cgroup: reserve ID 0 for dummy_root and 1 for unified hierarchy
[deliverable/linux.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
0dea1168
KS
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
ddbcc7e8
PM
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29#include <linux/cgroup.h>
2ce9738b 30#include <linux/cred.h>
c6d57f33 31#include <linux/ctype.h>
ddbcc7e8 32#include <linux/errno.h>
2ce9738b 33#include <linux/init_task.h>
ddbcc7e8
PM
34#include <linux/kernel.h>
35#include <linux/list.h>
36#include <linux/mm.h>
37#include <linux/mutex.h>
38#include <linux/mount.h>
39#include <linux/pagemap.h>
a424316c 40#include <linux/proc_fs.h>
ddbcc7e8
PM
41#include <linux/rcupdate.h>
42#include <linux/sched.h>
817929ec 43#include <linux/backing-dev.h>
ddbcc7e8
PM
44#include <linux/seq_file.h>
45#include <linux/slab.h>
46#include <linux/magic.h>
47#include <linux/spinlock.h>
48#include <linux/string.h>
bbcb81d0 49#include <linux/sort.h>
81a6a5cd 50#include <linux/kmod.h>
e6a1105b 51#include <linux/module.h>
846c7bb0
BS
52#include <linux/delayacct.h>
53#include <linux/cgroupstats.h>
0ac801fe 54#include <linux/hashtable.h>
3f8206d4 55#include <linux/namei.h>
096b7fe0 56#include <linux/pid_namespace.h>
2c6ab6d2 57#include <linux/idr.h>
d1d9fd33 58#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
0dea1168
KS
59#include <linux/eventfd.h>
60#include <linux/poll.h>
081aa458 61#include <linux/flex_array.h> /* used in cgroup_attach_task */
c4c27fbd 62#include <linux/kthread.h>
846c7bb0 63
60063497 64#include <linux/atomic.h>
ddbcc7e8 65
e25e2cbb
TH
66/*
67 * cgroup_mutex is the master lock. Any modification to cgroup or its
68 * hierarchy must be performed while holding it.
69 *
70 * cgroup_root_mutex nests inside cgroup_mutex and should be held to modify
71 * cgroupfs_root of any cgroup hierarchy - subsys list, flags,
72 * release_agent_path and so on. Modifying requires both cgroup_mutex and
73 * cgroup_root_mutex. Readers can acquire either of the two. This is to
74 * break the following locking order cycle.
75 *
76 * A. cgroup_mutex -> cred_guard_mutex -> s_type->i_mutex_key -> namespace_sem
77 * B. namespace_sem -> cgroup_mutex
78 *
79 * B happens only through cgroup_show_options() and using cgroup_root_mutex
80 * breaks it.
81 */
2219449a
TH
82#ifdef CONFIG_PROVE_RCU
83DEFINE_MUTEX(cgroup_mutex);
84EXPORT_SYMBOL_GPL(cgroup_mutex); /* only for task_subsys_state_check() */
85#else
81a6a5cd 86static DEFINE_MUTEX(cgroup_mutex);
2219449a
TH
87#endif
88
e25e2cbb 89static DEFINE_MUTEX(cgroup_root_mutex);
81a6a5cd 90
aae8aab4
BB
91/*
92 * Generate an array of cgroup subsystem pointers. At boot time, this is
be45c900 93 * populated with the built in subsystems, and modular subsystems are
aae8aab4
BB
94 * registered after that. The mutable section of this array is protected by
95 * cgroup_mutex.
96 */
80f4c877 97#define SUBSYS(_x) [_x ## _subsys_id] = &_x ## _subsys,
5fc0b025 98#define IS_SUBSYS_ENABLED(option) IS_BUILTIN(option)
9871bf95 99static struct cgroup_subsys *cgroup_subsys[CGROUP_SUBSYS_COUNT] = {
ddbcc7e8
PM
100#include <linux/cgroup_subsys.h>
101};
102
ddbcc7e8 103/*
9871bf95
TH
104 * The dummy hierarchy, reserved for the subsystems that are otherwise
105 * unattached - it never has more than a single cgroup, and all tasks are
106 * part of that cgroup.
ddbcc7e8 107 */
9871bf95
TH
108static struct cgroupfs_root cgroup_dummy_root;
109
110/* dummy_top is a shorthand for the dummy hierarchy's top cgroup */
111static struct cgroup * const cgroup_dummy_top = &cgroup_dummy_root.top_cgroup;
ddbcc7e8 112
05ef1d7c
TH
113/*
114 * cgroupfs file entry, pointed to from leaf dentry->d_fsdata.
115 */
116struct cfent {
117 struct list_head node;
118 struct dentry *dentry;
119 struct cftype *type;
712317ad
LZ
120
121 /* file xattrs */
122 struct simple_xattrs xattrs;
05ef1d7c
TH
123};
124
38460b48
KH
125/*
126 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
127 * cgroup_subsys->use_id != 0.
128 */
129#define CSS_ID_MAX (65535)
130struct css_id {
131 /*
132 * The css to which this ID points. This pointer is set to valid value
133 * after cgroup is populated. If cgroup is removed, this will be NULL.
134 * This pointer is expected to be RCU-safe because destroy()
e9316080
TH
135 * is called after synchronize_rcu(). But for safe use, css_tryget()
136 * should be used for avoiding race.
38460b48 137 */
2c392b8c 138 struct cgroup_subsys_state __rcu *css;
38460b48
KH
139 /*
140 * ID of this css.
141 */
142 unsigned short id;
143 /*
144 * Depth in hierarchy which this ID belongs to.
145 */
146 unsigned short depth;
147 /*
148 * ID is freed by RCU. (and lookup routine is RCU safe.)
149 */
150 struct rcu_head rcu_head;
151 /*
152 * Hierarchy of CSS ID belongs to.
153 */
154 unsigned short stack[0]; /* Array of Length (depth+1) */
155};
156
0dea1168 157/*
25985edc 158 * cgroup_event represents events which userspace want to receive.
0dea1168
KS
159 */
160struct cgroup_event {
161 /*
162 * Cgroup which the event belongs to.
163 */
164 struct cgroup *cgrp;
165 /*
166 * Control file which the event associated.
167 */
168 struct cftype *cft;
169 /*
170 * eventfd to signal userspace about the event.
171 */
172 struct eventfd_ctx *eventfd;
173 /*
174 * Each of these stored in a list by the cgroup.
175 */
176 struct list_head list;
177 /*
178 * All fields below needed to unregister event when
179 * userspace closes eventfd.
180 */
181 poll_table pt;
182 wait_queue_head_t *wqh;
183 wait_queue_t wait;
184 struct work_struct remove;
185};
38460b48 186
ddbcc7e8
PM
187/* The list of hierarchy roots */
188
9871bf95
TH
189static LIST_HEAD(cgroup_roots);
190static int cgroup_root_count;
ddbcc7e8 191
54e7b4eb
TH
192/*
193 * Hierarchy ID allocation and mapping. It follows the same exclusion
194 * rules as other root ops - both cgroup_mutex and cgroup_root_mutex for
195 * writes, either for reads.
196 */
1a574231 197static DEFINE_IDR(cgroup_hierarchy_idr);
2c6ab6d2 198
65dff759
LZ
199static struct cgroup_name root_cgroup_name = { .name = "/" };
200
794611a1
LZ
201/*
202 * Assign a monotonically increasing serial number to cgroups. It
203 * guarantees cgroups with bigger numbers are newer than those with smaller
204 * numbers. Also, as cgroups are always appended to the parent's
205 * ->children list, it guarantees that sibling cgroups are always sorted in
00356bd5
TH
206 * the ascending serial number order on the list. Protected by
207 * cgroup_mutex.
794611a1 208 */
00356bd5 209static u64 cgroup_serial_nr_next = 1;
794611a1 210
ddbcc7e8 211/* This flag indicates whether tasks in the fork and exit paths should
a043e3b2
LZ
212 * check for fork/exit handlers to call. This avoids us having to do
213 * extra work in the fork/exit path if none of the subsystems need to
214 * be called.
ddbcc7e8 215 */
8947f9d5 216static int need_forkexit_callback __read_mostly;
ddbcc7e8 217
ea15f8cc 218static void cgroup_offline_fn(struct work_struct *work);
42809dd4 219static int cgroup_destroy_locked(struct cgroup *cgrp);
879a3d9d
G
220static int cgroup_addrm_files(struct cgroup *cgrp, struct cgroup_subsys *subsys,
221 struct cftype cfts[], bool is_add);
42809dd4 222
ddbcc7e8 223/* convenient tests for these bits */
54766d4a 224static inline bool cgroup_is_dead(const struct cgroup *cgrp)
ddbcc7e8 225{
54766d4a 226 return test_bit(CGRP_DEAD, &cgrp->flags);
ddbcc7e8
PM
227}
228
78574cf9
LZ
229/**
230 * cgroup_is_descendant - test ancestry
231 * @cgrp: the cgroup to be tested
232 * @ancestor: possible ancestor of @cgrp
233 *
234 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
235 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
236 * and @ancestor are accessible.
237 */
238bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
239{
240 while (cgrp) {
241 if (cgrp == ancestor)
242 return true;
243 cgrp = cgrp->parent;
244 }
245 return false;
246}
247EXPORT_SYMBOL_GPL(cgroup_is_descendant);
ddbcc7e8 248
e9685a03 249static int cgroup_is_releasable(const struct cgroup *cgrp)
81a6a5cd
PM
250{
251 const int bits =
bd89aabc
PM
252 (1 << CGRP_RELEASABLE) |
253 (1 << CGRP_NOTIFY_ON_RELEASE);
254 return (cgrp->flags & bits) == bits;
81a6a5cd
PM
255}
256
e9685a03 257static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 258{
bd89aabc 259 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
260}
261
30159ec7
TH
262/**
263 * for_each_subsys - iterate all loaded cgroup subsystems
264 * @ss: the iteration cursor
265 * @i: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
266 *
267 * Should be called under cgroup_mutex.
268 */
269#define for_each_subsys(ss, i) \
270 for ((i) = 0; (i) < CGROUP_SUBSYS_COUNT; (i)++) \
271 if (({ lockdep_assert_held(&cgroup_mutex); \
272 !((ss) = cgroup_subsys[i]); })) { } \
273 else
274
275/**
276 * for_each_builtin_subsys - iterate all built-in cgroup subsystems
277 * @ss: the iteration cursor
278 * @i: the index of @ss, CGROUP_BUILTIN_SUBSYS_COUNT after reaching the end
279 *
280 * Bulit-in subsystems are always present and iteration itself doesn't
281 * require any synchronization.
282 */
283#define for_each_builtin_subsys(ss, i) \
284 for ((i) = 0; (i) < CGROUP_BUILTIN_SUBSYS_COUNT && \
285 (((ss) = cgroup_subsys[i]) || true); (i)++)
286
5549c497
TH
287/* iterate each subsystem attached to a hierarchy */
288#define for_each_root_subsys(root, ss) \
289 list_for_each_entry((ss), &(root)->subsys_list, sibling)
ddbcc7e8 290
5549c497
TH
291/* iterate across the active hierarchies */
292#define for_each_active_root(root) \
293 list_for_each_entry((root), &cgroup_roots, root_list)
ddbcc7e8 294
f6ea9372
TH
295static inline struct cgroup *__d_cgrp(struct dentry *dentry)
296{
297 return dentry->d_fsdata;
298}
299
05ef1d7c 300static inline struct cfent *__d_cfe(struct dentry *dentry)
f6ea9372
TH
301{
302 return dentry->d_fsdata;
303}
304
05ef1d7c
TH
305static inline struct cftype *__d_cft(struct dentry *dentry)
306{
307 return __d_cfe(dentry)->type;
308}
309
7ae1bad9
TH
310/**
311 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
312 * @cgrp: the cgroup to be checked for liveness
313 *
47cfcd09
TH
314 * On success, returns true; the mutex should be later unlocked. On
315 * failure returns false with no lock held.
7ae1bad9 316 */
b9777cf8 317static bool cgroup_lock_live_group(struct cgroup *cgrp)
7ae1bad9
TH
318{
319 mutex_lock(&cgroup_mutex);
54766d4a 320 if (cgroup_is_dead(cgrp)) {
7ae1bad9
TH
321 mutex_unlock(&cgroup_mutex);
322 return false;
323 }
324 return true;
325}
7ae1bad9 326
81a6a5cd
PM
327/* the list of cgroups eligible for automatic release. Protected by
328 * release_list_lock */
329static LIST_HEAD(release_list);
cdcc136f 330static DEFINE_RAW_SPINLOCK(release_list_lock);
81a6a5cd
PM
331static void cgroup_release_agent(struct work_struct *work);
332static DECLARE_WORK(release_agent_work, cgroup_release_agent);
bd89aabc 333static void check_for_release(struct cgroup *cgrp);
81a6a5cd 334
69d0206c
TH
335/*
336 * A cgroup can be associated with multiple css_sets as different tasks may
337 * belong to different cgroups on different hierarchies. In the other
338 * direction, a css_set is naturally associated with multiple cgroups.
339 * This M:N relationship is represented by the following link structure
340 * which exists for each association and allows traversing the associations
341 * from both sides.
342 */
343struct cgrp_cset_link {
344 /* the cgroup and css_set this link associates */
345 struct cgroup *cgrp;
346 struct css_set *cset;
347
348 /* list of cgrp_cset_links anchored at cgrp->cset_links */
349 struct list_head cset_link;
350
351 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
352 struct list_head cgrp_link;
817929ec
PM
353};
354
355/* The default css_set - used by init and its children prior to any
356 * hierarchies being mounted. It contains a pointer to the root state
357 * for each subsystem. Also used to anchor the list of css_sets. Not
358 * reference-counted, to improve performance when child cgroups
359 * haven't been created.
360 */
361
362static struct css_set init_css_set;
69d0206c 363static struct cgrp_cset_link init_cgrp_cset_link;
817929ec 364
e6a1105b
BB
365static int cgroup_init_idr(struct cgroup_subsys *ss,
366 struct cgroup_subsys_state *css);
38460b48 367
817929ec
PM
368/* css_set_lock protects the list of css_set objects, and the
369 * chain of tasks off each css_set. Nests outside task->alloc_lock
370 * due to cgroup_iter_start() */
371static DEFINE_RWLOCK(css_set_lock);
372static int css_set_count;
373
7717f7ba
PM
374/*
375 * hash table for cgroup groups. This improves the performance to find
376 * an existing css_set. This hash doesn't (currently) take into
377 * account cgroups in empty hierarchies.
378 */
472b1053 379#define CSS_SET_HASH_BITS 7
0ac801fe 380static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
472b1053 381
0ac801fe 382static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
472b1053 383{
0ac801fe 384 unsigned long key = 0UL;
30159ec7
TH
385 struct cgroup_subsys *ss;
386 int i;
472b1053 387
30159ec7 388 for_each_subsys(ss, i)
0ac801fe
LZ
389 key += (unsigned long)css[i];
390 key = (key >> 16) ^ key;
472b1053 391
0ac801fe 392 return key;
472b1053
LZ
393}
394
817929ec
PM
395/* We don't maintain the lists running through each css_set to its
396 * task until after the first call to cgroup_iter_start(). This
397 * reduces the fork()/exit() overhead for people who have cgroups
398 * compiled into their kernel but not actually in use */
8947f9d5 399static int use_task_css_set_links __read_mostly;
817929ec 400
5abb8855 401static void __put_css_set(struct css_set *cset, int taskexit)
b4f48b63 402{
69d0206c 403 struct cgrp_cset_link *link, *tmp_link;
5abb8855 404
146aa1bd
LJ
405 /*
406 * Ensure that the refcount doesn't hit zero while any readers
407 * can see it. Similar to atomic_dec_and_lock(), but for an
408 * rwlock
409 */
5abb8855 410 if (atomic_add_unless(&cset->refcount, -1, 1))
146aa1bd
LJ
411 return;
412 write_lock(&css_set_lock);
5abb8855 413 if (!atomic_dec_and_test(&cset->refcount)) {
146aa1bd
LJ
414 write_unlock(&css_set_lock);
415 return;
416 }
81a6a5cd 417
2c6ab6d2 418 /* This css_set is dead. unlink it and release cgroup refcounts */
5abb8855 419 hash_del(&cset->hlist);
2c6ab6d2
PM
420 css_set_count--;
421
69d0206c 422 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
2c6ab6d2 423 struct cgroup *cgrp = link->cgrp;
5abb8855 424
69d0206c
TH
425 list_del(&link->cset_link);
426 list_del(&link->cgrp_link);
71b5707e 427
ddd69148 428 /* @cgrp can't go away while we're holding css_set_lock */
6f3d828f 429 if (list_empty(&cgrp->cset_links) && notify_on_release(cgrp)) {
81a6a5cd 430 if (taskexit)
bd89aabc
PM
431 set_bit(CGRP_RELEASABLE, &cgrp->flags);
432 check_for_release(cgrp);
81a6a5cd 433 }
2c6ab6d2
PM
434
435 kfree(link);
81a6a5cd 436 }
2c6ab6d2
PM
437
438 write_unlock(&css_set_lock);
5abb8855 439 kfree_rcu(cset, rcu_head);
b4f48b63
PM
440}
441
817929ec
PM
442/*
443 * refcounted get/put for css_set objects
444 */
5abb8855 445static inline void get_css_set(struct css_set *cset)
817929ec 446{
5abb8855 447 atomic_inc(&cset->refcount);
817929ec
PM
448}
449
5abb8855 450static inline void put_css_set(struct css_set *cset)
817929ec 451{
5abb8855 452 __put_css_set(cset, 0);
817929ec
PM
453}
454
5abb8855 455static inline void put_css_set_taskexit(struct css_set *cset)
81a6a5cd 456{
5abb8855 457 __put_css_set(cset, 1);
81a6a5cd
PM
458}
459
b326f9d0 460/**
7717f7ba 461 * compare_css_sets - helper function for find_existing_css_set().
5abb8855
TH
462 * @cset: candidate css_set being tested
463 * @old_cset: existing css_set for a task
7717f7ba
PM
464 * @new_cgrp: cgroup that's being entered by the task
465 * @template: desired set of css pointers in css_set (pre-calculated)
466 *
467 * Returns true if "cg" matches "old_cg" except for the hierarchy
468 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
469 */
5abb8855
TH
470static bool compare_css_sets(struct css_set *cset,
471 struct css_set *old_cset,
7717f7ba
PM
472 struct cgroup *new_cgrp,
473 struct cgroup_subsys_state *template[])
474{
475 struct list_head *l1, *l2;
476
5abb8855 477 if (memcmp(template, cset->subsys, sizeof(cset->subsys))) {
7717f7ba
PM
478 /* Not all subsystems matched */
479 return false;
480 }
481
482 /*
483 * Compare cgroup pointers in order to distinguish between
484 * different cgroups in heirarchies with no subsystems. We
485 * could get by with just this check alone (and skip the
486 * memcmp above) but on most setups the memcmp check will
487 * avoid the need for this more expensive check on almost all
488 * candidates.
489 */
490
69d0206c
TH
491 l1 = &cset->cgrp_links;
492 l2 = &old_cset->cgrp_links;
7717f7ba 493 while (1) {
69d0206c 494 struct cgrp_cset_link *link1, *link2;
5abb8855 495 struct cgroup *cgrp1, *cgrp2;
7717f7ba
PM
496
497 l1 = l1->next;
498 l2 = l2->next;
499 /* See if we reached the end - both lists are equal length. */
69d0206c
TH
500 if (l1 == &cset->cgrp_links) {
501 BUG_ON(l2 != &old_cset->cgrp_links);
7717f7ba
PM
502 break;
503 } else {
69d0206c 504 BUG_ON(l2 == &old_cset->cgrp_links);
7717f7ba
PM
505 }
506 /* Locate the cgroups associated with these links. */
69d0206c
TH
507 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
508 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
509 cgrp1 = link1->cgrp;
510 cgrp2 = link2->cgrp;
7717f7ba 511 /* Hierarchies should be linked in the same order. */
5abb8855 512 BUG_ON(cgrp1->root != cgrp2->root);
7717f7ba
PM
513
514 /*
515 * If this hierarchy is the hierarchy of the cgroup
516 * that's changing, then we need to check that this
517 * css_set points to the new cgroup; if it's any other
518 * hierarchy, then this css_set should point to the
519 * same cgroup as the old css_set.
520 */
5abb8855
TH
521 if (cgrp1->root == new_cgrp->root) {
522 if (cgrp1 != new_cgrp)
7717f7ba
PM
523 return false;
524 } else {
5abb8855 525 if (cgrp1 != cgrp2)
7717f7ba
PM
526 return false;
527 }
528 }
529 return true;
530}
531
b326f9d0
TH
532/**
533 * find_existing_css_set - init css array and find the matching css_set
534 * @old_cset: the css_set that we're using before the cgroup transition
535 * @cgrp: the cgroup that we're moving into
536 * @template: out param for the new set of csses, should be clear on entry
817929ec 537 */
5abb8855
TH
538static struct css_set *find_existing_css_set(struct css_set *old_cset,
539 struct cgroup *cgrp,
540 struct cgroup_subsys_state *template[])
b4f48b63 541{
bd89aabc 542 struct cgroupfs_root *root = cgrp->root;
30159ec7 543 struct cgroup_subsys *ss;
5abb8855 544 struct css_set *cset;
0ac801fe 545 unsigned long key;
b326f9d0 546 int i;
817929ec 547
aae8aab4
BB
548 /*
549 * Build the set of subsystem state objects that we want to see in the
550 * new css_set. while subsystems can change globally, the entries here
551 * won't change, so no need for locking.
552 */
30159ec7 553 for_each_subsys(ss, i) {
a1a71b45 554 if (root->subsys_mask & (1UL << i)) {
817929ec
PM
555 /* Subsystem is in this hierarchy. So we want
556 * the subsystem state from the new
557 * cgroup */
bd89aabc 558 template[i] = cgrp->subsys[i];
817929ec
PM
559 } else {
560 /* Subsystem is not in this hierarchy, so we
561 * don't want to change the subsystem state */
5abb8855 562 template[i] = old_cset->subsys[i];
817929ec
PM
563 }
564 }
565
0ac801fe 566 key = css_set_hash(template);
5abb8855
TH
567 hash_for_each_possible(css_set_table, cset, hlist, key) {
568 if (!compare_css_sets(cset, old_cset, cgrp, template))
7717f7ba
PM
569 continue;
570
571 /* This css_set matches what we need */
5abb8855 572 return cset;
472b1053 573 }
817929ec
PM
574
575 /* No existing cgroup group matched */
576 return NULL;
577}
578
69d0206c 579static void free_cgrp_cset_links(struct list_head *links_to_free)
36553434 580{
69d0206c 581 struct cgrp_cset_link *link, *tmp_link;
36553434 582
69d0206c
TH
583 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
584 list_del(&link->cset_link);
36553434
LZ
585 kfree(link);
586 }
587}
588
69d0206c
TH
589/**
590 * allocate_cgrp_cset_links - allocate cgrp_cset_links
591 * @count: the number of links to allocate
592 * @tmp_links: list_head the allocated links are put on
593 *
594 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
595 * through ->cset_link. Returns 0 on success or -errno.
817929ec 596 */
69d0206c 597static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
817929ec 598{
69d0206c 599 struct cgrp_cset_link *link;
817929ec 600 int i;
69d0206c
TH
601
602 INIT_LIST_HEAD(tmp_links);
603
817929ec 604 for (i = 0; i < count; i++) {
f4f4be2b 605 link = kzalloc(sizeof(*link), GFP_KERNEL);
817929ec 606 if (!link) {
69d0206c 607 free_cgrp_cset_links(tmp_links);
817929ec
PM
608 return -ENOMEM;
609 }
69d0206c 610 list_add(&link->cset_link, tmp_links);
817929ec
PM
611 }
612 return 0;
613}
614
c12f65d4
LZ
615/**
616 * link_css_set - a helper function to link a css_set to a cgroup
69d0206c 617 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
5abb8855 618 * @cset: the css_set to be linked
c12f65d4
LZ
619 * @cgrp: the destination cgroup
620 */
69d0206c
TH
621static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
622 struct cgroup *cgrp)
c12f65d4 623{
69d0206c 624 struct cgrp_cset_link *link;
c12f65d4 625
69d0206c
TH
626 BUG_ON(list_empty(tmp_links));
627 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
628 link->cset = cset;
7717f7ba 629 link->cgrp = cgrp;
69d0206c 630 list_move(&link->cset_link, &cgrp->cset_links);
7717f7ba
PM
631 /*
632 * Always add links to the tail of the list so that the list
633 * is sorted by order of hierarchy creation
634 */
69d0206c 635 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
c12f65d4
LZ
636}
637
b326f9d0
TH
638/**
639 * find_css_set - return a new css_set with one cgroup updated
640 * @old_cset: the baseline css_set
641 * @cgrp: the cgroup to be updated
642 *
643 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
644 * substituted into the appropriate hierarchy.
817929ec 645 */
5abb8855
TH
646static struct css_set *find_css_set(struct css_set *old_cset,
647 struct cgroup *cgrp)
817929ec 648{
b326f9d0 649 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
5abb8855 650 struct css_set *cset;
69d0206c
TH
651 struct list_head tmp_links;
652 struct cgrp_cset_link *link;
0ac801fe 653 unsigned long key;
472b1053 654
b326f9d0
TH
655 lockdep_assert_held(&cgroup_mutex);
656
817929ec
PM
657 /* First see if we already have a cgroup group that matches
658 * the desired set */
7e9abd89 659 read_lock(&css_set_lock);
5abb8855
TH
660 cset = find_existing_css_set(old_cset, cgrp, template);
661 if (cset)
662 get_css_set(cset);
7e9abd89 663 read_unlock(&css_set_lock);
817929ec 664
5abb8855
TH
665 if (cset)
666 return cset;
817929ec 667
f4f4be2b 668 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
5abb8855 669 if (!cset)
817929ec
PM
670 return NULL;
671
69d0206c 672 /* Allocate all the cgrp_cset_link objects that we'll need */
9871bf95 673 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
5abb8855 674 kfree(cset);
817929ec
PM
675 return NULL;
676 }
677
5abb8855 678 atomic_set(&cset->refcount, 1);
69d0206c 679 INIT_LIST_HEAD(&cset->cgrp_links);
5abb8855
TH
680 INIT_LIST_HEAD(&cset->tasks);
681 INIT_HLIST_NODE(&cset->hlist);
817929ec
PM
682
683 /* Copy the set of subsystem state objects generated in
684 * find_existing_css_set() */
5abb8855 685 memcpy(cset->subsys, template, sizeof(cset->subsys));
817929ec
PM
686
687 write_lock(&css_set_lock);
688 /* Add reference counts and links from the new css_set. */
69d0206c 689 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
7717f7ba 690 struct cgroup *c = link->cgrp;
69d0206c 691
7717f7ba
PM
692 if (c->root == cgrp->root)
693 c = cgrp;
69d0206c 694 link_css_set(&tmp_links, cset, c);
7717f7ba 695 }
817929ec 696
69d0206c 697 BUG_ON(!list_empty(&tmp_links));
817929ec 698
817929ec 699 css_set_count++;
472b1053
LZ
700
701 /* Add this cgroup group to the hash table */
5abb8855
TH
702 key = css_set_hash(cset->subsys);
703 hash_add(css_set_table, &cset->hlist, key);
472b1053 704
817929ec
PM
705 write_unlock(&css_set_lock);
706
5abb8855 707 return cset;
b4f48b63
PM
708}
709
7717f7ba
PM
710/*
711 * Return the cgroup for "task" from the given hierarchy. Must be
712 * called with cgroup_mutex held.
713 */
714static struct cgroup *task_cgroup_from_root(struct task_struct *task,
715 struct cgroupfs_root *root)
716{
5abb8855 717 struct css_set *cset;
7717f7ba
PM
718 struct cgroup *res = NULL;
719
720 BUG_ON(!mutex_is_locked(&cgroup_mutex));
721 read_lock(&css_set_lock);
722 /*
723 * No need to lock the task - since we hold cgroup_mutex the
724 * task can't change groups, so the only thing that can happen
725 * is that it exits and its css is set back to init_css_set.
