOMEM;
676db4af 4894
ddbcc7e8 4895 err = register_filesystem(&cgroup_fs_type);
676db4af
GK
4896 if (err < 0) {
4897 kobject_put(cgroup_kobj);
2bd59d48 4898 return err;
676db4af 4899 }
ddbcc7e8 4900
46ae220b 4901 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
2bd59d48 4902 return 0;
ddbcc7e8 4903}
b4f48b63 4904
e5fca243
TH
4905static int __init cgroup_wq_init(void)
4906{
4907 /*
4908 * There isn't much point in executing destruction path in
4909 * parallel. Good chunk is serialized with cgroup_mutex anyway.
1a11533f 4910 * Use 1 for @max_active.
e5fca243
TH
4911 *
4912 * We would prefer to do this in cgroup_init() above, but that
4913 * is called before init_workqueues(): so leave this until after.
4914 */
1a11533f 4915 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
e5fca243 4916 BUG_ON(!cgroup_destroy_wq);
b1a21367
TH
4917
4918 /*
4919 * Used to destroy pidlists and separate to serve as flush domain.
4920 * Cap @max_active to 1 too.
4921 */
4922 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
4923 0, 1);
4924 BUG_ON(!cgroup_pidlist_destroy_wq);
4925
e5fca243
TH
4926 return 0;
4927}
4928core_initcall(cgroup_wq_init);
4929
a424316c
PM
4930/*
4931 * proc_cgroup_show()
4932 * - Print task's cgroup paths into seq_file, one line for each hierarchy
4933 * - Used for /proc/<pid>/cgroup.
a424316c
PM
4934 */
4935
4936/* TODO: Use a proper seq_file iterator */
8d8b97ba 4937int proc_cgroup_show(struct seq_file *m, void *v)
a424316c
PM
4938{
4939 struct pid *pid;
4940 struct task_struct *tsk;
e61734c5 4941 char *buf, *path;
a424316c 4942 int retval;
3dd06ffa 4943 struct cgroup_root *root;
a424316c
PM
4944
4945 retval = -ENOMEM;
e61734c5 4946 buf = kmalloc(PATH_MAX, GFP_KERNEL);
a424316c
PM
4947 if (!buf)
4948 goto out;
4949
4950 retval = -ESRCH;
4951 pid = m->private;
4952 tsk = get_pid_task(pid, PIDTYPE_PID);
4953 if (!tsk)
4954 goto out_free;
4955
4956 retval = 0;
4957
4958 mutex_lock(&cgroup_mutex);
96d365e0 4959 down_read(&css_set_rwsem);
a424316c 4960
985ed670 4961 for_each_root(root) {
a424316c 4962 struct cgroup_subsys *ss;
bd89aabc 4963 struct cgroup *cgrp;
b85d2040 4964 int ssid, count = 0;
a424316c 4965
a2dd4247 4966 if (root == &cgrp_dfl_root && !cgrp_dfl_root_visible)
985ed670
TH
4967 continue;
4968
2c6ab6d2 4969 seq_printf(m, "%d:", root->hierarchy_id);
b85d2040 4970 for_each_subsys(ss, ssid)
f392e51c 4971 if (root->subsys_mask & (1 << ssid))
b85d2040 4972 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
c6d57f33
PM
4973 if (strlen(root->name))
4974 seq_printf(m, "%sname=%s", count ? "," : "",
4975 root->name);
a424316c 4976 seq_putc(m, ':');
7717f7ba 4977 cgrp = task_cgroup_from_root(tsk, root);
e61734c5
TH
4978 path = cgroup_path(cgrp, buf, PATH_MAX);
4979 if (!path) {
4980 retval = -ENAMETOOLONG;
a424316c 4981 goto out_unlock;
e61734c5
TH
4982 }
4983 seq_puts(m, path);
a424316c
PM
4984 seq_putc(m, '\n');
4985 }
4986
4987out_unlock:
96d365e0 4988 up_read(&css_set_rwsem);
a424316c
PM
4989 mutex_unlock(&cgroup_mutex);
4990 put_task_struct(tsk);
4991out_free:
4992 kfree(buf);
4993out:
4994 return retval;
4995}
4996
a424316c
PM
4997/* Display information about each subsystem and each hierarchy */
4998static int proc_cgroupstats_show(struct seq_file *m, void *v)
4999{
30159ec7 5000 struct cgroup_subsys *ss;
a424316c 5001 int i;
a424316c 5002
8bab8dde 5003 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
aae8aab4
BB
5004 /*
5005 * ideally we don't want subsystems moving around while we do this.
