cpuset: pin down cpus and mems while a task is being attached
[deliverable/linux.git] / kernel / cpuset.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
029190c5 7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8793d854 8 * Copyright (C) 2006 Google, Inc
1da177e4
LT
9 *
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
1da177e4 12 *
825a46af 13 * 2003-10-10 Written by Simon Derr.
1da177e4 14 * 2003-10-22 Updates by Stephen Hemminger.
825a46af 15 * 2004 May-July Rework by Paul Jackson.
8793d854 16 * 2006 Rework by Paul Menage to use generic cgroups
cf417141
MK
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
18 * by Max Krasnyansky
1da177e4
LT
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
1da177e4
LT
25#include <linux/cpu.h>
26#include <linux/cpumask.h>
27#include <linux/cpuset.h>
28#include <linux/err.h>
29#include <linux/errno.h>
30#include <linux/file.h>
31#include <linux/fs.h>
32#include <linux/init.h>
33#include <linux/interrupt.h>
34#include <linux/kernel.h>
35#include <linux/kmod.h>
36#include <linux/list.h>
68860ec1 37#include <linux/mempolicy.h>
1da177e4 38#include <linux/mm.h>
f481891f 39#include <linux/memory.h>
9984de1a 40#include <linux/export.h>
1da177e4
LT
41#include <linux/mount.h>
42#include <linux/namei.h>
43#include <linux/pagemap.h>
44#include <linux/proc_fs.h>
6b9c2603 45#include <linux/rcupdate.h>
1da177e4
LT
46#include <linux/sched.h>
47#include <linux/seq_file.h>
22fb52dd 48#include <linux/security.h>
1da177e4 49#include <linux/slab.h>
1da177e4
LT
50#include <linux/spinlock.h>
51#include <linux/stat.h>
52#include <linux/string.h>
53#include <linux/time.h>
54#include <linux/backing-dev.h>
55#include <linux/sort.h>
56
57#include <asm/uaccess.h>
60063497 58#include <linux/atomic.h>
3d3f26a7 59#include <linux/mutex.h>
956db3ca
CW
60#include <linux/workqueue.h>
61#include <linux/cgroup.h>
1da177e4 62
202f72d5
PJ
63/*
64 * Tracks how many cpusets are currently defined in system.
65 * When there is only one cpuset (the root cpuset) we can
66 * short circuit some hooks.
67 */
7edc5962 68int number_of_cpusets __read_mostly;
202f72d5 69
2df167a3 70/* Forward declare cgroup structures */
8793d854
PM
71struct cgroup_subsys cpuset_subsys;
72struct cpuset;
73
3e0d98b9
PJ
74/* See "Frequency meter" comments, below. */
75
76struct fmeter {
77 int cnt; /* unprocessed events count */
78 int val; /* most recent output value */
79 time_t time; /* clock (secs) when val computed */
80 spinlock_t lock; /* guards read or write of above */
81};
82
1da177e4 83struct cpuset {
8793d854
PM
84 struct cgroup_subsys_state css;
85
1da177e4 86 unsigned long flags; /* "unsigned long" so bitops work */
300ed6cb 87 cpumask_var_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
1da177e4
LT
88 nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
89
1da177e4 90 struct cpuset *parent; /* my parent */
1da177e4 91
3e0d98b9 92 struct fmeter fmeter; /* memory_pressure filter */
029190c5 93
452477fa
TH
94 /*
95 * Tasks are being attached to this cpuset. Used to prevent
96 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
97 */
98 int attach_in_progress;
99
029190c5
PJ
100 /* partition number for rebuild_sched_domains() */
101 int pn;
956db3ca 102
1d3504fc
HS
103 /* for custom sched domain */
104 int relax_domain_level;
105
732bee7a 106 /* used for walking a cpuset hierarchy */
956db3ca 107 struct list_head stack_list;
8d033948
TH
108
109 struct work_struct hotplug_work;
1da177e4
LT
110};
111
8793d854
PM
112/* Retrieve the cpuset for a cgroup */
113static inline struct cpuset *cgroup_cs(struct cgroup *cont)
114{
115 return container_of(cgroup_subsys_state(cont, cpuset_subsys_id),
116 struct cpuset, css);
117}
118
119/* Retrieve the cpuset for a task */
120static inline struct cpuset *task_cs(struct task_struct *task)
121{
122 return container_of(task_subsys_state(task, cpuset_subsys_id),
123 struct cpuset, css);
124}
8793d854 125
b246272e
DR
126#ifdef CONFIG_NUMA
127static inline bool task_has_mempolicy(struct task_struct *task)
128{
129 return task->mempolicy;
130}
131#else
132static inline bool task_has_mempolicy(struct task_struct *task)
133{
134 return false;
135}
136#endif
137
138
1da177e4
LT
139/* bits in struct cpuset flags field */
140typedef enum {
efeb77b2 141 CS_ONLINE,
1da177e4
LT
142 CS_CPU_EXCLUSIVE,
143 CS_MEM_EXCLUSIVE,
78608366 144 CS_MEM_HARDWALL,
45b07ef3 145 CS_MEMORY_MIGRATE,
029190c5 146 CS_SCHED_LOAD_BALANCE,
825a46af
PJ
147 CS_SPREAD_PAGE,
148 CS_SPREAD_SLAB,
1da177e4
LT
149} cpuset_flagbits_t;
150
151/* convenient tests for these bits */
efeb77b2
TH
152static inline bool is_cpuset_online(const struct cpuset *cs)
153{
154 return test_bit(CS_ONLINE, &cs->flags);
155}
156
1da177e4
LT
157static inline int is_cpu_exclusive(const struct cpuset *cs)
158{
7b5b9ef0 159 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
1da177e4
LT
160}
161
162static inline int is_mem_exclusive(const struct cpuset *cs)
163{
7b5b9ef0 164 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
1da177e4
LT
165}
166
78608366
PM
167static inline int is_mem_hardwall(const struct cpuset *cs)
168{
169 return test_bit(CS_MEM_HARDWALL, &cs->flags);
170}
171
029190c5
PJ
172static inline int is_sched_load_balance(const struct cpuset *cs)
173{
174 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
175}
176
45b07ef3
PJ
177static inline int is_memory_migrate(const struct cpuset *cs)
178{
7b5b9ef0 179 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
45b07ef3
PJ
180}
181
825a46af
PJ
182static inline int is_spread_page(const struct cpuset *cs)
183{
184 return test_bit(CS_SPREAD_PAGE, &cs->flags);
185}
186
187static inline int is_spread_slab(const struct cpuset *cs)
188{
189 return test_bit(CS_SPREAD_SLAB, &cs->flags);
190}
191
1da177e4 192static struct cpuset top_cpuset = {
efeb77b2
TH
193 .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
194 (1 << CS_MEM_EXCLUSIVE)),
1da177e4
LT
195};
196
ae8086ce
TH
197/**
198 * cpuset_for_each_child - traverse online children of a cpuset
199 * @child_cs: loop cursor pointing to the current child
200 * @pos_cgrp: used for iteration
201 * @parent_cs: target cpuset to walk children of
202 *
203 * Walk @child_cs through the online children of @parent_cs. Must be used
204 * with RCU read locked.
205 */
206#define cpuset_for_each_child(child_cs, pos_cgrp, parent_cs) \
207 cgroup_for_each_child((pos_cgrp), (parent_cs)->css.cgroup) \
208 if (is_cpuset_online(((child_cs) = cgroup_cs((pos_cgrp)))))
209
1da177e4 210/*
2df167a3
PM
211 * There are two global mutexes guarding cpuset structures. The first
212 * is the main control groups cgroup_mutex, accessed via
213 * cgroup_lock()/cgroup_unlock(). The second is the cpuset-specific
214 * callback_mutex, below. They can nest. It is ok to first take
215 * cgroup_mutex, then nest callback_mutex. We also require taking
216 * task_lock() when dereferencing a task's cpuset pointer. See "The
217 * task_lock() exception", at the end of this comment.
053199ed 218 *
3d3f26a7 219 * A task must hold both mutexes to modify cpusets. If a task
2df167a3 220 * holds cgroup_mutex, then it blocks others wanting that mutex,
3d3f26a7 221 * ensuring that it is the only task able to also acquire callback_mutex
053199ed
PJ
222 * and be able to modify cpusets. It can perform various checks on
223 * the cpuset structure first, knowing nothing will change. It can
2df167a3 224 * also allocate memory while just holding cgroup_mutex. While it is
053199ed 225 * performing these checks, various callback routines can briefly
3d3f26a7
IM
226 * acquire callback_mutex to query cpusets. Once it is ready to make
227 * the changes, it takes callback_mutex, blocking everyone else.
053199ed
PJ
228 *
229 * Calls to the kernel memory allocator can not be made while holding
3d3f26a7 230 * callback_mutex, as that would risk double tripping on callback_mutex
053199ed
PJ
231 * from one of the callbacks into the cpuset code from within
232 * __alloc_pages().
233 *
3d3f26a7 234 * If a task is only holding callback_mutex, then it has read-only
053199ed
PJ
235 * access to cpusets.
236 *
58568d2a
MX
237 * Now, the task_struct fields mems_allowed and mempolicy may be changed
238 * by other task, we use alloc_lock in the task_struct fields to protect
239 * them.
053199ed 240 *
3d3f26a7 241 * The cpuset_common_file_read() handlers only hold callback_mutex across
053199ed
PJ
242 * small pieces of code, such as when reading out possibly multi-word
243 * cpumasks and nodemasks.
244 *
2df167a3
PM
245 * Accessing a task's cpuset should be done in accordance with the
246 * guidelines for accessing subsystem state in kernel/cgroup.c
1da177e4
LT
247 */
248
3d3f26a7 249static DEFINE_MUTEX(callback_mutex);
4247bdc6 250
75aa1994
DR
251/*
252 * cpuset_buffer_lock protects both the cpuset_name and cpuset_nodelist
253 * buffers. They are statically allocated to prevent using excess stack
254 * when calling cpuset_print_task_mems_allowed().
255 */
256#define CPUSET_NAME_LEN (128)
257#define CPUSET_NODELIST_LEN (256)
258static char cpuset_name[CPUSET_NAME_LEN];
259static char cpuset_nodelist[CPUSET_NODELIST_LEN];
260static DEFINE_SPINLOCK(cpuset_buffer_lock);
261
3a5a6d0c
TH
262/*
263 * CPU / memory hotplug is handled asynchronously.
264 */
8d033948
TH
265static struct workqueue_struct *cpuset_propagate_hotplug_wq;
266
3a5a6d0c 267static void cpuset_hotplug_workfn(struct work_struct *work);
8d033948 268static void cpuset_propagate_hotplug_workfn(struct work_struct *work);
3a5a6d0c
TH
269
270static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
271
cf417141
MK
272/*
273 * This is ugly, but preserves the userspace API for existing cpuset
8793d854 274 * users. If someone tries to mount the "cpuset" filesystem, we
cf417141
MK
275 * silently switch it to mount "cgroup" instead
276 */
f7e83571
AV
277static struct dentry *cpuset_mount(struct file_system_type *fs_type,
278 int flags, const char *unused_dev_name, void *data)
1da177e4 279{
8793d854 280 struct file_system_type *cgroup_fs = get_fs_type("cgroup");
f7e83571 281 struct dentry *ret = ERR_PTR(-ENODEV);
8793d854
PM
282 if (cgroup_fs) {
283 char mountopts[] =
284 "cpuset,noprefix,"
285 "release_agent=/sbin/cpuset_release_agent";
f7e83571
AV
286 ret = cgroup_fs->mount(cgroup_fs, flags,
287 unused_dev_name, mountopts);
8793d854
PM
288 put_filesystem(cgroup_fs);
289 }
290 return ret;
1da177e4
LT
291}
292
293static struct file_system_type cpuset_fs_type = {
294 .name = "cpuset",
f7e83571 295 .mount = cpuset_mount,
1da177e4
LT
296};
297
1da177e4 298/*
300ed6cb 299 * Return in pmask the portion of a cpusets's cpus_allowed that
1da177e4
LT
300 * are online. If none are online, walk up the cpuset hierarchy
301 * until we find one that does have some online cpus. If we get
302 * all the way to the top and still haven't found any online cpus,
5f054e31
RR
303 * return cpu_online_mask. Or if passed a NULL cs from an exit'ing
304 * task, return cpu_online_mask.
1da177e4
LT
305 *
306 * One way or another, we guarantee to return some non-empty subset
5f054e31 307 * of cpu_online_mask.
1da177e4 308 *
3d3f26a7 309 * Call with callback_mutex held.
1da177e4
LT
310 */
311
6af866af
LZ
312static void guarantee_online_cpus(const struct cpuset *cs,
313 struct cpumask *pmask)
1da177e4 314{
300ed6cb 315 while (cs && !cpumask_intersects(cs->cpus_allowed, cpu_online_mask))
1da177e4
LT
316 cs = cs->parent;
317 if (cs)
300ed6cb 318 cpumask_and(pmask, cs->cpus_allowed, cpu_online_mask);
1da177e4 319 else
300ed6cb
LZ
320 cpumask_copy(pmask, cpu_online_mask);
321 BUG_ON(!cpumask_intersects(pmask, cpu_online_mask));
1da177e4
LT
322}
323
324/*
325 * Return in *pmask the portion of a cpusets's mems_allowed that
0e1e7c7a
CL
326 * are online, with memory. If none are online with memory, walk
327 * up the cpuset hierarchy until we find one that does have some
328 * online mems. If we get all the way to the top and still haven't
38d7bee9 329 * found any online mems, return node_states[N_MEMORY].
