cpuset: enable onlined cpu/node in effective masks
[deliverable/linux.git] / kernel / cpuset.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
029190c5 7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8793d854 8 * Copyright (C) 2006 Google, Inc
1da177e4
LT
9 *
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
1da177e4 12 *
825a46af 13 * 2003-10-10 Written by Simon Derr.
1da177e4 14 * 2003-10-22 Updates by Stephen Hemminger.
825a46af 15 * 2004 May-July Rework by Paul Jackson.
8793d854 16 * 2006 Rework by Paul Menage to use generic cgroups
cf417141
MK
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
18 * by Max Krasnyansky
1da177e4
LT
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
1da177e4
LT
25#include <linux/cpu.h>
26#include <linux/cpumask.h>
27#include <linux/cpuset.h>
28#include <linux/err.h>
29#include <linux/errno.h>
30#include <linux/file.h>
31#include <linux/fs.h>
32#include <linux/init.h>
33#include <linux/interrupt.h>
34#include <linux/kernel.h>
35#include <linux/kmod.h>
36#include <linux/list.h>
68860ec1 37#include <linux/mempolicy.h>
1da177e4 38#include <linux/mm.h>
f481891f 39#include <linux/memory.h>
9984de1a 40#include <linux/export.h>
1da177e4
LT
41#include <linux/mount.h>
42#include <linux/namei.h>
43#include <linux/pagemap.h>
44#include <linux/proc_fs.h>
6b9c2603 45#include <linux/rcupdate.h>
1da177e4
LT
46#include <linux/sched.h>
47#include <linux/seq_file.h>
22fb52dd 48#include <linux/security.h>
1da177e4 49#include <linux/slab.h>
1da177e4
LT
50#include <linux/spinlock.h>
51#include <linux/stat.h>
52#include <linux/string.h>
53#include <linux/time.h>
54#include <linux/backing-dev.h>
55#include <linux/sort.h>
56
57#include <asm/uaccess.h>
60063497 58#include <linux/atomic.h>
3d3f26a7 59#include <linux/mutex.h>
956db3ca
CW
60#include <linux/workqueue.h>
61#include <linux/cgroup.h>
e44193d3 62#include <linux/wait.h>
1da177e4 63
664eedde 64struct static_key cpusets_enabled_key __read_mostly = STATIC_KEY_INIT_FALSE;
202f72d5 65
3e0d98b9
PJ
66/* See "Frequency meter" comments, below. */
67
68struct fmeter {
69 int cnt; /* unprocessed events count */
70 int val; /* most recent output value */
71 time_t time; /* clock (secs) when val computed */
72 spinlock_t lock; /* guards read or write of above */
73};
74
1da177e4 75struct cpuset {
8793d854
PM
76 struct cgroup_subsys_state css;
77
1da177e4 78 unsigned long flags; /* "unsigned long" so bitops work */
e2b9a3d7 79
7e88291b
LZ
80 /*
81 * On default hierarchy:
82 *
83 * The user-configured masks can only be changed by writing to
84 * cpuset.cpus and cpuset.mems, and won't be limited by the
85 * parent masks.
86 *
87 * The effective masks is the real masks that apply to the tasks
88 * in the cpuset. They may be changed if the configured masks are
89 * changed or hotplug happens.
90 *
91 * effective_mask == configured_mask & parent's effective_mask,
92 * and if it ends up empty, it will inherit the parent's mask.
93 *
94 *
95 * On legacy hierachy:
96 *
97 * The user-configured masks are always the same with effective masks.
98 */
99
e2b9a3d7
LZ
100 /* user-configured CPUs and Memory Nodes allow to tasks */
101 cpumask_var_t cpus_allowed;
102 nodemask_t mems_allowed;
103
104 /* effective CPUs and Memory Nodes allow to tasks */
105 cpumask_var_t effective_cpus;
106 nodemask_t effective_mems;
1da177e4 107
33ad801d
LZ
108 /*
109 * This is old Memory Nodes tasks took on.
110 *
111 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
112 * - A new cpuset's old_mems_allowed is initialized when some
113 * task is moved into it.
114 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
115 * cpuset.mems_allowed and have tasks' nodemask updated, and
116 * then old_mems_allowed is updated to mems_allowed.
117 */
118 nodemask_t old_mems_allowed;
119
3e0d98b9 120 struct fmeter fmeter; /* memory_pressure filter */
029190c5 121
452477fa
TH
122 /*
123 * Tasks are being attached to this cpuset. Used to prevent
124 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
125 */
126 int attach_in_progress;
127
029190c5
PJ
128 /* partition number for rebuild_sched_domains() */
129 int pn;
956db3ca 130
1d3504fc
HS
131 /* for custom sched domain */
132 int relax_domain_level;
1da177e4
LT
133};
134
a7c6d554 135static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
8793d854 136{
a7c6d554 137 return css ? container_of(css, struct cpuset, css) : NULL;
8793d854
PM
138}
139
140/* Retrieve the cpuset for a task */
141static inline struct cpuset *task_cs(struct task_struct *task)
142{
073219e9 143 return css_cs(task_css(task, cpuset_cgrp_id));
8793d854 144}
8793d854 145
c9710d80 146static inline struct cpuset *parent_cs(struct cpuset *cs)
c431069f 147{
5c9d535b 148 return css_cs(cs->css.parent);
c431069f
TH
149}
150
b246272e
DR
151#ifdef CONFIG_NUMA
152static inline bool task_has_mempolicy(struct task_struct *task)
153{
154 return task->mempolicy;
155}
156#else
157static inline bool task_has_mempolicy(struct task_struct *task)
158{
159 return false;
160}
161#endif
162
163
1da177e4
LT
164/* bits in struct cpuset flags field */
165typedef enum {
efeb77b2 166 CS_ONLINE,
1da177e4
LT
167 CS_CPU_EXCLUSIVE,
168 CS_MEM_EXCLUSIVE,
78608366 169 CS_MEM_HARDWALL,
45b07ef3 170 CS_MEMORY_MIGRATE,
029190c5 171 CS_SCHED_LOAD_BALANCE,
825a46af
PJ
172 CS_SPREAD_PAGE,
173 CS_SPREAD_SLAB,
1da177e4
LT
174} cpuset_flagbits_t;
175
176/* convenient tests for these bits */
efeb77b2
TH
177static inline bool is_cpuset_online(const struct cpuset *cs)
178{
179 return test_bit(CS_ONLINE, &cs->flags);
180}
181
1da177e4
LT
182static inline int is_cpu_exclusive(const struct cpuset *cs)
183{
7b5b9ef0 184 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
1da177e4
LT
185}
186
187static inline int is_mem_exclusive(const struct cpuset *cs)
188{
7b5b9ef0 189 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
1da177e4
LT
190}
191
78608366
PM
192static inline int is_mem_hardwall(const struct cpuset *cs)
193{
194 return test_bit(CS_MEM_HARDWALL, &cs->flags);
195}
196
029190c5
PJ
197static inline int is_sched_load_balance(const struct cpuset *cs)
198{
199 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
200}
201
45b07ef3
PJ
202static inline int is_memory_migrate(const struct cpuset *cs)
203{
7b5b9ef0 204 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
45b07ef3
PJ
205}
206
825a46af
PJ
207static inline int is_spread_page(const struct cpuset *cs)
208{
209 return test_bit(CS_SPREAD_PAGE, &cs->flags);
210}
211
212static inline int is_spread_slab(const struct cpuset *cs)
213{
214 return test_bit(CS_SPREAD_SLAB, &cs->flags);
215}
216
1da177e4 217static struct cpuset top_cpuset = {
efeb77b2
TH
218 .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
219 (1 << CS_MEM_EXCLUSIVE)),
1da177e4
LT
220};
221
ae8086ce
TH
222/**
223 * cpuset_for_each_child - traverse online children of a cpuset
224 * @child_cs: loop cursor pointing to the current child
492eb21b 225 * @pos_css: used for iteration
ae8086ce
TH
226 * @parent_cs: target cpuset to walk children of
227 *
228 * Walk @child_cs through the online children of @parent_cs. Must be used
229 * with RCU read locked.
230 */
492eb21b
TH
231#define cpuset_for_each_child(child_cs, pos_css, parent_cs) \
232 css_for_each_child((pos_css), &(parent_cs)->css) \
233 if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
ae8086ce 234
fc560a26
TH
235/**
236 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
237 * @des_cs: loop cursor pointing to the current descendant
492eb21b 238 * @pos_css: used for iteration
fc560a26
TH
239 * @root_cs: target cpuset to walk ancestor of
240 *
241 * Walk @des_cs through the online descendants of @root_cs. Must be used
492eb21b 242 * with RCU read locked. The caller may modify @pos_css by calling
bd8815a6
TH
243 * css_rightmost_descendant() to skip subtree. @root_cs is included in the
244 * iteration and the first node to be visited.
fc560a26 245 */
492eb21b
TH
246#define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \
247 css_for_each_descendant_pre((pos_css), &(root_cs)->css) \
248 if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
fc560a26 249
1da177e4 250/*
5d21cc2d
TH
251 * There are two global mutexes guarding cpuset structures - cpuset_mutex
252 * and callback_mutex. The latter may nest inside the former. We also
253 * require taking task_lock() when dereferencing a task's cpuset pointer.
254 * See "The task_lock() exception", at the end of this comment.
255 *
256 * A task must hold both mutexes to modify cpusets. If a task holds
257 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
258 * is the only task able to also acquire callback_mutex and be able to
259 * modify cpusets. It can perform various checks on the cpuset structure
260 * first, knowing nothing will change. It can also allocate memory while
261 * just holding cpuset_mutex. While it is performing these checks, various
262 * callback routines can briefly acquire callback_mutex to query cpusets.
263 * Once it is ready to make the changes, it takes callback_mutex, blocking
264 * everyone else.
053199ed
PJ
265 *
266 * Calls to the kernel memory allocator can not be made while holding
3d3f26a7 267 * callback_mutex, as that would risk double tripping on callback_mutex
053199ed
PJ
268 * from one of the callbacks into the cpuset code from within
269 * __alloc_pages().
270 *
3d3f26a7 271 * If a task is only holding callback_mutex, then it has read-only
053199ed
PJ
272 * access to cpusets.
273 *
58568d2a
MX
274 * Now, the task_struct fields mems_allowed and mempolicy may be changed
275 * by other task, we use alloc_lock in the task_struct fields to protect
276 * them.
053199ed 277 *
3d3f26a7 278 * The cpuset_common_file_read() handlers only hold callback_mutex across
053199ed
PJ
279 * small pieces of code, such as when reading out possibly multi-word
280 * cpumasks and nodemasks.
281 *
2df167a3
PM
282 * Accessing a task's cpuset should be done in accordance with the
283 * guidelines for accessing subsystem state in kernel/cgroup.c
1da177e4
LT
284 */
285
5d21cc2d 286static DEFINE_MUTEX(cpuset_mutex);
3d3f26a7 287static DEFINE_MUTEX(callback_mutex);
4247bdc6 288
3a5a6d0c
TH
289/*
290 * CPU / memory hotplug is handled asynchronously.
291 */
292static void cpuset_hotplug_workfn(struct work_struct *work);
3a5a6d0c
TH
293static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
294
e44193d3
LZ
295static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
296
cf417141
MK
297/*
298 * This is ugly, but preserves the userspace API for existing cpuset
8793d854 299 * users. If someone tries to mount the "cpuset" filesystem, we
cf417141
MK
300 * silently switch it to mount "cgroup" instead
301 */
f7e83571
AV
302static struct dentry *cpuset_mount(struct file_system_type *fs_type,
303 int flags, const char *unused_dev_name, void *data)
1da177e4 304{
8793d854 305 struct file_system_type *cgroup_fs = get_fs_type("cgroup");
f7e83571 306 struct dentry *ret = ERR_PTR(-ENODEV);
8793d854
PM
307 if (cgroup_fs) {
308 char mountopts[] =
309 "cpuset,noprefix,"
310 "release_agent=/sbin/cpuset_release_agent";
f7e83571
AV
311 ret = cgroup_fs->mount(cgroup_fs, flags,
312 unused_dev_name, mountopts);
8793d854
PM
313 put_filesystem(cgroup_fs);
314 }
315 return ret;
1da177e4
LT
316}
317
318static struct file_system_type cpuset_fs_type = {
319 .name = "cpuset",
f7e83571 320 .mount = cpuset_mount,
1da177e4
LT
321};
322
1da177e4 323/*
300ed6cb 324 * Return in pmask the portion of a cpusets's cpus_allowed that
1da177e4 325 * are online. If none are online, walk up the cpuset hierarchy
40df2deb
LZ
326 * until we find one that does have some online cpus. The top
327 * cpuset always has some cpus online.
1da177e4
LT
328 *
329 * One way or another, we guarantee to return some non-empty subset
5f054e31 330 * of cpu_online_mask.
1da177e4 331 *
3d3f26a7 332 * Call with callback_mutex held.
1da177e4 333 */
c9710d80 334static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
1da177e4 335{
ae1c8023 336 while (!cpumask_intersects(cs->effective_cpus, cpu_online_mask))
c431069f 337 cs = parent_cs(cs);
ae1c8023 338 cpumask_and(pmask, cs->effective_cpus, cpu_online_mask);
1da177e4
LT
339}
340
341/*
342 * Return in *pmask the portion of a cpusets's mems_allowed that
0e1e7c7a
CL
343 * are online, with memory. If none are online with memory, walk
344 * up the cpuset hierarchy until we find one that does have some
40df2deb 345 * online mems. The top cpuset always has some mems online.
1da177e4
LT
346 *
347 * One way or another, we guarantee to return some non-empty subset
38d7bee9 348 * of node_states[N_MEMORY].
1da177e4 349 *
3d3f26a7 350 * Call with callback_mutex held.
