cgroup: remove unnecessary 0 check from css_from_id()
[deliverable/linux.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
0dea1168
KS
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
ddbcc7e8
PM
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
ed3d261b
JP
29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
ddbcc7e8 31#include <linux/cgroup.h>
2ce9738b 32#include <linux/cred.h>
c6d57f33 33#include <linux/ctype.h>
ddbcc7e8 34#include <linux/errno.h>
2ce9738b 35#include <linux/init_task.h>
ddbcc7e8
PM
36#include <linux/kernel.h>
37#include <linux/list.h>
c9482a5b 38#include <linux/magic.h>
ddbcc7e8
PM
39#include <linux/mm.h>
40#include <linux/mutex.h>
41#include <linux/mount.h>
42#include <linux/pagemap.h>
a424316c 43#include <linux/proc_fs.h>
ddbcc7e8
PM
44#include <linux/rcupdate.h>
45#include <linux/sched.h>
ddbcc7e8 46#include <linux/slab.h>
ddbcc7e8 47#include <linux/spinlock.h>
1ed13287 48#include <linux/percpu-rwsem.h>
ddbcc7e8 49#include <linux/string.h>
bbcb81d0 50#include <linux/sort.h>
81a6a5cd 51#include <linux/kmod.h>
846c7bb0
BS
52#include <linux/delayacct.h>
53#include <linux/cgroupstats.h>
0ac801fe 54#include <linux/hashtable.h>
096b7fe0 55#include <linux/pid_namespace.h>
2c6ab6d2 56#include <linux/idr.h>
d1d9fd33 57#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
c4c27fbd 58#include <linux/kthread.h>
776f02fa 59#include <linux/delay.h>
60063497 60#include <linux/atomic.h>
e93ad19d 61#include <linux/cpuset.h>
a79a908f
AK
62#include <linux/proc_ns.h>
63#include <linux/nsproxy.h>
64#include <linux/proc_ns.h>
bd1060a1 65#include <net/sock.h>
ddbcc7e8 66
b1a21367
TH
67/*
68 * pidlists linger the following amount before being destroyed. The goal
69 * is avoiding frequent destruction in the middle of consecutive read calls
70 * Expiring in the middle is a performance problem not a correctness one.
71 * 1 sec should be enough.
72 */
73#define CGROUP_PIDLIST_DESTROY_DELAY HZ
74
8d7e6fb0
TH
75#define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
76 MAX_CFTYPE_NAME + 2)
77
e25e2cbb
TH
78/*
79 * cgroup_mutex is the master lock. Any modification to cgroup or its
80 * hierarchy must be performed while holding it.
81 *
f0d9a5f1 82 * css_set_lock protects task->cgroups pointer, the list of css_set
0e1d768f 83 * objects, and the chain of tasks off each css_set.
e25e2cbb 84 *
0e1d768f
TH
85 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
86 * cgroup.h can use them for lockdep annotations.
e25e2cbb 87 */
2219449a
TH
88#ifdef CONFIG_PROVE_RCU
89DEFINE_MUTEX(cgroup_mutex);
f0d9a5f1 90DEFINE_SPINLOCK(css_set_lock);
0e1d768f 91EXPORT_SYMBOL_GPL(cgroup_mutex);
f0d9a5f1 92EXPORT_SYMBOL_GPL(css_set_lock);
2219449a 93#else
81a6a5cd 94static DEFINE_MUTEX(cgroup_mutex);
f0d9a5f1 95static DEFINE_SPINLOCK(css_set_lock);
2219449a
TH
96#endif
97
6fa4918d 98/*
15a4c835
TH
99 * Protects cgroup_idr and css_idr so that IDs can be released without
100 * grabbing cgroup_mutex.
6fa4918d
TH
101 */
102static DEFINE_SPINLOCK(cgroup_idr_lock);
103
34c06254
TH
104/*
105 * Protects cgroup_file->kn for !self csses. It synchronizes notifications
106 * against file removal/re-creation across css hiding.
107 */
108static DEFINE_SPINLOCK(cgroup_file_kn_lock);
109
69e943b7
TH
110/*
111 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
112 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
113 */
114static DEFINE_SPINLOCK(release_agent_path_lock);
81a6a5cd 115
1ed13287
TH
116struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
117
8353da1f 118#define cgroup_assert_mutex_or_rcu_locked() \
f78f5b90
PM
119 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
120 !lockdep_is_held(&cgroup_mutex), \
8353da1f 121 "cgroup_mutex or RCU read lock required");
780cd8b3 122
e5fca243
TH
123/*
124 * cgroup destruction makes heavy use of work items and there can be a lot
125 * of concurrent destructions. Use a separate workqueue so that cgroup
126 * destruction work items don't end up filling up max_active of system_wq
127 * which may lead to deadlock.
128 */
129static struct workqueue_struct *cgroup_destroy_wq;
130
b1a21367
TH
131/*
132 * pidlist destructions need to be flushed on cgroup destruction. Use a
133 * separate workqueue as flush domain.
134 */
135static struct workqueue_struct *cgroup_pidlist_destroy_wq;
136
3ed80a62 137/* generate an array of cgroup subsystem pointers */
073219e9 138#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
3ed80a62 139static struct cgroup_subsys *cgroup_subsys[] = {
ddbcc7e8
PM
140#include <linux/cgroup_subsys.h>
141};
073219e9
TH
142#undef SUBSYS
143
144/* array of cgroup subsystem names */
145#define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
146static const char *cgroup_subsys_name[] = {
ddbcc7e8
PM
147#include <linux/cgroup_subsys.h>
148};
073219e9 149#undef SUBSYS
ddbcc7e8 150
49d1dc4b
TH
151/* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
152#define SUBSYS(_x) \
153 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
154 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
155 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
156 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
157#include <linux/cgroup_subsys.h>
158#undef SUBSYS
159
160#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
161static struct static_key_true *cgroup_subsys_enabled_key[] = {
162#include <linux/cgroup_subsys.h>
163};
164#undef SUBSYS
165
166#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
167static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
168#include <linux/cgroup_subsys.h>
169};
170#undef SUBSYS
171
ddbcc7e8 172/*
3dd06ffa 173 * The default hierarchy, reserved for the subsystems that are otherwise
9871bf95
TH
174 * unattached - it never has more than a single cgroup, and all tasks are
175 * part of that cgroup.
ddbcc7e8 176 */
a2dd4247 177struct cgroup_root cgrp_dfl_root;
d0ec4230 178EXPORT_SYMBOL_GPL(cgrp_dfl_root);
9871bf95 179
a2dd4247
TH
180/*
181 * The default hierarchy always exists but is hidden until mounted for the
182 * first time. This is for backward compatibility.
183 */
a7165264 184static bool cgrp_dfl_visible;
ddbcc7e8 185
223ffb29 186/* Controllers blocked by the commandline in v1 */
6e5c8307 187static u16 cgroup_no_v1_mask;
223ffb29 188
5533e011 189/* some controllers are not supported in the default hierarchy */
a7165264 190static u16 cgrp_dfl_inhibit_ss_mask;
5533e011 191
f6d635ad
TH
192/* some controllers are implicitly enabled on the default hierarchy */
193static unsigned long cgrp_dfl_implicit_ss_mask;
194
ddbcc7e8
PM
195/* The list of hierarchy roots */
196
9871bf95
TH
197static LIST_HEAD(cgroup_roots);
198static int cgroup_root_count;
ddbcc7e8 199
3417ae1f 200/* hierarchy ID allocation and mapping, protected by cgroup_mutex */
1a574231 201static DEFINE_IDR(cgroup_hierarchy_idr);
2c6ab6d2 202
794611a1 203/*
0cb51d71
TH
204 * Assign a monotonically increasing serial number to csses. It guarantees
205 * cgroups with bigger numbers are newer than those with smaller numbers.
206 * Also, as csses are always appended to the parent's ->children list, it
207 * guarantees that sibling csses are always sorted in the ascending serial
208 * number order on the list. Protected by cgroup_mutex.
794611a1 209 */
0cb51d71 210static u64 css_serial_nr_next = 1;
794611a1 211
cb4a3167
AS
212/*
213 * These bitmask flags indicate whether tasks in the fork and exit paths have
214 * fork/exit handlers to call. This avoids us having to do extra work in the
215 * fork/exit path to check which subsystems have fork/exit callbacks.
ddbcc7e8 216 */
6e5c8307
TH
217static u16 have_fork_callback __read_mostly;
218static u16 have_exit_callback __read_mostly;
219static u16 have_free_callback __read_mostly;
ddbcc7e8 220
a79a908f
AK
221/* cgroup namespace for init task */
222struct cgroup_namespace init_cgroup_ns = {
223 .count = { .counter = 2, },
224 .user_ns = &init_user_ns,
225 .ns.ops = &cgroupns_operations,
226 .ns.inum = PROC_CGROUP_INIT_INO,
227 .root_cset = &init_css_set,
228};
229
7e47682e 230/* Ditto for the can_fork callback. */
6e5c8307 231static u16 have_canfork_callback __read_mostly;
7e47682e 232
67e9c74b 233static struct file_system_type cgroup2_fs_type;
a14c6874
TH
234static struct cftype cgroup_dfl_base_files[];
235static struct cftype cgroup_legacy_base_files[];
628f7cd4 236
6e5c8307 237static int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask);
945ba199 238static void cgroup_lock_and_drain_offline(struct cgroup *cgrp);
334c3679
TH
239static int cgroup_apply_control(struct cgroup *cgrp);
240static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
ed27b9f7 241static void css_task_iter_advance(struct css_task_iter *it);
42809dd4 242static int cgroup_destroy_locked(struct cgroup *cgrp);
6cd0f5bb
TH
243static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
244 struct cgroup_subsys *ss);
9d755d33 245static void css_release(struct percpu_ref *ref);
f8f22e53 246static void kill_css(struct cgroup_subsys_state *css);
4df8dc90
TH
247static int cgroup_addrm_files(struct cgroup_subsys_state *css,
248 struct cgroup *cgrp, struct cftype cfts[],
2bb566cb 249 bool is_add);
42809dd4 250
fc5ed1e9
TH
251/**
252 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
253 * @ssid: subsys ID of interest
254 *
255 * cgroup_subsys_enabled() can only be used with literal subsys names which
256 * is fine for individual subsystems but unsuitable for cgroup core. This
257 * is slower static_key_enabled() based test indexed by @ssid.
258 */
259static bool cgroup_ssid_enabled(int ssid)
260{
cfe02a8a
AB
261 if (CGROUP_SUBSYS_COUNT == 0)
262 return false;
263
fc5ed1e9
TH
264 return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
265}
266
223ffb29
JW
267static bool cgroup_ssid_no_v1(int ssid)
268{
269 return cgroup_no_v1_mask & (1 << ssid);
270}
271
9e10a130
TH
272/**
273 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
274 * @cgrp: the cgroup of interest
275 *
276 * The default hierarchy is the v2 interface of cgroup and this function
277 * can be used to test whether a cgroup is on the default hierarchy for
278 * cases where a subsystem should behave differnetly depending on the
279 * interface version.
280 *
281 * The set of behaviors which change on the default hierarchy are still
282 * being determined and the mount option is prefixed with __DEVEL__.
283 *
284 * List of changed behaviors:
285 *
286 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
287 * and "name" are disallowed.
288 *
289 * - When mounting an existing superblock, mount options should match.
290 *
291 * - Remount is disallowed.
292 *
293 * - rename(2) is disallowed.
294 *
295 * - "tasks" is removed. Everything should be at process granularity. Use
296 * "cgroup.procs" instead.
297 *
298 * - "cgroup.procs" is not sorted. pids will be unique unless they got
299 * recycled inbetween reads.
300 *
301 * - "release_agent" and "notify_on_release" are removed. Replacement
302 * notification mechanism will be implemented.
303 *
304 * - "cgroup.clone_children" is removed.
305 *
306 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
307 * and its descendants contain no task; otherwise, 1. The file also
308 * generates kernfs notification which can be monitored through poll and
309 * [di]notify when the value of the file changes.
310 *
311 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
312 * take masks of ancestors with non-empty cpus/mems, instead of being
313 * moved to an ancestor.
314 *
315 * - cpuset: a task can be moved into an empty cpuset, and again it takes
316 * masks of ancestors.
317 *
318 * - memcg: use_hierarchy is on by default and the cgroup file for the flag
319 * is not created.
320 *
321 * - blkcg: blk-throttle becomes properly hierarchical.
322 *
323 * - debug: disallowed on the default hierarchy.
324 */
325static bool cgroup_on_dfl(const struct cgroup *cgrp)
326{
327 return cgrp->root == &cgrp_dfl_root;
328}
329
6fa4918d
TH
330/* IDR wrappers which synchronize using cgroup_idr_lock */
331static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
332 gfp_t gfp_mask)
333{
334 int ret;
335
336 idr_preload(gfp_mask);
54504e97 337 spin_lock_bh(&cgroup_idr_lock);
d0164adc 338 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
54504e97 339 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
340 idr_preload_end();
341 return ret;
342}
343
344static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
345{
346 void *ret;
347
54504e97 348 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 349 ret = idr_replace(idr, ptr, id);
54504e97 350 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
351 return ret;
352}
353
354static void cgroup_idr_remove(struct idr *idr, int id)
355{
54504e97 356 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 357 idr_remove(idr, id);
54504e97 358 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
359}
360
d51f39b0
TH
361static struct cgroup *cgroup_parent(struct cgroup *cgrp)
362{
363 struct cgroup_subsys_state *parent_css = cgrp->self.parent;
364
365 if (parent_css)
366 return container_of(parent_css, struct cgroup, self);
367 return NULL;
368}
369
5531dc91
TH
370/* subsystems visibly enabled on a cgroup */
371static u16 cgroup_control(struct cgroup *cgrp)
372{
373 struct cgroup *parent = cgroup_parent(cgrp);
374 u16 root_ss_mask = cgrp->root->subsys_mask;
375
376 if (parent)
377 return parent->subtree_control;
378
379 if (cgroup_on_dfl(cgrp))
f6d635ad
TH
380 root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
381 cgrp_dfl_implicit_ss_mask);
5531dc91
TH
382 return root_ss_mask;
383}
384
385/* subsystems enabled on a cgroup */
386static u16 cgroup_ss_mask(struct cgroup *cgrp)
387{
388 struct cgroup *parent = cgroup_parent(cgrp);
389
390 if (parent)
391 return parent->subtree_ss_mask;
392
393 return cgrp->root->subsys_mask;
394}
395
95109b62
TH
396/**
397 * cgroup_css - obtain a cgroup's css for the specified subsystem
398 * @cgrp: the cgroup of interest
9d800df1 399 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
95109b62 400 *
ca8bdcaf
TH
401 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
402 * function must be called either under cgroup_mutex or rcu_read_lock() and
403 * the caller is responsible for pinning the returned css if it wants to
404 * keep accessing it outside the said locks. This function may return
405 * %NULL if @cgrp doesn't have @subsys_id enabled.
95109b62
TH
406 */
407static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
ca8bdcaf 408 struct cgroup_subsys *ss)
95109b62 409{
ca8bdcaf 410 if (ss)
aec25020 411 return rcu_dereference_check(cgrp->subsys[ss->id],
ace2bee8 412 lockdep_is_held(&cgroup_mutex));
ca8bdcaf 413 else
9d800df1 414 return &cgrp->self;
95109b62 415}
42809dd4 416
aec3dfcb
TH
417/**
418 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
419 * @cgrp: the cgroup of interest
9d800df1 420 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
aec3dfcb 421 *
d0f702e6 422 * Similar to cgroup_css() but returns the effective css, which is defined
aec3dfcb
TH
423 * as the matching css of the nearest ancestor including self which has @ss
424 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
425 * function is guaranteed to return non-NULL css.
426 */
427static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
428 struct cgroup_subsys *ss)
429{
430 lockdep_assert_held(&cgroup_mutex);
431
432 if (!ss)
9d800df1 433 return &cgrp->self;
aec3dfcb 434
eeecbd19
TH
435 /*
436 * This function is used while updating css associations and thus
5531dc91 437 * can't test the csses directly. Test ss_mask.
eeecbd19 438 */
5531dc91 439 while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
d51f39b0 440 cgrp = cgroup_parent(cgrp);
5531dc91
TH
441 if (!cgrp)
442 return NULL;
443 }
aec3dfcb
TH
444
445 return cgroup_css(cgrp, ss);
95109b62 446}
42809dd4 447
eeecbd19
TH
448/**
449 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
450 * @cgrp: the cgroup of interest
451 * @ss: the subsystem of interest
452 *
453 * Find and get the effective css of @cgrp for @ss. The effective css is
454 * defined as the matching css of the nearest ancestor including self which
455 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
456 * the root css is returned, so this function always returns a valid css.
457 * The returned css must be put using css_put().
458 */
459struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
460 struct cgroup_subsys *ss)
461{
462 struct cgroup_subsys_state *css;
463
464 rcu_read_lock();
465
466 do {
467 css = cgroup_css(cgrp, ss);
468
469 if (css && css_tryget_online(css))
470 goto out_unlock;
471 cgrp = cgroup_parent(cgrp);
472 } while (cgrp);
473
474 css = init_css_set.subsys[ss->id];
475 css_get(css);
476out_unlock:
477 rcu_read_unlock();
478 return css;
479}
480
ddbcc7e8 481/* convenient tests for these bits */
54766d4a 482static inline bool cgroup_is_dead(const struct cgroup *cgrp)
ddbcc7e8 483{
184faf32 484 return !(cgrp->self.flags & CSS_ONLINE);
ddbcc7e8
PM
485}
486
052c3f3a
TH
487static void cgroup_get(struct cgroup *cgrp)
488{
489 WARN_ON_ONCE(cgroup_is_dead(cgrp));
490 css_get(&cgrp->self);
491}
492
493static bool cgroup_tryget(struct cgroup *cgrp)
494{
495 return css_tryget(&cgrp->self);
496}
497
b4168640 498struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
59f5296b 499{
2bd59d48 500 struct cgroup *cgrp = of->kn->parent->priv;
b4168640 501 struct cftype *cft = of_cft(of);
2bd59d48
TH
502
503 /*
504 * This is open and unprotected implementation of cgroup_css().
505 * seq_css() is only called from a kernfs file operation which has
506 * an active reference on the file. Because all the subsystem
507 * files are drained before a css is disassociated with a cgroup,
508 * the matching css from the cgroup's subsys table is guaranteed to
509 * be and stay valid until the enclosing operation is complete.
510 */
511 if (cft->ss)
512 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
513 else
9d800df1 514 return &cgrp->self;
59f5296b 515}
b4168640 516EXPORT_SYMBOL_GPL(of_css);
59f5296b 517
e9685a03 518static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 519{
bd89aabc 520 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
521}
522
1c6727af
TH
523/**
524 * for_each_css - iterate all css's of a cgroup
525 * @css: the iteration cursor
526 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
527 * @cgrp: the target cgroup to iterate css's of
528 *
aec3dfcb 529 * Should be called under cgroup_[tree_]mutex.
1c6727af
TH
530 */
531#define for_each_css(css, ssid, cgrp) \
532 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
533 if (!((css) = rcu_dereference_check( \
534 (cgrp)->subsys[(ssid)], \
535 lockdep_is_held(&cgroup_mutex)))) { } \
536 else
537
aec3dfcb
TH
538/**
539 * for_each_e_css - iterate all effective css's of a cgroup
540 * @css: the iteration cursor
541 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
542 * @cgrp: the target cgroup to iterate css's of
543 *
544 * Should be called under cgroup_[tree_]mutex.
545 */
546#define for_each_e_css(css, ssid, cgrp) \
547 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
548 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
549 ; \
550 else
551
30159ec7 552/**
3ed80a62 553 * for_each_subsys - iterate all enabled cgroup subsystems
30159ec7 554 * @ss: the iteration cursor
780cd8b3 555 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
30159ec7 556 */
780cd8b3 557#define for_each_subsys(ss, ssid) \
3ed80a62
TH
558 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
559 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
30159ec7 560
cb4a3167 561/**
b4e0eeaf 562 * do_each_subsys_mask - filter for_each_subsys with a bitmask
cb4a3167
AS
563 * @ss: the iteration cursor
564 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
b4e0eeaf 565 * @ss_mask: the bitmask
cb4a3167
AS
566 *
567 * The block will only run for cases where the ssid-th bit (1 << ssid) of
b4e0eeaf 568 * @ss_mask is set.
cb4a3167 569 */
b4e0eeaf
TH
570#define do_each_subsys_mask(ss, ssid, ss_mask) do { \
571 unsigned long __ss_mask = (ss_mask); \
572 if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */ \
4a705c5c 573 (ssid) = 0; \
b4e0eeaf
TH
574 break; \
575 } \
576 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \
577 (ss) = cgroup_subsys[ssid]; \
578 {
579
580#define while_each_subsys_mask() \
581 } \
582 } \
583} while (false)
cb4a3167 584
985ed670
TH
585/* iterate across the hierarchies */
586#define for_each_root(root) \
5549c497 587 list_for_each_entry((root), &cgroup_roots, root_list)
ddbcc7e8 588
f8f22e53
TH
589/* iterate over child cgrps, lock should be held throughout iteration */
590#define cgroup_for_each_live_child(child, cgrp) \
d5c419b6 591 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
8353da1f 592 if (({ lockdep_assert_held(&cgroup_mutex); \
f8f22e53
TH
593 cgroup_is_dead(child); })) \
594 ; \
595 else
7ae1bad9 596
ce3f1d9d
TH
597/* walk live descendants in preorder */
598#define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \
599 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \
600 if (({ lockdep_assert_held(&cgroup_mutex); \
601 (dsct) = (d_css)->cgroup; \
602 cgroup_is_dead(dsct); })) \
603 ; \
604 else
605
606/* walk live descendants in postorder */
607#define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \
608 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \
609 if (({ lockdep_assert_held(&cgroup_mutex); \
610 (dsct) = (d_css)->cgroup; \
611 cgroup_is_dead(dsct); })) \
612 ; \
613 else
614
81a6a5cd 615static void cgroup_release_agent(struct work_struct *work);
bd89aabc 616static void check_for_release(struct cgroup *cgrp);
81a6a5cd 617
69d0206c
TH
618/*
619 * A cgroup can be associated with multiple css_sets as different tasks may
620 * belong to different cgroups on different hierarchies. In the other
621 * direction, a css_set is naturally associated with multiple cgroups.
622 * This M:N relationship is represented by the following link structure
623 * which exists for each association and allows traversing the associations
624 * from both sides.
625 */
626struct cgrp_cset_link {
627 /* the cgroup and css_set this link associates */
628 struct cgroup *cgrp;
629 struct css_set *cset;
630
631 /* list of cgrp_cset_links anchored at cgrp->cset_links */
632 struct list_head cset_link;
633
634 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
635 struct list_head cgrp_link;
817929ec
PM
636};
637
172a2c06
TH
638/*
639 * The default css_set - used by init and its children prior to any
817929ec
PM
640 * hierarchies being mounted. It contains a pointer to the root state
641 * for each subsystem. Also used to anchor the list of css_sets. Not
642 * reference-counted, to improve performance when child cgroups
643 * haven't been created.
644 */
5024ae29 645struct css_set init_css_set = {
172a2c06
TH
646 .refcount = ATOMIC_INIT(1),
647 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
648 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
649 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
650 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
651 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
ed27b9f7 652 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters),
172a2c06 653};
817929ec 654
172a2c06 655static int css_set_count = 1; /* 1 for init_css_set */
817929ec 656
0de0942d
TH
657/**
658 * css_set_populated - does a css_set contain any tasks?
659 * @cset: target css_set
660 */
661static bool css_set_populated(struct css_set *cset)
662{
f0d9a5f1 663 lockdep_assert_held(&css_set_lock);
0de0942d
TH
664
665 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
666}
667
842b597e
TH
668/**
669 * cgroup_update_populated - updated populated count of a cgroup
670 * @cgrp: the target cgroup
671 * @populated: inc or dec populated count
672 *
0de0942d
TH
673 * One of the css_sets associated with @cgrp is either getting its first
674 * task or losing the last. Update @cgrp->populated_cnt accordingly. The
675 * count is propagated towards root so that a given cgroup's populated_cnt
676 * is zero iff the cgroup and all its descendants don't contain any tasks.
842b597e
TH
677 *
678 * @cgrp's interface file "cgroup.populated" is zero if
679 * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt
680 * changes from or to zero, userland is notified that the content of the
681 * interface file has changed. This can be used to detect when @cgrp and
682 * its descendants become populated or empty.
683 */
684static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
685{
f0d9a5f1 686 lockdep_assert_held(&css_set_lock);
842b597e
TH
687
688 do {
689 bool trigger;
690
691 if (populated)
692 trigger = !cgrp->populated_cnt++;
693 else
694 trigger = !--cgrp->populated_cnt;
695
696 if (!trigger)
697 break;
698
ad2ed2b3 699 check_for_release(cgrp);
6f60eade
TH
700 cgroup_file_notify(&cgrp->events_file);
701
d51f39b0 702 cgrp = cgroup_parent(cgrp);
842b597e
TH
703 } while (cgrp);
704}
705
0de0942d
TH
706/**
707 * css_set_update_populated - update populated state of a css_set
708 * @cset: target css_set
709 * @populated: whether @cset is populated or depopulated
710 *
711 * @cset is either getting the first task or losing the last. Update the
712 * ->populated_cnt of all associated cgroups accordingly.
713 */
714static void css_set_update_populated(struct css_set *cset, bool populated)
715{
716 struct cgrp_cset_link *link;
717
f0d9a5f1 718 lockdep_assert_held(&css_set_lock);
0de0942d
TH
719
720 list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
721 cgroup_update_populated(link->cgrp, populated);
722}
723
f6d7d049
TH
724/**
725 * css_set_move_task - move a task from one css_set to another
726 * @task: task being moved
727 * @from_cset: css_set @task currently belongs to (may be NULL)
728 * @to_cset: new css_set @task is being moved to (may be NULL)
729 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
730 *
731 * Move @task from @from_cset to @to_cset. If @task didn't belong to any
732 * css_set, @from_cset can be NULL. If @task is being disassociated
733 * instead of moved, @to_cset can be NULL.
734 *
ed27b9f7
TH
735 * This function automatically handles populated_cnt updates and
736 * css_task_iter adjustments but the caller is responsible for managing
737 * @from_cset and @to_cset's reference counts.
f6d7d049
TH
738 */
739static void css_set_move_task(struct task_struct *task,
740 struct css_set *from_cset, struct css_set *to_cset,
741 bool use_mg_tasks)
742{
f0d9a5f1 743 lockdep_assert_held(&css_set_lock);
f6d7d049 744
20b454a6
TH
745 if (to_cset && !css_set_populated(to_cset))
746 css_set_update_populated(to_cset, true);
747
f6d7d049 748 if (from_cset) {
ed27b9f7
TH
749 struct css_task_iter *it, *pos;
750
f6d7d049 751 WARN_ON_ONCE(list_empty(&task->cg_list));
ed27b9f7
TH
752
753 /*
754 * @task is leaving, advance task iterators which are
755 * pointing to it so that they can resume at the next
756 * position. Advancing an iterator might remove it from
757 * the list, use safe walk. See css_task_iter_advance*()
758 * for details.
759 */
760 list_for_each_entry_safe(it, pos, &from_cset->task_iters,
761 iters_node)
762 if (it->task_pos == &task->cg_list)
763 css_task_iter_advance(it);
764
f6d7d049
TH
765 list_del_init(&task->cg_list);
766 if (!css_set_populated(from_cset))
767 css_set_update_populated(from_cset, false);
768 } else {
769 WARN_ON_ONCE(!list_empty(&task->cg_list));
770 }
771
772 if (to_cset) {
773 /*
774 * We are synchronized through cgroup_threadgroup_rwsem
775 * against PF_EXITING setting such that we can't race
776 * against cgroup_exit() changing the css_set to
777 * init_css_set and dropping the old one.
778 */
779 WARN_ON_ONCE(task->flags & PF_EXITING);
780
f6d7d049
TH
781 rcu_assign_pointer(task->cgroups, to_cset);
782 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
783 &to_cset->tasks);
784 }
785}
786
7717f7ba
PM
787/*
788 * hash table for cgroup groups. This improves the performance to find
789 * an existing css_set. This hash doesn't (currently) take into
790 * account cgroups in empty hierarchies.
791 */
472b1053 792#define CSS_SET_HASH_BITS 7
0ac801fe 793static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
472b1053 794
0ac801fe 795static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
472b1053 796{
0ac801fe 797 unsigned long key = 0UL;
30159ec7
TH
798 struct cgroup_subsys *ss;
799 int i;
472b1053 800
30159ec7 801 for_each_subsys(ss, i)
0ac801fe
LZ
802 key += (unsigned long)css[i];
803 key = (key >> 16) ^ key;
472b1053 804
0ac801fe 805 return key;
472b1053
LZ
806}
807
a25eb52e 808static void put_css_set_locked(struct css_set *cset)
b4f48b63 809{
69d0206c 810 struct cgrp_cset_link *link, *tmp_link;
2d8f243a
TH
811 struct cgroup_subsys *ss;
812 int ssid;
5abb8855 813
f0d9a5f1 814 lockdep_assert_held(&css_set_lock);
89c5509b
TH
815
816 if (!atomic_dec_and_test(&cset->refcount))
146aa1bd 817 return;
81a6a5cd 818
53254f90
TH
819 /* This css_set is dead. unlink it and release cgroup and css refs */
820 for_each_subsys(ss, ssid) {
2d8f243a 821 list_del(&cset->e_cset_node[ssid]);
53254f90
TH
822 css_put(cset->subsys[ssid]);
823 }
5abb8855 824 hash_del(&cset->hlist);
2c6ab6d2
PM
825 css_set_count--;
826
69d0206c 827 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
69d0206c
TH
828 list_del(&link->cset_link);
829 list_del(&link->cgrp_link);
2ceb231b
TH
830 if (cgroup_parent(link->cgrp))
831 cgroup_put(link->cgrp);
2c6ab6d2 832 kfree(link);
81a6a5cd 833 }
2c6ab6d2 834
5abb8855 835 kfree_rcu(cset, rcu_head);
b4f48b63
PM
836}
837
a25eb52e 838static void put_css_set(struct css_set *cset)
89c5509b
TH
839{
840 /*
841 * Ensure that the refcount doesn't hit zero while any readers
842 * can see it. Similar to atomic_dec_and_lock(), but for an
843 * rwlock
844 */
845 if (atomic_add_unless(&cset->refcount, -1, 1))
846 return;
847
f0d9a5f1 848 spin_lock_bh(&css_set_lock);
a25eb52e 849 put_css_set_locked(cset);
f0d9a5f1 850 spin_unlock_bh(&css_set_lock);
89c5509b
TH
851}
852
817929ec
PM
853/*
854 * refcounted get/put for css_set objects
855 */
5abb8855 856static inline void get_css_set(struct css_set *cset)
817929ec 857{
5abb8855 858 atomic_inc(&cset->refcount);
817929ec
PM
859}
860
b326f9d0 861/**
7717f7ba 862 * compare_css_sets - helper function for find_existing_css_set().
5abb8855
TH
863 * @cset: candidate css_set being tested
864 * @old_cset: existing css_set for a task
7717f7ba
PM
865 * @new_cgrp: cgroup that's being entered by the task
866 * @template: desired set of css pointers in css_set (pre-calculated)
867 *
6f4b7e63 868 * Returns true if "cset" matches "old_cset" except for the hierarchy
7717f7ba
PM
869 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
870 */
5abb8855
TH
871static bool compare_css_sets(struct css_set *cset,
872 struct css_set *old_cset,
7717f7ba
PM
873 struct cgroup *new_cgrp,
874 struct cgroup_subsys_state *template[])
875{
876 struct list_head *l1, *l2;
877
aec3dfcb
TH
878 /*
879 * On the default hierarchy, there can be csets which are
880 * associated with the same set of cgroups but different csses.
881 * Let's first ensure that csses match.
882 */
883 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
7717f7ba 884 return false;
7717f7ba
PM
885
886 /*
887 * Compare cgroup pointers in order to distinguish between
aec3dfcb
TH
888 * different cgroups in hierarchies. As different cgroups may
889 * share the same effective css, this comparison is always
890 * necessary.
