Merge branch 'next/drivers' into HEAD
[deliverable/linux.git] / kernel / debug / kdb / kdb_main.c
CommitLineData
5d5314d6
JW
1/*
2 * Kernel Debugger Architecture Independent Main Code
3 *
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License. See the file "COPYING" in the main directory of this archive
6 * for more details.
7 *
8 * Copyright (C) 1999-2004 Silicon Graphics, Inc. All Rights Reserved.
9 * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com>
10 * Xscale (R) modifications copyright (C) 2003 Intel Corporation.
11 * Copyright (c) 2009 Wind River Systems, Inc. All Rights Reserved.
12 */
13
14#include <linux/ctype.h>
15#include <linux/string.h>
16#include <linux/kernel.h>
bc792e61 17#include <linux/kmsg_dump.h>
5d5314d6
JW
18#include <linux/reboot.h>
19#include <linux/sched.h>
20#include <linux/sysrq.h>
21#include <linux/smp.h>
22#include <linux/utsname.h>
23#include <linux/vmalloc.h>
ad394f66 24#include <linux/atomic.h>
5d5314d6
JW
25#include <linux/module.h>
26#include <linux/mm.h>
27#include <linux/init.h>
28#include <linux/kallsyms.h>
29#include <linux/kgdb.h>
30#include <linux/kdb.h>
31#include <linux/notifier.h>
32#include <linux/interrupt.h>
33#include <linux/delay.h>
34#include <linux/nmi.h>
35#include <linux/time.h>
36#include <linux/ptrace.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/kdebug.h>
40#include <linux/proc_fs.h>
41#include <linux/uaccess.h>
42#include <linux/slab.h>
43#include "kdb_private.h"
44
45#define GREP_LEN 256
46char kdb_grep_string[GREP_LEN];
47int kdb_grepping_flag;
48EXPORT_SYMBOL(kdb_grepping_flag);
49int kdb_grep_leading;
50int kdb_grep_trailing;
51
52/*
53 * Kernel debugger state flags
54 */
55int kdb_flags;
56atomic_t kdb_event;
57
58/*
59 * kdb_lock protects updates to kdb_initial_cpu. Used to
60 * single thread processors through the kernel debugger.
61 */
62int kdb_initial_cpu = -1; /* cpu number that owns kdb */
63int kdb_nextline = 1;
64int kdb_state; /* General KDB state */
65
66struct task_struct *kdb_current_task;
67EXPORT_SYMBOL(kdb_current_task);
68struct pt_regs *kdb_current_regs;
69
70const char *kdb_diemsg;
71static int kdb_go_count;
72#ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC
73static unsigned int kdb_continue_catastrophic =
74 CONFIG_KDB_CONTINUE_CATASTROPHIC;
75#else
76static unsigned int kdb_continue_catastrophic;
77#endif
78
79/* kdb_commands describes the available commands. */
80static kdbtab_t *kdb_commands;
81#define KDB_BASE_CMD_MAX 50
82static int kdb_max_commands = KDB_BASE_CMD_MAX;
27029c33 83static kdbtab_t kdb_base_commands[KDB_BASE_CMD_MAX];
5d5314d6
JW
84#define for_each_kdbcmd(cmd, num) \
85 for ((cmd) = kdb_base_commands, (num) = 0; \
86 num < kdb_max_commands; \
5450d904 87 num++, num == KDB_BASE_CMD_MAX ? cmd = kdb_commands : cmd++)
5d5314d6
JW
88
89typedef struct _kdbmsg {
90 int km_diag; /* kdb diagnostic */
91 char *km_msg; /* Corresponding message text */
92} kdbmsg_t;
93
94#define KDBMSG(msgnum, text) \
95 { KDB_##msgnum, text }
96
97static kdbmsg_t kdbmsgs[] = {
98 KDBMSG(NOTFOUND, "Command Not Found"),
99 KDBMSG(ARGCOUNT, "Improper argument count, see usage."),
100 KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, "
101 "8 is only allowed on 64 bit systems"),
102 KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"),
103 KDBMSG(NOTENV, "Cannot find environment variable"),
104 KDBMSG(NOENVVALUE, "Environment variable should have value"),
105 KDBMSG(NOTIMP, "Command not implemented"),
106 KDBMSG(ENVFULL, "Environment full"),
107 KDBMSG(ENVBUFFULL, "Environment buffer full"),
108 KDBMSG(TOOMANYBPT, "Too many breakpoints defined"),
109#ifdef CONFIG_CPU_XSCALE
110 KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"),
111#else
112 KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"),
113#endif
114 KDBMSG(DUPBPT, "Duplicate breakpoint address"),
115 KDBMSG(BPTNOTFOUND, "Breakpoint not found"),
116 KDBMSG(BADMODE, "Invalid IDMODE"),
117 KDBMSG(BADINT, "Illegal numeric value"),
118 KDBMSG(INVADDRFMT, "Invalid symbolic address format"),
119 KDBMSG(BADREG, "Invalid register name"),
120 KDBMSG(BADCPUNUM, "Invalid cpu number"),
121 KDBMSG(BADLENGTH, "Invalid length field"),
122 KDBMSG(NOBP, "No Breakpoint exists"),
123 KDBMSG(BADADDR, "Invalid address"),
124};
125#undef KDBMSG
126
127static const int __nkdb_err = sizeof(kdbmsgs) / sizeof(kdbmsg_t);
128
129
130/*
131 * Initial environment. This is all kept static and local to
132 * this file. We don't want to rely on the memory allocation
133 * mechanisms in the kernel, so we use a very limited allocate-only
134 * heap for new and altered environment variables. The entire
135 * environment is limited to a fixed number of entries (add more
136 * to __env[] if required) and a fixed amount of heap (add more to
137 * KDB_ENVBUFSIZE if required).