1da177e4 351 */
c9710d80 352static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
1da177e4 353{
ae1c8023 354 while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
c431069f 355 cs = parent_cs(cs);
ae1c8023 356 nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
1da177e4
LT
357}
358
f3b39d47
MX
359/*
360 * update task's spread flag if cpuset's page/slab spread flag is set
361 *
5d21cc2d 362 * Called with callback_mutex/cpuset_mutex held
f3b39d47
MX
363 */
364static void cpuset_update_task_spread_flag(struct cpuset *cs,
365 struct task_struct *tsk)
366{
367 if (is_spread_page(cs))
368 tsk->flags |= PF_SPREAD_PAGE;
369 else
370 tsk->flags &= ~PF_SPREAD_PAGE;
371 if (is_spread_slab(cs))
372 tsk->flags |= PF_SPREAD_SLAB;
373 else
374 tsk->flags &= ~PF_SPREAD_SLAB;
375}
376
1da177e4
LT
377/*
378 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
379 *
380 * One cpuset is a subset of another if all its allowed CPUs and
381 * Memory Nodes are a subset of the other, and its exclusive flags
5d21cc2d 382 * are only set if the other's are set. Call holding cpuset_mutex.
1da177e4
LT
383 */
384
385static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
386{
300ed6cb 387 return cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
1da177e4
LT
388 nodes_subset(p->mems_allowed, q->mems_allowed) &&
389 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
390 is_mem_exclusive(p) <= is_mem_exclusive(q);
391}
392
645fcc9d
LZ
393/**
394 * alloc_trial_cpuset - allocate a trial cpuset
395 * @cs: the cpuset that the trial cpuset duplicates
396 */
c9710d80 397static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
645fcc9d 398{
300ed6cb
LZ
399 struct cpuset *trial;
400
401 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
402 if (!trial)
403 return NULL;
404
e2b9a3d7
LZ
405 if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL))
406 goto free_cs;
407 if (!alloc_cpumask_var(&trial->effective_cpus, GFP_KERNEL))
408 goto free_cpus;
300ed6cb 409
e2b9a3d7
LZ
410 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
411 cpumask_copy(trial->effective_cpus, cs->effective_cpus);
300ed6cb 412 return trial;
e2b9a3d7
LZ
413
414free_cpus:
415 free_cpumask_var(trial->cpus_allowed);
416free_cs:
417 kfree(trial);
418 return NULL;
645fcc9d
LZ
419}
420
421/**
422 * free_trial_cpuset - free the trial cpuset
423 * @trial: the trial cpuset to be freed
424 */
425static void free_trial_cpuset(struct cpuset *trial)
426{
e2b9a3d7 427 free_cpumask_var(trial->effective_cpus);
300ed6cb 428 free_cpumask_var(trial->cpus_allowed);
645fcc9d
LZ
429 kfree(trial);
430}
431
1da177e4
LT
432/*
433 * validate_change() - Used to validate that any proposed cpuset change
434 * follows the structural rules for cpusets.
435 *
436 * If we replaced the flag and mask values of the current cpuset
437 * (cur) with those values in the trial cpuset (trial), would
438 * our various subset and exclusive rules still be valid? Presumes
5d21cc2d 439 * cpuset_mutex held.
1da177e4
LT
440 *
441 * 'cur' is the address of an actual, in-use cpuset. Operations
442 * such as list traversal that depend on the actual address of the
443 * cpuset in the list must use cur below, not trial.
444 *
445 * 'trial' is the address of bulk structure copy of cur, with
446 * perhaps one or more of the fields cpus_allowed, mems_allowed,
447 * or flags changed to new, trial values.
448 *
449 * Return 0 if valid, -errno if not.
450 */
451
c9710d80 452static int validate_change(struct cpuset *cur, struct cpuset *trial)
1da177e4 453{
492eb21b 454 struct cgroup_subsys_state *css;
1da177e4 455 struct cpuset *c, *par;
ae8086ce
TH
456 int ret;
457
458 rcu_read_lock();
1da177e4
LT
459
460 /* Each of our child cpusets must be a subset of us */
ae8086ce 461 ret = -EBUSY;
492eb21b 462 cpuset_for_each_child(c, css, cur)
ae8086ce
TH
463 if (!is_cpuset_subset(c, trial))
464 goto out;
1da177e4
LT
465
466 /* Remaining checks don't apply to root cpuset */
ae8086ce 467 ret = 0;
69604067 468 if (cur == &top_cpuset)
ae8086ce 469 goto out;
1da177e4 470
c431069f 471 par = parent_cs(cur);
69604067 472
7e88291b 473 /* On legacy hiearchy, we must be a subset of our parent cpuset. */
ae8086ce 474 ret = -EACCES;
7e88291b 475 if (!cgroup_on_dfl(cur->css.cgroup) && !is_cpuset_subset(trial, par))
ae8086ce 476 goto out;
1da177e4 477
2df167a3
PM
478 /*
479 * If either I or some sibling (!= me) is exclusive, we can't
480 * overlap
481 */
ae8086ce 482 ret = -EINVAL;
492eb21b 483 cpuset_for_each_child(c, css, par) {
1da177e4
LT
484 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
485 c != cur &&
300ed6cb 486 cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
ae8086ce 487 goto out;
1da177e4
LT
488 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
489 c != cur &&
490 nodes_intersects(trial->mems_allowed, c->mems_allowed))
ae8086ce 491 goto out;
1da177e4
LT
492 }
493
452477fa
TH
494 /*
495 * Cpusets with tasks - existing or newly being attached - can't
1c09b195 496 * be changed to have empty cpus_allowed or mems_allowed.
452477fa 497 */
ae8086ce 498 ret = -ENOSPC;
07bc356e 499 if ((cgroup_has_tasks(cur->css.cgroup) || cur->attach_in_progress)) {
1c09b195
LZ
500 if (!cpumask_empty(cur->cpus_allowed) &&
501 cpumask_empty(trial->cpus_allowed))
502 goto out;
503 if (!nodes_empty(cur->mems_allowed) &&
504 nodes_empty(trial->mems_allowed))
505 goto out;
506 }
020958b6 507
ae8086ce
TH
508 ret = 0;
509out:
510 rcu_read_unlock();
511 return ret;
1da177e4
LT
512}
513
db7f47cf 514#ifdef CONFIG_SMP
029190c5 515/*
cf417141 516 * Helper routine for generate_sched_domains().
8b5f1c52 517 * Do cpusets a, b have overlapping effective cpus_allowed masks?
029190c5 518 */
029190c5
PJ
519static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
520{
8b5f1c52 521 return cpumask_intersects(a->effective_cpus, b->effective_cpus);
029190c5
PJ
522}
523
1d3504fc
HS
524static void
525update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
526{
1d3504fc
HS
527 if (dattr->relax_domain_level < c->relax_domain_level)
528 dattr->relax_domain_level = c->relax_domain_level;
529 return;
530}
531
fc560a26
TH
532static void update_domain_attr_tree(struct sched_domain_attr *dattr,
533 struct cpuset *root_cs)
f5393693 534{
fc560a26 535 struct cpuset *cp;
492eb21b 536 struct cgroup_subsys_state *pos_css;
f5393693 537
fc560a26 538 rcu_read_lock();
492eb21b 539 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
bd8815a6
TH
540 if (cp == root_cs)
541 continue;
542
fc560a26
TH
543 /* skip the whole subtree if @cp doesn't have any CPU */
544 if (cpumask_empty(cp->cpus_allowed)) {
492eb21b 545 pos_css = css_rightmost_descendant(pos_css);
f5393693 546 continue;
fc560a26 547 }
f5393693
LJ
548
549 if (is_sched_load_balance(cp))
550 update_domain_attr(dattr, cp);
f5393693 551 }
fc560a26 552 rcu_read_unlock();
f5393693
LJ
553}
554
029190c5 555/*
cf417141
MK
556 * generate_sched_domains()
557 *
558 * This function builds a partial partition of the systems CPUs
559 * A 'partial partition' is a set of non-overlapping subsets whose
560 * union is a subset of that set.
0a0fca9d 561 * The output of this function needs to be passed to kernel/sched/core.c
cf417141
MK
562 * partition_sched_domains() routine, which will rebuild the scheduler's
563 * load balancing domains (sched domains) as specified by that partial
564 * partition.
029190c5 565 *
45ce80fb 566 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
029190c5
PJ
567 * for a background explanation of this.
568 *
569 * Does not return errors, on the theory that the callers of this
570 * routine would rather not worry about failures to rebuild sched
571 * domains when operating in the severe memory shortage situations
572 * that could cause allocation failures below.
573 *
5d21cc2d 574 * Must be called with cpuset_mutex held.
029190c5
PJ
575 *
576 * The three key local variables below are:
aeed6824 577 * q - a linked-list queue of cpuset pointers, used to implement a
029190c5
PJ
578 * top-down scan of all cpusets. This scan loads a pointer
579 * to each cpuset marked is_sched_load_balance into the
580 * array 'csa'. For our purposes, rebuilding the schedulers
581 * sched domains, we can ignore !is_sched_load_balance cpusets.
582 * csa - (for CpuSet Array) Array of pointers to all the cpusets
583 * that need to be load balanced, for convenient iterative
584 * access by the subsequent code that finds the best partition,
585 * i.e the set of domains (subsets) of CPUs such that the
586 * cpus_allowed of every cpuset marked is_sched_load_balance
587 * is a subset of one of these domains, while there are as
588 * many such domains as possible, each as small as possible.
589 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
0a0fca9d 590 * the kernel/sched/core.c routine partition_sched_domains() in a
029190c5
PJ
591 * convenient format, that can be easily compared to the prior
592 * value to determine what partition elements (sched domains)
593 * were changed (added or removed.)
594 *
595 * Finding the best partition (set of domains):
596 * The triple nested loops below over i, j, k scan over the
597 * load balanced cpusets (using the array of cpuset pointers in
598 * csa[]) looking for pairs of cpusets that have overlapping
599 * cpus_allowed, but which don't have the same 'pn' partition
600 * number and gives them in the same partition number. It keeps
601 * looping on the 'restart' label until it can no longer find
602 * any such pairs.
603 *
604 * The union of the cpus_allowed masks from the set of
605 * all cpusets having the same 'pn' value then form the one
606 * element of the partition (one sched domain) to be passed to
607 * partition_sched_domains().
608 */
acc3f5d7 609static int generate_sched_domains(cpumask_var_t **domains,
cf417141 610 struct sched_domain_attr **attributes)
029190c5 611{
029190c5
PJ
612 struct cpuset *cp; /* scans q */
613 struct cpuset **csa; /* array of all cpuset ptrs */
614 int csn; /* how many cpuset ptrs in csa so far */
615 int i, j, k; /* indices for partition finding loops */
acc3f5d7 616 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
1d3504fc 617 struct sched_domain_attr *dattr; /* attributes for custom domains */
1583715d 618 int ndoms = 0; /* number of sched domains in result */
6af866af 619 int nslot; /* next empty doms[] struct cpumask slot */
492eb21b 620 struct cgroup_subsys_state *pos_css;
029190c5 621
029190c5 622 doms = NULL;
1d3504fc 623 dattr = NULL;
cf417141 624 csa = NULL;
029190c5
PJ
625
626 /* Special case for the 99% of systems with one, full, sched domain */
627 if (is_sched_load_balance(&top_cpuset)) {
acc3f5d7
RR
628 ndoms = 1;
629 doms = alloc_sched_domains(ndoms);
029190c5 630 if (!doms)
cf417141
MK
631 goto done;
632
1d3504fc
HS
633 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
634 if (dattr) {
635 *dattr = SD_ATTR_INIT;
93a65575 636 update_domain_attr_tree(dattr, &top_cpuset);
1d3504fc 637 }
8b5f1c52 638 cpumask_copy(doms[0], top_cpuset.effective_cpus);
cf417141 639
cf417141 640 goto done;
029190c5
PJ
641 }
642
664eedde 643 csa = kmalloc(nr_cpusets() * sizeof(cp), GFP_KERNEL);
029190c5
PJ
644 if (!csa)
645 goto done;
646 csn = 0;
647
fc560a26 648 rcu_read_lock();
492eb21b 649 cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
bd8815a6
TH
650 if (cp == &top_cpuset)
651 continue;
f5393693 652 /*
fc560a26
TH
653 * Continue traversing beyond @cp iff @cp has some CPUs and
654 * isn't load balancing. The former is obvious. The
655 * latter: All child cpusets contain a subset of the
656 * parent's cpus, so just skip them, and then we call
657 * update_domain_attr_tree() to calc relax_domain_level of
658 * the corresponding sched domain.
f5393693 659 */
fc560a26
TH
660 if (!cpumask_empty(cp->cpus_allowed) &&
661 !is_sched_load_balance(cp))
f5393693 662 continue;
489a5393 663
fc560a26
TH
664 if (is_sched_load_balance(cp))
665 csa[csn++] = cp;
666
667 /* skip @cp's subtree */
492eb21b 668 pos_css = css_rightmost_descendant(pos_css);
fc560a26
TH
669 }
670 rcu_read_unlock();
029190c5
PJ
671
672 for (i = 0; i < csn; i++)
673 csa[i]->pn = i;
674 ndoms = csn;
675
676restart:
677 /* Find the best partition (set of sched domains) */
678 for (i = 0; i < csn; i++) {
679 struct cpuset *a = csa[i];
680 int apn = a->pn;
681
682 for (j = 0; j < csn; j++) {
683 struct cpuset *b = csa[j];
684 int bpn = b->pn;
685
686 if (apn != bpn && cpusets_overlap(a, b)) {
687 for (k = 0; k < csn; k++) {
688 struct cpuset *c = csa[k];
689
690 if (c->pn == bpn)
691 c->pn = apn;
692 }
693 ndoms--; /* one less element */
694 goto restart;
695 }
696 }
697 }
698
cf417141
MK
699 /*
700 * Now we know how many domains to create.
701 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
702 */
acc3f5d7 703 doms = alloc_sched_domains(ndoms);
700018e0 704 if (!doms)
cf417141 705 goto done;
cf417141
MK
706
707 /*
708 * The rest of the code, including the scheduler, can deal with
709 * dattr==NULL case. No need to abort if alloc fails.