7717f7ba 891 */
69d0206c
TH
892 l1 = &cset->cgrp_links;
893 l2 = &old_cset->cgrp_links;
7717f7ba 894 while (1) {
69d0206c 895 struct cgrp_cset_link *link1, *link2;
5abb8855 896 struct cgroup *cgrp1, *cgrp2;
7717f7ba
PM
897
898 l1 = l1->next;
899 l2 = l2->next;
900 /* See if we reached the end - both lists are equal length. */
69d0206c
TH
901 if (l1 == &cset->cgrp_links) {
902 BUG_ON(l2 != &old_cset->cgrp_links);
7717f7ba
PM
903 break;
904 } else {
69d0206c 905 BUG_ON(l2 == &old_cset->cgrp_links);
7717f7ba
PM
906 }
907 /* Locate the cgroups associated with these links. */
69d0206c
TH
908 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
909 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
910 cgrp1 = link1->cgrp;
911 cgrp2 = link2->cgrp;
7717f7ba 912 /* Hierarchies should be linked in the same order. */
5abb8855 913 BUG_ON(cgrp1->root != cgrp2->root);
7717f7ba
PM
914
915 /*
916 * If this hierarchy is the hierarchy of the cgroup
917 * that's changing, then we need to check that this
918 * css_set points to the new cgroup; if it's any other
919 * hierarchy, then this css_set should point to the
920 * same cgroup as the old css_set.
921 */
5abb8855
TH
922 if (cgrp1->root == new_cgrp->root) {
923 if (cgrp1 != new_cgrp)
7717f7ba
PM
924 return false;
925 } else {
5abb8855 926 if (cgrp1 != cgrp2)
7717f7ba
PM
927 return false;
928 }
929 }
930 return true;
931}
932
b326f9d0
TH
933/**
934 * find_existing_css_set - init css array and find the matching css_set
935 * @old_cset: the css_set that we're using before the cgroup transition
936 * @cgrp: the cgroup that we're moving into
937 * @template: out param for the new set of csses, should be clear on entry
817929ec 938 */
5abb8855
TH
939static struct css_set *find_existing_css_set(struct css_set *old_cset,
940 struct cgroup *cgrp,
941 struct cgroup_subsys_state *template[])
b4f48b63 942{
3dd06ffa 943 struct cgroup_root *root = cgrp->root;
30159ec7 944 struct cgroup_subsys *ss;
5abb8855 945 struct css_set *cset;
0ac801fe 946 unsigned long key;
b326f9d0 947 int i;
817929ec 948
aae8aab4
BB
949 /*
950 * Build the set of subsystem state objects that we want to see in the
951 * new css_set. while subsystems can change globally, the entries here
952 * won't change, so no need for locking.
953 */
30159ec7 954 for_each_subsys(ss, i) {
f392e51c 955 if (root->subsys_mask & (1UL << i)) {
aec3dfcb
TH
956 /*
957 * @ss is in this hierarchy, so we want the
958 * effective css from @cgrp.
959 */
960 template[i] = cgroup_e_css(cgrp, ss);
817929ec 961 } else {
aec3dfcb
TH
962 /*
963 * @ss is not in this hierarchy, so we don't want
964 * to change the css.
965 */
5abb8855 966 template[i] = old_cset->subsys[i];
817929ec
PM
967 }
968 }
969
0ac801fe 970 key = css_set_hash(template);
5abb8855
TH
971 hash_for_each_possible(css_set_table, cset, hlist, key) {
972 if (!compare_css_sets(cset, old_cset, cgrp, template))
7717f7ba
PM
973 continue;
974
975 /* This css_set matches what we need */
5abb8855 976 return cset;
472b1053 977 }
817929ec
PM
978
979 /* No existing cgroup group matched */
980 return NULL;
981}
982
69d0206c 983static void free_cgrp_cset_links(struct list_head *links_to_free)
36553434 984{
69d0206c 985 struct cgrp_cset_link *link, *tmp_link;
36553434 986
69d0206c
TH
987 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
988 list_del(&link->cset_link);
36553434
LZ
989 kfree(link);
990 }
991}
992
69d0206c
TH
993/**
994 * allocate_cgrp_cset_links - allocate cgrp_cset_links
995 * @count: the number of links to allocate
996 * @tmp_links: list_head the allocated links are put on
997 *
998 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
999 * through ->cset_link. Returns 0 on success or -errno.
817929ec 1000 */
69d0206c 1001static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
817929ec 1002{
69d0206c 1003 struct cgrp_cset_link *link;
817929ec 1004 int i;
69d0206c
TH
1005
1006 INIT_LIST_HEAD(tmp_links);
1007
817929ec 1008 for (i = 0; i < count; i++) {
f4f4be2b 1009 link = kzalloc(sizeof(*link), GFP_KERNEL);
817929ec 1010 if (!link) {
69d0206c 1011 free_cgrp_cset_links(tmp_links);
817929ec
PM
1012 return -ENOMEM;
1013 }
69d0206c 1014 list_add(&link->cset_link, tmp_links);
817929ec
PM
1015 }
1016 return 0;
1017}
1018
c12f65d4
LZ
1019/**
1020 * link_css_set - a helper function to link a css_set to a cgroup
69d0206c 1021 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
5abb8855 1022 * @cset: the css_set to be linked
c12f65d4
LZ
1023 * @cgrp: the destination cgroup
1024 */
69d0206c
TH
1025static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1026 struct cgroup *cgrp)
c12f65d4 1027{
69d0206c 1028 struct cgrp_cset_link *link;
c12f65d4 1029
69d0206c 1030 BUG_ON(list_empty(tmp_links));
6803c006
TH
1031
1032 if (cgroup_on_dfl(cgrp))
1033 cset->dfl_cgrp = cgrp;
1034
69d0206c
TH
1035 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1036 link->cset = cset;
7717f7ba 1037 link->cgrp = cgrp;
842b597e 1038
7717f7ba 1039 /*
389b9c1b
TH
1040 * Always add links to the tail of the lists so that the lists are
1041 * in choronological order.
7717f7ba 1042 */
389b9c1b 1043 list_move_tail(&link->cset_link, &cgrp->cset_links);
69d0206c 1044 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
2ceb231b
TH
1045
1046 if (cgroup_parent(cgrp))
1047 cgroup_get(cgrp);
c12f65d4
LZ
1048}
1049
b326f9d0
TH
1050/**
1051 * find_css_set - return a new css_set with one cgroup updated
1052 * @old_cset: the baseline css_set
1053 * @cgrp: the cgroup to be updated
1054 *
1055 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1056 * substituted into the appropriate hierarchy.
817929ec 1057 */
5abb8855
TH
1058static struct css_set *find_css_set(struct css_set *old_cset,
1059 struct cgroup *cgrp)
817929ec 1060{
b326f9d0 1061 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
5abb8855 1062 struct css_set *cset;
69d0206c
TH
1063 struct list_head tmp_links;
1064 struct cgrp_cset_link *link;
2d8f243a 1065 struct cgroup_subsys *ss;
0ac801fe 1066 unsigned long key;
2d8f243a 1067 int ssid;
472b1053 1068
b326f9d0
TH
1069 lockdep_assert_held(&cgroup_mutex);
1070
817929ec
PM
1071 /* First see if we already have a cgroup group that matches
1072 * the desired set */
f0d9a5f1 1073 spin_lock_bh(&css_set_lock);
5abb8855
TH
1074 cset = find_existing_css_set(old_cset, cgrp, template);
1075 if (cset)
1076 get_css_set(cset);
f0d9a5f1 1077 spin_unlock_bh(&css_set_lock);
817929ec 1078
5abb8855
TH
1079 if (cset)
1080 return cset;
817929ec 1081
f4f4be2b 1082 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
5abb8855 1083 if (!cset)
817929ec
PM
1084 return NULL;
1085
69d0206c 1086 /* Allocate all the cgrp_cset_link objects that we'll need */
9871bf95 1087 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
5abb8855 1088 kfree(cset);
817929ec
PM
1089 return NULL;
1090 }
1091
5abb8855 1092 atomic_set(&cset->refcount, 1);
69d0206c 1093 INIT_LIST_HEAD(&cset->cgrp_links);
5abb8855 1094 INIT_LIST_HEAD(&cset->tasks);
c7561128 1095 INIT_LIST_HEAD(&cset->mg_tasks);
1958d2d5 1096 INIT_LIST_HEAD(&cset->mg_preload_node);
b3dc094e 1097 INIT_LIST_HEAD(&cset->mg_node);
ed27b9f7 1098 INIT_LIST_HEAD(&cset->task_iters);
5abb8855 1099 INIT_HLIST_NODE(&cset->hlist);
817929ec
PM
1100
1101 /* Copy the set of subsystem state objects generated in
1102 * find_existing_css_set() */
5abb8855 1103 memcpy(cset->subsys, template, sizeof(cset->subsys));
817929ec 1104
f0d9a5f1 1105 spin_lock_bh(&css_set_lock);
817929ec 1106 /* Add reference counts and links from the new css_set. */
69d0206c 1107 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
7717f7ba 1108 struct cgroup *c = link->cgrp;
69d0206c 1109
7717f7ba
PM
1110 if (c->root == cgrp->root)
1111 c = cgrp;
69d0206c 1112 link_css_set(&tmp_links, cset, c);
7717f7ba 1113 }
817929ec 1114
69d0206c 1115 BUG_ON(!list_empty(&tmp_links));
817929ec 1116
817929ec 1117 css_set_count++;
472b1053 1118
2d8f243a 1119 /* Add @cset to the hash table */
5abb8855
TH
1120 key = css_set_hash(cset->subsys);
1121 hash_add(css_set_table, &cset->hlist, key);
472b1053 1122
53254f90
TH
1123 for_each_subsys(ss, ssid) {
1124 struct cgroup_subsys_state *css = cset->subsys[ssid];
1125
2d8f243a 1126 list_add_tail(&cset->e_cset_node[ssid],
53254f90
TH
1127 &css->cgroup->e_csets[ssid]);
1128 css_get(css);
1129 }
2d8f243a 1130
f0d9a5f1 1131 spin_unlock_bh(&css_set_lock);
817929ec 1132
5abb8855 1133 return cset;
b4f48b63
PM
1134}
1135
3dd06ffa 1136static struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
7717f7ba 1137{
3dd06ffa 1138 struct cgroup *root_cgrp = kf_root->kn->priv;
2bd59d48 1139
3dd06ffa 1140 return root_cgrp->root;
2bd59d48
TH
1141}
1142
3dd06ffa 1143static int cgroup_init_root_id(struct cgroup_root *root)
f2e85d57
TH
1144{
1145 int id;
1146
1147 lockdep_assert_held(&cgroup_mutex);
1148
985ed670 1149 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
f2e85d57
TH
1150 if (id < 0)
1151 return id;
1152
1153 root->hierarchy_id = id;
1154 return 0;
1155}
1156
3dd06ffa 1157static void cgroup_exit_root_id(struct cgroup_root *root)
f2e85d57
TH
1158{
1159 lockdep_assert_held(&cgroup_mutex);
1160
8c8a5502 1161 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
f2e85d57
TH
1162}
1163
3dd06ffa 1164static void cgroup_free_root(struct cgroup_root *root)
f2e85d57
TH
1165{
1166 if (root) {
f2e85d57
TH
1167 idr_destroy(&root->cgroup_idr);
1168 kfree(root);
1169 }
1170}
1171
3dd06ffa 1172static void cgroup_destroy_root(struct cgroup_root *root)
59f5296b 1173{
3dd06ffa 1174 struct cgroup *cgrp = &root->cgrp;
f2e85d57 1175 struct cgrp_cset_link *link, *tmp_link;
f2e85d57 1176
334c3679 1177 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
f2e85d57 1178
776f02fa 1179 BUG_ON(atomic_read(&root->nr_cgrps));
d5c419b6 1180 BUG_ON(!list_empty(&cgrp->self.children));
f2e85d57 1181
f2e85d57 1182 /* Rebind all subsystems back to the default hierarchy */
334c3679 1183 WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
7717f7ba 1184
7717f7ba 1185 /*
f2e85d57
TH
1186 * Release all the links from cset_links to this hierarchy's
1187 * root cgroup
7717f7ba 1188 */
f0d9a5f1 1189 spin_lock_bh(&css_set_lock);
f2e85d57
TH
1190
1191 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1192 list_del(&link->cset_link);
1193 list_del(&link->cgrp_link);
1194 kfree(link);
1195 }
f0d9a5f1
TH
1196
1197 spin_unlock_bh(&css_set_lock);
f2e85d57
TH
1198
1199 if (!list_empty(&root->root_list)) {
1200 list_del(&root->root_list);
1201 cgroup_root_count--;
1202 }
1203
1204 cgroup_exit_root_id(root);
1205
1206 mutex_unlock(&cgroup_mutex);
f2e85d57 1207
2bd59d48 1208 kernfs_destroy_root(root->kf_root);
f2e85d57
TH
1209 cgroup_free_root(root);
1210}
1211
4f41fc59
SH
1212/*
1213 * look up cgroup associated with current task's cgroup namespace on the
1214 * specified hierarchy
1215 */
1216static struct cgroup *
1217current_cgns_cgroup_from_root(struct cgroup_root *root)
1218{
1219 struct cgroup *res = NULL;
1220 struct css_set *cset;
1221
1222 lockdep_assert_held(&css_set_lock);
1223
1224 rcu_read_lock();
1225
1226 cset = current->nsproxy->cgroup_ns->root_cset;
1227 if (cset == &init_css_set) {
1228 res = &root->cgrp;
1229 } else {
1230 struct cgrp_cset_link *link;
1231
1232 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1233 struct cgroup *c = link->cgrp;
1234
1235 if (c->root == root) {
1236 res = c;
1237 break;
1238 }
1239 }
1240 }
1241 rcu_read_unlock();
1242
1243 BUG_ON(!res);
1244 return res;
1245}
1246
ceb6a081
TH
1247/* look up cgroup associated with given css_set on the specified hierarchy */
1248static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
3dd06ffa 1249 struct cgroup_root *root)
7717f7ba 1250{
7717f7ba
PM
1251 struct cgroup *res = NULL;
1252
96d365e0 1253 lockdep_assert_held(&cgroup_mutex);
f0d9a5f1 1254 lockdep_assert_held(&css_set_lock);
96d365e0 1255
5abb8855 1256 if (cset == &init_css_set) {
3dd06ffa 1257 res = &root->cgrp;
7717f7ba 1258 } else {
69d0206c
TH
1259 struct cgrp_cset_link *link;
1260
1261 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 1262 struct cgroup *c = link->cgrp;
69d0206c 1263
7717f7ba
PM
1264 if (c->root == root) {
1265 res = c;
1266 break;
1267 }
1268 }
1269 }
96d365e0 1270
7717f7ba
PM
1271 BUG_ON(!res);
1272 return res;
1273}
1274
ddbcc7e8 1275/*
ceb6a081 1276 * Return the cgroup for "task" from the given hierarchy. Must be
f0d9a5f1 1277 * called with cgroup_mutex and css_set_lock held.
ceb6a081
TH
1278 */
1279static struct cgroup *task_cgroup_from_root(struct task_struct *task,
3dd06ffa 1280 struct cgroup_root *root)
ceb6a081
TH
1281{
1282 /*
1283 * No need to lock the task - since we hold cgroup_mutex the
1284 * task can't change groups, so the only thing that can happen
1285 * is that it exits and its css is set back to init_css_set.
1286 */
1287 return cset_cgroup_from_root(task_css_set(task), root);
1288}
1289
ddbcc7e8 1290/*
ddbcc7e8
PM
1291 * A task must hold cgroup_mutex to modify cgroups.
1292 *
1293 * Any task can increment and decrement the count field without lock.
1294 * So in general, code holding cgroup_mutex can't rely on the count
1295 * field not changing. However, if the count goes to zero, then only
956db3ca 1296 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
1297 * means that no tasks are currently attached, therefore there is no
1298 * way a task attached to that cgroup can fork (the other way to
1299 * increment the count). So code holding cgroup_mutex can safely
1300 * assume that if the count is zero, it will stay zero. Similarly, if
1301 * a task holds cgroup_mutex on a cgroup with zero count, it
1302 * knows that the cgroup won't be removed, as cgroup_rmdir()
1303 * needs that mutex.
1304 *
ddbcc7e8
PM
1305 * A cgroup can only be deleted if both its 'count' of using tasks
1306 * is zero, and its list of 'children' cgroups is empty. Since all
1307 * tasks in the system use _some_ cgroup, and since there is always at
3dd06ffa 1308 * least one task in the system (init, pid == 1), therefore, root cgroup
ddbcc7e8 1309 * always has either children cgroups and/or using tasks. So we don't
3dd06ffa 1310 * need a special hack to ensure that root cgroup cannot be deleted.
ddbcc7e8
PM
1311 *
1312 * P.S. One more locking exception. RCU is used to guard the
956db3ca 1313 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
1314 */
1315
2bd59d48 1316static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
828c0950 1317static const struct file_operations proc_cgroupstats_operations;
a424316c 1318
8d7e6fb0
TH
1319static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1320 char *buf)
ddbcc7e8 1321{
3e1d2eed
TH
1322 struct cgroup_subsys *ss = cft->ss;
1323
8d7e6fb0
TH
1324 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1325 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
1326 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
3e1d2eed
TH
1327 cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1328 cft->name);
8d7e6fb0
TH
1329 else
1330 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1331 return buf;
ddbcc7e8
PM
1332}
1333
f2e85d57
TH
1334/**
1335 * cgroup_file_mode - deduce file mode of a control file
1336 * @cft: the control file in question
1337 *
7dbdb199 1338 * S_IRUGO for read, S_IWUSR for write.
f2e85d57
TH
1339 */
1340static umode_t cgroup_file_mode(const struct cftype *cft)
65dff759 1341{
f2e85d57 1342 umode_t mode = 0;
65dff759 1343
f2e85d57
TH
1344 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1345 mode |= S_IRUGO;
1346
7dbdb199
TH
1347 if (cft->write_u64 || cft->write_s64 || cft->write) {
1348 if (cft->flags & CFTYPE_WORLD_WRITABLE)
1349 mode |= S_IWUGO;
1350 else
1351 mode |= S_IWUSR;
1352 }
f2e85d57
TH
1353
1354 return mode;
65dff759
LZ
1355}
1356
af0ba678 1357/**
8699b776 1358 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
0f060deb 1359 * @subtree_control: the new subtree_control mask to consider
5ced2518 1360 * @this_ss_mask: available subsystems
af0ba678
TH
1361 *
1362 * On the default hierarchy, a subsystem may request other subsystems to be
1363 * enabled together through its ->depends_on mask. In such cases, more
1364 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1365 *
0f060deb 1366 * This function calculates which subsystems need to be enabled if
5ced2518 1367 * @subtree_control is to be applied while restricted to @this_ss_mask.
af0ba678 1368 */
5ced2518 1369static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
667c2491 1370{
6e5c8307 1371 u16 cur_ss_mask = subtree_control;
af0ba678
TH
1372 struct cgroup_subsys *ss;
1373 int ssid;
1374
1375 lockdep_assert_held(&cgroup_mutex);
1376
f6d635ad
TH
1377 cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1378
af0ba678 1379 while (true) {
6e5c8307 1380 u16 new_ss_mask = cur_ss_mask;
af0ba678 1381
b4e0eeaf 1382 do_each_subsys_mask(ss, ssid, cur_ss_mask) {
a966a4ed 1383 new_ss_mask |= ss->depends_on;
b4e0eeaf 1384 } while_each_subsys_mask();
af0ba678
TH
1385
1386 /*
1387 * Mask out subsystems which aren't available. This can
1388 * happen only if some depended-upon subsystems were bound
1389 * to non-default hierarchies.
1390 */
5ced2518 1391 new_ss_mask &= this_ss_mask;
af0ba678
TH
1392
1393 if (new_ss_mask == cur_ss_mask)
1394 break;
1395 cur_ss_mask = new_ss_mask;
1396 }
1397
0f060deb
TH
1398 return cur_ss_mask;
1399}
1400
a9746d8d
TH
1401/**
1402 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1403 * @kn: the kernfs_node being serviced
1404 *
1405 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1406 * the method finishes if locking succeeded. Note that once this function
1407 * returns the cgroup returned by cgroup_kn_lock_live() may become
1408 * inaccessible any time. If the caller intends to continue to access the
1409 * cgroup, it should pin it before invoking this function.
1410 */
1411static void cgroup_kn_unlock(struct kernfs_node *kn)
ddbcc7e8 1412{
a9746d8d
TH
1413 struct cgroup *cgrp;
1414
1415 if (kernfs_type(kn) == KERNFS_DIR)
1416 cgrp = kn->priv;
1417 else
1418 cgrp = kn->parent->priv;
1419
1420 mutex_unlock(&cgroup_mutex);
a9746d8d
TH
1421
1422 kernfs_unbreak_active_protection(kn);
1423 cgroup_put(cgrp);
ddbcc7e8
PM
1424}
1425
a9746d8d
TH
1426/**
1427 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1428 * @kn: the kernfs_node being serviced
945ba199 1429 * @drain_offline: perform offline draining on the cgroup
a9746d8d
TH
1430 *
1431 * This helper is to be used by a cgroup kernfs method currently servicing
1432 * @kn. It breaks the active protection, performs cgroup locking and
1433 * verifies that the associated cgroup is alive. Returns the cgroup if
1434 * alive; otherwise, %NULL. A successful return should be undone by a
945ba199
TH
1435 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the
1436 * cgroup is drained of offlining csses before return.
a9746d8d
TH
1437 *
1438 * Any cgroup kernfs method implementation which requires locking the
1439 * associated cgroup should use this helper. It avoids nesting cgroup
1440 * locking under kernfs active protection and allows all kernfs operations
1441 * including self-removal.
1442 */
945ba199
TH
1443static struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn,
1444 bool drain_offline)
05ef1d7c 1445{
a9746d8d
TH
1446 struct cgroup *cgrp;
1447
1448 if (kernfs_type(kn) == KERNFS_DIR)
1449 cgrp = kn->priv;
1450 else
1451 cgrp = kn->parent->priv;
05ef1d7c 1452
2739d3cc 1453 /*
01f6474c 1454 * We're gonna grab cgroup_mutex which nests outside kernfs
a9746d8d
TH
1455 * active_ref. cgroup liveliness check alone provides enough
1456 * protection against removal. Ensure @cgrp stays accessible and
1457 * break the active_ref protection.
2739d3cc 1458 */
aa32362f
LZ
1459 if (!cgroup_tryget(cgrp))
1460 return NULL;
a9746d8d
TH
1461 kernfs_break_active_protection(kn);
1462
945ba199
TH
1463 if (drain_offline)
1464 cgroup_lock_and_drain_offline(cgrp);
1465 else
1466 mutex_lock(&cgroup_mutex);
05ef1d7c 1467
a9746d8d
TH
1468 if (!cgroup_is_dead(cgrp))
1469 return cgrp;
1470
1471 cgroup_kn_unlock(kn);
1472 return NULL;
ddbcc7e8 1473}
05ef1d7c 1474
2739d3cc 1475static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
05ef1d7c 1476{
2bd59d48 1477 char name[CGROUP_FILE_NAME_MAX];
05ef1d7c 1478
01f6474c 1479 lockdep_assert_held(&cgroup_mutex);
34c06254
TH
1480
1481 if (cft->file_offset) {
1482 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1483 struct cgroup_file *cfile = (void *)css + cft->file_offset;
1484
1485 spin_lock_irq(&cgroup_file_kn_lock);
1486 cfile->kn = NULL;
1487 spin_unlock_irq(&cgroup_file_kn_lock);
1488 }
1489
2bd59d48 1490 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
05ef1d7c
TH
1491}
1492
13af07df 1493/**
4df8dc90
TH
1494 * css_clear_dir - remove subsys files in a cgroup directory
1495 * @css: taget css
13af07df 1496 */
334c3679 1497static void css_clear_dir(struct cgroup_subsys_state *css)
05ef1d7c 1498{
334c3679 1499 struct cgroup *cgrp = css->cgroup;
4df8dc90 1500 struct cftype *cfts;
05ef1d7c 1501
88cb04b9
TH
1502 if (!(css->flags & CSS_VISIBLE))
1503 return;
1504
1505 css->flags &= ~CSS_VISIBLE;
1506
4df8dc90
TH
1507 list_for_each_entry(cfts, &css->ss->cfts, node)
1508 cgroup_addrm_files(css, cgrp, cfts, false);
ddbcc7e8
PM
1509}
1510
ccdca218 1511/**
4df8dc90
TH
1512 * css_populate_dir - create subsys files in a cgroup directory
1513 * @css: target css
ccdca218
TH
1514 *
1515 * On failure, no file is added.
1516 */
334c3679 1517static int css_populate_dir(struct cgroup_subsys_state *css)
ccdca218 1518{
334c3679 1519 struct cgroup *cgrp = css->cgroup;
4df8dc90
TH
1520 struct cftype *cfts, *failed_cfts;
1521 int ret;
ccdca218 1522
03970d3c 1523 if ((css->flags & CSS_VISIBLE) || !cgrp->kn)
88cb04b9
TH
1524 return 0;
1525
4df8dc90
TH
1526 if (!css->ss) {
1527 if (cgroup_on_dfl(cgrp))
1528 cfts = cgroup_dfl_base_files;
1529 else
1530 cfts = cgroup_legacy_base_files;
ccdca218 1531
4df8dc90
TH
1532 return cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1533 }
ccdca218 1534
4df8dc90
TH
1535 list_for_each_entry(cfts, &css->ss->cfts, node) {
1536 ret = cgroup_addrm_files(css, cgrp, cfts, true);
1537 if (ret < 0) {
1538 failed_cfts = cfts;
1539 goto err;
ccdca218
TH
1540 }
1541 }
88cb04b9
TH
1542
1543 css->flags |= CSS_VISIBLE;
1544
ccdca218
TH
1545 return 0;
1546err:
4df8dc90
TH
1547 list_for_each_entry(cfts, &css->ss->cfts, node) {
1548 if (cfts == failed_cfts)
1549 break;
1550 cgroup_addrm_files(css, cgrp, cfts, false);
1551 }
ccdca218
TH
1552 return ret;
1553}
1554
6e5c8307 1555static int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
ddbcc7e8 1556{
1ada4838 1557 struct cgroup *dcgrp = &dst_root->cgrp;
30159ec7 1558 struct cgroup_subsys *ss;
2d8f243a 1559 int ssid, i, ret;
ddbcc7e8 1560
ace2bee8 1561 lockdep_assert_held(&cgroup_mutex);
ddbcc7e8 1562
b4e0eeaf 1563 do_each_subsys_mask(ss, ssid, ss_mask) {
f6d635ad
TH
1564 /*
1565 * If @ss has non-root csses attached to it, can't move.
1566 * If @ss is an implicit controller, it is exempt from this
1567 * rule and can be stolen.
1568 */
1569 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1570 !ss->implicit_on_dfl)
3ed80a62 1571 return -EBUSY;
1d5be6b2 1572
5df36032 1573 /* can't move between two non-dummy roots either */
7fd8c565 1574 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
5df36032 1575 return -EBUSY;
b4e0eeaf 1576 } while_each_subsys_mask();
ddbcc7e8 1577
b4e0eeaf 1578 do_each_subsys_mask(ss, ssid, ss_mask) {
1ada4838
TH
1579 struct cgroup_root *src_root = ss->root;
1580 struct cgroup *scgrp = &src_root->cgrp;
1581 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
2d8f243a 1582 struct css_set *cset;
a8a648c4 1583
1ada4838 1584 WARN_ON(!css || cgroup_css(dcgrp, ss));
a8a648c4 1585
334c3679
TH
1586 /* disable from the source */
1587 src_root->subsys_mask &= ~(1 << ssid);
1588 WARN_ON(cgroup_apply_control(scgrp));
1589 cgroup_finalize_control(scgrp, 0);
4df8dc90 1590
334c3679 1591 /* rebind */
1ada4838
TH
1592 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1593 rcu_assign_pointer(dcgrp->subsys[ssid], css);
5df36032 1594 ss->root = dst_root;
1ada4838 1595 css->cgroup = dcgrp;
73e80ed8 1596
f0d9a5f1 1597 spin_lock_bh(&css_set_lock);
2d8f243a
TH
1598 hash_for_each(css_set_table, i, cset, hlist)
1599 list_move_tail(&cset->e_cset_node[ss->id],
1ada4838 1600 &dcgrp->e_csets[ss->id]);
f0d9a5f1 1601 spin_unlock_bh(&css_set_lock);
2d8f243a 1602
bd53d617 1603 /* default hierarchy doesn't enable controllers by default */
f392e51c 1604 dst_root->subsys_mask |= 1 << ssid;
49d1dc4b
TH
1605 if (dst_root == &cgrp_dfl_root) {
1606 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1607 } else {
1ada4838 1608 dcgrp->subtree_control |= 1 << ssid;
49d1dc4b 1609 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
667c2491 1610 }
a8a648c4 1611
334c3679
TH
1612 ret = cgroup_apply_control(dcgrp);
1613 if (ret)
1614 pr_warn("partial failure to rebind %s controller (err=%d)\n",
1615 ss->name, ret);
1616
5df36032
TH
1617 if (ss->bind)
1618 ss->bind(css);
b4e0eeaf 1619 } while_each_subsys_mask();
ddbcc7e8 1620
1ada4838 1621 kernfs_activate(dcgrp->kn);
ddbcc7e8
PM
1622 return 0;
1623}
1624
4f41fc59
SH
1625static int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1626 struct kernfs_root *kf_root)
1627{
09be4c82 1628 int len = 0;
4f41fc59
SH
1629 char *buf = NULL;
1630 struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1631 struct cgroup *ns_cgroup;
1632
1633 buf = kmalloc(PATH_MAX, GFP_KERNEL);
1634 if (!buf)
1635 return -ENOMEM;
1636
1637 spin_lock_bh(&css_set_lock);
1638 ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1639 len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
1640 spin_unlock_bh(&css_set_lock);
1641
1642 if (len >= PATH_MAX)
1643 len = -ERANGE;
1644 else if (len > 0) {
1645 seq_escape(sf, buf, " \t\n\\");
1646 len = 0;
1647 }
1648 kfree(buf);
1649 return len;
1650}
1651
2bd59d48
TH
1652static int cgroup_show_options(struct seq_file *seq,
1653 struct kernfs_root *kf_root)
ddbcc7e8 1654{
3dd06ffa 1655 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1656 struct cgroup_subsys *ss;
b85d2040 1657 int ssid;
ddbcc7e8 1658
d98817d4
TH
1659 if (root != &cgrp_dfl_root)
1660 for_each_subsys(ss, ssid)
1661 if (root->subsys_mask & (1 << ssid))
61e57c0c 1662 seq_show_option(seq, ss->legacy_name, NULL);
93438629 1663 if (root->flags & CGRP_ROOT_NOPREFIX)
ddbcc7e8 1664 seq_puts(seq, ",noprefix");
93438629 1665 if (root->flags & CGRP_ROOT_XATTR)
03b1cde6 1666 seq_puts(seq, ",xattr");
69e943b7
TH
1667
1668 spin_lock(&release_agent_path_lock);
81a6a5cd 1669 if (strlen(root->release_agent_path))
a068acf2
KC
1670 seq_show_option(seq, "release_agent",
1671 root->release_agent_path);
69e943b7
TH
1672 spin_unlock(&release_agent_path_lock);
1673
3dd06ffa 1674 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
97978e6d 1675 seq_puts(seq, ",clone_children");
c6d57f33 1676 if (strlen(root->name))
a068acf2 1677 seq_show_option(seq, "name", root->name);
ddbcc7e8
PM
1678 return 0;
1679}
1680
1681struct cgroup_sb_opts {
6e5c8307 1682 u16 subsys_mask;
69dfa00c 1683 unsigned int flags;
81a6a5cd 1684 char *release_agent;
2260e7fc 1685 bool cpuset_clone_children;
c6d57f33 1686 char *name;
2c6ab6d2
PM
1687 /* User explicitly requested empty subsystem */
1688 bool none;
ddbcc7e8
PM
1689};
1690
cf5d5941 1691static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
ddbcc7e8 1692{
32a8cf23
DL
1693 char *token, *o = data;
1694 bool all_ss = false, one_ss = false;
6e5c8307 1695 u16 mask = U16_MAX;
30159ec7 1696 struct cgroup_subsys *ss;
7b9a6ba5 1697 int nr_opts = 0;
30159ec7 1698 int i;
f9ab5b5b
LZ
1699
1700#ifdef CONFIG_CPUSETS
6e5c8307 1701 mask = ~((u16)1 << cpuset_cgrp_id);
f9ab5b5b 1702#endif
ddbcc7e8 1703
c6d57f33 1704 memset(opts, 0, sizeof(*opts));
ddbcc7e8
PM
1705
1706 while ((token = strsep(&o, ",")) != NULL) {
7b9a6ba5
TH
1707 nr_opts++;
1708
ddbcc7e8
PM
1709 if (!*token)
1710 return -EINVAL;
32a8cf23 1711 if (!strcmp(token, "none")) {
2c6ab6d2
PM
1712 /* Explicitly have no subsystems */
1713 opts->none = true;
32a8cf23
DL
1714 continue;
1715 }
1716 if (!strcmp(token, "all")) {
1717 /* Mutually exclusive option 'all' + subsystem name */
1718 if (one_ss)
1719 return -EINVAL;
1720 all_ss = true;
1721 continue;
1722 }
1723 if (!strcmp(token, "noprefix")) {
93438629 1724 opts->flags |= CGRP_ROOT_NOPREFIX;
32a8cf23
DL
1725 continue;
1726 }
1727 if (!strcmp(token, "clone_children")) {
2260e7fc 1728 opts->cpuset_clone_children = true;
32a8cf23
DL
1729 continue;
1730 }
03b1cde6 1731 if (!strcmp(token, "xattr")) {
93438629 1732 opts->flags |= CGRP_ROOT_XATTR;
03b1cde6
AR
1733 continue;
1734 }
32a8cf23 1735 if (!strncmp(token, "release_agent=", 14)) {
81a6a5cd
PM
1736 /* Specifying two release agents is forbidden */
1737 if (opts->release_agent)
1738 return -EINVAL;
c6d57f33 1739 opts->release_agent =
e400c285 1740 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
81a6a5cd
PM
1741 if (!opts->release_agent)
1742 return -ENOMEM;
32a8cf23
DL
1743 continue;
1744 }
1745 if (!strncmp(token, "name=", 5)) {
c6d57f33
PM
1746 const char *name = token + 5;
1747 /* Can't specify an empty name */
1748 if (!strlen(name))
1749 return -EINVAL;
1750 /* Must match [\w.-]+ */
1751 for (i = 0; i < strlen(name); i++) {
1752 char c = name[i];
1753 if (isalnum(c))
1754 continue;
1755 if ((c == '.') || (c == '-') || (c == '_'))
1756 continue;
1757 return -EINVAL;
1758 }
1759 /* Specifying two names is forbidden */
1760 if (opts->name)
1761 return -EINVAL;
1762 opts->name = kstrndup(name,
e400c285 1763 MAX_CGROUP_ROOT_NAMELEN - 1,
c6d57f33
PM
1764 GFP_KERNEL);
1765 if (!opts->name)
1766 return -ENOMEM;
32a8cf23
DL
1767
1768 continue;
1769 }
1770
30159ec7 1771 for_each_subsys(ss, i) {
3e1d2eed 1772 if (strcmp(token, ss->legacy_name))
32a8cf23 1773 continue;
fc5ed1e9 1774 if (!cgroup_ssid_enabled(i))
32a8cf23 1775 continue;
223ffb29
JW
1776 if (cgroup_ssid_no_v1(i))
1777 continue;
32a8cf23
DL
1778
1779 /* Mutually exclusive option 'all' + subsystem name */
1780 if (all_ss)
1781 return -EINVAL;
69dfa00c 1782 opts->subsys_mask |= (1 << i);
32a8cf23
DL
1783 one_ss = true;
1784
1785 break;
1786 }
1787 if (i == CGROUP_SUBSYS_COUNT)
1788 return -ENOENT;
1789 }
1790
7b9a6ba5
TH
1791 /*
1792 * If the 'all' option was specified select all the subsystems,
1793 * otherwise if 'none', 'name=' and a subsystem name options were
1794 * not specified, let's default to 'all'
1795 */
1796 if (all_ss || (!one_ss && !opts->none && !opts->name))
1797 for_each_subsys(ss, i)
223ffb29 1798 if (cgroup_ssid_enabled(i) && !cgroup_ssid_no_v1(i))
7b9a6ba5
TH
1799 opts->subsys_mask |= (1 << i);
1800
1801 /*
1802 * We either have to specify by name or by subsystems. (So all
1803 * empty hierarchies must have a name).