726 */
5abb8855
TH
727 cset = task->cgroups;
728 if (cset == &init_css_set) {
7717f7ba
PM
729 res = &root->top_cgroup;
730 } else {
69d0206c
TH
731 struct cgrp_cset_link *link;
732
733 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 734 struct cgroup *c = link->cgrp;
69d0206c 735
7717f7ba
PM
736 if (c->root == root) {
737 res = c;
738 break;
739 }
740 }
741 }
742 read_unlock(&css_set_lock);
743 BUG_ON(!res);
744 return res;
745}
746
ddbcc7e8
PM
747/*
748 * There is one global cgroup mutex. We also require taking
749 * task_lock() when dereferencing a task's cgroup subsys pointers.
750 * See "The task_lock() exception", at the end of this comment.
751 *
752 * A task must hold cgroup_mutex to modify cgroups.
753 *
754 * Any task can increment and decrement the count field without lock.
755 * So in general, code holding cgroup_mutex can't rely on the count
756 * field not changing. However, if the count goes to zero, then only
956db3ca 757 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
758 * means that no tasks are currently attached, therefore there is no
759 * way a task attached to that cgroup can fork (the other way to
760 * increment the count). So code holding cgroup_mutex can safely
761 * assume that if the count is zero, it will stay zero. Similarly, if
762 * a task holds cgroup_mutex on a cgroup with zero count, it
763 * knows that the cgroup won't be removed, as cgroup_rmdir()
764 * needs that mutex.
765 *
ddbcc7e8
PM
766 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
767 * (usually) take cgroup_mutex. These are the two most performance
768 * critical pieces of code here. The exception occurs on cgroup_exit(),
769 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
770 * is taken, and if the cgroup count is zero, a usermode call made
a043e3b2
LZ
771 * to the release agent with the name of the cgroup (path relative to
772 * the root of cgroup file system) as the argument.
ddbcc7e8
PM
773 *
774 * A cgroup can only be deleted if both its 'count' of using tasks
775 * is zero, and its list of 'children' cgroups is empty. Since all
776 * tasks in the system use _some_ cgroup, and since there is always at
777 * least one task in the system (init, pid == 1), therefore, top_cgroup
778 * always has either children cgroups and/or using tasks. So we don't
779 * need a special hack to ensure that top_cgroup cannot be deleted.
780 *
781 * The task_lock() exception
782 *
783 * The need for this exception arises from the action of
d0b2fdd2 784 * cgroup_attach_task(), which overwrites one task's cgroup pointer with
a043e3b2 785 * another. It does so using cgroup_mutex, however there are
ddbcc7e8
PM
786 * several performance critical places that need to reference
787 * task->cgroup without the expense of grabbing a system global
788 * mutex. Therefore except as noted below, when dereferencing or, as
d0b2fdd2 789 * in cgroup_attach_task(), modifying a task's cgroup pointer we use
ddbcc7e8
PM
790 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
791 * the task_struct routinely used for such matters.
792 *
793 * P.S. One more locking exception. RCU is used to guard the
956db3ca 794 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
795 */
796
ddbcc7e8
PM
797/*
798 * A couple of forward declarations required, due to cyclic reference loop:
799 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
800 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
801 * -> cgroup_mkdir.
802 */
803
18bb1db3 804static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode);
00cd8dd3 805static struct dentry *cgroup_lookup(struct inode *, struct dentry *, unsigned int);
ddbcc7e8 806static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
13af07df
AR
807static int cgroup_populate_dir(struct cgroup *cgrp, bool base_files,
808 unsigned long subsys_mask);
6e1d5dcc 809static const struct inode_operations cgroup_dir_inode_operations;
828c0950 810static const struct file_operations proc_cgroupstats_operations;
a424316c
PM
811
812static struct backing_dev_info cgroup_backing_dev_info = {
d993831f 813 .name = "cgroup",
e4ad08fe 814 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
a424316c 815};
ddbcc7e8 816
38460b48
KH
817static int alloc_css_id(struct cgroup_subsys *ss,
818 struct cgroup *parent, struct cgroup *child);
819
a5e7ed32 820static struct inode *cgroup_new_inode(umode_t mode, struct super_block *sb)
ddbcc7e8
PM
821{
822 struct inode *inode = new_inode(sb);
ddbcc7e8
PM
823
824 if (inode) {
85fe4025 825 inode->i_ino = get_next_ino();
ddbcc7e8 826 inode->i_mode = mode;
76aac0e9
DH
827 inode->i_uid = current_fsuid();
828 inode->i_gid = current_fsgid();
ddbcc7e8
PM
829 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
830 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
831 }
832 return inode;
833}
834
65dff759
LZ
835static struct cgroup_name *cgroup_alloc_name(struct dentry *dentry)
836{
837 struct cgroup_name *name;
838
839 name = kmalloc(sizeof(*name) + dentry->d_name.len + 1, GFP_KERNEL);
840 if (!name)
841 return NULL;
842 strcpy(name->name, dentry->d_name.name);
843 return name;
844}
845
be445626
LZ
846static void cgroup_free_fn(struct work_struct *work)
847{
ea15f8cc 848 struct cgroup *cgrp = container_of(work, struct cgroup, destroy_work);
be445626
LZ
849 struct cgroup_subsys *ss;
850
851 mutex_lock(&cgroup_mutex);
852 /*
853 * Release the subsystem state objects.
854 */
5549c497 855 for_each_root_subsys(cgrp->root, ss)
be445626
LZ
856 ss->css_free(cgrp);
857
858 cgrp->root->number_of_cgroups--;
859 mutex_unlock(&cgroup_mutex);
860
415cf07a
LZ
861 /*
862 * We get a ref to the parent's dentry, and put the ref when
863 * this cgroup is being freed, so it's guaranteed that the
864 * parent won't be destroyed before its children.
865 */
866 dput(cgrp->parent->dentry);
867
cc20e01c
LZ
868 ida_simple_remove(&cgrp->root->cgroup_ida, cgrp->id);
869
be445626
LZ
870 /*
871 * Drop the active superblock reference that we took when we
cc20e01c
LZ
872 * created the cgroup. This will free cgrp->root, if we are
873 * holding the last reference to @sb.
be445626
LZ
874 */
875 deactivate_super(cgrp->root->sb);
876
877 /*
878 * if we're getting rid of the cgroup, refcount should ensure
879 * that there are no pidlists left.
880 */
881 BUG_ON(!list_empty(&cgrp->pidlists));
882
883 simple_xattrs_free(&cgrp->xattrs);
884
65dff759 885 kfree(rcu_dereference_raw(cgrp->name));
be445626
LZ
886 kfree(cgrp);
887}
888
889static void cgroup_free_rcu(struct rcu_head *head)
890{
891 struct cgroup *cgrp = container_of(head, struct cgroup, rcu_head);
892
ea15f8cc
TH
893 INIT_WORK(&cgrp->destroy_work, cgroup_free_fn);
894 schedule_work(&cgrp->destroy_work);
be445626
LZ
895}
896
ddbcc7e8
PM
897static void cgroup_diput(struct dentry *dentry, struct inode *inode)
898{
899 /* is dentry a directory ? if so, kfree() associated cgroup */
900 if (S_ISDIR(inode->i_mode)) {
bd89aabc 901 struct cgroup *cgrp = dentry->d_fsdata;
be445626 902
54766d4a 903 BUG_ON(!(cgroup_is_dead(cgrp)));
be445626 904 call_rcu(&cgrp->rcu_head, cgroup_free_rcu);
05ef1d7c
TH
905 } else {
906 struct cfent *cfe = __d_cfe(dentry);
907 struct cgroup *cgrp = dentry->d_parent->d_fsdata;
908
909 WARN_ONCE(!list_empty(&cfe->node) &&
910 cgrp != &cgrp->root->top_cgroup,
911 "cfe still linked for %s\n", cfe->type->name);
712317ad 912 simple_xattrs_free(&cfe->xattrs);
05ef1d7c 913 kfree(cfe);
ddbcc7e8
PM
914 }
915 iput(inode);
916}
917
c72a04e3
AV
918static int cgroup_delete(const struct dentry *d)
919{
920 return 1;
921}
922
ddbcc7e8
PM
923static void remove_dir(struct dentry *d)
924{
925 struct dentry *parent = dget(d->d_parent);
926
927 d_delete(d);
928 simple_rmdir(parent->d_inode, d);
929 dput(parent);
930}
931
2739d3cc 932static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
05ef1d7c
TH
933{
934 struct cfent *cfe;
935
936 lockdep_assert_held(&cgrp->dentry->d_inode->i_mutex);
937 lockdep_assert_held(&cgroup_mutex);
938
2739d3cc
LZ
939 /*
940 * If we're doing cleanup due to failure of cgroup_create(),
941 * the corresponding @cfe may not exist.
942 */
05ef1d7c
TH
943 list_for_each_entry(cfe, &cgrp->files, node) {
944 struct dentry *d = cfe->dentry;
945
946 if (cft && cfe->type != cft)
947 continue;
948
949 dget(d);
950 d_delete(d);
ce27e317 951 simple_unlink(cgrp->dentry->d_inode, d);
05ef1d7c
TH
952 list_del_init(&cfe->node);
953 dput(d);
954
2739d3cc 955 break;
ddbcc7e8 956 }
05ef1d7c
TH
957}
958
13af07df
AR
959/**
960 * cgroup_clear_directory - selective removal of base and subsystem files
961 * @dir: directory containing the files
962 * @base_files: true if the base files should be removed
963 * @subsys_mask: mask of the subsystem ids whose files should be removed
964 */
965static void cgroup_clear_directory(struct dentry *dir, bool base_files,
966 unsigned long subsys_mask)
05ef1d7c
TH
967{
968 struct cgroup *cgrp = __d_cgrp(dir);
13af07df 969 struct cgroup_subsys *ss;
05ef1d7c 970
5549c497 971 for_each_root_subsys(cgrp->root, ss) {
13af07df
AR
972 struct cftype_set *set;
973 if (!test_bit(ss->subsys_id, &subsys_mask))
974 continue;
975 list_for_each_entry(set, &ss->cftsets, node)
879a3d9d 976 cgroup_addrm_files(cgrp, NULL, set->cfts, false);
13af07df
AR
977 }
978 if (base_files) {
979 while (!list_empty(&cgrp->files))
980 cgroup_rm_file(cgrp, NULL);
981 }
ddbcc7e8
PM
982}
983
984/*
985 * NOTE : the dentry must have been dget()'ed
986 */
987static void cgroup_d_remove_dir(struct dentry *dentry)
988{
2fd6b7f5 989 struct dentry *parent;
13af07df 990 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
2fd6b7f5 991
a1a71b45 992 cgroup_clear_directory(dentry, true, root->subsys_mask);
ddbcc7e8 993
2fd6b7f5
NP
994 parent = dentry->d_parent;
995 spin_lock(&parent->d_lock);
3ec762ad 996 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
ddbcc7e8 997 list_del_init(&dentry->d_u.d_child);
2fd6b7f5
NP
998 spin_unlock(&dentry->d_lock);
999 spin_unlock(&parent->d_lock);
ddbcc7e8
PM
1000 remove_dir(dentry);
1001}
1002
aae8aab4 1003/*
cf5d5941
BB
1004 * Call with cgroup_mutex held. Drops reference counts on modules, including
1005 * any duplicate ones that parse_cgroupfs_options took. If this function
1006 * returns an error, no reference counts are touched.
aae8aab4 1007 */
ddbcc7e8 1008static int rebind_subsystems(struct cgroupfs_root *root,
a8a648c4 1009 unsigned long added_mask, unsigned removed_mask)
ddbcc7e8 1010{
bd89aabc 1011 struct cgroup *cgrp = &root->top_cgroup;
30159ec7 1012 struct cgroup_subsys *ss;
ddbcc7e8
PM
1013 int i;
1014
aae8aab4 1015 BUG_ON(!mutex_is_locked(&cgroup_mutex));
e25e2cbb 1016 BUG_ON(!mutex_is_locked(&cgroup_root_mutex));
aae8aab4 1017
ddbcc7e8 1018 /* Check that any added subsystems are currently free */
30159ec7 1019 for_each_subsys(ss, i) {
8d53d55d 1020 unsigned long bit = 1UL << i;
30159ec7 1021
a1a71b45 1022 if (!(bit & added_mask))
ddbcc7e8 1023 continue;
30159ec7 1024
9871bf95 1025 if (ss->root != &cgroup_dummy_root) {
ddbcc7e8
PM
1026 /* Subsystem isn't free */
1027 return -EBUSY;
1028 }
1029 }
1030
1031 /* Currently we don't handle adding/removing subsystems when
1032 * any child cgroups exist. This is theoretically supportable
1033 * but involves complex error handling, so it's being left until
1034 * later */
307257cf 1035 if (root->number_of_cgroups > 1)
ddbcc7e8
PM
1036 return -EBUSY;
1037
1038 /* Process each subsystem */
30159ec7 1039 for_each_subsys(ss, i) {
ddbcc7e8 1040 unsigned long bit = 1UL << i;
30159ec7 1041
a1a71b45 1042 if (bit & added_mask) {
ddbcc7e8 1043 /* We're binding this subsystem to this hierarchy */
bd89aabc 1044 BUG_ON(cgrp->subsys[i]);
9871bf95
TH
1045 BUG_ON(!cgroup_dummy_top->subsys[i]);
1046 BUG_ON(cgroup_dummy_top->subsys[i]->cgroup != cgroup_dummy_top);
a8a648c4 1047
9871bf95 1048 cgrp->subsys[i] = cgroup_dummy_top->subsys[i];
bd89aabc 1049 cgrp->subsys[i]->cgroup = cgrp;
33a68ac1 1050 list_move(&ss->sibling, &root->subsys_list);
b2aa30f7 1051 ss->root = root;
ddbcc7e8 1052 if (ss->bind)
761b3ef5 1053 ss->bind(cgrp);
a8a648c4 1054
cf5d5941 1055 /* refcount was already taken, and we're keeping it */
a8a648c4 1056 root->subsys_mask |= bit;
a1a71b45 1057 } else if (bit & removed_mask) {
ddbcc7e8 1058 /* We're removing this subsystem */
9871bf95 1059 BUG_ON(cgrp->subsys[i] != cgroup_dummy_top->subsys[i]);
bd89aabc 1060 BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
a8a648c4 1061
ddbcc7e8 1062 if (ss->bind)
9871bf95
TH
1063 ss->bind(cgroup_dummy_top);
1064 cgroup_dummy_top->subsys[i]->cgroup = cgroup_dummy_top;
bd89aabc 1065 cgrp->subsys[i] = NULL;
9871bf95
TH
1066 cgroup_subsys[i]->root = &cgroup_dummy_root;
1067 list_move(&ss->sibling, &cgroup_dummy_root.subsys_list);
a8a648c4 1068
cf5d5941
BB
1069 /* subsystem is now free - drop reference on module */
1070 module_put(ss->module);
a8a648c4
TH
1071 root->subsys_mask &= ~bit;
1072 } else if (bit & root->subsys_mask) {
ddbcc7e8 1073 /* Subsystem state should already exist */
bd89aabc 1074 BUG_ON(!cgrp->subsys[i]);
cf5d5941
BB
1075 /*
1076 * a refcount was taken, but we already had one, so
1077 * drop the extra reference.
1078 */
1079 module_put(ss->module);
1080#ifdef CONFIG_MODULE_UNLOAD
1081 BUG_ON(ss->module && !module_refcount(ss->module));
1082#endif
ddbcc7e8
PM
1083 } else {
1084 /* Subsystem state shouldn't exist */
bd89aabc 1085 BUG_ON(cgrp->subsys[i]);
ddbcc7e8
PM
1086 }
1087 }
ddbcc7e8
PM
1088
1089 return 0;
1090}
1091
34c80b1d 1092static int cgroup_show_options(struct seq_file *seq, struct dentry *dentry)
ddbcc7e8 1093{
34c80b1d 1094 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
ddbcc7e8
PM
1095 struct cgroup_subsys *ss;
1096
e25e2cbb 1097 mutex_lock(&cgroup_root_mutex);
5549c497 1098 for_each_root_subsys(root, ss)
ddbcc7e8 1099 seq_printf(seq, ",%s", ss->name);
873fe09e
TH
1100 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR)
1101 seq_puts(seq, ",sane_behavior");
93438629 1102 if (root->flags & CGRP_ROOT_NOPREFIX)
ddbcc7e8 1103 seq_puts(seq, ",noprefix");
93438629 1104 if (root->flags & CGRP_ROOT_XATTR)
03b1cde6 1105 seq_puts(seq, ",xattr");
81a6a5cd
PM
1106 if (strlen(root->release_agent_path))
1107 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
2260e7fc 1108 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags))
97978e6d 1109 seq_puts(seq, ",clone_children");
c6d57f33
PM
1110 if (strlen(root->name))
1111 seq_printf(seq, ",name=%s", root->name);
e25e2cbb 1112 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8
PM
1113 return 0;
1114}
1115
1116struct cgroup_sb_opts {
a1a71b45 1117 unsigned long subsys_mask;
ddbcc7e8 1118 unsigned long flags;
81a6a5cd 1119 char *release_agent;
2260e7fc 1120 bool cpuset_clone_children;
c6d57f33 1121 char *name;
2c6ab6d2
PM
1122 /* User explicitly requested empty subsystem */
1123 bool none;
c6d57f33
PM
1124
1125 struct cgroupfs_root *new_root;
2c6ab6d2 1126
ddbcc7e8
PM
1127};
1128
aae8aab4 1129/*
9871bf95
TH
1130 * Convert a hierarchy specifier into a bitmask of subsystems and
1131 * flags. Call with cgroup_mutex held to protect the cgroup_subsys[]
1132 * array. This function takes refcounts on subsystems to be used, unless it
1133 * returns error, in which case no refcounts are taken.
aae8aab4 1134 */
cf5d5941 1135static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
ddbcc7e8 1136{
32a8cf23
DL
1137 char *token, *o = data;
1138 bool all_ss = false, one_ss = false;
f9ab5b5b 1139 unsigned long mask = (unsigned long)-1;
cf5d5941 1140 bool module_pin_failed = false;
30159ec7
TH
1141 struct cgroup_subsys *ss;
1142 int i;
f9ab5b5b 1143
aae8aab4
BB
1144 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1145
f9ab5b5b
LZ
1146#ifdef CONFIG_CPUSETS
1147 mask = ~(1UL << cpuset_subsys_id);
1148#endif
ddbcc7e8 1149
c6d57f33 1150 memset(opts, 0, sizeof(*opts));
ddbcc7e8
PM
1151
1152 while ((token = strsep(&o, ",")) != NULL) {
1153 if (!*token)
1154 return -EINVAL;
32a8cf23 1155 if (!strcmp(token, "none")) {
2c6ab6d2
PM
1156 /* Explicitly have no subsystems */
1157 opts->none = true;
32a8cf23
DL
1158 continue;
1159 }
1160 if (!strcmp(token, "all")) {
1161 /* Mutually exclusive option 'all' + subsystem name */
1162 if (one_ss)
1163 return -EINVAL;
1164 all_ss = true;
1165 continue;
1166 }
873fe09e
TH
1167 if (!strcmp(token, "__DEVEL__sane_behavior")) {
1168 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1169 continue;
1170 }
32a8cf23 1171 if (!strcmp(token, "noprefix")) {
93438629 1172 opts->flags |= CGRP_ROOT_NOPREFIX;
32a8cf23
DL
1173 continue;
1174 }
1175 if (!strcmp(token, "clone_children")) {
2260e7fc 1176 opts->cpuset_clone_children = true;
32a8cf23
DL
1177 continue;
1178 }
03b1cde6 1179 if (!strcmp(token, "xattr")) {
93438629 1180 opts->flags |= CGRP_ROOT_XATTR;
03b1cde6
AR
1181 continue;
1182 }
32a8cf23 1183 if (!strncmp(token, "release_agent=", 14)) {
81a6a5cd
PM
1184 /* Specifying two release agents is forbidden */
1185 if (opts->release_agent)
1186 return -EINVAL;
c6d57f33 1187 opts->release_agent =
e400c285 1188 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
81a6a5cd
PM
1189 if (!opts->release_agent)
1190 return -ENOMEM;
32a8cf23
DL
1191 continue;
1192 }
1193 if (!strncmp(token, "name=", 5)) {
c6d57f33
PM
1194 const char *name = token + 5;
1195 /* Can't specify an empty name */
1196 if (!strlen(name))
1197 return -EINVAL;
1198 /* Must match [\w.-]+ */
1199 for (i = 0; i < strlen(name); i++) {
1200 char c = name[i];
1201 if (isalnum(c))
1202 continue;
1203 if ((c == '.') || (c == '-') || (c == '_'))
1204 continue;
1205 return -EINVAL;
1206 }
1207 /* Specifying two names is forbidden */
1208 if (opts->name)
1209 return -EINVAL;
1210 opts->name = kstrndup(name,
e400c285 1211 MAX_CGROUP_ROOT_NAMELEN - 1,
c6d57f33
PM
1212 GFP_KERNEL);
1213 if (!opts->name)
1214 return -ENOMEM;
32a8cf23
DL
1215
1216 continue;
1217 }
1218
30159ec7 1219 for_each_subsys(ss, i) {
32a8cf23
DL
1220 if (strcmp(token, ss->name))
1221 continue;
1222 if (ss->disabled)
1223 continue;
1224
1225 /* Mutually exclusive option 'all' + subsystem name */
1226 if (all_ss)
1227 return -EINVAL;
a1a71b45 1228 set_bit(i, &opts->subsys_mask);
32a8cf23
DL
1229 one_ss = true;
1230
1231 break;
1232 }
1233 if (i == CGROUP_SUBSYS_COUNT)
1234 return -ENOENT;
1235 }
1236
1237 /*
1238 * If the 'all' option was specified select all the subsystems,
0d19ea86
LZ
1239 * otherwise if 'none', 'name=' and a subsystem name options
1240 * were not specified, let's default to 'all'
32a8cf23 1241 */
30159ec7
TH
1242 if (all_ss || (!one_ss && !opts->none && !opts->name))
1243 for_each_subsys(ss, i)
1244 if (!ss->disabled)
1245 set_bit(i, &opts->subsys_mask);
ddbcc7e8 1246
2c6ab6d2
PM
1247 /* Consistency checks */
1248
873fe09e
TH
1249 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1250 pr_warning("cgroup: sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
1251
1252 if (opts->flags & CGRP_ROOT_NOPREFIX) {
1253 pr_err("cgroup: sane_behavior: noprefix is not allowed\n");
1254 return -EINVAL;
1255 }
1256
1257 if (opts->cpuset_clone_children) {
1258 pr_err("cgroup: sane_behavior: clone_children is not allowed\n");
1259 return -EINVAL;
1260 }
1261 }
1262
f9ab5b5b
LZ
1263 /*
1264 * Option noprefix was introduced just for backward compatibility
1265 * with the old cpuset, so we allow noprefix only if mounting just
1266 * the cpuset subsystem.
1267 */
93438629 1268 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
f9ab5b5b
LZ
1269 return -EINVAL;
1270
2c6ab6d2
PM
1271
1272 /* Can't specify "none" and some subsystems */
a1a71b45 1273 if (opts->subsys_mask && opts->none)
2c6ab6d2
PM
1274 return -EINVAL;
1275
1276 /*
1277 * We either have to specify by name or by subsystems. (So all
1278 * empty hierarchies must have a name).
1279 */
a1a71b45 1280 if (!opts->subsys_mask && !opts->name)
ddbcc7e8
PM
1281 return -EINVAL;
1282
cf5d5941
BB
1283 /*
1284 * Grab references on all the modules we'll need, so the subsystems
1285 * don't dance around before rebind_subsystems attaches them. This may
1286 * take duplicate reference counts on a subsystem that's already used,
1287 * but rebind_subsystems handles this case.
1288 */
30159ec7
TH
1289 for_each_subsys(ss, i) {
1290 if (!(opts->subsys_mask & (1UL << i)))
cf5d5941 1291 continue;
9871bf95 1292 if (!try_module_get(cgroup_subsys[i]->module)) {
cf5d5941
BB
1293 module_pin_failed = true;
1294 break;
1295 }
1296 }
1297 if (module_pin_failed) {
1298 /*
1299 * oops, one of the modules was going away. this means that we
1300 * raced with a module_delete call, and to the user this is
1301 * essentially a "subsystem doesn't exist" case.
1302 */
be45c900 1303 for (i--; i >= 0; i--) {
cf5d5941
BB
1304 /* drop refcounts only on the ones we took */
1305 unsigned long bit = 1UL << i;
1306
a1a71b45 1307 if (!(bit & opts->subsys_mask))
cf5d5941 1308 continue;
9871bf95 1309 module_put(cgroup_subsys[i]->module);
cf5d5941
BB
1310 }
1311 return -ENOENT;
1312 }
1313
ddbcc7e8
PM
1314 return 0;
1315}
1316
a1a71b45 1317static void drop_parsed_module_refcounts(unsigned long subsys_mask)
cf5d5941 1318{
30159ec7 1319 struct cgroup_subsys *ss;
cf5d5941 1320 int i;
cf5d5941 1321
30159ec7
TH
1322 for_each_subsys(ss, i) {
1323 if (!(subsys_mask & (1UL << i)))
cf5d5941 1324 continue;
9871bf95 1325 module_put(cgroup_subsys[i]->module);
cf5d5941
BB
1326 }
1327}
1328
ddbcc7e8
PM
1329static int cgroup_remount(struct super_block *sb, int *flags, char *data)
1330{
1331 int ret = 0;
1332 struct cgroupfs_root *root = sb->s_fs_info;
bd89aabc 1333 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8 1334 struct cgroup_sb_opts opts;
a1a71b45 1335 unsigned long added_mask, removed_mask;
ddbcc7e8 1336
873fe09e
TH
1337 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1338 pr_err("cgroup: sane_behavior: remount is not allowed\n");
1339 return -EINVAL;
1340 }
1341
bd89aabc 1342 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8 1343 mutex_lock(&cgroup_mutex);
e25e2cbb 1344 mutex_lock(&cgroup_root_mutex);
ddbcc7e8
PM
1345
1346 /* See what subsystems are wanted */
1347 ret = parse_cgroupfs_options(data, &opts);
1348 if (ret)
1349 goto out_unlock;
1350
a8a648c4 1351 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
8b5a5a9d
TH
1352 pr_warning("cgroup: option changes via remount are deprecated (pid=%d comm=%s)\n",
1353 task_tgid_nr(current), current->comm);
1354
a1a71b45
AR
1355 added_mask = opts.subsys_mask & ~root->subsys_mask;
1356 removed_mask = root->subsys_mask & ~opts.subsys_mask;
13af07df 1357
cf5d5941
BB
1358 /* Don't allow flags or name to change at remount */
1359 if (opts.flags != root->flags ||
1360 (opts.name && strcmp(opts.name, root->name))) {
c6d57f33 1361 ret = -EINVAL;
a1a71b45 1362 drop_parsed_module_refcounts(opts.subsys_mask);
c6d57f33
PM
1363 goto out_unlock;
1364 }
1365
7083d037
G
1366 /*
1367 * Clear out the files of subsystems that should be removed, do
1368 * this before rebind_subsystems, since rebind_subsystems may
1369 * change this hierarchy's subsys_list.