710 */
1d3504fc 711 dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
029190c5
PJ
712
713 for (nslot = 0, i = 0; i < csn; i++) {
714 struct cpuset *a = csa[i];
6af866af 715 struct cpumask *dp;
029190c5
PJ
716 int apn = a->pn;
717
cf417141
MK
718 if (apn < 0) {
719 /* Skip completed partitions */
720 continue;
721 }
722
acc3f5d7 723 dp = doms[nslot];
cf417141
MK
724
725 if (nslot == ndoms) {
726 static int warnings = 10;
727 if (warnings) {
12d3089c
FF
728 pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
729 nslot, ndoms, csn, i, apn);
cf417141 730 warnings--;
029190c5 731 }
cf417141
MK
732 continue;
733 }
029190c5 734
6af866af 735 cpumask_clear(dp);
cf417141
MK
736 if (dattr)
737 *(dattr + nslot) = SD_ATTR_INIT;
738 for (j = i; j < csn; j++) {
739 struct cpuset *b = csa[j];
740
741 if (apn == b->pn) {
8b5f1c52 742 cpumask_or(dp, dp, b->effective_cpus);
cf417141
MK
743 if (dattr)
744 update_domain_attr_tree(dattr + nslot, b);
745
746 /* Done with this partition */
747 b->pn = -1;
029190c5 748 }
029190c5 749 }
cf417141 750 nslot++;
029190c5
PJ
751 }
752 BUG_ON(nslot != ndoms);
753
cf417141
MK
754done:
755 kfree(csa);
756
700018e0
LZ
757 /*
758 * Fallback to the default domain if kmalloc() failed.
759 * See comments in partition_sched_domains().
760 */
761 if (doms == NULL)
762 ndoms = 1;
763
cf417141
MK
764 *domains = doms;
765 *attributes = dattr;
766 return ndoms;
767}
768
769/*
770 * Rebuild scheduler domains.
771 *
699140ba
TH
772 * If the flag 'sched_load_balance' of any cpuset with non-empty
773 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
774 * which has that flag enabled, or if any cpuset with a non-empty
775 * 'cpus' is removed, then call this routine to rebuild the
776 * scheduler's dynamic sched domains.
cf417141 777 *
5d21cc2d 778 * Call with cpuset_mutex held. Takes get_online_cpus().
cf417141 779 */
699140ba 780static void rebuild_sched_domains_locked(void)
cf417141
MK
781{
782 struct sched_domain_attr *attr;
acc3f5d7 783 cpumask_var_t *doms;
cf417141
MK
784 int ndoms;
785
5d21cc2d 786 lockdep_assert_held(&cpuset_mutex);
86ef5c9a 787 get_online_cpus();
cf417141 788
5b16c2a4
LZ
789 /*
790 * We have raced with CPU hotplug. Don't do anything to avoid
791 * passing doms with offlined cpu to partition_sched_domains().
792 * Anyways, hotplug work item will rebuild sched domains.
793 */
8b5f1c52 794 if (!cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
5b16c2a4
LZ
795 goto out;
796
cf417141 797 /* Generate domain masks and attrs */
cf417141 798 ndoms = generate_sched_domains(&doms, &attr);
cf417141
MK
799
800 /* Have scheduler rebuild the domains */
801 partition_sched_domains(ndoms, doms, attr);
5b16c2a4 802out:
86ef5c9a 803 put_online_cpus();
cf417141 804}
db7f47cf 805#else /* !CONFIG_SMP */
699140ba 806static void rebuild_sched_domains_locked(void)
db7f47cf
PM
807{
808}
db7f47cf 809#endif /* CONFIG_SMP */
029190c5 810
cf417141
MK
811void rebuild_sched_domains(void)
812{
5d21cc2d 813 mutex_lock(&cpuset_mutex);
699140ba 814 rebuild_sched_domains_locked();
5d21cc2d 815 mutex_unlock(&cpuset_mutex);
029190c5
PJ
816}
817
0b2f630a
MX
818/**
819 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
820 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
0b2f630a 821 *
d66393e5
TH
822 * Iterate through each task of @cs updating its cpus_allowed to the
823 * effective cpuset's. As this function is called with cpuset_mutex held,
824 * cpuset membership stays stable.
0b2f630a 825 */
d66393e5 826static void update_tasks_cpumask(struct cpuset *cs)
0b2f630a 827{
d66393e5
TH
828 struct css_task_iter it;
829 struct task_struct *task;
830
831 css_task_iter_start(&cs->css, &it);
832 while ((task = css_task_iter_next(&it)))
ae1c8023 833 set_cpus_allowed_ptr(task, cs->effective_cpus);
d66393e5 834 css_task_iter_end(&it);
0b2f630a
MX
835}
836
5c5cc623 837/*
734d4513
LZ
838 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
839 * @cs: the cpuset to consider
840 * @new_cpus: temp variable for calculating new effective_cpus
841 *
842 * When congifured cpumask is changed, the effective cpumasks of this cpuset
843 * and all its descendants need to be updated.
5c5cc623 844 *
734d4513 845 * On legacy hierachy, effective_cpus will be the same with cpu_allowed.
5c5cc623
LZ
846 *
847 * Called with cpuset_mutex held
848 */
734d4513 849static void update_cpumasks_hier(struct cpuset *cs, struct cpumask *new_cpus)
5c5cc623
LZ
850{
851 struct cpuset *cp;
492eb21b 852 struct cgroup_subsys_state *pos_css;
8b5f1c52 853 bool need_rebuild_sched_domains = false;
5c5cc623
LZ
854
855 rcu_read_lock();
734d4513
LZ
856 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
857 struct cpuset *parent = parent_cs(cp);
858
859 cpumask_and(new_cpus, cp->cpus_allowed, parent->effective_cpus);
860
554b0d1c
LZ
861 /*
862 * If it becomes empty, inherit the effective mask of the
863 * parent, which is guaranteed to have some CPUs.
864 */
865 if (cpumask_empty(new_cpus))
866 cpumask_copy(new_cpus, parent->effective_cpus);
867
734d4513
LZ
868 /* Skip the whole subtree if the cpumask remains the same. */
869 if (cpumask_equal(new_cpus, cp->effective_cpus)) {
870 pos_css = css_rightmost_descendant(pos_css);
871 continue;
5c5cc623 872 }
734d4513 873
ec903c0c 874 if (!css_tryget_online(&cp->css))
5c5cc623
LZ
875 continue;
876 rcu_read_unlock();
877
734d4513
LZ
878 mutex_lock(&callback_mutex);
879 cpumask_copy(cp->effective_cpus, new_cpus);
880 mutex_unlock(&callback_mutex);
881
882 WARN_ON(!cgroup_on_dfl(cp->css.cgroup) &&
883 !cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
884
d66393e5 885 update_tasks_cpumask(cp);
5c5cc623 886
8b5f1c52
LZ
887 /*
888 * If the effective cpumask of any non-empty cpuset is changed,
889 * we need to rebuild sched domains.
890 */
891 if (!cpumask_empty(cp->cpus_allowed) &&
892 is_sched_load_balance(cp))
893 need_rebuild_sched_domains = true;
894
5c5cc623
LZ
895 rcu_read_lock();
896 css_put(&cp->css);
897 }
898 rcu_read_unlock();
8b5f1c52
LZ
899
900 if (need_rebuild_sched_domains)
901 rebuild_sched_domains_locked();
5c5cc623
LZ
902}
903
58f4790b
CW
904/**
905 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
906 * @cs: the cpuset to consider
fc34ac1d 907 * @trialcs: trial cpuset
58f4790b
CW
908 * @buf: buffer of cpu numbers written to this cpuset
909 */
645fcc9d
LZ
910static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
911 const char *buf)
1da177e4 912{
58f4790b 913 int retval;
1da177e4 914
5f054e31 915 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
4c4d50f7
PJ
916 if (cs == &top_cpuset)
917 return -EACCES;
918
6f7f02e7 919 /*
c8d9c90c 920 * An empty cpus_allowed is ok only if the cpuset has no tasks.
020958b6
PJ
921 * Since cpulist_parse() fails on an empty mask, we special case
922 * that parsing. The validate_change() call ensures that cpusets
923 * with tasks have cpus.
6f7f02e7 924 */
020958b6 925 if (!*buf) {
300ed6cb 926 cpumask_clear(trialcs->cpus_allowed);
6f7f02e7 927 } else {
300ed6cb 928 retval = cpulist_parse(buf, trialcs->cpus_allowed);
6f7f02e7
DR
929 if (retval < 0)
930 return retval;
37340746 931
6ad4c188 932 if (!cpumask_subset(trialcs->cpus_allowed, cpu_active_mask))
37340746 933 return -EINVAL;
6f7f02e7 934 }
029190c5 935
8707d8b8 936 /* Nothing to do if the cpus didn't change */
300ed6cb 937 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
8707d8b8 938 return 0;
58f4790b 939
a73456f3
LZ
940 retval = validate_change(cs, trialcs);
941 if (retval < 0)
942 return retval;
943
3d3f26a7 944 mutex_lock(&callback_mutex);
300ed6cb 945 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
3d3f26a7 946 mutex_unlock(&callback_mutex);
029190c5 947
734d4513
LZ
948 /* use trialcs->cpus_allowed as a temp variable */
949 update_cpumasks_hier(cs, trialcs->cpus_allowed);
85d7b949 950 return 0;
1da177e4
LT
951}
952
e4e364e8
PJ
953/*
954 * cpuset_migrate_mm
955 *
956 * Migrate memory region from one set of nodes to another.
957 *
958 * Temporarilly set tasks mems_allowed to target nodes of migration,
959 * so that the migration code can allocate pages on these nodes.
960 *
e4e364e8
PJ
961 * While the mm_struct we are migrating is typically from some
962 * other task, the task_struct mems_allowed that we are hacking
963 * is for our current task, which must allocate new pages for that
964 * migrating memory region.
e4e364e8
PJ
965 */
966
967static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
968 const nodemask_t *to)
969{
970 struct task_struct *tsk = current;
971
e4e364e8 972 tsk->mems_allowed = *to;
e4e364e8
PJ
973
974 do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
975
47295830 976 rcu_read_lock();
ae1c8023 977 guarantee_online_mems(task_cs(tsk), &tsk->mems_allowed);
47295830 978 rcu_read_unlock();
e4e364e8
PJ
979}
980
3b6766fe 981/*
58568d2a
MX
982 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
983 * @tsk: the task to change
984 * @newmems: new nodes that the task will be set
985 *
986 * In order to avoid seeing no nodes if the old and new nodes are disjoint,
987 * we structure updates as setting all new allowed nodes, then clearing newly
988 * disallowed ones.
58568d2a
MX
989 */
990static void cpuset_change_task_nodemask(struct task_struct *tsk,
991 nodemask_t *newmems)
992{
b246272e 993 bool need_loop;
89e8a244 994
c0ff7453
MX
995 /*
996 * Allow tasks that have access to memory reserves because they have
997 * been OOM killed to get memory anywhere.
998 */
999 if (unlikely(test_thread_flag(TIF_MEMDIE)))
1000 return;
1001 if (current->flags & PF_EXITING) /* Let dying task have memory */
1002 return;
1003
1004 task_lock(tsk);
b246272e
DR
1005 /*
1006 * Determine if a loop is necessary if another thread is doing
d26914d1 1007 * read_mems_allowed_begin(). If at least one node remains unchanged and
b246272e
DR
1008 * tsk does not have a mempolicy, then an empty nodemask will not be
1009 * possible when mems_allowed is larger than a word.
1010 */
1011 need_loop = task_has_mempolicy(tsk) ||
1012 !nodes_intersects(*newmems, tsk->mems_allowed);
c0ff7453 1013
0fc0287c
PZ
1014 if (need_loop) {
1015 local_irq_disable();
cc9a6c87 1016 write_seqcount_begin(&tsk->mems_allowed_seq);
0fc0287c 1017 }
c0ff7453 1018
cc9a6c87
MG
1019 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1020 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
c0ff7453
MX
1021
1022 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
58568d2a 1023 tsk->mems_allowed = *newmems;
cc9a6c87 1024
0fc0287c 1025 if (need_loop) {
cc9a6c87 1026 write_seqcount_end(&tsk->mems_allowed_seq);
0fc0287c
PZ
1027 local_irq_enable();
1028 }
cc9a6c87 1029
c0ff7453 1030 task_unlock(tsk);
58568d2a
MX
1031}
1032
8793d854
PM
1033static void *cpuset_being_rebound;
1034
0b2f630a
MX
1035/**
1036 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1037 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
0b2f630a 1038 *
d66393e5
TH
1039 * Iterate through each task of @cs updating its mems_allowed to the
1040 * effective cpuset's. As this function is called with cpuset_mutex held,
1041 * cpuset membership stays stable.
0b2f630a 1042 */
d66393e5 1043static void update_tasks_nodemask(struct cpuset *cs)
1da177e4 1044{
33ad801d 1045 static nodemask_t newmems; /* protected by cpuset_mutex */
d66393e5
TH
1046 struct css_task_iter it;
1047 struct task_struct *task;
59dac16f 1048
846a16bf 1049 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
4225399a 1050
ae1c8023 1051 guarantee_online_mems(cs, &newmems);
33ad801d 1052
4225399a 1053 /*
3b6766fe
LZ
1054 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1055 * take while holding tasklist_lock. Forks can happen - the
1056 * mpol_dup() cpuset_being_rebound check will catch such forks,
1057 * and rebind their vma mempolicies too. Because we still hold
5d21cc2d 1058 * the global cpuset_mutex, we know that no other rebind effort
3b6766fe 1059 * will be contending for the global variable cpuset_being_rebound.
4225399a 1060 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
04c19fa6 1061 * is idempotent. Also migrate pages in each mm to new nodes.
4225399a 1062 */
d66393e5
TH
1063 css_task_iter_start(&cs->css, &it);
1064 while ((task = css_task_iter_next(&it))) {
1065 struct mm_struct *mm;
1066 bool migrate;
1067
1068 cpuset_change_task_nodemask(task, &newmems);
1069
1070 mm = get_task_mm(task);
1071 if (!mm)
1072 continue;
1073
1074 migrate = is_memory_migrate(cs);
1075
1076 mpol_rebind_mm(mm, &cs->mems_allowed);
1077 if (migrate)
1078 cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
1079 mmput(mm);
1080 }
1081 css_task_iter_end(&it);
4225399a 1082
33ad801d
LZ
1083 /*
1084 * All the tasks' nodemasks have been updated, update
1085 * cs->old_mems_allowed.