1da177e4
LT
330 *
331 * One way or another, we guarantee to return some non-empty subset
38d7bee9 332 * of node_states[N_MEMORY].
1da177e4 333 *
3d3f26a7 334 * Call with callback_mutex held.
1da177e4
LT
335 */
336
337static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
338{
0e1e7c7a 339 while (cs && !nodes_intersects(cs->mems_allowed,
38d7bee9 340 node_states[N_MEMORY]))
1da177e4
LT
341 cs = cs->parent;
342 if (cs)
0e1e7c7a 343 nodes_and(*pmask, cs->mems_allowed,
38d7bee9 344 node_states[N_MEMORY]);
1da177e4 345 else
38d7bee9
LJ
346 *pmask = node_states[N_MEMORY];
347 BUG_ON(!nodes_intersects(*pmask, node_states[N_MEMORY]));
1da177e4
LT
348}
349
f3b39d47
MX
350/*
351 * update task's spread flag if cpuset's page/slab spread flag is set
352 *
353 * Called with callback_mutex/cgroup_mutex held
354 */
355static void cpuset_update_task_spread_flag(struct cpuset *cs,
356 struct task_struct *tsk)
357{
358 if (is_spread_page(cs))
359 tsk->flags |= PF_SPREAD_PAGE;
360 else
361 tsk->flags &= ~PF_SPREAD_PAGE;
362 if (is_spread_slab(cs))
363 tsk->flags |= PF_SPREAD_SLAB;
364 else
365 tsk->flags &= ~PF_SPREAD_SLAB;
366}
367
1da177e4
LT
368/*
369 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
370 *
371 * One cpuset is a subset of another if all its allowed CPUs and
372 * Memory Nodes are a subset of the other, and its exclusive flags
2df167a3 373 * are only set if the other's are set. Call holding cgroup_mutex.
1da177e4
LT
374 */
375
376static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
377{
300ed6cb 378 return cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
1da177e4
LT
379 nodes_subset(p->mems_allowed, q->mems_allowed) &&
380 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
381 is_mem_exclusive(p) <= is_mem_exclusive(q);
382}
383
645fcc9d
LZ
384/**
385 * alloc_trial_cpuset - allocate a trial cpuset
386 * @cs: the cpuset that the trial cpuset duplicates
387 */
388static struct cpuset *alloc_trial_cpuset(const struct cpuset *cs)
389{
300ed6cb
LZ
390 struct cpuset *trial;
391
392 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
393 if (!trial)
394 return NULL;
395
396 if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL)) {
397 kfree(trial);
398 return NULL;
399 }
400 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
401
402 return trial;
645fcc9d
LZ
403}
404
405/**
406 * free_trial_cpuset - free the trial cpuset
407 * @trial: the trial cpuset to be freed
408 */
409static void free_trial_cpuset(struct cpuset *trial)
410{
300ed6cb 411 free_cpumask_var(trial->cpus_allowed);
645fcc9d
LZ
412 kfree(trial);
413}
414
1da177e4
LT
415/*
416 * validate_change() - Used to validate that any proposed cpuset change
417 * follows the structural rules for cpusets.
418 *
419 * If we replaced the flag and mask values of the current cpuset
420 * (cur) with those values in the trial cpuset (trial), would
421 * our various subset and exclusive rules still be valid? Presumes
2df167a3 422 * cgroup_mutex held.
1da177e4
LT
423 *
424 * 'cur' is the address of an actual, in-use cpuset. Operations
425 * such as list traversal that depend on the actual address of the
426 * cpuset in the list must use cur below, not trial.
427 *
428 * 'trial' is the address of bulk structure copy of cur, with
429 * perhaps one or more of the fields cpus_allowed, mems_allowed,
430 * or flags changed to new, trial values.
431 *
432 * Return 0 if valid, -errno if not.
433 */
434
435static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
436{
8793d854 437 struct cgroup *cont;
1da177e4 438 struct cpuset *c, *par;
ae8086ce
TH
439 int ret;
440
441 rcu_read_lock();
1da177e4
LT
442
443 /* Each of our child cpusets must be a subset of us */
ae8086ce
TH
444 ret = -EBUSY;
445 cpuset_for_each_child(c, cont, cur)
446 if (!is_cpuset_subset(c, trial))
447 goto out;
1da177e4
LT
448
449 /* Remaining checks don't apply to root cpuset */
ae8086ce 450 ret = 0;
69604067 451 if (cur == &top_cpuset)
ae8086ce 452 goto out;
1da177e4 453
69604067
PJ
454 par = cur->parent;
455
1da177e4 456 /* We must be a subset of our parent cpuset */
ae8086ce 457 ret = -EACCES;
1da177e4 458 if (!is_cpuset_subset(trial, par))
ae8086ce 459 goto out;
1da177e4 460
2df167a3
PM
461 /*
462 * If either I or some sibling (!= me) is exclusive, we can't
463 * overlap
464 */
ae8086ce
TH
465 ret = -EINVAL;
466 cpuset_for_each_child(c, cont, par) {
1da177e4
LT
467 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
468 c != cur &&
300ed6cb 469 cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
ae8086ce 470 goto out;
1da177e4
LT
471 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
472 c != cur &&
473 nodes_intersects(trial->mems_allowed, c->mems_allowed))
ae8086ce 474 goto out;
1da177e4
LT
475 }
476
452477fa
TH
477 /*
478 * Cpusets with tasks - existing or newly being attached - can't
479 * have empty cpus_allowed or mems_allowed.
480 */
ae8086ce 481 ret = -ENOSPC;
452477fa 482 if ((cgroup_task_count(cur->css.cgroup) || cur->attach_in_progress) &&
ae8086ce
TH
483 (cpumask_empty(trial->cpus_allowed) ||
484 nodes_empty(trial->mems_allowed)))
485 goto out;
020958b6 486
ae8086ce
TH
487 ret = 0;
488out:
489 rcu_read_unlock();
490 return ret;
1da177e4
LT
491}
492
db7f47cf 493#ifdef CONFIG_SMP
029190c5 494/*
cf417141 495 * Helper routine for generate_sched_domains().
029190c5
PJ
496 * Do cpusets a, b have overlapping cpus_allowed masks?
497 */
029190c5
PJ
498static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
499{
300ed6cb 500 return cpumask_intersects(a->cpus_allowed, b->cpus_allowed);
029190c5
PJ
501}
502
1d3504fc
HS
503static void
504update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
505{
1d3504fc
HS
506 if (dattr->relax_domain_level < c->relax_domain_level)
507 dattr->relax_domain_level = c->relax_domain_level;
508 return;
509}
510
f5393693
LJ
511static void
512update_domain_attr_tree(struct sched_domain_attr *dattr, struct cpuset *c)
513{
514 LIST_HEAD(q);
515
516 list_add(&c->stack_list, &q);
517 while (!list_empty(&q)) {
518 struct cpuset *cp;
519 struct cgroup *cont;
520 struct cpuset *child;
521
522 cp = list_first_entry(&q, struct cpuset, stack_list);
523 list_del(q.next);
524
300ed6cb 525 if (cpumask_empty(cp->cpus_allowed))
f5393693
LJ
526 continue;
527
528 if (is_sched_load_balance(cp))
529 update_domain_attr(dattr, cp);
530
ae8086ce
TH
531 rcu_read_lock();
532 cpuset_for_each_child(child, cont, cp)
f5393693 533 list_add_tail(&child->stack_list, &q);
ae8086ce 534 rcu_read_unlock();
f5393693
LJ
535 }
536}
537
029190c5 538/*
cf417141
MK
539 * generate_sched_domains()
540 *
541 * This function builds a partial partition of the systems CPUs
542 * A 'partial partition' is a set of non-overlapping subsets whose
543 * union is a subset of that set.
544 * The output of this function needs to be passed to kernel/sched.c
545 * partition_sched_domains() routine, which will rebuild the scheduler's
546 * load balancing domains (sched domains) as specified by that partial
547 * partition.
029190c5 548 *
45ce80fb 549 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
029190c5
PJ
550 * for a background explanation of this.
551 *
552 * Does not return errors, on the theory that the callers of this
553 * routine would rather not worry about failures to rebuild sched
554 * domains when operating in the severe memory shortage situations
555 * that could cause allocation failures below.
556 *
cf417141 557 * Must be called with cgroup_lock held.
029190c5
PJ
558 *
559 * The three key local variables below are:
aeed6824 560 * q - a linked-list queue of cpuset pointers, used to implement a
029190c5
PJ
561 * top-down scan of all cpusets. This scan loads a pointer
562 * to each cpuset marked is_sched_load_balance into the
563 * array 'csa'. For our purposes, rebuilding the schedulers
564 * sched domains, we can ignore !is_sched_load_balance cpusets.
565 * csa - (for CpuSet Array) Array of pointers to all the cpusets
566 * that need to be load balanced, for convenient iterative
567 * access by the subsequent code that finds the best partition,
568 * i.e the set of domains (subsets) of CPUs such that the
569 * cpus_allowed of every cpuset marked is_sched_load_balance
570 * is a subset of one of these domains, while there are as
571 * many such domains as possible, each as small as possible.
572 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
573 * the kernel/sched.c routine partition_sched_domains() in a
574 * convenient format, that can be easily compared to the prior
575 * value to determine what partition elements (sched domains)
576 * were changed (added or removed.)
577 *
578 * Finding the best partition (set of domains):
579 * The triple nested loops below over i, j, k scan over the
580 * load balanced cpusets (using the array of cpuset pointers in
581 * csa[]) looking for pairs of cpusets that have overlapping
582 * cpus_allowed, but which don't have the same 'pn' partition
583 * number and gives them in the same partition number. It keeps
584 * looping on the 'restart' label until it can no longer find
585 * any such pairs.
586 *
587 * The union of the cpus_allowed masks from the set of
588 * all cpusets having the same 'pn' value then form the one
589 * element of the partition (one sched domain) to be passed to
590 * partition_sched_domains().
591 */
acc3f5d7 592static int generate_sched_domains(cpumask_var_t **domains,
cf417141 593 struct sched_domain_attr **attributes)
029190c5 594{
cf417141 595 LIST_HEAD(q); /* queue of cpusets to be scanned */
029190c5
PJ
596 struct cpuset *cp; /* scans q */
597 struct cpuset **csa; /* array of all cpuset ptrs */
598 int csn; /* how many cpuset ptrs in csa so far */
599 int i, j, k; /* indices for partition finding loops */
acc3f5d7 600 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
1d3504fc 601 struct sched_domain_attr *dattr; /* attributes for custom domains */
1583715d 602 int ndoms = 0; /* number of sched domains in result */
6af866af 603 int nslot; /* next empty doms[] struct cpumask slot */
029190c5 604
029190c5 605 doms = NULL;
1d3504fc 606 dattr = NULL;
cf417141 607 csa = NULL;
029190c5
PJ
608
609 /* Special case for the 99% of systems with one, full, sched domain */
610 if (is_sched_load_balance(&top_cpuset)) {
acc3f5d7
RR
611 ndoms = 1;
612 doms = alloc_sched_domains(ndoms);
029190c5 613 if (!doms)
cf417141
MK
614 goto done;
615
1d3504fc
HS
616 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
617 if (dattr) {
618 *dattr = SD_ATTR_INIT;
93a65575 619 update_domain_attr_tree(dattr, &top_cpuset);
1d3504fc 620 }
acc3f5d7 621 cpumask_copy(doms[0], top_cpuset.cpus_allowed);
cf417141 622
cf417141 623 goto done;
029190c5
PJ
624 }
625
029190c5
PJ
626 csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
627 if (!csa)
628 goto done;
629 csn = 0;
630
aeed6824
LZ
631 list_add(&top_cpuset.stack_list, &q);
632 while (!list_empty(&q)) {
029190c5
PJ
633 struct cgroup *cont;
634 struct cpuset *child; /* scans child cpusets of cp */
489a5393 635
aeed6824
LZ
636 cp = list_first_entry(&q, struct cpuset, stack_list);
637 list_del(q.next);
638
300ed6cb 639 if (cpumask_empty(cp->cpus_allowed))
489a5393
LJ
640 continue;
641
f5393693
LJ
642 /*
643 * All child cpusets contain a subset of the parent's cpus, so
644 * just skip them, and then we call update_domain_attr_tree()
645 * to calc relax_domain_level of the corresponding sched
646 * domain.
647 */
648 if (is_sched_load_balance(cp)) {
029190c5 649 csa[csn++] = cp;
f5393693
LJ
650 continue;
651 }
489a5393 652
ae8086ce
TH
653 rcu_read_lock();
654 cpuset_for_each_child(child, cont, cp)
aeed6824 655 list_add_tail(&child->stack_list, &q);
ae8086ce 656 rcu_read_unlock();
029190c5
PJ
657 }
658
659 for (i = 0; i < csn; i++)
660 csa[i]->pn = i;
661 ndoms = csn;
662
663restart:
664 /* Find the best partition (set of sched domains) */
665 for (i = 0; i < csn; i++) {
666 struct cpuset *a = csa[i];
667 int apn = a->pn;
668
669 for (j = 0; j < csn; j++) {
670 struct cpuset *b = csa[j];
671 int bpn = b->pn;
672
673 if (apn != bpn && cpusets_overlap(a, b)) {
674 for (k = 0; k < csn; k++) {
675 struct cpuset *c = csa[k];
676
677 if (c->pn == bpn)
678 c->pn = apn;
679 }
680 ndoms--; /* one less element */
681 goto restart;
682 }
683 }
684 }
685
cf417141
MK
686 /*
687 * Now we know how many domains to create.
688 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
689 */
acc3f5d7 690 doms = alloc_sched_domains(ndoms);
700018e0 691 if (!doms)
cf417141 692 goto done;
cf417141
MK
693
694 /*
695 * The rest of the code, including the scheduler, can deal with
696 * dattr==NULL case. No need to abort if alloc fails.