138 */
139
140static char *__env[] = {
141#if defined(CONFIG_SMP)
142 "PROMPT=[%d]kdb> ",
5d5314d6
JW
143#else
144 "PROMPT=kdb> ",
5d5314d6 145#endif
0f26d0e0 146 "MOREPROMPT=more> ",
5d5314d6
JW
147 "RADIX=16",
148 "MDCOUNT=8", /* lines of md output */
5d5314d6
JW
149 KDB_PLATFORM_ENV,
150 "DTABCOUNT=30",
151 "NOSECT=1",
152 (char *)0,
153 (char *)0,
154 (char *)0,
155 (char *)0,
156 (char *)0,
157 (char *)0,
158 (char *)0,
159 (char *)0,
160 (char *)0,
161 (char *)0,
162 (char *)0,
163 (char *)0,
164 (char *)0,
165 (char *)0,
3bdb65ec 166 (char *)0,
5d5314d6
JW
167 (char *)0,
168 (char *)0,
169 (char *)0,
170 (char *)0,
171 (char *)0,
172 (char *)0,
173 (char *)0,
174 (char *)0,
175 (char *)0,
176};
177
178static const int __nenv = (sizeof(__env) / sizeof(char *));
179
180struct task_struct *kdb_curr_task(int cpu)
181{
182 struct task_struct *p = curr_task(cpu);
183#ifdef _TIF_MCA_INIT
184 if ((task_thread_info(p)->flags & _TIF_MCA_INIT) && KDB_TSK(cpu))
185 p = krp->p;
186#endif
187 return p;
188}
189
190/*
191 * kdbgetenv - This function will return the character string value of
192 * an environment variable.
193 * Parameters:
194 * match A character string representing an environment variable.
195 * Returns:
196 * NULL No environment variable matches 'match'
197 * char* Pointer to string value of environment variable.
198 */
199char *kdbgetenv(const char *match)
200{
201 char **ep = __env;
202 int matchlen = strlen(match);
203 int i;
204
205 for (i = 0; i < __nenv; i++) {
206 char *e = *ep++;
207
208 if (!e)
209 continue;
210
211 if ((strncmp(match, e, matchlen) == 0)
212 && ((e[matchlen] == '\0')
213 || (e[matchlen] == '='))) {
214 char *cp = strchr(e, '=');
215 return cp ? ++cp : "";
216 }
217 }
218 return NULL;
219}
220
221/*
222 * kdballocenv - This function is used to allocate bytes for
223 * environment entries.
224 * Parameters:
225 * match A character string representing a numeric value
226 * Outputs:
227 * *value the unsigned long representation of the env variable 'match'
228 * Returns:
229 * Zero on success, a kdb diagnostic on failure.
230 * Remarks:
231 * We use a static environment buffer (envbuffer) to hold the values
232 * of dynamically generated environment variables (see kdb_set). Buffer
233 * space once allocated is never free'd, so over time, the amount of space
234 * (currently 512 bytes) will be exhausted if env variables are changed
235 * frequently.
236 */
237static char *kdballocenv(size_t bytes)
238{
239#define KDB_ENVBUFSIZE 512
240 static char envbuffer[KDB_ENVBUFSIZE];
241 static int envbufsize;
242 char *ep = NULL;
243
244 if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) {
245 ep = &envbuffer[envbufsize];
246 envbufsize += bytes;
247 }
248 return ep;
249}
250
251/*
252 * kdbgetulenv - This function will return the value of an unsigned
253 * long-valued environment variable.
254 * Parameters:
255 * match A character string representing a numeric value
256 * Outputs:
257 * *value the unsigned long represntation of the env variable 'match'
258 * Returns:
259 * Zero on success, a kdb diagnostic on failure.
260 */
261static int kdbgetulenv(const char *match, unsigned long *value)
262{
263 char *ep;
264
265 ep = kdbgetenv(match);
266 if (!ep)
267 return KDB_NOTENV;
268 if (strlen(ep) == 0)
269 return KDB_NOENVVALUE;
270
271 *value = simple_strtoul(ep, NULL, 0);
272
273 return 0;
274}
275
276/*
277 * kdbgetintenv - This function will return the value of an
278 * integer-valued environment variable.
279 * Parameters:
280 * match A character string representing an integer-valued env variable
281 * Outputs:
282 * *value the integer representation of the environment variable 'match'
283 * Returns:
284 * Zero on success, a kdb diagnostic on failure.
285 */
286int kdbgetintenv(const char *match, int *value)
287{
288 unsigned long val;
289 int diag;
290
291 diag = kdbgetulenv(match, &val);
292 if (!diag)
293 *value = (int) val;
294 return diag;
295}
296
297/*
298 * kdbgetularg - This function will convert a numeric string into an
299 * unsigned long value.
300 * Parameters:
301 * arg A character string representing a numeric value
302 * Outputs:
303 * *value the unsigned long represntation of arg.
304 * Returns:
305 * Zero on success, a kdb diagnostic on failure.