1370 */
1371 cgroup_clear_directory(cgrp->dentry, false, removed_mask);
1372
a8a648c4 1373 ret = rebind_subsystems(root, added_mask, removed_mask);
cf5d5941 1374 if (ret) {
7083d037
G
1375 /* rebind_subsystems failed, re-populate the removed files */
1376 cgroup_populate_dir(cgrp, false, removed_mask);
a1a71b45 1377 drop_parsed_module_refcounts(opts.subsys_mask);
0670e08b 1378 goto out_unlock;
cf5d5941 1379 }
ddbcc7e8 1380
13af07df 1381 /* re-populate subsystem files */
a1a71b45 1382 cgroup_populate_dir(cgrp, false, added_mask);
ddbcc7e8 1383
81a6a5cd
PM
1384 if (opts.release_agent)
1385 strcpy(root->release_agent_path, opts.release_agent);
ddbcc7e8 1386 out_unlock:
66bdc9cf 1387 kfree(opts.release_agent);
c6d57f33 1388 kfree(opts.name);
e25e2cbb 1389 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8 1390 mutex_unlock(&cgroup_mutex);
bd89aabc 1391 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8
PM
1392 return ret;
1393}
1394
b87221de 1395static const struct super_operations cgroup_ops = {
ddbcc7e8
PM
1396 .statfs = simple_statfs,
1397 .drop_inode = generic_delete_inode,
1398 .show_options = cgroup_show_options,
1399 .remount_fs = cgroup_remount,
1400};
1401
cc31edce
PM
1402static void init_cgroup_housekeeping(struct cgroup *cgrp)
1403{
1404 INIT_LIST_HEAD(&cgrp->sibling);
1405 INIT_LIST_HEAD(&cgrp->children);
05ef1d7c 1406 INIT_LIST_HEAD(&cgrp->files);
69d0206c 1407 INIT_LIST_HEAD(&cgrp->cset_links);
cc31edce 1408 INIT_LIST_HEAD(&cgrp->release_list);
72a8cb30
BB
1409 INIT_LIST_HEAD(&cgrp->pidlists);
1410 mutex_init(&cgrp->pidlist_mutex);
0dea1168
KS
1411 INIT_LIST_HEAD(&cgrp->event_list);
1412 spin_lock_init(&cgrp->event_list_lock);
03b1cde6 1413 simple_xattrs_init(&cgrp->xattrs);
cc31edce 1414}
c6d57f33 1415
ddbcc7e8
PM
1416static void init_cgroup_root(struct cgroupfs_root *root)
1417{
bd89aabc 1418 struct cgroup *cgrp = &root->top_cgroup;
b0ca5a84 1419
ddbcc7e8
PM
1420 INIT_LIST_HEAD(&root->subsys_list);
1421 INIT_LIST_HEAD(&root->root_list);
1422 root->number_of_cgroups = 1;
bd89aabc 1423 cgrp->root = root;
65dff759 1424 cgrp->name = &root_cgroup_name;
cc31edce 1425 init_cgroup_housekeeping(cgrp);
ddbcc7e8
PM
1426}
1427
fc76df70 1428static int cgroup_init_root_id(struct cgroupfs_root *root, int start, int end)
2c6ab6d2 1429{
1a574231 1430 int id;
2c6ab6d2 1431
54e7b4eb
TH
1432 lockdep_assert_held(&cgroup_mutex);
1433 lockdep_assert_held(&cgroup_root_mutex);
1434
fc76df70
TH
1435 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, start, end,
1436 GFP_KERNEL);
1a574231
TH
1437 if (id < 0)
1438 return id;
1439
1440 root->hierarchy_id = id;
fa3ca07e
TH
1441 return 0;
1442}
1443
1444static void cgroup_exit_root_id(struct cgroupfs_root *root)
1445{
54e7b4eb
TH
1446 lockdep_assert_held(&cgroup_mutex);
1447 lockdep_assert_held(&cgroup_root_mutex);
1448
fa3ca07e 1449 if (root->hierarchy_id) {
1a574231 1450 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
fa3ca07e
TH
1451 root->hierarchy_id = 0;
1452 }
2c6ab6d2
PM
1453}
1454
ddbcc7e8
PM
1455static int cgroup_test_super(struct super_block *sb, void *data)
1456{
c6d57f33 1457 struct cgroup_sb_opts *opts = data;
ddbcc7e8
PM
1458 struct cgroupfs_root *root = sb->s_fs_info;
1459
c6d57f33
PM
1460 /* If we asked for a name then it must match */
1461 if (opts->name && strcmp(opts->name, root->name))
1462 return 0;
ddbcc7e8 1463
2c6ab6d2
PM
1464 /*
1465 * If we asked for subsystems (or explicitly for no
1466 * subsystems) then they must match
1467 */
a1a71b45
AR
1468 if ((opts->subsys_mask || opts->none)
1469 && (opts->subsys_mask != root->subsys_mask))
ddbcc7e8
PM
1470 return 0;
1471
1472 return 1;
1473}
1474
c6d57f33
PM
1475static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
1476{
1477 struct cgroupfs_root *root;
1478
a1a71b45 1479 if (!opts->subsys_mask && !opts->none)
c6d57f33
PM
1480 return NULL;
1481
1482 root = kzalloc(sizeof(*root), GFP_KERNEL);
1483 if (!root)
1484 return ERR_PTR(-ENOMEM);
1485
1486 init_cgroup_root(root);
2c6ab6d2 1487
a1a71b45 1488 root->subsys_mask = opts->subsys_mask;
c6d57f33 1489 root->flags = opts->flags;
0a950f65 1490 ida_init(&root->cgroup_ida);
c6d57f33
PM
1491 if (opts->release_agent)
1492 strcpy(root->release_agent_path, opts->release_agent);
1493 if (opts->name)
1494 strcpy(root->name, opts->name);
2260e7fc
TH
1495 if (opts->cpuset_clone_children)
1496 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags);
c6d57f33
PM
1497 return root;
1498}
1499
fa3ca07e 1500static void cgroup_free_root(struct cgroupfs_root *root)
2c6ab6d2 1501{
fa3ca07e
TH
1502 if (root) {
1503 /* hierarhcy ID shoulid already have been released */
1504 WARN_ON_ONCE(root->hierarchy_id);
2c6ab6d2 1505
fa3ca07e
TH
1506 ida_destroy(&root->cgroup_ida);
1507 kfree(root);
1508 }
2c6ab6d2
PM
1509}
1510
ddbcc7e8
PM
1511static int cgroup_set_super(struct super_block *sb, void *data)
1512{
1513 int ret;
c6d57f33
PM
1514 struct cgroup_sb_opts *opts = data;
1515
1516 /* If we don't have a new root, we can't set up a new sb */
1517 if (!opts->new_root)
1518 return -EINVAL;
1519
a1a71b45 1520 BUG_ON(!opts->subsys_mask && !opts->none);
ddbcc7e8
PM
1521
1522 ret = set_anon_super(sb, NULL);
1523 if (ret)
1524 return ret;
1525
c6d57f33
PM
1526 sb->s_fs_info = opts->new_root;
1527 opts->new_root->sb = sb;
ddbcc7e8
PM
1528
1529 sb->s_blocksize = PAGE_CACHE_SIZE;
1530 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1531 sb->s_magic = CGROUP_SUPER_MAGIC;
1532 sb->s_op = &cgroup_ops;
1533
1534 return 0;
1535}
1536
1537static int cgroup_get_rootdir(struct super_block *sb)
1538{
0df6a63f
AV
1539 static const struct dentry_operations cgroup_dops = {
1540 .d_iput = cgroup_diput,
c72a04e3 1541 .d_delete = cgroup_delete,
0df6a63f
AV
1542 };
1543
ddbcc7e8
PM
1544 struct inode *inode =
1545 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
ddbcc7e8
PM
1546
1547 if (!inode)
1548 return -ENOMEM;
1549
ddbcc7e8
PM
1550 inode->i_fop = &simple_dir_operations;
1551 inode->i_op = &cgroup_dir_inode_operations;
1552 /* directories start off with i_nlink == 2 (for "." entry) */
1553 inc_nlink(inode);
48fde701
AV
1554 sb->s_root = d_make_root(inode);
1555 if (!sb->s_root)
ddbcc7e8 1556 return -ENOMEM;
0df6a63f
AV
1557 /* for everything else we want ->d_op set */
1558 sb->s_d_op = &cgroup_dops;
ddbcc7e8
PM
1559 return 0;
1560}
1561
f7e83571 1562static struct dentry *cgroup_mount(struct file_system_type *fs_type,
ddbcc7e8 1563 int flags, const char *unused_dev_name,
f7e83571 1564 void *data)
ddbcc7e8
PM
1565{
1566 struct cgroup_sb_opts opts;
c6d57f33 1567 struct cgroupfs_root *root;
ddbcc7e8
PM
1568 int ret = 0;
1569 struct super_block *sb;
c6d57f33 1570 struct cgroupfs_root *new_root;
e25e2cbb 1571 struct inode *inode;
ddbcc7e8
PM
1572
1573 /* First find the desired set of subsystems */
aae8aab4 1574 mutex_lock(&cgroup_mutex);
ddbcc7e8 1575 ret = parse_cgroupfs_options(data, &opts);
aae8aab4 1576 mutex_unlock(&cgroup_mutex);
c6d57f33
PM
1577 if (ret)
1578 goto out_err;
ddbcc7e8 1579
c6d57f33
PM
1580 /*
1581 * Allocate a new cgroup root. We may not need it if we're
1582 * reusing an existing hierarchy.
1583 */
1584 new_root = cgroup_root_from_opts(&opts);
1585 if (IS_ERR(new_root)) {
1586 ret = PTR_ERR(new_root);
cf5d5941 1587 goto drop_modules;
81a6a5cd 1588 }
c6d57f33 1589 opts.new_root = new_root;
ddbcc7e8 1590
c6d57f33 1591 /* Locate an existing or new sb for this hierarchy */
9249e17f 1592 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, 0, &opts);
ddbcc7e8 1593 if (IS_ERR(sb)) {
c6d57f33 1594 ret = PTR_ERR(sb);
fa3ca07e 1595 cgroup_free_root(opts.new_root);
cf5d5941 1596 goto drop_modules;
ddbcc7e8
PM
1597 }
1598
c6d57f33
PM
1599 root = sb->s_fs_info;
1600 BUG_ON(!root);
1601 if (root == opts.new_root) {
1602 /* We used the new root structure, so this is a new hierarchy */
69d0206c 1603 struct list_head tmp_links;
c12f65d4 1604 struct cgroup *root_cgrp = &root->top_cgroup;
c6d57f33 1605 struct cgroupfs_root *existing_root;
2ce9738b 1606 const struct cred *cred;
28fd5dfc 1607 int i;
5abb8855 1608 struct css_set *cset;
ddbcc7e8
PM
1609
1610 BUG_ON(sb->s_root != NULL);
1611
1612 ret = cgroup_get_rootdir(sb);
1613 if (ret)
1614 goto drop_new_super;
817929ec 1615 inode = sb->s_root->d_inode;
ddbcc7e8 1616
817929ec 1617 mutex_lock(&inode->i_mutex);
ddbcc7e8 1618 mutex_lock(&cgroup_mutex);
e25e2cbb 1619 mutex_lock(&cgroup_root_mutex);
ddbcc7e8 1620
e25e2cbb
TH
1621 /* Check for name clashes with existing mounts */
1622 ret = -EBUSY;
1623 if (strlen(root->name))
1624 for_each_active_root(existing_root)
1625 if (!strcmp(existing_root->name, root->name))
1626 goto unlock_drop;
c6d57f33 1627
817929ec
PM
1628 /*
1629 * We're accessing css_set_count without locking
1630 * css_set_lock here, but that's OK - it can only be
1631 * increased by someone holding cgroup_lock, and
1632 * that's us. The worst that can happen is that we
1633 * have some link structures left over
1634 */
69d0206c 1635 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
e25e2cbb
TH
1636 if (ret)
1637 goto unlock_drop;
817929ec 1638
fc76df70
TH
1639 /* ID 0 is reserved for dummy root, 1 for unified hierarchy */
1640 ret = cgroup_init_root_id(root, 2, 0);
fa3ca07e
TH
1641 if (ret)
1642 goto unlock_drop;
1643
a8a648c4 1644 ret = rebind_subsystems(root, root->subsys_mask, 0);
ddbcc7e8 1645 if (ret == -EBUSY) {
69d0206c 1646 free_cgrp_cset_links(&tmp_links);
e25e2cbb 1647 goto unlock_drop;
ddbcc7e8 1648 }
cf5d5941
BB
1649 /*
1650 * There must be no failure case after here, since rebinding
1651 * takes care of subsystems' refcounts, which are explicitly
1652 * dropped in the failure exit path.
1653 */
ddbcc7e8
PM
1654
1655 /* EBUSY should be the only error here */
1656 BUG_ON(ret);
1657
9871bf95
TH
1658 list_add(&root->root_list, &cgroup_roots);
1659 cgroup_root_count++;
ddbcc7e8 1660
c12f65d4 1661 sb->s_root->d_fsdata = root_cgrp;
ddbcc7e8
PM
1662 root->top_cgroup.dentry = sb->s_root;
1663
817929ec
PM
1664 /* Link the top cgroup in this hierarchy into all
1665 * the css_set objects */
1666 write_lock(&css_set_lock);
5abb8855 1667 hash_for_each(css_set_table, i, cset, hlist)
69d0206c 1668 link_css_set(&tmp_links, cset, root_cgrp);
817929ec
PM
1669 write_unlock(&css_set_lock);
1670
69d0206c 1671 free_cgrp_cset_links(&tmp_links);
817929ec 1672
c12f65d4 1673 BUG_ON(!list_empty(&root_cgrp->children));
ddbcc7e8
PM
1674 BUG_ON(root->number_of_cgroups != 1);
1675
2ce9738b 1676 cred = override_creds(&init_cred);
a1a71b45 1677 cgroup_populate_dir(root_cgrp, true, root->subsys_mask);
2ce9738b 1678 revert_creds(cred);
e25e2cbb 1679 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8 1680 mutex_unlock(&cgroup_mutex);
34f77a90 1681 mutex_unlock(&inode->i_mutex);
c6d57f33
PM
1682 } else {
1683 /*
1684 * We re-used an existing hierarchy - the new root (if
1685 * any) is not needed
1686 */
fa3ca07e 1687 cgroup_free_root(opts.new_root);
873fe09e 1688
2a0ff3fb
JL
1689 if (root->flags != opts.flags) {
1690 if ((root->flags | opts.flags) & CGRP_ROOT_SANE_BEHAVIOR) {
1691 pr_err("cgroup: sane_behavior: new mount options should match the existing superblock\n");
1692 ret = -EINVAL;
1693 goto drop_new_super;
1694 } else {
1695 pr_warning("cgroup: new mount options do not match the existing superblock, will be ignored\n");
1696 }
873fe09e
TH
1697 }
1698
cf5d5941 1699 /* no subsys rebinding, so refcounts don't change */
a1a71b45 1700 drop_parsed_module_refcounts(opts.subsys_mask);
ddbcc7e8
PM
1701 }
1702
c6d57f33
PM
1703 kfree(opts.release_agent);
1704 kfree(opts.name);
f7e83571 1705 return dget(sb->s_root);
ddbcc7e8 1706
e25e2cbb 1707 unlock_drop:
fa3ca07e 1708 cgroup_exit_root_id(root);
e25e2cbb
TH
1709 mutex_unlock(&cgroup_root_mutex);
1710 mutex_unlock(&cgroup_mutex);
1711 mutex_unlock(&inode->i_mutex);
ddbcc7e8 1712 drop_new_super:
6f5bbff9 1713 deactivate_locked_super(sb);
cf5d5941 1714 drop_modules:
a1a71b45 1715 drop_parsed_module_refcounts(opts.subsys_mask);
c6d57f33
PM
1716 out_err:
1717 kfree(opts.release_agent);
1718 kfree(opts.name);
f7e83571 1719 return ERR_PTR(ret);
ddbcc7e8
PM
1720}
1721
1722static void cgroup_kill_sb(struct super_block *sb) {
1723 struct cgroupfs_root *root = sb->s_fs_info;
bd89aabc 1724 struct cgroup *cgrp = &root->top_cgroup;
69d0206c 1725 struct cgrp_cset_link *link, *tmp_link;
ddbcc7e8
PM
1726 int ret;
1727
1728 BUG_ON(!root);
1729
1730 BUG_ON(root->number_of_cgroups != 1);
bd89aabc 1731 BUG_ON(!list_empty(&cgrp->children));
ddbcc7e8
PM
1732
1733 mutex_lock(&cgroup_mutex);
e25e2cbb 1734 mutex_lock(&cgroup_root_mutex);
ddbcc7e8
PM
1735
1736 /* Rebind all subsystems back to the default hierarchy */
a8a648c4 1737 ret = rebind_subsystems(root, 0, root->subsys_mask);
ddbcc7e8
PM
1738 /* Shouldn't be able to fail ... */
1739 BUG_ON(ret);
1740
817929ec 1741 /*
69d0206c 1742 * Release all the links from cset_links to this hierarchy's
817929ec
PM
1743 * root cgroup
1744 */
1745 write_lock(&css_set_lock);
71cbb949 1746
69d0206c
TH
1747 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1748 list_del(&link->cset_link);
1749 list_del(&link->cgrp_link);
817929ec
PM
1750 kfree(link);
1751 }
1752 write_unlock(&css_set_lock);
1753
839ec545
PM
1754 if (!list_empty(&root->root_list)) {
1755 list_del(&root->root_list);
9871bf95 1756 cgroup_root_count--;
839ec545 1757 }
e5f6a860 1758
fa3ca07e
TH
1759 cgroup_exit_root_id(root);
1760
e25e2cbb 1761 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8
PM
1762 mutex_unlock(&cgroup_mutex);
1763
03b1cde6
AR
1764 simple_xattrs_free(&cgrp->xattrs);
1765
ddbcc7e8 1766 kill_litter_super(sb);
fa3ca07e 1767 cgroup_free_root(root);
ddbcc7e8
PM
1768}
1769
1770static struct file_system_type cgroup_fs_type = {
1771 .name = "cgroup",
f7e83571 1772 .mount = cgroup_mount,
ddbcc7e8
PM
1773 .kill_sb = cgroup_kill_sb,
1774};
1775
676db4af
GK
1776static struct kobject *cgroup_kobj;
1777
a043e3b2
LZ
1778/**
1779 * cgroup_path - generate the path of a cgroup
1780 * @cgrp: the cgroup in question
1781 * @buf: the buffer to write the path into
1782 * @buflen: the length of the buffer
1783 *
65dff759
LZ
1784 * Writes path of cgroup into buf. Returns 0 on success, -errno on error.
1785 *
1786 * We can't generate cgroup path using dentry->d_name, as accessing
1787 * dentry->name must be protected by irq-unsafe dentry->d_lock or parent
1788 * inode's i_mutex, while on the other hand cgroup_path() can be called
1789 * with some irq-safe spinlocks held.
ddbcc7e8 1790 */
bd89aabc 1791int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
ddbcc7e8 1792{
65dff759 1793 int ret = -ENAMETOOLONG;
ddbcc7e8 1794 char *start;
febfcef6 1795
da1f296f
TH
1796 if (!cgrp->parent) {
1797 if (strlcpy(buf, "/", buflen) >= buflen)
1798 return -ENAMETOOLONG;
ddbcc7e8
PM
1799 return 0;
1800 }
1801
316eb661 1802 start = buf + buflen - 1;
316eb661 1803 *start = '\0';
9a9686b6 1804
65dff759 1805 rcu_read_lock();
da1f296f 1806 do {
65dff759
LZ
1807 const char *name = cgroup_name(cgrp);
1808 int len;
1809
1810 len = strlen(name);
ddbcc7e8 1811 if ((start -= len) < buf)
65dff759
LZ
1812 goto out;
1813 memcpy(start, name, len);
9a9686b6 1814
ddbcc7e8 1815 if (--start < buf)
65dff759 1816 goto out;
ddbcc7e8 1817 *start = '/';
65dff759
LZ
1818
1819 cgrp = cgrp->parent;
da1f296f 1820 } while (cgrp->parent);
65dff759 1821 ret = 0;
ddbcc7e8 1822 memmove(buf, start, buf + buflen - start);
65dff759
LZ
1823out:
1824 rcu_read_unlock();
1825 return ret;
ddbcc7e8 1826}
67523c48 1827EXPORT_SYMBOL_GPL(cgroup_path);
ddbcc7e8 1828
857a2beb
TH
1829/**
1830 * task_cgroup_path_from_hierarchy - cgroup path of a task on a hierarchy
1831 * @task: target task
1832 * @hierarchy_id: the hierarchy to look up @task's cgroup from
1833 * @buf: the buffer to write the path into
1834 * @buflen: the length of the buffer
1835 *
1836 * Determine @task's cgroup on the hierarchy specified by @hierarchy_id and
1837 * copy its path into @buf. This function grabs cgroup_mutex and shouldn't
1838 * be used inside locks used by cgroup controller callbacks.
1839 */
1840int task_cgroup_path_from_hierarchy(struct task_struct *task, int hierarchy_id,
1841 char *buf, size_t buflen)
1842{
1843 struct cgroupfs_root *root;
1844 struct cgroup *cgrp = NULL;
1845 int ret = -ENOENT;
1846
1847 mutex_lock(&cgroup_mutex);
1848
1849 root = idr_find(&cgroup_hierarchy_idr, hierarchy_id);
1850 if (root) {
1851 cgrp = task_cgroup_from_root(task, root);
1852 ret = cgroup_path(cgrp, buf, buflen);
1853 }
1854
1855 mutex_unlock(&cgroup_mutex);
1856
1857 return ret;
1858}
1859EXPORT_SYMBOL_GPL(task_cgroup_path_from_hierarchy);
1860
2f7ee569
TH
1861/*
1862 * Control Group taskset
1863 */
134d3373
TH
1864struct task_and_cgroup {
1865 struct task_struct *task;
1866 struct cgroup *cgrp;
61d1d219 1867 struct css_set *cg;
134d3373
TH
1868};
1869
2f7ee569
TH
1870struct cgroup_taskset {
1871 struct task_and_cgroup single;
1872 struct flex_array *tc_array;
1873 int tc_array_len;
1874 int idx;
1875 struct cgroup *cur_cgrp;
1876};
1877
1878/**
1879 * cgroup_taskset_first - reset taskset and return the first task
1880 * @tset: taskset of interest
1881 *
1882 * @tset iteration is initialized and the first task is returned.
1883 */
1884struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
1885{
1886 if (tset->tc_array) {
1887 tset->idx = 0;
1888 return cgroup_taskset_next(tset);
1889 } else {
1890 tset->cur_cgrp = tset->single.cgrp;
1891 return tset->single.task;
1892 }
1893}
1894EXPORT_SYMBOL_GPL(cgroup_taskset_first);
1895
1896/**
1897 * cgroup_taskset_next - iterate to the next task in taskset
1898 * @tset: taskset of interest
1899 *
1900 * Return the next task in @tset. Iteration must have been initialized
1901 * with cgroup_taskset_first().
1902 */
1903struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
1904{
1905 struct task_and_cgroup *tc;
1906
1907 if (!tset->tc_array || tset->idx >= tset->tc_array_len)
1908 return NULL;
1909
1910 tc = flex_array_get(tset->tc_array, tset->idx++);
1911 tset->cur_cgrp = tc->cgrp;
1912 return tc->task;
1913}
1914EXPORT_SYMBOL_GPL(cgroup_taskset_next);
1915
1916/**
1917 * cgroup_taskset_cur_cgroup - return the matching cgroup for the current task
1918 * @tset: taskset of interest
1919 *
1920 * Return the cgroup for the current (last returned) task of @tset. This
1921 * function must be preceded by either cgroup_taskset_first() or
1922 * cgroup_taskset_next().
1923 */
1924struct cgroup *cgroup_taskset_cur_cgroup(struct cgroup_taskset *tset)
1925{
1926 return tset->cur_cgrp;
1927}
1928EXPORT_SYMBOL_GPL(cgroup_taskset_cur_cgroup);
1929
1930/**
1931 * cgroup_taskset_size - return the number of tasks in taskset
1932 * @tset: taskset of interest
1933 */
1934int cgroup_taskset_size(struct cgroup_taskset *tset)
1935{
1936 return tset->tc_array ? tset->tc_array_len : 1;
1937}
1938EXPORT_SYMBOL_GPL(cgroup_taskset_size);
1939
1940
74a1166d
BB
1941/*
1942 * cgroup_task_migrate - move a task from one cgroup to another.
1943 *
d0b2fdd2 1944 * Must be called with cgroup_mutex and threadgroup locked.
74a1166d 1945 */
5abb8855
TH
1946static void cgroup_task_migrate(struct cgroup *old_cgrp,
1947 struct task_struct *tsk,
1948 struct css_set *new_cset)
74a1166d 1949{
5abb8855 1950 struct css_set *old_cset;
74a1166d
BB
1951
1952 /*
026085ef
MSB
1953 * We are synchronized through threadgroup_lock() against PF_EXITING
1954 * setting such that we can't race against cgroup_exit() changing the
1955 * css_set to init_css_set and dropping the old one.
74a1166d 1956 */
c84cdf75 1957 WARN_ON_ONCE(tsk->flags & PF_EXITING);
5abb8855 1958 old_cset = tsk->cgroups;
74a1166d 1959
74a1166d 1960 task_lock(tsk);
5abb8855 1961 rcu_assign_pointer(tsk->cgroups, new_cset);
74a1166d
BB
1962 task_unlock(tsk);
1963
1964 /* Update the css_set linked lists if we're using them */
1965 write_lock(&css_set_lock);
1966 if (!list_empty(&tsk->cg_list))
5abb8855 1967 list_move(&tsk->cg_list, &new_cset->tasks);
74a1166d
BB
1968 write_unlock(&css_set_lock);
1969
1970 /*
5abb8855
TH
1971 * We just gained a reference on old_cset by taking it from the
1972 * task. As trading it for new_cset is protected by cgroup_mutex,
1973 * we're safe to drop it here; it will be freed under RCU.
74a1166d 1974 */
5abb8855
TH
1975 set_bit(CGRP_RELEASABLE, &old_cgrp->flags);
1976 put_css_set(old_cset);
74a1166d
BB
1977}
1978
a043e3b2 1979/**
081aa458 1980 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
74a1166d 1981 * @cgrp: the cgroup to attach to
081aa458
LZ
1982 * @tsk: the task or the leader of the threadgroup to be attached
1983 * @threadgroup: attach the whole threadgroup?
74a1166d 1984 *
257058ae 1985 * Call holding cgroup_mutex and the group_rwsem of the leader. Will take
081aa458 1986 * task_lock of @tsk or each thread in the threadgroup individually in turn.
74a1166d 1987 */
47cfcd09
TH
1988static int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk,
1989 bool threadgroup)
74a1166d
BB
1990{
1991 int retval, i, group_size;
1992 struct cgroup_subsys *ss, *failed_ss = NULL;
74a1166d
BB
1993 struct cgroupfs_root *root = cgrp->root;
1994 /* threadgroup list cursor and array */
081aa458 1995 struct task_struct *leader = tsk;
134d3373 1996 struct task_and_cgroup *tc;
d846687d 1997 struct flex_array *group;
2f7ee569 1998 struct cgroup_taskset tset = { };
74a1166d
BB
1999
2000 /*
2001 * step 0: in order to do expensive, possibly blocking operations for
2002 * every thread, we cannot iterate the thread group list, since it needs
2003 * rcu or tasklist locked. instead, build an array of all threads in the
257058ae
TH
2004 * group - group_rwsem prevents new threads from appearing, and if
2005 * threads exit, this will just be an over-estimate.
74a1166d 2006 */
081aa458
LZ
2007 if (threadgroup)
2008 group_size = get_nr_threads(tsk);
2009 else
2010 group_size = 1;
d846687d 2011 /* flex_array supports very large thread-groups better than kmalloc. */
134d3373 2012 group = flex_array_alloc(sizeof(*tc), group_size, GFP_KERNEL);
74a1166d
BB
2013 if (!group)
2014 return -ENOMEM;
d846687d 2015 /* pre-allocate to guarantee space while iterating in rcu read-side. */
3ac1707a 2016 retval = flex_array_prealloc(group, 0, group_size, GFP_KERNEL);
d846687d
BB
2017 if (retval)
2018 goto out_free_group_list;
74a1166d 2019
74a1166d 2020 i = 0;
fb5d2b4c
MSB
2021 /*
2022 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2023 * already PF_EXITING could be freed from underneath us unless we
2024 * take an rcu_read_lock.
2025 */
2026 rcu_read_lock();
74a1166d 2027 do {
134d3373
TH
2028 struct task_and_cgroup ent;
2029
cd3d0952
TH
2030 /* @tsk either already exited or can't exit until the end */
2031 if (tsk->flags & PF_EXITING)
2032 continue;
2033
74a1166d
BB
2034 /* as per above, nr_threads may decrease, but not increase. */
2035 BUG_ON(i >= group_size);
134d3373
TH
2036 ent.task = tsk;
2037 ent.cgrp = task_cgroup_from_root(tsk, root);
892a2b90
MSB
2038 /* nothing to do if this task is already in the cgroup */
2039 if (ent.cgrp == cgrp)
2040 continue;
61d1d219
MSB
2041 /*
2042 * saying GFP_ATOMIC has no effect here because we did prealloc
2043 * earlier, but it's good form to communicate our expectations.
2044 */
134d3373 2045 retval = flex_array_put(group, i, &ent, GFP_ATOMIC);
d846687d 2046 BUG_ON(retval != 0);
74a1166d 2047 i++;
081aa458
LZ
2048
2049 if (!threadgroup)
2050 break;
74a1166d 2051 } while_each_thread(leader, tsk);
fb5d2b4c 2052 rcu_read_unlock();
74a1166d
BB
2053 /* remember the number of threads in the array for later. */
2054 group_size = i;
2f7ee569
TH
2055 tset.tc_array = group;
2056 tset.tc_array_len = group_size;
74a1166d 2057
134d3373
TH
2058 /* methods shouldn't be called if no task is actually migrating */
2059 retval = 0;
892a2b90 2060 if (!group_size)
b07ef774 2061 goto out_free_group_list;
134d3373 2062
74a1166d
BB
2063 /*
2064 * step 1: check that we can legitimately attach to the cgroup.