1804 */
1805 if (!opts->subsys_mask && !opts->name)
1806 return -EINVAL;
1807
f9ab5b5b
LZ
1808 /*
1809 * Option noprefix was introduced just for backward compatibility
1810 * with the old cpuset, so we allow noprefix only if mounting just
1811 * the cpuset subsystem.
1812 */
93438629 1813 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
f9ab5b5b
LZ
1814 return -EINVAL;
1815
2c6ab6d2 1816 /* Can't specify "none" and some subsystems */
a1a71b45 1817 if (opts->subsys_mask && opts->none)
2c6ab6d2
PM
1818 return -EINVAL;
1819
ddbcc7e8
PM
1820 return 0;
1821}
1822
2bd59d48 1823static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
ddbcc7e8
PM
1824{
1825 int ret = 0;
3dd06ffa 1826 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1827 struct cgroup_sb_opts opts;
6e5c8307 1828 u16 added_mask, removed_mask;
ddbcc7e8 1829
aa6ec29b
TH
1830 if (root == &cgrp_dfl_root) {
1831 pr_err("remount is not allowed\n");
873fe09e
TH
1832 return -EINVAL;
1833 }
1834
334c3679 1835 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
ddbcc7e8
PM
1836
1837 /* See what subsystems are wanted */
1838 ret = parse_cgroupfs_options(data, &opts);
1839 if (ret)
1840 goto out_unlock;
1841
f392e51c 1842 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
ed3d261b 1843 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
a2a1f9ea 1844 task_tgid_nr(current), current->comm);
8b5a5a9d 1845
f392e51c
TH
1846 added_mask = opts.subsys_mask & ~root->subsys_mask;
1847 removed_mask = root->subsys_mask & ~opts.subsys_mask;
13af07df 1848
cf5d5941 1849 /* Don't allow flags or name to change at remount */
7450e90b 1850 if ((opts.flags ^ root->flags) ||
cf5d5941 1851 (opts.name && strcmp(opts.name, root->name))) {
69dfa00c 1852 pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
7450e90b 1853 opts.flags, opts.name ?: "", root->flags, root->name);
c6d57f33
PM
1854 ret = -EINVAL;
1855 goto out_unlock;
1856 }
1857
f172e67c 1858 /* remounting is not allowed for populated hierarchies */
d5c419b6 1859 if (!list_empty(&root->cgrp.self.children)) {
f172e67c 1860 ret = -EBUSY;
0670e08b 1861 goto out_unlock;
cf5d5941 1862 }
ddbcc7e8 1863
5df36032 1864 ret = rebind_subsystems(root, added_mask);
3126121f 1865 if (ret)
0670e08b 1866 goto out_unlock;
ddbcc7e8 1867
334c3679 1868 WARN_ON(rebind_subsystems(&cgrp_dfl_root, removed_mask));
5df36032 1869
69e943b7
TH
1870 if (opts.release_agent) {
1871 spin_lock(&release_agent_path_lock);
81a6a5cd 1872 strcpy(root->release_agent_path, opts.release_agent);
69e943b7
TH
1873 spin_unlock(&release_agent_path_lock);
1874 }
ddbcc7e8 1875 out_unlock:
66bdc9cf 1876 kfree(opts.release_agent);
c6d57f33 1877 kfree(opts.name);
ddbcc7e8 1878 mutex_unlock(&cgroup_mutex);
ddbcc7e8
PM
1879 return ret;
1880}
1881
afeb0f9f
TH
1882/*
1883 * To reduce the fork() overhead for systems that are not actually using
1884 * their cgroups capability, we don't maintain the lists running through
1885 * each css_set to its tasks until we see the list actually used - in other
1886 * words after the first mount.
1887 */
1888static bool use_task_css_set_links __read_mostly;
1889
1890static void cgroup_enable_task_cg_lists(void)
1891{
1892 struct task_struct *p, *g;
1893
f0d9a5f1 1894 spin_lock_bh(&css_set_lock);
afeb0f9f
TH
1895
1896 if (use_task_css_set_links)
1897 goto out_unlock;
1898
1899 use_task_css_set_links = true;
1900
1901 /*
1902 * We need tasklist_lock because RCU is not safe against
1903 * while_each_thread(). Besides, a forking task that has passed
1904 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1905 * is not guaranteed to have its child immediately visible in the
1906 * tasklist if we walk through it with RCU.
1907 */
1908 read_lock(&tasklist_lock);
1909 do_each_thread(g, p) {
afeb0f9f
TH
1910 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1911 task_css_set(p) != &init_css_set);
1912
1913 /*
1914 * We should check if the process is exiting, otherwise
1915 * it will race with cgroup_exit() in that the list
1916 * entry won't be deleted though the process has exited.
f153ad11
TH
1917 * Do it while holding siglock so that we don't end up
1918 * racing against cgroup_exit().
afeb0f9f 1919 */
f153ad11 1920 spin_lock_irq(&p->sighand->siglock);
eaf797ab
TH
1921 if (!(p->flags & PF_EXITING)) {
1922 struct css_set *cset = task_css_set(p);
1923
0de0942d
TH
1924 if (!css_set_populated(cset))
1925 css_set_update_populated(cset, true);
389b9c1b 1926 list_add_tail(&p->cg_list, &cset->tasks);
eaf797ab
TH
1927 get_css_set(cset);
1928 }
f153ad11 1929 spin_unlock_irq(&p->sighand->siglock);
afeb0f9f
TH
1930 } while_each_thread(g, p);
1931 read_unlock(&tasklist_lock);
1932out_unlock:
f0d9a5f1 1933 spin_unlock_bh(&css_set_lock);
afeb0f9f 1934}
ddbcc7e8 1935
cc31edce
PM
1936static void init_cgroup_housekeeping(struct cgroup *cgrp)
1937{
2d8f243a
TH
1938 struct cgroup_subsys *ss;
1939 int ssid;
1940
d5c419b6
TH
1941 INIT_LIST_HEAD(&cgrp->self.sibling);
1942 INIT_LIST_HEAD(&cgrp->self.children);
69d0206c 1943 INIT_LIST_HEAD(&cgrp->cset_links);
72a8cb30
BB
1944 INIT_LIST_HEAD(&cgrp->pidlists);
1945 mutex_init(&cgrp->pidlist_mutex);
9d800df1 1946 cgrp->self.cgroup = cgrp;
184faf32 1947 cgrp->self.flags |= CSS_ONLINE;
2d8f243a
TH
1948
1949 for_each_subsys(ss, ssid)
1950 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
f8f22e53
TH
1951
1952 init_waitqueue_head(&cgrp->offline_waitq);
971ff493 1953 INIT_WORK(&cgrp->release_agent_work, cgroup_release_agent);
cc31edce 1954}
c6d57f33 1955
3dd06ffa 1956static void init_cgroup_root(struct cgroup_root *root,
172a2c06 1957 struct cgroup_sb_opts *opts)
ddbcc7e8 1958{
3dd06ffa 1959 struct cgroup *cgrp = &root->cgrp;
b0ca5a84 1960
ddbcc7e8 1961 INIT_LIST_HEAD(&root->root_list);
3c9c825b 1962 atomic_set(&root->nr_cgrps, 1);
bd89aabc 1963 cgrp->root = root;
cc31edce 1964 init_cgroup_housekeeping(cgrp);
4e96ee8e 1965 idr_init(&root->cgroup_idr);
c6d57f33 1966
c6d57f33
PM
1967 root->flags = opts->flags;
1968 if (opts->release_agent)
1969 strcpy(root->release_agent_path, opts->release_agent);
1970 if (opts->name)
1971 strcpy(root->name, opts->name);
2260e7fc 1972 if (opts->cpuset_clone_children)
3dd06ffa 1973 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
c6d57f33
PM
1974}
1975
6e5c8307 1976static int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask)
2c6ab6d2 1977{
d427dfeb 1978 LIST_HEAD(tmp_links);
3dd06ffa 1979 struct cgroup *root_cgrp = &root->cgrp;
d427dfeb 1980 struct css_set *cset;
d427dfeb 1981 int i, ret;
2c6ab6d2 1982
d427dfeb 1983 lockdep_assert_held(&cgroup_mutex);
c6d57f33 1984
cf780b7d 1985 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL);
d427dfeb 1986 if (ret < 0)
2bd59d48 1987 goto out;
d427dfeb 1988 root_cgrp->id = ret;
b11cfb58 1989 root_cgrp->ancestor_ids[0] = ret;
c6d57f33 1990
2aad2a86
TH
1991 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 0,
1992 GFP_KERNEL);
9d755d33
TH
1993 if (ret)
1994 goto out;
1995
d427dfeb 1996 /*
f0d9a5f1 1997 * We're accessing css_set_count without locking css_set_lock here,
d427dfeb 1998 * but that's OK - it can only be increased by someone holding
04313591
TH
1999 * cgroup_lock, and that's us. Later rebinding may disable
2000 * controllers on the default hierarchy and thus create new csets,
2001 * which can't be more than the existing ones. Allocate 2x.
d427dfeb 2002 */
04313591 2003 ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
d427dfeb 2004 if (ret)
9d755d33 2005 goto cancel_ref;
ddbcc7e8 2006
985ed670 2007 ret = cgroup_init_root_id(root);
ddbcc7e8 2008 if (ret)
9d755d33 2009 goto cancel_ref;
ddbcc7e8 2010
2bd59d48
TH
2011 root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
2012 KERNFS_ROOT_CREATE_DEACTIVATED,
2013 root_cgrp);
2014 if (IS_ERR(root->kf_root)) {
2015 ret = PTR_ERR(root->kf_root);
2016 goto exit_root_id;
2017 }
2018 root_cgrp->kn = root->kf_root->kn;
ddbcc7e8 2019
334c3679 2020 ret = css_populate_dir(&root_cgrp->self);
d427dfeb 2021 if (ret)
2bd59d48 2022 goto destroy_root;
ddbcc7e8 2023
5df36032 2024 ret = rebind_subsystems(root, ss_mask);
d427dfeb 2025 if (ret)
2bd59d48 2026 goto destroy_root;
ddbcc7e8 2027
d427dfeb
TH
2028 /*
2029 * There must be no failure case after here, since rebinding takes
2030 * care of subsystems' refcounts, which are explicitly dropped in
2031 * the failure exit path.
2032 */
2033 list_add(&root->root_list, &cgroup_roots);
2034 cgroup_root_count++;
0df6a63f 2035
d427dfeb 2036 /*
3dd06ffa 2037 * Link the root cgroup in this hierarchy into all the css_set
d427dfeb
TH
2038 * objects.
2039 */
f0d9a5f1 2040 spin_lock_bh(&css_set_lock);
0de0942d 2041 hash_for_each(css_set_table, i, cset, hlist) {
d427dfeb 2042 link_css_set(&tmp_links, cset, root_cgrp);
0de0942d
TH
2043 if (css_set_populated(cset))
2044 cgroup_update_populated(root_cgrp, true);
2045 }
f0d9a5f1 2046 spin_unlock_bh(&css_set_lock);
ddbcc7e8 2047
d5c419b6 2048 BUG_ON(!list_empty(&root_cgrp->self.children));
3c9c825b 2049 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
ddbcc7e8 2050
2bd59d48 2051 kernfs_activate(root_cgrp->kn);
d427dfeb 2052 ret = 0;
2bd59d48 2053 goto out;
d427dfeb 2054
2bd59d48
TH
2055destroy_root:
2056 kernfs_destroy_root(root->kf_root);
2057 root->kf_root = NULL;
2058exit_root_id:
d427dfeb 2059 cgroup_exit_root_id(root);
9d755d33 2060cancel_ref:
9a1049da 2061 percpu_ref_exit(&root_cgrp->self.refcnt);
2bd59d48 2062out:
d427dfeb
TH
2063 free_cgrp_cset_links(&tmp_links);
2064 return ret;
ddbcc7e8
PM
2065}
2066
f7e83571 2067static struct dentry *cgroup_mount(struct file_system_type *fs_type,
ddbcc7e8 2068 int flags, const char *unused_dev_name,
f7e83571 2069 void *data)
ddbcc7e8 2070{
67e9c74b 2071 bool is_v2 = fs_type == &cgroup2_fs_type;
3a32bd72 2072 struct super_block *pinned_sb = NULL;
ed82571b 2073 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
970317aa 2074 struct cgroup_subsys *ss;
3dd06ffa 2075 struct cgroup_root *root;
ddbcc7e8 2076 struct cgroup_sb_opts opts;
2bd59d48 2077 struct dentry *dentry;
8e30e2b8 2078 int ret;
970317aa 2079 int i;
c6b3d5bc 2080 bool new_sb;
ddbcc7e8 2081
ed82571b
SH
2082 get_cgroup_ns(ns);
2083
2084 /* Check if the caller has permission to mount. */
2085 if (!ns_capable(ns->user_ns, CAP_SYS_ADMIN)) {
2086 put_cgroup_ns(ns);
2087 return ERR_PTR(-EPERM);
2088 }
2089
56fde9e0
TH
2090 /*
2091 * The first time anyone tries to mount a cgroup, enable the list
2092 * linking each css_set to its tasks and fix up all existing tasks.
2093 */
2094 if (!use_task_css_set_links)
2095 cgroup_enable_task_cg_lists();
e37a06f1 2096
67e9c74b
TH
2097 if (is_v2) {
2098 if (data) {
2099 pr_err("cgroup2: unknown option \"%s\"\n", (char *)data);
ed82571b 2100 put_cgroup_ns(ns);
67e9c74b
TH
2101 return ERR_PTR(-EINVAL);
2102 }
a7165264 2103 cgrp_dfl_visible = true;
67e9c74b
TH
2104 root = &cgrp_dfl_root;
2105 cgroup_get(&root->cgrp);
2106 goto out_mount;
2107 }
2108
334c3679 2109 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
8e30e2b8
TH
2110
2111 /* First find the desired set of subsystems */
ddbcc7e8 2112 ret = parse_cgroupfs_options(data, &opts);
c6d57f33 2113 if (ret)
8e30e2b8 2114 goto out_unlock;
a015edd2 2115
970317aa
LZ
2116 /*
2117 * Destruction of cgroup root is asynchronous, so subsystems may
2118 * still be dying after the previous unmount. Let's drain the
2119 * dying subsystems. We just need to ensure that the ones
2120 * unmounted previously finish dying and don't care about new ones
2121 * starting. Testing ref liveliness is good enough.
2122 */
2123 for_each_subsys(ss, i) {
2124 if (!(opts.subsys_mask & (1 << i)) ||
2125 ss->root == &cgrp_dfl_root)
2126 continue;
2127
2128 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) {
2129 mutex_unlock(&cgroup_mutex);
2130 msleep(10);
2131 ret = restart_syscall();
2132 goto out_free;
2133 }
2134 cgroup_put(&ss->root->cgrp);
2135 }
2136
985ed670 2137 for_each_root(root) {
2bd59d48 2138 bool name_match = false;
3126121f 2139
3dd06ffa 2140 if (root == &cgrp_dfl_root)
985ed670 2141 continue;
3126121f 2142
cf5d5941 2143 /*
2bd59d48
TH
2144 * If we asked for a name then it must match. Also, if
2145 * name matches but sybsys_mask doesn't, we should fail.
2146 * Remember whether name matched.
cf5d5941 2147 */
2bd59d48
TH
2148 if (opts.name) {
2149 if (strcmp(opts.name, root->name))
2150 continue;
2151 name_match = true;
2152 }
ddbcc7e8 2153
c6d57f33 2154 /*
2bd59d48
TH
2155 * If we asked for subsystems (or explicitly for no
2156 * subsystems) then they must match.
c6d57f33 2157 */
2bd59d48 2158 if ((opts.subsys_mask || opts.none) &&
f392e51c 2159 (opts.subsys_mask != root->subsys_mask)) {
2bd59d48
TH
2160 if (!name_match)
2161 continue;
2162 ret = -EBUSY;
2163 goto out_unlock;
2164 }
873fe09e 2165
7b9a6ba5
TH
2166 if (root->flags ^ opts.flags)
2167 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
ddbcc7e8 2168
776f02fa 2169 /*
3a32bd72
LZ
2170 * We want to reuse @root whose lifetime is governed by its
2171 * ->cgrp. Let's check whether @root is alive and keep it
2172 * that way. As cgroup_kill_sb() can happen anytime, we
2173 * want to block it by pinning the sb so that @root doesn't
2174 * get killed before mount is complete.
2175 *
2176 * With the sb pinned, tryget_live can reliably indicate
2177 * whether @root can be reused. If it's being killed,
2178 * drain it. We can use wait_queue for the wait but this
2179 * path is super cold. Let's just sleep a bit and retry.
776f02fa 2180 */
3a32bd72
LZ
2181 pinned_sb = kernfs_pin_sb(root->kf_root, NULL);
2182 if (IS_ERR(pinned_sb) ||
2183 !percpu_ref_tryget_live(&root->cgrp.self.refcnt)) {
776f02fa 2184 mutex_unlock(&cgroup_mutex);
3a32bd72
LZ
2185 if (!IS_ERR_OR_NULL(pinned_sb))
2186 deactivate_super(pinned_sb);
776f02fa 2187 msleep(10);
a015edd2
TH
2188 ret = restart_syscall();
2189 goto out_free;
776f02fa 2190 }
ddbcc7e8 2191
776f02fa 2192 ret = 0;
2bd59d48 2193 goto out_unlock;
ddbcc7e8 2194 }
ddbcc7e8 2195
817929ec 2196 /*
172a2c06
TH
2197 * No such thing, create a new one. name= matching without subsys
2198 * specification is allowed for already existing hierarchies but we
2199 * can't create new one without subsys specification.
817929ec 2200 */
172a2c06
TH
2201 if (!opts.subsys_mask && !opts.none) {
2202 ret = -EINVAL;
2203 goto out_unlock;
817929ec 2204 }
817929ec 2205
ed82571b
SH
2206 /*
2207 * We know this subsystem has not yet been bound. Users in a non-init
2208 * user namespace may only mount hierarchies with no bound subsystems,
2209 * i.e. 'none,name=user1'
2210 */
2211 if (!opts.none && !capable(CAP_SYS_ADMIN)) {
2212 ret = -EPERM;
2213 goto out_unlock;
2214 }
2215
172a2c06
TH
2216 root = kzalloc(sizeof(*root), GFP_KERNEL);
2217 if (!root) {
2218 ret = -ENOMEM;
2bd59d48 2219 goto out_unlock;
839ec545 2220 }
e5f6a860 2221
172a2c06
TH
2222 init_cgroup_root(root, &opts);
2223
35585573 2224 ret = cgroup_setup_root(root, opts.subsys_mask);
2bd59d48
TH
2225 if (ret)
2226 cgroup_free_root(root);
fa3ca07e 2227
8e30e2b8 2228out_unlock:
ddbcc7e8 2229 mutex_unlock(&cgroup_mutex);
a015edd2 2230out_free:
c6d57f33
PM
2231 kfree(opts.release_agent);
2232 kfree(opts.name);
03b1cde6 2233
ed82571b
SH
2234 if (ret) {
2235 put_cgroup_ns(ns);
8e30e2b8 2236 return ERR_PTR(ret);
ed82571b 2237 }
67e9c74b 2238out_mount:
c9482a5b 2239 dentry = kernfs_mount(fs_type, flags, root->kf_root,
67e9c74b
TH
2240 is_v2 ? CGROUP2_SUPER_MAGIC : CGROUP_SUPER_MAGIC,
2241 &new_sb);
ed82571b
SH
2242
2243 /*
2244 * In non-init cgroup namespace, instead of root cgroup's
2245 * dentry, we return the dentry corresponding to the
2246 * cgroupns->root_cgrp.
2247 */
2248 if (!IS_ERR(dentry) && ns != &init_cgroup_ns) {
2249 struct dentry *nsdentry;
2250 struct cgroup *cgrp;
2251
2252 mutex_lock(&cgroup_mutex);
2253 spin_lock_bh(&css_set_lock);
2254
2255 cgrp = cset_cgroup_from_root(ns->root_cset, root);
2256
2257 spin_unlock_bh(&css_set_lock);
2258 mutex_unlock(&cgroup_mutex);
2259
2260 nsdentry = kernfs_node_dentry(cgrp->kn, dentry->d_sb);
2261 dput(dentry);
2262 dentry = nsdentry;
2263 }
2264
c6b3d5bc 2265 if (IS_ERR(dentry) || !new_sb)
3dd06ffa 2266 cgroup_put(&root->cgrp);
3a32bd72
LZ
2267
2268 /*
2269 * If @pinned_sb, we're reusing an existing root and holding an
2270 * extra ref on its sb. Mount is complete. Put the extra ref.
2271 */
2272 if (pinned_sb) {
2273 WARN_ON(new_sb);
2274 deactivate_super(pinned_sb);
2275 }
2276
ed82571b 2277 put_cgroup_ns(ns);
2bd59d48
TH
2278 return dentry;
2279}
2280
2281static void cgroup_kill_sb(struct super_block *sb)
2282{
2283 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
3dd06ffa 2284 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2bd59d48 2285
9d755d33
TH
2286 /*
2287 * If @root doesn't have any mounts or children, start killing it.
2288 * This prevents new mounts by disabling percpu_ref_tryget_live().
2289 * cgroup_mount() may wait for @root's release.
1f779fb2
LZ
2290 *
2291 * And don't kill the default root.
9d755d33 2292 */
3c606d35 2293 if (!list_empty(&root->cgrp.self.children) ||
1f779fb2 2294 root == &cgrp_dfl_root)
9d755d33
TH
2295 cgroup_put(&root->cgrp);
2296 else
2297 percpu_ref_kill(&root->cgrp.self.refcnt);
2298
2bd59d48 2299 kernfs_kill_sb(sb);
ddbcc7e8
PM
2300}
2301
2302static struct file_system_type cgroup_fs_type = {
2303 .name = "cgroup",
f7e83571 2304 .mount = cgroup_mount,
ddbcc7e8 2305 .kill_sb = cgroup_kill_sb,
1c53753e 2306 .fs_flags = FS_USERNS_MOUNT,
ddbcc7e8
PM
2307};
2308
67e9c74b
TH
2309static struct file_system_type cgroup2_fs_type = {
2310 .name = "cgroup2",
2311 .mount = cgroup_mount,
2312 .kill_sb = cgroup_kill_sb,
1c53753e 2313 .fs_flags = FS_USERNS_MOUNT,
67e9c74b
TH
2314};
2315
a79a908f
AK
2316static char *cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2317 struct cgroup_namespace *ns)
2318{
2319 struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2320 int ret;
2321
2322 ret = kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2323 if (ret < 0 || ret >= buflen)
2324 return NULL;
2325 return buf;
2326}
2327
2328char *cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2329 struct cgroup_namespace *ns)
2330{
2331 char *ret;
2332
2333 mutex_lock(&cgroup_mutex);
2334 spin_lock_bh(&css_set_lock);
2335
2336 ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2337
2338 spin_unlock_bh(&css_set_lock);
2339 mutex_unlock(&cgroup_mutex);
2340
2341 return ret;
2342}
2343EXPORT_SYMBOL_GPL(cgroup_path_ns);
2344
857a2beb 2345/**
913ffdb5 2346 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
857a2beb 2347 * @task: target task
857a2beb
TH
2348 * @buf: the buffer to write the path into
2349 * @buflen: the length of the buffer
2350 *
913ffdb5
TH
2351 * Determine @task's cgroup on the first (the one with the lowest non-zero
2352 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
2353 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2354 * cgroup controller callbacks.
2355 *
e61734c5 2356 * Return value is the same as kernfs_path().
857a2beb 2357 */
e61734c5 2358char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
857a2beb 2359{
3dd06ffa 2360 struct cgroup_root *root;
913ffdb5 2361 struct cgroup *cgrp;
e61734c5
TH
2362 int hierarchy_id = 1;
2363 char *path = NULL;
857a2beb
TH
2364
2365 mutex_lock(&cgroup_mutex);
f0d9a5f1 2366 spin_lock_bh(&css_set_lock);
857a2beb 2367
913ffdb5
TH
2368 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2369
857a2beb
TH
2370 if (root) {
2371 cgrp = task_cgroup_from_root(task, root);
a79a908f 2372 path = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns);
913ffdb5
TH
2373 } else {
2374 /* if no hierarchy exists, everyone is in "/" */
e61734c5
TH
2375 if (strlcpy(buf, "/", buflen) < buflen)
2376 path = buf;
857a2beb
TH
2377 }
2378
f0d9a5f1 2379 spin_unlock_bh(&css_set_lock);
857a2beb 2380 mutex_unlock(&cgroup_mutex);
e61734c5 2381 return path;
857a2beb 2382}
913ffdb5 2383EXPORT_SYMBOL_GPL(task_cgroup_path);
857a2beb 2384
b3dc094e 2385/* used to track tasks and other necessary states during migration */
2f7ee569 2386struct cgroup_taskset {
b3dc094e
TH
2387 /* the src and dst cset list running through cset->mg_node */
2388 struct list_head src_csets;
2389 struct list_head dst_csets;
2390
1f7dd3e5
TH
2391 /* the subsys currently being processed */
2392 int ssid;
2393
b3dc094e
TH
2394 /*
2395 * Fields for cgroup_taskset_*() iteration.
2396 *
2397 * Before migration is committed, the target migration tasks are on
2398 * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of
2399 * the csets on ->dst_csets. ->csets point to either ->src_csets
2400 * or ->dst_csets depending on whether migration is committed.
2401 *
2402 * ->cur_csets and ->cur_task point to the current task position
2403 * during iteration.
2404 */
2405 struct list_head *csets;
2406 struct css_set *cur_cset;
2407 struct task_struct *cur_task;
2f7ee569
TH
2408};
2409
adaae5dc
TH
2410#define CGROUP_TASKSET_INIT(tset) (struct cgroup_taskset){ \
2411 .src_csets = LIST_HEAD_INIT(tset.src_csets), \
2412 .dst_csets = LIST_HEAD_INIT(tset.dst_csets), \
2413 .csets = &tset.src_csets, \
2414}
2415
2416/**
2417 * cgroup_taskset_add - try to add a migration target task to a taskset
2418 * @task: target task
2419 * @tset: target taskset
2420 *
2421 * Add @task, which is a migration target, to @tset. This function becomes
2422 * noop if @task doesn't need to be migrated. @task's css_set should have
2423 * been added as a migration source and @task->cg_list will be moved from
2424 * the css_set's tasks list to mg_tasks one.
2425 */
2426static void cgroup_taskset_add(struct task_struct *task,
2427 struct cgroup_taskset *tset)
2428{
2429 struct css_set *cset;
2430
f0d9a5f1 2431 lockdep_assert_held(&css_set_lock);
adaae5dc
TH
2432
2433 /* @task either already exited or can't exit until the end */
2434 if (task->flags & PF_EXITING)
2435 return;
2436
2437 /* leave @task alone if post_fork() hasn't linked it yet */
2438 if (list_empty(&task->cg_list))
2439 return;
2440
2441 cset = task_css_set(task);
2442 if (!cset->mg_src_cgrp)
2443 return;
2444
2445 list_move_tail(&task->cg_list, &cset->mg_tasks);
2446 if (list_empty(&cset->mg_node))
2447 list_add_tail(&cset->mg_node, &tset->src_csets);
2448 if (list_empty(&cset->mg_dst_cset->mg_node))
2449 list_move_tail(&cset->mg_dst_cset->mg_node,
2450 &tset->dst_csets);
2451}
2452
2f7ee569
TH
2453/**
2454 * cgroup_taskset_first - reset taskset and return the first task
2455 * @tset: taskset of interest
1f7dd3e5 2456 * @dst_cssp: output variable for the destination css
2f7ee569
TH
2457 *
2458 * @tset iteration is initialized and the first task is returned.
2459 */
1f7dd3e5
TH
2460struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2461 struct cgroup_subsys_state **dst_cssp)
2f7ee569 2462{
b3dc094e
TH
2463 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2464 tset->cur_task = NULL;
2465
1f7dd3e5 2466 return cgroup_taskset_next(tset, dst_cssp);
2f7ee569 2467}
2f7ee569
TH
2468
2469/**
2470 * cgroup_taskset_next - iterate to the next task in taskset
2471 * @tset: taskset of interest
1f7dd3e5 2472 * @dst_cssp: output variable for the destination css
2f7ee569
TH
2473 *
2474 * Return the next task in @tset. Iteration must have been initialized
2475 * with cgroup_taskset_first().