306 */
307int kdbgetularg(const char *arg, unsigned long *value)
308{
309 char *endp;
310 unsigned long val;
311
312 val = simple_strtoul(arg, &endp, 0);
313
314 if (endp == arg) {
315 /*
534af108 316 * Also try base 16, for us folks too lazy to type the
5d5314d6
JW
317 * leading 0x...
318 */
319 val = simple_strtoul(arg, &endp, 16);
320 if (endp == arg)
321 return KDB_BADINT;
322 }
323
324 *value = val;
325
326 return 0;
327}
328
534af108
JW
329int kdbgetu64arg(const char *arg, u64 *value)
330{
331 char *endp;
332 u64 val;
333
334 val = simple_strtoull(arg, &endp, 0);
335
336 if (endp == arg) {
337
338 val = simple_strtoull(arg, &endp, 16);
339 if (endp == arg)
340 return KDB_BADINT;
341 }
342
343 *value = val;
344
345 return 0;
346}
347
5d5314d6
JW
348/*
349 * kdb_set - This function implements the 'set' command. Alter an
350 * existing environment variable or create a new one.
351 */
352int kdb_set(int argc, const char **argv)
353{
354 int i;
355 char *ep;
356 size_t varlen, vallen;
357
358 /*
359 * we can be invoked two ways:
360 * set var=value argv[1]="var", argv[2]="value"
361 * set var = value argv[1]="var", argv[2]="=", argv[3]="value"
362 * - if the latter, shift 'em down.
363 */
364 if (argc == 3) {
365 argv[2] = argv[3];
366 argc--;
367 }
368
369 if (argc != 2)
370 return KDB_ARGCOUNT;
371
372 /*
373 * Check for internal variables
374 */
375 if (strcmp(argv[1], "KDBDEBUG") == 0) {
376 unsigned int debugflags;
377 char *cp;
378
379 debugflags = simple_strtoul(argv[2], &cp, 0);
380 if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) {
381 kdb_printf("kdb: illegal debug flags '%s'\n",
382 argv[2]);
383 return 0;
384 }
385 kdb_flags = (kdb_flags &
386 ~(KDB_DEBUG_FLAG_MASK << KDB_DEBUG_FLAG_SHIFT))
387 | (debugflags << KDB_DEBUG_FLAG_SHIFT);
388
389 return 0;
390 }
391
392 /*
393 * Tokenizer squashed the '=' sign. argv[1] is variable
394 * name, argv[2] = value.
395 */
396 varlen = strlen(argv[1]);
397 vallen = strlen(argv[2]);
398 ep = kdballocenv(varlen + vallen + 2);
399 if (ep == (char *)0)
400 return KDB_ENVBUFFULL;
401
402 sprintf(ep, "%s=%s", argv[1], argv[2]);
403
404 ep[varlen+vallen+1] = '\0';
405
406 for (i = 0; i < __nenv; i++) {
407 if (__env[i]
408 && ((strncmp(__env[i], argv[1], varlen) == 0)
409 && ((__env[i][varlen] == '\0')
410 || (__env[i][varlen] == '=')))) {
411 __env[i] = ep;
412 return 0;
413 }
414 }
415
416 /*
417 * Wasn't existing variable. Fit into slot.
418 */
419 for (i = 0; i < __nenv-1; i++) {
420 if (__env[i] == (char *)0) {
421 __env[i] = ep;
422 return 0;
423 }
424 }
425
426 return KDB_ENVFULL;
427}
428
429static int kdb_check_regs(void)
430{
431 if (!kdb_current_regs) {
432 kdb_printf("No current kdb registers."
433 " You may need to select another task\n");
434 return KDB_BADREG;
435 }
436 return 0;
437}
438
439/*
440 * kdbgetaddrarg - This function is responsible for parsing an
441 * address-expression and returning the value of the expression,
442 * symbol name, and offset to the caller.
443 *
444 * The argument may consist of a numeric value (decimal or
25985edc 445 * hexidecimal), a symbol name, a register name (preceded by the
5d5314d6 446 * percent sign), an environment variable with a numeric value
25985edc 447 * (preceded by a dollar sign) or a simple arithmetic expression
5d5314d6
JW
448 * consisting of a symbol name, +/-, and a numeric constant value
449 * (offset).
450 * Parameters:
451 * argc - count of arguments in argv
452 * argv - argument vector
453 * *nextarg - index to next unparsed argument in argv[]
454 * regs - Register state at time of KDB entry
455 * Outputs:
456 * *value - receives the value of the address-expression
457 * *offset - receives the offset specified, if any
458 * *name - receives the symbol name, if any
459 * *nextarg - index to next unparsed argument in argv[]
460 * Returns:
461 * zero is returned on success, a kdb diagnostic code is
462 * returned on error.
463 */
464int kdbgetaddrarg(int argc, const char **argv, int *nextarg,
465 unsigned long *value, long *offset,
466 char **name)
467{
468 unsigned long addr;
469 unsigned long off = 0;
470 int positive;
471 int diag;
472 int found = 0;
473 char *symname;
474 char symbol = '\0';
475 char *cp;
476 kdb_symtab_t symtab;
477
478 /*
479 * Process arguments which follow the following syntax:
480 *
481 * symbol | numeric-address [+/- numeric-offset]
482 * %register
483 * $environment-variable
484 */
485
486 if (*nextarg > argc)
487 return KDB_ARGCOUNT;
488
489 symname = (char *)argv[*nextarg];
490
491 /*
492 * If there is no whitespace between the symbol
493 * or address and the '+' or '-' symbols, we
494 * remember the character and replace it with a
495 * null so the symbol/value can be properly parsed
496 */
497 cp = strpbrk(symname, "+-");
498 if (cp != NULL) {
499 symbol = *cp;
500 *cp++ = '\0';
501 }
502
503 if (symname[0] == '$') {
504 diag = kdbgetulenv(&symname[1], &addr);
505 if (diag)
506 return diag;
507 } else if (symname[0] == '%') {
508 diag = kdb_check_regs();
509 if (diag)
510 return diag;
511 /* Implement register values with % at a later time as it is
512 * arch optional.