2065 */
5549c497 2066 for_each_root_subsys(root, ss) {
74a1166d 2067 if (ss->can_attach) {
761b3ef5 2068 retval = ss->can_attach(cgrp, &tset);
74a1166d
BB
2069 if (retval) {
2070 failed_ss = ss;
2071 goto out_cancel_attach;
2072 }
2073 }
74a1166d
BB
2074 }
2075
2076 /*
2077 * step 2: make sure css_sets exist for all threads to be migrated.
2078 * we use find_css_set, which allocates a new one if necessary.
2079 */
74a1166d 2080 for (i = 0; i < group_size; i++) {
134d3373 2081 tc = flex_array_get(group, i);
61d1d219
MSB
2082 tc->cg = find_css_set(tc->task->cgroups, cgrp);
2083 if (!tc->cg) {
2084 retval = -ENOMEM;
2085 goto out_put_css_set_refs;
74a1166d
BB
2086 }
2087 }
2088
2089 /*
494c167c
TH
2090 * step 3: now that we're guaranteed success wrt the css_sets,
2091 * proceed to move all tasks to the new cgroup. There are no
2092 * failure cases after here, so this is the commit point.
74a1166d 2093 */
74a1166d 2094 for (i = 0; i < group_size; i++) {
134d3373 2095 tc = flex_array_get(group, i);
1e2ccd1c 2096 cgroup_task_migrate(tc->cgrp, tc->task, tc->cg);
74a1166d
BB
2097 }
2098 /* nothing is sensitive to fork() after this point. */
2099
2100 /*
494c167c 2101 * step 4: do subsystem attach callbacks.
74a1166d 2102 */
5549c497 2103 for_each_root_subsys(root, ss) {
74a1166d 2104 if (ss->attach)
761b3ef5 2105 ss->attach(cgrp, &tset);
74a1166d
BB
2106 }
2107
2108 /*
2109 * step 5: success! and cleanup
2110 */
74a1166d 2111 retval = 0;
61d1d219
MSB
2112out_put_css_set_refs:
2113 if (retval) {
2114 for (i = 0; i < group_size; i++) {
2115 tc = flex_array_get(group, i);
2116 if (!tc->cg)
2117 break;
2118 put_css_set(tc->cg);
2119 }
74a1166d
BB
2120 }
2121out_cancel_attach:
74a1166d 2122 if (retval) {
5549c497 2123 for_each_root_subsys(root, ss) {
494c167c 2124 if (ss == failed_ss)
74a1166d 2125 break;
74a1166d 2126 if (ss->cancel_attach)
761b3ef5 2127 ss->cancel_attach(cgrp, &tset);
74a1166d
BB
2128 }
2129 }
74a1166d 2130out_free_group_list:
d846687d 2131 flex_array_free(group);
74a1166d
BB
2132 return retval;
2133}
2134
2135/*
2136 * Find the task_struct of the task to attach by vpid and pass it along to the
cd3d0952
TH
2137 * function to attach either it or all tasks in its threadgroup. Will lock
2138 * cgroup_mutex and threadgroup; may take task_lock of task.
bbcb81d0 2139 */
74a1166d 2140static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
bbcb81d0 2141{
bbcb81d0 2142 struct task_struct *tsk;
c69e8d9c 2143 const struct cred *cred = current_cred(), *tcred;
bbcb81d0
PM
2144 int ret;
2145
74a1166d
BB
2146 if (!cgroup_lock_live_group(cgrp))
2147 return -ENODEV;
2148
b78949eb
MSB
2149retry_find_task:
2150 rcu_read_lock();
bbcb81d0 2151 if (pid) {
73507f33 2152 tsk = find_task_by_vpid(pid);
74a1166d
BB
2153 if (!tsk) {
2154 rcu_read_unlock();
b78949eb
MSB
2155 ret= -ESRCH;
2156 goto out_unlock_cgroup;
bbcb81d0 2157 }
74a1166d
BB
2158 /*
2159 * even if we're attaching all tasks in the thread group, we
2160 * only need to check permissions on one of them.
2161 */
c69e8d9c 2162 tcred = __task_cred(tsk);
14a590c3
EB
2163 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2164 !uid_eq(cred->euid, tcred->uid) &&
2165 !uid_eq(cred->euid, tcred->suid)) {
c69e8d9c 2166 rcu_read_unlock();
b78949eb
MSB
2167 ret = -EACCES;
2168 goto out_unlock_cgroup;
bbcb81d0 2169 }
b78949eb
MSB
2170 } else
2171 tsk = current;
cd3d0952
TH
2172
2173 if (threadgroup)
b78949eb 2174 tsk = tsk->group_leader;
c4c27fbd
MG
2175
2176 /*
14a40ffc 2177 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
c4c27fbd
MG
2178 * trapped in a cpuset, or RT worker may be born in a cgroup
2179 * with no rt_runtime allocated. Just say no.
2180 */
14a40ffc 2181 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
c4c27fbd
MG
2182 ret = -EINVAL;
2183 rcu_read_unlock();
2184 goto out_unlock_cgroup;
2185 }
2186
b78949eb
MSB
2187 get_task_struct(tsk);
2188 rcu_read_unlock();
2189
2190 threadgroup_lock(tsk);
2191 if (threadgroup) {
2192 if (!thread_group_leader(tsk)) {
2193 /*
2194 * a race with de_thread from another thread's exec()
2195 * may strip us of our leadership, if this happens,
2196 * there is no choice but to throw this task away and
2197 * try again; this is
2198 * "double-double-toil-and-trouble-check locking".
2199 */
2200 threadgroup_unlock(tsk);
2201 put_task_struct(tsk);
2202 goto retry_find_task;
2203 }
081aa458
LZ
2204 }
2205
2206 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
2207
cd3d0952
TH
2208 threadgroup_unlock(tsk);
2209
bbcb81d0 2210 put_task_struct(tsk);
b78949eb 2211out_unlock_cgroup:
47cfcd09 2212 mutex_unlock(&cgroup_mutex);
bbcb81d0
PM
2213 return ret;
2214}
2215
7ae1bad9
TH
2216/**
2217 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2218 * @from: attach to all cgroups of a given task
2219 * @tsk: the task to be attached
2220 */
2221int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2222{
2223 struct cgroupfs_root *root;
2224 int retval = 0;
2225
47cfcd09 2226 mutex_lock(&cgroup_mutex);
7ae1bad9
TH
2227 for_each_active_root(root) {
2228 struct cgroup *from_cg = task_cgroup_from_root(from, root);
2229
2230 retval = cgroup_attach_task(from_cg, tsk, false);
2231 if (retval)
2232 break;
2233 }
47cfcd09 2234 mutex_unlock(&cgroup_mutex);
7ae1bad9
TH
2235
2236 return retval;
2237}
2238EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2239
af351026 2240static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
74a1166d
BB
2241{
2242 return attach_task_by_pid(cgrp, pid, false);
2243}
2244
2245static int cgroup_procs_write(struct cgroup *cgrp, struct cftype *cft, u64 tgid)
af351026 2246{
b78949eb 2247 return attach_task_by_pid(cgrp, tgid, true);
af351026
PM
2248}
2249
e788e066
PM
2250static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
2251 const char *buffer)
2252{
2253 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
f4a2589f
EK
2254 if (strlen(buffer) >= PATH_MAX)
2255 return -EINVAL;
e788e066
PM
2256 if (!cgroup_lock_live_group(cgrp))
2257 return -ENODEV;
e25e2cbb 2258 mutex_lock(&cgroup_root_mutex);
e788e066 2259 strcpy(cgrp->root->release_agent_path, buffer);
e25e2cbb 2260 mutex_unlock(&cgroup_root_mutex);
47cfcd09 2261 mutex_unlock(&cgroup_mutex);
e788e066
PM
2262 return 0;
2263}
2264
2265static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
2266 struct seq_file *seq)
2267{
2268 if (!cgroup_lock_live_group(cgrp))
2269 return -ENODEV;
2270 seq_puts(seq, cgrp->root->release_agent_path);
2271 seq_putc(seq, '\n');
47cfcd09 2272 mutex_unlock(&cgroup_mutex);
e788e066
PM
2273 return 0;
2274}
2275
873fe09e
TH
2276static int cgroup_sane_behavior_show(struct cgroup *cgrp, struct cftype *cft,
2277 struct seq_file *seq)
2278{
2279 seq_printf(seq, "%d\n", cgroup_sane_behavior(cgrp));
e788e066
PM
2280 return 0;
2281}
2282
84eea842
PM
2283/* A buffer size big enough for numbers or short strings */
2284#define CGROUP_LOCAL_BUFFER_SIZE 64
2285
e73d2c61 2286static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
f4c753b7
PM
2287 struct file *file,
2288 const char __user *userbuf,
2289 size_t nbytes, loff_t *unused_ppos)
355e0c48 2290{
84eea842 2291 char buffer[CGROUP_LOCAL_BUFFER_SIZE];
355e0c48 2292 int retval = 0;
355e0c48
PM
2293 char *end;
2294
2295 if (!nbytes)
2296 return -EINVAL;
2297 if (nbytes >= sizeof(buffer))
2298 return -E2BIG;
2299 if (copy_from_user(buffer, userbuf, nbytes))
2300 return -EFAULT;
2301
2302 buffer[nbytes] = 0; /* nul-terminate */
e73d2c61 2303 if (cft->write_u64) {
478988d3 2304 u64 val = simple_strtoull(strstrip(buffer), &end, 0);
e73d2c61
PM
2305 if (*end)
2306 return -EINVAL;
2307 retval = cft->write_u64(cgrp, cft, val);
2308 } else {
478988d3 2309 s64 val = simple_strtoll(strstrip(buffer), &end, 0);
e73d2c61
PM
2310 if (*end)
2311 return -EINVAL;
2312 retval = cft->write_s64(cgrp, cft, val);
2313 }
355e0c48
PM
2314 if (!retval)
2315 retval = nbytes;
2316 return retval;
2317}
2318
db3b1497
PM
2319static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
2320 struct file *file,
2321 const char __user *userbuf,
2322 size_t nbytes, loff_t *unused_ppos)
2323{
84eea842 2324 char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
db3b1497
PM
2325 int retval = 0;
2326 size_t max_bytes = cft->max_write_len;
2327 char *buffer = local_buffer;
2328
2329 if (!max_bytes)
2330 max_bytes = sizeof(local_buffer) - 1;
2331 if (nbytes >= max_bytes)
2332 return -E2BIG;
2333 /* Allocate a dynamic buffer if we need one */
2334 if (nbytes >= sizeof(local_buffer)) {
2335 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
2336 if (buffer == NULL)
2337 return -ENOMEM;
2338 }
5a3eb9f6
LZ
2339 if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
2340 retval = -EFAULT;
2341 goto out;
2342 }
db3b1497
PM
2343
2344 buffer[nbytes] = 0; /* nul-terminate */
478988d3 2345 retval = cft->write_string(cgrp, cft, strstrip(buffer));
db3b1497
PM
2346 if (!retval)
2347 retval = nbytes;
5a3eb9f6 2348out:
db3b1497
PM
2349 if (buffer != local_buffer)
2350 kfree(buffer);
2351 return retval;
2352}
2353
ddbcc7e8
PM
2354static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
2355 size_t nbytes, loff_t *ppos)
2356{
2357 struct cftype *cft = __d_cft(file->f_dentry);
bd89aabc 2358 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
ddbcc7e8 2359
54766d4a 2360 if (cgroup_is_dead(cgrp))
ddbcc7e8 2361 return -ENODEV;
355e0c48 2362 if (cft->write)
bd89aabc 2363 return cft->write(cgrp, cft, file, buf, nbytes, ppos);
e73d2c61
PM
2364 if (cft->write_u64 || cft->write_s64)
2365 return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
db3b1497
PM
2366 if (cft->write_string)
2367 return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
d447ea2f
PE
2368 if (cft->trigger) {
2369 int ret = cft->trigger(cgrp, (unsigned int)cft->private);
2370 return ret ? ret : nbytes;
2371 }
355e0c48 2372 return -EINVAL;
ddbcc7e8
PM
2373}
2374
f4c753b7
PM
2375static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
2376 struct file *file,
2377 char __user *buf, size_t nbytes,
2378 loff_t *ppos)
ddbcc7e8 2379{
84eea842 2380 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
f4c753b7 2381 u64 val = cft->read_u64(cgrp, cft);
ddbcc7e8
PM
2382 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
2383
2384 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2385}
2386
e73d2c61
PM
2387static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
2388 struct file *file,
2389 char __user *buf, size_t nbytes,
2390 loff_t *ppos)
2391{
84eea842 2392 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
e73d2c61
PM
2393 s64 val = cft->read_s64(cgrp, cft);
2394 int len = sprintf(tmp, "%lld\n", (long long) val);
2395
2396 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2397}
2398
ddbcc7e8
PM
2399static ssize_t cgroup_file_read(struct file *file, char __user *buf,
2400 size_t nbytes, loff_t *ppos)
2401{
2402 struct cftype *cft = __d_cft(file->f_dentry);
bd89aabc 2403 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
ddbcc7e8 2404
54766d4a 2405 if (cgroup_is_dead(cgrp))
ddbcc7e8
PM
2406 return -ENODEV;
2407
2408 if (cft->read)
bd89aabc 2409 return cft->read(cgrp, cft, file, buf, nbytes, ppos);
f4c753b7
PM
2410 if (cft->read_u64)
2411 return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
e73d2c61
PM
2412 if (cft->read_s64)
2413 return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
ddbcc7e8
PM
2414 return -EINVAL;
2415}
2416
91796569
PM
2417/*
2418 * seqfile ops/methods for returning structured data. Currently just
2419 * supports string->u64 maps, but can be extended in future.
2420 */
2421
2422struct cgroup_seqfile_state {
2423 struct cftype *cft;
2424 struct cgroup *cgroup;
2425};
2426
2427static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
2428{
2429 struct seq_file *sf = cb->state;
2430 return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
2431}
2432
2433static int cgroup_seqfile_show(struct seq_file *m, void *arg)
2434{
2435 struct cgroup_seqfile_state *state = m->private;
2436 struct cftype *cft = state->cft;
29486df3
SH
2437 if (cft->read_map) {
2438 struct cgroup_map_cb cb = {
2439 .fill = cgroup_map_add,
2440 .state = m,
2441 };
2442 return cft->read_map(state->cgroup, cft, &cb);
2443 }
2444 return cft->read_seq_string(state->cgroup, cft, m);
91796569
PM
2445}
2446
96930a63 2447static int cgroup_seqfile_release(struct inode *inode, struct file *file)
91796569
PM
2448{
2449 struct seq_file *seq = file->private_data;
2450 kfree(seq->private);
2451 return single_release(inode, file);
2452}
2453
828c0950 2454static const struct file_operations cgroup_seqfile_operations = {
91796569 2455 .read = seq_read,
e788e066 2456 .write = cgroup_file_write,
91796569
PM
2457 .llseek = seq_lseek,
2458 .release = cgroup_seqfile_release,
2459};
2460
ddbcc7e8
PM
2461static int cgroup_file_open(struct inode *inode, struct file *file)
2462{
2463 int err;
2464 struct cftype *cft;
2465
2466 err = generic_file_open(inode, file);
2467 if (err)
2468 return err;
ddbcc7e8 2469 cft = __d_cft(file->f_dentry);
75139b82 2470
29486df3 2471 if (cft->read_map || cft->read_seq_string) {
f4f4be2b
TH
2472 struct cgroup_seqfile_state *state;
2473
2474 state = kzalloc(sizeof(*state), GFP_USER);
91796569
PM
2475 if (!state)
2476 return -ENOMEM;
f4f4be2b 2477
91796569
PM
2478 state->cft = cft;
2479 state->cgroup = __d_cgrp(file->f_dentry->d_parent);
2480 file->f_op = &cgroup_seqfile_operations;
2481 err = single_open(file, cgroup_seqfile_show, state);
2482 if (err < 0)
2483 kfree(state);
2484 } else if (cft->open)
ddbcc7e8
PM
2485 err = cft->open(inode, file);
2486 else
2487 err = 0;
2488
2489 return err;
2490}
2491
2492static int cgroup_file_release(struct inode *inode, struct file *file)
2493{
2494 struct cftype *cft = __d_cft(file->f_dentry);
2495 if (cft->release)
2496 return cft->release(inode, file);
2497 return 0;
2498}
2499
2500/*
2501 * cgroup_rename - Only allow simple rename of directories in place.
2502 */
2503static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
2504 struct inode *new_dir, struct dentry *new_dentry)
2505{
65dff759
LZ
2506 int ret;
2507 struct cgroup_name *name, *old_name;
2508 struct cgroup *cgrp;
2509
2510 /*
2511 * It's convinient to use parent dir's i_mutex to protected
2512 * cgrp->name.
2513 */
2514 lockdep_assert_held(&old_dir->i_mutex);
2515
ddbcc7e8
PM
2516 if (!S_ISDIR(old_dentry->d_inode->i_mode))
2517 return -ENOTDIR;
2518 if (new_dentry->d_inode)
2519 return -EEXIST;
2520 if (old_dir != new_dir)
2521 return -EIO;
65dff759
LZ
2522
2523 cgrp = __d_cgrp(old_dentry);
2524
6db8e85c
TH
2525 /*
2526 * This isn't a proper migration and its usefulness is very
2527 * limited. Disallow if sane_behavior.
2528 */
2529 if (cgroup_sane_behavior(cgrp))
2530 return -EPERM;
2531
65dff759
LZ
2532 name = cgroup_alloc_name(new_dentry);
2533 if (!name)
2534 return -ENOMEM;
2535
2536 ret = simple_rename(old_dir, old_dentry, new_dir, new_dentry);
2537 if (ret) {
2538 kfree(name);
2539 return ret;
2540 }
2541
2542 old_name = cgrp->name;
2543 rcu_assign_pointer(cgrp->name, name);
2544
2545 kfree_rcu(old_name, rcu_head);
2546 return 0;
ddbcc7e8
PM
2547}
2548
03b1cde6
AR
2549static struct simple_xattrs *__d_xattrs(struct dentry *dentry)
2550{
2551 if (S_ISDIR(dentry->d_inode->i_mode))
2552 return &__d_cgrp(dentry)->xattrs;
2553 else
712317ad 2554 return &__d_cfe(dentry)->xattrs;
03b1cde6
AR
2555}
2556
2557static inline int xattr_enabled(struct dentry *dentry)
2558{
2559 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
93438629 2560 return root->flags & CGRP_ROOT_XATTR;
03b1cde6
AR
2561}
2562
2563static bool is_valid_xattr(const char *name)
2564{
2565 if (!strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN) ||
2566 !strncmp(name, XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN))
2567 return true;
2568 return false;
2569}
2570
2571static int cgroup_setxattr(struct dentry *dentry, const char *name,
2572 const void *val, size_t size, int flags)
2573{
2574 if (!xattr_enabled(dentry))
2575 return -EOPNOTSUPP;
2576 if (!is_valid_xattr(name))
2577 return -EINVAL;
2578 return simple_xattr_set(__d_xattrs(dentry), name, val, size, flags);
2579}
2580
2581static int cgroup_removexattr(struct dentry *dentry, const char *name)
2582{
2583 if (!xattr_enabled(dentry))
2584 return -EOPNOTSUPP;
2585 if (!is_valid_xattr(name))
2586 return -EINVAL;
2587 return simple_xattr_remove(__d_xattrs(dentry), name);
2588}
2589
2590static ssize_t cgroup_getxattr(struct dentry *dentry, const char *name,
2591 void *buf, size_t size)
2592{
2593 if (!xattr_enabled(dentry))
2594 return -EOPNOTSUPP;
2595 if (!is_valid_xattr(name))
2596 return -EINVAL;
2597 return simple_xattr_get(__d_xattrs(dentry), name, buf, size);
2598}
2599
2600static ssize_t cgroup_listxattr(struct dentry *dentry, char *buf, size_t size)
2601{
2602 if (!xattr_enabled(dentry))
2603 return -EOPNOTSUPP;
2604 return simple_xattr_list(__d_xattrs(dentry), buf, size);
2605}
2606
828c0950 2607static const struct file_operations cgroup_file_operations = {
ddbcc7e8
PM
2608 .read = cgroup_file_read,
2609 .write = cgroup_file_write,
2610 .llseek = generic_file_llseek,
2611 .open = cgroup_file_open,
2612 .release = cgroup_file_release,
2613};
2614
03b1cde6
AR
2615static const struct inode_operations cgroup_file_inode_operations = {
2616 .setxattr = cgroup_setxattr,
2617 .getxattr = cgroup_getxattr,
2618 .listxattr = cgroup_listxattr,
2619 .removexattr = cgroup_removexattr,
2620};
2621
6e1d5dcc 2622static const struct inode_operations cgroup_dir_inode_operations = {
c72a04e3 2623 .lookup = cgroup_lookup,
ddbcc7e8
PM
2624 .mkdir = cgroup_mkdir,
2625 .rmdir = cgroup_rmdir,
2626 .rename = cgroup_rename,
03b1cde6
AR
2627 .setxattr = cgroup_setxattr,
2628 .getxattr = cgroup_getxattr,
2629 .listxattr = cgroup_listxattr,
2630 .removexattr = cgroup_removexattr,
ddbcc7e8
PM
2631};
2632
00cd8dd3 2633static struct dentry *cgroup_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
c72a04e3
AV
2634{
2635 if (dentry->d_name.len > NAME_MAX)
2636 return ERR_PTR(-ENAMETOOLONG);
2637 d_add(dentry, NULL);
2638 return NULL;
2639}
2640
0dea1168
KS
2641/*
2642 * Check if a file is a control file
2643 */
2644static inline struct cftype *__file_cft(struct file *file)
2645{
496ad9aa 2646 if (file_inode(file)->i_fop != &cgroup_file_operations)
0dea1168
KS
2647 return ERR_PTR(-EINVAL);
2648 return __d_cft(file->f_dentry);
2649}
2650
a5e7ed32 2651static int cgroup_create_file(struct dentry *dentry, umode_t mode,
5adcee1d
NP
2652 struct super_block *sb)
2653{
ddbcc7e8
PM
2654 struct inode *inode;
2655
2656 if (!dentry)
2657 return -ENOENT;
2658 if (dentry->d_inode)
2659 return -EEXIST;
2660
2661 inode = cgroup_new_inode(mode, sb);
2662 if (!inode)
2663 return -ENOMEM;
2664
2665 if (S_ISDIR(mode)) {
2666 inode->i_op = &cgroup_dir_inode_operations;
2667 inode->i_fop = &simple_dir_operations;
2668
2669 /* start off with i_nlink == 2 (for "." entry) */
2670 inc_nlink(inode);
28fd6f30 2671 inc_nlink(dentry->d_parent->d_inode);
ddbcc7e8 2672
b8a2df6a
TH
2673 /*
2674 * Control reaches here with cgroup_mutex held.
2675 * @inode->i_mutex should nest outside cgroup_mutex but we
2676 * want to populate it immediately without releasing
2677 * cgroup_mutex. As @inode isn't visible to anyone else
2678 * yet, trylock will always succeed without affecting
2679 * lockdep checks.
2680 */
2681 WARN_ON_ONCE(!mutex_trylock(&inode->i_mutex));
ddbcc7e8
PM
2682 } else if (S_ISREG(mode)) {
2683 inode->i_size = 0;
2684 inode->i_fop = &cgroup_file_operations;
03b1cde6 2685 inode->i_op = &cgroup_file_inode_operations;
ddbcc7e8 2686 }
ddbcc7e8
PM
2687 d_instantiate(dentry, inode);
2688 dget(dentry); /* Extra count - pin the dentry in core */
2689 return 0;
2690}
2691
099fca32
LZ
2692/**
2693 * cgroup_file_mode - deduce file mode of a control file
2694 * @cft: the control file in question
2695 *
2696 * returns cft->mode if ->mode is not 0
2697 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
2698 * returns S_IRUGO if it has only a read handler
2699 * returns S_IWUSR if it has only a write hander
2700 */
a5e7ed32 2701static umode_t cgroup_file_mode(const struct cftype *cft)
099fca32 2702{
a5e7ed32 2703 umode_t mode = 0;
099fca32
LZ
2704
2705 if (cft->mode)
2706 return cft->mode;
2707
2708 if (cft->read || cft->read_u64 || cft->read_s64 ||
2709 cft->read_map || cft->read_seq_string)
2710 mode |= S_IRUGO;
2711
2712 if (cft->write || cft->write_u64 || cft->write_s64 ||
2713 cft->write_string || cft->trigger)
2714 mode |= S_IWUSR;
2715
2716 return mode;
2717}
2718
db0416b6 2719static int cgroup_add_file(struct cgroup *cgrp, struct cgroup_subsys *subsys,
03b1cde6 2720 struct cftype *cft)
ddbcc7e8 2721{
bd89aabc 2722 struct dentry *dir = cgrp->dentry;
05ef1d7c 2723 struct cgroup *parent = __d_cgrp(dir);
ddbcc7e8 2724 struct dentry *dentry;
05ef1d7c 2725 struct cfent *cfe;
ddbcc7e8 2726 int error;
a5e7ed32 2727 umode_t mode;
ddbcc7e8 2728 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
8e3f6541 2729
93438629 2730 if (subsys && !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
ddbcc7e8
PM
2731 strcpy(name, subsys->name);
2732 strcat(name, ".");
2733 }
2734 strcat(name, cft->name);
05ef1d7c 2735
ddbcc7e8 2736 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
05ef1d7c
TH
2737
2738 cfe = kzalloc(sizeof(*cfe), GFP_KERNEL);
2739 if (!cfe)
2740 return -ENOMEM;
2741
ddbcc7e8 2742 dentry = lookup_one_len(name, dir, strlen(name));
05ef1d7c 2743 if (IS_ERR(dentry)) {
ddbcc7e8 2744 error = PTR_ERR(dentry);
05ef1d7c
TH
2745 goto out;
2746 }
2747
d6cbf35d
LZ
2748 cfe->type = (void *)cft;
2749 cfe->dentry = dentry;
2750 dentry->d_fsdata = cfe;
2751 simple_xattrs_init(&cfe->xattrs);
2752
05ef1d7c
TH
2753 mode = cgroup_file_mode(cft);
2754 error = cgroup_create_file(dentry, mode | S_IFREG, cgrp->root->sb);
2755 if (!error) {
05ef1d7c
TH
2756 list_add_tail(&cfe->node, &parent->files);
2757 cfe = NULL;
2758 }
2759 dput(dentry);
2760out:
2761 kfree(cfe);
ddbcc7e8
PM
2762 return error;
2763}
2764
79578621 2765static int cgroup_addrm_files(struct cgroup *cgrp, struct cgroup_subsys *subsys,
03b1cde6 2766 struct cftype cfts[], bool is_add)
ddbcc7e8 2767{
03b1cde6 2768 struct cftype *cft;
db0416b6
TH
2769 int err, ret = 0;
2770
2771 for (cft = cfts; cft->name[0] != '\0'; cft++) {
f33fddc2 2772 /* does cft->flags tell us to skip this file on @cgrp? */
873fe09e
TH
2773 if ((cft->flags & CFTYPE_INSANE) && cgroup_sane_behavior(cgrp))
2774 continue;
f33fddc2
G
2775 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgrp->parent)
2776 continue;
2777 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgrp->parent)
2778 continue;
2779
2739d3cc 2780 if (is_add) {
79578621 2781 err = cgroup_add_file(cgrp, subsys, cft);
2739d3cc
LZ
2782 if (err)
2783 pr_warn("cgroup_addrm_files: failed to add %s, err=%d\n",
2784 cft->name, err);
db0416b6 2785 ret = err;
2739d3cc
LZ
2786 } else {
2787 cgroup_rm_file(cgrp, cft);
db0416b6 2788 }
ddbcc7e8 2789 }
db0416b6 2790 return ret;
ddbcc7e8
PM
2791}
2792
8e3f6541 2793static void cgroup_cfts_prepare(void)
e8c82d20 2794 __acquires(&cgroup_mutex)
8e3f6541
TH
2795{
2796 /*
2797 * Thanks to the entanglement with vfs inode locking, we can't walk
2798 * the existing cgroups under cgroup_mutex and create files.
e8c82d20
LZ
2799 * Instead, we use cgroup_for_each_descendant_pre() and drop RCU
2800 * read lock before calling cgroup_addrm_files().