2476 */
1f7dd3e5
TH
2477struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2478 struct cgroup_subsys_state **dst_cssp)
2f7ee569 2479{
b3dc094e
TH
2480 struct css_set *cset = tset->cur_cset;
2481 struct task_struct *task = tset->cur_task;
2f7ee569 2482
b3dc094e
TH
2483 while (&cset->mg_node != tset->csets) {
2484 if (!task)
2485 task = list_first_entry(&cset->mg_tasks,
2486 struct task_struct, cg_list);
2487 else
2488 task = list_next_entry(task, cg_list);
2f7ee569 2489
b3dc094e
TH
2490 if (&task->cg_list != &cset->mg_tasks) {
2491 tset->cur_cset = cset;
2492 tset->cur_task = task;
1f7dd3e5
TH
2493
2494 /*
2495 * This function may be called both before and
2496 * after cgroup_taskset_migrate(). The two cases
2497 * can be distinguished by looking at whether @cset
2498 * has its ->mg_dst_cset set.
2499 */
2500 if (cset->mg_dst_cset)
2501 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2502 else
2503 *dst_cssp = cset->subsys[tset->ssid];
2504
b3dc094e
TH
2505 return task;
2506 }
2f7ee569 2507
b3dc094e
TH
2508 cset = list_next_entry(cset, mg_node);
2509 task = NULL;
2510 }
2f7ee569 2511
b3dc094e 2512 return NULL;
2f7ee569 2513}
2f7ee569 2514
adaae5dc 2515/**
37ff9f8f 2516 * cgroup_taskset_migrate - migrate a taskset
adaae5dc 2517 * @tset: taget taskset
37ff9f8f 2518 * @root: cgroup root the migration is taking place on
adaae5dc 2519 *
37ff9f8f
TH
2520 * Migrate tasks in @tset as setup by migration preparation functions.
2521 * This function fails iff one of the ->can_attach callbacks fails and
2522 * guarantees that either all or none of the tasks in @tset are migrated.
2523 * @tset is consumed regardless of success.
adaae5dc
TH
2524 */
2525static int cgroup_taskset_migrate(struct cgroup_taskset *tset,
37ff9f8f 2526 struct cgroup_root *root)
adaae5dc 2527{
37ff9f8f 2528 struct cgroup_subsys *ss;
adaae5dc
TH
2529 struct task_struct *task, *tmp_task;
2530 struct css_set *cset, *tmp_cset;
37ff9f8f 2531 int ssid, failed_ssid, ret;
adaae5dc
TH
2532
2533 /* methods shouldn't be called if no task is actually migrating */
2534 if (list_empty(&tset->src_csets))
2535 return 0;
2536
2537 /* check that we can legitimately attach to the cgroup */
37ff9f8f
TH
2538 do_each_subsys_mask(ss, ssid, root->subsys_mask) {
2539 if (ss->can_attach) {
2540 tset->ssid = ssid;
2541 ret = ss->can_attach(tset);
adaae5dc 2542 if (ret) {
37ff9f8f 2543 failed_ssid = ssid;
adaae5dc
TH
2544 goto out_cancel_attach;
2545 }
2546 }
37ff9f8f 2547 } while_each_subsys_mask();
adaae5dc
TH
2548
2549 /*
2550 * Now that we're guaranteed success, proceed to move all tasks to
2551 * the new cgroup. There are no failure cases after here, so this
2552 * is the commit point.
2553 */
f0d9a5f1 2554 spin_lock_bh(&css_set_lock);
adaae5dc 2555 list_for_each_entry(cset, &tset->src_csets, mg_node) {
f6d7d049
TH
2556 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2557 struct css_set *from_cset = task_css_set(task);
2558 struct css_set *to_cset = cset->mg_dst_cset;
2559
2560 get_css_set(to_cset);
2561 css_set_move_task(task, from_cset, to_cset, true);
2562 put_css_set_locked(from_cset);
2563 }
adaae5dc 2564 }
f0d9a5f1 2565 spin_unlock_bh(&css_set_lock);
adaae5dc
TH
2566
2567 /*
2568 * Migration is committed, all target tasks are now on dst_csets.
2569 * Nothing is sensitive to fork() after this point. Notify
2570 * controllers that migration is complete.
2571 */
2572 tset->csets = &tset->dst_csets;
2573
37ff9f8f
TH
2574 do_each_subsys_mask(ss, ssid, root->subsys_mask) {
2575 if (ss->attach) {
2576 tset->ssid = ssid;
2577 ss->attach(tset);
1f7dd3e5 2578 }
37ff9f8f 2579 } while_each_subsys_mask();
adaae5dc
TH
2580
2581 ret = 0;
2582 goto out_release_tset;
2583
2584out_cancel_attach:
37ff9f8f
TH
2585 do_each_subsys_mask(ss, ssid, root->subsys_mask) {
2586 if (ssid == failed_ssid)
adaae5dc 2587 break;
37ff9f8f
TH
2588 if (ss->cancel_attach) {
2589 tset->ssid = ssid;
2590 ss->cancel_attach(tset);
1f7dd3e5 2591 }
37ff9f8f 2592 } while_each_subsys_mask();
adaae5dc 2593out_release_tset:
f0d9a5f1 2594 spin_lock_bh(&css_set_lock);
adaae5dc
TH
2595 list_splice_init(&tset->dst_csets, &tset->src_csets);
2596 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2597 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2598 list_del_init(&cset->mg_node);
2599 }
f0d9a5f1 2600 spin_unlock_bh(&css_set_lock);
adaae5dc
TH
2601 return ret;
2602}
2603
6c694c88
TH
2604/**
2605 * cgroup_may_migrate_to - verify whether a cgroup can be migration destination
2606 * @dst_cgrp: destination cgroup to test
2607 *
2608 * On the default hierarchy, except for the root, subtree_control must be
2609 * zero for migration destination cgroups with tasks so that child cgroups
2610 * don't compete against tasks.
2611 */
2612static bool cgroup_may_migrate_to(struct cgroup *dst_cgrp)
2613{
2614 return !cgroup_on_dfl(dst_cgrp) || !cgroup_parent(dst_cgrp) ||
2615 !dst_cgrp->subtree_control;
2616}
2617
a043e3b2 2618/**
1958d2d5
TH
2619 * cgroup_migrate_finish - cleanup after attach
2620 * @preloaded_csets: list of preloaded css_sets
74a1166d 2621 *
1958d2d5
TH
2622 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2623 * those functions for details.
74a1166d 2624 */
1958d2d5 2625static void cgroup_migrate_finish(struct list_head *preloaded_csets)
74a1166d 2626{
1958d2d5 2627 struct css_set *cset, *tmp_cset;
74a1166d 2628
1958d2d5
TH
2629 lockdep_assert_held(&cgroup_mutex);
2630
f0d9a5f1 2631 spin_lock_bh(&css_set_lock);
1958d2d5
TH
2632 list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) {
2633 cset->mg_src_cgrp = NULL;
e4857982 2634 cset->mg_dst_cgrp = NULL;
1958d2d5
TH
2635 cset->mg_dst_cset = NULL;
2636 list_del_init(&cset->mg_preload_node);
a25eb52e 2637 put_css_set_locked(cset);
1958d2d5 2638 }
f0d9a5f1 2639 spin_unlock_bh(&css_set_lock);
1958d2d5
TH
2640}
2641
2642/**
2643 * cgroup_migrate_add_src - add a migration source css_set
2644 * @src_cset: the source css_set to add
2645 * @dst_cgrp: the destination cgroup
2646 * @preloaded_csets: list of preloaded css_sets
2647 *
2648 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2649 * @src_cset and add it to @preloaded_csets, which should later be cleaned
2650 * up by cgroup_migrate_finish().
2651 *
1ed13287
TH
2652 * This function may be called without holding cgroup_threadgroup_rwsem
2653 * even if the target is a process. Threads may be created and destroyed
2654 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2655 * into play and the preloaded css_sets are guaranteed to cover all
2656 * migrations.
1958d2d5
TH
2657 */
2658static void cgroup_migrate_add_src(struct css_set *src_cset,
2659 struct cgroup *dst_cgrp,
2660 struct list_head *preloaded_csets)
2661{
2662 struct cgroup *src_cgrp;
2663
2664 lockdep_assert_held(&cgroup_mutex);
f0d9a5f1 2665 lockdep_assert_held(&css_set_lock);
1958d2d5 2666
2b021cbf
TH
2667 /*
2668 * If ->dead, @src_set is associated with one or more dead cgroups
2669 * and doesn't contain any migratable tasks. Ignore it early so
2670 * that the rest of migration path doesn't get confused by it.
2671 */
2672 if (src_cset->dead)
2673 return;
2674
1958d2d5
TH
2675 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2676
1958d2d5
TH
2677 if (!list_empty(&src_cset->mg_preload_node))
2678 return;
2679
2680 WARN_ON(src_cset->mg_src_cgrp);
e4857982 2681 WARN_ON(src_cset->mg_dst_cgrp);
1958d2d5
TH
2682 WARN_ON(!list_empty(&src_cset->mg_tasks));
2683 WARN_ON(!list_empty(&src_cset->mg_node));
2684
2685 src_cset->mg_src_cgrp = src_cgrp;
e4857982 2686 src_cset->mg_dst_cgrp = dst_cgrp;
1958d2d5
TH
2687 get_css_set(src_cset);
2688 list_add(&src_cset->mg_preload_node, preloaded_csets);
2689}
2690
2691/**
2692 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
1958d2d5
TH
2693 * @preloaded_csets: list of preloaded source css_sets
2694 *
e4857982
TH
2695 * Tasks are about to be moved and all the source css_sets have been
2696 * preloaded to @preloaded_csets. This function looks up and pins all
2697 * destination css_sets, links each to its source, and append them to
2698 * @preloaded_csets.
1958d2d5
TH
2699 *
2700 * This function must be called after cgroup_migrate_add_src() has been
2701 * called on each migration source css_set. After migration is performed
2702 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2703 * @preloaded_csets.
2704 */
e4857982 2705static int cgroup_migrate_prepare_dst(struct list_head *preloaded_csets)
1958d2d5
TH
2706{
2707 LIST_HEAD(csets);
f817de98 2708 struct css_set *src_cset, *tmp_cset;
1958d2d5
TH
2709
2710 lockdep_assert_held(&cgroup_mutex);
2711
2712 /* look up the dst cset for each src cset and link it to src */
f817de98 2713 list_for_each_entry_safe(src_cset, tmp_cset, preloaded_csets, mg_preload_node) {
1958d2d5
TH
2714 struct css_set *dst_cset;
2715
e4857982 2716 dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
1958d2d5
TH
2717 if (!dst_cset)
2718 goto err;
2719
2720 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
f817de98
TH
2721
2722 /*
2723 * If src cset equals dst, it's noop. Drop the src.
2724 * cgroup_migrate() will skip the cset too. Note that we
2725 * can't handle src == dst as some nodes are used by both.
2726 */
2727 if (src_cset == dst_cset) {
2728 src_cset->mg_src_cgrp = NULL;
e4857982 2729 src_cset->mg_dst_cgrp = NULL;
f817de98 2730 list_del_init(&src_cset->mg_preload_node);
a25eb52e
ZL
2731 put_css_set(src_cset);
2732 put_css_set(dst_cset);
f817de98
TH
2733 continue;
2734 }
2735
1958d2d5
TH
2736 src_cset->mg_dst_cset = dst_cset;
2737
2738 if (list_empty(&dst_cset->mg_preload_node))
2739 list_add(&dst_cset->mg_preload_node, &csets);
2740 else
a25eb52e 2741 put_css_set(dst_cset);
1958d2d5
TH
2742 }
2743
f817de98 2744 list_splice_tail(&csets, preloaded_csets);
1958d2d5
TH
2745 return 0;
2746err:
2747 cgroup_migrate_finish(&csets);
2748 return -ENOMEM;
2749}
2750
2751/**
2752 * cgroup_migrate - migrate a process or task to a cgroup
1958d2d5
TH
2753 * @leader: the leader of the process or the task to migrate
2754 * @threadgroup: whether @leader points to the whole process or a single task
37ff9f8f 2755 * @root: cgroup root migration is taking place on
1958d2d5 2756 *
37ff9f8f
TH
2757 * Migrate a process or task denoted by @leader. If migrating a process,
2758 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also
2759 * responsible for invoking cgroup_migrate_add_src() and
1958d2d5
TH
2760 * cgroup_migrate_prepare_dst() on the targets before invoking this
2761 * function and following up with cgroup_migrate_finish().
2762 *
2763 * As long as a controller's ->can_attach() doesn't fail, this function is
2764 * guaranteed to succeed. This means that, excluding ->can_attach()
2765 * failure, when migrating multiple targets, the success or failure can be
2766 * decided for all targets by invoking group_migrate_prepare_dst() before
2767 * actually starting migrating.
2768 */
9af2ec45 2769static int cgroup_migrate(struct task_struct *leader, bool threadgroup,
37ff9f8f 2770 struct cgroup_root *root)
74a1166d 2771{
adaae5dc
TH
2772 struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
2773 struct task_struct *task;
74a1166d 2774
fb5d2b4c
MSB
2775 /*
2776 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2777 * already PF_EXITING could be freed from underneath us unless we
2778 * take an rcu_read_lock.
2779 */
f0d9a5f1 2780 spin_lock_bh(&css_set_lock);
fb5d2b4c 2781 rcu_read_lock();
9db8de37 2782 task = leader;
74a1166d 2783 do {
adaae5dc 2784 cgroup_taskset_add(task, &tset);
081aa458
LZ
2785 if (!threadgroup)
2786 break;
9db8de37 2787 } while_each_thread(leader, task);
fb5d2b4c 2788 rcu_read_unlock();
f0d9a5f1 2789 spin_unlock_bh(&css_set_lock);
74a1166d 2790
37ff9f8f 2791 return cgroup_taskset_migrate(&tset, root);
74a1166d
BB
2792}
2793
1958d2d5
TH
2794/**
2795 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2796 * @dst_cgrp: the cgroup to attach to
2797 * @leader: the task or the leader of the threadgroup to be attached
2798 * @threadgroup: attach the whole threadgroup?
2799 *
1ed13287 2800 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
1958d2d5
TH
2801 */
2802static int cgroup_attach_task(struct cgroup *dst_cgrp,
2803 struct task_struct *leader, bool threadgroup)
2804{
2805 LIST_HEAD(preloaded_csets);
2806 struct task_struct *task;
2807 int ret;
2808
6c694c88
TH
2809 if (!cgroup_may_migrate_to(dst_cgrp))
2810 return -EBUSY;
2811
1958d2d5 2812 /* look up all src csets */
f0d9a5f1 2813 spin_lock_bh(&css_set_lock);
1958d2d5
TH
2814 rcu_read_lock();
2815 task = leader;
2816 do {
2817 cgroup_migrate_add_src(task_css_set(task), dst_cgrp,
2818 &preloaded_csets);
2819 if (!threadgroup)
2820 break;
2821 } while_each_thread(leader, task);
2822 rcu_read_unlock();
f0d9a5f1 2823 spin_unlock_bh(&css_set_lock);
1958d2d5
TH
2824
2825 /* prepare dst csets and commit */
e4857982 2826 ret = cgroup_migrate_prepare_dst(&preloaded_csets);
1958d2d5 2827 if (!ret)
37ff9f8f 2828 ret = cgroup_migrate(leader, threadgroup, dst_cgrp->root);
1958d2d5
TH
2829
2830 cgroup_migrate_finish(&preloaded_csets);
2831 return ret;
74a1166d
BB
2832}
2833
187fe840
TH
2834static int cgroup_procs_write_permission(struct task_struct *task,
2835 struct cgroup *dst_cgrp,
2836 struct kernfs_open_file *of)
dedf22e9
TH
2837{
2838 const struct cred *cred = current_cred();
2839 const struct cred *tcred = get_task_cred(task);
2840 int ret = 0;
2841
2842 /*
2843 * even if we're attaching all tasks in the thread group, we only
2844 * need to check permissions on one of them.
2845 */
2846 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2847 !uid_eq(cred->euid, tcred->uid) &&
2848 !uid_eq(cred->euid, tcred->suid))
2849 ret = -EACCES;
2850
187fe840
TH
2851 if (!ret && cgroup_on_dfl(dst_cgrp)) {
2852 struct super_block *sb = of->file->f_path.dentry->d_sb;
2853 struct cgroup *cgrp;
2854 struct inode *inode;
2855
f0d9a5f1 2856 spin_lock_bh(&css_set_lock);
187fe840 2857 cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
f0d9a5f1 2858 spin_unlock_bh(&css_set_lock);
187fe840
TH
2859
2860 while (!cgroup_is_descendant(dst_cgrp, cgrp))
2861 cgrp = cgroup_parent(cgrp);
2862
2863 ret = -ENOMEM;
6f60eade 2864 inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
187fe840
TH
2865 if (inode) {
2866 ret = inode_permission(inode, MAY_WRITE);
2867 iput(inode);
2868 }
2869 }
2870
dedf22e9
TH
2871 put_cred(tcred);
2872 return ret;
2873}
2874
74a1166d
BB
2875/*
2876 * Find the task_struct of the task to attach by vpid and pass it along to the
cd3d0952 2877 * function to attach either it or all tasks in its threadgroup. Will lock
0e1d768f 2878 * cgroup_mutex and threadgroup.
bbcb81d0 2879 */
acbef755
TH
2880static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
2881 size_t nbytes, loff_t off, bool threadgroup)
bbcb81d0 2882{
bbcb81d0 2883 struct task_struct *tsk;
5cf1cacb 2884 struct cgroup_subsys *ss;
e76ecaee 2885 struct cgroup *cgrp;
acbef755 2886 pid_t pid;
5cf1cacb 2887 int ssid, ret;
bbcb81d0 2888
acbef755
TH
2889 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2890 return -EINVAL;
2891
945ba199 2892 cgrp = cgroup_kn_lock_live(of->kn, false);
e76ecaee 2893 if (!cgrp)
74a1166d
BB
2894 return -ENODEV;
2895
3014dde7 2896 percpu_down_write(&cgroup_threadgroup_rwsem);
b78949eb 2897 rcu_read_lock();
bbcb81d0 2898 if (pid) {
73507f33 2899 tsk = find_task_by_vpid(pid);
74a1166d 2900 if (!tsk) {
dd4b0a46 2901 ret = -ESRCH;
3014dde7 2902 goto out_unlock_rcu;
bbcb81d0 2903 }
dedf22e9 2904 } else {
b78949eb 2905 tsk = current;
dedf22e9 2906 }
cd3d0952
TH
2907
2908 if (threadgroup)
b78949eb 2909 tsk = tsk->group_leader;
c4c27fbd
MG
2910
2911 /*
14a40ffc 2912 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
c4c27fbd
MG
2913 * trapped in a cpuset, or RT worker may be born in a cgroup
2914 * with no rt_runtime allocated. Just say no.
2915 */
14a40ffc 2916 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
c4c27fbd 2917 ret = -EINVAL;
3014dde7 2918 goto out_unlock_rcu;
c4c27fbd
MG
2919 }
2920
b78949eb
MSB
2921 get_task_struct(tsk);
2922 rcu_read_unlock();
2923
187fe840 2924 ret = cgroup_procs_write_permission(tsk, cgrp, of);
dedf22e9
TH
2925 if (!ret)
2926 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
081aa458 2927
f9f9e7b7 2928 put_task_struct(tsk);
3014dde7
TH
2929 goto out_unlock_threadgroup;
2930
2931out_unlock_rcu:
2932 rcu_read_unlock();
2933out_unlock_threadgroup:
2934 percpu_up_write(&cgroup_threadgroup_rwsem);
5cf1cacb
TH
2935 for_each_subsys(ss, ssid)
2936 if (ss->post_attach)
2937 ss->post_attach();
e76ecaee 2938 cgroup_kn_unlock(of->kn);
acbef755 2939 return ret ?: nbytes;
bbcb81d0
PM
2940}
2941
7ae1bad9
TH
2942/**
2943 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2944 * @from: attach to all cgroups of a given task
2945 * @tsk: the task to be attached
2946 */
2947int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2948{
3dd06ffa 2949 struct cgroup_root *root;
7ae1bad9
TH
2950 int retval = 0;
2951
47cfcd09 2952 mutex_lock(&cgroup_mutex);
985ed670 2953 for_each_root(root) {
96d365e0
TH
2954 struct cgroup *from_cgrp;
2955
3dd06ffa 2956 if (root == &cgrp_dfl_root)
985ed670
TH
2957 continue;
2958
f0d9a5f1 2959 spin_lock_bh(&css_set_lock);
96d365e0 2960 from_cgrp = task_cgroup_from_root(from, root);
f0d9a5f1 2961 spin_unlock_bh(&css_set_lock);
7ae1bad9 2962
6f4b7e63 2963 retval = cgroup_attach_task(from_cgrp, tsk, false);
7ae1bad9
TH
2964 if (retval)
2965 break;
2966 }
47cfcd09 2967 mutex_unlock(&cgroup_mutex);
7ae1bad9
TH
2968
2969 return retval;
2970}
2971EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2972
acbef755
TH
2973static ssize_t cgroup_tasks_write(struct kernfs_open_file *of,
2974 char *buf, size_t nbytes, loff_t off)
74a1166d 2975{
acbef755 2976 return __cgroup_procs_write(of, buf, nbytes, off, false);
74a1166d
BB
2977}
2978
acbef755
TH
2979static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
2980 char *buf, size_t nbytes, loff_t off)
af351026 2981{
acbef755 2982 return __cgroup_procs_write(of, buf, nbytes, off, true);
af351026
PM
2983}
2984
451af504
TH
2985static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
2986 char *buf, size_t nbytes, loff_t off)
e788e066 2987{
e76ecaee 2988 struct cgroup *cgrp;
5f469907 2989
e76ecaee 2990 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
5f469907 2991
945ba199 2992 cgrp = cgroup_kn_lock_live(of->kn, false);
e76ecaee 2993 if (!cgrp)
e788e066 2994 return -ENODEV;
69e943b7 2995 spin_lock(&release_agent_path_lock);
e76ecaee
TH
2996 strlcpy(cgrp->root->release_agent_path, strstrip(buf),
2997 sizeof(cgrp->root->release_agent_path));
69e943b7 2998 spin_unlock(&release_agent_path_lock);
e76ecaee 2999 cgroup_kn_unlock(of->kn);
451af504 3000 return nbytes;
e788e066
PM
3001}
3002
2da8ca82 3003static int cgroup_release_agent_show(struct seq_file *seq, void *v)
e788e066 3004{
2da8ca82 3005 struct cgroup *cgrp = seq_css(seq)->cgroup;
182446d0 3006
46cfeb04 3007 spin_lock(&release_agent_path_lock);
e788e066 3008 seq_puts(seq, cgrp->root->release_agent_path);
46cfeb04 3009 spin_unlock(&release_agent_path_lock);
e788e066 3010 seq_putc(seq, '\n');
e788e066
PM
3011 return 0;
3012}
3013
2da8ca82 3014static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
873fe09e 3015{
c1d5d42e 3016 seq_puts(seq, "0\n");
e788e066
PM
3017 return 0;
3018}
3019
6e5c8307 3020static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
355e0c48 3021{
f8f22e53
TH
3022 struct cgroup_subsys *ss;
3023 bool printed = false;
3024 int ssid;
a742c59d 3025
b4e0eeaf 3026 do_each_subsys_mask(ss, ssid, ss_mask) {
a966a4ed
AS
3027 if (printed)
3028 seq_putc(seq, ' ');
3029 seq_printf(seq, "%s", ss->name);
3030 printed = true;
b4e0eeaf 3031 } while_each_subsys_mask();
f8f22e53
TH
3032 if (printed)
3033 seq_putc(seq, '\n');
355e0c48
PM
3034}
3035
f8f22e53
TH
3036/* show controllers which are enabled from the parent */
3037static int cgroup_controllers_show(struct seq_file *seq, void *v)
ddbcc7e8 3038{
f8f22e53
TH
3039 struct cgroup *cgrp = seq_css(seq)->cgroup;
3040
5531dc91 3041 cgroup_print_ss_mask(seq, cgroup_control(cgrp));
f8f22e53 3042 return 0;
ddbcc7e8
PM
3043}
3044
f8f22e53
TH
3045/* show controllers which are enabled for a given cgroup's children */
3046static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
ddbcc7e8 3047{
f8f22e53
TH
3048 struct cgroup *cgrp = seq_css(seq)->cgroup;
3049
667c2491 3050 cgroup_print_ss_mask(seq, cgrp->subtree_control);
f8f22e53
TH
3051 return 0;
3052}
3053
3054/**
3055 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
3056 * @cgrp: root of the subtree to update csses for
3057 *
54962604
TH
3058 * @cgrp's control masks have changed and its subtree's css associations
3059 * need to be updated accordingly. This function looks up all css_sets
3060 * which are attached to the subtree, creates the matching updated css_sets
3061 * and migrates the tasks to the new ones.
f8f22e53
TH
3062 */
3063static int cgroup_update_dfl_csses(struct cgroup *cgrp)
3064{
3065 LIST_HEAD(preloaded_csets);
10265075 3066 struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
54962604
TH
3067 struct cgroup_subsys_state *d_css;
3068 struct cgroup *dsct;
f8f22e53
TH
3069 struct css_set *src_cset;
3070 int ret;
3071
f8f22e53
TH
3072 lockdep_assert_held(&cgroup_mutex);
3073
3014dde7
TH
3074 percpu_down_write(&cgroup_threadgroup_rwsem);
3075
f8f22e53 3076 /* look up all csses currently attached to @cgrp's subtree */
f0d9a5f1 3077 spin_lock_bh(&css_set_lock);
54962604 3078 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
f8f22e53
TH
3079 struct cgrp_cset_link *link;
3080
54962604 3081 list_for_each_entry(link, &dsct->cset_links, cset_link)
58cdb1ce 3082 cgroup_migrate_add_src(link->cset, dsct,
f8f22e53
TH
3083 &preloaded_csets);
3084 }
f0d9a5f1 3085 spin_unlock_bh(&css_set_lock);
f8f22e53
TH
3086
3087 /* NULL dst indicates self on default hierarchy */
e4857982 3088 ret = cgroup_migrate_prepare_dst(&preloaded_csets);
f8f22e53
TH
3089 if (ret)
3090 goto out_finish;
3091
f0d9a5f1 3092 spin_lock_bh(&css_set_lock);
f8f22e53 3093 list_for_each_entry(src_cset, &preloaded_csets, mg_preload_node) {
10265075 3094 struct task_struct *task, *ntask;
f8f22e53
TH
3095
3096 /* src_csets precede dst_csets, break on the first dst_cset */
3097 if (!src_cset->mg_src_cgrp)
3098 break;
3099
10265075
TH
3100 /* all tasks in src_csets need to be migrated */
3101 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
3102 cgroup_taskset_add(task, &tset);
f8f22e53 3103 }
f0d9a5f1 3104 spin_unlock_bh(&css_set_lock);
f8f22e53 3105
37ff9f8f 3106 ret = cgroup_taskset_migrate(&tset, cgrp->root);
f8f22e53
TH
3107out_finish:
3108 cgroup_migrate_finish(&preloaded_csets);
3014dde7 3109 percpu_up_write(&cgroup_threadgroup_rwsem);
f8f22e53
TH
3110 return ret;
3111}
3112
1b9b96a1 3113/**
945ba199 3114 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
ce3f1d9d 3115 * @cgrp: root of the target subtree
1b9b96a1
TH
3116 *
3117 * Because css offlining is asynchronous, userland may try to re-enable a
945ba199
TH
3118 * controller while the previous css is still around. This function grabs
3119 * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
1b9b96a1 3120 */
945ba199
TH
3121static void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
3122 __acquires(&cgroup_mutex)
1b9b96a1
TH
3123{
3124 struct cgroup *dsct;
ce3f1d9d 3125 struct cgroup_subsys_state *d_css;
1b9b96a1
TH
3126 struct cgroup_subsys *ss;
3127 int ssid;
3128
945ba199
TH
3129restart:
3130 mutex_lock(&cgroup_mutex);
1b9b96a1 3131
ce3f1d9d 3132 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
1b9b96a1
TH
3133 for_each_subsys(ss, ssid) {
3134 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3135 DEFINE_WAIT(wait);
3136
ce3f1d9d 3137 if (!css || !percpu_ref_is_dying(&css->refcnt))
1b9b96a1
TH
3138 continue;
3139
3140 cgroup_get(dsct);
3141 prepare_to_wait(&dsct->offline_waitq, &wait,
3142 TASK_UNINTERRUPTIBLE);
3143
3144 mutex_unlock(&cgroup_mutex);
3145 schedule();
3146 finish_wait(&dsct->offline_waitq, &wait);
1b9b96a1
TH
3147
3148 cgroup_put(dsct);
945ba199 3149 goto restart;
1b9b96a1
TH
3150 }
3151 }
1b9b96a1
TH
3152}
3153
15a27c36
TH
3154/**
3155 * cgroup_save_control - save control masks of a subtree
3156 * @cgrp: root of the target subtree
3157 *
3158 * Save ->subtree_control and ->subtree_ss_mask to the respective old_
3159 * prefixed fields for @cgrp's subtree including @cgrp itself.
3160 */
3161static void cgroup_save_control(struct cgroup *cgrp)
3162{
3163 struct cgroup *dsct;
3164 struct cgroup_subsys_state *d_css;
3165
3166 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3167 dsct->old_subtree_control = dsct->subtree_control;
3168 dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
3169 }
3170}
3171
3172/**
3173 * cgroup_propagate_control - refresh control masks of a subtree
3174 * @cgrp: root of the target subtree
3175 *
3176 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
3177 * ->subtree_control and propagate controller availability through the
3178 * subtree so that descendants don't have unavailable controllers enabled.
3179 */
3180static void cgroup_propagate_control(struct cgroup *cgrp)
3181{
3182 struct cgroup *dsct;
3183 struct cgroup_subsys_state *d_css;
3184
3185 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3186 dsct->subtree_control &= cgroup_control(dsct);
5ced2518
TH
3187 dsct->subtree_ss_mask =
3188 cgroup_calc_subtree_ss_mask(dsct->subtree_control,
3189 cgroup_ss_mask(dsct));
15a27c36
TH
3190 }
3191}
3192
3193/**
3194 * cgroup_restore_control - restore control masks of a subtree
3195 * @cgrp: root of the target subtree
3196 *
3197 * Restore ->subtree_control and ->subtree_ss_mask from the respective old_
3198 * prefixed fields for @cgrp's subtree including @cgrp itself.
3199 */
3200static void cgroup_restore_control(struct cgroup *cgrp)
3201{
3202 struct cgroup *dsct;
3203 struct cgroup_subsys_state *d_css;
3204
3205 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3206 dsct->subtree_control = dsct->old_subtree_control;
3207 dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
3208 }
3209}
3210
f6d635ad
TH
3211static bool css_visible(struct cgroup_subsys_state *css)
3212{
3213 struct cgroup_subsys *ss = css->ss;
3214 struct cgroup *cgrp = css->cgroup;
3215
3216 if (cgroup_control(cgrp) & (1 << ss->id))
3217 return true;
3218 if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
3219 return false;
3220 return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
3221}
3222
bdb53bd7
TH
3223/**
3224 * cgroup_apply_control_enable - enable or show csses according to control
ce3f1d9d 3225 * @cgrp: root of the target subtree
bdb53bd7 3226 *
ce3f1d9d 3227 * Walk @cgrp's subtree and create new csses or make the existing ones
bdb53bd7
TH
3228 * visible. A css is created invisible if it's being implicitly enabled
3229 * through dependency. An invisible css is made visible when the userland
3230 * explicitly enables it.
3231 *
3232 * Returns 0 on success, -errno on failure. On failure, csses which have
3233 * been processed already aren't cleaned up. The caller is responsible for
3234 * cleaning up with cgroup_apply_control_disble().
3235 */
3236static int cgroup_apply_control_enable(struct cgroup *cgrp)
3237{
3238 struct cgroup *dsct;
ce3f1d9d 3239 struct cgroup_subsys_state *d_css;
bdb53bd7
TH
3240 struct cgroup_subsys *ss;
3241 int ssid, ret;
3242
ce3f1d9d 3243 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
bdb53bd7
TH
3244 for_each_subsys(ss, ssid) {
3245 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3246
945ba199
TH
3247 WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
3248
bdb53bd7
TH
3249 if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
3250 continue;
3251
3252 if (!css) {
3253 css = css_create(dsct, ss);
3254 if (IS_ERR(css))
3255 return PTR_ERR(css);
3256 }
3257
f6d635ad 3258 if (css_visible(css)) {
334c3679 3259 ret = css_populate_dir(css);
bdb53bd7
TH
3260 if (ret)
3261 return ret;
3262 }
3263 }
3264 }
3265
3266 return 0;
3267}
3268
12b3bb6a
TH
3269/**
3270 * cgroup_apply_control_disable - kill or hide csses according to control
ce3f1d9d 3271 * @cgrp: root of the target subtree
12b3bb6a 3272 *
ce3f1d9d 3273 * Walk @cgrp's subtree and kill and hide csses so that they match
12b3bb6a
TH
3274 * cgroup_ss_mask() and cgroup_visible_mask().