697 */
1d3504fc 698 dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
029190c5
PJ
699
700 for (nslot = 0, i = 0; i < csn; i++) {
701 struct cpuset *a = csa[i];
6af866af 702 struct cpumask *dp;
029190c5
PJ
703 int apn = a->pn;
704
cf417141
MK
705 if (apn < 0) {
706 /* Skip completed partitions */
707 continue;
708 }
709
acc3f5d7 710 dp = doms[nslot];
cf417141
MK
711
712 if (nslot == ndoms) {
713 static int warnings = 10;
714 if (warnings) {
715 printk(KERN_WARNING
716 "rebuild_sched_domains confused:"
717 " nslot %d, ndoms %d, csn %d, i %d,"
718 " apn %d\n",
719 nslot, ndoms, csn, i, apn);
720 warnings--;
029190c5 721 }
cf417141
MK
722 continue;
723 }
029190c5 724
6af866af 725 cpumask_clear(dp);
cf417141
MK
726 if (dattr)
727 *(dattr + nslot) = SD_ATTR_INIT;
728 for (j = i; j < csn; j++) {
729 struct cpuset *b = csa[j];
730
731 if (apn == b->pn) {
300ed6cb 732 cpumask_or(dp, dp, b->cpus_allowed);
cf417141
MK
733 if (dattr)
734 update_domain_attr_tree(dattr + nslot, b);
735
736 /* Done with this partition */
737 b->pn = -1;
029190c5 738 }
029190c5 739 }
cf417141 740 nslot++;
029190c5
PJ
741 }
742 BUG_ON(nslot != ndoms);
743
cf417141
MK
744done:
745 kfree(csa);
746
700018e0
LZ
747 /*
748 * Fallback to the default domain if kmalloc() failed.
749 * See comments in partition_sched_domains().
750 */
751 if (doms == NULL)
752 ndoms = 1;
753
cf417141
MK
754 *domains = doms;
755 *attributes = dattr;
756 return ndoms;
757}
758
759/*
760 * Rebuild scheduler domains.
761 *
699140ba
TH
762 * If the flag 'sched_load_balance' of any cpuset with non-empty
763 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
764 * which has that flag enabled, or if any cpuset with a non-empty
765 * 'cpus' is removed, then call this routine to rebuild the
766 * scheduler's dynamic sched domains.
cf417141 767 *
699140ba 768 * Call with cgroup_mutex held. Takes get_online_cpus().
cf417141 769 */
699140ba 770static void rebuild_sched_domains_locked(void)
cf417141
MK
771{
772 struct sched_domain_attr *attr;
acc3f5d7 773 cpumask_var_t *doms;
cf417141
MK
774 int ndoms;
775
699140ba 776 WARN_ON_ONCE(!cgroup_lock_is_held());
86ef5c9a 777 get_online_cpus();
cf417141
MK
778
779 /* Generate domain masks and attrs */
cf417141 780 ndoms = generate_sched_domains(&doms, &attr);
cf417141
MK
781
782 /* Have scheduler rebuild the domains */
783 partition_sched_domains(ndoms, doms, attr);
784
86ef5c9a 785 put_online_cpus();
cf417141 786}
db7f47cf 787#else /* !CONFIG_SMP */
699140ba 788static void rebuild_sched_domains_locked(void)
db7f47cf
PM
789{
790}
791
e1b8090b 792static int generate_sched_domains(cpumask_var_t **domains,
db7f47cf
PM
793 struct sched_domain_attr **attributes)
794{
795 *domains = NULL;
796 return 1;
797}
798#endif /* CONFIG_SMP */
029190c5 799
cf417141
MK
800void rebuild_sched_domains(void)
801{
699140ba
TH
802 cgroup_lock();
803 rebuild_sched_domains_locked();
804 cgroup_unlock();
029190c5
PJ
805}
806
58f4790b
CW
807/**
808 * cpuset_test_cpumask - test a task's cpus_allowed versus its cpuset's
809 * @tsk: task to test
810 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
811 *
2df167a3 812 * Call with cgroup_mutex held. May take callback_mutex during call.
58f4790b
CW
813 * Called for each task in a cgroup by cgroup_scan_tasks().
814 * Return nonzero if this tasks's cpus_allowed mask should be changed (in other
815 * words, if its mask is not equal to its cpuset's mask).
053199ed 816 */
9e0c914c
AB
817static int cpuset_test_cpumask(struct task_struct *tsk,
818 struct cgroup_scanner *scan)
58f4790b 819{
300ed6cb 820 return !cpumask_equal(&tsk->cpus_allowed,
58f4790b
CW
821 (cgroup_cs(scan->cg))->cpus_allowed);
822}
053199ed 823
58f4790b
CW
824/**
825 * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
826 * @tsk: task to test
827 * @scan: struct cgroup_scanner containing the cgroup of the task
828 *
829 * Called by cgroup_scan_tasks() for each task in a cgroup whose
830 * cpus_allowed mask needs to be changed.
831 *
832 * We don't need to re-check for the cgroup/cpuset membership, since we're
833 * holding cgroup_lock() at this point.
834 */
9e0c914c
AB
835static void cpuset_change_cpumask(struct task_struct *tsk,
836 struct cgroup_scanner *scan)
58f4790b 837{
300ed6cb 838 set_cpus_allowed_ptr(tsk, ((cgroup_cs(scan->cg))->cpus_allowed));
58f4790b
CW
839}
840
0b2f630a
MX
841/**
842 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
843 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
4e74339a 844 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
0b2f630a
MX
845 *
846 * Called with cgroup_mutex held
847 *
848 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
849 * calling callback functions for each.
850 *
4e74339a
LZ
851 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
852 * if @heap != NULL.
0b2f630a 853 */
4e74339a 854static void update_tasks_cpumask(struct cpuset *cs, struct ptr_heap *heap)
0b2f630a
MX
855{
856 struct cgroup_scanner scan;
0b2f630a
MX
857
858 scan.cg = cs->css.cgroup;
859 scan.test_task = cpuset_test_cpumask;
860 scan.process_task = cpuset_change_cpumask;
4e74339a
LZ
861 scan.heap = heap;
862 cgroup_scan_tasks(&scan);
0b2f630a
MX
863}
864
58f4790b
CW
865/**
866 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
867 * @cs: the cpuset to consider
868 * @buf: buffer of cpu numbers written to this cpuset
869 */
645fcc9d
LZ
870static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
871 const char *buf)
1da177e4 872{
4e74339a 873 struct ptr_heap heap;
58f4790b
CW
874 int retval;
875 int is_load_balanced;
1da177e4 876
5f054e31 877 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
4c4d50f7
PJ
878 if (cs == &top_cpuset)
879 return -EACCES;
880
6f7f02e7 881 /*
c8d9c90c 882 * An empty cpus_allowed is ok only if the cpuset has no tasks.
020958b6
PJ
883 * Since cpulist_parse() fails on an empty mask, we special case
884 * that parsing. The validate_change() call ensures that cpusets
885 * with tasks have cpus.
6f7f02e7 886 */
020958b6 887 if (!*buf) {
300ed6cb 888 cpumask_clear(trialcs->cpus_allowed);
6f7f02e7 889 } else {
300ed6cb 890 retval = cpulist_parse(buf, trialcs->cpus_allowed);
6f7f02e7
DR
891 if (retval < 0)
892 return retval;
37340746 893
6ad4c188 894 if (!cpumask_subset(trialcs->cpus_allowed, cpu_active_mask))
37340746 895 return -EINVAL;
6f7f02e7 896 }
645fcc9d 897 retval = validate_change(cs, trialcs);
85d7b949
DG
898 if (retval < 0)
899 return retval;
029190c5 900
8707d8b8 901 /* Nothing to do if the cpus didn't change */
300ed6cb 902 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
8707d8b8 903 return 0;
58f4790b 904
4e74339a
LZ
905 retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
906 if (retval)
907 return retval;
908
645fcc9d 909 is_load_balanced = is_sched_load_balance(trialcs);
029190c5 910
3d3f26a7 911 mutex_lock(&callback_mutex);
300ed6cb 912 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
3d3f26a7 913 mutex_unlock(&callback_mutex);
029190c5 914
8707d8b8
PM
915 /*
916 * Scan tasks in the cpuset, and update the cpumasks of any
58f4790b 917 * that need an update.
8707d8b8 918 */
4e74339a
LZ
919 update_tasks_cpumask(cs, &heap);
920
921 heap_free(&heap);
58f4790b 922
8707d8b8 923 if (is_load_balanced)
699140ba 924 rebuild_sched_domains_locked();
85d7b949 925 return 0;
1da177e4
LT
926}
927
e4e364e8
PJ
928/*
929 * cpuset_migrate_mm
930 *
931 * Migrate memory region from one set of nodes to another.
932 *
933 * Temporarilly set tasks mems_allowed to target nodes of migration,
934 * so that the migration code can allocate pages on these nodes.
935 *
2df167a3 936 * Call holding cgroup_mutex, so current's cpuset won't change
c8d9c90c 937 * during this call, as manage_mutex holds off any cpuset_attach()
e4e364e8
PJ
938 * calls. Therefore we don't need to take task_lock around the
939 * call to guarantee_online_mems(), as we know no one is changing
2df167a3 940 * our task's cpuset.
e4e364e8 941 *
e4e364e8
PJ
942 * While the mm_struct we are migrating is typically from some
943 * other task, the task_struct mems_allowed that we are hacking
944 * is for our current task, which must allocate new pages for that
945 * migrating memory region.
e4e364e8
PJ
946 */
947
948static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
949 const nodemask_t *to)
950{
951 struct task_struct *tsk = current;
952
e4e364e8 953 tsk->mems_allowed = *to;
e4e364e8
PJ
954
955 do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
956
8793d854 957 guarantee_online_mems(task_cs(tsk),&tsk->mems_allowed);
e4e364e8
PJ
958}
959
3b6766fe 960/*
58568d2a
MX
961 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
962 * @tsk: the task to change
963 * @newmems: new nodes that the task will be set
964 *
965 * In order to avoid seeing no nodes if the old and new nodes are disjoint,
966 * we structure updates as setting all new allowed nodes, then clearing newly
967 * disallowed ones.
58568d2a
MX
968 */
969static void cpuset_change_task_nodemask(struct task_struct *tsk,
970 nodemask_t *newmems)
971{
b246272e 972 bool need_loop;
89e8a244 973
c0ff7453
MX
974 /*
975 * Allow tasks that have access to memory reserves because they have
976 * been OOM killed to get memory anywhere.
977 */
978 if (unlikely(test_thread_flag(TIF_MEMDIE)))
979 return;
980 if (current->flags & PF_EXITING) /* Let dying task have memory */
981 return;
982
983 task_lock(tsk);
b246272e
DR
984 /*
985 * Determine if a loop is necessary if another thread is doing
986 * get_mems_allowed(). If at least one node remains unchanged and
987 * tsk does not have a mempolicy, then an empty nodemask will not be
988 * possible when mems_allowed is larger than a word.
989 */
990 need_loop = task_has_mempolicy(tsk) ||
991 !nodes_intersects(*newmems, tsk->mems_allowed);
c0ff7453 992
cc9a6c87
MG
993 if (need_loop)
994 write_seqcount_begin(&tsk->mems_allowed_seq);
c0ff7453 995
cc9a6c87
MG
996 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
997 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
c0ff7453
MX
998
999 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
58568d2a 1000 tsk->mems_allowed = *newmems;
cc9a6c87
MG
1001
1002 if (need_loop)
1003 write_seqcount_end(&tsk->mems_allowed_seq);
1004
c0ff7453 1005 task_unlock(tsk);
58568d2a
MX
1006}
1007
1008/*
1009 * Update task's mems_allowed and rebind its mempolicy and vmas' mempolicy
1010 * of it to cpuset's new mems_allowed, and migrate pages to new nodes if
1011 * memory_migrate flag is set. Called with cgroup_mutex held.
3b6766fe
LZ
1012 */
1013static void cpuset_change_nodemask(struct task_struct *p,
1014 struct cgroup_scanner *scan)
1015{
1016 struct mm_struct *mm;
1017 struct cpuset *cs;
1018 int migrate;
1019 const nodemask_t *oldmem = scan->data;
ee24d379 1020 static nodemask_t newmems; /* protected by cgroup_mutex */
58568d2a
MX
1021
1022 cs = cgroup_cs(scan->cg);
ee24d379 1023 guarantee_online_mems(cs, &newmems);
58568d2a 1024
ee24d379 1025 cpuset_change_task_nodemask(p, &newmems);
53feb297 1026
3b6766fe
LZ
1027 mm = get_task_mm(p);
1028 if (!mm)
1029 return;
1030
3b6766fe
LZ
1031 migrate = is_memory_migrate(cs);
1032
1033 mpol_rebind_mm(mm, &cs->mems_allowed);
1034 if (migrate)
1035 cpuset_migrate_mm(mm, oldmem, &cs->mems_allowed);
1036 mmput(mm);
1037}
1038
8793d854
PM
1039static void *cpuset_being_rebound;
1040
0b2f630a
MX
1041/**
1042 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1043 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1044 * @oldmem: old mems_allowed of cpuset cs
010cfac4 1045 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
0b2f630a
MX
1046 *
1047 * Called with cgroup_mutex held
010cfac4
LZ
1048 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
1049 * if @heap != NULL.