513 */
514 return KDB_NOTIMP;
515 } else {
516 found = kdbgetsymval(symname, &symtab);
517 if (found) {
518 addr = symtab.sym_start;
519 } else {
520 diag = kdbgetularg(argv[*nextarg], &addr);
521 if (diag)
522 return diag;
523 }
524 }
525
526 if (!found)
527 found = kdbnearsym(addr, &symtab);
528
529 (*nextarg)++;
530
531 if (name)
532 *name = symname;
533 if (value)
534 *value = addr;
535 if (offset && name && *name)
536 *offset = addr - symtab.sym_start;
537
538 if ((*nextarg > argc)
539 && (symbol == '\0'))
540 return 0;
541
542 /*
543 * check for +/- and offset
544 */
545
546 if (symbol == '\0') {
547 if ((argv[*nextarg][0] != '+')
548 && (argv[*nextarg][0] != '-')) {
549 /*
550 * Not our argument. Return.
551 */
552 return 0;
553 } else {
554 positive = (argv[*nextarg][0] == '+');
555 (*nextarg)++;
556 }
557 } else
558 positive = (symbol == '+');
559
560 /*
561 * Now there must be an offset!
562 */
563 if ((*nextarg > argc)
564 && (symbol == '\0')) {
565 return KDB_INVADDRFMT;
566 }
567
568 if (!symbol) {
569 cp = (char *)argv[*nextarg];
570 (*nextarg)++;
571 }
572
573 diag = kdbgetularg(cp, &off);
574 if (diag)
575 return diag;
576
577 if (!positive)
578 off = -off;
579
580 if (offset)
581 *offset += off;
582
583 if (value)
584 *value += off;
585
586 return 0;
587}
588
589static void kdb_cmderror(int diag)
590{
591 int i;
592
593 if (diag >= 0) {
594 kdb_printf("no error detected (diagnostic is %d)\n", diag);
595 return;
596 }
597
598 for (i = 0; i < __nkdb_err; i++) {
599 if (kdbmsgs[i].km_diag == diag) {
600 kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg);
601 return;
602 }
603 }
604
605 kdb_printf("Unknown diag %d\n", -diag);
606}
607
608/*
609 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd'
610 * command which defines one command as a set of other commands,
611 * terminated by endefcmd. kdb_defcmd processes the initial
612 * 'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for
613 * the following commands until 'endefcmd'.
614 * Inputs:
615 * argc argument count
616 * argv argument vector
617 * Returns:
618 * zero for success, a kdb diagnostic if error
619 */
620struct defcmd_set {
621 int count;
622 int usable;
623 char *name;
624 char *usage;
625 char *help;
626 char **command;
627};
628static struct defcmd_set *defcmd_set;
629static int defcmd_set_count;
630static int defcmd_in_progress;
631
632/* Forward references */
633static int kdb_exec_defcmd(int argc, const char **argv);
634
635static int kdb_defcmd2(const char *cmdstr, const char *argv0)
636{
637 struct defcmd_set *s = defcmd_set + defcmd_set_count - 1;
638 char **save_command = s->command;
639 if (strcmp(argv0, "endefcmd") == 0) {
640 defcmd_in_progress = 0;
641 if (!s->count)
642 s->usable = 0;
643 if (s->usable)
644 kdb_register(s->name, kdb_exec_defcmd,
645 s->usage, s->help, 0);
646 return 0;
647 }
648 if (!s->usable)
649 return KDB_NOTIMP;
5450d904 650 s->command = kzalloc((s->count + 1) * sizeof(*(s->command)), GFP_KDB);
5d5314d6
JW
651 if (!s->command) {
652 kdb_printf("Could not allocate new kdb_defcmd table for %s\n",
653 cmdstr);
654 s->usable = 0;
655 return KDB_NOTIMP;
656 }
657 memcpy(s->command, save_command, s->count * sizeof(*(s->command)));
658 s->command[s->count++] = kdb_strdup(cmdstr, GFP_KDB);
659 kfree(save_command);
660 return 0;
661}
662
663static int kdb_defcmd(int argc, const char **argv)
664{
665 struct defcmd_set *save_defcmd_set = defcmd_set, *s;
666 if (defcmd_in_progress) {
667 kdb_printf("kdb: nested defcmd detected, assuming missing "
668 "endefcmd\n");
669 kdb_defcmd2("endefcmd", "endefcmd");
670 }
671 if (argc == 0) {
672 int i;
673 for (s = defcmd_set; s < defcmd_set + defcmd_set_count; ++s) {
674 kdb_printf("defcmd %s \"%s\" \"%s\"\n", s->name,
675 s->usage, s->help);
676 for (i = 0; i < s->count; ++i)
677 kdb_printf("%s", s->command[i]);
678 kdb_printf("endefcmd\n");
679 }
680 return 0;
681 }
682 if (argc != 3)
683 return KDB_ARGCOUNT;
684 defcmd_set = kmalloc((defcmd_set_count + 1) * sizeof(*defcmd_set),
685 GFP_KDB);
686 if (!defcmd_set) {
687 kdb_printf("Could not allocate new defcmd_set entry for %s\n",
688 argv[1]);
689 defcmd_set = save_defcmd_set;
690 return KDB_NOTIMP;
691 }
692 memcpy(defcmd_set, save_defcmd_set,
693 defcmd_set_count * sizeof(*defcmd_set));
694 kfree(save_defcmd_set);
695 s = defcmd_set + defcmd_set_count;
696 memset(s, 0, sizeof(*s));
697 s->usable = 1;
698 s->name = kdb_strdup(argv[1], GFP_KDB);
699 s->usage = kdb_strdup(argv[2], GFP_KDB);
700 s->help = kdb_strdup(argv[3], GFP_KDB);
701 if (s->usage[0] == '"') {
702 strcpy(s->usage, s->usage+1);
703 s->usage[strlen(s->usage)-1] = '\0';
704 }
705 if (s->help[0] == '"') {
706 strcpy(s->help, s->help+1);
707 s->help[strlen(s->help)-1] = '\0';
708 }
709 ++defcmd_set_count;
710 defcmd_in_progress = 1;
711 return 0;
712}
713
714/*
715 * kdb_exec_defcmd - Execute the set of commands associated with this
716 * defcmd name.