5006 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5007 * subsys/hierarchy state.
5008 */
a424316c 5009 mutex_lock(&cgroup_mutex);
30159ec7
TH
5010
5011 for_each_subsys(ss, i)
2c6ab6d2
PM
5012 seq_printf(m, "%s\t%d\t%d\t%d\n",
5013 ss->name, ss->root->hierarchy_id,
3c9c825b 5014 atomic_read(&ss->root->nr_cgrps), !ss->disabled);
30159ec7 5015
a424316c
PM
5016 mutex_unlock(&cgroup_mutex);
5017 return 0;
5018}
5019
5020static int cgroupstats_open(struct inode *inode, struct file *file)
5021{
9dce07f1 5022 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
5023}
5024
828c0950 5025static const struct file_operations proc_cgroupstats_operations = {
a424316c
PM
5026 .open = cgroupstats_open,
5027 .read = seq_read,
5028 .llseek = seq_lseek,
5029 .release = single_release,
5030};
5031
b4f48b63 5032/**
eaf797ab 5033 * cgroup_fork - initialize cgroup related fields during copy_process()
a043e3b2 5034 * @child: pointer to task_struct of forking parent process.
b4f48b63 5035 *
eaf797ab
TH
5036 * A task is associated with the init_css_set until cgroup_post_fork()
5037 * attaches it to the parent's css_set. Empty cg_list indicates that
5038 * @child isn't holding reference to its css_set.
b4f48b63
PM
5039 */
5040void cgroup_fork(struct task_struct *child)
5041{
eaf797ab 5042 RCU_INIT_POINTER(child->cgroups, &init_css_set);
817929ec 5043 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
5044}
5045
817929ec 5046/**
a043e3b2
LZ
5047 * cgroup_post_fork - called on a new task after adding it to the task list
5048 * @child: the task in question
5049 *
5edee61e
TH
5050 * Adds the task to the list running through its css_set if necessary and
5051 * call the subsystem fork() callbacks. Has to be after the task is
5052 * visible on the task list in case we race with the first call to
0942eeee 5053 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5edee61e 5054 * list.
a043e3b2 5055 */
817929ec
PM
5056void cgroup_post_fork(struct task_struct *child)
5057{
30159ec7 5058 struct cgroup_subsys *ss;
5edee61e
TH
5059 int i;
5060
3ce3230a 5061 /*
eaf797ab
TH
5062 * This may race against cgroup_enable_task_cg_links(). As that
5063 * function sets use_task_css_set_links before grabbing
5064 * tasklist_lock and we just went through tasklist_lock to add
5065 * @child, it's guaranteed that either we see the set
5066 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5067 * @child during its iteration.
5068 *
5069 * If we won the race, @child is associated with %current's
5070 * css_set. Grabbing css_set_rwsem guarantees both that the
5071 * association is stable, and, on completion of the parent's
5072 * migration, @child is visible in the source of migration or
5073 * already in the destination cgroup. This guarantee is necessary
5074 * when implementing operations which need to migrate all tasks of
5075 * a cgroup to another.
5076 *
5077 * Note that if we lose to cgroup_enable_task_cg_links(), @child
5078 * will remain in init_css_set. This is safe because all tasks are
5079 * in the init_css_set before cg_links is enabled and there's no
5080 * operation which transfers all tasks out of init_css_set.