1086 */
1087 cs->old_mems_allowed = newmems;
1088
2df167a3 1089 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
8793d854 1090 cpuset_being_rebound = NULL;
1da177e4
LT
1091}
1092
5c5cc623 1093/*
734d4513
LZ
1094 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
1095 * @cs: the cpuset to consider
1096 * @new_mems: a temp variable for calculating new effective_mems
1097 *
1098 * When configured nodemask is changed, the effective nodemasks of this cpuset
1099 * and all its descendants need to be updated.
5c5cc623 1100 *
734d4513 1101 * On legacy hiearchy, effective_mems will be the same with mems_allowed.
5c5cc623
LZ
1102 *
1103 * Called with cpuset_mutex held
1104 */
734d4513 1105static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
5c5cc623
LZ
1106{
1107 struct cpuset *cp;
492eb21b 1108 struct cgroup_subsys_state *pos_css;
5c5cc623
LZ
1109
1110 rcu_read_lock();
734d4513
LZ
1111 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1112 struct cpuset *parent = parent_cs(cp);
1113
1114 nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
1115
554b0d1c
LZ
1116 /*
1117 * If it becomes empty, inherit the effective mask of the
1118 * parent, which is guaranteed to have some MEMs.
1119 */
1120 if (nodes_empty(*new_mems))
1121 *new_mems = parent->effective_mems;
1122
734d4513
LZ
1123 /* Skip the whole subtree if the nodemask remains the same. */
1124 if (nodes_equal(*new_mems, cp->effective_mems)) {
1125 pos_css = css_rightmost_descendant(pos_css);
1126 continue;
5c5cc623 1127 }
734d4513 1128
ec903c0c 1129 if (!css_tryget_online(&cp->css))
5c5cc623
LZ
1130 continue;
1131 rcu_read_unlock();
1132
734d4513
LZ
1133 mutex_lock(&callback_mutex);
1134 cp->effective_mems = *new_mems;
1135 mutex_unlock(&callback_mutex);
1136
1137 WARN_ON(!cgroup_on_dfl(cp->css.cgroup) &&
1138 nodes_equal(cp->mems_allowed, cp->effective_mems));
1139
d66393e5 1140 update_tasks_nodemask(cp);
5c5cc623
LZ
1141
1142 rcu_read_lock();
1143 css_put(&cp->css);
1144 }
1145 rcu_read_unlock();
1146}
1147
0b2f630a
MX
1148/*
1149 * Handle user request to change the 'mems' memory placement
1150 * of a cpuset. Needs to validate the request, update the
58568d2a
MX
1151 * cpusets mems_allowed, and for each task in the cpuset,
1152 * update mems_allowed and rebind task's mempolicy and any vma
1153 * mempolicies and if the cpuset is marked 'memory_migrate',
1154 * migrate the tasks pages to the new memory.
0b2f630a 1155 *
5d21cc2d 1156 * Call with cpuset_mutex held. May take callback_mutex during call.
0b2f630a
MX
1157 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1158 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1159 * their mempolicies to the cpusets new mems_allowed.
1160 */
645fcc9d
LZ
1161static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1162 const char *buf)
0b2f630a 1163{
0b2f630a
MX
1164 int retval;
1165
1166 /*
38d7bee9 1167 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
0b2f630a
MX
1168 * it's read-only
1169 */
53feb297
MX
1170 if (cs == &top_cpuset) {
1171 retval = -EACCES;
1172 goto done;
1173 }
0b2f630a 1174
0b2f630a
MX
1175 /*
1176 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1177 * Since nodelist_parse() fails on an empty mask, we special case
1178 * that parsing. The validate_change() call ensures that cpusets
1179 * with tasks have memory.
1180 */
1181 if (!*buf) {
645fcc9d 1182 nodes_clear(trialcs->mems_allowed);
0b2f630a 1183 } else {
645fcc9d 1184 retval = nodelist_parse(buf, trialcs->mems_allowed);
0b2f630a
MX
1185 if (retval < 0)
1186 goto done;
1187
645fcc9d 1188 if (!nodes_subset(trialcs->mems_allowed,
38d7bee9 1189 node_states[N_MEMORY])) {
53feb297
MX
1190 retval = -EINVAL;
1191 goto done;
1192 }
0b2f630a 1193 }
33ad801d
LZ
1194
1195 if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
0b2f630a
MX
1196 retval = 0; /* Too easy - nothing to do */
1197 goto done;
1198 }
645fcc9d 1199 retval = validate_change(cs, trialcs);
0b2f630a
MX
1200 if (retval < 0)
1201 goto done;
1202
1203 mutex_lock(&callback_mutex);
645fcc9d 1204 cs->mems_allowed = trialcs->mems_allowed;
0b2f630a
MX
1205 mutex_unlock(&callback_mutex);
1206
734d4513
LZ
1207 /* use trialcs->mems_allowed as a temp variable */
1208 update_nodemasks_hier(cs, &cs->mems_allowed);
0b2f630a
MX
1209done:
1210 return retval;
1211}
1212
8793d854
PM
1213int current_cpuset_is_being_rebound(void)
1214{
1215 return task_cs(current) == cpuset_being_rebound;
1216}
1217
5be7a479 1218static int update_relax_domain_level(struct cpuset *cs, s64 val)
1d3504fc 1219{
db7f47cf 1220#ifdef CONFIG_SMP
60495e77 1221 if (val < -1 || val >= sched_domain_level_max)
30e0e178 1222 return -EINVAL;
db7f47cf 1223#endif
1d3504fc
HS
1224
1225 if (val != cs->relax_domain_level) {
1226 cs->relax_domain_level = val;
300ed6cb
LZ
1227 if (!cpumask_empty(cs->cpus_allowed) &&
1228 is_sched_load_balance(cs))
699140ba 1229 rebuild_sched_domains_locked();
1d3504fc
HS
1230 }
1231
1232 return 0;
1233}
1234
72ec7029 1235/**
950592f7
MX
1236 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1237 * @cs: the cpuset in which each task's spread flags needs to be changed
950592f7 1238 *
d66393e5
TH
1239 * Iterate through each task of @cs updating its spread flags. As this
1240 * function is called with cpuset_mutex held, cpuset membership stays
1241 * stable.
950592f7 1242 */
d66393e5 1243static void update_tasks_flags(struct cpuset *cs)
950592f7 1244{
d66393e5
TH
1245 struct css_task_iter it;
1246 struct task_struct *task;
1247
1248 css_task_iter_start(&cs->css, &it);
1249 while ((task = css_task_iter_next(&it)))
1250 cpuset_update_task_spread_flag(cs, task);
1251 css_task_iter_end(&it);
950592f7
MX
1252}
1253
1da177e4
LT
1254/*
1255 * update_flag - read a 0 or a 1 in a file and update associated flag
78608366
PM
1256 * bit: the bit to update (see cpuset_flagbits_t)
1257 * cs: the cpuset to update
1258 * turning_on: whether the flag is being set or cleared
053199ed 1259 *
5d21cc2d 1260 * Call with cpuset_mutex held.
1da177e4
LT
1261 */
1262
700fe1ab
PM
1263static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1264 int turning_on)
1da177e4 1265{
645fcc9d 1266 struct cpuset *trialcs;
40b6a762 1267 int balance_flag_changed;
950592f7 1268 int spread_flag_changed;
950592f7 1269 int err;
1da177e4 1270
645fcc9d
LZ
1271 trialcs = alloc_trial_cpuset(cs);
1272 if (!trialcs)
1273 return -ENOMEM;
1274
1da177e4 1275 if (turning_on)
645fcc9d 1276 set_bit(bit, &trialcs->flags);
1da177e4 1277 else
645fcc9d 1278 clear_bit(bit, &trialcs->flags);
1da177e4 1279
645fcc9d 1280 err = validate_change(cs, trialcs);
85d7b949 1281 if (err < 0)
645fcc9d 1282 goto out;
029190c5 1283
029190c5 1284 balance_flag_changed = (is_sched_load_balance(cs) !=
645fcc9d 1285 is_sched_load_balance(trialcs));
029190c5 1286
950592f7
MX
1287 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1288 || (is_spread_page(cs) != is_spread_page(trialcs)));
1289
3d3f26a7 1290 mutex_lock(&callback_mutex);
645fcc9d 1291 cs->flags = trialcs->flags;
3d3f26a7 1292 mutex_unlock(&callback_mutex);
85d7b949 1293
300ed6cb 1294 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
699140ba 1295 rebuild_sched_domains_locked();
029190c5 1296
950592f7 1297 if (spread_flag_changed)
d66393e5 1298 update_tasks_flags(cs);
645fcc9d
LZ
1299out:
1300 free_trial_cpuset(trialcs);
1301 return err;
1da177e4
LT
1302}
1303
3e0d98b9 1304/*
80f7228b 1305 * Frequency meter - How fast is some event occurring?
3e0d98b9
PJ
1306 *
1307 * These routines manage a digitally filtered, constant time based,
1308 * event frequency meter. There are four routines:
1309 * fmeter_init() - initialize a frequency meter.
1310 * fmeter_markevent() - called each time the event happens.
1311 * fmeter_getrate() - returns the recent rate of such events.
1312 * fmeter_update() - internal routine used to update fmeter.
1313 *
1314 * A common data structure is passed to each of these routines,
1315 * which is used to keep track of the state required to manage the
1316 * frequency meter and its digital filter.
1317 *
1318 * The filter works on the number of events marked per unit time.
1319 * The filter is single-pole low-pass recursive (IIR). The time unit
1320 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1321 * simulate 3 decimal digits of precision (multiplied by 1000).
1322 *
1323 * With an FM_COEF of 933, and a time base of 1 second, the filter
1324 * has a half-life of 10 seconds, meaning that if the events quit
1325 * happening, then the rate returned from the fmeter_getrate()
1326 * will be cut in half each 10 seconds, until it converges to zero.
1327 *
1328 * It is not worth doing a real infinitely recursive filter. If more
1329 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1330 * just compute FM_MAXTICKS ticks worth, by which point the level
1331 * will be stable.
1332 *
1333 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1334 * arithmetic overflow in the fmeter_update() routine.
1335 *
1336 * Given the simple 32 bit integer arithmetic used, this meter works
1337 * best for reporting rates between one per millisecond (msec) and
1338 * one per 32 (approx) seconds. At constant rates faster than one
1339 * per msec it maxes out at values just under 1,000,000. At constant
1340 * rates between one per msec, and one per second it will stabilize
1341 * to a value N*1000, where N is the rate of events per second.
1342 * At constant rates between one per second and one per 32 seconds,
1343 * it will be choppy, moving up on the seconds that have an event,
1344 * and then decaying until the next event. At rates slower than
1345 * about one in 32 seconds, it decays all the way back to zero between
1346 * each event.
1347 */
1348
1349#define FM_COEF 933 /* coefficient for half-life of 10 secs */
1350#define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
1351#define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1352#define FM_SCALE 1000 /* faux fixed point scale */
1353
1354/* Initialize a frequency meter */
1355static void fmeter_init(struct fmeter *fmp)
1356{
1357 fmp->cnt = 0;
1358 fmp->val = 0;
1359 fmp->time = 0;
1360 spin_lock_init(&fmp->lock);
1361}
1362
1363/* Internal meter update - process cnt events and update value */
1364static void fmeter_update(struct fmeter *fmp)
1365{
1366 time_t now = get_seconds();
1367 time_t ticks = now - fmp->time;
1368
1369 if (ticks == 0)
1370 return;
1371
1372 ticks = min(FM_MAXTICKS, ticks);
1373 while (ticks-- > 0)
1374 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1375 fmp->time = now;
1376
1377 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1378 fmp->cnt = 0;
1379}
1380
1381/* Process any previous ticks, then bump cnt by one (times scale). */
1382static void fmeter_markevent(struct fmeter *fmp)
1383{
1384 spin_lock(&fmp->lock);
1385 fmeter_update(fmp);
1386 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1387 spin_unlock(&fmp->lock);
1388}
1389
1390/* Process any previous ticks, then return current value. */
1391static int fmeter_getrate(struct fmeter *fmp)
1392{
1393 int val;
1394
1395 spin_lock(&fmp->lock);
1396 fmeter_update(fmp);
1397 val = fmp->val;
1398 spin_unlock(&fmp->lock);
1399 return val;
1400}
1401
57fce0a6
TH
1402static struct cpuset *cpuset_attach_old_cs;
1403
5d21cc2d 1404/* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
eb95419b
TH
1405static int cpuset_can_attach(struct cgroup_subsys_state *css,
1406 struct cgroup_taskset *tset)
f780bdb7 1407{
eb95419b 1408 struct cpuset *cs = css_cs(css);
bb9d97b6
TH
1409 struct task_struct *task;
1410 int ret;
1da177e4 1411
57fce0a6
TH
1412 /* used later by cpuset_attach() */
1413 cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset));
1414
5d21cc2d
TH
1415 mutex_lock(&cpuset_mutex);
1416
aa6ec29b 1417 /* allow moving tasks into an empty cpuset if on default hierarchy */
5d21cc2d 1418 ret = -ENOSPC;
aa6ec29b 1419 if (!cgroup_on_dfl(css->cgroup) &&
88fa523b 1420 (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
5d21cc2d 1421 goto out_unlock;
9985b0ba 1422
924f0d9a 1423 cgroup_taskset_for_each(task, tset) {
bb9d97b6 1424 /*
14a40ffc
TH
1425 * Kthreads which disallow setaffinity shouldn't be moved
1426 * to a new cpuset; we don't want to change their cpu
1427 * affinity and isolating such threads by their set of
1428 * allowed nodes is unnecessary. Thus, cpusets are not
1429 * applicable for such threads. This prevents checking for
1430 * success of set_cpus_allowed_ptr() on all attached tasks
1431 * before cpus_allowed may be changed.
bb9d97b6 1432 */
5d21cc2d 1433 ret = -EINVAL;
14a40ffc 1434 if (task->flags & PF_NO_SETAFFINITY)
5d21cc2d
TH
1435 goto out_unlock;
1436 ret = security_task_setscheduler(task);
1437 if (ret)
1438 goto out_unlock;
bb9d97b6 1439 }
f780bdb7 1440
452477fa
TH
1441 /*
1442 * Mark attach is in progress. This makes validate_change() fail
1443 * changes which zero cpus/mems_allowed.