8e3f6541 2801 */
8e3f6541
TH
2802 mutex_lock(&cgroup_mutex);
2803}
2804
2805static void cgroup_cfts_commit(struct cgroup_subsys *ss,
03b1cde6 2806 struct cftype *cfts, bool is_add)
e8c82d20 2807 __releases(&cgroup_mutex)
8e3f6541
TH
2808{
2809 LIST_HEAD(pending);
e8c82d20 2810 struct cgroup *cgrp, *root = &ss->root->top_cgroup;
084457f2 2811 struct super_block *sb = ss->root->sb;
e8c82d20
LZ
2812 struct dentry *prev = NULL;
2813 struct inode *inode;
00356bd5 2814 u64 update_before;
8e3f6541
TH
2815
2816 /* %NULL @cfts indicates abort and don't bother if @ss isn't attached */
9871bf95 2817 if (!cfts || ss->root == &cgroup_dummy_root ||
e8c82d20
LZ
2818 !atomic_inc_not_zero(&sb->s_active)) {
2819 mutex_unlock(&cgroup_mutex);
2820 return;
8e3f6541
TH
2821 }
2822
8e3f6541 2823 /*
e8c82d20
LZ
2824 * All cgroups which are created after we drop cgroup_mutex will
2825 * have the updated set of files, so we only need to update the
00356bd5 2826 * cgroups created before the current @cgroup_serial_nr_next.
8e3f6541 2827 */
00356bd5 2828 update_before = cgroup_serial_nr_next;
e8c82d20
LZ
2829
2830 mutex_unlock(&cgroup_mutex);
2831
2832 /* @root always needs to be updated */
2833 inode = root->dentry->d_inode;
2834 mutex_lock(&inode->i_mutex);
2835 mutex_lock(&cgroup_mutex);
2836 cgroup_addrm_files(root, ss, cfts, is_add);
2837 mutex_unlock(&cgroup_mutex);
2838 mutex_unlock(&inode->i_mutex);
2839
2840 /* add/rm files for all cgroups created before */
2841 rcu_read_lock();
2842 cgroup_for_each_descendant_pre(cgrp, root) {
2843 if (cgroup_is_dead(cgrp))
2844 continue;
2845
2846 inode = cgrp->dentry->d_inode;
2847 dget(cgrp->dentry);
2848 rcu_read_unlock();
2849
2850 dput(prev);
2851 prev = cgrp->dentry;
8e3f6541
TH
2852
2853 mutex_lock(&inode->i_mutex);
2854 mutex_lock(&cgroup_mutex);
00356bd5 2855 if (cgrp->serial_nr < update_before && !cgroup_is_dead(cgrp))
79578621 2856 cgroup_addrm_files(cgrp, ss, cfts, is_add);
8e3f6541
TH
2857 mutex_unlock(&cgroup_mutex);
2858 mutex_unlock(&inode->i_mutex);
2859
e8c82d20 2860 rcu_read_lock();
8e3f6541 2861 }
e8c82d20
LZ
2862 rcu_read_unlock();
2863 dput(prev);
2864 deactivate_super(sb);
8e3f6541
TH
2865}
2866
2867/**
2868 * cgroup_add_cftypes - add an array of cftypes to a subsystem
2869 * @ss: target cgroup subsystem
2870 * @cfts: zero-length name terminated array of cftypes
2871 *
2872 * Register @cfts to @ss. Files described by @cfts are created for all
2873 * existing cgroups to which @ss is attached and all future cgroups will
2874 * have them too. This function can be called anytime whether @ss is
2875 * attached or not.
2876 *
2877 * Returns 0 on successful registration, -errno on failure. Note that this
2878 * function currently returns 0 as long as @cfts registration is successful
2879 * even if some file creation attempts on existing cgroups fail.
2880 */
03b1cde6 2881int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
8e3f6541
TH
2882{
2883 struct cftype_set *set;
2884
2885 set = kzalloc(sizeof(*set), GFP_KERNEL);
2886 if (!set)
2887 return -ENOMEM;
2888
2889 cgroup_cfts_prepare();
2890 set->cfts = cfts;
2891 list_add_tail(&set->node, &ss->cftsets);
79578621 2892 cgroup_cfts_commit(ss, cfts, true);
8e3f6541
TH
2893
2894 return 0;
2895}
2896EXPORT_SYMBOL_GPL(cgroup_add_cftypes);
2897
79578621
TH
2898/**
2899 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
2900 * @ss: target cgroup subsystem
2901 * @cfts: zero-length name terminated array of cftypes
2902 *
2903 * Unregister @cfts from @ss. Files described by @cfts are removed from
2904 * all existing cgroups to which @ss is attached and all future cgroups
2905 * won't have them either. This function can be called anytime whether @ss
2906 * is attached or not.
2907 *
2908 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2909 * registered with @ss.
2910 */
03b1cde6 2911int cgroup_rm_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
79578621
TH
2912{
2913 struct cftype_set *set;
2914
2915 cgroup_cfts_prepare();
2916
2917 list_for_each_entry(set, &ss->cftsets, node) {
2918 if (set->cfts == cfts) {
f57947d2
LZ
2919 list_del(&set->node);
2920 kfree(set);
79578621
TH
2921 cgroup_cfts_commit(ss, cfts, false);
2922 return 0;
2923 }
2924 }
2925
2926 cgroup_cfts_commit(ss, NULL, false);
2927 return -ENOENT;
2928}
2929
a043e3b2
LZ
2930/**
2931 * cgroup_task_count - count the number of tasks in a cgroup.
2932 * @cgrp: the cgroup in question
2933 *
2934 * Return the number of tasks in the cgroup.
2935 */
bd89aabc 2936int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
2937{
2938 int count = 0;
69d0206c 2939 struct cgrp_cset_link *link;
817929ec
PM
2940
2941 read_lock(&css_set_lock);
69d0206c
TH
2942 list_for_each_entry(link, &cgrp->cset_links, cset_link)
2943 count += atomic_read(&link->cset->refcount);
817929ec 2944 read_unlock(&css_set_lock);
bbcb81d0
PM
2945 return count;
2946}
2947
817929ec
PM
2948/*
2949 * Advance a list_head iterator. The iterator should be positioned at
2950 * the start of a css_set
2951 */
69d0206c 2952static void cgroup_advance_iter(struct cgroup *cgrp, struct cgroup_iter *it)
817929ec 2953{
69d0206c
TH
2954 struct list_head *l = it->cset_link;
2955 struct cgrp_cset_link *link;
5abb8855 2956 struct css_set *cset;
817929ec
PM
2957
2958 /* Advance to the next non-empty css_set */
2959 do {
2960 l = l->next;
69d0206c
TH
2961 if (l == &cgrp->cset_links) {
2962 it->cset_link = NULL;
817929ec
PM
2963 return;
2964 }
69d0206c
TH
2965 link = list_entry(l, struct cgrp_cset_link, cset_link);
2966 cset = link->cset;
5abb8855 2967 } while (list_empty(&cset->tasks));
69d0206c 2968 it->cset_link = l;
5abb8855 2969 it->task = cset->tasks.next;
817929ec
PM
2970}
2971
31a7df01
CW
2972/*
2973 * To reduce the fork() overhead for systems that are not actually
2974 * using their cgroups capability, we don't maintain the lists running
2975 * through each css_set to its tasks until we see the list actually
2976 * used - in other words after the first call to cgroup_iter_start().
31a7df01 2977 */
3df91fe3 2978static void cgroup_enable_task_cg_lists(void)
31a7df01
CW
2979{
2980 struct task_struct *p, *g;
2981 write_lock(&css_set_lock);
2982 use_task_css_set_links = 1;
3ce3230a
FW
2983 /*
2984 * We need tasklist_lock because RCU is not safe against
2985 * while_each_thread(). Besides, a forking task that has passed
2986 * cgroup_post_fork() without seeing use_task_css_set_links = 1
2987 * is not guaranteed to have its child immediately visible in the
2988 * tasklist if we walk through it with RCU.
2989 */
2990 read_lock(&tasklist_lock);
31a7df01
CW
2991 do_each_thread(g, p) {
2992 task_lock(p);
0e04388f
LZ
2993 /*
2994 * We should check if the process is exiting, otherwise
2995 * it will race with cgroup_exit() in that the list
2996 * entry won't be deleted though the process has exited.
2997 */
2998 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
31a7df01
CW
2999 list_add(&p->cg_list, &p->cgroups->tasks);
3000 task_unlock(p);
3001 } while_each_thread(g, p);
3ce3230a 3002 read_unlock(&tasklist_lock);
31a7df01
CW
3003 write_unlock(&css_set_lock);
3004}
3005
53fa5261
TH
3006/**
3007 * cgroup_next_sibling - find the next sibling of a given cgroup
3008 * @pos: the current cgroup
3009 *
3010 * This function returns the next sibling of @pos and should be called
3011 * under RCU read lock. The only requirement is that @pos is accessible.
3012 * The next sibling is guaranteed to be returned regardless of @pos's
3013 * state.
3014 */
3015struct cgroup *cgroup_next_sibling(struct cgroup *pos)
3016{
3017 struct cgroup *next;
3018
3019 WARN_ON_ONCE(!rcu_read_lock_held());
3020
3021 /*
3022 * @pos could already have been removed. Once a cgroup is removed,
3023 * its ->sibling.next is no longer updated when its next sibling
ea15f8cc
TH
3024 * changes. As CGRP_DEAD assertion is serialized and happens
3025 * before the cgroup is taken off the ->sibling list, if we see it
3026 * unasserted, it's guaranteed that the next sibling hasn't
3027 * finished its grace period even if it's already removed, and thus
3028 * safe to dereference from this RCU critical section. If
3029 * ->sibling.next is inaccessible, cgroup_is_dead() is guaranteed
3030 * to be visible as %true here.
53fa5261 3031 */
54766d4a 3032 if (likely(!cgroup_is_dead(pos))) {
53fa5261
TH
3033 next = list_entry_rcu(pos->sibling.next, struct cgroup, sibling);
3034 if (&next->sibling != &pos->parent->children)
3035 return next;
3036 return NULL;
3037 }
3038
3039 /*
3040 * Can't dereference the next pointer. Each cgroup is given a
3041 * monotonically increasing unique serial number and always
3042 * appended to the sibling list, so the next one can be found by
3043 * walking the parent's children until we see a cgroup with higher
3044 * serial number than @pos's.
3045 *
3046 * While this path can be slow, it's taken only when either the
3047 * current cgroup is removed or iteration and removal race.
3048 */
3049 list_for_each_entry_rcu(next, &pos->parent->children, sibling)
3050 if (next->serial_nr > pos->serial_nr)
3051 return next;
3052 return NULL;
3053}
3054EXPORT_SYMBOL_GPL(cgroup_next_sibling);
3055
574bd9f7
TH
3056/**
3057 * cgroup_next_descendant_pre - find the next descendant for pre-order walk
3058 * @pos: the current position (%NULL to initiate traversal)
3059 * @cgroup: cgroup whose descendants to walk
3060 *
3061 * To be used by cgroup_for_each_descendant_pre(). Find the next
3062 * descendant to visit for pre-order traversal of @cgroup's descendants.
75501a6d
TH
3063 *
3064 * While this function requires RCU read locking, it doesn't require the
3065 * whole traversal to be contained in a single RCU critical section. This
3066 * function will return the correct next descendant as long as both @pos
3067 * and @cgroup are accessible and @pos is a descendant of @cgroup.
574bd9f7
TH
3068 */
3069struct cgroup *cgroup_next_descendant_pre(struct cgroup *pos,
3070 struct cgroup *cgroup)
3071{
3072 struct cgroup *next;
3073
3074 WARN_ON_ONCE(!rcu_read_lock_held());
3075
3076 /* if first iteration, pretend we just visited @cgroup */
7805d000 3077 if (!pos)
574bd9f7 3078 pos = cgroup;
574bd9f7
TH
3079
3080 /* visit the first child if exists */
3081 next = list_first_or_null_rcu(&pos->children, struct cgroup, sibling);
3082 if (next)
3083 return next;
3084
3085 /* no child, visit my or the closest ancestor's next sibling */
7805d000 3086 while (pos != cgroup) {
75501a6d
TH
3087 next = cgroup_next_sibling(pos);
3088 if (next)
574bd9f7 3089 return next;
574bd9f7 3090 pos = pos->parent;
7805d000 3091 }
574bd9f7
TH
3092
3093 return NULL;
3094}
3095EXPORT_SYMBOL_GPL(cgroup_next_descendant_pre);
3096
12a9d2fe
TH
3097/**
3098 * cgroup_rightmost_descendant - return the rightmost descendant of a cgroup
3099 * @pos: cgroup of interest
3100 *
3101 * Return the rightmost descendant of @pos. If there's no descendant,
3102 * @pos is returned. This can be used during pre-order traversal to skip
3103 * subtree of @pos.
75501a6d
TH
3104 *
3105 * While this function requires RCU read locking, it doesn't require the
3106 * whole traversal to be contained in a single RCU critical section. This
3107 * function will return the correct rightmost descendant as long as @pos is
3108 * accessible.
12a9d2fe
TH
3109 */
3110struct cgroup *cgroup_rightmost_descendant(struct cgroup *pos)
3111{
3112 struct cgroup *last, *tmp;
3113
3114 WARN_ON_ONCE(!rcu_read_lock_held());
3115
3116 do {
3117 last = pos;
3118 /* ->prev isn't RCU safe, walk ->next till the end */
3119 pos = NULL;
3120 list_for_each_entry_rcu(tmp, &last->children, sibling)
3121 pos = tmp;
3122 } while (pos);
3123
3124 return last;
3125}
3126EXPORT_SYMBOL_GPL(cgroup_rightmost_descendant);
3127
574bd9f7
TH
3128static struct cgroup *cgroup_leftmost_descendant(struct cgroup *pos)
3129{
3130 struct cgroup *last;
3131
3132 do {
3133 last = pos;
3134 pos = list_first_or_null_rcu(&pos->children, struct cgroup,
3135 sibling);
3136 } while (pos);
3137
3138 return last;
3139}
3140
3141/**
3142 * cgroup_next_descendant_post - find the next descendant for post-order walk
3143 * @pos: the current position (%NULL to initiate traversal)
3144 * @cgroup: cgroup whose descendants to walk
3145 *
3146 * To be used by cgroup_for_each_descendant_post(). Find the next
3147 * descendant to visit for post-order traversal of @cgroup's descendants.
75501a6d
TH
3148 *
3149 * While this function requires RCU read locking, it doesn't require the
3150 * whole traversal to be contained in a single RCU critical section. This
3151 * function will return the correct next descendant as long as both @pos
3152 * and @cgroup are accessible and @pos is a descendant of @cgroup.
574bd9f7
TH
3153 */
3154struct cgroup *cgroup_next_descendant_post(struct cgroup *pos,
3155 struct cgroup *cgroup)
3156{
3157 struct cgroup *next;
3158
3159 WARN_ON_ONCE(!rcu_read_lock_held());
3160
3161 /* if first iteration, visit the leftmost descendant */
3162 if (!pos) {
3163 next = cgroup_leftmost_descendant(cgroup);
3164 return next != cgroup ? next : NULL;
3165 }
3166
3167 /* if there's an unvisited sibling, visit its leftmost descendant */
75501a6d
TH
3168 next = cgroup_next_sibling(pos);
3169 if (next)
574bd9f7
TH
3170 return cgroup_leftmost_descendant(next);
3171
3172 /* no sibling left, visit parent */
3173 next = pos->parent;
3174 return next != cgroup ? next : NULL;
3175}
3176EXPORT_SYMBOL_GPL(cgroup_next_descendant_post);
3177
bd89aabc 3178void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
c6ca5750 3179 __acquires(css_set_lock)
817929ec
PM
3180{
3181 /*
3182 * The first time anyone tries to iterate across a cgroup,
3183 * we need to enable the list linking each css_set to its
3184 * tasks, and fix up all existing tasks.
3185 */
31a7df01
CW
3186 if (!use_task_css_set_links)
3187 cgroup_enable_task_cg_lists();
3188
817929ec 3189 read_lock(&css_set_lock);
69d0206c 3190 it->cset_link = &cgrp->cset_links;
bd89aabc 3191 cgroup_advance_iter(cgrp, it);
817929ec
PM
3192}
3193
bd89aabc 3194struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
817929ec
PM
3195 struct cgroup_iter *it)
3196{
3197 struct task_struct *res;
3198 struct list_head *l = it->task;
69d0206c 3199 struct cgrp_cset_link *link;
817929ec
PM
3200
3201 /* If the iterator cg is NULL, we have no tasks */
69d0206c 3202 if (!it->cset_link)
817929ec
PM
3203 return NULL;
3204 res = list_entry(l, struct task_struct, cg_list);
3205 /* Advance iterator to find next entry */
3206 l = l->next;
69d0206c
TH
3207 link = list_entry(it->cset_link, struct cgrp_cset_link, cset_link);
3208 if (l == &link->cset->tasks) {
817929ec
PM
3209 /* We reached the end of this task list - move on to
3210 * the next cg_cgroup_link */
bd89aabc 3211 cgroup_advance_iter(cgrp, it);
817929ec
PM
3212 } else {
3213 it->task = l;
3214 }
3215 return res;
3216}
3217
bd89aabc 3218void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
c6ca5750 3219 __releases(css_set_lock)
817929ec
PM
3220{
3221 read_unlock(&css_set_lock);
3222}
3223
31a7df01
CW
3224static inline int started_after_time(struct task_struct *t1,
3225 struct timespec *time,
3226 struct task_struct *t2)
3227{
3228 int start_diff = timespec_compare(&t1->start_time, time);
3229 if (start_diff > 0) {
3230 return 1;
3231 } else if (start_diff < 0) {
3232 return 0;
3233 } else {
3234 /*
3235 * Arbitrarily, if two processes started at the same
3236 * time, we'll say that the lower pointer value
3237 * started first. Note that t2 may have exited by now
3238 * so this may not be a valid pointer any longer, but
3239 * that's fine - it still serves to distinguish
3240 * between two tasks started (effectively) simultaneously.
3241 */
3242 return t1 > t2;
3243 }
3244}
3245
3246/*
3247 * This function is a callback from heap_insert() and is used to order
3248 * the heap.
3249 * In this case we order the heap in descending task start time.
3250 */
3251static inline int started_after(void *p1, void *p2)
3252{
3253 struct task_struct *t1 = p1;
3254 struct task_struct *t2 = p2;
3255 return started_after_time(t1, &t2->start_time, t2);
3256}
3257
3258/**
3259 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
3260 * @scan: struct cgroup_scanner containing arguments for the scan
3261 *
3262 * Arguments include pointers to callback functions test_task() and
3263 * process_task().
3264 * Iterate through all the tasks in a cgroup, calling test_task() for each,
3265 * and if it returns true, call process_task() for it also.
3266 * The test_task pointer may be NULL, meaning always true (select all tasks).
3267 * Effectively duplicates cgroup_iter_{start,next,end}()
3268 * but does not lock css_set_lock for the call to process_task().
3269 * The struct cgroup_scanner may be embedded in any structure of the caller's
3270 * creation.
3271 * It is guaranteed that process_task() will act on every task that
3272 * is a member of the cgroup for the duration of this call. This
3273 * function may or may not call process_task() for tasks that exit
3274 * or move to a different cgroup during the call, or are forked or
3275 * move into the cgroup during the call.
3276 *
3277 * Note that test_task() may be called with locks held, and may in some
3278 * situations be called multiple times for the same task, so it should
3279 * be cheap.
3280 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
3281 * pre-allocated and will be used for heap operations (and its "gt" member will
3282 * be overwritten), else a temporary heap will be used (allocation of which
3283 * may cause this function to fail).
3284 */
3285int cgroup_scan_tasks(struct cgroup_scanner *scan)
3286{
3287 int retval, i;
3288 struct cgroup_iter it;
3289 struct task_struct *p, *dropped;
3290 /* Never dereference latest_task, since it's not refcounted */
3291 struct task_struct *latest_task = NULL;
3292 struct ptr_heap tmp_heap;
3293 struct ptr_heap *heap;
3294 struct timespec latest_time = { 0, 0 };
3295
3296 if (scan->heap) {
3297 /* The caller supplied our heap and pre-allocated its memory */
3298 heap = scan->heap;
3299 heap->gt = &started_after;
3300 } else {
3301 /* We need to allocate our own heap memory */
3302 heap = &tmp_heap;
3303 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
3304 if (retval)
3305 /* cannot allocate the heap */
3306 return retval;
3307 }
3308
3309 again:
3310 /*
3311 * Scan tasks in the cgroup, using the scanner's "test_task" callback
3312 * to determine which are of interest, and using the scanner's
3313 * "process_task" callback to process any of them that need an update.
3314 * Since we don't want to hold any locks during the task updates,
3315 * gather tasks to be processed in a heap structure.
3316 * The heap is sorted by descending task start time.
3317 * If the statically-sized heap fills up, we overflow tasks that
3318 * started later, and in future iterations only consider tasks that
3319 * started after the latest task in the previous pass. This
3320 * guarantees forward progress and that we don't miss any tasks.
3321 */
3322 heap->size = 0;
3323 cgroup_iter_start(scan->cg, &it);
3324 while ((p = cgroup_iter_next(scan->cg, &it))) {
3325 /*
3326 * Only affect tasks that qualify per the caller's callback,
3327 * if he provided one
3328 */
3329 if (scan->test_task && !scan->test_task(p, scan))
3330 continue;
3331 /*
3332 * Only process tasks that started after the last task
3333 * we processed
3334 */
3335 if (!started_after_time(p, &latest_time, latest_task))
3336 continue;
3337 dropped = heap_insert(heap, p);
3338 if (dropped == NULL) {
3339 /*
3340 * The new task was inserted; the heap wasn't
3341 * previously full
3342 */
3343 get_task_struct(p);
3344 } else if (dropped != p) {
3345 /*
3346 * The new task was inserted, and pushed out a
3347 * different task
3348 */
3349 get_task_struct(p);
3350 put_task_struct(dropped);
3351 }
3352 /*
3353 * Else the new task was newer than anything already in
3354 * the heap and wasn't inserted
3355 */
3356 }
3357 cgroup_iter_end(scan->cg, &it);
3358
3359 if (heap->size) {
3360 for (i = 0; i < heap->size; i++) {
4fe91d51 3361 struct task_struct *q = heap->ptrs[i];
31a7df01 3362 if (i == 0) {
4fe91d51
PJ
3363 latest_time = q->start_time;
3364 latest_task = q;
31a7df01
CW
3365 }
3366 /* Process the task per the caller's callback */
4fe91d51
PJ
3367 scan->process_task(q, scan);
3368 put_task_struct(q);
31a7df01
CW
3369 }
3370 /*
3371 * If we had to process any tasks at all, scan again
3372 * in case some of them were in the middle of forking
3373 * children that didn't get processed.
3374 * Not the most efficient way to do it, but it avoids
3375 * having to take callback_mutex in the fork path
3376 */
3377 goto again;
3378 }
3379 if (heap == &tmp_heap)
3380 heap_free(&tmp_heap);
3381 return 0;
3382}
3383
8cc99345
TH
3384static void cgroup_transfer_one_task(struct task_struct *task,
3385 struct cgroup_scanner *scan)
3386{
3387 struct cgroup *new_cgroup = scan->data;
3388
47cfcd09 3389 mutex_lock(&cgroup_mutex);
8cc99345 3390 cgroup_attach_task(new_cgroup, task, false);
47cfcd09 3391 mutex_unlock(&cgroup_mutex);
8cc99345
TH
3392}
3393
3394/**
3395 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
3396 * @to: cgroup to which the tasks will be moved
3397 * @from: cgroup in which the tasks currently reside
3398 */
3399int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
3400{
3401 struct cgroup_scanner scan;
3402
3403 scan.cg = from;
3404 scan.test_task = NULL; /* select all tasks in cgroup */
3405 scan.process_task = cgroup_transfer_one_task;
3406 scan.heap = NULL;
3407 scan.data = to;
3408
3409 return cgroup_scan_tasks(&scan);
3410}
3411
bbcb81d0 3412/*
102a775e 3413 * Stuff for reading the 'tasks'/'procs' files.
bbcb81d0
PM
3414 *
3415 * Reading this file can return large amounts of data if a cgroup has
3416 * *lots* of attached tasks. So it may need several calls to read(),
3417 * but we cannot guarantee that the information we produce is correct
3418 * unless we produce it entirely atomically.
3419 *
bbcb81d0 3420 */
bbcb81d0 3421
24528255
LZ
3422/* which pidlist file are we talking about? */
3423enum cgroup_filetype {
3424 CGROUP_FILE_PROCS,
3425 CGROUP_FILE_TASKS,
3426};
3427
3428/*
3429 * A pidlist is a list of pids that virtually represents the contents of one
3430 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3431 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3432 * to the cgroup.
3433 */
3434struct cgroup_pidlist {
3435 /*
3436 * used to find which pidlist is wanted. doesn't change as long as
3437 * this particular list stays in the list.
3438 */
3439 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
3440 /* array of xids */
3441 pid_t *list;
3442 /* how many elements the above list has */
3443 int length;
3444 /* how many files are using the current array */
3445 int use_count;
3446 /* each of these stored in a list by its cgroup */
3447 struct list_head links;
3448 /* pointer to the cgroup we belong to, for list removal purposes */
3449 struct cgroup *owner;
3450 /* protects the other fields */
3451 struct rw_semaphore mutex;
3452};
3453
d1d9fd33
BB
3454/*
3455 * The following two functions "fix" the issue where there are more pids
3456 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3457 * TODO: replace with a kernel-wide solution to this problem
3458 */
3459#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3460static void *pidlist_allocate(int count)
3461{
3462 if (PIDLIST_TOO_LARGE(count))
3463 return vmalloc(count * sizeof(pid_t));
3464 else
3465 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3466}
3467static void pidlist_free(void *p)
3468{
3469 if (is_vmalloc_addr(p))
3470 vfree(p);
3471 else
3472 kfree(p);
3473}
d1d9fd33 3474
bbcb81d0 3475/*
102a775e 3476 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
6ee211ad 3477 * Returns the number of unique elements.
bbcb81d0 3478 */
6ee211ad 3479static int pidlist_uniq(pid_t *list, int length)
bbcb81d0 3480{
102a775e 3481 int src, dest = 1;
102a775e
BB
3482
3483 /*
3484 * we presume the 0th element is unique, so i starts at 1. trivial
3485 * edge cases first; no work needs to be done for either
3486 */
3487 if (length == 0 || length == 1)
3488 return length;
3489 /* src and dest walk down the list; dest counts unique elements */
3490 for (src = 1; src < length; src++) {
3491 /* find next unique element */
3492 while (list[src] == list[src-1]) {
3493 src++;
3494 if (src == length)
3495 goto after;
3496 }
3497 /* dest always points to where the next unique element goes */
3498 list[dest] = list[src];
3499 dest++;
3500 }
3501after:
102a775e
BB
3502 return dest;
3503}
3504
3505static int cmppid(const void *a, const void *b)
3506{
3507 return *(pid_t *)a - *(pid_t *)b;
3508}
3509
72a8cb30
BB
3510/*
3511 * find the appropriate pidlist for our purpose (given procs vs tasks)
3512 * returns with the lock on that pidlist already held, and takes care
3513 * of the use count, or returns NULL with no locks held if we're out of
3514 * memory.
3515 */
3516static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3517 enum cgroup_filetype type)
3518{
3519 struct cgroup_pidlist *l;
3520 /* don't need task_nsproxy() if we're looking at ourself */
17cf22c3 3521 struct pid_namespace *ns = task_active_pid_ns(current);
b70cc5fd 3522
72a8cb30
BB
3523 /*
3524 * We can't drop the pidlist_mutex before taking the l->mutex in case
3525 * the last ref-holder is trying to remove l from the list at the same
3526 * time. Holding the pidlist_mutex precludes somebody taking whichever
3527 * list we find out from under us - compare release_pid_array().