717 * Inputs:
718 * argc argument count
719 * argv argument vector
720 * Returns:
721 * zero for success, a kdb diagnostic if error
722 */
723static int kdb_exec_defcmd(int argc, const char **argv)
724{
725 int i, ret;
726 struct defcmd_set *s;
727 if (argc != 0)
728 return KDB_ARGCOUNT;
729 for (s = defcmd_set, i = 0; i < defcmd_set_count; ++i, ++s) {
730 if (strcmp(s->name, argv[0]) == 0)
731 break;
732 }
733 if (i == defcmd_set_count) {
734 kdb_printf("kdb_exec_defcmd: could not find commands for %s\n",
735 argv[0]);
736 return KDB_NOTIMP;
737 }
738 for (i = 0; i < s->count; ++i) {
739 /* Recursive use of kdb_parse, do not use argv after
740 * this point */
741 argv = NULL;
742 kdb_printf("[%s]kdb> %s\n", s->name, s->command[i]);
743 ret = kdb_parse(s->command[i]);
744 if (ret)
745 return ret;
746 }
747 return 0;
748}
749
750/* Command history */
751#define KDB_CMD_HISTORY_COUNT 32
752#define CMD_BUFLEN 200 /* kdb_printf: max printline
753 * size == 256 */
754static unsigned int cmd_head, cmd_tail;
755static unsigned int cmdptr;
756static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN];
757static char cmd_cur[CMD_BUFLEN];
758
759/*
760 * The "str" argument may point to something like | grep xyz
761 */
762static void parse_grep(const char *str)
763{
764 int len;
765 char *cp = (char *)str, *cp2;
766
767 /* sanity check: we should have been called with the \ first */
768 if (*cp != '|')
769 return;
770 cp++;
771 while (isspace(*cp))
772 cp++;
773 if (strncmp(cp, "grep ", 5)) {
774 kdb_printf("invalid 'pipe', see grephelp\n");
775 return;
776 }
777 cp += 5;
778 while (isspace(*cp))
779 cp++;
780 cp2 = strchr(cp, '\n');
781 if (cp2)
782 *cp2 = '\0'; /* remove the trailing newline */
783 len = strlen(cp);
784 if (len == 0) {
785 kdb_printf("invalid 'pipe', see grephelp\n");
786 return;
787 }
788 /* now cp points to a nonzero length search string */
789 if (*cp == '"') {
790 /* allow it be "x y z" by removing the "'s - there must
791 be two of them */
792 cp++;
793 cp2 = strchr(cp, '"');
794 if (!cp2) {
795 kdb_printf("invalid quoted string, see grephelp\n");
796 return;
797 }
798 *cp2 = '\0'; /* end the string where the 2nd " was */
799 }
800 kdb_grep_leading = 0;
801 if (*cp == '^') {
802 kdb_grep_leading = 1;
803 cp++;
804 }
805 len = strlen(cp);
806 kdb_grep_trailing = 0;
807 if (*(cp+len-1) == '$') {
808 kdb_grep_trailing = 1;
809 *(cp+len-1) = '\0';
810 }
811 len = strlen(cp);
812 if (!len)
813 return;
814 if (len >= GREP_LEN) {
815 kdb_printf("search string too long\n");
816 return;
817 }
818 strcpy(kdb_grep_string, cp);
819 kdb_grepping_flag++;
820 return;
821}
822
823/*
824 * kdb_parse - Parse the command line, search the command table for a
825 * matching command and invoke the command function. This
826 * function may be called recursively, if it is, the second call
827 * will overwrite argv and cbuf. It is the caller's
828 * responsibility to save their argv if they recursively call
829 * kdb_parse().
830 * Parameters:
831 * cmdstr The input command line to be parsed.
832 * regs The registers at the time kdb was entered.
833 * Returns:
834 * Zero for success, a kdb diagnostic if failure.
835 * Remarks:
836 * Limited to 20 tokens.