0b2f630a 1050 */
010cfac4
LZ
1051static void update_tasks_nodemask(struct cpuset *cs, const nodemask_t *oldmem,
1052 struct ptr_heap *heap)
1da177e4 1053{
3b6766fe 1054 struct cgroup_scanner scan;
59dac16f 1055
846a16bf 1056 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
4225399a 1057
3b6766fe
LZ
1058 scan.cg = cs->css.cgroup;
1059 scan.test_task = NULL;
1060 scan.process_task = cpuset_change_nodemask;
010cfac4 1061 scan.heap = heap;
3b6766fe 1062 scan.data = (nodemask_t *)oldmem;
4225399a
PJ
1063
1064 /*
3b6766fe
LZ
1065 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1066 * take while holding tasklist_lock. Forks can happen - the
1067 * mpol_dup() cpuset_being_rebound check will catch such forks,
1068 * and rebind their vma mempolicies too. Because we still hold
1069 * the global cgroup_mutex, we know that no other rebind effort
1070 * will be contending for the global variable cpuset_being_rebound.
4225399a 1071 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
04c19fa6 1072 * is idempotent. Also migrate pages in each mm to new nodes.
4225399a 1073 */
010cfac4 1074 cgroup_scan_tasks(&scan);
4225399a 1075
2df167a3 1076 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
8793d854 1077 cpuset_being_rebound = NULL;
1da177e4
LT
1078}
1079
0b2f630a
MX
1080/*
1081 * Handle user request to change the 'mems' memory placement
1082 * of a cpuset. Needs to validate the request, update the
58568d2a
MX
1083 * cpusets mems_allowed, and for each task in the cpuset,
1084 * update mems_allowed and rebind task's mempolicy and any vma
1085 * mempolicies and if the cpuset is marked 'memory_migrate',
1086 * migrate the tasks pages to the new memory.
0b2f630a
MX
1087 *
1088 * Call with cgroup_mutex held. May take callback_mutex during call.
1089 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1090 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1091 * their mempolicies to the cpusets new mems_allowed.
1092 */
645fcc9d
LZ
1093static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1094 const char *buf)
0b2f630a 1095{
53feb297 1096 NODEMASK_ALLOC(nodemask_t, oldmem, GFP_KERNEL);
0b2f630a 1097 int retval;
010cfac4 1098 struct ptr_heap heap;
0b2f630a 1099
53feb297
MX
1100 if (!oldmem)
1101 return -ENOMEM;
1102
0b2f630a 1103 /*
38d7bee9 1104 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
0b2f630a
MX
1105 * it's read-only
1106 */
53feb297
MX
1107 if (cs == &top_cpuset) {
1108 retval = -EACCES;
1109 goto done;
1110 }
0b2f630a 1111
0b2f630a
MX
1112 /*
1113 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1114 * Since nodelist_parse() fails on an empty mask, we special case
1115 * that parsing. The validate_change() call ensures that cpusets
1116 * with tasks have memory.
1117 */
1118 if (!*buf) {
645fcc9d 1119 nodes_clear(trialcs->mems_allowed);
0b2f630a 1120 } else {
645fcc9d 1121 retval = nodelist_parse(buf, trialcs->mems_allowed);
0b2f630a
MX
1122 if (retval < 0)
1123 goto done;
1124
645fcc9d 1125 if (!nodes_subset(trialcs->mems_allowed,
38d7bee9 1126 node_states[N_MEMORY])) {
53feb297
MX
1127 retval = -EINVAL;
1128 goto done;
1129 }
0b2f630a 1130 }
53feb297
MX
1131 *oldmem = cs->mems_allowed;
1132 if (nodes_equal(*oldmem, trialcs->mems_allowed)) {
0b2f630a
MX
1133 retval = 0; /* Too easy - nothing to do */
1134 goto done;
1135 }
645fcc9d 1136 retval = validate_change(cs, trialcs);
0b2f630a
MX
1137 if (retval < 0)
1138 goto done;
1139
010cfac4
LZ
1140 retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
1141 if (retval < 0)
1142 goto done;
1143
0b2f630a 1144 mutex_lock(&callback_mutex);
645fcc9d 1145 cs->mems_allowed = trialcs->mems_allowed;
0b2f630a
MX
1146 mutex_unlock(&callback_mutex);
1147
53feb297 1148 update_tasks_nodemask(cs, oldmem, &heap);
010cfac4
LZ
1149
1150 heap_free(&heap);
0b2f630a 1151done:
53feb297 1152 NODEMASK_FREE(oldmem);
0b2f630a
MX
1153 return retval;
1154}
1155
8793d854
PM
1156int current_cpuset_is_being_rebound(void)
1157{
1158 return task_cs(current) == cpuset_being_rebound;
1159}
1160
5be7a479 1161static int update_relax_domain_level(struct cpuset *cs, s64 val)
1d3504fc 1162{
db7f47cf 1163#ifdef CONFIG_SMP
60495e77 1164 if (val < -1 || val >= sched_domain_level_max)
30e0e178 1165 return -EINVAL;
db7f47cf 1166#endif
1d3504fc
HS
1167
1168 if (val != cs->relax_domain_level) {
1169 cs->relax_domain_level = val;
300ed6cb
LZ
1170 if (!cpumask_empty(cs->cpus_allowed) &&
1171 is_sched_load_balance(cs))
699140ba 1172 rebuild_sched_domains_locked();
1d3504fc
HS
1173 }
1174
1175 return 0;
1176}
1177
950592f7
MX
1178/*
1179 * cpuset_change_flag - make a task's spread flags the same as its cpuset's
1180 * @tsk: task to be updated
1181 * @scan: struct cgroup_scanner containing the cgroup of the task
1182 *
1183 * Called by cgroup_scan_tasks() for each task in a cgroup.
1184 *
1185 * We don't need to re-check for the cgroup/cpuset membership, since we're
1186 * holding cgroup_lock() at this point.
1187 */
1188static void cpuset_change_flag(struct task_struct *tsk,
1189 struct cgroup_scanner *scan)
1190{
1191 cpuset_update_task_spread_flag(cgroup_cs(scan->cg), tsk);
1192}
1193
1194/*
1195 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1196 * @cs: the cpuset in which each task's spread flags needs to be changed
1197 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
1198 *
1199 * Called with cgroup_mutex held
1200 *
1201 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
1202 * calling callback functions for each.
1203 *
1204 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
1205 * if @heap != NULL.
1206 */
1207static void update_tasks_flags(struct cpuset *cs, struct ptr_heap *heap)
1208{
1209 struct cgroup_scanner scan;
1210
1211 scan.cg = cs->css.cgroup;
1212 scan.test_task = NULL;
1213 scan.process_task = cpuset_change_flag;
1214 scan.heap = heap;
1215 cgroup_scan_tasks(&scan);
1216}
1217
1da177e4
LT
1218/*
1219 * update_flag - read a 0 or a 1 in a file and update associated flag
78608366
PM
1220 * bit: the bit to update (see cpuset_flagbits_t)
1221 * cs: the cpuset to update
1222 * turning_on: whether the flag is being set or cleared
053199ed 1223 *
2df167a3 1224 * Call with cgroup_mutex held.
1da177e4
LT
1225 */
1226
700fe1ab
PM
1227static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1228 int turning_on)
1da177e4 1229{
645fcc9d 1230 struct cpuset *trialcs;
40b6a762 1231 int balance_flag_changed;
950592f7
MX
1232 int spread_flag_changed;
1233 struct ptr_heap heap;
1234 int err;
1da177e4 1235
645fcc9d
LZ
1236 trialcs = alloc_trial_cpuset(cs);
1237 if (!trialcs)
1238 return -ENOMEM;
1239
1da177e4 1240 if (turning_on)
645fcc9d 1241 set_bit(bit, &trialcs->flags);
1da177e4 1242 else
645fcc9d 1243 clear_bit(bit, &trialcs->flags);
1da177e4 1244
645fcc9d 1245 err = validate_change(cs, trialcs);
85d7b949 1246 if (err < 0)
645fcc9d 1247 goto out;
029190c5 1248
950592f7
MX
1249 err = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
1250 if (err < 0)
1251 goto out;
1252
029190c5 1253 balance_flag_changed = (is_sched_load_balance(cs) !=
645fcc9d 1254 is_sched_load_balance(trialcs));
029190c5 1255
950592f7
MX
1256 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1257 || (is_spread_page(cs) != is_spread_page(trialcs)));
1258
3d3f26a7 1259 mutex_lock(&callback_mutex);
645fcc9d 1260 cs->flags = trialcs->flags;
3d3f26a7 1261 mutex_unlock(&callback_mutex);
85d7b949 1262
300ed6cb 1263 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
699140ba 1264 rebuild_sched_domains_locked();
029190c5 1265
950592f7
MX
1266 if (spread_flag_changed)
1267 update_tasks_flags(cs, &heap);
1268 heap_free(&heap);
645fcc9d
LZ
1269out:
1270 free_trial_cpuset(trialcs);
1271 return err;
1da177e4
LT
1272}
1273
3e0d98b9 1274/*
80f7228b 1275 * Frequency meter - How fast is some event occurring?
3e0d98b9
PJ
1276 *
1277 * These routines manage a digitally filtered, constant time based,
1278 * event frequency meter. There are four routines:
1279 * fmeter_init() - initialize a frequency meter.
1280 * fmeter_markevent() - called each time the event happens.
1281 * fmeter_getrate() - returns the recent rate of such events.
1282 * fmeter_update() - internal routine used to update fmeter.
1283 *
1284 * A common data structure is passed to each of these routines,
1285 * which is used to keep track of the state required to manage the
1286 * frequency meter and its digital filter.
1287 *
1288 * The filter works on the number of events marked per unit time.
1289 * The filter is single-pole low-pass recursive (IIR). The time unit
1290 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1291 * simulate 3 decimal digits of precision (multiplied by 1000).
1292 *
1293 * With an FM_COEF of 933, and a time base of 1 second, the filter
1294 * has a half-life of 10 seconds, meaning that if the events quit
1295 * happening, then the rate returned from the fmeter_getrate()
1296 * will be cut in half each 10 seconds, until it converges to zero.
1297 *
1298 * It is not worth doing a real infinitely recursive filter. If more
1299 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1300 * just compute FM_MAXTICKS ticks worth, by which point the level
1301 * will be stable.
1302 *
1303 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1304 * arithmetic overflow in the fmeter_update() routine.
1305 *
1306 * Given the simple 32 bit integer arithmetic used, this meter works
1307 * best for reporting rates between one per millisecond (msec) and
1308 * one per 32 (approx) seconds. At constant rates faster than one
1309 * per msec it maxes out at values just under 1,000,000. At constant
1310 * rates between one per msec, and one per second it will stabilize
1311 * to a value N*1000, where N is the rate of events per second.
1312 * At constant rates between one per second and one per 32 seconds,
1313 * it will be choppy, moving up on the seconds that have an event,
1314 * and then decaying until the next event. At rates slower than
1315 * about one in 32 seconds, it decays all the way back to zero between
1316 * each event.
1317 */
1318
1319#define FM_COEF 933 /* coefficient for half-life of 10 secs */
1320#define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
1321#define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1322#define FM_SCALE 1000 /* faux fixed point scale */
1323
1324/* Initialize a frequency meter */
1325static void fmeter_init(struct fmeter *fmp)
1326{
1327 fmp->cnt = 0;
1328 fmp->val = 0;
1329 fmp->time = 0;
1330 spin_lock_init(&fmp->lock);
1331}
1332
1333/* Internal meter update - process cnt events and update value */
1334static void fmeter_update(struct fmeter *fmp)
1335{
1336 time_t now = get_seconds();
1337 time_t ticks = now - fmp->time;
1338
1339 if (ticks == 0)
1340 return;
1341
1342 ticks = min(FM_MAXTICKS, ticks);
1343 while (ticks-- > 0)
1344 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1345 fmp->time = now;
1346
1347 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1348 fmp->cnt = 0;
1349}
1350
1351/* Process any previous ticks, then bump cnt by one (times scale). */
1352static void fmeter_markevent(struct fmeter *fmp)
1353{
1354 spin_lock(&fmp->lock);
1355 fmeter_update(fmp);
1356 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1357 spin_unlock(&fmp->lock);
1358}
1359
1360/* Process any previous ticks, then return current value. */
1361static int fmeter_getrate(struct fmeter *fmp)
1362{
1363 int val;
1364
1365 spin_lock(&fmp->lock);
1366 fmeter_update(fmp);
1367 val = fmp->val;
1368 spin_unlock(&fmp->lock);
1369 return val;
1370}
1371
2df167a3 1372/* Called by cgroups to determine if a cpuset is usable; cgroup_mutex held */
761b3ef5 1373static int cpuset_can_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
f780bdb7 1374{
2f7ee569 1375 struct cpuset *cs = cgroup_cs(cgrp);
bb9d97b6
TH
1376 struct task_struct *task;
1377 int ret;
1da177e4 1378
300ed6cb 1379 if (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
1da177e4 1380 return -ENOSPC;
9985b0ba 1381
bb9d97b6
TH
1382 cgroup_taskset_for_each(task, cgrp, tset) {
1383 /*
1384 * Kthreads bound to specific cpus cannot be moved to a new
1385 * cpuset; we cannot change their cpu affinity and
1386 * isolating such threads by their set of allowed nodes is
1387 * unnecessary. Thus, cpusets are not applicable for such
1388 * threads. This prevents checking for success of
1389 * set_cpus_allowed_ptr() on all attached tasks before
1390 * cpus_allowed may be changed.
1391 */
1392 if (task->flags & PF_THREAD_BOUND)
1393 return -EINVAL;
1394 if ((ret = security_task_setscheduler(task)))
1395 return ret;
1396 }
f780bdb7 1397
452477fa
TH
1398 /*
1399 * Mark attach is in progress. This makes validate_change() fail
1400 * changes which zero cpus/mems_allowed.