3528 */
3529 mutex_lock(&cgrp->pidlist_mutex);
3530 list_for_each_entry(l, &cgrp->pidlists, links) {
3531 if (l->key.type == type && l->key.ns == ns) {
72a8cb30
BB
3532 /* make sure l doesn't vanish out from under us */
3533 down_write(&l->mutex);
3534 mutex_unlock(&cgrp->pidlist_mutex);
72a8cb30
BB
3535 return l;
3536 }
3537 }
3538 /* entry not found; create a new one */
f4f4be2b 3539 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
72a8cb30
BB
3540 if (!l) {
3541 mutex_unlock(&cgrp->pidlist_mutex);
72a8cb30
BB
3542 return l;
3543 }
3544 init_rwsem(&l->mutex);
3545 down_write(&l->mutex);
3546 l->key.type = type;
b70cc5fd 3547 l->key.ns = get_pid_ns(ns);
72a8cb30
BB
3548 l->owner = cgrp;
3549 list_add(&l->links, &cgrp->pidlists);
3550 mutex_unlock(&cgrp->pidlist_mutex);
3551 return l;
3552}
3553
102a775e
BB
3554/*
3555 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3556 */
72a8cb30
BB
3557static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3558 struct cgroup_pidlist **lp)
102a775e
BB
3559{
3560 pid_t *array;
3561 int length;
3562 int pid, n = 0; /* used for populating the array */
817929ec
PM
3563 struct cgroup_iter it;
3564 struct task_struct *tsk;
102a775e
BB
3565 struct cgroup_pidlist *l;
3566
3567 /*
3568 * If cgroup gets more users after we read count, we won't have
3569 * enough space - tough. This race is indistinguishable to the
3570 * caller from the case that the additional cgroup users didn't
3571 * show up until sometime later on.
3572 */
3573 length = cgroup_task_count(cgrp);
d1d9fd33 3574 array = pidlist_allocate(length);
102a775e
BB
3575 if (!array)
3576 return -ENOMEM;
3577 /* now, populate the array */
bd89aabc
PM
3578 cgroup_iter_start(cgrp, &it);
3579 while ((tsk = cgroup_iter_next(cgrp, &it))) {
102a775e 3580 if (unlikely(n == length))
817929ec 3581 break;
102a775e 3582 /* get tgid or pid for procs or tasks file respectively */
72a8cb30
BB
3583 if (type == CGROUP_FILE_PROCS)
3584 pid = task_tgid_vnr(tsk);
3585 else
3586 pid = task_pid_vnr(tsk);
102a775e
BB
3587 if (pid > 0) /* make sure to only use valid results */
3588 array[n++] = pid;
817929ec 3589 }
bd89aabc 3590 cgroup_iter_end(cgrp, &it);
102a775e
BB
3591 length = n;
3592 /* now sort & (if procs) strip out duplicates */
3593 sort(array, length, sizeof(pid_t), cmppid, NULL);
72a8cb30 3594 if (type == CGROUP_FILE_PROCS)
6ee211ad 3595 length = pidlist_uniq(array, length);
72a8cb30
BB
3596 l = cgroup_pidlist_find(cgrp, type);
3597 if (!l) {
d1d9fd33 3598 pidlist_free(array);
72a8cb30 3599 return -ENOMEM;
102a775e 3600 }
72a8cb30 3601 /* store array, freeing old if necessary - lock already held */
d1d9fd33 3602 pidlist_free(l->list);
102a775e
BB
3603 l->list = array;
3604 l->length = length;
3605 l->use_count++;
3606 up_write(&l->mutex);
72a8cb30 3607 *lp = l;
102a775e 3608 return 0;
bbcb81d0
PM
3609}
3610
846c7bb0 3611/**
a043e3b2 3612 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
3613 * @stats: cgroupstats to fill information into
3614 * @dentry: A dentry entry belonging to the cgroup for which stats have
3615 * been requested.
a043e3b2
LZ
3616 *
3617 * Build and fill cgroupstats so that taskstats can export it to user
3618 * space.
846c7bb0
BS
3619 */
3620int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3621{
3622 int ret = -EINVAL;
bd89aabc 3623 struct cgroup *cgrp;
846c7bb0
BS
3624 struct cgroup_iter it;
3625 struct task_struct *tsk;
33d283be 3626
846c7bb0 3627 /*
33d283be
LZ
3628 * Validate dentry by checking the superblock operations,
3629 * and make sure it's a directory.
846c7bb0 3630 */
33d283be
LZ
3631 if (dentry->d_sb->s_op != &cgroup_ops ||
3632 !S_ISDIR(dentry->d_inode->i_mode))
846c7bb0
BS
3633 goto err;
3634
3635 ret = 0;
bd89aabc 3636 cgrp = dentry->d_fsdata;
846c7bb0 3637
bd89aabc
PM
3638 cgroup_iter_start(cgrp, &it);
3639 while ((tsk = cgroup_iter_next(cgrp, &it))) {
846c7bb0
BS
3640 switch (tsk->state) {
3641 case TASK_RUNNING:
3642 stats->nr_running++;
3643 break;
3644 case TASK_INTERRUPTIBLE:
3645 stats->nr_sleeping++;
3646 break;
3647 case TASK_UNINTERRUPTIBLE:
3648 stats->nr_uninterruptible++;
3649 break;
3650 case TASK_STOPPED:
3651 stats->nr_stopped++;
3652 break;
3653 default:
3654 if (delayacct_is_task_waiting_on_io(tsk))
3655 stats->nr_io_wait++;
3656 break;
3657 }
3658 }
bd89aabc 3659 cgroup_iter_end(cgrp, &it);
846c7bb0 3660
846c7bb0
BS
3661err:
3662 return ret;
3663}
3664
8f3ff208 3665
bbcb81d0 3666/*
102a775e 3667 * seq_file methods for the tasks/procs files. The seq_file position is the
cc31edce 3668 * next pid to display; the seq_file iterator is a pointer to the pid
102a775e 3669 * in the cgroup->l->list array.
bbcb81d0 3670 */
cc31edce 3671
102a775e 3672static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
bbcb81d0 3673{
cc31edce
PM
3674 /*
3675 * Initially we receive a position value that corresponds to
3676 * one more than the last pid shown (or 0 on the first call or
3677 * after a seek to the start). Use a binary-search to find the
3678 * next pid to display, if any
3679 */
102a775e 3680 struct cgroup_pidlist *l = s->private;
cc31edce
PM
3681 int index = 0, pid = *pos;
3682 int *iter;
3683
102a775e 3684 down_read(&l->mutex);
cc31edce 3685 if (pid) {
102a775e 3686 int end = l->length;
20777766 3687
cc31edce
PM
3688 while (index < end) {
3689 int mid = (index + end) / 2;
102a775e 3690 if (l->list[mid] == pid) {
cc31edce
PM
3691 index = mid;
3692 break;
102a775e 3693 } else if (l->list[mid] <= pid)
cc31edce
PM
3694 index = mid + 1;
3695 else
3696 end = mid;
3697 }
3698 }
3699 /* If we're off the end of the array, we're done */
102a775e 3700 if (index >= l->length)
cc31edce
PM
3701 return NULL;
3702 /* Update the abstract position to be the actual pid that we found */
102a775e 3703 iter = l->list + index;
cc31edce
PM
3704 *pos = *iter;
3705 return iter;
3706}
3707
102a775e 3708static void cgroup_pidlist_stop(struct seq_file *s, void *v)
cc31edce 3709{
102a775e
BB
3710 struct cgroup_pidlist *l = s->private;
3711 up_read(&l->mutex);
cc31edce
PM
3712}
3713
102a775e 3714static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
cc31edce 3715{
102a775e
BB
3716 struct cgroup_pidlist *l = s->private;
3717 pid_t *p = v;
3718 pid_t *end = l->list + l->length;
cc31edce
PM
3719 /*
3720 * Advance to the next pid in the array. If this goes off the
3721 * end, we're done
3722 */
3723 p++;
3724 if (p >= end) {
3725 return NULL;
3726 } else {
3727 *pos = *p;
3728 return p;
3729 }
3730}
3731
102a775e 3732static int cgroup_pidlist_show(struct seq_file *s, void *v)
cc31edce
PM
3733{
3734 return seq_printf(s, "%d\n", *(int *)v);
3735}
bbcb81d0 3736
102a775e
BB
3737/*
3738 * seq_operations functions for iterating on pidlists through seq_file -
3739 * independent of whether it's tasks or procs
3740 */
3741static const struct seq_operations cgroup_pidlist_seq_operations = {
3742 .start = cgroup_pidlist_start,
3743 .stop = cgroup_pidlist_stop,
3744 .next = cgroup_pidlist_next,
3745 .show = cgroup_pidlist_show,
cc31edce
PM
3746};
3747
102a775e 3748static void cgroup_release_pid_array(struct cgroup_pidlist *l)
cc31edce 3749{
72a8cb30
BB
3750 /*
3751 * the case where we're the last user of this particular pidlist will
3752 * have us remove it from the cgroup's list, which entails taking the
3753 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
3754 * pidlist_mutex, we have to take pidlist_mutex first.
3755 */
3756 mutex_lock(&l->owner->pidlist_mutex);
102a775e
BB
3757 down_write(&l->mutex);
3758 BUG_ON(!l->use_count);
3759 if (!--l->use_count) {
72a8cb30
BB
3760 /* we're the last user if refcount is 0; remove and free */
3761 list_del(&l->links);
3762 mutex_unlock(&l->owner->pidlist_mutex);
d1d9fd33 3763 pidlist_free(l->list);
72a8cb30
BB
3764 put_pid_ns(l->key.ns);
3765 up_write(&l->mutex);
3766 kfree(l);
3767 return;
cc31edce 3768 }
72a8cb30 3769 mutex_unlock(&l->owner->pidlist_mutex);
102a775e 3770 up_write(&l->mutex);
bbcb81d0
PM
3771}
3772
102a775e 3773static int cgroup_pidlist_release(struct inode *inode, struct file *file)
cc31edce 3774{
102a775e 3775 struct cgroup_pidlist *l;
cc31edce
PM
3776 if (!(file->f_mode & FMODE_READ))
3777 return 0;
102a775e
BB
3778 /*
3779 * the seq_file will only be initialized if the file was opened for
3780 * reading; hence we check if it's not null only in that case.
3781 */
3782 l = ((struct seq_file *)file->private_data)->private;
3783 cgroup_release_pid_array(l);
cc31edce
PM
3784 return seq_release(inode, file);
3785}
3786
102a775e 3787static const struct file_operations cgroup_pidlist_operations = {
cc31edce
PM
3788 .read = seq_read,
3789 .llseek = seq_lseek,
3790 .write = cgroup_file_write,
102a775e 3791 .release = cgroup_pidlist_release,
cc31edce
PM
3792};
3793
bbcb81d0 3794/*
102a775e
BB
3795 * The following functions handle opens on a file that displays a pidlist
3796 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
3797 * in the cgroup.
bbcb81d0 3798 */
102a775e 3799/* helper function for the two below it */
72a8cb30 3800static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
bbcb81d0 3801{
bd89aabc 3802 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
72a8cb30 3803 struct cgroup_pidlist *l;
cc31edce 3804 int retval;
bbcb81d0 3805
cc31edce 3806 /* Nothing to do for write-only files */
bbcb81d0
PM
3807 if (!(file->f_mode & FMODE_READ))
3808 return 0;
3809
102a775e 3810 /* have the array populated */
72a8cb30 3811 retval = pidlist_array_load(cgrp, type, &l);
102a775e
BB
3812 if (retval)
3813 return retval;
3814 /* configure file information */
3815 file->f_op = &cgroup_pidlist_operations;
cc31edce 3816
102a775e 3817 retval = seq_open(file, &cgroup_pidlist_seq_operations);
cc31edce 3818 if (retval) {
102a775e 3819 cgroup_release_pid_array(l);
cc31edce 3820 return retval;
bbcb81d0 3821 }
102a775e 3822 ((struct seq_file *)file->private_data)->private = l;
bbcb81d0
PM
3823 return 0;
3824}
102a775e
BB
3825static int cgroup_tasks_open(struct inode *unused, struct file *file)
3826{
72a8cb30 3827 return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
102a775e
BB
3828}
3829static int cgroup_procs_open(struct inode *unused, struct file *file)
3830{
72a8cb30 3831 return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
102a775e 3832}
bbcb81d0 3833
bd89aabc 3834static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
81a6a5cd
PM
3835 struct cftype *cft)
3836{
bd89aabc 3837 return notify_on_release(cgrp);
81a6a5cd
PM
3838}
3839
6379c106
PM
3840static int cgroup_write_notify_on_release(struct cgroup *cgrp,
3841 struct cftype *cft,
3842 u64 val)
3843{
3844 clear_bit(CGRP_RELEASABLE, &cgrp->flags);
3845 if (val)
3846 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3847 else
3848 clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3849 return 0;
3850}
3851
1c8158ee
LZ
3852/*
3853 * When dput() is called asynchronously, if umount has been done and
3854 * then deactivate_super() in cgroup_free_fn() kills the superblock,
3855 * there's a small window that vfs will see the root dentry with non-zero
3856 * refcnt and trigger BUG().
3857 *
3858 * That's why we hold a reference before dput() and drop it right after.
3859 */
3860static void cgroup_dput(struct cgroup *cgrp)
3861{
3862 struct super_block *sb = cgrp->root->sb;
3863
3864 atomic_inc(&sb->s_active);
3865 dput(cgrp->dentry);
3866 deactivate_super(sb);
3867}
3868
0dea1168
KS
3869/*
3870 * Unregister event and free resources.
3871 *
3872 * Gets called from workqueue.
3873 */
3874static void cgroup_event_remove(struct work_struct *work)
3875{
3876 struct cgroup_event *event = container_of(work, struct cgroup_event,
3877 remove);
3878 struct cgroup *cgrp = event->cgrp;
3879
810cbee4
LZ
3880 remove_wait_queue(event->wqh, &event->wait);
3881
0dea1168
KS
3882 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3883
810cbee4
LZ
3884 /* Notify userspace the event is going away. */
3885 eventfd_signal(event->eventfd, 1);
3886
0dea1168 3887 eventfd_ctx_put(event->eventfd);
0dea1168 3888 kfree(event);
1c8158ee 3889 cgroup_dput(cgrp);
0dea1168
KS
3890}
3891
3892/*
3893 * Gets called on POLLHUP on eventfd when user closes it.
3894 *
3895 * Called with wqh->lock held and interrupts disabled.
3896 */
3897static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
3898 int sync, void *key)
3899{
3900 struct cgroup_event *event = container_of(wait,
3901 struct cgroup_event, wait);
3902 struct cgroup *cgrp = event->cgrp;
3903 unsigned long flags = (unsigned long)key;
3904
3905 if (flags & POLLHUP) {
0dea1168 3906 /*
810cbee4
LZ
3907 * If the event has been detached at cgroup removal, we
3908 * can simply return knowing the other side will cleanup
3909 * for us.
3910 *
3911 * We can't race against event freeing since the other
3912 * side will require wqh->lock via remove_wait_queue(),
3913 * which we hold.
0dea1168 3914 */
810cbee4
LZ
3915 spin_lock(&cgrp->event_list_lock);
3916 if (!list_empty(&event->list)) {
3917 list_del_init(&event->list);
3918 /*
3919 * We are in atomic context, but cgroup_event_remove()
3920 * may sleep, so we have to call it in workqueue.
3921 */
3922 schedule_work(&event->remove);
3923 }
3924 spin_unlock(&cgrp->event_list_lock);
0dea1168
KS
3925 }
3926
3927 return 0;
3928}
3929
3930static void cgroup_event_ptable_queue_proc(struct file *file,
3931 wait_queue_head_t *wqh, poll_table *pt)
3932{
3933 struct cgroup_event *event = container_of(pt,
3934 struct cgroup_event, pt);
3935
3936 event->wqh = wqh;
3937 add_wait_queue(wqh, &event->wait);
3938}
3939
3940/*
3941 * Parse input and register new cgroup event handler.
3942 *
3943 * Input must be in format '<event_fd> <control_fd> <args>'.
3944 * Interpretation of args is defined by control file implementation.
3945 */
3946static int cgroup_write_event_control(struct cgroup *cgrp, struct cftype *cft,
3947 const char *buffer)
3948{
3949 struct cgroup_event *event = NULL;
f169007b 3950 struct cgroup *cgrp_cfile;
0dea1168
KS
3951 unsigned int efd, cfd;
3952 struct file *efile = NULL;
3953 struct file *cfile = NULL;
3954 char *endp;
3955 int ret;
3956
3957 efd = simple_strtoul(buffer, &endp, 10);
3958 if (*endp != ' ')
3959 return -EINVAL;
3960 buffer = endp + 1;
3961
3962 cfd = simple_strtoul(buffer, &endp, 10);
3963 if ((*endp != ' ') && (*endp != '\0'))
3964 return -EINVAL;
3965 buffer = endp + 1;
3966
3967 event = kzalloc(sizeof(*event), GFP_KERNEL);
3968 if (!event)
3969 return -ENOMEM;
3970 event->cgrp = cgrp;
3971 INIT_LIST_HEAD(&event->list);
3972 init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
3973 init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
3974 INIT_WORK(&event->remove, cgroup_event_remove);
3975
3976 efile = eventfd_fget(efd);
3977 if (IS_ERR(efile)) {
3978 ret = PTR_ERR(efile);
3979 goto fail;
3980 }
3981
3982 event->eventfd = eventfd_ctx_fileget(efile);
3983 if (IS_ERR(event->eventfd)) {
3984 ret = PTR_ERR(event->eventfd);
3985 goto fail;
3986 }
3987
3988 cfile = fget(cfd);
3989 if (!cfile) {
3990 ret = -EBADF;
3991 goto fail;
3992 }
3993
3994 /* the process need read permission on control file */
3bfa784a 3995 /* AV: shouldn't we check that it's been opened for read instead? */
496ad9aa 3996 ret = inode_permission(file_inode(cfile), MAY_READ);
0dea1168
KS
3997 if (ret < 0)
3998 goto fail;
3999
4000 event->cft = __file_cft(cfile);
4001 if (IS_ERR(event->cft)) {
4002 ret = PTR_ERR(event->cft);
4003 goto fail;
4004 }
4005
f169007b
LZ
4006 /*
4007 * The file to be monitored must be in the same cgroup as
4008 * cgroup.event_control is.
4009 */
4010 cgrp_cfile = __d_cgrp(cfile->f_dentry->d_parent);
4011 if (cgrp_cfile != cgrp) {
4012 ret = -EINVAL;
4013 goto fail;
4014 }
4015
0dea1168
KS
4016 if (!event->cft->register_event || !event->cft->unregister_event) {
4017 ret = -EINVAL;
4018 goto fail;
4019 }
4020
4021 ret = event->cft->register_event(cgrp, event->cft,
4022 event->eventfd, buffer);
4023 if (ret)
4024 goto fail;
4025
7ef70e48 4026 efile->f_op->poll(efile, &event->pt);
0dea1168 4027
a0a4db54
KS
4028 /*
4029 * Events should be removed after rmdir of cgroup directory, but before
4030 * destroying subsystem state objects. Let's take reference to cgroup
4031 * directory dentry to do that.
4032 */
4033 dget(cgrp->dentry);
4034
0dea1168
KS
4035 spin_lock(&cgrp->event_list_lock);
4036 list_add(&event->list, &cgrp->event_list);
4037 spin_unlock(&cgrp->event_list_lock);
4038
4039 fput(cfile);
4040 fput(efile);
4041
4042 return 0;
4043
4044fail:
4045 if (cfile)
4046 fput(cfile);
4047
4048 if (event && event->eventfd && !IS_ERR(event->eventfd))
4049 eventfd_ctx_put(event->eventfd);
4050
4051 if (!IS_ERR_OR_NULL(efile))
4052 fput(efile);
4053
4054 kfree(event);
4055
4056 return ret;
4057}
4058
97978e6d
DL
4059static u64 cgroup_clone_children_read(struct cgroup *cgrp,
4060 struct cftype *cft)
4061{
2260e7fc 4062 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d
DL
4063}
4064
4065static int cgroup_clone_children_write(struct cgroup *cgrp,
4066 struct cftype *cft,
4067 u64 val)
4068{
4069 if (val)
2260e7fc 4070 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d 4071 else
2260e7fc 4072 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d
DL
4073 return 0;
4074}
4075
d5c56ced 4076static struct cftype cgroup_base_files[] = {
81a6a5cd 4077 {
d5c56ced 4078 .name = "cgroup.procs",
102a775e 4079 .open = cgroup_procs_open,
74a1166d 4080 .write_u64 = cgroup_procs_write,
102a775e 4081 .release = cgroup_pidlist_release,
74a1166d 4082 .mode = S_IRUGO | S_IWUSR,
102a775e 4083 },
81a6a5cd 4084 {
d5c56ced 4085 .name = "cgroup.event_control",
0dea1168
KS
4086 .write_string = cgroup_write_event_control,
4087 .mode = S_IWUGO,
4088 },
97978e6d
DL
4089 {
4090 .name = "cgroup.clone_children",
873fe09e 4091 .flags = CFTYPE_INSANE,
97978e6d
DL
4092 .read_u64 = cgroup_clone_children_read,
4093 .write_u64 = cgroup_clone_children_write,
4094 },
873fe09e
TH
4095 {
4096 .name = "cgroup.sane_behavior",
4097 .flags = CFTYPE_ONLY_ON_ROOT,
4098 .read_seq_string = cgroup_sane_behavior_show,
4099 },
d5c56ced
TH
4100
4101 /*
4102 * Historical crazy stuff. These don't have "cgroup." prefix and
4103 * don't exist if sane_behavior. If you're depending on these, be
4104 * prepared to be burned.
4105 */
4106 {
4107 .name = "tasks",
4108 .flags = CFTYPE_INSANE, /* use "procs" instead */
4109 .open = cgroup_tasks_open,
4110 .write_u64 = cgroup_tasks_write,
4111 .release = cgroup_pidlist_release,
4112 .mode = S_IRUGO | S_IWUSR,
4113 },
4114 {
4115 .name = "notify_on_release",
4116 .flags = CFTYPE_INSANE,
4117 .read_u64 = cgroup_read_notify_on_release,
4118 .write_u64 = cgroup_write_notify_on_release,
4119 },
6e6ff25b
TH
4120 {
4121 .name = "release_agent",
cc5943a7 4122 .flags = CFTYPE_INSANE | CFTYPE_ONLY_ON_ROOT,
6e6ff25b
TH
4123 .read_seq_string = cgroup_release_agent_show,
4124 .write_string = cgroup_release_agent_write,
4125 .max_write_len = PATH_MAX,
4126 },
db0416b6 4127 { } /* terminate */
bbcb81d0
PM
4128};
4129
13af07df
AR
4130/**
4131 * cgroup_populate_dir - selectively creation of files in a directory
4132 * @cgrp: target cgroup
4133 * @base_files: true if the base files should be added
4134 * @subsys_mask: mask of the subsystem ids whose files should be added
4135 */
4136static int cgroup_populate_dir(struct cgroup *cgrp, bool base_files,
4137 unsigned long subsys_mask)
ddbcc7e8
PM
4138{
4139 int err;
4140 struct cgroup_subsys *ss;
4141
13af07df 4142 if (base_files) {
d5c56ced 4143 err = cgroup_addrm_files(cgrp, NULL, cgroup_base_files, true);
13af07df
AR
4144 if (err < 0)
4145 return err;
4146 }
bbcb81d0 4147
8e3f6541 4148 /* process cftsets of each subsystem */
5549c497 4149 for_each_root_subsys(cgrp->root, ss) {
8e3f6541 4150 struct cftype_set *set;
13af07df
AR
4151 if (!test_bit(ss->subsys_id, &subsys_mask))
4152 continue;
8e3f6541 4153
db0416b6 4154 list_for_each_entry(set, &ss->cftsets, node)
79578621 4155 cgroup_addrm_files(cgrp, ss, set->cfts, true);
ddbcc7e8 4156 }
8e3f6541 4157
38460b48 4158 /* This cgroup is ready now */
5549c497 4159 for_each_root_subsys(cgrp->root, ss) {
38460b48
KH
4160 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4161 /*
4162 * Update id->css pointer and make this css visible from
4163 * CSS ID functions. This pointer will be dereferened
4164 * from RCU-read-side without locks.
4165 */
4166 if (css->id)
4167 rcu_assign_pointer(css->id->css, css);
4168 }
ddbcc7e8
PM
4169
4170 return 0;
4171}
4172
48ddbe19
TH
4173static void css_dput_fn(struct work_struct *work)
4174{
4175 struct cgroup_subsys_state *css =
4176 container_of(work, struct cgroup_subsys_state, dput_work);
4177
1c8158ee 4178 cgroup_dput(css->cgroup);
48ddbe19
TH
4179}
4180
d3daf28d
TH
4181static void css_release(struct percpu_ref *ref)
4182{
4183 struct cgroup_subsys_state *css =
4184 container_of(ref, struct cgroup_subsys_state, refcnt);
4185
4186 schedule_work(&css->dput_work);
4187}
4188
ddbcc7e8
PM
4189static void init_cgroup_css(struct cgroup_subsys_state *css,
4190 struct cgroup_subsys *ss,
bd89aabc 4191 struct cgroup *cgrp)
ddbcc7e8 4192{
bd89aabc 4193 css->cgroup = cgrp;
ddbcc7e8 4194 css->flags = 0;
38460b48 4195 css->id = NULL;
9871bf95 4196 if (cgrp == cgroup_dummy_top)
38b53aba 4197 css->flags |= CSS_ROOT;
bd89aabc
PM
4198 BUG_ON(cgrp->subsys[ss->subsys_id]);
4199 cgrp->subsys[ss->subsys_id] = css;
48ddbe19
TH
4200
4201 /*
ed957793
TH
4202 * css holds an extra ref to @cgrp->dentry which is put on the last
4203 * css_put(). dput() requires process context, which css_put() may
4204 * be called without. @css->dput_work will be used to invoke
4205 * dput() asynchronously from css_put().
48ddbe19
TH
4206 */
4207 INIT_WORK(&css->dput_work, css_dput_fn);
ddbcc7e8
PM
4208}
4209
b1929db4
TH
4210/* invoke ->post_create() on a new CSS and mark it online if successful */
4211static int online_css(struct cgroup_subsys *ss, struct cgroup *cgrp)
a31f2d3f 4212{
b1929db4
TH
4213 int ret = 0;
4214
a31f2d3f
TH
4215 lockdep_assert_held(&cgroup_mutex);
4216
92fb9748
TH
4217 if (ss->css_online)
4218 ret = ss->css_online(cgrp);
b1929db4
TH
4219 if (!ret)
4220 cgrp->subsys[ss->subsys_id]->flags |= CSS_ONLINE;
4221 return ret;
a31f2d3f
TH
4222}
4223
4224/* if the CSS is online, invoke ->pre_destory() on it and mark it offline */
4225static void offline_css(struct cgroup_subsys *ss, struct cgroup *cgrp)
4226 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
4227{
4228 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4229
4230 lockdep_assert_held(&cgroup_mutex);
4231
4232 if (!(css->flags & CSS_ONLINE))
4233 return;
4234
d7eeac19 4235 if (ss->css_offline)
92fb9748 4236 ss->css_offline(cgrp);
a31f2d3f
TH
4237
4238 cgrp->subsys[ss->subsys_id]->flags &= ~CSS_ONLINE;
4239}
4240
ddbcc7e8 4241/*
a043e3b2
LZ
4242 * cgroup_create - create a cgroup
4243 * @parent: cgroup that will be parent of the new cgroup
4244 * @dentry: dentry of the new cgroup
4245 * @mode: mode to set on new inode
ddbcc7e8 4246 *
a043e3b2 4247 * Must be called with the mutex on the parent inode held
ddbcc7e8 4248 */
ddbcc7e8 4249static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
a5e7ed32 4250 umode_t mode)
ddbcc7e8 4251{
bd89aabc 4252 struct cgroup *cgrp;
65dff759 4253 struct cgroup_name *name;
ddbcc7e8
PM
4254 struct cgroupfs_root *root = parent->root;
4255 int err = 0;
4256 struct cgroup_subsys *ss;
4257 struct super_block *sb = root->sb;
4258
0a950f65 4259 /* allocate the cgroup and its ID, 0 is reserved for the root */
bd89aabc
PM
4260 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
4261 if (!cgrp)
ddbcc7e8
PM
4262 return -ENOMEM;
4263
65dff759
LZ
4264 name = cgroup_alloc_name(dentry);
4265 if (!name)
4266 goto err_free_cgrp;
4267 rcu_assign_pointer(cgrp->name, name);
4268
0a950f65
TH
4269 cgrp->id = ida_simple_get(&root->cgroup_ida, 1, 0, GFP_KERNEL);
4270 if (cgrp->id < 0)
65dff759 4271 goto err_free_name;
0a950f65 4272
976c06bc
TH
4273 /*
4274 * Only live parents can have children. Note that the liveliness
4275 * check isn't strictly necessary because cgroup_mkdir() and
4276 * cgroup_rmdir() are fully synchronized by i_mutex; however, do it
4277 * anyway so that locking is contained inside cgroup proper and we
4278 * don't get nasty surprises if we ever grow another caller.