3ce3230a 5081 */
817929ec 5082 if (use_task_css_set_links) {
eaf797ab
TH
5083 struct css_set *cset;
5084
96d365e0 5085 down_write(&css_set_rwsem);
0e1d768f 5086 cset = task_css_set(current);
eaf797ab
TH
5087 if (list_empty(&child->cg_list)) {
5088 rcu_assign_pointer(child->cgroups, cset);
5089 list_add(&child->cg_list, &cset->tasks);
5090 get_css_set(cset);
5091 }
96d365e0 5092 up_write(&css_set_rwsem);
817929ec 5093 }
5edee61e
TH
5094
5095 /*
5096 * Call ss->fork(). This must happen after @child is linked on
5097 * css_set; otherwise, @child might change state between ->fork()
5098 * and addition to css_set.
5099 */
5100 if (need_forkexit_callback) {
3ed80a62 5101 for_each_subsys(ss, i)
5edee61e
TH
5102 if (ss->fork)
5103 ss->fork(child);
5edee61e 5104 }
817929ec 5105}
5edee61e 5106
b4f48b63
PM
5107/**
5108 * cgroup_exit - detach cgroup from exiting task
5109 * @tsk: pointer to task_struct of exiting process
5110 *
5111 * Description: Detach cgroup from @tsk and release it.
5112 *
5113 * Note that cgroups marked notify_on_release force every task in
5114 * them to take the global cgroup_mutex mutex when exiting.
5115 * This could impact scaling on very large systems. Be reluctant to
5116 * use notify_on_release cgroups where very high task exit scaling
5117 * is required on large systems.
5118 *
0e1d768f
TH
5119 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
5120 * call cgroup_exit() while the task is still competent to handle
5121 * notify_on_release(), then leave the task attached to the root cgroup in
5122 * each hierarchy for the remainder of its exit. No need to bother with
5123 * init_css_set refcnting. init_css_set never goes away and we can't race
e8604cb4 5124 * with migration path - PF_EXITING is visible to migration path.
b4f48b63 5125 */
1ec41830 5126void cgroup_exit(struct task_struct *tsk)
b4f48b63 5127{
30159ec7 5128 struct cgroup_subsys *ss;
5abb8855 5129 struct css_set *cset;
eaf797ab 5130 bool put_cset = false;
d41d5a01 5131 int i;
817929ec
PM
5132
5133 /*
0e1d768f
TH
5134 * Unlink from @tsk from its css_set. As migration path can't race
5135 * with us, we can check cg_list without grabbing css_set_rwsem.
817929ec
PM
5136 */
5137 if (!list_empty(&tsk->cg_list)) {
96d365e0 5138 down_write(&css_set_rwsem);
0e1d768f 5139 list_del_init(&tsk->cg_list);
96d365e0 5140 up_write(&css_set_rwsem);
0e1d768f 5141 put_cset = true;
817929ec
PM
5142 }
5143
b4f48b63 5144 /* Reassign the task to the init_css_set. */
a8ad805c
TH
5145 cset = task_css_set(tsk);
5146 RCU_INIT_POINTER(tsk->cgroups, &init_css_set);
d41d5a01 5147
1ec41830 5148 if (need_forkexit_callback) {
3ed80a62
TH
5149 /* see cgroup_post_fork() for details */
5150 for_each_subsys(ss, i) {
d41d5a01 5151 if (ss->exit) {
eb95419b
TH
5152 struct cgroup_subsys_state *old_css = cset->subsys[i];
5153 struct cgroup_subsys_state *css = task_css(tsk, i);
30159ec7 5154
eb95419b 5155 ss->exit(css, old_css, tsk);
d41d5a01
PZ
5156 }
5157 }
5158 }
d41d5a01 5159
eaf797ab
TH
5160 if (put_cset)
5161 put_css_set(cset, true);
b4f48b63 5162}
697f4161 5163
bd89aabc 5164static void check_for_release(struct cgroup *cgrp)
81a6a5cd 5165{
f3d46500
TH
5166 if (cgroup_is_releasable(cgrp) && list_empty(&cgrp->cset_links) &&
5167 !css_has_online_children(&cgrp->self)) {
f50daa70
LZ
5168 /*
5169 * Control Group is currently removeable. If it's not
81a6a5cd 5170 * already queued for a userspace notification, queue
f50daa70
LZ
5171 * it now
5172 */
81a6a5cd 5173 int need_schedule_work = 0;
f50daa70 5174
cdcc136f 5175 raw_spin_lock(&release_list_lock);
54766d4a 5176 if (!cgroup_is_dead(cgrp) &&
bd89aabc
PM
5177 list_empty(&cgrp->release_list)) {
5178 list_add(&cgrp->release_list, &release_list);
81a6a5cd
PM
5179 need_schedule_work = 1;
5180 }
cdcc136f 5181 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
5182 if (need_schedule_work)
5183 schedule_work(&release_agent_work);
5184 }
5185}
5186
81a6a5cd
PM
5187/*
5188 * Notify userspace when a cgroup is released, by running the
5189 * configured release agent with the name of the cgroup (path
5190 * relative to the root of cgroup file system) as the argument.