3275 *
3276 * A css is hidden when the userland requests it to be disabled while other
3277 * subsystems are still depending on it. The css must not actively control
3278 * resources and be in the vanilla state if it's made visible again later.
3279 * Controllers which may be depended upon should provide ->css_reset() for
3280 * this purpose.
3281 */
3282static void cgroup_apply_control_disable(struct cgroup *cgrp)
3283{
3284 struct cgroup *dsct;
ce3f1d9d 3285 struct cgroup_subsys_state *d_css;
12b3bb6a
TH
3286 struct cgroup_subsys *ss;
3287 int ssid;
3288
ce3f1d9d 3289 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
12b3bb6a
TH
3290 for_each_subsys(ss, ssid) {
3291 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3292
945ba199
TH
3293 WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
3294
12b3bb6a
TH
3295 if (!css)
3296 continue;
3297
334c3679
TH
3298 if (css->parent &&
3299 !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
12b3bb6a 3300 kill_css(css);
f6d635ad 3301 } else if (!css_visible(css)) {
334c3679 3302 css_clear_dir(css);
12b3bb6a
TH
3303 if (ss->css_reset)
3304 ss->css_reset(css);
3305 }
3306 }
3307 }
3308}
3309
f7b2814b
TH
3310/**
3311 * cgroup_apply_control - apply control mask updates to the subtree
3312 * @cgrp: root of the target subtree
3313 *
3314 * subsystems can be enabled and disabled in a subtree using the following
3315 * steps.
3316 *
3317 * 1. Call cgroup_save_control() to stash the current state.
3318 * 2. Update ->subtree_control masks in the subtree as desired.
3319 * 3. Call cgroup_apply_control() to apply the changes.
3320 * 4. Optionally perform other related operations.
3321 * 5. Call cgroup_finalize_control() to finish up.
3322 *
3323 * This function implements step 3 and propagates the mask changes
3324 * throughout @cgrp's subtree, updates csses accordingly and perform
3325 * process migrations.
3326 */
3327static int cgroup_apply_control(struct cgroup *cgrp)
3328{
3329 int ret;
3330
3331 cgroup_propagate_control(cgrp);
3332
3333 ret = cgroup_apply_control_enable(cgrp);
3334 if (ret)
3335 return ret;
3336
3337 /*
3338 * At this point, cgroup_e_css() results reflect the new csses
3339 * making the following cgroup_update_dfl_csses() properly update
3340 * css associations of all tasks in the subtree.
3341 */
3342 ret = cgroup_update_dfl_csses(cgrp);
3343 if (ret)
3344 return ret;
3345
3346 return 0;
3347}
3348
3349/**
3350 * cgroup_finalize_control - finalize control mask update
3351 * @cgrp: root of the target subtree
3352 * @ret: the result of the update
3353 *
3354 * Finalize control mask update. See cgroup_apply_control() for more info.
3355 */
3356static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3357{
3358 if (ret) {
3359 cgroup_restore_control(cgrp);
3360 cgroup_propagate_control(cgrp);
3361 }
3362
3363 cgroup_apply_control_disable(cgrp);
3364}
3365
f8f22e53 3366/* change the enabled child controllers for a cgroup in the default hierarchy */
451af504
TH
3367static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3368 char *buf, size_t nbytes,
3369 loff_t off)
f8f22e53 3370{
6e5c8307 3371 u16 enable = 0, disable = 0;
a9746d8d 3372 struct cgroup *cgrp, *child;
f8f22e53 3373 struct cgroup_subsys *ss;
451af504 3374 char *tok;
f8f22e53
TH
3375 int ssid, ret;
3376
3377 /*
d37167ab
TH
3378 * Parse input - space separated list of subsystem names prefixed
3379 * with either + or -.
f8f22e53 3380 */
451af504
TH
3381 buf = strstrip(buf);
3382 while ((tok = strsep(&buf, " "))) {
d37167ab
TH
3383 if (tok[0] == '\0')
3384 continue;
a7165264 3385 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
fc5ed1e9
TH
3386 if (!cgroup_ssid_enabled(ssid) ||
3387 strcmp(tok + 1, ss->name))
f8f22e53
TH
3388 continue;
3389
3390 if (*tok == '+') {
7d331fa9
TH
3391 enable |= 1 << ssid;
3392 disable &= ~(1 << ssid);
f8f22e53 3393 } else if (*tok == '-') {
7d331fa9
TH
3394 disable |= 1 << ssid;
3395 enable &= ~(1 << ssid);
f8f22e53
TH
3396 } else {
3397 return -EINVAL;
3398 }
3399 break;
b4e0eeaf 3400 } while_each_subsys_mask();
f8f22e53
TH
3401 if (ssid == CGROUP_SUBSYS_COUNT)
3402 return -EINVAL;
3403 }
3404
945ba199 3405 cgrp = cgroup_kn_lock_live(of->kn, true);
a9746d8d
TH
3406 if (!cgrp)
3407 return -ENODEV;
f8f22e53
TH
3408
3409 for_each_subsys(ss, ssid) {
3410 if (enable & (1 << ssid)) {
667c2491 3411 if (cgrp->subtree_control & (1 << ssid)) {
f8f22e53
TH
3412 enable &= ~(1 << ssid);
3413 continue;
3414 }
3415
5531dc91 3416 if (!(cgroup_control(cgrp) & (1 << ssid))) {
c29adf24
TH
3417 ret = -ENOENT;
3418 goto out_unlock;
3419 }
f8f22e53 3420 } else if (disable & (1 << ssid)) {
667c2491 3421 if (!(cgrp->subtree_control & (1 << ssid))) {
f8f22e53
TH
3422 disable &= ~(1 << ssid);
3423 continue;
3424 }
3425
3426 /* a child has it enabled? */
3427 cgroup_for_each_live_child(child, cgrp) {
667c2491 3428 if (child->subtree_control & (1 << ssid)) {
f8f22e53 3429 ret = -EBUSY;
ddab2b6e 3430 goto out_unlock;
f8f22e53
TH
3431 }
3432 }
3433 }
3434 }
3435
3436 if (!enable && !disable) {
3437 ret = 0;
ddab2b6e 3438 goto out_unlock;
f8f22e53
TH
3439 }
3440
3441 /*
667c2491 3442 * Except for the root, subtree_control must be zero for a cgroup
f8f22e53
TH
3443 * with tasks so that child cgroups don't compete against tasks.
3444 */
d51f39b0 3445 if (enable && cgroup_parent(cgrp) && !list_empty(&cgrp->cset_links)) {
f8f22e53
TH
3446 ret = -EBUSY;
3447 goto out_unlock;
3448 }
3449
15a27c36
TH
3450 /* save and update control masks and prepare csses */
3451 cgroup_save_control(cgrp);
f63070d3 3452
15a27c36
TH
3453 cgrp->subtree_control |= enable;
3454 cgrp->subtree_control &= ~disable;
c29adf24 3455
f7b2814b 3456 ret = cgroup_apply_control(cgrp);
f8f22e53 3457
f7b2814b 3458 cgroup_finalize_control(cgrp, ret);
f8f22e53
TH
3459
3460 kernfs_activate(cgrp->kn);
3461 ret = 0;
3462out_unlock:
a9746d8d 3463 cgroup_kn_unlock(of->kn);
451af504 3464 return ret ?: nbytes;
f8f22e53
TH
3465}
3466
4a07c222 3467static int cgroup_events_show(struct seq_file *seq, void *v)
842b597e 3468{
4a07c222 3469 seq_printf(seq, "populated %d\n",
27bd4dbb 3470 cgroup_is_populated(seq_css(seq)->cgroup));
842b597e
TH
3471 return 0;
3472}
3473
2bd59d48
TH
3474static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3475 size_t nbytes, loff_t off)
355e0c48 3476{
2bd59d48
TH
3477 struct cgroup *cgrp = of->kn->parent->priv;
3478 struct cftype *cft = of->kn->priv;
3479 struct cgroup_subsys_state *css;
a742c59d 3480 int ret;
355e0c48 3481
b4168640
TH
3482 if (cft->write)
3483 return cft->write(of, buf, nbytes, off);
3484
2bd59d48
TH
3485 /*
3486 * kernfs guarantees that a file isn't deleted with operations in
3487 * flight, which means that the matching css is and stays alive and
3488 * doesn't need to be pinned. The RCU locking is not necessary
3489 * either. It's just for the convenience of using cgroup_css().
3490 */
3491 rcu_read_lock();
3492 css = cgroup_css(cgrp, cft->ss);
3493 rcu_read_unlock();
a742c59d 3494
451af504 3495 if (cft->write_u64) {
a742c59d
TH
3496 unsigned long long v;
3497 ret = kstrtoull(buf, 0, &v);
3498 if (!ret)
3499 ret = cft->write_u64(css, cft, v);
3500 } else if (cft->write_s64) {
3501 long long v;
3502 ret = kstrtoll(buf, 0, &v);
3503 if (!ret)
3504 ret = cft->write_s64(css, cft, v);
e73d2c61 3505 } else {
a742c59d 3506 ret = -EINVAL;
e73d2c61 3507 }
2bd59d48 3508
a742c59d 3509 return ret ?: nbytes;
355e0c48
PM
3510}
3511
6612f05b 3512static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
db3b1497 3513{
2bd59d48 3514 return seq_cft(seq)->seq_start(seq, ppos);
db3b1497
PM
3515}
3516
6612f05b 3517static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
ddbcc7e8 3518{
2bd59d48 3519 return seq_cft(seq)->seq_next(seq, v, ppos);
ddbcc7e8
PM
3520}
3521
6612f05b 3522static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
ddbcc7e8 3523{
2bd59d48 3524 seq_cft(seq)->seq_stop(seq, v);
ddbcc7e8
PM
3525}
3526
91796569 3527static int cgroup_seqfile_show(struct seq_file *m, void *arg)
e73d2c61 3528{
7da11279
TH
3529 struct cftype *cft = seq_cft(m);
3530 struct cgroup_subsys_state *css = seq_css(m);
e73d2c61 3531
2da8ca82
TH
3532 if (cft->seq_show)
3533 return cft->seq_show(m, arg);
e73d2c61 3534
f4c753b7 3535 if (cft->read_u64)
896f5199
TH
3536 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3537 else if (cft->read_s64)
3538 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3539 else
3540 return -EINVAL;
3541 return 0;
91796569
PM
3542}
3543
2bd59d48
TH
3544static struct kernfs_ops cgroup_kf_single_ops = {
3545 .atomic_write_len = PAGE_SIZE,
3546 .write = cgroup_file_write,
3547 .seq_show = cgroup_seqfile_show,
91796569
PM
3548};
3549
2bd59d48
TH
3550static struct kernfs_ops cgroup_kf_ops = {
3551 .atomic_write_len = PAGE_SIZE,
3552 .write = cgroup_file_write,
3553 .seq_start = cgroup_seqfile_start,
3554 .seq_next = cgroup_seqfile_next,
3555 .seq_stop = cgroup_seqfile_stop,
3556 .seq_show = cgroup_seqfile_show,
3557};
ddbcc7e8
PM
3558
3559/*
3560 * cgroup_rename - Only allow simple rename of directories in place.
3561 */
2bd59d48
TH
3562static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
3563 const char *new_name_str)
ddbcc7e8 3564{
2bd59d48 3565 struct cgroup *cgrp = kn->priv;
65dff759 3566 int ret;
65dff759 3567
2bd59d48 3568 if (kernfs_type(kn) != KERNFS_DIR)
ddbcc7e8 3569 return -ENOTDIR;
2bd59d48 3570 if (kn->parent != new_parent)
ddbcc7e8 3571 return -EIO;
65dff759 3572
6db8e85c
TH
3573 /*
3574 * This isn't a proper migration and its usefulness is very
aa6ec29b 3575 * limited. Disallow on the default hierarchy.
6db8e85c 3576 */
aa6ec29b 3577 if (cgroup_on_dfl(cgrp))
6db8e85c 3578 return -EPERM;
099fca32 3579
e1b2dc17 3580 /*
8353da1f 3581 * We're gonna grab cgroup_mutex which nests outside kernfs
e1b2dc17 3582 * active_ref. kernfs_rename() doesn't require active_ref
8353da1f 3583 * protection. Break them before grabbing cgroup_mutex.
e1b2dc17
TH
3584 */
3585 kernfs_break_active_protection(new_parent);
3586 kernfs_break_active_protection(kn);
099fca32 3587
2bd59d48 3588 mutex_lock(&cgroup_mutex);
099fca32 3589
2bd59d48 3590 ret = kernfs_rename(kn, new_parent, new_name_str);
099fca32 3591
2bd59d48 3592 mutex_unlock(&cgroup_mutex);
e1b2dc17
TH
3593
3594 kernfs_unbreak_active_protection(kn);
3595 kernfs_unbreak_active_protection(new_parent);
2bd59d48 3596 return ret;
099fca32
LZ
3597}
3598
49957f8e
TH
3599/* set uid and gid of cgroup dirs and files to that of the creator */
3600static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3601{
3602 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3603 .ia_uid = current_fsuid(),
3604 .ia_gid = current_fsgid(), };
3605
3606 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3607 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3608 return 0;
3609
3610 return kernfs_setattr(kn, &iattr);
3611}
3612
4df8dc90
TH
3613static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3614 struct cftype *cft)
ddbcc7e8 3615{
8d7e6fb0 3616 char name[CGROUP_FILE_NAME_MAX];
2bd59d48
TH
3617 struct kernfs_node *kn;
3618 struct lock_class_key *key = NULL;
49957f8e 3619 int ret;
05ef1d7c 3620
2bd59d48
TH
3621#ifdef CONFIG_DEBUG_LOCK_ALLOC
3622 key = &cft->lockdep_key;
3623#endif
3624 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3625 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
dfeb0750 3626 NULL, key);
49957f8e
TH
3627 if (IS_ERR(kn))
3628 return PTR_ERR(kn);
3629
3630 ret = cgroup_kn_set_ugid(kn);
f8f22e53 3631 if (ret) {
49957f8e 3632 kernfs_remove(kn);
f8f22e53
TH
3633 return ret;
3634 }
3635
6f60eade
TH
3636 if (cft->file_offset) {
3637 struct cgroup_file *cfile = (void *)css + cft->file_offset;
3638
34c06254 3639 spin_lock_irq(&cgroup_file_kn_lock);
6f60eade 3640 cfile->kn = kn;
34c06254 3641 spin_unlock_irq(&cgroup_file_kn_lock);
6f60eade
TH
3642 }
3643
f8f22e53 3644 return 0;
ddbcc7e8
PM
3645}
3646
b1f28d31
TH
3647/**
3648 * cgroup_addrm_files - add or remove files to a cgroup directory
4df8dc90
TH
3649 * @css: the target css
3650 * @cgrp: the target cgroup (usually css->cgroup)
b1f28d31
TH
3651 * @cfts: array of cftypes to be added
3652 * @is_add: whether to add or remove
3653 *
3654 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
6732ed85 3655 * For removals, this function never fails.
b1f28d31 3656 */
4df8dc90
TH
3657static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3658 struct cgroup *cgrp, struct cftype cfts[],
2bb566cb 3659 bool is_add)
ddbcc7e8 3660{
6732ed85 3661 struct cftype *cft, *cft_end = NULL;
b598dde3 3662 int ret = 0;
b1f28d31 3663
01f6474c 3664 lockdep_assert_held(&cgroup_mutex);
db0416b6 3665
6732ed85
TH
3666restart:
3667 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
f33fddc2 3668 /* does cft->flags tell us to skip this file on @cgrp? */
05ebb6e6 3669 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
8cbbf2c9 3670 continue;
05ebb6e6 3671 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
873fe09e 3672 continue;
d51f39b0 3673 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
f33fddc2 3674 continue;
d51f39b0 3675 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
f33fddc2
G
3676 continue;
3677
2739d3cc 3678 if (is_add) {
4df8dc90 3679 ret = cgroup_add_file(css, cgrp, cft);
b1f28d31 3680 if (ret) {
ed3d261b
JP
3681 pr_warn("%s: failed to add %s, err=%d\n",
3682 __func__, cft->name, ret);
6732ed85
TH
3683 cft_end = cft;
3684 is_add = false;
3685 goto restart;
b1f28d31 3686 }
2739d3cc
LZ
3687 } else {
3688 cgroup_rm_file(cgrp, cft);
db0416b6 3689 }
ddbcc7e8 3690 }
b598dde3 3691 return ret;
ddbcc7e8
PM
3692}
3693
21a2d343 3694static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
8e3f6541
TH
3695{
3696 LIST_HEAD(pending);
2bb566cb 3697 struct cgroup_subsys *ss = cfts[0].ss;
3dd06ffa 3698 struct cgroup *root = &ss->root->cgrp;
492eb21b 3699 struct cgroup_subsys_state *css;
9ccece80 3700 int ret = 0;
8e3f6541 3701
01f6474c 3702 lockdep_assert_held(&cgroup_mutex);
e8c82d20 3703
e8c82d20 3704 /* add/rm files for all cgroups created before */
ca8bdcaf 3705 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
492eb21b
TH
3706 struct cgroup *cgrp = css->cgroup;
3707
88cb04b9 3708 if (!(css->flags & CSS_VISIBLE))
e8c82d20
LZ
3709 continue;
3710
4df8dc90 3711 ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
9ccece80
TH
3712 if (ret)
3713 break;
8e3f6541 3714 }
21a2d343
TH
3715
3716 if (is_add && !ret)
3717 kernfs_activate(root->kn);
9ccece80 3718 return ret;
8e3f6541
TH
3719}
3720
2da440a2 3721static void cgroup_exit_cftypes(struct cftype *cfts)
8e3f6541 3722{
2bb566cb 3723 struct cftype *cft;
8e3f6541 3724
2bd59d48
TH
3725 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3726 /* free copy for custom atomic_write_len, see init_cftypes() */
3727 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3728 kfree(cft->kf_ops);
3729 cft->kf_ops = NULL;
2da440a2 3730 cft->ss = NULL;
a8ddc821
TH
3731
3732 /* revert flags set by cgroup core while adding @cfts */
05ebb6e6 3733 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
2bd59d48 3734 }
2da440a2
TH
3735}
3736
2bd59d48 3737static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2da440a2
TH
3738{
3739 struct cftype *cft;
3740
2bd59d48
TH
3741 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3742 struct kernfs_ops *kf_ops;
3743
0adb0704
TH
3744 WARN_ON(cft->ss || cft->kf_ops);
3745
2bd59d48
TH
3746 if (cft->seq_start)
3747 kf_ops = &cgroup_kf_ops;
3748 else
3749 kf_ops = &cgroup_kf_single_ops;
3750
3751 /*
3752 * Ugh... if @cft wants a custom max_write_len, we need to
3753 * make a copy of kf_ops to set its atomic_write_len.
3754 */
3755 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3756 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3757 if (!kf_ops) {
3758 cgroup_exit_cftypes(cfts);
3759 return -ENOMEM;
3760 }
3761 kf_ops->atomic_write_len = cft->max_write_len;
3762 }
8e3f6541 3763
2bd59d48 3764 cft->kf_ops = kf_ops;
2bb566cb 3765 cft->ss = ss;
2bd59d48 3766 }
2bb566cb 3767
2bd59d48 3768 return 0;
2da440a2
TH
3769}
3770
21a2d343
TH
3771static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3772{
01f6474c 3773 lockdep_assert_held(&cgroup_mutex);
21a2d343
TH
3774
3775 if (!cfts || !cfts[0].ss)
3776 return -ENOENT;
3777
3778 list_del(&cfts->node);
3779 cgroup_apply_cftypes(cfts, false);
3780 cgroup_exit_cftypes(cfts);
3781 return 0;
8e3f6541 3782}
8e3f6541 3783
79578621
TH
3784/**
3785 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
79578621
TH
3786 * @cfts: zero-length name terminated array of cftypes
3787 *
2bb566cb
TH
3788 * Unregister @cfts. Files described by @cfts are removed from all
3789 * existing cgroups and all future cgroups won't have them either. This
3790 * function can be called anytime whether @cfts' subsys is attached or not.
79578621
TH
3791 *
3792 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2bb566cb 3793 * registered.
79578621 3794 */
2bb566cb 3795int cgroup_rm_cftypes(struct cftype *cfts)
79578621 3796{
21a2d343 3797 int ret;
79578621 3798
01f6474c 3799 mutex_lock(&cgroup_mutex);
21a2d343 3800 ret = cgroup_rm_cftypes_locked(cfts);
01f6474c 3801 mutex_unlock(&cgroup_mutex);
21a2d343 3802 return ret;
80b13586
TH
3803}
3804
8e3f6541
TH
3805/**
3806 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3807 * @ss: target cgroup subsystem
3808 * @cfts: zero-length name terminated array of cftypes
3809 *
3810 * Register @cfts to @ss. Files described by @cfts are created for all
3811 * existing cgroups to which @ss is attached and all future cgroups will
3812 * have them too. This function can be called anytime whether @ss is
3813 * attached or not.
3814 *
3815 * Returns 0 on successful registration, -errno on failure. Note that this
3816 * function currently returns 0 as long as @cfts registration is successful
3817 * even if some file creation attempts on existing cgroups fail.
3818 */
2cf669a5 3819static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
8e3f6541 3820{
9ccece80 3821 int ret;
8e3f6541 3822
fc5ed1e9 3823 if (!cgroup_ssid_enabled(ss->id))
c731ae1d
LZ
3824 return 0;
3825
dc5736ed
LZ
3826 if (!cfts || cfts[0].name[0] == '\0')
3827 return 0;
2bb566cb 3828
2bd59d48
TH
3829 ret = cgroup_init_cftypes(ss, cfts);
3830 if (ret)
3831 return ret;
79578621 3832
01f6474c 3833 mutex_lock(&cgroup_mutex);
21a2d343 3834
0adb0704 3835 list_add_tail(&cfts->node, &ss->cfts);
21a2d343 3836 ret = cgroup_apply_cftypes(cfts, true);
9ccece80 3837 if (ret)
21a2d343 3838 cgroup_rm_cftypes_locked(cfts);
79578621 3839
01f6474c 3840 mutex_unlock(&cgroup_mutex);
9ccece80 3841 return ret;
79578621
TH
3842}
3843
a8ddc821
TH
3844/**
3845 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3846 * @ss: target cgroup subsystem
3847 * @cfts: zero-length name terminated array of cftypes
3848 *
3849 * Similar to cgroup_add_cftypes() but the added files are only used for
3850 * the default hierarchy.
3851 */
3852int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3853{
3854 struct cftype *cft;
3855
3856 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
05ebb6e6 3857 cft->flags |= __CFTYPE_ONLY_ON_DFL;
a8ddc821
TH
3858 return cgroup_add_cftypes(ss, cfts);
3859}
3860
3861/**
3862 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3863 * @ss: target cgroup subsystem
3864 * @cfts: zero-length name terminated array of cftypes
3865 *
3866 * Similar to cgroup_add_cftypes() but the added files are only used for
3867 * the legacy hierarchies.
3868 */
2cf669a5
TH
3869int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3870{
a8ddc821
TH
3871 struct cftype *cft;
3872
e4b7037c
TH
3873 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3874 cft->flags |= __CFTYPE_NOT_ON_DFL;
2cf669a5
TH
3875 return cgroup_add_cftypes(ss, cfts);
3876}
3877
34c06254
TH
3878/**
3879 * cgroup_file_notify - generate a file modified event for a cgroup_file
3880 * @cfile: target cgroup_file
3881 *
3882 * @cfile must have been obtained by setting cftype->file_offset.
3883 */
3884void cgroup_file_notify(struct cgroup_file *cfile)
3885{
3886 unsigned long flags;
3887
3888 spin_lock_irqsave(&cgroup_file_kn_lock, flags);
3889 if (cfile->kn)
3890 kernfs_notify(cfile->kn);
3891 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
3892}
3893
a043e3b2
LZ
3894/**
3895 * cgroup_task_count - count the number of tasks in a cgroup.
3896 * @cgrp: the cgroup in question
3897 *
3898 * Return the number of tasks in the cgroup.
3899 */
07bc356e 3900static int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
3901{
3902 int count = 0;
69d0206c 3903 struct cgrp_cset_link *link;
817929ec 3904
f0d9a5f1 3905 spin_lock_bh(&css_set_lock);
69d0206c
TH
3906 list_for_each_entry(link, &cgrp->cset_links, cset_link)
3907 count += atomic_read(&link->cset->refcount);
f0d9a5f1 3908 spin_unlock_bh(&css_set_lock);
bbcb81d0
PM
3909 return count;
3910}
3911
53fa5261 3912/**
492eb21b 3913 * css_next_child - find the next child of a given css
c2931b70
TH
3914 * @pos: the current position (%NULL to initiate traversal)
3915 * @parent: css whose children to walk
53fa5261 3916 *
c2931b70 3917 * This function returns the next child of @parent and should be called
87fb54f1 3918 * under either cgroup_mutex or RCU read lock. The only requirement is
c2931b70
TH
3919 * that @parent and @pos are accessible. The next sibling is guaranteed to
3920 * be returned regardless of their states.
3921 *
3922 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3923 * css which finished ->css_online() is guaranteed to be visible in the
3924 * future iterations and will stay visible until the last reference is put.
3925 * A css which hasn't finished ->css_online() or already finished
3926 * ->css_offline() may show up during traversal. It's each subsystem's
3927 * responsibility to synchronize against on/offlining.
53fa5261 3928 */
c2931b70
TH
3929struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3930 struct cgroup_subsys_state *parent)
53fa5261 3931{
c2931b70 3932 struct cgroup_subsys_state *next;
53fa5261 3933
8353da1f 3934 cgroup_assert_mutex_or_rcu_locked();
53fa5261
TH
3935
3936 /*
de3f0341
TH
3937 * @pos could already have been unlinked from the sibling list.
3938 * Once a cgroup is removed, its ->sibling.next is no longer
3939 * updated when its next sibling changes. CSS_RELEASED is set when
3940 * @pos is taken off list, at which time its next pointer is valid,
3941 * and, as releases are serialized, the one pointed to by the next
3942 * pointer is guaranteed to not have started release yet. This
3943 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3944 * critical section, the one pointed to by its next pointer is
3945 * guaranteed to not have finished its RCU grace period even if we
3946 * have dropped rcu_read_lock() inbetween iterations.
3b287a50 3947 *
de3f0341
TH
3948 * If @pos has CSS_RELEASED set, its next pointer can't be
3949 * dereferenced; however, as each css is given a monotonically
3950 * increasing unique serial number and always appended to the
3951 * sibling list, the next one can be found by walking the parent's
3952 * children until the first css with higher serial number than
3953 * @pos's. While this path can be slower, it happens iff iteration
3954 * races against release and the race window is very small.
53fa5261 3955 */
3b287a50 3956 if (!pos) {
c2931b70
TH
3957 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3958 } else if (likely(!(pos->flags & CSS_RELEASED))) {
3959 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3b287a50 3960 } else {
c2931b70 3961 list_for_each_entry_rcu(next, &parent->children, sibling)
3b287a50
TH
3962 if (next->serial_nr > pos->serial_nr)
3963 break;
53fa5261
TH
3964 }
3965
3b281afb
TH
3966 /*
3967 * @next, if not pointing to the head, can be dereferenced and is
c2931b70 3968 * the next sibling.
3b281afb 3969 */
c2931b70
TH
3970 if (&next->sibling != &parent->children)
3971 return next;
3b281afb 3972 return NULL;
53fa5261 3973}
53fa5261 3974
574bd9f7 3975/**
492eb21b 3976 * css_next_descendant_pre - find the next descendant for pre-order walk
574bd9f7 3977 * @pos: the current position (%NULL to initiate traversal)
492eb21b 3978 * @root: css whose descendants to walk
574bd9f7 3979 *
492eb21b 3980 * To be used by css_for_each_descendant_pre(). Find the next descendant
bd8815a6
TH
3981 * to visit for pre-order traversal of @root's descendants. @root is
3982 * included in the iteration and the first node to be visited.
75501a6d 3983 *
87fb54f1
TH
3984 * While this function requires cgroup_mutex or RCU read locking, it
3985 * doesn't require the whole traversal to be contained in a single critical
3986 * section. This function will return the correct next descendant as long
3987 * as both @pos and @root are accessible and @pos is a descendant of @root.
c2931b70
TH
3988 *
3989 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3990 * css which finished ->css_online() is guaranteed to be visible in the
3991 * future iterations and will stay visible until the last reference is put.
3992 * A css which hasn't finished ->css_online() or already finished
3993 * ->css_offline() may show up during traversal. It's each subsystem's
3994 * responsibility to synchronize against on/offlining.
574bd9f7 3995 */
492eb21b
TH
3996struct cgroup_subsys_state *
3997css_next_descendant_pre(struct cgroup_subsys_state *pos,
3998 struct cgroup_subsys_state *root)
574bd9f7 3999{
492eb21b 4000 struct cgroup_subsys_state *next;
574bd9f7 4001
8353da1f 4002 cgroup_assert_mutex_or_rcu_locked();
574bd9f7 4003
bd8815a6 4004 /* if first iteration, visit @root */
7805d000 4005 if (!pos)
bd8815a6 4006 return root;
574bd9f7
TH
4007
4008 /* visit the first child if exists */
492eb21b 4009 next = css_next_child(NULL, pos);
574bd9f7
TH
4010 if (next)
4011 return next;
4012
4013 /* no child, visit my or the closest ancestor's next sibling */
492eb21b 4014 while (pos != root) {
5c9d535b 4015 next = css_next_child(pos, pos->parent);
75501a6d 4016 if (next)
574bd9f7 4017 return next;
5c9d535b 4018 pos = pos->parent;
7805d000 4019 }
574bd9f7
TH
4020
4021 return NULL;
4022}
574bd9f7 4023
12a9d2fe 4024/**
492eb21b
TH
4025 * css_rightmost_descendant - return the rightmost descendant of a css
4026 * @pos: css of interest
12a9d2fe 4027 *
492eb21b
TH
4028 * Return the rightmost descendant of @pos. If there's no descendant, @pos
4029 * is returned. This can be used during pre-order traversal to skip
12a9d2fe 4030 * subtree of @pos.
75501a6d 4031 *
87fb54f1
TH
4032 * While this function requires cgroup_mutex or RCU read locking, it
4033 * doesn't require the whole traversal to be contained in a single critical
4034 * section. This function will return the correct rightmost descendant as
4035 * long as @pos is accessible.
12a9d2fe 4036 */
492eb21b
TH
4037struct cgroup_subsys_state *
4038css_rightmost_descendant(struct cgroup_subsys_state *pos)
12a9d2fe 4039{
492eb21b 4040 struct cgroup_subsys_state *last, *tmp;
12a9d2fe 4041
8353da1f 4042 cgroup_assert_mutex_or_rcu_locked();
12a9d2fe
TH
4043
4044 do {
4045 last = pos;
4046 /* ->prev isn't RCU safe, walk ->next till the end */
4047 pos = NULL;
492eb21b 4048 css_for_each_child(tmp, last)
12a9d2fe
TH
4049 pos = tmp;
4050 } while (pos);
4051
4052 return last;
4053}
12a9d2fe 4054
492eb21b
TH
4055static struct cgroup_subsys_state *
4056css_leftmost_descendant(struct cgroup_subsys_state *pos)
574bd9f7 4057{
492eb21b 4058 struct cgroup_subsys_state *last;
574bd9f7
TH
4059
4060 do {
4061 last = pos;
492eb21b 4062 pos = css_next_child(NULL, pos);
574bd9f7
TH
4063 } while (pos);
4064
4065 return last;
4066}
4067
4068/**
492eb21b 4069 * css_next_descendant_post - find the next descendant for post-order walk
574bd9f7 4070 * @pos: the current position (%NULL to initiate traversal)
492eb21b 4071 * @root: css whose descendants to walk
574bd9f7 4072 *
492eb21b 4073 * To be used by css_for_each_descendant_post(). Find the next descendant
bd8815a6
TH
4074 * to visit for post-order traversal of @root's descendants. @root is
4075 * included in the iteration and the last node to be visited.