4279 */
4280 if (!cgroup_lock_live_group(parent)) {
4281 err = -ENODEV;
0a950f65 4282 goto err_free_id;
976c06bc
TH
4283 }
4284
ddbcc7e8
PM
4285 /* Grab a reference on the superblock so the hierarchy doesn't
4286 * get deleted on unmount if there are child cgroups. This
4287 * can be done outside cgroup_mutex, since the sb can't
4288 * disappear while someone has an open control file on the
4289 * fs */
4290 atomic_inc(&sb->s_active);
4291
cc31edce 4292 init_cgroup_housekeeping(cgrp);
ddbcc7e8 4293
fe1c06ca
LZ
4294 dentry->d_fsdata = cgrp;
4295 cgrp->dentry = dentry;
4296
bd89aabc
PM
4297 cgrp->parent = parent;
4298 cgrp->root = parent->root;
ddbcc7e8 4299
b6abdb0e
LZ
4300 if (notify_on_release(parent))
4301 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4302
2260e7fc
TH
4303 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4304 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d 4305
5549c497 4306 for_each_root_subsys(root, ss) {
8c7f6edb 4307 struct cgroup_subsys_state *css;
4528fd05 4308
92fb9748 4309 css = ss->css_alloc(cgrp);
ddbcc7e8
PM
4310 if (IS_ERR(css)) {
4311 err = PTR_ERR(css);
4b8b47eb 4312 goto err_free_all;
ddbcc7e8 4313 }
d3daf28d
TH
4314
4315 err = percpu_ref_init(&css->refcnt, css_release);
4316 if (err)
4317 goto err_free_all;
4318
bd89aabc 4319 init_cgroup_css(css, ss, cgrp);
d3daf28d 4320
4528fd05
LZ
4321 if (ss->use_id) {
4322 err = alloc_css_id(ss, parent, cgrp);
4323 if (err)
4b8b47eb 4324 goto err_free_all;
4528fd05 4325 }
ddbcc7e8
PM
4326 }
4327
4e139afc
TH
4328 /*
4329 * Create directory. cgroup_create_file() returns with the new
4330 * directory locked on success so that it can be populated without
4331 * dropping cgroup_mutex.
4332 */
28fd6f30 4333 err = cgroup_create_file(dentry, S_IFDIR | mode, sb);
ddbcc7e8 4334 if (err < 0)
4b8b47eb 4335 goto err_free_all;
4e139afc 4336 lockdep_assert_held(&dentry->d_inode->i_mutex);
ddbcc7e8 4337
00356bd5 4338 cgrp->serial_nr = cgroup_serial_nr_next++;
53fa5261 4339
4e139afc 4340 /* allocation complete, commit to creation */
4e139afc
TH
4341 list_add_tail_rcu(&cgrp->sibling, &cgrp->parent->children);
4342 root->number_of_cgroups++;
28fd6f30 4343
b1929db4 4344 /* each css holds a ref to the cgroup's dentry */
5549c497 4345 for_each_root_subsys(root, ss)
ed957793 4346 dget(dentry);
48ddbe19 4347
415cf07a
LZ
4348 /* hold a ref to the parent's dentry */
4349 dget(parent->dentry);
4350
b1929db4 4351 /* creation succeeded, notify subsystems */
5549c497 4352 for_each_root_subsys(root, ss) {
b1929db4
TH
4353 err = online_css(ss, cgrp);
4354 if (err)
4355 goto err_destroy;
1f869e87
GC
4356
4357 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
4358 parent->parent) {
4359 pr_warning("cgroup: %s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4360 current->comm, current->pid, ss->name);
4361 if (!strcmp(ss->name, "memory"))
4362 pr_warning("cgroup: \"memory\" requires setting use_hierarchy to 1 on the root.\n");
4363 ss->warned_broken_hierarchy = true;
4364 }
a8638030
TH
4365 }
4366
a1a71b45 4367 err = cgroup_populate_dir(cgrp, true, root->subsys_mask);
4b8b47eb
TH
4368 if (err)
4369 goto err_destroy;
ddbcc7e8
PM
4370
4371 mutex_unlock(&cgroup_mutex);
bd89aabc 4372 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8
PM
4373
4374 return 0;
4375
4b8b47eb 4376err_free_all:
5549c497 4377 for_each_root_subsys(root, ss) {
d3daf28d
TH
4378 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4379
4380 if (css) {
4381 percpu_ref_cancel_init(&css->refcnt);
92fb9748 4382 ss->css_free(cgrp);
d3daf28d 4383 }
ddbcc7e8 4384 }
ddbcc7e8 4385 mutex_unlock(&cgroup_mutex);
ddbcc7e8
PM
4386 /* Release the reference count that we took on the superblock */
4387 deactivate_super(sb);
0a950f65
TH
4388err_free_id:
4389 ida_simple_remove(&root->cgroup_ida, cgrp->id);
65dff759
LZ
4390err_free_name:
4391 kfree(rcu_dereference_raw(cgrp->name));
4b8b47eb 4392err_free_cgrp:
bd89aabc 4393 kfree(cgrp);
ddbcc7e8 4394 return err;
4b8b47eb
TH
4395
4396err_destroy:
4397 cgroup_destroy_locked(cgrp);
4398 mutex_unlock(&cgroup_mutex);
4399 mutex_unlock(&dentry->d_inode->i_mutex);
4400 return err;
ddbcc7e8
PM
4401}
4402
18bb1db3 4403static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
ddbcc7e8
PM
4404{
4405 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
4406
4407 /* the vfs holds inode->i_mutex already */
4408 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
4409}
4410
d3daf28d
TH
4411static void cgroup_css_killed(struct cgroup *cgrp)
4412{
4413 if (!atomic_dec_and_test(&cgrp->css_kill_cnt))
4414 return;
4415
4416 /* percpu ref's of all css's are killed, kick off the next step */
4417 INIT_WORK(&cgrp->destroy_work, cgroup_offline_fn);
4418 schedule_work(&cgrp->destroy_work);
4419}
4420
4421static void css_ref_killed_fn(struct percpu_ref *ref)
4422{
4423 struct cgroup_subsys_state *css =
4424 container_of(ref, struct cgroup_subsys_state, refcnt);
4425
4426 cgroup_css_killed(css->cgroup);
4427}
4428
4429/**
4430 * cgroup_destroy_locked - the first stage of cgroup destruction
4431 * @cgrp: cgroup to be destroyed
4432 *
4433 * css's make use of percpu refcnts whose killing latency shouldn't be
4434 * exposed to userland and are RCU protected. Also, cgroup core needs to
4435 * guarantee that css_tryget() won't succeed by the time ->css_offline() is
4436 * invoked. To satisfy all the requirements, destruction is implemented in
4437 * the following two steps.
4438 *
4439 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
4440 * userland visible parts and start killing the percpu refcnts of
4441 * css's. Set up so that the next stage will be kicked off once all
4442 * the percpu refcnts are confirmed to be killed.
4443 *
4444 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
4445 * rest of destruction. Once all cgroup references are gone, the
4446 * cgroup is RCU-freed.
4447 *
4448 * This function implements s1. After this step, @cgrp is gone as far as
4449 * the userland is concerned and a new cgroup with the same name may be
4450 * created. As cgroup doesn't care about the names internally, this
4451 * doesn't cause any problem.
4452 */
42809dd4
TH
4453static int cgroup_destroy_locked(struct cgroup *cgrp)
4454 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
ddbcc7e8 4455{
42809dd4 4456 struct dentry *d = cgrp->dentry;
4ab78683 4457 struct cgroup_event *event, *tmp;
ed957793 4458 struct cgroup_subsys *ss;
ddd69148 4459 bool empty;
ddbcc7e8 4460
42809dd4
TH
4461 lockdep_assert_held(&d->d_inode->i_mutex);
4462 lockdep_assert_held(&cgroup_mutex);
4463
ddd69148 4464 /*
6f3d828f
TH
4465 * css_set_lock synchronizes access to ->cset_links and prevents
4466 * @cgrp from being removed while __put_css_set() is in progress.
ddd69148
TH
4467 */
4468 read_lock(&css_set_lock);
6f3d828f 4469 empty = list_empty(&cgrp->cset_links) && list_empty(&cgrp->children);
ddd69148
TH
4470 read_unlock(&css_set_lock);
4471 if (!empty)
ddbcc7e8 4472 return -EBUSY;
a043e3b2 4473
88703267 4474 /*
d3daf28d
TH
4475 * Block new css_tryget() by killing css refcnts. cgroup core
4476 * guarantees that, by the time ->css_offline() is invoked, no new
4477 * css reference will be given out via css_tryget(). We can't
4478 * simply call percpu_ref_kill() and proceed to offlining css's
4479 * because percpu_ref_kill() doesn't guarantee that the ref is seen
4480 * as killed on all CPUs on return.
4481 *
4482 * Use percpu_ref_kill_and_confirm() to get notifications as each
4483 * css is confirmed to be seen as killed on all CPUs. The
4484 * notification callback keeps track of the number of css's to be
4485 * killed and schedules cgroup_offline_fn() to perform the rest of
4486 * destruction once the percpu refs of all css's are confirmed to
4487 * be killed.
88703267 4488 */
d3daf28d 4489 atomic_set(&cgrp->css_kill_cnt, 1);
5549c497 4490 for_each_root_subsys(cgrp->root, ss) {
ed957793 4491 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
88703267 4492
d3daf28d
TH
4493 /*
4494 * Killing would put the base ref, but we need to keep it
4495 * alive until after ->css_offline.
4496 */
4497 percpu_ref_get(&css->refcnt);
4498
4499 atomic_inc(&cgrp->css_kill_cnt);
4500 percpu_ref_kill_and_confirm(&css->refcnt, css_ref_killed_fn);
88703267 4501 }
d3daf28d 4502 cgroup_css_killed(cgrp);
455050d2
TH
4503
4504 /*
4505 * Mark @cgrp dead. This prevents further task migration and child
4506 * creation by disabling cgroup_lock_live_group(). Note that
4507 * CGRP_DEAD assertion is depended upon by cgroup_next_sibling() to
4508 * resume iteration after dropping RCU read lock. See
4509 * cgroup_next_sibling() for details.
4510 */
54766d4a 4511 set_bit(CGRP_DEAD, &cgrp->flags);
ddbcc7e8 4512
455050d2
TH
4513 /* CGRP_DEAD is set, remove from ->release_list for the last time */
4514 raw_spin_lock(&release_list_lock);
4515 if (!list_empty(&cgrp->release_list))
4516 list_del_init(&cgrp->release_list);
4517 raw_spin_unlock(&release_list_lock);
4518
4519 /*
4520 * Remove @cgrp directory. The removal puts the base ref but we
4521 * aren't quite done with @cgrp yet, so hold onto it.
4522 */
4523 dget(d);
4524 cgroup_d_remove_dir(d);
4525
4526 /*
4527 * Unregister events and notify userspace.
4528 * Notify userspace about cgroup removing only after rmdir of cgroup
4529 * directory to avoid race between userspace and kernelspace.
4530 */
4531 spin_lock(&cgrp->event_list_lock);
4532 list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
4533 list_del_init(&event->list);
4534 schedule_work(&event->remove);
4535 }
4536 spin_unlock(&cgrp->event_list_lock);
4537
ea15f8cc
TH
4538 return 0;
4539};
4540
d3daf28d
TH
4541/**
4542 * cgroup_offline_fn - the second step of cgroup destruction
4543 * @work: cgroup->destroy_free_work
4544 *
4545 * This function is invoked from a work item for a cgroup which is being
4546 * destroyed after the percpu refcnts of all css's are guaranteed to be
4547 * seen as killed on all CPUs, and performs the rest of destruction. This
4548 * is the second step of destruction described in the comment above
4549 * cgroup_destroy_locked().
4550 */
ea15f8cc
TH
4551static void cgroup_offline_fn(struct work_struct *work)
4552{
4553 struct cgroup *cgrp = container_of(work, struct cgroup, destroy_work);
4554 struct cgroup *parent = cgrp->parent;
4555 struct dentry *d = cgrp->dentry;
4556 struct cgroup_subsys *ss;
4557
4558 mutex_lock(&cgroup_mutex);
4559
d3daf28d
TH
4560 /*
4561 * css_tryget() is guaranteed to fail now. Tell subsystems to
4562 * initate destruction.
4563 */
5549c497 4564 for_each_root_subsys(cgrp->root, ss)
a31f2d3f 4565 offline_css(ss, cgrp);
ed957793
TH
4566
4567 /*
d3daf28d
TH
4568 * Put the css refs from cgroup_destroy_locked(). Each css holds
4569 * an extra reference to the cgroup's dentry and cgroup removal
4570 * proceeds regardless of css refs. On the last put of each css,
4571 * whenever that may be, the extra dentry ref is put so that dentry
4572 * destruction happens only after all css's are released.
ed957793 4573 */
5549c497 4574 for_each_root_subsys(cgrp->root, ss)
e9316080 4575 css_put(cgrp->subsys[ss->subsys_id]);
ddbcc7e8 4576
999cd8a4 4577 /* delete this cgroup from parent->children */
eb6fd504 4578 list_del_rcu(&cgrp->sibling);
b0ca5a84 4579
ddbcc7e8 4580 dput(d);
ddbcc7e8 4581
bd89aabc 4582 set_bit(CGRP_RELEASABLE, &parent->flags);
81a6a5cd
PM
4583 check_for_release(parent);
4584
ea15f8cc 4585 mutex_unlock(&cgroup_mutex);
ddbcc7e8
PM
4586}
4587
42809dd4
TH
4588static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
4589{
4590 int ret;
4591
4592 mutex_lock(&cgroup_mutex);
4593 ret = cgroup_destroy_locked(dentry->d_fsdata);
4594 mutex_unlock(&cgroup_mutex);
4595
4596 return ret;
4597}
4598
8e3f6541
TH
4599static void __init_or_module cgroup_init_cftsets(struct cgroup_subsys *ss)
4600{
4601 INIT_LIST_HEAD(&ss->cftsets);
4602
4603 /*
4604 * base_cftset is embedded in subsys itself, no need to worry about
4605 * deregistration.
4606 */
4607 if (ss->base_cftypes) {
4608 ss->base_cftset.cfts = ss->base_cftypes;
4609 list_add_tail(&ss->base_cftset.node, &ss->cftsets);
4610 }
4611}
4612
06a11920 4613static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
ddbcc7e8 4614{
ddbcc7e8 4615 struct cgroup_subsys_state *css;
cfe36bde
DC
4616
4617 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8 4618
648bb56d
TH
4619 mutex_lock(&cgroup_mutex);
4620
8e3f6541
TH
4621 /* init base cftset */
4622 cgroup_init_cftsets(ss);
4623
ddbcc7e8 4624 /* Create the top cgroup state for this subsystem */
9871bf95
TH
4625 list_add(&ss->sibling, &cgroup_dummy_root.subsys_list);
4626 ss->root = &cgroup_dummy_root;
4627 css = ss->css_alloc(cgroup_dummy_top);
ddbcc7e8
PM
4628 /* We don't handle early failures gracefully */
4629 BUG_ON(IS_ERR(css));
9871bf95 4630 init_cgroup_css(css, ss, cgroup_dummy_top);
ddbcc7e8 4631
e8d55fde 4632 /* Update the init_css_set to contain a subsys
817929ec 4633 * pointer to this state - since the subsystem is
e8d55fde
LZ
4634 * newly registered, all tasks and hence the
4635 * init_css_set is in the subsystem's top cgroup. */
b48c6a80 4636 init_css_set.subsys[ss->subsys_id] = css;
ddbcc7e8
PM
4637
4638 need_forkexit_callback |= ss->fork || ss->exit;
4639
e8d55fde
LZ
4640 /* At system boot, before all subsystems have been
4641 * registered, no tasks have been forked, so we don't
4642 * need to invoke fork callbacks here. */
4643 BUG_ON(!list_empty(&init_task.tasks));
4644
9871bf95 4645 BUG_ON(online_css(ss, cgroup_dummy_top));
a8638030 4646
648bb56d
TH
4647 mutex_unlock(&cgroup_mutex);
4648
e6a1105b
BB
4649 /* this function shouldn't be used with modular subsystems, since they
4650 * need to register a subsys_id, among other things */
4651 BUG_ON(ss->module);
4652}
4653
4654/**
4655 * cgroup_load_subsys: load and register a modular subsystem at runtime
4656 * @ss: the subsystem to load
4657 *
4658 * This function should be called in a modular subsystem's initcall. If the
88393161 4659 * subsystem is built as a module, it will be assigned a new subsys_id and set
e6a1105b
BB
4660 * up for use. If the subsystem is built-in anyway, work is delegated to the
4661 * simpler cgroup_init_subsys.
4662 */
4663int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
4664{
e6a1105b 4665 struct cgroup_subsys_state *css;
d19e19de 4666 int i, ret;
b67bfe0d 4667 struct hlist_node *tmp;
5abb8855 4668 struct css_set *cset;
0ac801fe 4669 unsigned long key;
e6a1105b
BB
4670
4671 /* check name and function validity */
4672 if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
92fb9748 4673 ss->css_alloc == NULL || ss->css_free == NULL)
e6a1105b
BB
4674 return -EINVAL;
4675
4676 /*
4677 * we don't support callbacks in modular subsystems. this check is
4678 * before the ss->module check for consistency; a subsystem that could
4679 * be a module should still have no callbacks even if the user isn't
4680 * compiling it as one.
4681 */
4682 if (ss->fork || ss->exit)
4683 return -EINVAL;
4684
4685 /*
4686 * an optionally modular subsystem is built-in: we want to do nothing,
4687 * since cgroup_init_subsys will have already taken care of it.
4688 */
4689 if (ss->module == NULL) {
be45c900 4690 /* a sanity check */
9871bf95 4691 BUG_ON(cgroup_subsys[ss->subsys_id] != ss);
e6a1105b
BB
4692 return 0;
4693 }
4694
8e3f6541
TH
4695 /* init base cftset */
4696 cgroup_init_cftsets(ss);
4697
e6a1105b 4698 mutex_lock(&cgroup_mutex);
9871bf95 4699 cgroup_subsys[ss->subsys_id] = ss;
e6a1105b
BB
4700
4701 /*
92fb9748 4702 * no ss->css_alloc seems to need anything important in the ss
9871bf95 4703 * struct, so this can happen first (i.e. before the dummy root
92fb9748 4704 * attachment).
e6a1105b 4705 */
9871bf95 4706 css = ss->css_alloc(cgroup_dummy_top);
e6a1105b 4707 if (IS_ERR(css)) {
9871bf95
TH
4708 /* failure case - need to deassign the cgroup_subsys[] slot. */
4709 cgroup_subsys[ss->subsys_id] = NULL;
e6a1105b
BB
4710 mutex_unlock(&cgroup_mutex);
4711 return PTR_ERR(css);
4712 }
4713
9871bf95
TH
4714 list_add(&ss->sibling, &cgroup_dummy_root.subsys_list);
4715 ss->root = &cgroup_dummy_root;
e6a1105b
BB
4716
4717 /* our new subsystem will be attached to the dummy hierarchy. */
9871bf95 4718 init_cgroup_css(css, ss, cgroup_dummy_top);
e6a1105b
BB
4719 /* init_idr must be after init_cgroup_css because it sets css->id. */
4720 if (ss->use_id) {
d19e19de
TH
4721 ret = cgroup_init_idr(ss, css);
4722 if (ret)
4723 goto err_unload;
e6a1105b
BB
4724 }
4725
4726 /*
4727 * Now we need to entangle the css into the existing css_sets. unlike
4728 * in cgroup_init_subsys, there are now multiple css_sets, so each one
4729 * will need a new pointer to it; done by iterating the css_set_table.
4730 * furthermore, modifying the existing css_sets will corrupt the hash
4731 * table state, so each changed css_set will need its hash recomputed.
4732 * this is all done under the css_set_lock.
4733 */
4734 write_lock(&css_set_lock);
5abb8855 4735 hash_for_each_safe(css_set_table, i, tmp, cset, hlist) {
0ac801fe 4736 /* skip entries that we already rehashed */
5abb8855 4737 if (cset->subsys[ss->subsys_id])
0ac801fe
LZ
4738 continue;
4739 /* remove existing entry */
5abb8855 4740 hash_del(&cset->hlist);
0ac801fe 4741 /* set new value */
5abb8855 4742 cset->subsys[ss->subsys_id] = css;
0ac801fe 4743 /* recompute hash and restore entry */
5abb8855
TH
4744 key = css_set_hash(cset->subsys);
4745 hash_add(css_set_table, &cset->hlist, key);
e6a1105b
BB
4746 }
4747 write_unlock(&css_set_lock);
4748
9871bf95 4749 ret = online_css(ss, cgroup_dummy_top);
b1929db4
TH
4750 if (ret)
4751 goto err_unload;
a8638030 4752
e6a1105b
BB
4753 /* success! */
4754 mutex_unlock(&cgroup_mutex);
4755 return 0;
d19e19de
TH
4756
4757err_unload:
4758 mutex_unlock(&cgroup_mutex);
4759 /* @ss can't be mounted here as try_module_get() would fail */
4760 cgroup_unload_subsys(ss);
4761 return ret;
ddbcc7e8 4762}
e6a1105b 4763EXPORT_SYMBOL_GPL(cgroup_load_subsys);
ddbcc7e8 4764
cf5d5941
BB
4765/**
4766 * cgroup_unload_subsys: unload a modular subsystem
4767 * @ss: the subsystem to unload
4768 *
4769 * This function should be called in a modular subsystem's exitcall. When this
4770 * function is invoked, the refcount on the subsystem's module will be 0, so
4771 * the subsystem will not be attached to any hierarchy.
4772 */
4773void cgroup_unload_subsys(struct cgroup_subsys *ss)
4774{
69d0206c 4775 struct cgrp_cset_link *link;
cf5d5941
BB
4776
4777 BUG_ON(ss->module == NULL);
4778
4779 /*
4780 * we shouldn't be called if the subsystem is in use, and the use of
4781 * try_module_get in parse_cgroupfs_options should ensure that it
4782 * doesn't start being used while we're killing it off.
4783 */
9871bf95 4784 BUG_ON(ss->root != &cgroup_dummy_root);
cf5d5941
BB
4785
4786 mutex_lock(&cgroup_mutex);
02ae7486 4787
9871bf95 4788 offline_css(ss, cgroup_dummy_top);
02ae7486 4789
c897ff68 4790 if (ss->use_id)
02ae7486 4791 idr_destroy(&ss->idr);
02ae7486 4792
cf5d5941 4793 /* deassign the subsys_id */
9871bf95 4794 cgroup_subsys[ss->subsys_id] = NULL;
cf5d5941 4795
9871bf95 4796 /* remove subsystem from the dummy root's list of subsystems */
8d258797 4797 list_del_init(&ss->sibling);
cf5d5941
BB
4798
4799 /*
9871bf95
TH
4800 * disentangle the css from all css_sets attached to the dummy
4801 * top. as in loading, we need to pay our respects to the hashtable
4802 * gods.
cf5d5941
BB
4803 */
4804 write_lock(&css_set_lock);
9871bf95 4805 list_for_each_entry(link, &cgroup_dummy_top->cset_links, cset_link) {
69d0206c 4806 struct css_set *cset = link->cset;
0ac801fe 4807 unsigned long key;
cf5d5941 4808
5abb8855
TH
4809 hash_del(&cset->hlist);
4810 cset->subsys[ss->subsys_id] = NULL;
4811 key = css_set_hash(cset->subsys);
4812 hash_add(css_set_table, &cset->hlist, key);
cf5d5941
BB
4813 }
4814 write_unlock(&css_set_lock);
4815
4816 /*
9871bf95
TH
4817 * remove subsystem's css from the cgroup_dummy_top and free it -
4818 * need to free before marking as null because ss->css_free needs
4819 * the cgrp->subsys pointer to find their state. note that this
4820 * also takes care of freeing the css_id.
cf5d5941 4821 */
9871bf95
TH
4822 ss->css_free(cgroup_dummy_top);
4823 cgroup_dummy_top->subsys[ss->subsys_id] = NULL;
cf5d5941
BB
4824
4825 mutex_unlock(&cgroup_mutex);
4826}
4827EXPORT_SYMBOL_GPL(cgroup_unload_subsys);
4828
ddbcc7e8 4829/**
a043e3b2
LZ
4830 * cgroup_init_early - cgroup initialization at system boot
4831 *
4832 * Initialize cgroups at system boot, and initialize any
4833 * subsystems that request early init.
ddbcc7e8
PM
4834 */
4835int __init cgroup_init_early(void)
4836{
30159ec7 4837 struct cgroup_subsys *ss;
ddbcc7e8 4838 int i;
30159ec7 4839
146aa1bd 4840 atomic_set(&init_css_set.refcount, 1);
69d0206c 4841 INIT_LIST_HEAD(&init_css_set.cgrp_links);
817929ec 4842 INIT_LIST_HEAD(&init_css_set.tasks);
472b1053 4843 INIT_HLIST_NODE(&init_css_set.hlist);
817929ec 4844 css_set_count = 1;
9871bf95
TH
4845 init_cgroup_root(&cgroup_dummy_root);
4846 cgroup_root_count = 1;
817929ec
PM
4847 init_task.cgroups = &init_css_set;
4848
69d0206c 4849 init_cgrp_cset_link.cset = &init_css_set;
9871bf95
TH
4850 init_cgrp_cset_link.cgrp = cgroup_dummy_top;
4851 list_add(&init_cgrp_cset_link.cset_link, &cgroup_dummy_top->cset_links);
69d0206c 4852 list_add(&init_cgrp_cset_link.cgrp_link, &init_css_set.cgrp_links);
ddbcc7e8 4853
30159ec7
TH
4854 /* at bootup time, we don't worry about modular subsystems */
4855 for_each_builtin_subsys(ss, i) {
ddbcc7e8
PM
4856 BUG_ON(!ss->name);
4857 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
92fb9748
TH
4858 BUG_ON(!ss->css_alloc);
4859 BUG_ON(!ss->css_free);
ddbcc7e8 4860 if (ss->subsys_id != i) {
cfe36bde 4861 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
ddbcc7e8
PM
4862 ss->name, ss->subsys_id);
4863 BUG();
4864 }
4865
4866 if (ss->early_init)
4867 cgroup_init_subsys(ss);
4868 }
4869 return 0;
4870}
4871
4872/**
a043e3b2
LZ
4873 * cgroup_init - cgroup initialization
4874 *
4875 * Register cgroup filesystem and /proc file, and initialize
4876 * any subsystems that didn't request early init.
ddbcc7e8
PM
4877 */
4878int __init cgroup_init(void)
4879{
30159ec7 4880 struct cgroup_subsys *ss;
0ac801fe 4881 unsigned long key;
30159ec7 4882 int i, err;
a424316c
PM
4883
4884 err = bdi_init(&cgroup_backing_dev_info);
4885 if (err)
4886 return err;
ddbcc7e8 4887
30159ec7 4888 for_each_builtin_subsys(ss, i) {
ddbcc7e8
PM
4889 if (!ss->early_init)
4890 cgroup_init_subsys(ss);
38460b48 4891 if (ss->use_id)
e6a1105b 4892 cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]);
ddbcc7e8
PM
4893 }
4894
fa3ca07e 4895 /* allocate id for the dummy hierarchy */
54e7b4eb
TH
4896 mutex_lock(&cgroup_mutex);
4897 mutex_lock(&cgroup_root_mutex);
4898
82fe9b0d
TH
4899 /* Add init_css_set to the hash table */
4900 key = css_set_hash(init_css_set.subsys);
4901 hash_add(css_set_table, &init_css_set.hlist, key);
4902
fc76df70 4903 BUG_ON(cgroup_init_root_id(&cgroup_dummy_root, 0, 1));
676db4af 4904
54e7b4eb
TH
4905 mutex_unlock(&cgroup_root_mutex);
4906 mutex_unlock(&cgroup_mutex);
4907
676db4af
GK
4908 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
4909 if (!cgroup_kobj) {
4910 err = -ENOMEM;
4911 goto out;
4912 }
4913
ddbcc7e8 4914 err = register_filesystem(&cgroup_fs_type);
676db4af
GK
4915 if (err < 0) {
4916 kobject_put(cgroup_kobj);
ddbcc7e8 4917 goto out;
676db4af 4918 }
ddbcc7e8 4919
46ae220b 4920 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
a424316c 4921
ddbcc7e8 4922out:
a424316c
PM
4923 if (err)
4924 bdi_destroy(&cgroup_backing_dev_info);
4925
ddbcc7e8
PM
4926 return err;
4927}
b4f48b63 4928
a424316c
PM
4929/*
4930 * proc_cgroup_show()
4931 * - Print task's cgroup paths into seq_file, one line for each hierarchy
4932 * - Used for /proc/<pid>/cgroup.