837 *
838 * Real rudimentary tokenization. Basically only whitespace
839 * is considered a token delimeter (but special consideration
840 * is taken of the '=' sign as used by the 'set' command).
841 *
842 * The algorithm used to tokenize the input string relies on
843 * there being at least one whitespace (or otherwise useless)
844 * character between tokens as the character immediately following
845 * the token is altered in-place to a null-byte to terminate the
846 * token string.
847 */
848
849#define MAXARGC 20
850
851int kdb_parse(const char *cmdstr)
852{
853 static char *argv[MAXARGC];
854 static int argc;
855 static char cbuf[CMD_BUFLEN+2];
856 char *cp;
857 char *cpp, quoted;
858 kdbtab_t *tp;
859 int i, escaped, ignore_errors = 0, check_grep;
860
861 /*
862 * First tokenize the command string.
863 */
864 cp = (char *)cmdstr;
865 kdb_grepping_flag = check_grep = 0;
866
867 if (KDB_FLAG(CMD_INTERRUPT)) {
868 /* Previous command was interrupted, newline must not
869 * repeat the command */
870 KDB_FLAG_CLEAR(CMD_INTERRUPT);
871 KDB_STATE_SET(PAGER);
872 argc = 0; /* no repeat */
873 }
874
875 if (*cp != '\n' && *cp != '\0') {
876 argc = 0;
877 cpp = cbuf;
878 while (*cp) {
879 /* skip whitespace */
880 while (isspace(*cp))
881 cp++;
882 if ((*cp == '\0') || (*cp == '\n') ||
883 (*cp == '#' && !defcmd_in_progress))
884 break;
885 /* special case: check for | grep pattern */
886 if (*cp == '|') {
887 check_grep++;
888 break;
889 }
890 if (cpp >= cbuf + CMD_BUFLEN) {
891 kdb_printf("kdb_parse: command buffer "
892 "overflow, command ignored\n%s\n",
893 cmdstr);
894 return KDB_NOTFOUND;
895 }
896 if (argc >= MAXARGC - 1) {
897 kdb_printf("kdb_parse: too many arguments, "
898 "command ignored\n%s\n", cmdstr);
899 return KDB_NOTFOUND;
900 }
901 argv[argc++] = cpp;
902 escaped = 0;
903 quoted = '\0';
904 /* Copy to next unquoted and unescaped
905 * whitespace or '=' */
906 while (*cp && *cp != '\n' &&
907 (escaped || quoted || !isspace(*cp))) {
908 if (cpp >= cbuf + CMD_BUFLEN)
909 break;
910 if (escaped) {
911 escaped = 0;
912 *cpp++ = *cp++;
913 continue;
914 }
915 if (*cp == '\\') {
916 escaped = 1;
917 ++cp;
918 continue;
919 }
920 if (*cp == quoted)
921 quoted = '\0';
922 else if (*cp == '\'' || *cp == '"')
923 quoted = *cp;
924 *cpp = *cp++;
925 if (*cpp == '=' && !quoted)
926 break;
927 ++cpp;
928 }
929 *cpp++ = '\0'; /* Squash a ws or '=' character */
930 }
931 }
932 if (!argc)
933 return 0;
934 if (check_grep)
935 parse_grep(cp);
936 if (defcmd_in_progress) {
937 int result = kdb_defcmd2(cmdstr, argv[0]);
938 if (!defcmd_in_progress) {
939 argc = 0; /* avoid repeat on endefcmd */
940 *(argv[0]) = '\0';
941 }
942 return result;
943 }
944 if (argv[0][0] == '-' && argv[0][1] &&
945 (argv[0][1] < '0' || argv[0][1] > '9')) {
946 ignore_errors = 1;
947 ++argv[0];
948 }
949
950 for_each_kdbcmd(tp, i) {
951 if (tp->cmd_name) {
952 /*
953 * If this command is allowed to be abbreviated,
954 * check to see if this is it.
955 */
956
957 if (tp->cmd_minlen
958 && (strlen(argv[0]) <= tp->cmd_minlen)) {
959 if (strncmp(argv[0],
960 tp->cmd_name,
961 tp->cmd_minlen) == 0) {
962 break;
963 }
964 }
965
966 if (strcmp(argv[0], tp->cmd_name) == 0)
967 break;
968 }
969 }
970
971 /*
972 * If we don't find a command by this name, see if the first
973 * few characters of this match any of the known commands.
974 * e.g., md1c20 should match md.
975 */
976 if (i == kdb_max_commands) {
977 for_each_kdbcmd(tp, i) {
978 if (tp->cmd_name) {
979 if (strncmp(argv[0],
980 tp->cmd_name,
981 strlen(tp->cmd_name)) == 0) {
982 break;
983 }
984 }
985 }
986 }
987
988 if (i < kdb_max_commands) {
989 int result;
990 KDB_STATE_SET(CMD);
991 result = (*tp->cmd_func)(argc-1, (const char **)argv);
992 if (result && ignore_errors && result > KDB_CMD_GO)
993 result = 0;
994 KDB_STATE_CLEAR(CMD);
995 switch (tp->cmd_repeat) {
996 case KDB_REPEAT_NONE:
997 argc = 0;
998 if (argv[0])
999 *(argv[0]) = '\0';
1000 break;
1001 case KDB_REPEAT_NO_ARGS:
1002 argc = 1;
1003 if (argv[1])
1004 *(argv[1]) = '\0';
1005 break;
1006 case KDB_REPEAT_WITH_ARGS:
1007 break;
1008 }
1009 return result;
1010 }
1011
1012 /*
1013 * If the input with which we were presented does not
1014 * map to an existing command, attempt to parse it as an
1015 * address argument and display the result. Useful for
1016 * obtaining the address of a variable, or the nearest symbol
1017 * to an address contained in a register.