1401 */
1402 cs->attach_in_progress++;
1403
94196f51 1404 return 0;
8793d854 1405}
1da177e4 1406
452477fa
TH
1407static void cpuset_cancel_attach(struct cgroup *cgrp,
1408 struct cgroup_taskset *tset)
1409{
1410 cgroup_cs(cgrp)->attach_in_progress--;
1411}
1412
4e4c9a14
TH
1413/*
1414 * Protected by cgroup_mutex. cpus_attach is used only by cpuset_attach()
1415 * but we can't allocate it dynamically there. Define it global and
1416 * allocate from cpuset_init().
1417 */
1418static cpumask_var_t cpus_attach;
1419
761b3ef5 1420static void cpuset_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
8793d854 1421{
4e4c9a14
TH
1422 /* static bufs protected by cgroup_mutex */
1423 static nodemask_t cpuset_attach_nodemask_from;
1424 static nodemask_t cpuset_attach_nodemask_to;
8793d854 1425 struct mm_struct *mm;
bb9d97b6
TH
1426 struct task_struct *task;
1427 struct task_struct *leader = cgroup_taskset_first(tset);
2f7ee569
TH
1428 struct cgroup *oldcgrp = cgroup_taskset_cur_cgroup(tset);
1429 struct cpuset *cs = cgroup_cs(cgrp);
1430 struct cpuset *oldcs = cgroup_cs(oldcgrp);
22fb52dd 1431
4e4c9a14
TH
1432 /* prepare for attach */
1433 if (cs == &top_cpuset)
1434 cpumask_copy(cpus_attach, cpu_possible_mask);
1435 else
1436 guarantee_online_cpus(cs, cpus_attach);
1437
1438 guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
1439
bb9d97b6
TH
1440 cgroup_taskset_for_each(task, cgrp, tset) {
1441 /*
1442 * can_attach beforehand should guarantee that this doesn't
1443 * fail. TODO: have a better way to handle failure here
1444 */
1445 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
1446
1447 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
1448 cpuset_update_task_spread_flag(cs, task);
1449 }
22fb52dd 1450
f780bdb7
BB
1451 /*
1452 * Change mm, possibly for multiple threads in a threadgroup. This is
1453 * expensive and may sleep.
1454 */
1455 cpuset_attach_nodemask_from = oldcs->mems_allowed;
1456 cpuset_attach_nodemask_to = cs->mems_allowed;
bb9d97b6 1457 mm = get_task_mm(leader);
4225399a 1458 if (mm) {
f780bdb7 1459 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
2741a559 1460 if (is_memory_migrate(cs))
f780bdb7
BB
1461 cpuset_migrate_mm(mm, &cpuset_attach_nodemask_from,
1462 &cpuset_attach_nodemask_to);
4225399a
PJ
1463 mmput(mm);
1464 }
452477fa
TH
1465
1466 cs->attach_in_progress--;
1da177e4
LT
1467}
1468
1469/* The various types of files and directories in a cpuset file system */
1470
1471typedef enum {
45b07ef3 1472 FILE_MEMORY_MIGRATE,
1da177e4
LT
1473 FILE_CPULIST,
1474 FILE_MEMLIST,
1475 FILE_CPU_EXCLUSIVE,
1476 FILE_MEM_EXCLUSIVE,
78608366 1477 FILE_MEM_HARDWALL,
029190c5 1478 FILE_SCHED_LOAD_BALANCE,
1d3504fc 1479 FILE_SCHED_RELAX_DOMAIN_LEVEL,
3e0d98b9
PJ
1480 FILE_MEMORY_PRESSURE_ENABLED,
1481 FILE_MEMORY_PRESSURE,
825a46af
PJ
1482 FILE_SPREAD_PAGE,
1483 FILE_SPREAD_SLAB,
1da177e4
LT
1484} cpuset_filetype_t;
1485
700fe1ab
PM
1486static int cpuset_write_u64(struct cgroup *cgrp, struct cftype *cft, u64 val)
1487{
1488 int retval = 0;
1489 struct cpuset *cs = cgroup_cs(cgrp);
1490 cpuset_filetype_t type = cft->private;
1491
e3712395 1492 if (!cgroup_lock_live_group(cgrp))
700fe1ab 1493 return -ENODEV;
700fe1ab
PM
1494
1495 switch (type) {
1da177e4 1496 case FILE_CPU_EXCLUSIVE:
700fe1ab 1497 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1da177e4
LT
1498 break;
1499 case FILE_MEM_EXCLUSIVE:
700fe1ab 1500 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1da177e4 1501 break;
78608366
PM
1502 case FILE_MEM_HARDWALL:
1503 retval = update_flag(CS_MEM_HARDWALL, cs, val);
1504 break;
029190c5 1505 case FILE_SCHED_LOAD_BALANCE:
700fe1ab 1506 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1d3504fc 1507 break;
45b07ef3 1508 case FILE_MEMORY_MIGRATE:
700fe1ab 1509 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
45b07ef3 1510 break;
3e0d98b9 1511 case FILE_MEMORY_PRESSURE_ENABLED:
700fe1ab 1512 cpuset_memory_pressure_enabled = !!val;
3e0d98b9
PJ
1513 break;
1514 case FILE_MEMORY_PRESSURE:
1515 retval = -EACCES;
1516 break;
825a46af 1517 case FILE_SPREAD_PAGE:
700fe1ab 1518 retval = update_flag(CS_SPREAD_PAGE, cs, val);
825a46af
PJ
1519 break;
1520 case FILE_SPREAD_SLAB:
700fe1ab 1521 retval = update_flag(CS_SPREAD_SLAB, cs, val);
825a46af 1522 break;
1da177e4
LT
1523 default:
1524 retval = -EINVAL;
700fe1ab 1525 break;
1da177e4 1526 }
8793d854 1527 cgroup_unlock();
1da177e4
LT
1528 return retval;
1529}
1530
5be7a479
PM
1531static int cpuset_write_s64(struct cgroup *cgrp, struct cftype *cft, s64 val)
1532{
1533 int retval = 0;
1534 struct cpuset *cs = cgroup_cs(cgrp);
1535 cpuset_filetype_t type = cft->private;
1536
e3712395 1537 if (!cgroup_lock_live_group(cgrp))
5be7a479 1538 return -ENODEV;
e3712395 1539
5be7a479
PM
1540 switch (type) {
1541 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1542 retval = update_relax_domain_level(cs, val);
1543 break;
1544 default:
1545 retval = -EINVAL;
1546 break;
1547 }
1548 cgroup_unlock();
1549 return retval;
1550}
1551
e3712395
PM
1552/*
1553 * Common handling for a write to a "cpus" or "mems" file.
1554 */
1555static int cpuset_write_resmask(struct cgroup *cgrp, struct cftype *cft,
1556 const char *buf)
1557{
1558 int retval = 0;
645fcc9d
LZ
1559 struct cpuset *cs = cgroup_cs(cgrp);
1560 struct cpuset *trialcs;
e3712395 1561
3a5a6d0c
TH
1562 /*
1563 * CPU or memory hotunplug may leave @cs w/o any execution
1564 * resources, in which case the hotplug code asynchronously updates
1565 * configuration and transfers all tasks to the nearest ancestor
1566 * which can execute.
1567 *
1568 * As writes to "cpus" or "mems" may restore @cs's execution
1569 * resources, wait for the previously scheduled operations before
1570 * proceeding, so that we don't end up keep removing tasks added
1571 * after execution capability is restored.
1572 */
1573 flush_work(&cpuset_hotplug_work);
1574
e3712395
PM
1575 if (!cgroup_lock_live_group(cgrp))
1576 return -ENODEV;
1577
645fcc9d 1578 trialcs = alloc_trial_cpuset(cs);
b75f38d6
LZ
1579 if (!trialcs) {
1580 retval = -ENOMEM;
1581 goto out;
1582 }
645fcc9d 1583
e3712395
PM
1584 switch (cft->private) {
1585 case FILE_CPULIST:
645fcc9d 1586 retval = update_cpumask(cs, trialcs, buf);
e3712395
PM
1587 break;
1588 case FILE_MEMLIST:
645fcc9d 1589 retval = update_nodemask(cs, trialcs, buf);
e3712395
PM
1590 break;
1591 default:
1592 retval = -EINVAL;
1593 break;
1594 }
645fcc9d
LZ
1595
1596 free_trial_cpuset(trialcs);
b75f38d6 1597out:
e3712395
PM
1598 cgroup_unlock();
1599 return retval;
1600}
1601
1da177e4
LT
1602/*
1603 * These ascii lists should be read in a single call, by using a user
1604 * buffer large enough to hold the entire map. If read in smaller
1605 * chunks, there is no guarantee of atomicity. Since the display format
1606 * used, list of ranges of sequential numbers, is variable length,
1607 * and since these maps can change value dynamically, one could read
1608 * gibberish by doing partial reads while a list was changing.
1609 * A single large read to a buffer that crosses a page boundary is
1610 * ok, because the result being copied to user land is not recomputed
1611 * across a page fault.
1612 */
1613
9303e0c4 1614static size_t cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
1da177e4 1615{
9303e0c4 1616 size_t count;
1da177e4 1617
3d3f26a7 1618 mutex_lock(&callback_mutex);
9303e0c4 1619 count = cpulist_scnprintf(page, PAGE_SIZE, cs->cpus_allowed);
3d3f26a7 1620 mutex_unlock(&callback_mutex);
1da177e4 1621
9303e0c4 1622 return count;
1da177e4
LT
1623}
1624
9303e0c4 1625static size_t cpuset_sprintf_memlist(char *page, struct cpuset *cs)
1da177e4 1626{
9303e0c4 1627 size_t count;
1da177e4 1628
3d3f26a7 1629 mutex_lock(&callback_mutex);
9303e0c4 1630 count = nodelist_scnprintf(page, PAGE_SIZE, cs->mems_allowed);
3d3f26a7 1631 mutex_unlock(&callback_mutex);
1da177e4 1632
9303e0c4 1633 return count;
1da177e4
LT
1634}
1635
8793d854
PM
1636static ssize_t cpuset_common_file_read(struct cgroup *cont,
1637 struct cftype *cft,
1638 struct file *file,
1639 char __user *buf,
1640 size_t nbytes, loff_t *ppos)
1da177e4 1641{
8793d854 1642 struct cpuset *cs = cgroup_cs(cont);
1da177e4
LT
1643 cpuset_filetype_t type = cft->private;
1644 char *page;
1645 ssize_t retval = 0;
1646 char *s;
1da177e4 1647
e12ba74d 1648 if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
1da177e4
LT
1649 return -ENOMEM;
1650
1651 s = page;
1652
1653 switch (type) {
1654 case FILE_CPULIST:
1655 s += cpuset_sprintf_cpulist(s, cs);
1656 break;
1657 case FILE_MEMLIST:
1658 s += cpuset_sprintf_memlist(s, cs);
1659 break;
1da177e4
LT
1660 default:
1661 retval = -EINVAL;
1662 goto out;
1663 }
1664 *s++ = '\n';
1da177e4 1665
eacaa1f5 1666 retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
1da177e4
LT
1667out:
1668 free_page((unsigned long)page);
1669 return retval;
1670}
1671
700fe1ab
PM
1672static u64 cpuset_read_u64(struct cgroup *cont, struct cftype *cft)
1673{
1674 struct cpuset *cs = cgroup_cs(cont);
1675 cpuset_filetype_t type = cft->private;
1676 switch (type) {
1677 case FILE_CPU_EXCLUSIVE:
1678 return is_cpu_exclusive(cs);
1679 case FILE_MEM_EXCLUSIVE:
1680 return is_mem_exclusive(cs);
78608366
PM
1681 case FILE_MEM_HARDWALL:
1682 return is_mem_hardwall(cs);
700fe1ab
PM
1683 case FILE_SCHED_LOAD_BALANCE:
1684 return is_sched_load_balance(cs);
1685 case FILE_MEMORY_MIGRATE:
1686 return is_memory_migrate(cs);
1687 case FILE_MEMORY_PRESSURE_ENABLED:
1688 return cpuset_memory_pressure_enabled;
1689 case FILE_MEMORY_PRESSURE:
1690 return fmeter_getrate(&cs->fmeter);
1691 case FILE_SPREAD_PAGE:
1692 return is_spread_page(cs);
1693 case FILE_SPREAD_SLAB:
1694 return is_spread_slab(cs);
1695 default:
1696 BUG();
1697 }
cf417141
MK
1698
1699 /* Unreachable but makes gcc happy */
1700 return 0;
700fe1ab 1701}
1da177e4 1702
5be7a479
PM
1703static s64 cpuset_read_s64(struct cgroup *cont, struct cftype *cft)
1704{
1705 struct cpuset *cs = cgroup_cs(cont);
1706 cpuset_filetype_t type = cft->private;
1707 switch (type) {
1708 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1709 return cs->relax_domain_level;
1710 default:
1711 BUG();
1712 }
cf417141
MK
1713
1714 /* Unrechable but makes gcc happy */
1715 return 0;
5be7a479
PM
1716}
1717
1da177e4
LT
1718
1719/*
1720 * for the common functions, 'private' gives the type of file
1721 */
1722
addf2c73
PM
1723static struct cftype files[] = {
1724 {
1725 .name = "cpus",
1726 .read = cpuset_common_file_read,
e3712395
PM
1727 .write_string = cpuset_write_resmask,
1728 .max_write_len = (100U + 6 * NR_CPUS),
addf2c73
PM
1729 .private = FILE_CPULIST,
1730 },
1731
1732 {
1733 .name = "mems",
1734 .read = cpuset_common_file_read,
e3712395
PM
1735 .write_string = cpuset_write_resmask,
1736 .max_write_len = (100U + 6 * MAX_NUMNODES),
addf2c73
PM
1737 .private = FILE_MEMLIST,
1738 },
1739
1740 {
1741 .name = "cpu_exclusive",