5191 *
5192 * Most likely, this user command will try to rmdir this cgroup.
5193 *
5194 * This races with the possibility that some other task will be
5195 * attached to this cgroup before it is removed, or that some other
5196 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5197 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5198 * unused, and this cgroup will be reprieved from its death sentence,
5199 * to continue to serve a useful existence. Next time it's released,
5200 * we will get notified again, if it still has 'notify_on_release' set.
5201 *
5202 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5203 * means only wait until the task is successfully execve()'d. The
5204 * separate release agent task is forked by call_usermodehelper(),
5205 * then control in this thread returns here, without waiting for the
5206 * release agent task. We don't bother to wait because the caller of
5207 * this routine has no use for the exit status of the release agent
5208 * task, so no sense holding our caller up for that.
81a6a5cd 5209 */
81a6a5cd
PM
5210static void cgroup_release_agent(struct work_struct *work)
5211{
5212 BUG_ON(work != &release_agent_work);
5213 mutex_lock(&cgroup_mutex);
cdcc136f 5214 raw_spin_lock(&release_list_lock);
81a6a5cd
PM
5215 while (!list_empty(&release_list)) {
5216 char *argv[3], *envp[3];
5217 int i;
e61734c5 5218 char *pathbuf = NULL, *agentbuf = NULL, *path;
bd89aabc 5219 struct cgroup *cgrp = list_entry(release_list.next,
81a6a5cd
PM
5220 struct cgroup,
5221 release_list);
bd89aabc 5222 list_del_init(&cgrp->release_list);
cdcc136f 5223 raw_spin_unlock(&release_list_lock);
e61734c5 5224 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
e788e066
PM
5225 if (!pathbuf)
5226 goto continue_free;
e61734c5
TH
5227 path = cgroup_path(cgrp, pathbuf, PATH_MAX);
5228 if (!path)
e788e066
PM
5229 goto continue_free;
5230 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5231 if (!agentbuf)
5232 goto continue_free;
81a6a5cd
PM
5233
5234 i = 0;
e788e066 5235 argv[i++] = agentbuf;
e61734c5 5236 argv[i++] = path;
81a6a5cd
PM
5237 argv[i] = NULL;
5238
5239 i = 0;
5240 /* minimal command environment */
5241 envp[i++] = "HOME=/";
5242 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5243 envp[i] = NULL;
5244
5245 /* Drop the lock while we invoke the usermode helper,
5246 * since the exec could involve hitting disk and hence
5247 * be a slow process */
5248 mutex_unlock(&cgroup_mutex);
5249 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
81a6a5cd 5250 mutex_lock(&cgroup_mutex);
e788e066
PM
5251 continue_free:
5252 kfree(pathbuf);
5253 kfree(agentbuf);
cdcc136f 5254 raw_spin_lock(&release_list_lock);
81a6a5cd 5255 }
cdcc136f 5256 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
5257 mutex_unlock(&cgroup_mutex);
5258}
8bab8dde
PM
5259
5260static int __init cgroup_disable(char *str)
5261{
30159ec7 5262 struct cgroup_subsys *ss;
8bab8dde 5263 char *token;
30159ec7 5264 int i;
8bab8dde
PM
5265
5266 while ((token = strsep(&str, ",")) != NULL) {
5267 if (!*token)
5268 continue;
be45c900 5269
3ed80a62 5270 for_each_subsys(ss, i) {
8bab8dde
PM
5271 if (!strcmp(token, ss->name)) {
5272 ss->disabled = 1;
5273 printk(KERN_INFO "Disabling %s control group"
5274 " subsystem\n", ss->name);
5275 break;
5276 }
5277 }
5278 }
5279 return 1;
5280}
5281__setup("cgroup_disable=", cgroup_disable);
38460b48 5282
b77d7b60 5283/**
ec903c0c 5284 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
35cf0836
TH
5285 * @dentry: directory dentry of interest
5286 * @ss: subsystem of interest
b77d7b60 5287 *
5a17f543
TH
5288 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5289 * to get the corresponding css and return it. If such css doesn't exist
5290 * or can't be pinned, an ERR_PTR value is returned.