1444 */
1445 cs->attach_in_progress++;
5d21cc2d
TH
1446 ret = 0;
1447out_unlock:
1448 mutex_unlock(&cpuset_mutex);
1449 return ret;
8793d854 1450}
f780bdb7 1451
eb95419b 1452static void cpuset_cancel_attach(struct cgroup_subsys_state *css,
452477fa
TH
1453 struct cgroup_taskset *tset)
1454{
5d21cc2d 1455 mutex_lock(&cpuset_mutex);
eb95419b 1456 css_cs(css)->attach_in_progress--;
5d21cc2d 1457 mutex_unlock(&cpuset_mutex);
8793d854 1458}
1da177e4 1459
4e4c9a14 1460/*
5d21cc2d 1461 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach()
4e4c9a14
TH
1462 * but we can't allocate it dynamically there. Define it global and
1463 * allocate from cpuset_init().
1464 */
1465static cpumask_var_t cpus_attach;
1466
eb95419b
TH
1467static void cpuset_attach(struct cgroup_subsys_state *css,
1468 struct cgroup_taskset *tset)
8793d854 1469{
67bd2c59 1470 /* static buf protected by cpuset_mutex */
4e4c9a14 1471 static nodemask_t cpuset_attach_nodemask_to;
8793d854 1472 struct mm_struct *mm;
bb9d97b6
TH
1473 struct task_struct *task;
1474 struct task_struct *leader = cgroup_taskset_first(tset);
eb95419b 1475 struct cpuset *cs = css_cs(css);
57fce0a6 1476 struct cpuset *oldcs = cpuset_attach_old_cs;
22fb52dd 1477
5d21cc2d
TH
1478 mutex_lock(&cpuset_mutex);
1479
4e4c9a14
TH
1480 /* prepare for attach */
1481 if (cs == &top_cpuset)
1482 cpumask_copy(cpus_attach, cpu_possible_mask);
1483 else
ae1c8023 1484 guarantee_online_cpus(cs, cpus_attach);
4e4c9a14 1485
ae1c8023 1486 guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
4e4c9a14 1487
924f0d9a 1488 cgroup_taskset_for_each(task, tset) {
bb9d97b6
TH
1489 /*
1490 * can_attach beforehand should guarantee that this doesn't
1491 * fail. TODO: have a better way to handle failure here
1492 */
1493 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
1494
1495 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
1496 cpuset_update_task_spread_flag(cs, task);
1497 }
22fb52dd 1498
f780bdb7
BB
1499 /*
1500 * Change mm, possibly for multiple threads in a threadgroup. This is
1501 * expensive and may sleep.
1502 */
ae1c8023 1503 cpuset_attach_nodemask_to = cs->effective_mems;
bb9d97b6 1504 mm = get_task_mm(leader);
4225399a 1505 if (mm) {
f780bdb7 1506 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
f047cecf
LZ
1507
1508 /*
1509 * old_mems_allowed is the same with mems_allowed here, except
1510 * if this task is being moved automatically due to hotplug.
1511 * In that case @mems_allowed has been updated and is empty,
1512 * so @old_mems_allowed is the right nodesets that we migrate
1513 * mm from.
1514 */
1515 if (is_memory_migrate(cs)) {
ae1c8023 1516 cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
f780bdb7 1517 &cpuset_attach_nodemask_to);
f047cecf 1518 }
4225399a
PJ
1519 mmput(mm);
1520 }
452477fa 1521
33ad801d 1522 cs->old_mems_allowed = cpuset_attach_nodemask_to;
02bb5863 1523
452477fa 1524 cs->attach_in_progress--;
e44193d3
LZ
1525 if (!cs->attach_in_progress)
1526 wake_up(&cpuset_attach_wq);
5d21cc2d
TH
1527
1528 mutex_unlock(&cpuset_mutex);
1da177e4
LT
1529}
1530
1531/* The various types of files and directories in a cpuset file system */
1532
1533typedef enum {
45b07ef3 1534 FILE_MEMORY_MIGRATE,
1da177e4
LT
1535 FILE_CPULIST,
1536 FILE_MEMLIST,
1537 FILE_CPU_EXCLUSIVE,
1538 FILE_MEM_EXCLUSIVE,
78608366 1539 FILE_MEM_HARDWALL,
029190c5 1540 FILE_SCHED_LOAD_BALANCE,
1d3504fc 1541 FILE_SCHED_RELAX_DOMAIN_LEVEL,
3e0d98b9
PJ
1542 FILE_MEMORY_PRESSURE_ENABLED,
1543 FILE_MEMORY_PRESSURE,
825a46af
PJ
1544 FILE_SPREAD_PAGE,
1545 FILE_SPREAD_SLAB,
1da177e4
LT
1546} cpuset_filetype_t;
1547
182446d0
TH
1548static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
1549 u64 val)
700fe1ab 1550{
182446d0 1551 struct cpuset *cs = css_cs(css);
700fe1ab 1552 cpuset_filetype_t type = cft->private;
a903f086 1553 int retval = 0;
700fe1ab 1554
5d21cc2d 1555 mutex_lock(&cpuset_mutex);
a903f086
LZ
1556 if (!is_cpuset_online(cs)) {
1557 retval = -ENODEV;
5d21cc2d 1558 goto out_unlock;
a903f086 1559 }
700fe1ab
PM
1560
1561 switch (type) {
1da177e4 1562 case FILE_CPU_EXCLUSIVE:
700fe1ab 1563 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1da177e4
LT
1564 break;
1565 case FILE_MEM_EXCLUSIVE:
700fe1ab 1566 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1da177e4 1567 break;
78608366
PM
1568 case FILE_MEM_HARDWALL:
1569 retval = update_flag(CS_MEM_HARDWALL, cs, val);
1570 break;
029190c5 1571 case FILE_SCHED_LOAD_BALANCE:
700fe1ab 1572 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1d3504fc 1573 break;
45b07ef3 1574 case FILE_MEMORY_MIGRATE:
700fe1ab 1575 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
45b07ef3 1576 break;
3e0d98b9 1577 case FILE_MEMORY_PRESSURE_ENABLED:
700fe1ab 1578 cpuset_memory_pressure_enabled = !!val;
3e0d98b9
PJ
1579 break;
1580 case FILE_MEMORY_PRESSURE:
1581 retval = -EACCES;
1582 break;
825a46af 1583 case FILE_SPREAD_PAGE:
700fe1ab 1584 retval = update_flag(CS_SPREAD_PAGE, cs, val);
825a46af
PJ
1585 break;
1586 case FILE_SPREAD_SLAB:
700fe1ab 1587 retval = update_flag(CS_SPREAD_SLAB, cs, val);
825a46af 1588 break;
1da177e4
LT
1589 default:
1590 retval = -EINVAL;
700fe1ab 1591 break;
1da177e4 1592 }
5d21cc2d
TH
1593out_unlock:
1594 mutex_unlock(&cpuset_mutex);
1da177e4
LT
1595 return retval;
1596}
1597
182446d0
TH
1598static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
1599 s64 val)
5be7a479 1600{
182446d0 1601 struct cpuset *cs = css_cs(css);
5be7a479 1602 cpuset_filetype_t type = cft->private;
5d21cc2d 1603 int retval = -ENODEV;
5be7a479 1604
5d21cc2d
TH
1605 mutex_lock(&cpuset_mutex);
1606 if (!is_cpuset_online(cs))
1607 goto out_unlock;
e3712395 1608
5be7a479
PM
1609 switch (type) {
1610 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1611 retval = update_relax_domain_level(cs, val);
1612 break;
1613 default:
1614 retval = -EINVAL;
1615 break;
1616 }
5d21cc2d
TH
1617out_unlock:
1618 mutex_unlock(&cpuset_mutex);
5be7a479
PM
1619 return retval;
1620}
1621
e3712395
PM
1622/*
1623 * Common handling for a write to a "cpus" or "mems" file.
1624 */
451af504
TH
1625static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
1626 char *buf, size_t nbytes, loff_t off)
e3712395 1627{
451af504 1628 struct cpuset *cs = css_cs(of_css(of));
645fcc9d 1629 struct cpuset *trialcs;
5d21cc2d 1630 int retval = -ENODEV;
e3712395 1631
451af504
TH
1632 buf = strstrip(buf);
1633
3a5a6d0c
TH
1634 /*
1635 * CPU or memory hotunplug may leave @cs w/o any execution
1636 * resources, in which case the hotplug code asynchronously updates
1637 * configuration and transfers all tasks to the nearest ancestor
1638 * which can execute.
1639 *
1640 * As writes to "cpus" or "mems" may restore @cs's execution
1641 * resources, wait for the previously scheduled operations before
1642 * proceeding, so that we don't end up keep removing tasks added
1643 * after execution capability is restored.
1644 */
1645 flush_work(&cpuset_hotplug_work);
1646
5d21cc2d
TH
1647 mutex_lock(&cpuset_mutex);
1648 if (!is_cpuset_online(cs))
1649 goto out_unlock;
e3712395 1650
645fcc9d 1651 trialcs = alloc_trial_cpuset(cs);
b75f38d6
LZ
1652 if (!trialcs) {
1653 retval = -ENOMEM;
5d21cc2d 1654 goto out_unlock;
b75f38d6 1655 }
645fcc9d 1656
451af504 1657 switch (of_cft(of)->private) {
e3712395 1658 case FILE_CPULIST:
645fcc9d 1659 retval = update_cpumask(cs, trialcs, buf);
e3712395
PM
1660 break;
1661 case FILE_MEMLIST:
645fcc9d 1662 retval = update_nodemask(cs, trialcs, buf);
e3712395
PM
1663 break;
1664 default:
1665 retval = -EINVAL;
1666 break;
1667 }
645fcc9d
LZ
1668
1669 free_trial_cpuset(trialcs);
5d21cc2d
TH
1670out_unlock:
1671 mutex_unlock(&cpuset_mutex);
451af504 1672 return retval ?: nbytes;
e3712395
PM
1673}
1674
1da177e4
LT
1675/*
1676 * These ascii lists should be read in a single call, by using a user
1677 * buffer large enough to hold the entire map. If read in smaller
1678 * chunks, there is no guarantee of atomicity. Since the display format
1679 * used, list of ranges of sequential numbers, is variable length,
1680 * and since these maps can change value dynamically, one could read
1681 * gibberish by doing partial reads while a list was changing.