1742 .read_u64 = cpuset_read_u64,
1743 .write_u64 = cpuset_write_u64,
1744 .private = FILE_CPU_EXCLUSIVE,
1745 },
1746
1747 {
1748 .name = "mem_exclusive",
1749 .read_u64 = cpuset_read_u64,
1750 .write_u64 = cpuset_write_u64,
1751 .private = FILE_MEM_EXCLUSIVE,
1752 },
1753
78608366
PM
1754 {
1755 .name = "mem_hardwall",
1756 .read_u64 = cpuset_read_u64,
1757 .write_u64 = cpuset_write_u64,
1758 .private = FILE_MEM_HARDWALL,
1759 },
1760
addf2c73
PM
1761 {
1762 .name = "sched_load_balance",
1763 .read_u64 = cpuset_read_u64,
1764 .write_u64 = cpuset_write_u64,
1765 .private = FILE_SCHED_LOAD_BALANCE,
1766 },
1767
1768 {
1769 .name = "sched_relax_domain_level",
5be7a479
PM
1770 .read_s64 = cpuset_read_s64,
1771 .write_s64 = cpuset_write_s64,
addf2c73
PM
1772 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1773 },
1774
1775 {
1776 .name = "memory_migrate",
1777 .read_u64 = cpuset_read_u64,
1778 .write_u64 = cpuset_write_u64,
1779 .private = FILE_MEMORY_MIGRATE,
1780 },
1781
1782 {
1783 .name = "memory_pressure",
1784 .read_u64 = cpuset_read_u64,
1785 .write_u64 = cpuset_write_u64,
1786 .private = FILE_MEMORY_PRESSURE,
099fca32 1787 .mode = S_IRUGO,
addf2c73
PM
1788 },
1789
1790 {
1791 .name = "memory_spread_page",
1792 .read_u64 = cpuset_read_u64,
1793 .write_u64 = cpuset_write_u64,
1794 .private = FILE_SPREAD_PAGE,
1795 },
1796
1797 {
1798 .name = "memory_spread_slab",
1799 .read_u64 = cpuset_read_u64,
1800 .write_u64 = cpuset_write_u64,
1801 .private = FILE_SPREAD_SLAB,
1802 },
3e0d98b9 1803
4baf6e33
TH
1804 {
1805 .name = "memory_pressure_enabled",
1806 .flags = CFTYPE_ONLY_ON_ROOT,
1807 .read_u64 = cpuset_read_u64,
1808 .write_u64 = cpuset_write_u64,
1809 .private = FILE_MEMORY_PRESSURE_ENABLED,
1810 },
1da177e4 1811
4baf6e33
TH
1812 { } /* terminate */
1813};
1da177e4
LT
1814
1815/*
92fb9748 1816 * cpuset_css_alloc - allocate a cpuset css
2df167a3 1817 * cont: control group that the new cpuset will be part of
1da177e4
LT
1818 */
1819
92fb9748 1820static struct cgroup_subsys_state *cpuset_css_alloc(struct cgroup *cont)
1da177e4 1821{
c8f699bb 1822 struct cpuset *cs;
1da177e4 1823
c8f699bb 1824 if (!cont->parent)
8793d854 1825 return &top_cpuset.css;
033fa1c5 1826
c8f699bb 1827 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
1da177e4 1828 if (!cs)
8793d854 1829 return ERR_PTR(-ENOMEM);
300ed6cb
LZ
1830 if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL)) {
1831 kfree(cs);
1832 return ERR_PTR(-ENOMEM);
1833 }
1da177e4 1834
029190c5 1835 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
300ed6cb 1836 cpumask_clear(cs->cpus_allowed);
f9a86fcb 1837 nodes_clear(cs->mems_allowed);
3e0d98b9 1838 fmeter_init(&cs->fmeter);
8d033948 1839 INIT_WORK(&cs->hotplug_work, cpuset_propagate_hotplug_workfn);
1d3504fc 1840 cs->relax_domain_level = -1;
c8f699bb
TH
1841 cs->parent = cgroup_cs(cont->parent);
1842
1843 return &cs->css;
1844}
1845
1846static int cpuset_css_online(struct cgroup *cgrp)
1847{
1848 struct cpuset *cs = cgroup_cs(cgrp);
1849 struct cpuset *parent = cs->parent;
ae8086ce
TH
1850 struct cpuset *tmp_cs;
1851 struct cgroup *pos_cg;
c8f699bb
TH
1852
1853 if (!parent)
1854 return 0;
1855
efeb77b2 1856 set_bit(CS_ONLINE, &cs->flags);
c8f699bb
TH
1857 if (is_spread_page(parent))
1858 set_bit(CS_SPREAD_PAGE, &cs->flags);
1859 if (is_spread_slab(parent))
1860 set_bit(CS_SPREAD_SLAB, &cs->flags);
1da177e4 1861
202f72d5 1862 number_of_cpusets++;
033fa1c5 1863
c8f699bb
TH
1864 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags))
1865 return 0;
033fa1c5
TH
1866
1867 /*
1868 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
1869 * set. This flag handling is implemented in cgroup core for
1870 * histrical reasons - the flag may be specified during mount.
1871 *
1872 * Currently, if any sibling cpusets have exclusive cpus or mem, we
1873 * refuse to clone the configuration - thereby refusing the task to
1874 * be entered, and as a result refusing the sys_unshare() or
1875 * clone() which initiated it. If this becomes a problem for some
1876 * users who wish to allow that scenario, then this could be
1877 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
1878 * (and likewise for mems) to the new cgroup.
1879 */
ae8086ce
TH
1880 rcu_read_lock();
1881 cpuset_for_each_child(tmp_cs, pos_cg, parent) {
1882 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
1883 rcu_read_unlock();
c8f699bb 1884 return 0;
ae8086ce 1885 }
033fa1c5 1886 }
ae8086ce 1887 rcu_read_unlock();
033fa1c5
TH
1888
1889 mutex_lock(&callback_mutex);
1890 cs->mems_allowed = parent->mems_allowed;
1891 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
1892 mutex_unlock(&callback_mutex);
c8f699bb
TH
1893
1894 return 0;
1895}
1896
1897static void cpuset_css_offline(struct cgroup *cgrp)
1898{
1899 struct cpuset *cs = cgroup_cs(cgrp);
1900
1901 /* css_offline is called w/o cgroup_mutex, grab it */
1902 cgroup_lock();
1903
1904 if (is_sched_load_balance(cs))
1905 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
1906
1907 number_of_cpusets--;
efeb77b2 1908 clear_bit(CS_ONLINE, &cs->flags);
c8f699bb
TH
1909
1910 cgroup_unlock();
1da177e4
LT
1911}
1912
029190c5 1913/*
029190c5
PJ
1914 * If the cpuset being removed has its flag 'sched_load_balance'
1915 * enabled, then simulate turning sched_load_balance off, which
699140ba 1916 * will call rebuild_sched_domains_locked().
029190c5
PJ
1917 */
1918
92fb9748 1919static void cpuset_css_free(struct cgroup *cont)
1da177e4 1920{
8793d854 1921 struct cpuset *cs = cgroup_cs(cont);
1da177e4 1922
300ed6cb 1923 free_cpumask_var(cs->cpus_allowed);
8793d854 1924 kfree(cs);
1da177e4
LT
1925}
1926
8793d854
PM
1927struct cgroup_subsys cpuset_subsys = {
1928 .name = "cpuset",
92fb9748 1929 .css_alloc = cpuset_css_alloc,
c8f699bb
TH
1930 .css_online = cpuset_css_online,
1931 .css_offline = cpuset_css_offline,
92fb9748 1932 .css_free = cpuset_css_free,
8793d854 1933 .can_attach = cpuset_can_attach,
452477fa 1934 .cancel_attach = cpuset_cancel_attach,
8793d854 1935 .attach = cpuset_attach,
8793d854 1936 .subsys_id = cpuset_subsys_id,
4baf6e33 1937 .base_cftypes = files,
8793d854
PM
1938 .early_init = 1,
1939};
1940
1da177e4
LT
1941/**
1942 * cpuset_init - initialize cpusets at system boot
1943 *
1944 * Description: Initialize top_cpuset and the cpuset internal file system,
1945 **/
1946
1947int __init cpuset_init(void)
1948{
8793d854 1949 int err = 0;
1da177e4 1950
58568d2a
MX
1951 if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
1952 BUG();
1953
300ed6cb 1954 cpumask_setall(top_cpuset.cpus_allowed);
f9a86fcb 1955 nodes_setall(top_cpuset.mems_allowed);
1da177e4 1956
3e0d98b9 1957 fmeter_init(&top_cpuset.fmeter);
029190c5 1958 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
1d3504fc 1959 top_cpuset.relax_domain_level = -1;
1da177e4 1960
1da177e4
LT
1961 err = register_filesystem(&cpuset_fs_type);
1962 if (err < 0)
8793d854
PM
1963 return err;
1964
2341d1b6
LZ
1965 if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
1966 BUG();
1967
202f72d5 1968 number_of_cpusets = 1;
8793d854 1969 return 0;
1da177e4
LT
1970}
1971
956db3ca
CW
1972/**
1973 * cpuset_do_move_task - move a given task to another cpuset
1974 * @tsk: pointer to task_struct the task to move
1975 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
1976 *
1977 * Called by cgroup_scan_tasks() for each task in a cgroup.
1978 * Return nonzero to stop the walk through the tasks.
1979 */
9e0c914c
AB
1980static void cpuset_do_move_task(struct task_struct *tsk,
1981 struct cgroup_scanner *scan)
956db3ca 1982{
7f81b1ae 1983 struct cgroup *new_cgroup = scan->data;
956db3ca 1984
7f81b1ae 1985 cgroup_attach_task(new_cgroup, tsk);
956db3ca
CW
1986}
1987
1988/**
1989 * move_member_tasks_to_cpuset - move tasks from one cpuset to another
1990 * @from: cpuset in which the tasks currently reside
1991 * @to: cpuset to which the tasks will be moved
1992 *
c8d9c90c
PJ
1993 * Called with cgroup_mutex held
1994 * callback_mutex must not be held, as cpuset_attach() will take it.
956db3ca
CW
1995 *
1996 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
1997 * calling callback functions for each.
1998 */
1999static void move_member_tasks_to_cpuset(struct cpuset *from, struct cpuset *to)
2000{
7f81b1ae 2001 struct cgroup_scanner scan;
956db3ca 2002
7f81b1ae
LZ
2003 scan.cg = from->css.cgroup;
2004 scan.test_task = NULL; /* select all tasks in cgroup */
2005 scan.process_task = cpuset_do_move_task;
2006 scan.heap = NULL;
2007 scan.data = to->css.cgroup;
956db3ca 2008
7f81b1ae 2009 if (cgroup_scan_tasks(&scan))
956db3ca
CW
2010 printk(KERN_ERR "move_member_tasks_to_cpuset: "
2011 "cgroup_scan_tasks failed\n");
2012}
2013
b1aac8bb 2014/*
cf417141 2015 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
b1aac8bb
PJ
2016 * or memory nodes, we need to walk over the cpuset hierarchy,
2017 * removing that CPU or node from all cpusets. If this removes the
956db3ca
CW
2018 * last CPU or node from a cpuset, then move the tasks in the empty
2019 * cpuset to its next-highest non-empty parent.
b1aac8bb 2020 *
c8d9c90c
PJ
2021 * Called with cgroup_mutex held
2022 * callback_mutex must not be held, as cpuset_attach() will take it.
b1aac8bb 2023 */
956db3ca
CW
2024static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
2025{
2026 struct cpuset *parent;
2027
956db3ca
CW
2028 /*
2029 * Find its next-highest non-empty parent, (top cpuset
2030 * has online cpus, so can't be empty).
2031 */
2032 parent = cs->parent;
300ed6cb 2033 while (cpumask_empty(parent->cpus_allowed) ||
b4501295 2034 nodes_empty(parent->mems_allowed))
956db3ca 2035 parent = parent->parent;
956db3ca
CW
2036
2037 move_member_tasks_to_cpuset(cs, parent);
2038}
2039
80d1fa64
SB
2040/*
2041 * Helper function to traverse cpusets.
2042 * It can be used to walk the cpuset tree from top to bottom, completing
2043 * one layer before dropping down to the next (thus always processing a
2044 * node before any of its children).
2045 */
2046static struct cpuset *cpuset_next(struct list_head *queue)
2047{
2048 struct cpuset *cp;
2049 struct cpuset *child; /* scans child cpusets of cp */
2050 struct cgroup *cont;
2051
2052 if (list_empty(queue))
2053 return NULL;
2054
2055 cp = list_first_entry(queue, struct cpuset, stack_list);
2056 list_del(queue->next);
ae8086ce
TH
2057 rcu_read_lock();
2058 cpuset_for_each_child(child, cont, cp)
80d1fa64 2059 list_add_tail(&child->stack_list, queue);
ae8086ce 2060 rcu_read_unlock();
80d1fa64
SB
2061
2062 return cp;
2063}
2064
deb7aa30 2065/**
8d033948 2066 * cpuset_propagate_hotplug_workfn - propagate CPU/memory hotplug to a cpuset
deb7aa30 2067 * @cs: cpuset in interest
956db3ca 2068 *
deb7aa30
TH
2069 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
2070 * offline, update @cs accordingly. If @cs ends up with no CPU or memory,
2071 * all its tasks are moved to the nearest ancestor with both resources.