1018 */
1019 {
1020 unsigned long value;
1021 char *name = NULL;
1022 long offset;
1023 int nextarg = 0;
1024
1025 if (kdbgetaddrarg(0, (const char **)argv, &nextarg,
1026 &value, &offset, &name)) {
1027 return KDB_NOTFOUND;
1028 }
1029
1030 kdb_printf("%s = ", argv[0]);
1031 kdb_symbol_print(value, NULL, KDB_SP_DEFAULT);
1032 kdb_printf("\n");
1033 return 0;
1034 }
1035}
1036
1037
1038static int handle_ctrl_cmd(char *cmd)
1039{
1040#define CTRL_P 16
1041#define CTRL_N 14
1042
1043 /* initial situation */
1044 if (cmd_head == cmd_tail)
1045 return 0;
1046 switch (*cmd) {
1047 case CTRL_P:
1048 if (cmdptr != cmd_tail)
1049 cmdptr = (cmdptr-1) % KDB_CMD_HISTORY_COUNT;
1050 strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1051 return 1;
1052 case CTRL_N:
1053 if (cmdptr != cmd_head)
1054 cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT;
1055 strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1056 return 1;
1057 }
1058 return 0;
1059}
1060
1061/*
1062 * kdb_reboot - This function implements the 'reboot' command. Reboot
1063 * the system immediately, or loop for ever on failure.
1064 */
1065static int kdb_reboot(int argc, const char **argv)
1066{
1067 emergency_restart();
1068 kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n");
1069 while (1)
1070 cpu_relax();
1071 /* NOTREACHED */
1072 return 0;
1073}
1074
1075static void kdb_dumpregs(struct pt_regs *regs)
1076{
1077 int old_lvl = console_loglevel;
1078 console_loglevel = 15;
d37d39ae 1079 kdb_trap_printk++;
5d5314d6 1080 show_regs(regs);
d37d39ae 1081 kdb_trap_printk--;
5d5314d6
JW
1082 kdb_printf("\n");
1083 console_loglevel = old_lvl;
1084}
1085
1086void kdb_set_current_task(struct task_struct *p)
1087{
1088 kdb_current_task = p;
1089
1090 if (kdb_task_has_cpu(p)) {
1091 kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p));
1092 return;
1093 }
1094 kdb_current_regs = NULL;
1095}
1096
1097/*
1098 * kdb_local - The main code for kdb. This routine is invoked on a
1099 * specific processor, it is not global. The main kdb() routine
1100 * ensures that only one processor at a time is in this routine.
1101 * This code is called with the real reason code on the first
1102 * entry to a kdb session, thereafter it is called with reason
1103 * SWITCH, even if the user goes back to the original cpu.
1104 * Inputs:
1105 * reason The reason KDB was invoked
1106 * error The hardware-defined error code
1107 * regs The exception frame at time of fault/breakpoint.
1108 * db_result Result code from the break or debug point.
1109 * Returns:
1110 * 0 KDB was invoked for an event which it wasn't responsible
1111 * 1 KDB handled the event for which it was invoked.
1112 * KDB_CMD_GO User typed 'go'.
1113 * KDB_CMD_CPU User switched to another cpu.
1114 * KDB_CMD_SS Single step.
1115 * KDB_CMD_SSB Single step until branch.
1116 */
1117static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs,
1118 kdb_dbtrap_t db_result)
1119{
1120 char *cmdbuf;
1121 int diag;
1122 struct task_struct *kdb_current =
1123 kdb_curr_task(raw_smp_processor_id());
1124
1125 KDB_DEBUG_STATE("kdb_local 1", reason);
1126 kdb_go_count = 0;
1127 if (reason == KDB_REASON_DEBUG) {
1128 /* special case below */
1129 } else {
1130 kdb_printf("\nEntering kdb (current=0x%p, pid %d) ",
578bd4df 1131 kdb_current, kdb_current ? kdb_current->pid : 0);
5d5314d6
JW
1132#if defined(CONFIG_SMP)
1133 kdb_printf("on processor %d ", raw_smp_processor_id());
1134#endif
1135 }
1136
1137 switch (reason) {
1138 case KDB_REASON_DEBUG:
1139 {
1140 /*
1141 * If re-entering kdb after a single step
1142 * command, don't print the message.
1143 */
1144 switch (db_result) {
1145 case KDB_DB_BPT:
1146 kdb_printf("\nEntering kdb (0x%p, pid %d) ",
1147 kdb_current, kdb_current->pid);
1148#if defined(CONFIG_SMP)
1149 kdb_printf("on processor %d ", raw_smp_processor_id());
1150#endif
1151 kdb_printf("due to Debug @ " kdb_machreg_fmt "\n",
1152 instruction_pointer(regs));
1153 break;
1154 case KDB_DB_SSB:
1155 /*
1156 * In the midst of ssb command. Just return.