75501a6d 4076 *
87fb54f1
TH
4077 * While this function requires cgroup_mutex or RCU read locking, it
4078 * doesn't require the whole traversal to be contained in a single critical
4079 * section. This function will return the correct next descendant as long
4080 * as both @pos and @cgroup are accessible and @pos is a descendant of
4081 * @cgroup.
c2931b70
TH
4082 *
4083 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4084 * css which finished ->css_online() is guaranteed to be visible in the
4085 * future iterations and will stay visible until the last reference is put.
4086 * A css which hasn't finished ->css_online() or already finished
4087 * ->css_offline() may show up during traversal. It's each subsystem's
4088 * responsibility to synchronize against on/offlining.
574bd9f7 4089 */
492eb21b
TH
4090struct cgroup_subsys_state *
4091css_next_descendant_post(struct cgroup_subsys_state *pos,
4092 struct cgroup_subsys_state *root)
574bd9f7 4093{
492eb21b 4094 struct cgroup_subsys_state *next;
574bd9f7 4095
8353da1f 4096 cgroup_assert_mutex_or_rcu_locked();
574bd9f7 4097
58b79a91
TH
4098 /* if first iteration, visit leftmost descendant which may be @root */
4099 if (!pos)
4100 return css_leftmost_descendant(root);
574bd9f7 4101
bd8815a6
TH
4102 /* if we visited @root, we're done */
4103 if (pos == root)
4104 return NULL;
4105
574bd9f7 4106 /* if there's an unvisited sibling, visit its leftmost descendant */
5c9d535b 4107 next = css_next_child(pos, pos->parent);
75501a6d 4108 if (next)
492eb21b 4109 return css_leftmost_descendant(next);
574bd9f7
TH
4110
4111 /* no sibling left, visit parent */
5c9d535b 4112 return pos->parent;
574bd9f7 4113}
574bd9f7 4114
f3d46500
TH
4115/**
4116 * css_has_online_children - does a css have online children
4117 * @css: the target css
4118 *
4119 * Returns %true if @css has any online children; otherwise, %false. This
4120 * function can be called from any context but the caller is responsible
4121 * for synchronizing against on/offlining as necessary.
4122 */
4123bool css_has_online_children(struct cgroup_subsys_state *css)
cbc125ef 4124{
f3d46500
TH
4125 struct cgroup_subsys_state *child;
4126 bool ret = false;
cbc125ef
TH
4127
4128 rcu_read_lock();
f3d46500 4129 css_for_each_child(child, css) {
99bae5f9 4130 if (child->flags & CSS_ONLINE) {
f3d46500
TH
4131 ret = true;
4132 break;
cbc125ef
TH
4133 }
4134 }
4135 rcu_read_unlock();
f3d46500 4136 return ret;
574bd9f7 4137}
574bd9f7 4138
0942eeee 4139/**
ecb9d535 4140 * css_task_iter_advance_css_set - advance a task itererator to the next css_set
0942eeee
TH
4141 * @it: the iterator to advance
4142 *
4143 * Advance @it to the next css_set to walk.
d515876e 4144 */
ecb9d535 4145static void css_task_iter_advance_css_set(struct css_task_iter *it)
d515876e 4146{
0f0a2b4f 4147 struct list_head *l = it->cset_pos;
d515876e
TH
4148 struct cgrp_cset_link *link;
4149 struct css_set *cset;
4150
f0d9a5f1 4151 lockdep_assert_held(&css_set_lock);
ed27b9f7 4152
d515876e
TH
4153 /* Advance to the next non-empty css_set */
4154 do {
4155 l = l->next;
0f0a2b4f
TH
4156 if (l == it->cset_head) {
4157 it->cset_pos = NULL;
ecb9d535 4158 it->task_pos = NULL;
d515876e
TH
4159 return;
4160 }
3ebb2b6e
TH
4161
4162 if (it->ss) {
4163 cset = container_of(l, struct css_set,
4164 e_cset_node[it->ss->id]);
4165 } else {
4166 link = list_entry(l, struct cgrp_cset_link, cset_link);
4167 cset = link->cset;
4168 }
0de0942d 4169 } while (!css_set_populated(cset));
c7561128 4170
0f0a2b4f 4171 it->cset_pos = l;
c7561128
TH
4172
4173 if (!list_empty(&cset->tasks))
0f0a2b4f 4174 it->task_pos = cset->tasks.next;
c7561128 4175 else
0f0a2b4f
TH
4176 it->task_pos = cset->mg_tasks.next;
4177
4178 it->tasks_head = &cset->tasks;
4179 it->mg_tasks_head = &cset->mg_tasks;
ed27b9f7
TH
4180
4181 /*
4182 * We don't keep css_sets locked across iteration steps and thus
4183 * need to take steps to ensure that iteration can be resumed after
4184 * the lock is re-acquired. Iteration is performed at two levels -
4185 * css_sets and tasks in them.
4186 *
4187 * Once created, a css_set never leaves its cgroup lists, so a
4188 * pinned css_set is guaranteed to stay put and we can resume
4189 * iteration afterwards.
4190 *
4191 * Tasks may leave @cset across iteration steps. This is resolved
4192 * by registering each iterator with the css_set currently being
4193 * walked and making css_set_move_task() advance iterators whose
4194 * next task is leaving.
4195 */
4196 if (it->cur_cset) {
4197 list_del(&it->iters_node);
4198 put_css_set_locked(it->cur_cset);
4199 }
4200 get_css_set(cset);
4201 it->cur_cset = cset;
4202 list_add(&it->iters_node, &cset->task_iters);
d515876e
TH
4203}
4204
ecb9d535
TH
4205static void css_task_iter_advance(struct css_task_iter *it)
4206{
4207 struct list_head *l = it->task_pos;
4208
f0d9a5f1 4209 lockdep_assert_held(&css_set_lock);
ecb9d535
TH
4210 WARN_ON_ONCE(!l);
4211
4212 /*
4213 * Advance iterator to find next entry. cset->tasks is consumed
4214 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
4215 * next cset.
4216 */
4217 l = l->next;
4218
4219 if (l == it->tasks_head)
4220 l = it->mg_tasks_head->next;
4221
4222 if (l == it->mg_tasks_head)
4223 css_task_iter_advance_css_set(it);
4224 else
4225 it->task_pos = l;
4226}
4227
0942eeee 4228/**
72ec7029
TH
4229 * css_task_iter_start - initiate task iteration
4230 * @css: the css to walk tasks of
0942eeee
TH
4231 * @it: the task iterator to use
4232 *
72ec7029
TH
4233 * Initiate iteration through the tasks of @css. The caller can call
4234 * css_task_iter_next() to walk through the tasks until the function
4235 * returns NULL. On completion of iteration, css_task_iter_end() must be
4236 * called.
0942eeee 4237 */
72ec7029
TH
4238void css_task_iter_start(struct cgroup_subsys_state *css,
4239 struct css_task_iter *it)
817929ec 4240{
56fde9e0
TH
4241 /* no one should try to iterate before mounting cgroups */
4242 WARN_ON_ONCE(!use_task_css_set_links);
31a7df01 4243
ed27b9f7
TH
4244 memset(it, 0, sizeof(*it));
4245
f0d9a5f1 4246 spin_lock_bh(&css_set_lock);
c59cd3d8 4247
3ebb2b6e
TH
4248 it->ss = css->ss;
4249
4250 if (it->ss)
4251 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4252 else
4253 it->cset_pos = &css->cgroup->cset_links;
4254
0f0a2b4f 4255 it->cset_head = it->cset_pos;
c59cd3d8 4256
ecb9d535 4257 css_task_iter_advance_css_set(it);
ed27b9f7 4258
f0d9a5f1 4259 spin_unlock_bh(&css_set_lock);
817929ec
PM
4260}
4261
0942eeee 4262/**
72ec7029 4263 * css_task_iter_next - return the next task for the iterator
0942eeee
TH
4264 * @it: the task iterator being iterated
4265 *
4266 * The "next" function for task iteration. @it should have been
72ec7029
TH
4267 * initialized via css_task_iter_start(). Returns NULL when the iteration
4268 * reaches the end.
0942eeee 4269 */
72ec7029 4270struct task_struct *css_task_iter_next(struct css_task_iter *it)
817929ec 4271{
d5745675 4272 if (it->cur_task) {
ed27b9f7 4273 put_task_struct(it->cur_task);
d5745675
TH
4274 it->cur_task = NULL;
4275 }
ed27b9f7 4276
f0d9a5f1 4277 spin_lock_bh(&css_set_lock);
ed27b9f7 4278
d5745675
TH
4279 if (it->task_pos) {
4280 it->cur_task = list_entry(it->task_pos, struct task_struct,
4281 cg_list);
4282 get_task_struct(it->cur_task);
4283 css_task_iter_advance(it);
4284 }
ed27b9f7 4285
f0d9a5f1 4286 spin_unlock_bh(&css_set_lock);
ed27b9f7
TH
4287
4288 return it->cur_task;
817929ec
PM
4289}
4290
0942eeee 4291/**
72ec7029 4292 * css_task_iter_end - finish task iteration
0942eeee
TH
4293 * @it: the task iterator to finish
4294 *
72ec7029 4295 * Finish task iteration started by css_task_iter_start().
0942eeee 4296 */
72ec7029 4297void css_task_iter_end(struct css_task_iter *it)
31a7df01 4298{
ed27b9f7 4299 if (it->cur_cset) {
f0d9a5f1 4300 spin_lock_bh(&css_set_lock);
ed27b9f7
TH
4301 list_del(&it->iters_node);
4302 put_css_set_locked(it->cur_cset);
f0d9a5f1 4303 spin_unlock_bh(&css_set_lock);
ed27b9f7
TH
4304 }
4305
4306 if (it->cur_task)
4307 put_task_struct(it->cur_task);
31a7df01
CW
4308}
4309
4310/**
8cc99345
TH
4311 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
4312 * @to: cgroup to which the tasks will be moved
4313 * @from: cgroup in which the tasks currently reside
31a7df01 4314 *
eaf797ab
TH
4315 * Locking rules between cgroup_post_fork() and the migration path
4316 * guarantee that, if a task is forking while being migrated, the new child
4317 * is guaranteed to be either visible in the source cgroup after the
4318 * parent's migration is complete or put into the target cgroup. No task
4319 * can slip out of migration through forking.
31a7df01 4320 */
8cc99345 4321int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
31a7df01 4322{
952aaa12
TH
4323 LIST_HEAD(preloaded_csets);
4324 struct cgrp_cset_link *link;
72ec7029 4325 struct css_task_iter it;
e406d1cf 4326 struct task_struct *task;
952aaa12 4327 int ret;
31a7df01 4328
6c694c88
TH
4329 if (!cgroup_may_migrate_to(to))
4330 return -EBUSY;
4331
952aaa12 4332 mutex_lock(&cgroup_mutex);
31a7df01 4333
952aaa12 4334 /* all tasks in @from are being moved, all csets are source */
f0d9a5f1 4335 spin_lock_bh(&css_set_lock);
952aaa12
TH
4336 list_for_each_entry(link, &from->cset_links, cset_link)
4337 cgroup_migrate_add_src(link->cset, to, &preloaded_csets);
f0d9a5f1 4338 spin_unlock_bh(&css_set_lock);
31a7df01 4339
e4857982 4340 ret = cgroup_migrate_prepare_dst(&preloaded_csets);
952aaa12
TH
4341 if (ret)
4342 goto out_err;
8cc99345 4343
952aaa12 4344 /*
2cfa2b19 4345 * Migrate tasks one-by-one until @from is empty. This fails iff
952aaa12
TH
4346 * ->can_attach() fails.
4347 */
e406d1cf 4348 do {
9d800df1 4349 css_task_iter_start(&from->self, &it);
e406d1cf
TH
4350 task = css_task_iter_next(&it);
4351 if (task)
4352 get_task_struct(task);
4353 css_task_iter_end(&it);
4354
4355 if (task) {
37ff9f8f 4356 ret = cgroup_migrate(task, false, to->root);
e406d1cf
TH
4357 put_task_struct(task);
4358 }
4359 } while (task && !ret);
952aaa12
TH
4360out_err:
4361 cgroup_migrate_finish(&preloaded_csets);
47cfcd09 4362 mutex_unlock(&cgroup_mutex);
e406d1cf 4363 return ret;
8cc99345
TH
4364}
4365
bbcb81d0 4366/*
102a775e 4367 * Stuff for reading the 'tasks'/'procs' files.
bbcb81d0
PM
4368 *
4369 * Reading this file can return large amounts of data if a cgroup has
4370 * *lots* of attached tasks. So it may need several calls to read(),
4371 * but we cannot guarantee that the information we produce is correct
4372 * unless we produce it entirely atomically.
4373 *
bbcb81d0 4374 */
bbcb81d0 4375
24528255
LZ
4376/* which pidlist file are we talking about? */
4377enum cgroup_filetype {
4378 CGROUP_FILE_PROCS,
4379 CGROUP_FILE_TASKS,
4380};
4381
4382/*
4383 * A pidlist is a list of pids that virtually represents the contents of one
4384 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
4385 * a pair (one each for procs, tasks) for each pid namespace that's relevant
4386 * to the cgroup.
4387 */
4388struct cgroup_pidlist {
4389 /*
4390 * used to find which pidlist is wanted. doesn't change as long as
4391 * this particular list stays in the list.
4392 */
4393 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
4394 /* array of xids */
4395 pid_t *list;
4396 /* how many elements the above list has */
4397 int length;
24528255
LZ
4398 /* each of these stored in a list by its cgroup */
4399 struct list_head links;
4400 /* pointer to the cgroup we belong to, for list removal purposes */
4401 struct cgroup *owner;
b1a21367
TH
4402 /* for delayed destruction */
4403 struct delayed_work destroy_dwork;
24528255
LZ
4404};
4405
d1d9fd33
BB
4406/*
4407 * The following two functions "fix" the issue where there are more pids
4408 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
4409 * TODO: replace with a kernel-wide solution to this problem
4410 */
4411#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
4412static void *pidlist_allocate(int count)
4413{
4414 if (PIDLIST_TOO_LARGE(count))
4415 return vmalloc(count * sizeof(pid_t));
4416 else
4417 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
4418}
b1a21367 4419
d1d9fd33
BB
4420static void pidlist_free(void *p)
4421{
58794514 4422 kvfree(p);
d1d9fd33 4423}
d1d9fd33 4424
b1a21367
TH
4425/*
4426 * Used to destroy all pidlists lingering waiting for destroy timer. None
4427 * should be left afterwards.
4428 */
4429static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
4430{
4431 struct cgroup_pidlist *l, *tmp_l;
4432
4433 mutex_lock(&cgrp->pidlist_mutex);
4434 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
4435 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
4436 mutex_unlock(&cgrp->pidlist_mutex);
4437
4438 flush_workqueue(cgroup_pidlist_destroy_wq);
4439 BUG_ON(!list_empty(&cgrp->pidlists));
4440}
4441
4442static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
4443{
4444 struct delayed_work *dwork = to_delayed_work(work);
4445 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
4446 destroy_dwork);
4447 struct cgroup_pidlist *tofree = NULL;
4448
4449 mutex_lock(&l->owner->pidlist_mutex);
b1a21367
TH
4450
4451 /*
04502365
TH
4452 * Destroy iff we didn't get queued again. The state won't change
4453 * as destroy_dwork can only be queued while locked.
b1a21367 4454 */
04502365 4455 if (!delayed_work_pending(dwork)) {
b1a21367
TH
4456 list_del(&l->links);
4457 pidlist_free(l->list);
4458 put_pid_ns(l->key.ns);
4459 tofree = l;
4460 }
4461
b1a21367
TH
4462 mutex_unlock(&l->owner->pidlist_mutex);
4463 kfree(tofree);
4464}
4465
bbcb81d0 4466/*
102a775e 4467 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
6ee211ad 4468 * Returns the number of unique elements.
bbcb81d0 4469 */
6ee211ad 4470static int pidlist_uniq(pid_t *list, int length)
bbcb81d0 4471{
102a775e 4472 int src, dest = 1;
102a775e
BB
4473
4474 /*
4475 * we presume the 0th element is unique, so i starts at 1. trivial
4476 * edge cases first; no work needs to be done for either
4477 */
4478 if (length == 0 || length == 1)
4479 return length;
4480 /* src and dest walk down the list; dest counts unique elements */
4481 for (src = 1; src < length; src++) {
4482 /* find next unique element */
4483 while (list[src] == list[src-1]) {
4484 src++;
4485 if (src == length)
4486 goto after;
4487 }
4488 /* dest always points to where the next unique element goes */
4489 list[dest] = list[src];
4490 dest++;
4491 }
4492after:
102a775e
BB
4493 return dest;
4494}
4495
afb2bc14
TH
4496/*
4497 * The two pid files - task and cgroup.procs - guaranteed that the result
4498 * is sorted, which forced this whole pidlist fiasco. As pid order is
4499 * different per namespace, each namespace needs differently sorted list,
4500 * making it impossible to use, for example, single rbtree of member tasks
4501 * sorted by task pointer. As pidlists can be fairly large, allocating one
4502 * per open file is dangerous, so cgroup had to implement shared pool of
4503 * pidlists keyed by cgroup and namespace.
4504 *
4505 * All this extra complexity was caused by the original implementation
4506 * committing to an entirely unnecessary property. In the long term, we
aa6ec29b
TH
4507 * want to do away with it. Explicitly scramble sort order if on the
4508 * default hierarchy so that no such expectation exists in the new
4509 * interface.
afb2bc14
TH
4510 *
4511 * Scrambling is done by swapping every two consecutive bits, which is
4512 * non-identity one-to-one mapping which disturbs sort order sufficiently.
4513 */
4514static pid_t pid_fry(pid_t pid)
4515{
4516 unsigned a = pid & 0x55555555;
4517 unsigned b = pid & 0xAAAAAAAA;
4518
4519 return (a << 1) | (b >> 1);
4520}
4521
4522static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
4523{
aa6ec29b 4524 if (cgroup_on_dfl(cgrp))
afb2bc14
TH
4525 return pid_fry(pid);
4526 else
4527 return pid;
4528}
4529
102a775e
BB
4530static int cmppid(const void *a, const void *b)
4531{
4532 return *(pid_t *)a - *(pid_t *)b;
4533}
4534
afb2bc14
TH
4535static int fried_cmppid(const void *a, const void *b)
4536{
4537 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
4538}
4539
e6b81710
TH
4540static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
4541 enum cgroup_filetype type)
4542{
4543 struct cgroup_pidlist *l;
4544 /* don't need task_nsproxy() if we're looking at ourself */
4545 struct pid_namespace *ns = task_active_pid_ns(current);
4546
4547 lockdep_assert_held(&cgrp->pidlist_mutex);
4548
4549 list_for_each_entry(l, &cgrp->pidlists, links)
4550 if (l->key.type == type && l->key.ns == ns)
4551 return l;
4552 return NULL;
4553}
4554
72a8cb30
BB
4555/*
4556 * find the appropriate pidlist for our purpose (given procs vs tasks)
4557 * returns with the lock on that pidlist already held, and takes care
4558 * of the use count, or returns NULL with no locks held if we're out of
4559 * memory.
4560 */
e6b81710
TH
4561static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
4562 enum cgroup_filetype type)
72a8cb30
BB
4563{
4564 struct cgroup_pidlist *l;
b70cc5fd 4565
e6b81710
TH
4566 lockdep_assert_held(&cgrp->pidlist_mutex);
4567
4568 l = cgroup_pidlist_find(cgrp, type);
4569 if (l)
4570 return l;
4571
72a8cb30 4572 /* entry not found; create a new one */
f4f4be2b 4573 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
e6b81710 4574 if (!l)
72a8cb30 4575 return l;
e6b81710 4576
b1a21367 4577 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
72a8cb30 4578 l->key.type = type;
e6b81710
TH
4579 /* don't need task_nsproxy() if we're looking at ourself */
4580 l->key.ns = get_pid_ns(task_active_pid_ns(current));
72a8cb30
BB
4581 l->owner = cgrp;
4582 list_add(&l->links, &cgrp->pidlists);
72a8cb30
BB
4583 return l;
4584}
4585
102a775e
BB
4586/*
4587 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
4588 */
72a8cb30
BB
4589static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
4590 struct cgroup_pidlist **lp)
102a775e
BB
4591{
4592 pid_t *array;
4593 int length;
4594 int pid, n = 0; /* used for populating the array */
72ec7029 4595 struct css_task_iter it;
817929ec 4596 struct task_struct *tsk;
102a775e
BB
4597 struct cgroup_pidlist *l;
4598
4bac00d1
TH
4599 lockdep_assert_held(&cgrp->pidlist_mutex);
4600
102a775e
BB
4601 /*
4602 * If cgroup gets more users after we read count, we won't have
4603 * enough space - tough. This race is indistinguishable to the
4604 * caller from the case that the additional cgroup users didn't
4605 * show up until sometime later on.
4606 */
4607 length = cgroup_task_count(cgrp);
d1d9fd33 4608 array = pidlist_allocate(length);
102a775e
BB
4609 if (!array)
4610 return -ENOMEM;
4611 /* now, populate the array */
9d800df1 4612 css_task_iter_start(&cgrp->self, &it);
72ec7029 4613 while ((tsk = css_task_iter_next(&it))) {
102a775e 4614 if (unlikely(n == length))
817929ec 4615 break;
102a775e 4616 /* get tgid or pid for procs or tasks file respectively */
72a8cb30
BB
4617 if (type == CGROUP_FILE_PROCS)
4618 pid = task_tgid_vnr(tsk);
4619 else
4620 pid = task_pid_vnr(tsk);
102a775e
BB
4621 if (pid > 0) /* make sure to only use valid results */
4622 array[n++] = pid;
817929ec 4623 }
72ec7029 4624 css_task_iter_end(&it);
102a775e
BB
4625 length = n;
4626 /* now sort & (if procs) strip out duplicates */
aa6ec29b 4627 if (cgroup_on_dfl(cgrp))
afb2bc14
TH
4628 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
4629 else
4630 sort(array, length, sizeof(pid_t), cmppid, NULL);
72a8cb30 4631 if (type == CGROUP_FILE_PROCS)
6ee211ad 4632 length = pidlist_uniq(array, length);
e6b81710 4633
e6b81710 4634 l = cgroup_pidlist_find_create(cgrp, type);
72a8cb30 4635 if (!l) {
d1d9fd33 4636 pidlist_free(array);
72a8cb30 4637 return -ENOMEM;
102a775e 4638 }
e6b81710
TH
4639
4640 /* store array, freeing old if necessary */
d1d9fd33 4641 pidlist_free(l->list);
102a775e
BB
4642 l->list = array;
4643 l->length = length;
72a8cb30 4644 *lp = l;
102a775e 4645 return 0;
bbcb81d0
PM
4646}
4647
846c7bb0 4648/**
a043e3b2 4649 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
4650 * @stats: cgroupstats to fill information into
4651 * @dentry: A dentry entry belonging to the cgroup for which stats have
4652 * been requested.
a043e3b2
LZ
4653 *
4654 * Build and fill cgroupstats so that taskstats can export it to user
4655 * space.
846c7bb0
BS
4656 */
4657int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
4658{
2bd59d48 4659 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
bd89aabc 4660 struct cgroup *cgrp;
72ec7029 4661 struct css_task_iter it;
846c7bb0 4662 struct task_struct *tsk;
33d283be 4663
2bd59d48
TH
4664 /* it should be kernfs_node belonging to cgroupfs and is a directory */
4665 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
4666 kernfs_type(kn) != KERNFS_DIR)
4667 return -EINVAL;
4668
bad34660
LZ
4669 mutex_lock(&cgroup_mutex);
4670
846c7bb0 4671 /*
2bd59d48 4672 * We aren't being called from kernfs and there's no guarantee on
ec903c0c 4673 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
2bd59d48 4674 * @kn->priv is RCU safe. Let's do the RCU dancing.
846c7bb0 4675 */
2bd59d48
TH
4676 rcu_read_lock();
4677 cgrp = rcu_dereference(kn->priv);
bad34660 4678 if (!cgrp || cgroup_is_dead(cgrp)) {
2bd59d48 4679 rcu_read_unlock();
bad34660 4680 mutex_unlock(&cgroup_mutex);
2bd59d48
TH
4681 return -ENOENT;
4682 }
bad34660 4683 rcu_read_unlock();
846c7bb0 4684
9d800df1 4685 css_task_iter_start(&cgrp->self, &it);
72ec7029 4686 while ((tsk = css_task_iter_next(&it))) {
846c7bb0
BS
4687 switch (tsk->state) {
4688 case TASK_RUNNING:
4689 stats->nr_running++;
4690 break;
4691 case TASK_INTERRUPTIBLE:
4692 stats->nr_sleeping++;
4693 break;
4694 case TASK_UNINTERRUPTIBLE:
4695 stats->nr_uninterruptible++;
4696 break;
4697 case TASK_STOPPED:
4698 stats->nr_stopped++;
4699 break;
4700 default:
4701 if (delayacct_is_task_waiting_on_io(tsk))
4702 stats->nr_io_wait++;
4703 break;
4704 }
4705 }
72ec7029 4706 css_task_iter_end(&it);
846c7bb0 4707
bad34660 4708 mutex_unlock(&cgroup_mutex);
2bd59d48 4709 return 0;
846c7bb0
BS
4710}
4711
8f3ff208 4712
bbcb81d0 4713/*
102a775e 4714 * seq_file methods for the tasks/procs files. The seq_file position is the
cc31edce 4715 * next pid to display; the seq_file iterator is a pointer to the pid
102a775e 4716 * in the cgroup->l->list array.
bbcb81d0 4717 */
cc31edce 4718
102a775e 4719static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
bbcb81d0 4720{
cc31edce
PM
4721 /*
4722 * Initially we receive a position value that corresponds to
4723 * one more than the last pid shown (or 0 on the first call or
4724 * after a seek to the start). Use a binary-search to find the
4725 * next pid to display, if any
4726 */
2bd59d48 4727 struct kernfs_open_file *of = s->private;
7da11279 4728 struct cgroup *cgrp = seq_css(s)->cgroup;
4bac00d1 4729 struct cgroup_pidlist *l;
7da11279 4730 enum cgroup_filetype type = seq_cft(s)->private;
cc31edce 4731 int index = 0, pid = *pos;
4bac00d1
TH
4732 int *iter, ret;
4733
4734 mutex_lock(&cgrp->pidlist_mutex);
4735
4736 /*
5d22444f 4737 * !NULL @of->priv indicates that this isn't the first start()
4bac00d1 4738 * after open. If the matching pidlist is around, we can use that.
5d22444f 4739 * Look for it. Note that @of->priv can't be used directly. It
4bac00d1
TH
4740 * could already have been destroyed.
4741 */
5d22444f
TH
4742 if (of->priv)
4743 of->priv = cgroup_pidlist_find(cgrp, type);
4bac00d1
TH
4744
4745 /*
4746 * Either this is the first start() after open or the matching
4747 * pidlist has been destroyed inbetween. Create a new one.
4748 */
5d22444f
TH
4749 if (!of->priv) {
4750 ret = pidlist_array_load(cgrp, type,
4751 (struct cgroup_pidlist **)&of->priv);
4bac00d1
TH
4752 if (ret)
4753 return ERR_PTR(ret);
4754 }
5d22444f 4755 l = of->priv;
cc31edce 4756
cc31edce 4757 if (pid) {
102a775e 4758 int end = l->length;
20777766 4759
cc31edce
PM
4760 while (index < end) {
4761 int mid = (index + end) / 2;
afb2bc14 4762 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
cc31edce
PM
4763 index = mid;
4764 break;
afb2bc14 4765 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
cc31edce
PM
4766 index = mid + 1;
4767 else
4768 end = mid;
4769 }
4770 }
4771 /* If we're off the end of the array, we're done */
102a775e 4772 if (index >= l->length)
cc31edce
PM
4773 return NULL;
4774 /* Update the abstract position to be the actual pid that we found */
102a775e 4775 iter = l->list + index;
afb2bc14 4776 *pos = cgroup_pid_fry(cgrp, *iter);
cc31edce
PM
4777 return iter;
4778}
4779
102a775e 4780static void cgroup_pidlist_stop(struct seq_file *s, void *v)
cc31edce 4781{
2bd59d48 4782 struct kernfs_open_file *of = s->private;
5d22444f 4783 struct cgroup_pidlist *l = of->priv;
62236858 4784
5d22444f
TH
4785 if (l)
4786 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
04502365 4787 CGROUP_PIDLIST_DESTROY_DELAY);
7da11279 4788 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
cc31edce
PM
4789}
4790
102a775e 4791static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
cc31edce 4792{
2bd59d48 4793 struct kernfs_open_file *of = s->private;
5d22444f 4794 struct cgroup_pidlist *l = of->priv;
102a775e
BB
4795 pid_t *p = v;
4796 pid_t *end = l->list + l->length;
cc31edce
PM
4797 /*
4798 * Advance to the next pid in the array. If this goes off the
4799 * end, we're done
4800 */
4801 p++;
4802 if (p >= end) {
4803 return NULL;
4804 } else {
7da11279 4805 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
cc31edce
PM
4806 return p;
4807 }
4808}
4809
102a775e 4810static int cgroup_pidlist_show(struct seq_file *s, void *v)
cc31edce 4811{
94ff212d
JP
4812 seq_printf(s, "%d\n", *(int *)v);
4813
4814 return 0;
cc31edce 4815}
bbcb81d0 4816
182446d0
TH
4817static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
4818 struct cftype *cft)
81a6a5cd 4819{
182446d0 4820 return notify_on_release(css->cgroup);
81a6a5cd
PM
4821}
4822
182446d0
TH
4823static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
4824 struct cftype *cft, u64 val)
6379c106 4825{
6379c106 4826 if (val)
182446d0 4827 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106 4828 else
182446d0 4829 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106
PM
4830 return 0;
4831}
4832
182446d0
TH
4833static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
4834 struct cftype *cft)
97978e6d 4835{
182446d0 4836 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
4837}
4838
182446d0
TH
4839static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
4840 struct cftype *cft, u64 val)
97978e6d
DL
4841{
4842 if (val)
182446d0 4843 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d 4844 else
182446d0 4845 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
4846 return 0;
4847}
4848
a14c6874
TH
4849/* cgroup core interface files for the default hierarchy */
4850static struct cftype cgroup_dfl_base_files[] = {
81a6a5cd 4851 {
d5c56ced 4852 .name = "cgroup.procs",
6f60eade 4853 .file_offset = offsetof(struct cgroup, procs_file),
6612f05b
TH
4854 .seq_start = cgroup_pidlist_start,
4855 .seq_next = cgroup_pidlist_next,
4856 .seq_stop = cgroup_pidlist_stop,
4857 .seq_show = cgroup_pidlist_show,
5d22444f 4858 .private = CGROUP_FILE_PROCS,
acbef755 4859 .write = cgroup_procs_write,
102a775e 4860 },
f8f22e53
TH
4861 {
4862 .name = "cgroup.controllers",
f8f22e53
TH
4863 .seq_show = cgroup_controllers_show,
4864 },
4865 {
4866 .name = "cgroup.subtree_control",
f8f22e53 4867 .seq_show = cgroup_subtree_control_show,
451af504 4868 .write = cgroup_subtree_control_write,
f8f22e53 4869 },
842b597e 4870 {
4a07c222 4871 .name = "cgroup.events",
a14c6874 4872 .flags = CFTYPE_NOT_ON_ROOT,
6f60eade 4873 .file_offset = offsetof(struct cgroup, events_file),
4a07c222 4874 .seq_show = cgroup_events_show,
842b597e 4875 },
a14c6874
TH
4876 { } /* terminate */
4877};
d5c56ced 4878
a14c6874
TH
4879/* cgroup core interface files for the legacy hierarchies */
4880static struct cftype cgroup_legacy_base_files[] = {
4881 {
4882 .name = "cgroup.procs",
4883 .seq_start = cgroup_pidlist_start,
4884 .seq_next = cgroup_pidlist_next,
4885 .seq_stop = cgroup_pidlist_stop,
4886 .seq_show = cgroup_pidlist_show,
4887 .private = CGROUP_FILE_PROCS,
4888 .write = cgroup_procs_write,
a14c6874
TH
4889 },
4890 {
4891 .name = "cgroup.clone_children",
4892 .read_u64 = cgroup_clone_children_read,
4893 .write_u64 = cgroup_clone_children_write,
4894 },
4895 {
4896 .name = "cgroup.sane_behavior",
4897 .flags = CFTYPE_ONLY_ON_ROOT,
4898 .seq_show = cgroup_sane_behavior_show,
4899 },
d5c56ced
TH
4900 {
4901 .name = "tasks",
6612f05b
TH
4902 .seq_start = cgroup_pidlist_start,
4903 .seq_next = cgroup_pidlist_next,
4904 .seq_stop = cgroup_pidlist_stop,
4905 .seq_show = cgroup_pidlist_show,
5d22444f 4906 .private = CGROUP_FILE_TASKS,
acbef755 4907 .write = cgroup_tasks_write,
d5c56ced
TH
4908 },
4909 {
4910 .name = "notify_on_release",
d5c56ced
TH
4911 .read_u64 = cgroup_read_notify_on_release,
4912 .write_u64 = cgroup_write_notify_on_release,
4913 },
6e6ff25b
TH
4914 {
4915 .name = "release_agent",
a14c6874 4916 .flags = CFTYPE_ONLY_ON_ROOT,
2da8ca82 4917 .seq_show = cgroup_release_agent_show,
451af504 4918 .write = cgroup_release_agent_write,
5f469907 4919 .max_write_len = PATH_MAX - 1,
6e6ff25b 4920 },
db0416b6 4921 { } /* terminate */
bbcb81d0
PM
4922};
4923
0c21ead1
TH
4924/*
4925 * css destruction is four-stage process.