e5d1367f 5291 */
ec903c0c
TH
5292struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
5293 struct cgroup_subsys *ss)
e5d1367f 5294{
2bd59d48
TH
5295 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
5296 struct cgroup_subsys_state *css = NULL;
e5d1367f 5297 struct cgroup *cgrp;
e5d1367f 5298
35cf0836 5299 /* is @dentry a cgroup dir? */
2bd59d48
TH
5300 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
5301 kernfs_type(kn) != KERNFS_DIR)
e5d1367f
SE
5302 return ERR_PTR(-EBADF);
5303
5a17f543
TH
5304 rcu_read_lock();
5305
2bd59d48
TH
5306 /*
5307 * This path doesn't originate from kernfs and @kn could already
5308 * have been or be removed at any point. @kn->priv is RCU
cfc79d5b 5309 * protected for this access. See cgroup_rmdir() for details.
2bd59d48
TH
5310 */
5311 cgrp = rcu_dereference(kn->priv);
5312 if (cgrp)
5313 css = cgroup_css(cgrp, ss);
5a17f543 5314
ec903c0c 5315 if (!css || !css_tryget_online(css))
5a17f543
TH
5316 css = ERR_PTR(-ENOENT);
5317
5318 rcu_read_unlock();
5319 return css;
e5d1367f 5320}
e5d1367f 5321
1cb650b9
LZ
5322/**
5323 * css_from_id - lookup css by id
5324 * @id: the cgroup id
5325 * @ss: cgroup subsys to be looked into
5326 *
5327 * Returns the css if there's valid one with @id, otherwise returns NULL.
5328 * Should be called under rcu_read_lock().
5329 */
5330struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
5331{
6fa4918d 5332 WARN_ON_ONCE(!rcu_read_lock_held());
15a4c835 5333 return idr_find(&ss->css_idr, id);
e5d1367f
SE
5334}
5335
fe693435 5336#ifdef CONFIG_CGROUP_DEBUG
eb95419b
TH
5337static struct cgroup_subsys_state *
5338debug_css_alloc(struct cgroup_subsys_state *parent_css)
fe693435
PM
5339{
5340 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5341
5342 if (!css)
5343 return ERR_PTR(-ENOMEM);
5344
5345 return css;
5346}
5347
eb95419b 5348static void debug_css_free(struct cgroup_subsys_state *css)
fe693435 5349{
eb95419b 5350 kfree(css);
fe693435
PM
5351}
5352
182446d0
TH
5353static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
5354 struct cftype *cft)
fe693435 5355{
182446d0 5356 return cgroup_task_count(css->cgroup);
fe693435
PM
5357}
5358
182446d0
TH
5359static u64 current_css_set_read(struct cgroup_subsys_state *css,
5360 struct cftype *cft)
fe693435
PM
5361{
5362 return (u64)(unsigned long)current->cgroups;
5363}
5364
182446d0 5365static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
03c78cbe 5366 struct cftype *cft)
fe693435
PM
5367{
5368 u64 count;
5369
5370 rcu_read_lock();
a8ad805c 5371 count = atomic_read(&task_css_set(current)->refcount);
fe693435
PM
5372 rcu_read_unlock();
5373 return count;
5374}
5375
2da8ca82 5376static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
7717f7ba 5377{
69d0206c 5378 struct cgrp_cset_link *link;
5abb8855 5379 struct css_set *cset;
e61734c5
TH
5380 char *name_buf;
5381
5382 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
5383 if (!name_buf)
5384 return -ENOMEM;