956db3ca 2072 */
8d033948 2073static void cpuset_propagate_hotplug_workfn(struct work_struct *work)
b1aac8bb 2074{
deb7aa30
TH
2075 static cpumask_t off_cpus;
2076 static nodemask_t off_mems, tmp_mems;
8d033948 2077 struct cpuset *cs = container_of(work, struct cpuset, hotplug_work);
7ddf96b0 2078
8d033948 2079 cgroup_lock();
7ddf96b0 2080
deb7aa30
TH
2081 cpumask_andnot(&off_cpus, cs->cpus_allowed, top_cpuset.cpus_allowed);
2082 nodes_andnot(off_mems, cs->mems_allowed, top_cpuset.mems_allowed);
7ddf96b0 2083
deb7aa30
TH
2084 /* remove offline cpus from @cs */
2085 if (!cpumask_empty(&off_cpus)) {
2086 mutex_lock(&callback_mutex);
2087 cpumask_andnot(cs->cpus_allowed, cs->cpus_allowed, &off_cpus);
2088 mutex_unlock(&callback_mutex);
2089 update_tasks_cpumask(cs, NULL);
2090 }
b4501295 2091
deb7aa30
TH
2092 /* remove offline mems from @cs */
2093 if (!nodes_empty(off_mems)) {
2094 tmp_mems = cs->mems_allowed;
2095 mutex_lock(&callback_mutex);
2096 nodes_andnot(cs->mems_allowed, cs->mems_allowed, off_mems);
2097 mutex_unlock(&callback_mutex);
2098 update_tasks_nodemask(cs, &tmp_mems, NULL);
b1aac8bb 2099 }
deb7aa30
TH
2100
2101 if (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
2102 remove_tasks_in_empty_cpuset(cs);
8d033948
TH
2103
2104 cgroup_unlock();
2105
2106 /* the following may free @cs, should be the last operation */
2107 css_put(&cs->css);
2108}
2109
2110/**
2111 * schedule_cpuset_propagate_hotplug - schedule hotplug propagation to a cpuset
2112 * @cs: cpuset of interest
2113 *
2114 * Schedule cpuset_propagate_hotplug_workfn() which will update CPU and
2115 * memory masks according to top_cpuset.
2116 */
2117static void schedule_cpuset_propagate_hotplug(struct cpuset *cs)
2118{
2119 /*
2120 * Pin @cs. The refcnt will be released when the work item
2121 * finishes executing.
2122 */
2123 if (!css_tryget(&cs->css))
2124 return;
2125
2126 /*
2127 * Queue @cs->hotplug_work. If already pending, lose the css ref.
2128 * cpuset_propagate_hotplug_wq is ordered and propagation will
2129 * happen in the order this function is called.
2130 */
2131 if (!queue_work(cpuset_propagate_hotplug_wq, &cs->hotplug_work))
2132 css_put(&cs->css);
b1aac8bb
PJ
2133}
2134
deb7aa30 2135/**
3a5a6d0c 2136 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
d35be8ba 2137 *
deb7aa30
TH
2138 * This function is called after either CPU or memory configuration has
2139 * changed and updates cpuset accordingly. The top_cpuset is always
2140 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
2141 * order to make cpusets transparent (of no affect) on systems that are
2142 * actively using CPU hotplug but making no active use of cpusets.
cf417141 2143 *
deb7aa30
TH
2144 * Non-root cpusets are only affected by offlining. If any CPUs or memory
2145 * nodes have been taken down, cpuset_propagate_hotplug() is invoked on all
2146 * descendants.
7ddf96b0 2147 *
deb7aa30
TH
2148 * Note that CPU offlining during suspend is ignored. We don't modify
2149 * cpusets across suspend/resume cycles at all.
4c4d50f7 2150 */
3a5a6d0c 2151static void cpuset_hotplug_workfn(struct work_struct *work)
4c4d50f7 2152{
deb7aa30
TH
2153 static cpumask_t new_cpus, tmp_cpus;
2154 static nodemask_t new_mems, tmp_mems;
2155 bool cpus_updated, mems_updated;
2156 bool cpus_offlined, mems_offlined;
cf417141 2157
cf417141 2158 cgroup_lock();
7ddf96b0 2159
deb7aa30
TH
2160 /* fetch the available cpus/mems and find out which changed how */
2161 cpumask_copy(&new_cpus, cpu_active_mask);
2162 new_mems = node_states[N_MEMORY];
2163
2164 cpus_updated = !cpumask_equal(top_cpuset.cpus_allowed, &new_cpus);
2165 cpus_offlined = cpumask_andnot(&tmp_cpus, top_cpuset.cpus_allowed,
2166 &new_cpus);
2167
2168 mems_updated = !nodes_equal(top_cpuset.mems_allowed, new_mems);
2169 nodes_andnot(tmp_mems, top_cpuset.mems_allowed, new_mems);
2170 mems_offlined = !nodes_empty(tmp_mems);
2171
2172 /* synchronize cpus_allowed to cpu_active_mask */
2173 if (cpus_updated) {
2174 mutex_lock(&callback_mutex);
2175 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
2176 mutex_unlock(&callback_mutex);
2177 /* we don't mess with cpumasks of tasks in top_cpuset */
2178 }
2179
2180 /* synchronize mems_allowed to N_MEMORY */
2181 if (mems_updated) {
2182 tmp_mems = top_cpuset.mems_allowed;
2183 mutex_lock(&callback_mutex);
2184 top_cpuset.mems_allowed = new_mems;
2185 mutex_unlock(&callback_mutex);
2186 update_tasks_nodemask(&top_cpuset, &tmp_mems, NULL);
2187 }
2188
2189 /* if cpus or mems went down, we need to propagate to descendants */
2190 if (cpus_offlined || mems_offlined) {
2191 struct cpuset *cs;
2192 LIST_HEAD(queue);
2193
2194 list_add_tail(&top_cpuset.stack_list, &queue);
2195 while ((cs = cpuset_next(&queue)))
2196 if (cs != &top_cpuset)
8d033948 2197 schedule_cpuset_propagate_hotplug(cs);
deb7aa30 2198 }
7ddf96b0 2199
cf417141
MK
2200 cgroup_unlock();
2201
8d033948
TH
2202 /* wait for propagations to finish */
2203 flush_workqueue(cpuset_propagate_hotplug_wq);
2204
deb7aa30
TH
2205 /* rebuild sched domains if cpus_allowed has changed */
2206 if (cpus_updated) {
2207 struct sched_domain_attr *attr;
2208 cpumask_var_t *doms;
2209 int ndoms;
2210
2211 cgroup_lock();
2212 ndoms = generate_sched_domains(&doms, &attr);
2213 cgroup_unlock();
2214
2215 partition_sched_domains(ndoms, doms, attr);
2216 }
2217}
2218
2219void cpuset_update_active_cpus(bool cpu_online)
2220{
3a5a6d0c
TH
2221 /*
2222 * We're inside cpu hotplug critical region which usually nests
2223 * inside cgroup synchronization. Bounce actual hotplug processing
2224 * to a work item to avoid reverse locking order.
2225 *
2226 * We still need to do partition_sched_domains() synchronously;
2227 * otherwise, the scheduler will get confused and put tasks to the
2228 * dead CPU. Fall back to the default single domain.
2229 * cpuset_hotplug_workfn() will rebuild it as necessary.
2230 */
2231 partition_sched_domains(1, NULL, NULL);
2232 schedule_work(&cpuset_hotplug_work);
4c4d50f7 2233}
4c4d50f7 2234
b1aac8bb 2235#ifdef CONFIG_MEMORY_HOTPLUG
38837fc7 2236/*
38d7bee9
LJ
2237 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
2238 * Call this routine anytime after node_states[N_MEMORY] changes.
a1cd2b13 2239 * See cpuset_update_active_cpus() for CPU hotplug handling.
38837fc7 2240 */
f481891f
MX
2241static int cpuset_track_online_nodes(struct notifier_block *self,
2242 unsigned long action, void *arg)
38837fc7 2243{
3a5a6d0c 2244 schedule_work(&cpuset_hotplug_work);
f481891f 2245 return NOTIFY_OK;
38837fc7
PJ
2246}
2247#endif
2248
1da177e4
LT
2249/**
2250 * cpuset_init_smp - initialize cpus_allowed
2251 *
2252 * Description: Finish top cpuset after cpu, node maps are initialized
2253 **/
2254
2255void __init cpuset_init_smp(void)
2256{
6ad4c188 2257 cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
38d7bee9 2258 top_cpuset.mems_allowed = node_states[N_MEMORY];
4c4d50f7 2259
f481891f 2260 hotplug_memory_notifier(cpuset_track_online_nodes, 10);
8d033948
TH
2261
2262 cpuset_propagate_hotplug_wq =
2263 alloc_ordered_workqueue("cpuset_hotplug", 0);
2264 BUG_ON(!cpuset_propagate_hotplug_wq);
1da177e4
LT
2265}
2266
2267/**
1da177e4
LT
2268 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2269 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
6af866af 2270 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
1da177e4 2271 *
300ed6cb 2272 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
1da177e4 2273 * attached to the specified @tsk. Guaranteed to return some non-empty
5f054e31 2274 * subset of cpu_online_mask, even if this means going outside the
1da177e4
LT
2275 * tasks cpuset.
2276 **/
2277
6af866af 2278void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
1da177e4 2279{
3d3f26a7 2280 mutex_lock(&callback_mutex);
909d75a3 2281 task_lock(tsk);
f9a86fcb 2282 guarantee_online_cpus(task_cs(tsk), pmask);
909d75a3 2283 task_unlock(tsk);
897f0b3c 2284 mutex_unlock(&callback_mutex);
1da177e4
LT
2285}
2286
2baab4e9 2287void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
9084bb82
ON
2288{
2289 const struct cpuset *cs;
9084bb82
ON
2290
2291 rcu_read_lock();
2292 cs = task_cs(tsk);
2293 if (cs)
1e1b6c51 2294 do_set_cpus_allowed(tsk, cs->cpus_allowed);
9084bb82
ON
2295 rcu_read_unlock();
2296
2297 /*
2298 * We own tsk->cpus_allowed, nobody can change it under us.
2299 *
2300 * But we used cs && cs->cpus_allowed lockless and thus can
2301 * race with cgroup_attach_task() or update_cpumask() and get
2302 * the wrong tsk->cpus_allowed. However, both cases imply the
2303 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
2304 * which takes task_rq_lock().
2305 *
2306 * If we are called after it dropped the lock we must see all
2307 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
2308 * set any mask even if it is not right from task_cs() pov,
2309 * the pending set_cpus_allowed_ptr() will fix things.
2baab4e9
PZ
2310 *
2311 * select_fallback_rq() will fix things ups and set cpu_possible_mask
2312 * if required.
9084bb82 2313 */
9084bb82
ON
2314}
2315
1da177e4
LT
2316void cpuset_init_current_mems_allowed(void)
2317{
f9a86fcb 2318 nodes_setall(current->mems_allowed);
1da177e4
LT
2319}
2320
909d75a3
PJ
2321/**
2322 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2323 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2324 *
2325 * Description: Returns the nodemask_t mems_allowed of the cpuset
2326 * attached to the specified @tsk. Guaranteed to return some non-empty
38d7bee9 2327 * subset of node_states[N_MEMORY], even if this means going outside the
909d75a3
PJ
2328 * tasks cpuset.
2329 **/
2330
2331nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2332{
2333 nodemask_t mask;
2334
3d3f26a7 2335 mutex_lock(&callback_mutex);
909d75a3 2336 task_lock(tsk);
8793d854 2337 guarantee_online_mems(task_cs(tsk), &mask);
909d75a3 2338 task_unlock(tsk);
3d3f26a7 2339 mutex_unlock(&callback_mutex);
909d75a3
PJ
2340
2341 return mask;
2342}
2343
d9fd8a6d 2344/**
19770b32
MG
2345 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2346 * @nodemask: the nodemask to be checked
d9fd8a6d 2347 *
19770b32 2348 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
1da177e4 2349 */
19770b32 2350int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
1da177e4 2351{
19770b32 2352 return nodes_intersects(*nodemask, current->mems_allowed);
1da177e4
LT
2353}
2354
9bf2229f 2355/*
78608366
PM
2356 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2357 * mem_hardwall ancestor to the specified cpuset. Call holding
2358 * callback_mutex. If no ancestor is mem_exclusive or mem_hardwall
2359 * (an unusual configuration), then returns the root cpuset.
9bf2229f 2360 */
78608366 2361static const struct cpuset *nearest_hardwall_ancestor(const struct cpuset *cs)
9bf2229f 2362{
78608366 2363 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && cs->parent)
9bf2229f
PJ
2364 cs = cs->parent;
2365 return cs;
2366}
2367
d9fd8a6d 2368/**
a1bc5a4e
DR
2369 * cpuset_node_allowed_softwall - Can we allocate on a memory node?
2370 * @node: is this an allowed node?
02a0e53d 2371 * @gfp_mask: memory allocation flags
d9fd8a6d 2372 *
a1bc5a4e
DR
2373 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2374 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2375 * yes. If it's not a __GFP_HARDWALL request and this node is in the nearest
2376 * hardwalled cpuset ancestor to this task's cpuset, yes. If the task has been
2377 * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE
2378 * flag, yes.
9bf2229f
PJ
2379 * Otherwise, no.
2380 *
a1bc5a4e
DR
2381 * If __GFP_HARDWALL is set, cpuset_node_allowed_softwall() reduces to
2382 * cpuset_node_allowed_hardwall(). Otherwise, cpuset_node_allowed_softwall()
2383 * might sleep, and might allow a node from an enclosing cpuset.