4926 *
4927 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4928 * Implemented in kill_css().
4929 *
4930 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
ec903c0c
TH
4931 * and thus css_tryget_online() is guaranteed to fail, the css can be
4932 * offlined by invoking offline_css(). After offlining, the base ref is
4933 * put. Implemented in css_killed_work_fn().
0c21ead1
TH
4934 *
4935 * 3. When the percpu_ref reaches zero, the only possible remaining
4936 * accessors are inside RCU read sections. css_release() schedules the
4937 * RCU callback.
4938 *
4939 * 4. After the grace period, the css can be freed. Implemented in
4940 * css_free_work_fn().
4941 *
4942 * It is actually hairier because both step 2 and 4 require process context
4943 * and thus involve punting to css->destroy_work adding two additional
4944 * steps to the already complex sequence.
4945 */
35ef10da 4946static void css_free_work_fn(struct work_struct *work)
48ddbe19
TH
4947{
4948 struct cgroup_subsys_state *css =
35ef10da 4949 container_of(work, struct cgroup_subsys_state, destroy_work);
01e58659 4950 struct cgroup_subsys *ss = css->ss;
0c21ead1 4951 struct cgroup *cgrp = css->cgroup;
48ddbe19 4952
9a1049da
TH
4953 percpu_ref_exit(&css->refcnt);
4954
01e58659 4955 if (ss) {
9d755d33 4956 /* css free path */
8bb5ef79 4957 struct cgroup_subsys_state *parent = css->parent;
01e58659
VD
4958 int id = css->id;
4959
01e58659
VD
4960 ss->css_free(css);
4961 cgroup_idr_remove(&ss->css_idr, id);
9d755d33 4962 cgroup_put(cgrp);
8bb5ef79
TH
4963
4964 if (parent)
4965 css_put(parent);
9d755d33
TH
4966 } else {
4967 /* cgroup free path */
4968 atomic_dec(&cgrp->root->nr_cgrps);
4969 cgroup_pidlist_destroy_all(cgrp);
971ff493 4970 cancel_work_sync(&cgrp->release_agent_work);
9d755d33 4971
d51f39b0 4972 if (cgroup_parent(cgrp)) {
9d755d33
TH
4973 /*
4974 * We get a ref to the parent, and put the ref when
4975 * this cgroup is being freed, so it's guaranteed
4976 * that the parent won't be destroyed before its
4977 * children.
4978 */
d51f39b0 4979 cgroup_put(cgroup_parent(cgrp));
9d755d33
TH
4980 kernfs_put(cgrp->kn);
4981 kfree(cgrp);
4982 } else {
4983 /*
4984 * This is root cgroup's refcnt reaching zero,
4985 * which indicates that the root should be
4986 * released.
4987 */
4988 cgroup_destroy_root(cgrp->root);
4989 }
4990 }
48ddbe19
TH
4991}
4992
0c21ead1 4993static void css_free_rcu_fn(struct rcu_head *rcu_head)
d3daf28d
TH
4994{
4995 struct cgroup_subsys_state *css =
0c21ead1 4996 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
d3daf28d 4997
35ef10da 4998 INIT_WORK(&css->destroy_work, css_free_work_fn);
e5fca243 4999 queue_work(cgroup_destroy_wq, &css->destroy_work);
48ddbe19
TH
5000}
5001
25e15d83 5002static void css_release_work_fn(struct work_struct *work)
d3daf28d
TH
5003{
5004 struct cgroup_subsys_state *css =
25e15d83 5005 container_of(work, struct cgroup_subsys_state, destroy_work);
15a4c835 5006 struct cgroup_subsys *ss = css->ss;
9d755d33 5007 struct cgroup *cgrp = css->cgroup;
15a4c835 5008
1fed1b2e
TH
5009 mutex_lock(&cgroup_mutex);
5010
de3f0341 5011 css->flags |= CSS_RELEASED;
1fed1b2e
TH
5012 list_del_rcu(&css->sibling);
5013
9d755d33
TH
5014 if (ss) {
5015 /* css release path */
01e58659 5016 cgroup_idr_replace(&ss->css_idr, NULL, css->id);
7d172cc8
TH
5017 if (ss->css_released)
5018 ss->css_released(css);
9d755d33
TH
5019 } else {
5020 /* cgroup release path */
9d755d33
TH
5021 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
5022 cgrp->id = -1;
a4189487
LZ
5023
5024 /*
5025 * There are two control paths which try to determine
5026 * cgroup from dentry without going through kernfs -
5027 * cgroupstats_build() and css_tryget_online_from_dir().
5028 * Those are supported by RCU protecting clearing of
5029 * cgrp->kn->priv backpointer.
5030 */
6cd0f5bb
TH
5031 if (cgrp->kn)
5032 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
5033 NULL);
9d755d33 5034 }
d3daf28d 5035
1fed1b2e
TH
5036 mutex_unlock(&cgroup_mutex);
5037
0c21ead1 5038 call_rcu(&css->rcu_head, css_free_rcu_fn);
d3daf28d
TH
5039}
5040
d3daf28d
TH
5041static void css_release(struct percpu_ref *ref)
5042{
5043 struct cgroup_subsys_state *css =
5044 container_of(ref, struct cgroup_subsys_state, refcnt);
5045
25e15d83
TH
5046 INIT_WORK(&css->destroy_work, css_release_work_fn);
5047 queue_work(cgroup_destroy_wq, &css->destroy_work);
d3daf28d
TH
5048}
5049
ddfcadab
TH
5050static void init_and_link_css(struct cgroup_subsys_state *css,
5051 struct cgroup_subsys *ss, struct cgroup *cgrp)
ddbcc7e8 5052{
0cb51d71
TH
5053 lockdep_assert_held(&cgroup_mutex);
5054
ddfcadab
TH
5055 cgroup_get(cgrp);
5056
d5c419b6 5057 memset(css, 0, sizeof(*css));
bd89aabc 5058 css->cgroup = cgrp;
72c97e54 5059 css->ss = ss;
d5c419b6
TH
5060 INIT_LIST_HEAD(&css->sibling);
5061 INIT_LIST_HEAD(&css->children);
0cb51d71 5062 css->serial_nr = css_serial_nr_next++;
aa226ff4 5063 atomic_set(&css->online_cnt, 0);
0ae78e0b 5064
d51f39b0
TH
5065 if (cgroup_parent(cgrp)) {
5066 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
ddfcadab 5067 css_get(css->parent);
ddfcadab 5068 }
48ddbe19 5069
ca8bdcaf 5070 BUG_ON(cgroup_css(cgrp, ss));
ddbcc7e8
PM
5071}
5072
2a4ac633 5073/* invoke ->css_online() on a new CSS and mark it online if successful */
623f926b 5074static int online_css(struct cgroup_subsys_state *css)
a31f2d3f 5075{
623f926b 5076 struct cgroup_subsys *ss = css->ss;
b1929db4
TH
5077 int ret = 0;
5078
a31f2d3f
TH
5079 lockdep_assert_held(&cgroup_mutex);
5080
92fb9748 5081 if (ss->css_online)
eb95419b 5082 ret = ss->css_online(css);
ae7f164a 5083 if (!ret) {
eb95419b 5084 css->flags |= CSS_ONLINE;
aec25020 5085 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
aa226ff4
TH
5086
5087 atomic_inc(&css->online_cnt);
5088 if (css->parent)
5089 atomic_inc(&css->parent->online_cnt);
ae7f164a 5090 }
b1929db4 5091 return ret;
a31f2d3f
TH
5092}
5093
2a4ac633 5094/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
623f926b 5095static void offline_css(struct cgroup_subsys_state *css)
a31f2d3f 5096{
623f926b 5097 struct cgroup_subsys *ss = css->ss;
a31f2d3f
TH
5098
5099 lockdep_assert_held(&cgroup_mutex);
5100
5101 if (!(css->flags & CSS_ONLINE))
5102 return;
5103
fa06235b
VD
5104 if (ss->css_reset)
5105 ss->css_reset(css);
5106
d7eeac19 5107 if (ss->css_offline)
eb95419b 5108 ss->css_offline(css);
a31f2d3f 5109
eb95419b 5110 css->flags &= ~CSS_ONLINE;
e3297803 5111 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
f8f22e53
TH
5112
5113 wake_up_all(&css->cgroup->offline_waitq);
a31f2d3f
TH
5114}
5115
c81c925a 5116/**
6cd0f5bb 5117 * css_create - create a cgroup_subsys_state
c81c925a
TH
5118 * @cgrp: the cgroup new css will be associated with
5119 * @ss: the subsys of new css
5120 *
5121 * Create a new css associated with @cgrp - @ss pair. On success, the new
6cd0f5bb
TH
5122 * css is online and installed in @cgrp. This function doesn't create the
5123 * interface files. Returns 0 on success, -errno on failure.
c81c925a 5124 */
6cd0f5bb
TH
5125static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
5126 struct cgroup_subsys *ss)
c81c925a 5127{
d51f39b0 5128 struct cgroup *parent = cgroup_parent(cgrp);
1fed1b2e 5129 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
c81c925a
TH
5130 struct cgroup_subsys_state *css;
5131 int err;
5132
c81c925a
TH
5133 lockdep_assert_held(&cgroup_mutex);
5134
1fed1b2e 5135 css = ss->css_alloc(parent_css);
c81c925a 5136 if (IS_ERR(css))
6cd0f5bb 5137 return css;
c81c925a 5138
ddfcadab 5139 init_and_link_css(css, ss, cgrp);
a2bed820 5140
2aad2a86 5141 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
c81c925a 5142 if (err)
3eb59ec6 5143 goto err_free_css;
c81c925a 5144
cf780b7d 5145 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
15a4c835
TH
5146 if (err < 0)
5147 goto err_free_percpu_ref;
5148 css->id = err;
c81c925a 5149
15a4c835 5150 /* @css is ready to be brought online now, make it visible */
1fed1b2e 5151 list_add_tail_rcu(&css->sibling, &parent_css->children);
15a4c835 5152 cgroup_idr_replace(&ss->css_idr, css, css->id);
c81c925a
TH
5153
5154 err = online_css(css);
5155 if (err)
1fed1b2e 5156 goto err_list_del;
94419627 5157
c81c925a 5158 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
d51f39b0 5159 cgroup_parent(parent)) {
ed3d261b 5160 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
a2a1f9ea 5161 current->comm, current->pid, ss->name);
c81c925a 5162 if (!strcmp(ss->name, "memory"))
ed3d261b 5163 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
c81c925a
TH
5164 ss->warned_broken_hierarchy = true;
5165 }
5166
6cd0f5bb 5167 return css;
c81c925a 5168
1fed1b2e
TH
5169err_list_del:
5170 list_del_rcu(&css->sibling);
15a4c835 5171 cgroup_idr_remove(&ss->css_idr, css->id);
3eb59ec6 5172err_free_percpu_ref:
9a1049da 5173 percpu_ref_exit(&css->refcnt);
3eb59ec6 5174err_free_css:
a2bed820 5175 call_rcu(&css->rcu_head, css_free_rcu_fn);
6cd0f5bb 5176 return ERR_PTR(err);
c81c925a
TH
5177}
5178
a5bca215 5179static struct cgroup *cgroup_create(struct cgroup *parent)
ddbcc7e8 5180{
a5bca215 5181 struct cgroup_root *root = parent->root;
a5bca215
TH
5182 struct cgroup *cgrp, *tcgrp;
5183 int level = parent->level + 1;
03970d3c 5184 int ret;
ddbcc7e8 5185
0a950f65 5186 /* allocate the cgroup and its ID, 0 is reserved for the root */
b11cfb58
TH
5187 cgrp = kzalloc(sizeof(*cgrp) +
5188 sizeof(cgrp->ancestor_ids[0]) * (level + 1), GFP_KERNEL);
a5bca215
TH
5189 if (!cgrp)
5190 return ERR_PTR(-ENOMEM);
0ab02ca8 5191
2aad2a86 5192 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
9d755d33
TH
5193 if (ret)
5194 goto out_free_cgrp;
5195
0ab02ca8
LZ
5196 /*
5197 * Temporarily set the pointer to NULL, so idr_find() won't return
5198 * a half-baked cgroup.
5199 */
cf780b7d 5200 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL);
0ab02ca8 5201 if (cgrp->id < 0) {
ba0f4d76 5202 ret = -ENOMEM;
9d755d33 5203 goto out_cancel_ref;
976c06bc
TH
5204 }
5205
cc31edce 5206 init_cgroup_housekeeping(cgrp);
ddbcc7e8 5207
9d800df1 5208 cgrp->self.parent = &parent->self;
ba0f4d76 5209 cgrp->root = root;
b11cfb58
TH
5210 cgrp->level = level;
5211
5212 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp))
5213 cgrp->ancestor_ids[tcgrp->level] = tcgrp->id;
ddbcc7e8 5214
b6abdb0e
LZ
5215 if (notify_on_release(parent))
5216 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
5217
2260e7fc
TH
5218 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
5219 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d 5220
0cb51d71 5221 cgrp->self.serial_nr = css_serial_nr_next++;
53fa5261 5222
4e139afc 5223 /* allocation complete, commit to creation */
d5c419b6 5224 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
3c9c825b 5225 atomic_inc(&root->nr_cgrps);
59f5296b 5226 cgroup_get(parent);
415cf07a 5227
0d80255e
TH
5228 /*
5229 * @cgrp is now fully operational. If something fails after this
5230 * point, it'll be released via the normal destruction path.
5231 */
6fa4918d 5232 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4e96ee8e 5233
bd53d617
TH
5234 /*
5235 * On the default hierarchy, a child doesn't automatically inherit
667c2491 5236 * subtree_control from the parent. Each is configured manually.
bd53d617 5237 */
03970d3c 5238 if (!cgroup_on_dfl(cgrp))
5531dc91 5239 cgrp->subtree_control = cgroup_control(cgrp);
03970d3c
TH
5240
5241 cgroup_propagate_control(cgrp);
5242
5243 /* @cgrp doesn't have dir yet so the following will only create csses */
5244 ret = cgroup_apply_control_enable(cgrp);
5245 if (ret)
5246 goto out_destroy;
2bd59d48 5247
a5bca215
TH
5248 return cgrp;
5249
5250out_cancel_ref:
5251 percpu_ref_exit(&cgrp->self.refcnt);
5252out_free_cgrp:
5253 kfree(cgrp);
5254 return ERR_PTR(ret);
5255out_destroy:
5256 cgroup_destroy_locked(cgrp);
5257 return ERR_PTR(ret);
5258}
5259
5260static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
5261 umode_t mode)
5262{
5263 struct cgroup *parent, *cgrp;
a5bca215 5264 struct kernfs_node *kn;
03970d3c 5265 int ret;
a5bca215
TH
5266
5267 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
5268 if (strchr(name, '\n'))
5269 return -EINVAL;
5270
945ba199 5271 parent = cgroup_kn_lock_live(parent_kn, false);
a5bca215
TH
5272 if (!parent)
5273 return -ENODEV;
5274
5275 cgrp = cgroup_create(parent);
5276 if (IS_ERR(cgrp)) {
5277 ret = PTR_ERR(cgrp);
5278 goto out_unlock;
5279 }
5280
195e9b6c
TH
5281 /* create the directory */
5282 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
5283 if (IS_ERR(kn)) {
5284 ret = PTR_ERR(kn);
5285 goto out_destroy;
5286 }
5287 cgrp->kn = kn;
5288
5289 /*
5290 * This extra ref will be put in cgroup_free_fn() and guarantees
5291 * that @cgrp->kn is always accessible.
5292 */
5293 kernfs_get(kn);
5294
5295 ret = cgroup_kn_set_ugid(kn);
5296 if (ret)
5297 goto out_destroy;
5298
334c3679 5299 ret = css_populate_dir(&cgrp->self);
195e9b6c
TH
5300 if (ret)
5301 goto out_destroy;
5302
03970d3c
TH
5303 ret = cgroup_apply_control_enable(cgrp);
5304 if (ret)
5305 goto out_destroy;
195e9b6c
TH
5306
5307 /* let's create and online css's */
2bd59d48 5308 kernfs_activate(kn);
ddbcc7e8 5309
ba0f4d76
TH
5310 ret = 0;
5311 goto out_unlock;
ddbcc7e8 5312
a5bca215
TH
5313out_destroy:
5314 cgroup_destroy_locked(cgrp);
ba0f4d76 5315out_unlock:
a9746d8d 5316 cgroup_kn_unlock(parent_kn);
ba0f4d76 5317 return ret;
ddbcc7e8
PM
5318}
5319
223dbc38
TH
5320/*
5321 * This is called when the refcnt of a css is confirmed to be killed.
249f3468
TH
5322 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
5323 * initate destruction and put the css ref from kill_css().
223dbc38
TH
5324 */
5325static void css_killed_work_fn(struct work_struct *work)
d3daf28d 5326{
223dbc38
TH
5327 struct cgroup_subsys_state *css =
5328 container_of(work, struct cgroup_subsys_state, destroy_work);
d3daf28d 5329
f20104de 5330 mutex_lock(&cgroup_mutex);
09a503ea 5331
aa226ff4
TH
5332 do {
5333 offline_css(css);
5334 css_put(css);
5335 /* @css can't go away while we're holding cgroup_mutex */
5336 css = css->parent;
5337 } while (css && atomic_dec_and_test(&css->online_cnt));
5338
5339 mutex_unlock(&cgroup_mutex);
d3daf28d
TH
5340}
5341
223dbc38
TH
5342/* css kill confirmation processing requires process context, bounce */
5343static void css_killed_ref_fn(struct percpu_ref *ref)
d3daf28d
TH
5344{
5345 struct cgroup_subsys_state *css =
5346 container_of(ref, struct cgroup_subsys_state, refcnt);
5347
aa226ff4
TH
5348 if (atomic_dec_and_test(&css->online_cnt)) {
5349 INIT_WORK(&css->destroy_work, css_killed_work_fn);
5350 queue_work(cgroup_destroy_wq, &css->destroy_work);
5351 }
d3daf28d
TH
5352}
5353
f392e51c
TH
5354/**
5355 * kill_css - destroy a css
5356 * @css: css to destroy
5357 *
5358 * This function initiates destruction of @css by removing cgroup interface
5359 * files and putting its base reference. ->css_offline() will be invoked
ec903c0c
TH
5360 * asynchronously once css_tryget_online() is guaranteed to fail and when
5361 * the reference count reaches zero, @css will be released.
f392e51c
TH
5362 */
5363static void kill_css(struct cgroup_subsys_state *css)
edae0c33 5364{
01f6474c 5365 lockdep_assert_held(&cgroup_mutex);
94419627 5366
2bd59d48
TH
5367 /*
5368 * This must happen before css is disassociated with its cgroup.
5369 * See seq_css() for details.
5370 */
334c3679 5371 css_clear_dir(css);
3c14f8b4 5372
edae0c33
TH
5373 /*
5374 * Killing would put the base ref, but we need to keep it alive
5375 * until after ->css_offline().
5376 */
5377 css_get(css);
5378
5379 /*
5380 * cgroup core guarantees that, by the time ->css_offline() is
5381 * invoked, no new css reference will be given out via
ec903c0c 5382 * css_tryget_online(). We can't simply call percpu_ref_kill() and
edae0c33
TH
5383 * proceed to offlining css's because percpu_ref_kill() doesn't
5384 * guarantee that the ref is seen as killed on all CPUs on return.
5385 *
5386 * Use percpu_ref_kill_and_confirm() to get notifications as each
5387 * css is confirmed to be seen as killed on all CPUs.
5388 */
5389 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
d3daf28d
TH
5390}
5391
5392/**
5393 * cgroup_destroy_locked - the first stage of cgroup destruction
5394 * @cgrp: cgroup to be destroyed
5395 *
5396 * css's make use of percpu refcnts whose killing latency shouldn't be
5397 * exposed to userland and are RCU protected. Also, cgroup core needs to
ec903c0c
TH
5398 * guarantee that css_tryget_online() won't succeed by the time
5399 * ->css_offline() is invoked. To satisfy all the requirements,
5400 * destruction is implemented in the following two steps.
d3daf28d
TH
5401 *
5402 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
5403 * userland visible parts and start killing the percpu refcnts of
5404 * css's. Set up so that the next stage will be kicked off once all
5405 * the percpu refcnts are confirmed to be killed.
5406 *
5407 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5408 * rest of destruction. Once all cgroup references are gone, the
5409 * cgroup is RCU-freed.
5410 *
5411 * This function implements s1. After this step, @cgrp is gone as far as
5412 * the userland is concerned and a new cgroup with the same name may be
5413 * created. As cgroup doesn't care about the names internally, this
5414 * doesn't cause any problem.
5415 */
42809dd4
TH
5416static int cgroup_destroy_locked(struct cgroup *cgrp)
5417 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
ddbcc7e8 5418{
2bd59d48 5419 struct cgroup_subsys_state *css;
2b021cbf 5420 struct cgrp_cset_link *link;
1c6727af 5421 int ssid;
ddbcc7e8 5422
42809dd4
TH
5423 lockdep_assert_held(&cgroup_mutex);
5424
91486f61
TH
5425 /*
5426 * Only migration can raise populated from zero and we're already
5427 * holding cgroup_mutex.
5428 */
5429 if (cgroup_is_populated(cgrp))
ddbcc7e8 5430 return -EBUSY;
a043e3b2 5431
bb78a92f 5432 /*
d5c419b6
TH
5433 * Make sure there's no live children. We can't test emptiness of
5434 * ->self.children as dead children linger on it while being
5435 * drained; otherwise, "rmdir parent/child parent" may fail.
bb78a92f 5436 */
f3d46500 5437 if (css_has_online_children(&cgrp->self))
bb78a92f
HD
5438 return -EBUSY;
5439
455050d2 5440 /*
2b021cbf
TH
5441 * Mark @cgrp and the associated csets dead. The former prevents
5442 * further task migration and child creation by disabling
5443 * cgroup_lock_live_group(). The latter makes the csets ignored by
5444 * the migration path.
455050d2 5445 */
184faf32 5446 cgrp->self.flags &= ~CSS_ONLINE;
ddbcc7e8 5447
2b021cbf
TH
5448 spin_lock_bh(&css_set_lock);
5449 list_for_each_entry(link, &cgrp->cset_links, cset_link)
5450 link->cset->dead = true;
5451 spin_unlock_bh(&css_set_lock);
5452
249f3468 5453 /* initiate massacre of all css's */
1c6727af
TH
5454 for_each_css(css, ssid, cgrp)
5455 kill_css(css);
455050d2 5456
455050d2 5457 /*
01f6474c
TH
5458 * Remove @cgrp directory along with the base files. @cgrp has an
5459 * extra ref on its kn.
f20104de 5460 */
01f6474c 5461 kernfs_remove(cgrp->kn);
f20104de 5462
d51f39b0 5463 check_for_release(cgroup_parent(cgrp));
2bd59d48 5464
249f3468 5465 /* put the base reference */
9d755d33 5466 percpu_ref_kill(&cgrp->self.refcnt);
455050d2 5467
ea15f8cc
TH
5468 return 0;
5469};
5470
2bd59d48 5471static int cgroup_rmdir(struct kernfs_node *kn)
42809dd4 5472{
a9746d8d 5473 struct cgroup *cgrp;
2bd59d48 5474 int ret = 0;
42809dd4 5475
945ba199 5476 cgrp = cgroup_kn_lock_live(kn, false);
a9746d8d
TH
5477 if (!cgrp)
5478 return 0;
42809dd4 5479
a9746d8d 5480 ret = cgroup_destroy_locked(cgrp);
2bb566cb 5481
a9746d8d 5482 cgroup_kn_unlock(kn);
42809dd4 5483 return ret;
8e3f6541
TH
5484}
5485
2bd59d48
TH
5486static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5487 .remount_fs = cgroup_remount,
5488 .show_options = cgroup_show_options,
5489 .mkdir = cgroup_mkdir,
5490 .rmdir = cgroup_rmdir,
5491 .rename = cgroup_rename,
4f41fc59 5492 .show_path = cgroup_show_path,
2bd59d48
TH
5493};
5494
15a4c835 5495static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
ddbcc7e8 5496{
ddbcc7e8 5497 struct cgroup_subsys_state *css;
cfe36bde 5498
a5ae9899 5499 pr_debug("Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8 5500
648bb56d
TH
5501 mutex_lock(&cgroup_mutex);
5502
15a4c835 5503 idr_init(&ss->css_idr);
0adb0704 5504 INIT_LIST_HEAD(&ss->cfts);
8e3f6541 5505
3dd06ffa
TH
5506 /* Create the root cgroup state for this subsystem */
5507 ss->root = &cgrp_dfl_root;
5508 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
ddbcc7e8
PM
5509 /* We don't handle early failures gracefully */
5510 BUG_ON(IS_ERR(css));
ddfcadab 5511 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
3b514d24
TH
5512
5513 /*
5514 * Root csses are never destroyed and we can't initialize
5515 * percpu_ref during early init. Disable refcnting.
5516 */
5517 css->flags |= CSS_NO_REF;
5518
15a4c835 5519 if (early) {
9395a450 5520 /* allocation can't be done safely during early init */
15a4c835
TH
5521 css->id = 1;
5522 } else {
5523 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5524 BUG_ON(css->id < 0);
5525 }
ddbcc7e8 5526
e8d55fde 5527 /* Update the init_css_set to contain a subsys
817929ec 5528 * pointer to this state - since the subsystem is
e8d55fde 5529 * newly registered, all tasks and hence the
3dd06ffa 5530 * init_css_set is in the subsystem's root cgroup. */
aec25020 5531 init_css_set.subsys[ss->id] = css;
ddbcc7e8 5532
cb4a3167
AS
5533 have_fork_callback |= (bool)ss->fork << ss->id;
5534 have_exit_callback |= (bool)ss->exit << ss->id;
afcf6c8b 5535 have_free_callback |= (bool)ss->free << ss->id;
7e47682e 5536 have_canfork_callback |= (bool)ss->can_fork << ss->id;
ddbcc7e8 5537
e8d55fde
LZ
5538 /* At system boot, before all subsystems have been
5539 * registered, no tasks have been forked, so we don't
5540 * need to invoke fork callbacks here. */
5541 BUG_ON(!list_empty(&init_task.tasks));
5542
ae7f164a 5543 BUG_ON(online_css(css));
a8638030 5544
cf5d5941
BB
5545 mutex_unlock(&cgroup_mutex);
5546}
cf5d5941 5547
ddbcc7e8 5548/**
a043e3b2
LZ
5549 * cgroup_init_early - cgroup initialization at system boot
5550 *
5551 * Initialize cgroups at system boot, and initialize any
5552 * subsystems that request early init.
ddbcc7e8
PM
5553 */
5554int __init cgroup_init_early(void)
5555{
7b9a6ba5 5556 static struct cgroup_sb_opts __initdata opts;
30159ec7 5557 struct cgroup_subsys *ss;
ddbcc7e8 5558 int i;
30159ec7 5559
3dd06ffa 5560 init_cgroup_root(&cgrp_dfl_root, &opts);
3b514d24
TH
5561 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5562
a4ea1cc9 5563 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
817929ec 5564
3ed80a62 5565 for_each_subsys(ss, i) {
aec25020 5566 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
63253ad8 5567 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
073219e9 5568 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
aec25020 5569 ss->id, ss->name);
073219e9
TH
5570 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5571 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5572
aec25020 5573 ss->id = i;
073219e9 5574 ss->name = cgroup_subsys_name[i];
3e1d2eed
TH
5575 if (!ss->legacy_name)
5576 ss->legacy_name = cgroup_subsys_name[i];
ddbcc7e8
PM
5577
5578 if (ss->early_init)
15a4c835 5579 cgroup_init_subsys(ss, true);
ddbcc7e8
PM
5580 }
5581 return 0;
5582}
5583
6e5c8307 5584static u16 cgroup_disable_mask __initdata;
a3e72739 5585
ddbcc7e8 5586/**
a043e3b2
LZ
5587 * cgroup_init - cgroup initialization
5588 *
5589 * Register cgroup filesystem and /proc file, and initialize
5590 * any subsystems that didn't request early init.
ddbcc7e8
PM
5591 */
5592int __init cgroup_init(void)
5593{
30159ec7 5594 struct cgroup_subsys *ss;
035f4f51 5595 int ssid;
ddbcc7e8 5596
6e5c8307 5597 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
1ed13287 5598 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem));
a14c6874
TH
5599 BUG_ON(cgroup_init_cftypes(NULL, cgroup_dfl_base_files));
5600 BUG_ON(cgroup_init_cftypes(NULL, cgroup_legacy_base_files));
ddbcc7e8 5601
a79a908f
AK
5602 get_user_ns(init_cgroup_ns.user_ns);
5603
54e7b4eb 5604 mutex_lock(&cgroup_mutex);
54e7b4eb 5605
2378d8b8
TH
5606 /*
5607 * Add init_css_set to the hash table so that dfl_root can link to
5608 * it during init.
5609 */
5610 hash_add(css_set_table, &init_css_set.hlist,
5611 css_set_hash(init_css_set.subsys));
82fe9b0d 5612
3dd06ffa 5613 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
4e96ee8e 5614
54e7b4eb
TH
5615 mutex_unlock(&cgroup_mutex);
5616
172a2c06 5617 for_each_subsys(ss, ssid) {
15a4c835
TH
5618 if (ss->early_init) {
5619 struct cgroup_subsys_state *css =
5620 init_css_set.subsys[ss->id];
5621
5622 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5623 GFP_KERNEL);
5624 BUG_ON(css->id < 0);
5625 } else {
5626 cgroup_init_subsys(ss, false);
5627 }
172a2c06 5628
2d8f243a
TH
5629 list_add_tail(&init_css_set.e_cset_node[ssid],
5630 &cgrp_dfl_root.cgrp.e_csets[ssid]);
172a2c06
TH
5631
5632 /*
c731ae1d
LZ
5633 * Setting dfl_root subsys_mask needs to consider the
5634 * disabled flag and cftype registration needs kmalloc,
5635 * both of which aren't available during early_init.
172a2c06 5636 */
a3e72739
TH
5637 if (cgroup_disable_mask & (1 << ssid)) {
5638 static_branch_disable(cgroup_subsys_enabled_key[ssid]);
5639 printk(KERN_INFO "Disabling %s control group subsystem\n",
5640 ss->name);
a8ddc821 5641 continue;
a3e72739 5642 }
a8ddc821 5643
223ffb29
JW
5644 if (cgroup_ssid_no_v1(ssid))
5645 printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
5646 ss->name);
5647
a8ddc821
TH
5648 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5649
f6d635ad
TH
5650 if (ss->implicit_on_dfl)
5651 cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
5652 else if (!ss->dfl_cftypes)
a7165264 5653 cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
5de4fa13 5654
a8ddc821
TH
5655 if (ss->dfl_cftypes == ss->legacy_cftypes) {
5656 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5657 } else {
5658 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5659 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
c731ae1d 5660 }
295458e6
VD
5661
5662 if (ss->bind)
5663 ss->bind(init_css_set.subsys[ssid]);
676db4af
GK
5664 }
5665
2378d8b8
TH
5666 /* init_css_set.subsys[] has been updated, re-hash */
5667 hash_del(&init_css_set.hlist);
5668 hash_add(css_set_table, &init_css_set.hlist,
5669 css_set_hash(init_css_set.subsys));
5670
035f4f51
TH
5671 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5672 WARN_ON(register_filesystem(&cgroup_fs_type));
67e9c74b 5673 WARN_ON(register_filesystem(&cgroup2_fs_type));
035f4f51 5674 WARN_ON(!proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations));
ddbcc7e8 5675
2bd59d48 5676 return 0;
ddbcc7e8 5677}
b4f48b63 5678
e5fca243
TH
5679static int __init cgroup_wq_init(void)
5680{
5681 /*
5682 * There isn't much point in executing destruction path in
5683 * parallel. Good chunk is serialized with cgroup_mutex anyway.