1da177e4 1682 */
2da8ca82 1683static int cpuset_common_seq_show(struct seq_file *sf, void *v)
1da177e4 1684{
2da8ca82
TH
1685 struct cpuset *cs = css_cs(seq_css(sf));
1686 cpuset_filetype_t type = seq_cft(sf)->private;
51ffe411
TH
1687 ssize_t count;
1688 char *buf, *s;
1689 int ret = 0;
1da177e4 1690
51ffe411
TH
1691 count = seq_get_buf(sf, &buf);
1692 s = buf;
1da177e4 1693
51ffe411 1694 mutex_lock(&callback_mutex);
1da177e4
LT
1695
1696 switch (type) {
1697 case FILE_CPULIST:
51ffe411 1698 s += cpulist_scnprintf(s, count, cs->cpus_allowed);
1da177e4
LT
1699 break;
1700 case FILE_MEMLIST:
51ffe411 1701 s += nodelist_scnprintf(s, count, cs->mems_allowed);
1da177e4 1702 break;
1da177e4 1703 default:
51ffe411
TH
1704 ret = -EINVAL;
1705 goto out_unlock;
1da177e4 1706 }
1da177e4 1707
51ffe411
TH
1708 if (s < buf + count - 1) {
1709 *s++ = '\n';
1710 seq_commit(sf, s - buf);
1711 } else {
1712 seq_commit(sf, -1);
1713 }
1714out_unlock:
1715 mutex_unlock(&callback_mutex);
1716 return ret;
1da177e4
LT
1717}
1718
182446d0 1719static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
700fe1ab 1720{
182446d0 1721 struct cpuset *cs = css_cs(css);
700fe1ab
PM
1722 cpuset_filetype_t type = cft->private;
1723 switch (type) {
1724 case FILE_CPU_EXCLUSIVE:
1725 return is_cpu_exclusive(cs);
1726 case FILE_MEM_EXCLUSIVE:
1727 return is_mem_exclusive(cs);
78608366
PM
1728 case FILE_MEM_HARDWALL:
1729 return is_mem_hardwall(cs);
700fe1ab
PM
1730 case FILE_SCHED_LOAD_BALANCE:
1731 return is_sched_load_balance(cs);
1732 case FILE_MEMORY_MIGRATE:
1733 return is_memory_migrate(cs);
1734 case FILE_MEMORY_PRESSURE_ENABLED:
1735 return cpuset_memory_pressure_enabled;
1736 case FILE_MEMORY_PRESSURE:
1737 return fmeter_getrate(&cs->fmeter);
1738 case FILE_SPREAD_PAGE:
1739 return is_spread_page(cs);
1740 case FILE_SPREAD_SLAB:
1741 return is_spread_slab(cs);
1742 default:
1743 BUG();
1744 }
cf417141
MK
1745
1746 /* Unreachable but makes gcc happy */
1747 return 0;
700fe1ab 1748}
1da177e4 1749
182446d0 1750static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
5be7a479 1751{
182446d0 1752 struct cpuset *cs = css_cs(css);
5be7a479
PM
1753 cpuset_filetype_t type = cft->private;
1754 switch (type) {
1755 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1756 return cs->relax_domain_level;
1757 default:
1758 BUG();
1759 }
cf417141
MK
1760
1761 /* Unrechable but makes gcc happy */
1762 return 0;
5be7a479
PM
1763}
1764
1da177e4
LT
1765
1766/*
1767 * for the common functions, 'private' gives the type of file
1768 */
1769
addf2c73
PM
1770static struct cftype files[] = {
1771 {
1772 .name = "cpus",
2da8ca82 1773 .seq_show = cpuset_common_seq_show,
451af504 1774 .write = cpuset_write_resmask,
e3712395 1775 .max_write_len = (100U + 6 * NR_CPUS),
addf2c73
PM
1776 .private = FILE_CPULIST,
1777 },
1778
1779 {
1780 .name = "mems",
2da8ca82 1781 .seq_show = cpuset_common_seq_show,
451af504 1782 .write = cpuset_write_resmask,
e3712395 1783 .max_write_len = (100U + 6 * MAX_NUMNODES),
addf2c73
PM
1784 .private = FILE_MEMLIST,
1785 },
1786
1787 {
1788 .name = "cpu_exclusive",
1789 .read_u64 = cpuset_read_u64,
1790 .write_u64 = cpuset_write_u64,
1791 .private = FILE_CPU_EXCLUSIVE,
1792 },
1793
1794 {
1795 .name = "mem_exclusive",
1796 .read_u64 = cpuset_read_u64,
1797 .write_u64 = cpuset_write_u64,
1798 .private = FILE_MEM_EXCLUSIVE,
1799 },
1800
78608366
PM
1801 {
1802 .name = "mem_hardwall",
1803 .read_u64 = cpuset_read_u64,
1804 .write_u64 = cpuset_write_u64,
1805 .private = FILE_MEM_HARDWALL,
1806 },
1807
addf2c73
PM
1808 {
1809 .name = "sched_load_balance",
1810 .read_u64 = cpuset_read_u64,
1811 .write_u64 = cpuset_write_u64,
1812 .private = FILE_SCHED_LOAD_BALANCE,
1813 },
1814
1815 {
1816 .name = "sched_relax_domain_level",
5be7a479
PM
1817 .read_s64 = cpuset_read_s64,
1818 .write_s64 = cpuset_write_s64,
addf2c73
PM
1819 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1820 },
1821
1822 {
1823 .name = "memory_migrate",
1824 .read_u64 = cpuset_read_u64,
1825 .write_u64 = cpuset_write_u64,
1826 .private = FILE_MEMORY_MIGRATE,
1827 },
1828
1829 {
1830 .name = "memory_pressure",
1831 .read_u64 = cpuset_read_u64,
1832 .write_u64 = cpuset_write_u64,
1833 .private = FILE_MEMORY_PRESSURE,
099fca32 1834 .mode = S_IRUGO,
addf2c73
PM
1835 },
1836
1837 {
1838 .name = "memory_spread_page",
1839 .read_u64 = cpuset_read_u64,
1840 .write_u64 = cpuset_write_u64,
1841 .private = FILE_SPREAD_PAGE,
1842 },
1843
1844 {
1845 .name = "memory_spread_slab",
1846 .read_u64 = cpuset_read_u64,
1847 .write_u64 = cpuset_write_u64,
1848 .private = FILE_SPREAD_SLAB,
1849 },
3e0d98b9 1850
4baf6e33
TH
1851 {
1852 .name = "memory_pressure_enabled",
1853 .flags = CFTYPE_ONLY_ON_ROOT,
1854 .read_u64 = cpuset_read_u64,
1855 .write_u64 = cpuset_write_u64,
1856 .private = FILE_MEMORY_PRESSURE_ENABLED,
1857 },
1da177e4 1858
4baf6e33
TH
1859 { } /* terminate */
1860};
1da177e4
LT
1861
1862/*
92fb9748 1863 * cpuset_css_alloc - allocate a cpuset css
c9e5fe66 1864 * cgrp: control group that the new cpuset will be part of
1da177e4
LT
1865 */
1866
eb95419b
TH
1867static struct cgroup_subsys_state *
1868cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
1da177e4 1869{
c8f699bb 1870 struct cpuset *cs;
1da177e4 1871
eb95419b 1872 if (!parent_css)
8793d854 1873 return &top_cpuset.css;
033fa1c5 1874
c8f699bb 1875 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
1da177e4 1876 if (!cs)
8793d854 1877 return ERR_PTR(-ENOMEM);
e2b9a3d7
LZ
1878 if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL))
1879 goto free_cs;
1880 if (!alloc_cpumask_var(&cs->effective_cpus, GFP_KERNEL))
1881 goto free_cpus;
1da177e4 1882
029190c5 1883 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
300ed6cb 1884 cpumask_clear(cs->cpus_allowed);
f9a86fcb 1885 nodes_clear(cs->mems_allowed);
e2b9a3d7
LZ
1886 cpumask_clear(cs->effective_cpus);
1887 nodes_clear(cs->effective_mems);
3e0d98b9 1888 fmeter_init(&cs->fmeter);
1d3504fc 1889 cs->relax_domain_level = -1;
1da177e4 1890
c8f699bb 1891 return &cs->css;
e2b9a3d7
LZ
1892
1893free_cpus:
1894 free_cpumask_var(cs->cpus_allowed);
1895free_cs:
1896 kfree(cs);
1897 return ERR_PTR(-ENOMEM);
c8f699bb
TH
1898}
1899
eb95419b 1900static int cpuset_css_online(struct cgroup_subsys_state *css)
c8f699bb 1901{
eb95419b 1902 struct cpuset *cs = css_cs(css);
c431069f 1903 struct cpuset *parent = parent_cs(cs);
ae8086ce 1904 struct cpuset *tmp_cs;
492eb21b 1905 struct cgroup_subsys_state *pos_css;
c8f699bb
TH
1906
1907 if (!parent)
1908 return 0;
1909
5d21cc2d
TH
1910 mutex_lock(&cpuset_mutex);
1911
efeb77b2 1912 set_bit(CS_ONLINE, &cs->flags);
c8f699bb
TH
1913 if (is_spread_page(parent))
1914 set_bit(CS_SPREAD_PAGE, &cs->flags);
1915 if (is_spread_slab(parent))
1916 set_bit(CS_SPREAD_SLAB, &cs->flags);
1da177e4 1917
664eedde 1918 cpuset_inc();
033fa1c5 1919
e2b9a3d7
LZ
1920 mutex_lock(&callback_mutex);
1921 if (cgroup_on_dfl(cs->css.cgroup)) {
1922 cpumask_copy(cs->effective_cpus, parent->effective_cpus);
1923 cs->effective_mems = parent->effective_mems;
1924 }
1925 mutex_unlock(&callback_mutex);
1926
eb95419b 1927 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
5d21cc2d 1928 goto out_unlock;
033fa1c5
TH
1929
1930 /*
1931 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
1932 * set. This flag handling is implemented in cgroup core for
1933 * histrical reasons - the flag may be specified during mount.
1934 *
1935 * Currently, if any sibling cpusets have exclusive cpus or mem, we
1936 * refuse to clone the configuration - thereby refusing the task to
1937 * be entered, and as a result refusing the sys_unshare() or
1938 * clone() which initiated it. If this becomes a problem for some
1939 * users who wish to allow that scenario, then this could be
1940 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
1941 * (and likewise for mems) to the new cgroup.
1942 */
ae8086ce 1943 rcu_read_lock();
492eb21b 1944 cpuset_for_each_child(tmp_cs, pos_css, parent) {
ae8086ce
TH
1945 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
1946 rcu_read_unlock();
5d21cc2d 1947 goto out_unlock;
ae8086ce 1948 }
033fa1c5 1949 }
ae8086ce 1950 rcu_read_unlock();
033fa1c5
TH
1951
1952 mutex_lock(&callback_mutex);
1953 cs->mems_allowed = parent->mems_allowed;
1954 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
1955 mutex_unlock(&callback_mutex);
5d21cc2d
TH
1956out_unlock:
1957 mutex_unlock(&cpuset_mutex);
c8f699bb
TH
1958 return 0;
1959}
1960
0b9e6965
ZH
1961/*
1962 * If the cpuset being removed has its flag 'sched_load_balance'
1963 * enabled, then simulate turning sched_load_balance off, which
1964 * will call rebuild_sched_domains_locked().
1965 */
1966
eb95419b 1967static void cpuset_css_offline(struct cgroup_subsys_state *css)
c8f699bb 1968{
eb95419b 1969 struct cpuset *cs = css_cs(css);
c8f699bb 1970
5d21cc2d 1971 mutex_lock(&cpuset_mutex);
c8f699bb
TH
1972
1973 if (is_sched_load_balance(cs))
1974 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
1975
664eedde 1976 cpuset_dec();
efeb77b2 1977 clear_bit(CS_ONLINE, &cs->flags);
c8f699bb 1978
5d21cc2d 1979 mutex_unlock(&cpuset_mutex);
1da177e4
LT
1980}
1981
eb95419b 1982static void cpuset_css_free(struct cgroup_subsys_state *css)
1da177e4 1983{
eb95419b 1984 struct cpuset *cs = css_cs(css);
1da177e4 1985
e2b9a3d7 1986 free_cpumask_var(cs->effective_cpus);
300ed6cb 1987 free_cpumask_var(cs->cpus_allowed);
8793d854 1988 kfree(cs);
1da177e4
LT
1989}
1990
39bd0d15
LZ
1991static void cpuset_bind(struct cgroup_subsys_state *root_css)
1992{
1993 mutex_lock(&cpuset_mutex);
1994 mutex_lock(&callback_mutex);
1995
1996 if (cgroup_on_dfl(root_css->cgroup)) {
1997 cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
1998 top_cpuset.mems_allowed = node_possible_map;
1999 } else {
2000 cpumask_copy(top_cpuset.cpus_allowed,
2001 top_cpuset.effective_cpus);
2002 top_cpuset.mems_allowed = top_cpuset.effective_mems;
2003 }
2004
2005 mutex_unlock(&callback_mutex);
2006 mutex_unlock(&cpuset_mutex);
2007}
2008
073219e9 2009struct cgroup_subsys cpuset_cgrp_subsys = {
39bd0d15
LZ
2010 .css_alloc = cpuset_css_alloc,
2011 .css_online = cpuset_css_online,
2012 .css_offline = cpuset_css_offline,
2013 .css_free = cpuset_css_free,
2014 .can_attach = cpuset_can_attach,
2015 .cancel_attach = cpuset_cancel_attach,
2016 .attach = cpuset_attach,
2017 .bind = cpuset_bind,
2018 .base_cftypes = files,
2019 .early_init = 1,
8793d854
PM
2020};
2021
1da177e4
LT
2022/**
2023 * cpuset_init - initialize cpusets at system boot
2024 *
2025 * Description: Initialize top_cpuset and the cpuset internal file system,
2026 **/
2027
2028int __init cpuset_init(void)
2029{
8793d854 2030 int err = 0;
1da177e4 2031
58568d2a
MX
2032 if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
2033 BUG();
e2b9a3d7
LZ
2034 if (!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL))
2035 BUG();
58568d2a 2036
300ed6cb 2037 cpumask_setall(top_cpuset.cpus_allowed);
f9a86fcb 2038 nodes_setall(top_cpuset.mems_allowed);
e2b9a3d7
LZ
2039 cpumask_setall(top_cpuset.effective_cpus);
2040 nodes_setall(top_cpuset.effective_mems);
1da177e4 2041
3e0d98b9 2042 fmeter_init(&top_cpuset.fmeter);
029190c5 2043 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
1d3504fc 2044 top_cpuset.relax_domain_level = -1;
1da177e4 2045
1da177e4
LT
2046 err = register_filesystem(&cpuset_fs_type);
2047 if (err < 0)
8793d854
PM
2048 return err;
2049
2341d1b6
LZ
2050 if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
2051 BUG();
2052
8793d854 2053 return 0;
1da177e4
LT
2054}
2055
b1aac8bb 2056/*
cf417141 2057 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
b1aac8bb
PJ
2058 * or memory nodes, we need to walk over the cpuset hierarchy,
2059 * removing that CPU or node from all cpusets. If this removes the
956db3ca
CW
2060 * last CPU or node from a cpuset, then move the tasks in the empty
2061 * cpuset to its next-highest non-empty parent.
b1aac8bb 2062 */
956db3ca
CW
2063static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
2064{
2065 struct cpuset *parent;
2066
956db3ca
CW
2067 /*
2068 * Find its next-highest non-empty parent, (top cpuset
2069 * has online cpus, so can't be empty).
2070 */
c431069f 2071 parent = parent_cs(cs);
300ed6cb 2072 while (cpumask_empty(parent->cpus_allowed) ||
b4501295 2073 nodes_empty(parent->mems_allowed))
c431069f 2074 parent = parent_cs(parent);
956db3ca 2075
8cc99345 2076 if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
12d3089c 2077 pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
e61734c5
TH
2078 pr_cont_cgroup_name(cs->css.cgroup);
2079 pr_cont("\n");
8cc99345 2080 }
956db3ca
CW
2081}
2082
be4c9dd7
LZ
2083static void
2084hotplug_update_tasks_legacy(struct cpuset *cs,
2085 struct cpumask *new_cpus, nodemask_t *new_mems,
2086 bool cpus_updated, bool mems_updated)
390a36aa
LZ
2087{
2088 bool is_empty;
2089
2090 mutex_lock(&callback_mutex);
be4c9dd7
LZ
2091 cpumask_copy(cs->cpus_allowed, new_cpus);
2092 cpumask_copy(cs->effective_cpus, new_cpus);
2093 cs->mems_allowed = *new_mems;
2094 cs->effective_mems = *new_mems;
390a36aa
LZ
2095 mutex_unlock(&callback_mutex);
2096
2097 /*
2098 * Don't call update_tasks_cpumask() if the cpuset becomes empty,
2099 * as the tasks will be migratecd to an ancestor.