02a0e53d 2384 *
a1bc5a4e
DR
2385 * cpuset_node_allowed_hardwall() only handles the simpler case of hardwall
2386 * cpusets, and never sleeps.
02a0e53d
PJ
2387 *
2388 * The __GFP_THISNODE placement logic is really handled elsewhere,
2389 * by forcibly using a zonelist starting at a specified node, and by
2390 * (in get_page_from_freelist()) refusing to consider the zones for
2391 * any node on the zonelist except the first. By the time any such
2392 * calls get to this routine, we should just shut up and say 'yes'.
2393 *
9bf2229f 2394 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
c596d9f3
DR
2395 * and do not allow allocations outside the current tasks cpuset
2396 * unless the task has been OOM killed as is marked TIF_MEMDIE.
9bf2229f 2397 * GFP_KERNEL allocations are not so marked, so can escape to the
78608366 2398 * nearest enclosing hardwalled ancestor cpuset.
9bf2229f 2399 *
02a0e53d
PJ
2400 * Scanning up parent cpusets requires callback_mutex. The
2401 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2402 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2403 * current tasks mems_allowed came up empty on the first pass over
2404 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
2405 * cpuset are short of memory, might require taking the callback_mutex
2406 * mutex.
9bf2229f 2407 *
36be57ff 2408 * The first call here from mm/page_alloc:get_page_from_freelist()
02a0e53d
PJ
2409 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2410 * so no allocation on a node outside the cpuset is allowed (unless
2411 * in interrupt, of course).
36be57ff
PJ
2412 *
2413 * The second pass through get_page_from_freelist() doesn't even call
2414 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
2415 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2416 * in alloc_flags. That logic and the checks below have the combined
2417 * affect that:
9bf2229f
PJ
2418 * in_interrupt - any node ok (current task context irrelevant)
2419 * GFP_ATOMIC - any node ok
c596d9f3 2420 * TIF_MEMDIE - any node ok
78608366 2421 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
9bf2229f 2422 * GFP_USER - only nodes in current tasks mems allowed ok.
36be57ff
PJ
2423 *
2424 * Rule:
a1bc5a4e 2425 * Don't call cpuset_node_allowed_softwall if you can't sleep, unless you
36be57ff
PJ
2426 * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
2427 * the code that might scan up ancestor cpusets and sleep.
02a0e53d 2428 */
a1bc5a4e 2429int __cpuset_node_allowed_softwall(int node, gfp_t gfp_mask)
1da177e4 2430{
9bf2229f 2431 const struct cpuset *cs; /* current cpuset ancestors */
29afd49b 2432 int allowed; /* is allocation in zone z allowed? */
9bf2229f 2433
9b819d20 2434 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
9bf2229f 2435 return 1;
92d1dbd2 2436 might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
9bf2229f
PJ
2437 if (node_isset(node, current->mems_allowed))
2438 return 1;
c596d9f3
DR
2439 /*
2440 * Allow tasks that have access to memory reserves because they have
2441 * been OOM killed to get memory anywhere.
2442 */
2443 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2444 return 1;
9bf2229f
PJ
2445 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
2446 return 0;
2447
5563e770
BP
2448 if (current->flags & PF_EXITING) /* Let dying task have memory */
2449 return 1;
2450
9bf2229f 2451 /* Not hardwall and node outside mems_allowed: scan up cpusets */
3d3f26a7 2452 mutex_lock(&callback_mutex);
053199ed 2453
053199ed 2454 task_lock(current);
78608366 2455 cs = nearest_hardwall_ancestor(task_cs(current));
053199ed
PJ
2456 task_unlock(current);
2457
9bf2229f 2458 allowed = node_isset(node, cs->mems_allowed);
3d3f26a7 2459 mutex_unlock(&callback_mutex);
9bf2229f 2460 return allowed;
1da177e4
LT
2461}
2462
02a0e53d 2463/*
a1bc5a4e
DR
2464 * cpuset_node_allowed_hardwall - Can we allocate on a memory node?
2465 * @node: is this an allowed node?
02a0e53d
PJ
2466 * @gfp_mask: memory allocation flags
2467 *
a1bc5a4e
DR
2468 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2469 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2470 * yes. If the task has been OOM killed and has access to memory reserves as
2471 * specified by the TIF_MEMDIE flag, yes.
2472 * Otherwise, no.
02a0e53d
PJ
2473 *
2474 * The __GFP_THISNODE placement logic is really handled elsewhere,
2475 * by forcibly using a zonelist starting at a specified node, and by
2476 * (in get_page_from_freelist()) refusing to consider the zones for
2477 * any node on the zonelist except the first. By the time any such
2478 * calls get to this routine, we should just shut up and say 'yes'.
2479 *
a1bc5a4e
DR
2480 * Unlike the cpuset_node_allowed_softwall() variant, above,
2481 * this variant requires that the node be in the current task's
02a0e53d
PJ
2482 * mems_allowed or that we're in interrupt. It does not scan up the
2483 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
2484 * It never sleeps.
2485 */
a1bc5a4e 2486int __cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask)
02a0e53d 2487{
02a0e53d
PJ
2488 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2489 return 1;
02a0e53d
PJ
2490 if (node_isset(node, current->mems_allowed))
2491 return 1;
dedf8b79
DW
2492 /*
2493 * Allow tasks that have access to memory reserves because they have
2494 * been OOM killed to get memory anywhere.
2495 */
2496 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2497 return 1;
02a0e53d
PJ
2498 return 0;
2499}
2500
825a46af 2501/**
6adef3eb
JS
2502 * cpuset_mem_spread_node() - On which node to begin search for a file page
2503 * cpuset_slab_spread_node() - On which node to begin search for a slab page
825a46af
PJ
2504 *
2505 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2506 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2507 * and if the memory allocation used cpuset_mem_spread_node()
2508 * to determine on which node to start looking, as it will for
2509 * certain page cache or slab cache pages such as used for file
2510 * system buffers and inode caches, then instead of starting on the
2511 * local node to look for a free page, rather spread the starting
2512 * node around the tasks mems_allowed nodes.
2513 *
2514 * We don't have to worry about the returned node being offline
2515 * because "it can't happen", and even if it did, it would be ok.
2516 *
2517 * The routines calling guarantee_online_mems() are careful to
2518 * only set nodes in task->mems_allowed that are online. So it
2519 * should not be possible for the following code to return an
2520 * offline node. But if it did, that would be ok, as this routine
2521 * is not returning the node where the allocation must be, only
2522 * the node where the search should start. The zonelist passed to
2523 * __alloc_pages() will include all nodes. If the slab allocator
2524 * is passed an offline node, it will fall back to the local node.
2525 * See kmem_cache_alloc_node().
2526 */
2527
6adef3eb 2528static int cpuset_spread_node(int *rotor)
825a46af
PJ
2529{
2530 int node;
2531
6adef3eb 2532 node = next_node(*rotor, current->mems_allowed);
825a46af
PJ
2533 if (node == MAX_NUMNODES)
2534 node = first_node(current->mems_allowed);
6adef3eb 2535 *rotor = node;
825a46af
PJ
2536 return node;
2537}
6adef3eb
JS
2538
2539int cpuset_mem_spread_node(void)
2540{
778d3b0f
MH
2541 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
2542 current->cpuset_mem_spread_rotor =
2543 node_random(&current->mems_allowed);
2544
6adef3eb
JS
2545 return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
2546}
2547
2548int cpuset_slab_spread_node(void)
2549{
778d3b0f
MH
2550 if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
2551 current->cpuset_slab_spread_rotor =
2552 node_random(&current->mems_allowed);
2553
6adef3eb
JS
2554 return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
2555}
2556
825a46af
PJ
2557EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2558
ef08e3b4 2559/**
bbe373f2
DR
2560 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2561 * @tsk1: pointer to task_struct of some task.
2562 * @tsk2: pointer to task_struct of some other task.
2563 *
2564 * Description: Return true if @tsk1's mems_allowed intersects the
2565 * mems_allowed of @tsk2. Used by the OOM killer to determine if
2566 * one of the task's memory usage might impact the memory available
2567 * to the other.
ef08e3b4
PJ
2568 **/
2569
bbe373f2
DR
2570int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2571 const struct task_struct *tsk2)
ef08e3b4 2572{
bbe373f2 2573 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
ef08e3b4
PJ
2574}
2575
75aa1994
DR
2576/**
2577 * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
2578 * @task: pointer to task_struct of some task.
2579 *
2580 * Description: Prints @task's name, cpuset name, and cached copy of its
2581 * mems_allowed to the kernel log. Must hold task_lock(task) to allow
2582 * dereferencing task_cs(task).
2583 */
2584void cpuset_print_task_mems_allowed(struct task_struct *tsk)
2585{
2586 struct dentry *dentry;
2587
2588 dentry = task_cs(tsk)->css.cgroup->dentry;
2589 spin_lock(&cpuset_buffer_lock);
2590 snprintf(cpuset_name, CPUSET_NAME_LEN,
2591 dentry ? (const char *)dentry->d_name.name : "/");
2592 nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN,
2593 tsk->mems_allowed);
2594 printk(KERN_INFO "%s cpuset=%s mems_allowed=%s\n",
2595 tsk->comm, cpuset_name, cpuset_nodelist);
2596 spin_unlock(&cpuset_buffer_lock);
2597}
2598
3e0d98b9
PJ
2599/*
2600 * Collection of memory_pressure is suppressed unless
2601 * this flag is enabled by writing "1" to the special
2602 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2603 */
2604
c5b2aff8 2605int cpuset_memory_pressure_enabled __read_mostly;
3e0d98b9
PJ
2606
2607/**
2608 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2609 *
2610 * Keep a running average of the rate of synchronous (direct)
2611 * page reclaim efforts initiated by tasks in each cpuset.
2612 *
2613 * This represents the rate at which some task in the cpuset
2614 * ran low on memory on all nodes it was allowed to use, and
2615 * had to enter the kernels page reclaim code in an effort to
2616 * create more free memory by tossing clean pages or swapping
2617 * or writing dirty pages.
2618 *
2619 * Display to user space in the per-cpuset read-only file
2620 * "memory_pressure". Value displayed is an integer
2621 * representing the recent rate of entry into the synchronous
2622 * (direct) page reclaim by any task attached to the cpuset.
2623 **/
2624
2625void __cpuset_memory_pressure_bump(void)
2626{
3e0d98b9 2627 task_lock(current);
8793d854 2628 fmeter_markevent(&task_cs(current)->fmeter);
3e0d98b9
PJ
2629 task_unlock(current);
2630}
2631
8793d854 2632#ifdef CONFIG_PROC_PID_CPUSET
1da177e4
LT
2633/*
2634 * proc_cpuset_show()
2635 * - Print tasks cpuset path into seq_file.
2636 * - Used for /proc/<pid>/cpuset.
053199ed
PJ
2637 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2638 * doesn't really matter if tsk->cpuset changes after we read it,
c8d9c90c 2639 * and we take cgroup_mutex, keeping cpuset_attach() from changing it
2df167a3 2640 * anyway.
1da177e4 2641 */
029190c5 2642static int proc_cpuset_show(struct seq_file *m, void *unused_v)
1da177e4 2643{
13b41b09 2644 struct pid *pid;
1da177e4
LT
2645 struct task_struct *tsk;
2646 char *buf;
8793d854 2647 struct cgroup_subsys_state *css;
99f89551 2648 int retval;
1da177e4 2649
99f89551 2650 retval = -ENOMEM;
1da177e4
LT
2651 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2652 if (!buf)
99f89551
EB
2653 goto out;
2654
2655 retval = -ESRCH;
13b41b09
EB
2656 pid = m->private;
2657 tsk = get_pid_task(pid, PIDTYPE_PID);
99f89551
EB
2658 if (!tsk)
2659 goto out_free;
1da177e4 2660
99f89551 2661 retval = -EINVAL;
8793d854
PM
2662 cgroup_lock();
2663 css = task_subsys_state(tsk, cpuset_subsys_id);
2664 retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
1da177e4 2665 if (retval < 0)
99f89551 2666 goto out_unlock;
1da177e4
LT
2667 seq_puts(m, buf);
2668 seq_putc(m, '\n');
99f89551 2669out_unlock:
8793d854 2670 cgroup_unlock();
99f89551
EB
2671 put_task_struct(tsk);
2672out_free:
1da177e4 2673 kfree(buf);
99f89551 2674out:
1da177e4
LT
2675 return retval;
2676}
2677
2678static int cpuset_open(struct inode *inode, struct file *file)
2679{
13b41b09
EB
2680 struct pid *pid = PROC_I(inode)->pid;
2681 return single_open(file, proc_cpuset_show, pid);
1da177e4
LT
2682}
2683
9a32144e 2684const struct file_operations proc_cpuset_operations = {
1da177e4
LT
2685 .open = cpuset_open,
2686 .read = seq_read,
2687 .llseek = seq_lseek,
2688 .release = single_release,
2689};
8793d854 2690#endif /* CONFIG_PROC_PID_CPUSET */
1da177e4 2691
d01d4827 2692/* Display task mems_allowed in /proc/<pid>/status file. */
df5f8314
EB
2693void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2694{
df5f8314 2695 seq_printf(m, "Mems_allowed:\t");
30e8e136 2696 seq_nodemask(m, &task->mems_allowed);
df5f8314 2697 seq_printf(m, "\n");
39106dcf 2698 seq_printf(m, "Mems_allowed_list:\t");
30e8e136 2699 seq_nodemask_list(m, &task->mems_allowed);
39106dcf 2700 seq_printf(m, "\n");
1da177e4 2701}
This page took 0.791238 seconds and 5 git commands to generate.