1a11533f 5684 * Use 1 for @max_active.
e5fca243
TH
5685 *
5686 * We would prefer to do this in cgroup_init() above, but that
5687 * is called before init_workqueues(): so leave this until after.
5688 */
1a11533f 5689 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
e5fca243 5690 BUG_ON(!cgroup_destroy_wq);
b1a21367
TH
5691
5692 /*
5693 * Used to destroy pidlists and separate to serve as flush domain.
5694 * Cap @max_active to 1 too.
5695 */
5696 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
5697 0, 1);
5698 BUG_ON(!cgroup_pidlist_destroy_wq);
5699
e5fca243
TH
5700 return 0;
5701}
5702core_initcall(cgroup_wq_init);
5703
a424316c
PM
5704/*
5705 * proc_cgroup_show()
5706 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5707 * - Used for /proc/<pid>/cgroup.
a424316c 5708 */
006f4ac4
ZL
5709int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5710 struct pid *pid, struct task_struct *tsk)
a424316c 5711{
e61734c5 5712 char *buf, *path;
a424316c 5713 int retval;
3dd06ffa 5714 struct cgroup_root *root;
a424316c
PM
5715
5716 retval = -ENOMEM;
e61734c5 5717 buf = kmalloc(PATH_MAX, GFP_KERNEL);
a424316c
PM
5718 if (!buf)
5719 goto out;
5720
a424316c 5721 mutex_lock(&cgroup_mutex);
f0d9a5f1 5722 spin_lock_bh(&css_set_lock);
a424316c 5723
985ed670 5724 for_each_root(root) {
a424316c 5725 struct cgroup_subsys *ss;
bd89aabc 5726 struct cgroup *cgrp;
b85d2040 5727 int ssid, count = 0;
a424316c 5728
a7165264 5729 if (root == &cgrp_dfl_root && !cgrp_dfl_visible)
985ed670
TH
5730 continue;
5731
2c6ab6d2 5732 seq_printf(m, "%d:", root->hierarchy_id);
d98817d4
TH
5733 if (root != &cgrp_dfl_root)
5734 for_each_subsys(ss, ssid)
5735 if (root->subsys_mask & (1 << ssid))
5736 seq_printf(m, "%s%s", count++ ? "," : "",
3e1d2eed 5737 ss->legacy_name);
c6d57f33
PM
5738 if (strlen(root->name))
5739 seq_printf(m, "%sname=%s", count ? "," : "",
5740 root->name);
a424316c 5741 seq_putc(m, ':');
2e91fa7f 5742
7717f7ba 5743 cgrp = task_cgroup_from_root(tsk, root);
2e91fa7f
TH
5744
5745 /*
5746 * On traditional hierarchies, all zombie tasks show up as
5747 * belonging to the root cgroup. On the default hierarchy,
5748 * while a zombie doesn't show up in "cgroup.procs" and
5749 * thus can't be migrated, its /proc/PID/cgroup keeps
5750 * reporting the cgroup it belonged to before exiting. If
5751 * the cgroup is removed before the zombie is reaped,
5752 * " (deleted)" is appended to the cgroup path.
5753 */
5754 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
a79a908f
AK
5755 path = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
5756 current->nsproxy->cgroup_ns);
2e91fa7f
TH
5757 if (!path) {
5758 retval = -ENAMETOOLONG;
5759 goto out_unlock;
5760 }
5761 } else {
5762 path = "/";
e61734c5 5763 }
2e91fa7f 5764
e61734c5 5765 seq_puts(m, path);
2e91fa7f
TH
5766
5767 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
5768 seq_puts(m, " (deleted)\n");
5769 else
5770 seq_putc(m, '\n');
a424316c
PM
5771 }
5772
006f4ac4 5773 retval = 0;
a424316c 5774out_unlock:
f0d9a5f1 5775 spin_unlock_bh(&css_set_lock);
a424316c 5776 mutex_unlock(&cgroup_mutex);
a424316c
PM
5777 kfree(buf);
5778out:
5779 return retval;
5780}
5781
a424316c
PM
5782/* Display information about each subsystem and each hierarchy */
5783static int proc_cgroupstats_show(struct seq_file *m, void *v)
5784{
30159ec7 5785 struct cgroup_subsys *ss;
a424316c 5786 int i;
a424316c 5787
8bab8dde 5788 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
aae8aab4
BB
5789 /*
5790 * ideally we don't want subsystems moving around while we do this.
5791 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5792 * subsys/hierarchy state.
5793 */
a424316c 5794 mutex_lock(&cgroup_mutex);
30159ec7
TH
5795
5796 for_each_subsys(ss, i)
2c6ab6d2 5797 seq_printf(m, "%s\t%d\t%d\t%d\n",
3e1d2eed 5798 ss->legacy_name, ss->root->hierarchy_id,
fc5ed1e9
TH
5799 atomic_read(&ss->root->nr_cgrps),
5800 cgroup_ssid_enabled(i));
30159ec7 5801
a424316c
PM
5802 mutex_unlock(&cgroup_mutex);
5803 return 0;
5804}
5805
5806static int cgroupstats_open(struct inode *inode, struct file *file)
5807{
9dce07f1 5808 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
5809}
5810
828c0950 5811static const struct file_operations proc_cgroupstats_operations = {
a424316c
PM
5812 .open = cgroupstats_open,
5813 .read = seq_read,
5814 .llseek = seq_lseek,
5815 .release = single_release,
5816};
5817
b4f48b63 5818/**
eaf797ab 5819 * cgroup_fork - initialize cgroup related fields during copy_process()
a043e3b2 5820 * @child: pointer to task_struct of forking parent process.
b4f48b63 5821 *
eaf797ab
TH
5822 * A task is associated with the init_css_set until cgroup_post_fork()
5823 * attaches it to the parent's css_set. Empty cg_list indicates that
5824 * @child isn't holding reference to its css_set.
b4f48b63
PM
5825 */
5826void cgroup_fork(struct task_struct *child)
5827{
eaf797ab 5828 RCU_INIT_POINTER(child->cgroups, &init_css_set);
817929ec 5829 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
5830}
5831
7e47682e
AS
5832/**
5833 * cgroup_can_fork - called on a new task before the process is exposed
5834 * @child: the task in question.
5835 *
5836 * This calls the subsystem can_fork() callbacks. If the can_fork() callback
5837 * returns an error, the fork aborts with that error code. This allows for
5838 * a cgroup subsystem to conditionally allow or deny new forks.
5839 */
b53202e6 5840int cgroup_can_fork(struct task_struct *child)
7e47682e
AS
5841{
5842 struct cgroup_subsys *ss;
5843 int i, j, ret;
5844
b4e0eeaf 5845 do_each_subsys_mask(ss, i, have_canfork_callback) {
b53202e6 5846 ret = ss->can_fork(child);
7e47682e
AS
5847 if (ret)
5848 goto out_revert;
b4e0eeaf 5849 } while_each_subsys_mask();
7e47682e
AS
5850
5851 return 0;
5852
5853out_revert:
5854 for_each_subsys(ss, j) {
5855 if (j >= i)
5856 break;
5857 if (ss->cancel_fork)
b53202e6 5858 ss->cancel_fork(child);
7e47682e
AS
5859 }
5860
5861 return ret;
5862}
5863
5864/**
5865 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
5866 * @child: the task in question
5867 *
5868 * This calls the cancel_fork() callbacks if a fork failed *after*
5869 * cgroup_can_fork() succeded.
5870 */
b53202e6 5871void cgroup_cancel_fork(struct task_struct *child)
7e47682e
AS
5872{
5873 struct cgroup_subsys *ss;
5874 int i;
5875
5876 for_each_subsys(ss, i)
5877 if (ss->cancel_fork)
b53202e6 5878 ss->cancel_fork(child);
7e47682e
AS
5879}
5880
817929ec 5881/**
a043e3b2
LZ
5882 * cgroup_post_fork - called on a new task after adding it to the task list
5883 * @child: the task in question
5884 *
5edee61e
TH
5885 * Adds the task to the list running through its css_set if necessary and
5886 * call the subsystem fork() callbacks. Has to be after the task is
5887 * visible on the task list in case we race with the first call to
0942eeee 5888 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5edee61e 5889 * list.
a043e3b2 5890 */
b53202e6 5891void cgroup_post_fork(struct task_struct *child)
817929ec 5892{
30159ec7 5893 struct cgroup_subsys *ss;
5edee61e
TH
5894 int i;
5895
3ce3230a 5896 /*
251f8c03 5897 * This may race against cgroup_enable_task_cg_lists(). As that
eaf797ab
TH
5898 * function sets use_task_css_set_links before grabbing
5899 * tasklist_lock and we just went through tasklist_lock to add
5900 * @child, it's guaranteed that either we see the set
5901 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5902 * @child during its iteration.
5903 *
5904 * If we won the race, @child is associated with %current's
f0d9a5f1 5905 * css_set. Grabbing css_set_lock guarantees both that the
eaf797ab
TH
5906 * association is stable, and, on completion of the parent's
5907 * migration, @child is visible in the source of migration or
5908 * already in the destination cgroup. This guarantee is necessary
5909 * when implementing operations which need to migrate all tasks of
5910 * a cgroup to another.
5911 *
251f8c03 5912 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
eaf797ab
TH
5913 * will remain in init_css_set. This is safe because all tasks are
5914 * in the init_css_set before cg_links is enabled and there's no
5915 * operation which transfers all tasks out of init_css_set.
3ce3230a 5916 */
817929ec 5917 if (use_task_css_set_links) {
eaf797ab
TH
5918 struct css_set *cset;
5919
f0d9a5f1 5920 spin_lock_bh(&css_set_lock);
0e1d768f 5921 cset = task_css_set(current);
eaf797ab 5922 if (list_empty(&child->cg_list)) {
eaf797ab 5923 get_css_set(cset);
f6d7d049 5924 css_set_move_task(child, NULL, cset, false);
eaf797ab 5925 }
f0d9a5f1 5926 spin_unlock_bh(&css_set_lock);
817929ec 5927 }
5edee61e
TH
5928
5929 /*
5930 * Call ss->fork(). This must happen after @child is linked on
5931 * css_set; otherwise, @child might change state between ->fork()
5932 * and addition to css_set.
5933 */
b4e0eeaf 5934 do_each_subsys_mask(ss, i, have_fork_callback) {
b53202e6 5935 ss->fork(child);
b4e0eeaf 5936 } while_each_subsys_mask();
817929ec 5937}
5edee61e 5938
b4f48b63
PM
5939/**
5940 * cgroup_exit - detach cgroup from exiting task
5941 * @tsk: pointer to task_struct of exiting process
5942 *
5943 * Description: Detach cgroup from @tsk and release it.
5944 *
5945 * Note that cgroups marked notify_on_release force every task in
5946 * them to take the global cgroup_mutex mutex when exiting.
5947 * This could impact scaling on very large systems. Be reluctant to
5948 * use notify_on_release cgroups where very high task exit scaling
5949 * is required on large systems.
5950 *
0e1d768f
TH
5951 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
5952 * call cgroup_exit() while the task is still competent to handle
5953 * notify_on_release(), then leave the task attached to the root cgroup in
5954 * each hierarchy for the remainder of its exit. No need to bother with
5955 * init_css_set refcnting. init_css_set never goes away and we can't race
e8604cb4 5956 * with migration path - PF_EXITING is visible to migration path.
b4f48b63 5957 */
1ec41830 5958void cgroup_exit(struct task_struct *tsk)
b4f48b63 5959{
30159ec7 5960 struct cgroup_subsys *ss;
5abb8855 5961 struct css_set *cset;
d41d5a01 5962 int i;
817929ec
PM
5963
5964 /*
0e1d768f 5965 * Unlink from @tsk from its css_set. As migration path can't race
0de0942d 5966 * with us, we can check css_set and cg_list without synchronization.
817929ec 5967 */
0de0942d
TH
5968 cset = task_css_set(tsk);
5969
817929ec 5970 if (!list_empty(&tsk->cg_list)) {
f0d9a5f1 5971 spin_lock_bh(&css_set_lock);
f6d7d049 5972 css_set_move_task(tsk, cset, NULL, false);
f0d9a5f1 5973 spin_unlock_bh(&css_set_lock);
2e91fa7f
TH
5974 } else {
5975 get_css_set(cset);
817929ec
PM
5976 }
5977
cb4a3167 5978 /* see cgroup_post_fork() for details */
b4e0eeaf 5979 do_each_subsys_mask(ss, i, have_exit_callback) {
2e91fa7f 5980 ss->exit(tsk);
b4e0eeaf 5981 } while_each_subsys_mask();
2e91fa7f 5982}
30159ec7 5983
2e91fa7f
TH
5984void cgroup_free(struct task_struct *task)
5985{
5986 struct css_set *cset = task_css_set(task);
afcf6c8b
TH
5987 struct cgroup_subsys *ss;
5988 int ssid;
5989
b4e0eeaf 5990 do_each_subsys_mask(ss, ssid, have_free_callback) {
afcf6c8b 5991 ss->free(task);
b4e0eeaf 5992 } while_each_subsys_mask();
d41d5a01 5993
2e91fa7f 5994 put_css_set(cset);
b4f48b63 5995}
697f4161 5996
bd89aabc 5997static void check_for_release(struct cgroup *cgrp)
81a6a5cd 5998{
27bd4dbb 5999 if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) &&
971ff493
ZL
6000 !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
6001 schedule_work(&cgrp->release_agent_work);
81a6a5cd
PM
6002}
6003
81a6a5cd
PM
6004/*
6005 * Notify userspace when a cgroup is released, by running the
6006 * configured release agent with the name of the cgroup (path
6007 * relative to the root of cgroup file system) as the argument.
6008 *
6009 * Most likely, this user command will try to rmdir this cgroup.
6010 *
6011 * This races with the possibility that some other task will be
6012 * attached to this cgroup before it is removed, or that some other
6013 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
6014 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
6015 * unused, and this cgroup will be reprieved from its death sentence,
6016 * to continue to serve a useful existence. Next time it's released,
6017 * we will get notified again, if it still has 'notify_on_release' set.
6018 *
6019 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
6020 * means only wait until the task is successfully execve()'d. The
6021 * separate release agent task is forked by call_usermodehelper(),
6022 * then control in this thread returns here, without waiting for the
6023 * release agent task. We don't bother to wait because the caller of
6024 * this routine has no use for the exit status of the release agent
6025 * task, so no sense holding our caller up for that.
81a6a5cd 6026 */
81a6a5cd
PM
6027static void cgroup_release_agent(struct work_struct *work)
6028{
971ff493
ZL
6029 struct cgroup *cgrp =
6030 container_of(work, struct cgroup, release_agent_work);
6031 char *pathbuf = NULL, *agentbuf = NULL, *path;
6032 char *argv[3], *envp[3];
6033
81a6a5cd 6034 mutex_lock(&cgroup_mutex);
971ff493
ZL
6035
6036 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
6037 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
6038 if (!pathbuf || !agentbuf)
6039 goto out;
6040
a79a908f
AK
6041 spin_lock_bh(&css_set_lock);
6042 path = cgroup_path_ns_locked(cgrp, pathbuf, PATH_MAX, &init_cgroup_ns);
6043 spin_unlock_bh(&css_set_lock);
971ff493
ZL
6044 if (!path)
6045 goto out;
6046
6047 argv[0] = agentbuf;
6048 argv[1] = path;
6049 argv[2] = NULL;
6050
6051 /* minimal command environment */
6052 envp[0] = "HOME=/";
6053 envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
6054 envp[2] = NULL;
6055
81a6a5cd 6056 mutex_unlock(&cgroup_mutex);
971ff493 6057 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
3e2cd91a 6058 goto out_free;
971ff493 6059out:
81a6a5cd 6060 mutex_unlock(&cgroup_mutex);
3e2cd91a 6061out_free:
971ff493
ZL
6062 kfree(agentbuf);
6063 kfree(pathbuf);
81a6a5cd 6064}
8bab8dde
PM
6065
6066static int __init cgroup_disable(char *str)
6067{
30159ec7 6068 struct cgroup_subsys *ss;
8bab8dde 6069 char *token;
30159ec7 6070 int i;
8bab8dde
PM
6071
6072 while ((token = strsep(&str, ",")) != NULL) {
6073 if (!*token)
6074 continue;
be45c900 6075
3ed80a62 6076 for_each_subsys(ss, i) {
3e1d2eed
TH
6077 if (strcmp(token, ss->name) &&
6078 strcmp(token, ss->legacy_name))
6079 continue;
a3e72739 6080 cgroup_disable_mask |= 1 << i;
8bab8dde
PM
6081 }
6082 }
6083 return 1;
6084}
6085__setup("cgroup_disable=", cgroup_disable);
38460b48 6086
223ffb29
JW
6087static int __init cgroup_no_v1(char *str)
6088{
6089 struct cgroup_subsys *ss;
6090 char *token;
6091 int i;
6092
6093 while ((token = strsep(&str, ",")) != NULL) {
6094 if (!*token)
6095 continue;
6096
6097 if (!strcmp(token, "all")) {
6e5c8307 6098 cgroup_no_v1_mask = U16_MAX;
223ffb29
JW
6099 break;
6100 }
6101
6102 for_each_subsys(ss, i) {
6103 if (strcmp(token, ss->name) &&
6104 strcmp(token, ss->legacy_name))
6105 continue;
6106
6107 cgroup_no_v1_mask |= 1 << i;
6108 }
6109 }
6110 return 1;
6111}
6112__setup("cgroup_no_v1=", cgroup_no_v1);
6113
b77d7b60 6114/**
ec903c0c 6115 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
35cf0836
TH
6116 * @dentry: directory dentry of interest
6117 * @ss: subsystem of interest
b77d7b60 6118 *
5a17f543
TH
6119 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
6120 * to get the corresponding css and return it. If such css doesn't exist
6121 * or can't be pinned, an ERR_PTR value is returned.
e5d1367f 6122 */
ec903c0c
TH
6123struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
6124 struct cgroup_subsys *ss)
e5d1367f 6125{
2bd59d48 6126 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
f17fc25f 6127 struct file_system_type *s_type = dentry->d_sb->s_type;
2bd59d48 6128 struct cgroup_subsys_state *css = NULL;
e5d1367f 6129 struct cgroup *cgrp;
e5d1367f 6130
35cf0836 6131 /* is @dentry a cgroup dir? */
f17fc25f
TH
6132 if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
6133 !kn || kernfs_type(kn) != KERNFS_DIR)
e5d1367f
SE
6134 return ERR_PTR(-EBADF);
6135
5a17f543
TH
6136 rcu_read_lock();
6137
2bd59d48
TH
6138 /*
6139 * This path doesn't originate from kernfs and @kn could already
6140 * have been or be removed at any point. @kn->priv is RCU
a4189487 6141 * protected for this access. See css_release_work_fn() for details.
2bd59d48
TH
6142 */
6143 cgrp = rcu_dereference(kn->priv);
6144 if (cgrp)
6145 css = cgroup_css(cgrp, ss);
5a17f543 6146
ec903c0c 6147 if (!css || !css_tryget_online(css))
5a17f543
TH
6148 css = ERR_PTR(-ENOENT);
6149
6150 rcu_read_unlock();
6151 return css;
e5d1367f 6152}
e5d1367f 6153
1cb650b9
LZ
6154/**
6155 * css_from_id - lookup css by id
6156 * @id: the cgroup id
6157 * @ss: cgroup subsys to be looked into
6158 *
6159 * Returns the css if there's valid one with @id, otherwise returns NULL.
6160 * Should be called under rcu_read_lock().
6161 */
6162struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
6163{
6fa4918d 6164 WARN_ON_ONCE(!rcu_read_lock_held());
d6ccc55e 6165 return idr_find(&ss->css_idr, id);
e5d1367f
SE
6166}
6167
16af4396
TH
6168/**
6169 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
6170 * @path: path on the default hierarchy
6171 *
6172 * Find the cgroup at @path on the default hierarchy, increment its
6173 * reference count and return it. Returns pointer to the found cgroup on
6174 * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR)
6175 * if @path points to a non-directory.
6176 */
6177struct cgroup *cgroup_get_from_path(const char *path)
6178{
6179 struct kernfs_node *kn;
6180 struct cgroup *cgrp;
6181
6182 mutex_lock(&cgroup_mutex);
6183
6184 kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path);
6185 if (kn) {
6186 if (kernfs_type(kn) == KERNFS_DIR) {
6187 cgrp = kn->priv;
6188 cgroup_get(cgrp);
6189 } else {
6190 cgrp = ERR_PTR(-ENOTDIR);
6191 }
6192 kernfs_put(kn);
6193 } else {
6194 cgrp = ERR_PTR(-ENOENT);
6195 }
6196
6197 mutex_unlock(&cgroup_mutex);
6198 return cgrp;
6199}
6200EXPORT_SYMBOL_GPL(cgroup_get_from_path);
6201
bd1060a1
TH
6202/*
6203 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data
6204 * definition in cgroup-defs.h.
6205 */
6206#ifdef CONFIG_SOCK_CGROUP_DATA
6207
6208#if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID)
6209
3fa4cc9c 6210DEFINE_SPINLOCK(cgroup_sk_update_lock);
bd1060a1
TH
6211static bool cgroup_sk_alloc_disabled __read_mostly;
6212
6213void cgroup_sk_alloc_disable(void)
6214{
6215 if (cgroup_sk_alloc_disabled)
6216 return;
6217 pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n");
6218 cgroup_sk_alloc_disabled = true;
6219}
6220
6221#else
6222
6223#define cgroup_sk_alloc_disabled false
6224
6225#endif
6226
6227void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
6228{
6229 if (cgroup_sk_alloc_disabled)
6230 return;
6231
6232 rcu_read_lock();
6233
6234 while (true) {
6235 struct css_set *cset;
6236
6237 cset = task_css_set(current);
6238 if (likely(cgroup_tryget(cset->dfl_cgrp))) {
6239 skcd->val = (unsigned long)cset->dfl_cgrp;
6240 break;
6241 }
6242 cpu_relax();
6243 }
6244
6245 rcu_read_unlock();
6246}
6247
6248void cgroup_sk_free(struct sock_cgroup_data *skcd)
6249{
6250 cgroup_put(sock_cgroup_ptr(skcd));
6251}
6252
6253#endif /* CONFIG_SOCK_CGROUP_DATA */
6254
a79a908f
AK
6255/* cgroup namespaces */
6256
6257static struct cgroup_namespace *alloc_cgroup_ns(void)
6258{
6259 struct cgroup_namespace *new_ns;
6260 int ret;
6261
6262 new_ns = kzalloc(sizeof(struct cgroup_namespace), GFP_KERNEL);
6263 if (!new_ns)
6264 return ERR_PTR(-ENOMEM);
6265 ret = ns_alloc_inum(&new_ns->ns);
6266 if (ret) {
6267 kfree(new_ns);
6268 return ERR_PTR(ret);
6269 }
6270 atomic_set(&new_ns->count, 1);
6271 new_ns->ns.ops = &cgroupns_operations;
6272 return new_ns;
6273}
6274
6275void free_cgroup_ns(struct cgroup_namespace *ns)
6276{
6277 put_css_set(ns->root_cset);
6278 put_user_ns(ns->user_ns);
6279 ns_free_inum(&ns->ns);
6280 kfree(ns);
6281}
6282EXPORT_SYMBOL(free_cgroup_ns);
6283
6284struct cgroup_namespace *copy_cgroup_ns(unsigned long flags,
6285 struct user_namespace *user_ns,
6286 struct cgroup_namespace *old_ns)
6287{
fa5ff8a1
TH
6288 struct cgroup_namespace *new_ns;
6289 struct css_set *cset;
a79a908f
AK
6290
6291 BUG_ON(!old_ns);
6292
6293 if (!(flags & CLONE_NEWCGROUP)) {
6294 get_cgroup_ns(old_ns);
6295 return old_ns;
6296 }
6297
6298 /* Allow only sysadmin to create cgroup namespace. */
a79a908f 6299 if (!ns_capable(user_ns, CAP_SYS_ADMIN))
fa5ff8a1 6300 return ERR_PTR(-EPERM);
a79a908f
AK
6301
6302 mutex_lock(&cgroup_mutex);
6303 spin_lock_bh(&css_set_lock);
6304
6305 cset = task_css_set(current);
6306 get_css_set(cset);
6307
6308 spin_unlock_bh(&css_set_lock);
6309 mutex_unlock(&cgroup_mutex);
6310
a79a908f 6311 new_ns = alloc_cgroup_ns();
d2202557 6312 if (IS_ERR(new_ns)) {
fa5ff8a1
TH
6313 put_css_set(cset);
6314 return new_ns;
d2202557 6315 }
a79a908f
AK
6316
6317 new_ns->user_ns = get_user_ns(user_ns);
6318 new_ns->root_cset = cset;
6319
6320 return new_ns;
a79a908f
AK
6321}
6322
6323static inline struct cgroup_namespace *to_cg_ns(struct ns_common *ns)
6324{
6325 return container_of(ns, struct cgroup_namespace, ns);
6326}
6327
a0530e08 6328static int cgroupns_install(struct nsproxy *nsproxy, struct ns_common *ns)
a79a908f 6329{
a0530e08
AK
6330 struct cgroup_namespace *cgroup_ns = to_cg_ns(ns);
6331
6332 if (!ns_capable(current_user_ns(), CAP_SYS_ADMIN) ||
6333 !ns_capable(cgroup_ns->user_ns, CAP_SYS_ADMIN))
6334 return -EPERM;
6335
6336 /* Don't need to do anything if we are attaching to our own cgroupns. */
6337 if (cgroup_ns == nsproxy->cgroup_ns)
6338 return 0;
6339
6340 get_cgroup_ns(cgroup_ns);
6341 put_cgroup_ns(nsproxy->cgroup_ns);
6342 nsproxy->cgroup_ns = cgroup_ns;
6343
6344 return 0;
a79a908f
AK
6345}
6346
6347static struct ns_common *cgroupns_get(struct task_struct *task)
6348{
6349 struct cgroup_namespace *ns = NULL;
6350 struct nsproxy *nsproxy;
6351
6352 task_lock(task);
6353 nsproxy = task->nsproxy;
6354 if (nsproxy) {
6355 ns = nsproxy->cgroup_ns;
6356 get_cgroup_ns(ns);
6357 }
6358 task_unlock(task);
6359
6360 return ns ? &ns->ns : NULL;
6361}
6362
6363static void cgroupns_put(struct ns_common *ns)
6364{
6365 put_cgroup_ns(to_cg_ns(ns));
6366}
6367
6368const struct proc_ns_operations cgroupns_operations = {
6369 .name = "cgroup",
6370 .type = CLONE_NEWCGROUP,
6371 .get = cgroupns_get,
6372 .put = cgroupns_put,
6373 .install = cgroupns_install,
6374};
6375
6376static __init int cgroup_namespaces_init(void)
6377{
6378 return 0;
6379}
6380subsys_initcall(cgroup_namespaces_init);
6381
fe693435 6382#ifdef CONFIG_CGROUP_DEBUG
eb95419b
TH
6383static struct cgroup_subsys_state *
6384debug_css_alloc(struct cgroup_subsys_state *parent_css)
fe693435
PM
6385{
6386 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
6387
6388 if (!css)
6389 return ERR_PTR(-ENOMEM);
6390
6391 return css;
6392}
6393
eb95419b 6394static void debug_css_free(struct cgroup_subsys_state *css)
fe693435 6395{
eb95419b 6396 kfree(css);
fe693435
PM
6397}
6398
182446d0
TH
6399static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
6400 struct cftype *cft)
fe693435 6401{
182446d0 6402 return cgroup_task_count(css->cgroup);
fe693435
PM
6403}
6404
182446d0
TH
6405static u64 current_css_set_read(struct cgroup_subsys_state *css,
6406 struct cftype *cft)
fe693435
PM
6407{
6408 return (u64)(unsigned long)current->cgroups;
6409}
6410
182446d0 6411static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
03c78cbe 6412 struct cftype *cft)
fe693435
PM
6413{
6414 u64 count;
6415
6416 rcu_read_lock();
a8ad805c 6417 count = atomic_read(&task_css_set(current)->refcount);
fe693435
PM
6418 rcu_read_unlock();
6419 return count;
6420}
6421
2da8ca82 6422static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
7717f7ba 6423{
69d0206c 6424 struct cgrp_cset_link *link;
5abb8855 6425 struct css_set *cset;
e61734c5
TH
6426 char *name_buf;
6427
6428 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
6429 if (!name_buf)
6430 return -ENOMEM;
7717f7ba 6431
f0d9a5f1 6432 spin_lock_bh(&css_set_lock);
7717f7ba 6433 rcu_read_lock();
5abb8855 6434 cset = rcu_dereference(current->cgroups);
69d0206c 6435 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 6436 struct cgroup *c = link->cgrp;
7717f7ba 6437
a2dd4247 6438 cgroup_name(c, name_buf, NAME_MAX + 1);
2c6ab6d2 6439 seq_printf(seq, "Root %d group %s\n",
a2dd4247 6440 c->root->hierarchy_id, name_buf);
7717f7ba
PM
6441 }
6442 rcu_read_unlock();
f0d9a5f1 6443 spin_unlock_bh(&css_set_lock);
e61734c5 6444 kfree(name_buf);
7717f7ba
PM
6445 return 0;
6446}
6447
6448#define MAX_TASKS_SHOWN_PER_CSS 25
2da8ca82 6449static int cgroup_css_links_read(struct seq_file *seq, void *v)
7717f7ba 6450{
2da8ca82 6451 struct cgroup_subsys_state *css = seq_css(seq);
69d0206c 6452 struct cgrp_cset_link *link;
7717f7ba 6453
f0d9a5f1 6454 spin_lock_bh(&css_set_lock);
182446d0 6455 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
69d0206c 6456 struct css_set *cset = link->cset;
7717f7ba
PM
6457 struct task_struct *task;
6458 int count = 0;
c7561128 6459
5abb8855 6460 seq_printf(seq, "css_set %p\n", cset);
c7561128 6461
5abb8855 6462 list_for_each_entry(task, &cset->tasks, cg_list) {
c7561128
TH
6463 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
6464 goto overflow;
6465 seq_printf(seq, " task %d\n", task_pid_vnr(task));
6466 }
6467
6468 list_for_each_entry(task, &cset->mg_tasks, cg_list) {
6469 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
6470 goto overflow;
6471 seq_printf(seq, " task %d\n", task_pid_vnr(task));
7717f7ba 6472 }
c7561128
TH
6473 continue;
6474 overflow:
6475 seq_puts(seq, " ...\n");
7717f7ba 6476 }
f0d9a5f1 6477 spin_unlock_bh(&css_set_lock);
7717f7ba
PM
6478 return 0;
6479}
6480
182446d0 6481static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
fe693435 6482{
27bd4dbb 6483 return (!cgroup_is_populated(css->cgroup) &&
a25eb52e 6484 !css_has_online_children(&css->cgroup->self));
fe693435
PM
6485}
6486
6487static struct cftype debug_files[] = {
fe693435
PM
6488 {
6489 .name = "taskcount",
6490 .read_u64 = debug_taskcount_read,
6491 },
6492
6493 {
6494 .name = "current_css_set",
6495 .read_u64 = current_css_set_read,
6496 },
6497
6498 {
6499 .name = "current_css_set_refcount",
6500 .read_u64 = current_css_set_refcount_read,
6501 },
6502
7717f7ba
PM
6503 {
6504 .name = "current_css_set_cg_links",
2da8ca82 6505 .seq_show = current_css_set_cg_links_read,
7717f7ba
PM
6506 },
6507
6508 {
6509 .name = "cgroup_css_links",
2da8ca82 6510 .seq_show = cgroup_css_links_read,
7717f7ba
PM
6511 },
6512
fe693435
PM
6513 {
6514 .name = "releasable",
6515 .read_u64 = releasable_read,
6516 },
fe693435 6517
4baf6e33
TH
6518 { } /* terminate */
6519};
fe693435 6520
073219e9 6521struct cgroup_subsys debug_cgrp_subsys = {
92fb9748
TH
6522 .css_alloc = debug_css_alloc,
6523 .css_free = debug_css_free,
5577964e 6524 .legacy_cftypes = debug_files,
fe693435
PM
6525};
6526#endif /* CONFIG_CGROUP_DEBUG */
This page took 1.436732 seconds and 5 git commands to generate.