2100 */
be4c9dd7 2101 if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
390a36aa 2102 update_tasks_cpumask(cs);
be4c9dd7 2103 if (mems_updated && !nodes_empty(cs->mems_allowed))
390a36aa
LZ
2104 update_tasks_nodemask(cs);
2105
2106 is_empty = cpumask_empty(cs->cpus_allowed) ||
2107 nodes_empty(cs->mems_allowed);
2108
2109 mutex_unlock(&cpuset_mutex);
2110
2111 /*
2112 * Move tasks to the nearest ancestor with execution resources,
2113 * This is full cgroup operation which will also call back into
2114 * cpuset. Should be done outside any lock.
2115 */
2116 if (is_empty)
2117 remove_tasks_in_empty_cpuset(cs);
2118
2119 mutex_lock(&cpuset_mutex);
2120}
2121
be4c9dd7
LZ
2122static void
2123hotplug_update_tasks(struct cpuset *cs,
2124 struct cpumask *new_cpus, nodemask_t *new_mems,
2125 bool cpus_updated, bool mems_updated)
390a36aa 2126{
be4c9dd7
LZ
2127 if (cpumask_empty(new_cpus))
2128 cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
2129 if (nodes_empty(*new_mems))
2130 *new_mems = parent_cs(cs)->effective_mems;
2131
390a36aa 2132 mutex_lock(&callback_mutex);
be4c9dd7
LZ
2133 cpumask_copy(cs->effective_cpus, new_cpus);
2134 cs->effective_mems = *new_mems;
390a36aa
LZ
2135 mutex_unlock(&callback_mutex);
2136
be4c9dd7 2137 if (cpus_updated)
390a36aa 2138 update_tasks_cpumask(cs);
be4c9dd7 2139 if (mems_updated)
390a36aa
LZ
2140 update_tasks_nodemask(cs);
2141}
2142
deb7aa30 2143/**
388afd85 2144 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
deb7aa30 2145 * @cs: cpuset in interest
956db3ca 2146 *
deb7aa30
TH
2147 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
2148 * offline, update @cs accordingly. If @cs ends up with no CPU or memory,
2149 * all its tasks are moved to the nearest ancestor with both resources.
80d1fa64 2150 */
388afd85 2151static void cpuset_hotplug_update_tasks(struct cpuset *cs)
80d1fa64 2152{
be4c9dd7
LZ
2153 static cpumask_t new_cpus;
2154 static nodemask_t new_mems;
2155 bool cpus_updated;
2156 bool mems_updated;
e44193d3
LZ
2157retry:
2158 wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
80d1fa64 2159
5d21cc2d 2160 mutex_lock(&cpuset_mutex);
7ddf96b0 2161
e44193d3
LZ
2162 /*
2163 * We have raced with task attaching. We wait until attaching
2164 * is finished, so we won't attach a task to an empty cpuset.
2165 */
2166 if (cs->attach_in_progress) {
2167 mutex_unlock(&cpuset_mutex);
2168 goto retry;
2169 }
2170
be4c9dd7
LZ
2171 cpumask_and(&new_cpus, cs->cpus_allowed, parent_cs(cs)->effective_cpus);
2172 nodes_and(new_mems, cs->mems_allowed, parent_cs(cs)->effective_mems);
2173
2174 cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
2175 mems_updated = !nodes_equal(new_mems, cs->effective_mems);
554b0d1c 2176
390a36aa 2177 if (cgroup_on_dfl(cs->css.cgroup))
be4c9dd7
LZ
2178 hotplug_update_tasks(cs, &new_cpus, &new_mems,
2179 cpus_updated, mems_updated);
390a36aa 2180 else
be4c9dd7
LZ
2181 hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
2182 cpus_updated, mems_updated);
8d033948 2183
5d21cc2d 2184 mutex_unlock(&cpuset_mutex);
b1aac8bb
PJ
2185}
2186
deb7aa30 2187/**
3a5a6d0c 2188 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
956db3ca 2189 *
deb7aa30
TH
2190 * This function is called after either CPU or memory configuration has
2191 * changed and updates cpuset accordingly. The top_cpuset is always
2192 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
2193 * order to make cpusets transparent (of no affect) on systems that are
2194 * actively using CPU hotplug but making no active use of cpusets.
956db3ca 2195 *
deb7aa30 2196 * Non-root cpusets are only affected by offlining. If any CPUs or memory
388afd85
LZ
2197 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
2198 * all descendants.
956db3ca 2199 *
deb7aa30
TH
2200 * Note that CPU offlining during suspend is ignored. We don't modify
2201 * cpusets across suspend/resume cycles at all.
956db3ca 2202 */
3a5a6d0c 2203static void cpuset_hotplug_workfn(struct work_struct *work)
b1aac8bb 2204{
5c5cc623
LZ
2205 static cpumask_t new_cpus;
2206 static nodemask_t new_mems;
deb7aa30 2207 bool cpus_updated, mems_updated;
7e88291b 2208 bool on_dfl = cgroup_on_dfl(top_cpuset.css.cgroup);
b1aac8bb 2209
5d21cc2d 2210 mutex_lock(&cpuset_mutex);
956db3ca 2211
deb7aa30
TH
2212 /* fetch the available cpus/mems and find out which changed how */
2213 cpumask_copy(&new_cpus, cpu_active_mask);
2214 new_mems = node_states[N_MEMORY];
7ddf96b0 2215
7e88291b
LZ
2216 cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
2217 mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
7ddf96b0 2218
deb7aa30
TH
2219 /* synchronize cpus_allowed to cpu_active_mask */
2220 if (cpus_updated) {
2221 mutex_lock(&callback_mutex);
7e88291b
LZ
2222 if (!on_dfl)
2223 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
1344ab9c 2224 cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
deb7aa30
TH
2225 mutex_unlock(&callback_mutex);
2226 /* we don't mess with cpumasks of tasks in top_cpuset */
2227 }
b4501295 2228
deb7aa30
TH
2229 /* synchronize mems_allowed to N_MEMORY */
2230 if (mems_updated) {
deb7aa30 2231 mutex_lock(&callback_mutex);
7e88291b
LZ
2232 if (!on_dfl)
2233 top_cpuset.mems_allowed = new_mems;
1344ab9c 2234 top_cpuset.effective_mems = new_mems;
deb7aa30 2235 mutex_unlock(&callback_mutex);
d66393e5 2236 update_tasks_nodemask(&top_cpuset);
deb7aa30 2237 }
b4501295 2238
388afd85
LZ
2239 mutex_unlock(&cpuset_mutex);
2240
5c5cc623
LZ
2241 /* if cpus or mems changed, we need to propagate to descendants */
2242 if (cpus_updated || mems_updated) {
deb7aa30 2243 struct cpuset *cs;
492eb21b 2244 struct cgroup_subsys_state *pos_css;
f9b4fb8d 2245
fc560a26 2246 rcu_read_lock();
492eb21b 2247 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
ec903c0c 2248 if (cs == &top_cpuset || !css_tryget_online(&cs->css))
388afd85
LZ
2249 continue;
2250 rcu_read_unlock();
7ddf96b0 2251
388afd85 2252 cpuset_hotplug_update_tasks(cs);
b4501295 2253
388afd85
LZ
2254 rcu_read_lock();
2255 css_put(&cs->css);
2256 }
2257 rcu_read_unlock();
2258 }
8d033948 2259
deb7aa30 2260 /* rebuild sched domains if cpus_allowed has changed */
e0e80a02
LZ
2261 if (cpus_updated)
2262 rebuild_sched_domains();
b1aac8bb
PJ
2263}
2264
7ddf96b0 2265void cpuset_update_active_cpus(bool cpu_online)
4c4d50f7 2266{
3a5a6d0c
TH
2267 /*
2268 * We're inside cpu hotplug critical region which usually nests
2269 * inside cgroup synchronization. Bounce actual hotplug processing
2270 * to a work item to avoid reverse locking order.
2271 *
2272 * We still need to do partition_sched_domains() synchronously;
2273 * otherwise, the scheduler will get confused and put tasks to the
2274 * dead CPU. Fall back to the default single domain.
2275 * cpuset_hotplug_workfn() will rebuild it as necessary.
2276 */
2277 partition_sched_domains(1, NULL, NULL);
2278 schedule_work(&cpuset_hotplug_work);
4c4d50f7 2279}
4c4d50f7 2280
38837fc7 2281/*
38d7bee9
LJ
2282 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
2283 * Call this routine anytime after node_states[N_MEMORY] changes.
a1cd2b13 2284 * See cpuset_update_active_cpus() for CPU hotplug handling.
38837fc7 2285 */
f481891f
MX
2286static int cpuset_track_online_nodes(struct notifier_block *self,
2287 unsigned long action, void *arg)
38837fc7 2288{
3a5a6d0c 2289 schedule_work(&cpuset_hotplug_work);
f481891f 2290 return NOTIFY_OK;
38837fc7 2291}
d8f10cb3
AM
2292
2293static struct notifier_block cpuset_track_online_nodes_nb = {
2294 .notifier_call = cpuset_track_online_nodes,
2295 .priority = 10, /* ??! */
2296};
38837fc7 2297
1da177e4
LT
2298/**
2299 * cpuset_init_smp - initialize cpus_allowed
2300 *
2301 * Description: Finish top cpuset after cpu, node maps are initialized
d8f10cb3 2302 */
1da177e4
LT
2303void __init cpuset_init_smp(void)
2304{
6ad4c188 2305 cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
38d7bee9 2306 top_cpuset.mems_allowed = node_states[N_MEMORY];
33ad801d 2307 top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
4c4d50f7 2308
e2b9a3d7
LZ
2309 cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
2310 top_cpuset.effective_mems = node_states[N_MEMORY];
2311
d8f10cb3 2312 register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
1da177e4
LT
2313}
2314
2315/**
1da177e4
LT
2316 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2317 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
6af866af 2318 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
1da177e4 2319 *
300ed6cb 2320 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
1da177e4 2321 * attached to the specified @tsk. Guaranteed to return some non-empty
5f054e31 2322 * subset of cpu_online_mask, even if this means going outside the
1da177e4
LT
2323 * tasks cpuset.
2324 **/
2325
6af866af 2326void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
1da177e4 2327{
3d3f26a7 2328 mutex_lock(&callback_mutex);
b8dadcb5 2329 rcu_read_lock();
ae1c8023 2330 guarantee_online_cpus(task_cs(tsk), pmask);
b8dadcb5 2331 rcu_read_unlock();
897f0b3c 2332 mutex_unlock(&callback_mutex);
1da177e4
LT
2333}
2334
2baab4e9 2335void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
9084bb82 2336{
9084bb82 2337 rcu_read_lock();
ae1c8023 2338 do_set_cpus_allowed(tsk, task_cs(tsk)->effective_cpus);
9084bb82
ON
2339 rcu_read_unlock();
2340
2341 /*
2342 * We own tsk->cpus_allowed, nobody can change it under us.
2343 *
2344 * But we used cs && cs->cpus_allowed lockless and thus can
2345 * race with cgroup_attach_task() or update_cpumask() and get
2346 * the wrong tsk->cpus_allowed. However, both cases imply the
2347 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
2348 * which takes task_rq_lock().
2349 *
2350 * If we are called after it dropped the lock we must see all
2351 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
2352 * set any mask even if it is not right from task_cs() pov,
2353 * the pending set_cpus_allowed_ptr() will fix things.
2baab4e9
PZ
2354 *
2355 * select_fallback_rq() will fix things ups and set cpu_possible_mask
2356 * if required.
9084bb82 2357 */
9084bb82
ON
2358}
2359
1da177e4
LT
2360void cpuset_init_current_mems_allowed(void)
2361{
f9a86fcb 2362 nodes_setall(current->mems_allowed);
1da177e4
LT
2363}
2364
909d75a3
PJ
2365/**
2366 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2367 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2368 *
2369 * Description: Returns the nodemask_t mems_allowed of the cpuset
2370 * attached to the specified @tsk. Guaranteed to return some non-empty
38d7bee9 2371 * subset of node_states[N_MEMORY], even if this means going outside the
909d75a3
PJ
2372 * tasks cpuset.
2373 **/
2374
2375nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2376{
2377 nodemask_t mask;
2378
3d3f26a7 2379 mutex_lock(&callback_mutex);
b8dadcb5 2380 rcu_read_lock();
ae1c8023 2381 guarantee_online_mems(task_cs(tsk), &mask);
b8dadcb5 2382 rcu_read_unlock();
3d3f26a7 2383 mutex_unlock(&callback_mutex);
909d75a3
PJ
2384
2385 return mask;
2386}
2387
d9fd8a6d 2388/**
19770b32
MG
2389 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2390 * @nodemask: the nodemask to be checked
d9fd8a6d 2391 *
19770b32 2392 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
1da177e4 2393 */
19770b32 2394int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
1da177e4 2395{
19770b32 2396 return nodes_intersects(*nodemask, current->mems_allowed);
1da177e4
LT
2397}
2398
9bf2229f 2399/*
78608366
PM
2400 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2401 * mem_hardwall ancestor to the specified cpuset. Call holding
2402 * callback_mutex. If no ancestor is mem_exclusive or mem_hardwall
2403 * (an unusual configuration), then returns the root cpuset.
9bf2229f 2404 */
c9710d80 2405static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
9bf2229f 2406{
c431069f
TH
2407 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
2408 cs = parent_cs(cs);
9bf2229f
PJ
2409 return cs;
2410}
2411
d9fd8a6d 2412/**
a1bc5a4e
DR
2413 * cpuset_node_allowed_softwall - Can we allocate on a memory node?
2414 * @node: is this an allowed node?
02a0e53d 2415 * @gfp_mask: memory allocation flags
d9fd8a6d 2416 *
a1bc5a4e
DR
2417 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2418 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2419 * yes. If it's not a __GFP_HARDWALL request and this node is in the nearest
2420 * hardwalled cpuset ancestor to this task's cpuset, yes. If the task has been
2421 * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE
2422 * flag, yes.
9bf2229f
PJ
2423 * Otherwise, no.
2424 *
a1bc5a4e
DR
2425 * If __GFP_HARDWALL is set, cpuset_node_allowed_softwall() reduces to
2426 * cpuset_node_allowed_hardwall(). Otherwise, cpuset_node_allowed_softwall()
2427 * might sleep, and might allow a node from an enclosing cpuset.