7717f7ba 5385
96d365e0 5386 down_read(&css_set_rwsem);
7717f7ba 5387 rcu_read_lock();
5abb8855 5388 cset = rcu_dereference(current->cgroups);
69d0206c 5389 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 5390 struct cgroup *c = link->cgrp;
7717f7ba 5391
a2dd4247 5392 cgroup_name(c, name_buf, NAME_MAX + 1);
2c6ab6d2 5393 seq_printf(seq, "Root %d group %s\n",
a2dd4247 5394 c->root->hierarchy_id, name_buf);
7717f7ba
PM
5395 }
5396 rcu_read_unlock();
96d365e0 5397 up_read(&css_set_rwsem);
e61734c5 5398 kfree(name_buf);
7717f7ba
PM
5399 return 0;
5400}
5401
5402#define MAX_TASKS_SHOWN_PER_CSS 25
2da8ca82 5403static int cgroup_css_links_read(struct seq_file *seq, void *v)
7717f7ba 5404{
2da8ca82 5405 struct cgroup_subsys_state *css = seq_css(seq);
69d0206c 5406 struct cgrp_cset_link *link;
7717f7ba 5407
96d365e0 5408 down_read(&css_set_rwsem);
182446d0 5409 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
69d0206c 5410 struct css_set *cset = link->cset;
7717f7ba
PM
5411 struct task_struct *task;
5412 int count = 0;
c7561128 5413
5abb8855 5414 seq_printf(seq, "css_set %p\n", cset);
c7561128 5415
5abb8855 5416 list_for_each_entry(task, &cset->tasks, cg_list) {
c7561128
TH
5417 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5418 goto overflow;
5419 seq_printf(seq, " task %d\n", task_pid_vnr(task));
5420 }
5421
5422 list_for_each_entry(task, &cset->mg_tasks, cg_list) {
5423 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5424 goto overflow;
5425 seq_printf(seq, " task %d\n", task_pid_vnr(task));
7717f7ba 5426 }
c7561128
TH
5427 continue;
5428 overflow:
5429 seq_puts(seq, " ...\n");
7717f7ba 5430 }
96d365e0 5431 up_read(&css_set_rwsem);
7717f7ba
PM
5432 return 0;
5433}
5434
182446d0 5435static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
fe693435 5436{
182446d0 5437 return test_bit(CGRP_RELEASABLE, &css->cgroup->flags);
fe693435
PM
5438}
5439
5440static struct cftype debug_files[] = {
fe693435
PM
5441 {
5442 .name = "taskcount",
5443 .read_u64 = debug_taskcount_read,
5444 },
5445
5446 {
5447 .name = "current_css_set",
5448 .read_u64 = current_css_set_read,
5449 },
5450
5451 {
5452 .name = "current_css_set_refcount",
5453 .read_u64 = current_css_set_refcount_read,
5454 },
5455
7717f7ba
PM
5456 {
5457 .name = "current_css_set_cg_links",
2da8ca82 5458 .seq_show = current_css_set_cg_links_read,
7717f7ba
PM
5459 },
5460
5461 {
5462 .name = "cgroup_css_links",
2da8ca82 5463 .seq_show = cgroup_css_links_read,
7717f7ba
PM
5464 },
5465
fe693435
PM
5466 {
5467 .name = "releasable",
5468 .read_u64 = releasable_read,
5469 },
fe693435 5470
4baf6e33
TH
5471 { } /* terminate */
5472};
fe693435 5473
073219e9 5474struct cgroup_subsys debug_cgrp_subsys = {
92fb9748
TH
5475 .css_alloc = debug_css_alloc,
5476 .css_free = debug_css_free,
4baf6e33 5477 .base_cftypes = debug_files,
fe693435
PM
5478};
5479#endif /* CONFIG_CGROUP_DEBUG */
This page took 1.625612 seconds and 5 git commands to generate.