4933 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
4934 * doesn't really matter if tsk->cgroup changes after we read it,
956db3ca 4935 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
a424316c
PM
4936 * anyway. No need to check that tsk->cgroup != NULL, thanks to
4937 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
4938 * cgroup to top_cgroup.
4939 */
4940
4941/* TODO: Use a proper seq_file iterator */
8d8b97ba 4942int proc_cgroup_show(struct seq_file *m, void *v)
a424316c
PM
4943{
4944 struct pid *pid;
4945 struct task_struct *tsk;
4946 char *buf;
4947 int retval;
4948 struct cgroupfs_root *root;
4949
4950 retval = -ENOMEM;
4951 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4952 if (!buf)
4953 goto out;
4954
4955 retval = -ESRCH;
4956 pid = m->private;
4957 tsk = get_pid_task(pid, PIDTYPE_PID);
4958 if (!tsk)
4959 goto out_free;
4960
4961 retval = 0;
4962
4963 mutex_lock(&cgroup_mutex);
4964
e5f6a860 4965 for_each_active_root(root) {
a424316c 4966 struct cgroup_subsys *ss;
bd89aabc 4967 struct cgroup *cgrp;
a424316c
PM
4968 int count = 0;
4969
2c6ab6d2 4970 seq_printf(m, "%d:", root->hierarchy_id);
5549c497 4971 for_each_root_subsys(root, ss)
a424316c 4972 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
c6d57f33
PM
4973 if (strlen(root->name))
4974 seq_printf(m, "%sname=%s", count ? "," : "",
4975 root->name);
a424316c 4976 seq_putc(m, ':');
7717f7ba 4977 cgrp = task_cgroup_from_root(tsk, root);
bd89aabc 4978 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
a424316c
PM
4979 if (retval < 0)
4980 goto out_unlock;
4981 seq_puts(m, buf);
4982 seq_putc(m, '\n');
4983 }
4984
4985out_unlock:
4986 mutex_unlock(&cgroup_mutex);
4987 put_task_struct(tsk);
4988out_free:
4989 kfree(buf);
4990out:
4991 return retval;
4992}
4993
a424316c
PM
4994/* Display information about each subsystem and each hierarchy */
4995static int proc_cgroupstats_show(struct seq_file *m, void *v)
4996{
30159ec7 4997 struct cgroup_subsys *ss;
a424316c 4998 int i;
a424316c 4999
8bab8dde 5000 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
aae8aab4
BB
5001 /*
5002 * ideally we don't want subsystems moving around while we do this.
5003 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5004 * subsys/hierarchy state.
5005 */
a424316c 5006 mutex_lock(&cgroup_mutex);
30159ec7
TH
5007
5008 for_each_subsys(ss, i)
2c6ab6d2
PM
5009 seq_printf(m, "%s\t%d\t%d\t%d\n",
5010 ss->name, ss->root->hierarchy_id,
8bab8dde 5011 ss->root->number_of_cgroups, !ss->disabled);
30159ec7 5012
a424316c
PM
5013 mutex_unlock(&cgroup_mutex);
5014 return 0;
5015}
5016
5017static int cgroupstats_open(struct inode *inode, struct file *file)
5018{
9dce07f1 5019 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
5020}
5021
828c0950 5022static const struct file_operations proc_cgroupstats_operations = {
a424316c
PM
5023 .open = cgroupstats_open,
5024 .read = seq_read,
5025 .llseek = seq_lseek,
5026 .release = single_release,
5027};
5028
b4f48b63
PM
5029/**
5030 * cgroup_fork - attach newly forked task to its parents cgroup.
a043e3b2 5031 * @child: pointer to task_struct of forking parent process.
b4f48b63
PM
5032 *
5033 * Description: A task inherits its parent's cgroup at fork().
5034 *
5035 * A pointer to the shared css_set was automatically copied in
5036 * fork.c by dup_task_struct(). However, we ignore that copy, since
9bb71308
TH
5037 * it was not made under the protection of RCU or cgroup_mutex, so
5038 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
5039 * have already changed current->cgroups, allowing the previously
5040 * referenced cgroup group to be removed and freed.
b4f48b63
PM
5041 *
5042 * At the point that cgroup_fork() is called, 'current' is the parent
5043 * task, and the passed argument 'child' points to the child task.
5044 */
5045void cgroup_fork(struct task_struct *child)
5046{
9bb71308 5047 task_lock(current);
817929ec
PM
5048 child->cgroups = current->cgroups;
5049 get_css_set(child->cgroups);
9bb71308 5050 task_unlock(current);
817929ec 5051 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
5052}
5053
817929ec 5054/**
a043e3b2
LZ
5055 * cgroup_post_fork - called on a new task after adding it to the task list
5056 * @child: the task in question
5057 *
5edee61e
TH
5058 * Adds the task to the list running through its css_set if necessary and
5059 * call the subsystem fork() callbacks. Has to be after the task is
5060 * visible on the task list in case we race with the first call to
5061 * cgroup_iter_start() - to guarantee that the new task ends up on its
5062 * list.
a043e3b2 5063 */
817929ec
PM
5064void cgroup_post_fork(struct task_struct *child)
5065{
30159ec7 5066 struct cgroup_subsys *ss;
5edee61e
TH
5067 int i;
5068
3ce3230a
FW
5069 /*
5070 * use_task_css_set_links is set to 1 before we walk the tasklist
5071 * under the tasklist_lock and we read it here after we added the child
5072 * to the tasklist under the tasklist_lock as well. If the child wasn't
5073 * yet in the tasklist when we walked through it from
5074 * cgroup_enable_task_cg_lists(), then use_task_css_set_links value
5075 * should be visible now due to the paired locking and barriers implied
5076 * by LOCK/UNLOCK: it is written before the tasklist_lock unlock
5077 * in cgroup_enable_task_cg_lists() and read here after the tasklist_lock
5078 * lock on fork.
5079 */
817929ec
PM
5080 if (use_task_css_set_links) {
5081 write_lock(&css_set_lock);
d8783832
TH
5082 task_lock(child);
5083 if (list_empty(&child->cg_list))
817929ec 5084 list_add(&child->cg_list, &child->cgroups->tasks);
d8783832 5085 task_unlock(child);
817929ec
PM
5086 write_unlock(&css_set_lock);
5087 }
5edee61e
TH
5088
5089 /*
5090 * Call ss->fork(). This must happen after @child is linked on
5091 * css_set; otherwise, @child might change state between ->fork()
5092 * and addition to css_set.
5093 */
5094 if (need_forkexit_callback) {
7d8e0bf5
LZ
5095 /*
5096 * fork/exit callbacks are supported only for builtin
5097 * subsystems, and the builtin section of the subsys
5098 * array is immutable, so we don't need to lock the
5099 * subsys array here. On the other hand, modular section
5100 * of the array can be freed at module unload, so we
5101 * can't touch that.
5102 */
30159ec7 5103 for_each_builtin_subsys(ss, i)
5edee61e
TH
5104 if (ss->fork)
5105 ss->fork(child);
5edee61e 5106 }
817929ec 5107}
5edee61e 5108
b4f48b63
PM
5109/**
5110 * cgroup_exit - detach cgroup from exiting task
5111 * @tsk: pointer to task_struct of exiting process
a043e3b2 5112 * @run_callback: run exit callbacks?
b4f48b63
PM
5113 *
5114 * Description: Detach cgroup from @tsk and release it.
5115 *
5116 * Note that cgroups marked notify_on_release force every task in
5117 * them to take the global cgroup_mutex mutex when exiting.
5118 * This could impact scaling on very large systems. Be reluctant to
5119 * use notify_on_release cgroups where very high task exit scaling
5120 * is required on large systems.
5121 *
5122 * the_top_cgroup_hack:
5123 *
5124 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
5125 *
5126 * We call cgroup_exit() while the task is still competent to
5127 * handle notify_on_release(), then leave the task attached to the
5128 * root cgroup in each hierarchy for the remainder of its exit.
5129 *
5130 * To do this properly, we would increment the reference count on
5131 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
5132 * code we would add a second cgroup function call, to drop that
5133 * reference. This would just create an unnecessary hot spot on
5134 * the top_cgroup reference count, to no avail.
5135 *
5136 * Normally, holding a reference to a cgroup without bumping its
5137 * count is unsafe. The cgroup could go away, or someone could
5138 * attach us to a different cgroup, decrementing the count on
5139 * the first cgroup that we never incremented. But in this case,
5140 * top_cgroup isn't going away, and either task has PF_EXITING set,
956db3ca
CW
5141 * which wards off any cgroup_attach_task() attempts, or task is a failed
5142 * fork, never visible to cgroup_attach_task.
b4f48b63
PM
5143 */
5144void cgroup_exit(struct task_struct *tsk, int run_callbacks)
5145{
30159ec7 5146 struct cgroup_subsys *ss;
5abb8855 5147 struct css_set *cset;
d41d5a01 5148 int i;
817929ec
PM
5149
5150 /*
5151 * Unlink from the css_set task list if necessary.
5152 * Optimistically check cg_list before taking
5153 * css_set_lock
5154 */
5155 if (!list_empty(&tsk->cg_list)) {
5156 write_lock(&css_set_lock);
5157 if (!list_empty(&tsk->cg_list))
8d258797 5158 list_del_init(&tsk->cg_list);
817929ec
PM
5159 write_unlock(&css_set_lock);
5160 }
5161
b4f48b63
PM
5162 /* Reassign the task to the init_css_set. */
5163 task_lock(tsk);
5abb8855 5164 cset = tsk->cgroups;
817929ec 5165 tsk->cgroups = &init_css_set;
d41d5a01
PZ
5166
5167 if (run_callbacks && need_forkexit_callback) {
7d8e0bf5
LZ
5168 /*
5169 * fork/exit callbacks are supported only for builtin
5170 * subsystems, see cgroup_post_fork() for details.
5171 */
30159ec7 5172 for_each_builtin_subsys(ss, i) {
d41d5a01
PZ
5173 if (ss->exit) {
5174 struct cgroup *old_cgrp =
5abb8855 5175 rcu_dereference_raw(cset->subsys[i])->cgroup;
d41d5a01 5176 struct cgroup *cgrp = task_cgroup(tsk, i);
30159ec7 5177
761b3ef5 5178 ss->exit(cgrp, old_cgrp, tsk);
d41d5a01
PZ
5179 }
5180 }
5181 }
b4f48b63 5182 task_unlock(tsk);
d41d5a01 5183
5abb8855 5184 put_css_set_taskexit(cset);
b4f48b63 5185}
697f4161 5186
bd89aabc 5187static void check_for_release(struct cgroup *cgrp)
81a6a5cd 5188{
f50daa70 5189 if (cgroup_is_releasable(cgrp) &&
6f3d828f 5190 list_empty(&cgrp->cset_links) && list_empty(&cgrp->children)) {
f50daa70
LZ
5191 /*
5192 * Control Group is currently removeable. If it's not
81a6a5cd 5193 * already queued for a userspace notification, queue
f50daa70
LZ
5194 * it now
5195 */
81a6a5cd 5196 int need_schedule_work = 0;
f50daa70 5197
cdcc136f 5198 raw_spin_lock(&release_list_lock);
54766d4a 5199 if (!cgroup_is_dead(cgrp) &&
bd89aabc
PM
5200 list_empty(&cgrp->release_list)) {
5201 list_add(&cgrp->release_list, &release_list);
81a6a5cd
PM
5202 need_schedule_work = 1;
5203 }
cdcc136f 5204 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
5205 if (need_schedule_work)
5206 schedule_work(&release_agent_work);
5207 }
5208}
5209
81a6a5cd
PM
5210/*
5211 * Notify userspace when a cgroup is released, by running the
5212 * configured release agent with the name of the cgroup (path
5213 * relative to the root of cgroup file system) as the argument.
5214 *
5215 * Most likely, this user command will try to rmdir this cgroup.
5216 *
5217 * This races with the possibility that some other task will be
5218 * attached to this cgroup before it is removed, or that some other
5219 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5220 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5221 * unused, and this cgroup will be reprieved from its death sentence,
5222 * to continue to serve a useful existence. Next time it's released,
5223 * we will get notified again, if it still has 'notify_on_release' set.
5224 *
5225 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5226 * means only wait until the task is successfully execve()'d. The
5227 * separate release agent task is forked by call_usermodehelper(),
5228 * then control in this thread returns here, without waiting for the
5229 * release agent task. We don't bother to wait because the caller of
5230 * this routine has no use for the exit status of the release agent
5231 * task, so no sense holding our caller up for that.
81a6a5cd 5232 */
81a6a5cd
PM
5233static void cgroup_release_agent(struct work_struct *work)
5234{
5235 BUG_ON(work != &release_agent_work);
5236 mutex_lock(&cgroup_mutex);
cdcc136f 5237 raw_spin_lock(&release_list_lock);
81a6a5cd
PM
5238 while (!list_empty(&release_list)) {
5239 char *argv[3], *envp[3];
5240 int i;
e788e066 5241 char *pathbuf = NULL, *agentbuf = NULL;
bd89aabc 5242 struct cgroup *cgrp = list_entry(release_list.next,
81a6a5cd
PM
5243 struct cgroup,
5244 release_list);
bd89aabc 5245 list_del_init(&cgrp->release_list);
cdcc136f 5246 raw_spin_unlock(&release_list_lock);
81a6a5cd 5247 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
e788e066
PM
5248 if (!pathbuf)
5249 goto continue_free;
5250 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
5251 goto continue_free;
5252 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5253 if (!agentbuf)
5254 goto continue_free;
81a6a5cd
PM
5255
5256 i = 0;
e788e066
PM
5257 argv[i++] = agentbuf;
5258 argv[i++] = pathbuf;
81a6a5cd
PM
5259 argv[i] = NULL;
5260
5261 i = 0;
5262 /* minimal command environment */
5263 envp[i++] = "HOME=/";
5264 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5265 envp[i] = NULL;
5266
5267 /* Drop the lock while we invoke the usermode helper,
5268 * since the exec could involve hitting disk and hence
5269 * be a slow process */
5270 mutex_unlock(&cgroup_mutex);
5271 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
81a6a5cd 5272 mutex_lock(&cgroup_mutex);
e788e066
PM
5273 continue_free:
5274 kfree(pathbuf);
5275 kfree(agentbuf);
cdcc136f 5276 raw_spin_lock(&release_list_lock);
81a6a5cd 5277 }
cdcc136f 5278 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
5279 mutex_unlock(&cgroup_mutex);
5280}
8bab8dde
PM
5281
5282static int __init cgroup_disable(char *str)
5283{
30159ec7 5284 struct cgroup_subsys *ss;
8bab8dde 5285 char *token;
30159ec7 5286 int i;
8bab8dde
PM
5287
5288 while ((token = strsep(&str, ",")) != NULL) {
5289 if (!*token)
5290 continue;
be45c900 5291
30159ec7
TH
5292 /*
5293 * cgroup_disable, being at boot time, can't know about
5294 * module subsystems, so we don't worry about them.
5295 */
5296 for_each_builtin_subsys(ss, i) {
8bab8dde
PM
5297 if (!strcmp(token, ss->name)) {
5298 ss->disabled = 1;
5299 printk(KERN_INFO "Disabling %s control group"
5300 " subsystem\n", ss->name);
5301 break;
5302 }
5303 }
5304 }
5305 return 1;
5306}
5307__setup("cgroup_disable=", cgroup_disable);
38460b48
KH
5308
5309/*
5310 * Functons for CSS ID.
5311 */
5312
54766d4a 5313/* to get ID other than 0, this should be called when !cgroup_is_dead() */
38460b48
KH
5314unsigned short css_id(struct cgroup_subsys_state *css)
5315{
7f0f1546
KH
5316 struct css_id *cssid;
5317
5318 /*
5319 * This css_id() can return correct value when somone has refcnt
5320 * on this or this is under rcu_read_lock(). Once css->id is allocated,
5321 * it's unchanged until freed.
5322 */
d3daf28d 5323 cssid = rcu_dereference_raw(css->id);
38460b48
KH
5324
5325 if (cssid)
5326 return cssid->id;
5327 return 0;
5328}
67523c48 5329EXPORT_SYMBOL_GPL(css_id);
38460b48 5330
747388d7
KH
5331/**
5332 * css_is_ancestor - test "root" css is an ancestor of "child"
5333 * @child: the css to be tested.
5334 * @root: the css supporsed to be an ancestor of the child.
5335 *
5336 * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
91c63734 5337 * this function reads css->id, the caller must hold rcu_read_lock().
747388d7
KH
5338 * But, considering usual usage, the csses should be valid objects after test.
5339 * Assuming that the caller will do some action to the child if this returns
5340 * returns true, the caller must take "child";s reference count.
5341 * If "child" is valid object and this returns true, "root" is valid, too.
5342 */
5343
38460b48 5344bool css_is_ancestor(struct cgroup_subsys_state *child,
0b7f569e 5345 const struct cgroup_subsys_state *root)
38460b48 5346{
747388d7
KH
5347 struct css_id *child_id;
5348 struct css_id *root_id;
38460b48 5349
747388d7 5350 child_id = rcu_dereference(child->id);
91c63734
JW
5351 if (!child_id)
5352 return false;
747388d7 5353 root_id = rcu_dereference(root->id);
91c63734
JW
5354 if (!root_id)
5355 return false;
5356 if (child_id->depth < root_id->depth)
5357 return false;
5358 if (child_id->stack[root_id->depth] != root_id->id)
5359 return false;
5360 return true;
38460b48
KH
5361}
5362
38460b48
KH
5363void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
5364{
5365 struct css_id *id = css->id;
5366 /* When this is called before css_id initialization, id can be NULL */
5367 if (!id)
5368 return;
5369
5370 BUG_ON(!ss->use_id);
5371
5372 rcu_assign_pointer(id->css, NULL);
5373 rcu_assign_pointer(css->id, NULL);
42aee6c4 5374 spin_lock(&ss->id_lock);
38460b48 5375 idr_remove(&ss->idr, id->id);
42aee6c4 5376 spin_unlock(&ss->id_lock);
025cea99 5377 kfree_rcu(id, rcu_head);
38460b48 5378}
67523c48 5379EXPORT_SYMBOL_GPL(free_css_id);
38460b48
KH
5380
5381/*
5382 * This is called by init or create(). Then, calls to this function are
5383 * always serialized (By cgroup_mutex() at create()).
5384 */
5385
5386static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
5387{
5388 struct css_id *newid;
d228d9ec 5389 int ret, size;
38460b48
KH
5390
5391 BUG_ON(!ss->use_id);
5392
5393 size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
5394 newid = kzalloc(size, GFP_KERNEL);
5395 if (!newid)
5396 return ERR_PTR(-ENOMEM);
d228d9ec
TH
5397
5398 idr_preload(GFP_KERNEL);
42aee6c4 5399 spin_lock(&ss->id_lock);
38460b48 5400 /* Don't use 0. allocates an ID of 1-65535 */
d228d9ec 5401 ret = idr_alloc(&ss->idr, newid, 1, CSS_ID_MAX + 1, GFP_NOWAIT);
42aee6c4 5402 spin_unlock(&ss->id_lock);
d228d9ec 5403 idr_preload_end();
38460b48
KH
5404
5405 /* Returns error when there are no free spaces for new ID.*/
d228d9ec 5406 if (ret < 0)
38460b48 5407 goto err_out;
38460b48 5408
d228d9ec 5409 newid->id = ret;
38460b48
KH
5410 newid->depth = depth;
5411 return newid;
38460b48
KH
5412err_out:
5413 kfree(newid);
d228d9ec 5414 return ERR_PTR(ret);
38460b48
KH
5415
5416}
5417
e6a1105b
BB
5418static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss,
5419 struct cgroup_subsys_state *rootcss)
38460b48
KH
5420{
5421 struct css_id *newid;
38460b48 5422
42aee6c4 5423 spin_lock_init(&ss->id_lock);
38460b48
KH
5424 idr_init(&ss->idr);
5425
38460b48
KH
5426 newid = get_new_cssid(ss, 0);
5427 if (IS_ERR(newid))
5428 return PTR_ERR(newid);
5429
5430 newid->stack[0] = newid->id;
5431 newid->css = rootcss;
5432 rootcss->id = newid;
5433 return 0;
5434}
5435
5436static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
5437 struct cgroup *child)
5438{
5439 int subsys_id, i, depth = 0;
5440 struct cgroup_subsys_state *parent_css, *child_css;
fae9c791 5441 struct css_id *child_id, *parent_id;
38460b48
KH
5442
5443 subsys_id = ss->subsys_id;
5444 parent_css = parent->subsys[subsys_id];
5445 child_css = child->subsys[subsys_id];
38460b48 5446 parent_id = parent_css->id;
94b3dd0f 5447 depth = parent_id->depth + 1;
38460b48
KH
5448
5449 child_id = get_new_cssid(ss, depth);
5450 if (IS_ERR(child_id))
5451 return PTR_ERR(child_id);
5452
5453 for (i = 0; i < depth; i++)
5454 child_id->stack[i] = parent_id->stack[i];
5455 child_id->stack[depth] = child_id->id;
5456 /*
5457 * child_id->css pointer will be set after this cgroup is available
5458 * see cgroup_populate_dir()
5459 */
5460 rcu_assign_pointer(child_css->id, child_id);
5461
5462 return 0;
5463}
5464
5465/**
5466 * css_lookup - lookup css by id
5467 * @ss: cgroup subsys to be looked into.
5468 * @id: the id
5469 *
5470 * Returns pointer to cgroup_subsys_state if there is valid one with id.
5471 * NULL if not. Should be called under rcu_read_lock()
5472 */
5473struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
5474{
5475 struct css_id *cssid = NULL;
5476
5477 BUG_ON(!ss->use_id);
5478 cssid = idr_find(&ss->idr, id);
5479
5480 if (unlikely(!cssid))
5481 return NULL;
5482
5483 return rcu_dereference(cssid->css);
5484}
67523c48 5485EXPORT_SYMBOL_GPL(css_lookup);
38460b48 5486
e5d1367f
SE
5487/*
5488 * get corresponding css from file open on cgroupfs directory
5489 */
5490struct cgroup_subsys_state *cgroup_css_from_dir(struct file *f, int id)
5491{
5492 struct cgroup *cgrp;
5493 struct inode *inode;
5494 struct cgroup_subsys_state *css;
5495
496ad9aa 5496 inode = file_inode(f);
e5d1367f
SE
5497 /* check in cgroup filesystem dir */
5498 if (inode->i_op != &cgroup_dir_inode_operations)
5499 return ERR_PTR(-EBADF);
5500
5501 if (id < 0 || id >= CGROUP_SUBSYS_COUNT)
5502 return ERR_PTR(-EINVAL);
5503
5504 /* get cgroup */
5505 cgrp = __d_cgrp(f->f_dentry);
5506 css = cgrp->subsys[id];
5507 return css ? css : ERR_PTR(-ENOENT);
5508}
5509
fe693435 5510#ifdef CONFIG_CGROUP_DEBUG
03c78cbe 5511static struct cgroup_subsys_state *debug_css_alloc(struct cgroup *cgrp)
fe693435
PM
5512{
5513 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5514
5515 if (!css)
5516 return ERR_PTR(-ENOMEM);
5517
5518 return css;
5519}
5520
03c78cbe 5521static void debug_css_free(struct cgroup *cgrp)
fe693435 5522{
03c78cbe 5523 kfree(cgrp->subsys[debug_subsys_id]);
fe693435
PM
5524}
5525
03c78cbe 5526static u64 debug_taskcount_read(struct cgroup *cgrp, struct cftype *cft)
fe693435 5527{
03c78cbe 5528 return cgroup_task_count(cgrp);
fe693435
PM
5529}
5530
03c78cbe 5531static u64 current_css_set_read(struct cgroup *cgrp, struct cftype *cft)
fe693435
PM
5532{
5533 return (u64)(unsigned long)current->cgroups;
5534}
5535
03c78cbe
LZ
5536static u64 current_css_set_refcount_read(struct cgroup *cgrp,
5537 struct cftype *cft)
fe693435
PM
5538{
5539 u64 count;
5540
5541 rcu_read_lock();
5542 count = atomic_read(&current->cgroups->refcount);
5543 rcu_read_unlock();
5544 return count;
5545}
5546
03c78cbe 5547static int current_css_set_cg_links_read(struct cgroup *cgrp,
7717f7ba
PM
5548 struct cftype *cft,
5549 struct seq_file *seq)
5550{
69d0206c 5551 struct cgrp_cset_link *link;
5abb8855 5552 struct css_set *cset;
7717f7ba
PM
5553
5554 read_lock(&css_set_lock);
5555 rcu_read_lock();
5abb8855 5556 cset = rcu_dereference(current->cgroups);
69d0206c 5557 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba
PM
5558 struct cgroup *c = link->cgrp;
5559 const char *name;
5560
5561 if (c->dentry)
5562 name = c->dentry->d_name.name;
5563 else
5564 name = "?";
2c6ab6d2
PM
5565 seq_printf(seq, "Root %d group %s\n",
5566 c->root->hierarchy_id, name);
7717f7ba
PM
5567 }
5568 rcu_read_unlock();
5569 read_unlock(&css_set_lock);
5570 return 0;
5571}
5572
5573#define MAX_TASKS_SHOWN_PER_CSS 25
03c78cbe 5574static int cgroup_css_links_read(struct cgroup *cgrp,
7717f7ba
PM
5575 struct cftype *cft,
5576 struct seq_file *seq)
5577{
69d0206c 5578 struct cgrp_cset_link *link;
7717f7ba
PM
5579
5580 read_lock(&css_set_lock);
03c78cbe 5581 list_for_each_entry(link, &cgrp->cset_links, cset_link) {
69d0206c 5582 struct css_set *cset = link->cset;
7717f7ba
PM
5583 struct task_struct *task;
5584 int count = 0;
5abb8855
TH
5585 seq_printf(seq, "css_set %p\n", cset);
5586 list_for_each_entry(task, &cset->tasks, cg_list) {
7717f7ba
PM
5587 if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
5588 seq_puts(seq, " ...\n");
5589 break;
5590 } else {
5591 seq_printf(seq, " task %d\n",
5592 task_pid_vnr(task));
5593 }
5594 }
5595 }
5596 read_unlock(&css_set_lock);
5597 return 0;
5598}
5599
fe693435
PM
5600static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
5601{
5602 return test_bit(CGRP_RELEASABLE, &cgrp->flags);
5603}
5604
5605static struct cftype debug_files[] = {
fe693435
PM
5606 {
5607 .name = "taskcount",
5608 .read_u64 = debug_taskcount_read,
5609 },
5610
5611 {
5612 .name = "current_css_set",
5613 .read_u64 = current_css_set_read,
5614 },
5615
5616 {
5617 .name = "current_css_set_refcount",
5618 .read_u64 = current_css_set_refcount_read,
5619 },
5620
7717f7ba
PM
5621 {
5622 .name = "current_css_set_cg_links",
5623 .read_seq_string = current_css_set_cg_links_read,
5624 },
5625
5626 {
5627 .name = "cgroup_css_links",
5628 .read_seq_string = cgroup_css_links_read,
5629 },
5630
fe693435
PM
5631 {
5632 .name = "releasable",
5633 .read_u64 = releasable_read,
5634 },
fe693435 5635
4baf6e33
TH
5636 { } /* terminate */
5637};
fe693435
PM
5638
5639struct cgroup_subsys debug_subsys = {
5640 .name = "debug",
92fb9748
TH
5641 .css_alloc = debug_css_alloc,
5642 .css_free = debug_css_free,
fe693435 5643 .subsys_id = debug_subsys_id,
4baf6e33 5644 .base_cftypes = debug_files,
fe693435
PM
5645};
5646#endif /* CONFIG_CGROUP_DEBUG */
This page took 1.221326 seconds and 5 git commands to generate.