02a0e53d 2428 *
a1bc5a4e
DR
2429 * cpuset_node_allowed_hardwall() only handles the simpler case of hardwall
2430 * cpusets, and never sleeps.
02a0e53d
PJ
2431 *
2432 * The __GFP_THISNODE placement logic is really handled elsewhere,
2433 * by forcibly using a zonelist starting at a specified node, and by
2434 * (in get_page_from_freelist()) refusing to consider the zones for
2435 * any node on the zonelist except the first. By the time any such
2436 * calls get to this routine, we should just shut up and say 'yes'.
2437 *
9bf2229f 2438 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
c596d9f3
DR
2439 * and do not allow allocations outside the current tasks cpuset
2440 * unless the task has been OOM killed as is marked TIF_MEMDIE.
9bf2229f 2441 * GFP_KERNEL allocations are not so marked, so can escape to the
78608366 2442 * nearest enclosing hardwalled ancestor cpuset.
9bf2229f 2443 *
02a0e53d
PJ
2444 * Scanning up parent cpusets requires callback_mutex. The
2445 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2446 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2447 * current tasks mems_allowed came up empty on the first pass over
2448 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
2449 * cpuset are short of memory, might require taking the callback_mutex
2450 * mutex.
9bf2229f 2451 *
36be57ff 2452 * The first call here from mm/page_alloc:get_page_from_freelist()
02a0e53d
PJ
2453 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2454 * so no allocation on a node outside the cpuset is allowed (unless
2455 * in interrupt, of course).
36be57ff
PJ
2456 *
2457 * The second pass through get_page_from_freelist() doesn't even call
2458 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
2459 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2460 * in alloc_flags. That logic and the checks below have the combined
2461 * affect that:
9bf2229f
PJ
2462 * in_interrupt - any node ok (current task context irrelevant)
2463 * GFP_ATOMIC - any node ok
c596d9f3 2464 * TIF_MEMDIE - any node ok
78608366 2465 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
9bf2229f 2466 * GFP_USER - only nodes in current tasks mems allowed ok.
36be57ff
PJ
2467 *
2468 * Rule:
a1bc5a4e 2469 * Don't call cpuset_node_allowed_softwall if you can't sleep, unless you
36be57ff
PJ
2470 * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
2471 * the code that might scan up ancestor cpusets and sleep.
02a0e53d 2472 */
a1bc5a4e 2473int __cpuset_node_allowed_softwall(int node, gfp_t gfp_mask)
1da177e4 2474{
c9710d80 2475 struct cpuset *cs; /* current cpuset ancestors */
29afd49b 2476 int allowed; /* is allocation in zone z allowed? */
9bf2229f 2477
9b819d20 2478 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
9bf2229f 2479 return 1;
92d1dbd2 2480 might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
9bf2229f
PJ
2481 if (node_isset(node, current->mems_allowed))
2482 return 1;
c596d9f3
DR
2483 /*
2484 * Allow tasks that have access to memory reserves because they have
2485 * been OOM killed to get memory anywhere.
2486 */
2487 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2488 return 1;
9bf2229f
PJ
2489 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
2490 return 0;
2491
5563e770
BP
2492 if (current->flags & PF_EXITING) /* Let dying task have memory */
2493 return 1;
2494
9bf2229f 2495 /* Not hardwall and node outside mems_allowed: scan up cpusets */
3d3f26a7 2496 mutex_lock(&callback_mutex);
053199ed 2497
b8dadcb5 2498 rcu_read_lock();
78608366 2499 cs = nearest_hardwall_ancestor(task_cs(current));
99afb0fd 2500 allowed = node_isset(node, cs->mems_allowed);
b8dadcb5 2501 rcu_read_unlock();
053199ed 2502
3d3f26a7 2503 mutex_unlock(&callback_mutex);
9bf2229f 2504 return allowed;
1da177e4
LT
2505}
2506
02a0e53d 2507/*
a1bc5a4e
DR
2508 * cpuset_node_allowed_hardwall - Can we allocate on a memory node?
2509 * @node: is this an allowed node?
02a0e53d
PJ
2510 * @gfp_mask: memory allocation flags
2511 *
a1bc5a4e
DR
2512 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2513 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2514 * yes. If the task has been OOM killed and has access to memory reserves as
2515 * specified by the TIF_MEMDIE flag, yes.
2516 * Otherwise, no.
02a0e53d
PJ
2517 *
2518 * The __GFP_THISNODE placement logic is really handled elsewhere,
2519 * by forcibly using a zonelist starting at a specified node, and by
2520 * (in get_page_from_freelist()) refusing to consider the zones for
2521 * any node on the zonelist except the first. By the time any such
2522 * calls get to this routine, we should just shut up and say 'yes'.
2523 *
a1bc5a4e
DR
2524 * Unlike the cpuset_node_allowed_softwall() variant, above,
2525 * this variant requires that the node be in the current task's
02a0e53d
PJ
2526 * mems_allowed or that we're in interrupt. It does not scan up the
2527 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
2528 * It never sleeps.
2529 */
a1bc5a4e 2530int __cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask)
02a0e53d 2531{
02a0e53d
PJ
2532 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2533 return 1;
02a0e53d
PJ
2534 if (node_isset(node, current->mems_allowed))
2535 return 1;
dedf8b79
DW
2536 /*
2537 * Allow tasks that have access to memory reserves because they have
2538 * been OOM killed to get memory anywhere.
2539 */
2540 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2541 return 1;
02a0e53d
PJ
2542 return 0;
2543}
2544
825a46af 2545/**
6adef3eb
JS
2546 * cpuset_mem_spread_node() - On which node to begin search for a file page
2547 * cpuset_slab_spread_node() - On which node to begin search for a slab page
825a46af
PJ
2548 *
2549 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2550 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2551 * and if the memory allocation used cpuset_mem_spread_node()
2552 * to determine on which node to start looking, as it will for
2553 * certain page cache or slab cache pages such as used for file
2554 * system buffers and inode caches, then instead of starting on the
2555 * local node to look for a free page, rather spread the starting
2556 * node around the tasks mems_allowed nodes.
2557 *
2558 * We don't have to worry about the returned node being offline
2559 * because "it can't happen", and even if it did, it would be ok.
2560 *
2561 * The routines calling guarantee_online_mems() are careful to
2562 * only set nodes in task->mems_allowed that are online. So it
2563 * should not be possible for the following code to return an
2564 * offline node. But if it did, that would be ok, as this routine
2565 * is not returning the node where the allocation must be, only
2566 * the node where the search should start. The zonelist passed to
2567 * __alloc_pages() will include all nodes. If the slab allocator
2568 * is passed an offline node, it will fall back to the local node.
2569 * See kmem_cache_alloc_node().
2570 */
2571
6adef3eb 2572static int cpuset_spread_node(int *rotor)
825a46af
PJ
2573{
2574 int node;
2575
6adef3eb 2576 node = next_node(*rotor, current->mems_allowed);
825a46af
PJ
2577 if (node == MAX_NUMNODES)
2578 node = first_node(current->mems_allowed);
6adef3eb 2579 *rotor = node;
825a46af
PJ
2580 return node;
2581}
6adef3eb
JS
2582
2583int cpuset_mem_spread_node(void)
2584{
778d3b0f
MH
2585 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
2586 current->cpuset_mem_spread_rotor =
2587 node_random(&current->mems_allowed);
2588
6adef3eb
JS
2589 return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
2590}
2591
2592int cpuset_slab_spread_node(void)
2593{
778d3b0f
MH
2594 if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
2595 current->cpuset_slab_spread_rotor =
2596 node_random(&current->mems_allowed);
2597
6adef3eb
JS
2598 return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
2599}
2600
825a46af
PJ
2601EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2602
ef08e3b4 2603/**
bbe373f2
DR
2604 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2605 * @tsk1: pointer to task_struct of some task.
2606 * @tsk2: pointer to task_struct of some other task.
2607 *
2608 * Description: Return true if @tsk1's mems_allowed intersects the
2609 * mems_allowed of @tsk2. Used by the OOM killer to determine if
2610 * one of the task's memory usage might impact the memory available
2611 * to the other.
ef08e3b4
PJ
2612 **/
2613
bbe373f2
DR
2614int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2615 const struct task_struct *tsk2)
ef08e3b4 2616{
bbe373f2 2617 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
ef08e3b4
PJ
2618}
2619
f440d98f
LZ
2620#define CPUSET_NODELIST_LEN (256)
2621
75aa1994
DR
2622/**
2623 * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
fc34ac1d 2624 * @tsk: pointer to task_struct of some task.
75aa1994
DR
2625 *
2626 * Description: Prints @task's name, cpuset name, and cached copy of its
b8dadcb5 2627 * mems_allowed to the kernel log.
75aa1994
DR
2628 */
2629void cpuset_print_task_mems_allowed(struct task_struct *tsk)
2630{
f440d98f
LZ
2631 /* Statically allocated to prevent using excess stack. */
2632 static char cpuset_nodelist[CPUSET_NODELIST_LEN];
2633 static DEFINE_SPINLOCK(cpuset_buffer_lock);
b8dadcb5 2634 struct cgroup *cgrp;
75aa1994 2635
f440d98f 2636 spin_lock(&cpuset_buffer_lock);
b8dadcb5 2637 rcu_read_lock();
63f43f55 2638
b8dadcb5 2639 cgrp = task_cs(tsk)->css.cgroup;
75aa1994
DR
2640 nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN,
2641 tsk->mems_allowed);
12d3089c 2642 pr_info("%s cpuset=", tsk->comm);
e61734c5
TH
2643 pr_cont_cgroup_name(cgrp);
2644 pr_cont(" mems_allowed=%s\n", cpuset_nodelist);
f440d98f 2645
cfb5966b 2646 rcu_read_unlock();
75aa1994
DR
2647 spin_unlock(&cpuset_buffer_lock);
2648}
2649
3e0d98b9
PJ
2650/*
2651 * Collection of memory_pressure is suppressed unless
2652 * this flag is enabled by writing "1" to the special
2653 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2654 */
2655
c5b2aff8 2656int cpuset_memory_pressure_enabled __read_mostly;
3e0d98b9
PJ
2657
2658/**
2659 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2660 *
2661 * Keep a running average of the rate of synchronous (direct)
2662 * page reclaim efforts initiated by tasks in each cpuset.
2663 *
2664 * This represents the rate at which some task in the cpuset
2665 * ran low on memory on all nodes it was allowed to use, and
2666 * had to enter the kernels page reclaim code in an effort to
2667 * create more free memory by tossing clean pages or swapping
2668 * or writing dirty pages.
2669 *
2670 * Display to user space in the per-cpuset read-only file
2671 * "memory_pressure". Value displayed is an integer
2672 * representing the recent rate of entry into the synchronous
2673 * (direct) page reclaim by any task attached to the cpuset.
2674 **/
2675
2676void __cpuset_memory_pressure_bump(void)
2677{
b8dadcb5 2678 rcu_read_lock();
8793d854 2679 fmeter_markevent(&task_cs(current)->fmeter);
b8dadcb5 2680 rcu_read_unlock();
3e0d98b9
PJ
2681}
2682
8793d854 2683#ifdef CONFIG_PROC_PID_CPUSET
1da177e4
LT
2684/*
2685 * proc_cpuset_show()
2686 * - Print tasks cpuset path into seq_file.
2687 * - Used for /proc/<pid>/cpuset.
053199ed
PJ
2688 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2689 * doesn't really matter if tsk->cpuset changes after we read it,
5d21cc2d 2690 * and we take cpuset_mutex, keeping cpuset_attach() from changing it
2df167a3 2691 * anyway.
1da177e4 2692 */
8d8b97ba 2693int proc_cpuset_show(struct seq_file *m, void *unused_v)
1da177e4 2694{
13b41b09 2695 struct pid *pid;
1da177e4 2696 struct task_struct *tsk;
e61734c5 2697 char *buf, *p;
8793d854 2698 struct cgroup_subsys_state *css;
99f89551 2699 int retval;
1da177e4 2700
99f89551 2701 retval = -ENOMEM;
e61734c5 2702 buf = kmalloc(PATH_MAX, GFP_KERNEL);
1da177e4 2703 if (!buf)
99f89551
EB
2704 goto out;
2705
2706 retval = -ESRCH;
13b41b09
EB
2707 pid = m->private;
2708 tsk = get_pid_task(pid, PIDTYPE_PID);
99f89551
EB
2709 if (!tsk)
2710 goto out_free;
1da177e4 2711
e61734c5 2712 retval = -ENAMETOOLONG;
27e89ae5 2713 rcu_read_lock();
073219e9 2714 css = task_css(tsk, cpuset_cgrp_id);
e61734c5 2715 p = cgroup_path(css->cgroup, buf, PATH_MAX);
27e89ae5 2716 rcu_read_unlock();
e61734c5 2717 if (!p)
27e89ae5 2718 goto out_put_task;
e61734c5 2719 seq_puts(m, p);
1da177e4 2720 seq_putc(m, '\n');
e61734c5 2721 retval = 0;
27e89ae5 2722out_put_task:
99f89551
EB
2723 put_task_struct(tsk);
2724out_free:
1da177e4 2725 kfree(buf);
99f89551 2726out:
1da177e4
LT
2727 return retval;
2728}
8793d854 2729#endif /* CONFIG_PROC_PID_CPUSET */
1da177e4 2730
d01d4827 2731/* Display task mems_allowed in /proc/<pid>/status file. */
df5f8314
EB
2732void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2733{
fc34ac1d 2734 seq_puts(m, "Mems_allowed:\t");
30e8e136 2735 seq_nodemask(m, &task->mems_allowed);
fc34ac1d
FF
2736 seq_puts(m, "\n");
2737 seq_puts(m, "Mems_allowed_list:\t");
30e8e136 2738 seq_nodemask_list(m, &task->mems_allowed);
fc34ac1d 2739 seq_puts(m, "\n");
1da177e4 2740}
This page took 0.900938 seconds and 5 git commands to generate.