1157 */
1158 KDB_DEBUG_STATE("kdb_local 3", reason);
1159 return KDB_CMD_SSB; /* Continue with SSB command */
1160
1161 break;
1162 case KDB_DB_SS:
1163 break;
1164 case KDB_DB_SSBPT:
1165 KDB_DEBUG_STATE("kdb_local 4", reason);
1166 return 1; /* kdba_db_trap did the work */
1167 default:
1168 kdb_printf("kdb: Bad result from kdba_db_trap: %d\n",
1169 db_result);
1170 break;
1171 }
1172
1173 }
1174 break;
1175 case KDB_REASON_ENTER:
1176 if (KDB_STATE(KEYBOARD))
1177 kdb_printf("due to Keyboard Entry\n");
1178 else
1179 kdb_printf("due to KDB_ENTER()\n");
1180 break;
1181 case KDB_REASON_KEYBOARD:
1182 KDB_STATE_SET(KEYBOARD);
1183 kdb_printf("due to Keyboard Entry\n");
1184 break;
1185 case KDB_REASON_ENTER_SLAVE:
1186 /* drop through, slaves only get released via cpu switch */
1187 case KDB_REASON_SWITCH:
1188 kdb_printf("due to cpu switch\n");
1189 break;
1190 case KDB_REASON_OOPS:
1191 kdb_printf("Oops: %s\n", kdb_diemsg);
1192 kdb_printf("due to oops @ " kdb_machreg_fmt "\n",
1193 instruction_pointer(regs));
1194 kdb_dumpregs(regs);
1195 break;
1196 case KDB_REASON_NMI:
1197 kdb_printf("due to NonMaskable Interrupt @ "
1198 kdb_machreg_fmt "\n",
1199 instruction_pointer(regs));
1200 kdb_dumpregs(regs);
1201 break;
1202 case KDB_REASON_SSTEP:
1203 case KDB_REASON_BREAK:
1204 kdb_printf("due to %s @ " kdb_machreg_fmt "\n",
1205 reason == KDB_REASON_BREAK ?
1206 "Breakpoint" : "SS trap", instruction_pointer(regs));
1207 /*
1208 * Determine if this breakpoint is one that we
1209 * are interested in.
1210 */
1211 if (db_result != KDB_DB_BPT) {
1212 kdb_printf("kdb: error return from kdba_bp_trap: %d\n",
1213 db_result);
1214 KDB_DEBUG_STATE("kdb_local 6", reason);
1215 return 0; /* Not for us, dismiss it */
1216 }
1217 break;
1218 case KDB_REASON_RECURSE:
1219 kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n",
1220 instruction_pointer(regs));
1221 break;
1222 default:
1223 kdb_printf("kdb: unexpected reason code: %d\n", reason);
1224 KDB_DEBUG_STATE("kdb_local 8", reason);
1225 return 0; /* Not for us, dismiss it */
1226 }
1227
1228 while (1) {
1229 /*
1230 * Initialize pager context.
1231 */
1232 kdb_nextline = 1;
1233 KDB_STATE_CLEAR(SUPPRESS);
1234
1235 cmdbuf = cmd_cur;
1236 *cmdbuf = '\0';
1237 *(cmd_hist[cmd_head]) = '\0';
1238
5d5314d6
JW
1239do_full_getstr:
1240#if defined(CONFIG_SMP)
1241 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"),
1242 raw_smp_processor_id());
1243#else
1244 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"));
1245#endif
1246 if (defcmd_in_progress)
1247 strncat(kdb_prompt_str, "[defcmd]", CMD_BUFLEN);
1248
1249 /*
1250 * Fetch command from keyboard
1251 */
1252 cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str);
1253 if (*cmdbuf != '\n') {
1254 if (*cmdbuf < 32) {
1255 if (cmdptr == cmd_head) {
1256 strncpy(cmd_hist[cmd_head], cmd_cur,
1257 CMD_BUFLEN);
1258 *(cmd_hist[cmd_head] +
1259 strlen(cmd_hist[cmd_head])-1) = '\0';
1260 }
1261 if (!handle_ctrl_cmd(cmdbuf))
1262 *(cmd_cur+strlen(cmd_cur)-1) = '\0';
1263 cmdbuf = cmd_cur;
1264 goto do_full_getstr;
1265 } else {
1266 strncpy(cmd_hist[cmd_head], cmd_cur,
1267 CMD_BUFLEN);
1268 }
1269
1270 cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT;
1271 if (cmd_head == cmd_tail)
1272 cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT;
1273 }
1274
1275 cmdptr = cmd_head;
1276 diag = kdb_parse(cmdbuf);
1277 if (diag == KDB_NOTFOUND) {
1278 kdb_printf("Unknown kdb command: '%s'\n", cmdbuf);
1279 diag = 0;
1280 }
1281 if (diag == KDB_CMD_GO
1282 || diag == KDB_CMD_CPU
1283 || diag == KDB_CMD_SS
1284 || diag == KDB_CMD_SSB
1285 || diag == KDB_CMD_KGDB)
1286 break;
1287
1288 if (diag)
1289 kdb_cmderror(diag);
1290 }
1291 KDB_DEBUG_STATE("kdb_local 9", diag);
1292 return diag;
1293}
1294
1295
1296/*
1297 * kdb_print_state - Print the state data for the current processor
1298 * for debugging.
1299 * Inputs:
1300 * text Identifies the debug point
1301 * value Any integer value to be printed, e.g. reason code.
1302 */
1303void kdb_print_state(const char *text, int value)
1304{
1305 kdb_printf("state: %s cpu %d value %d initial %d state %x\n",
1306 text, raw_smp_processor_id(), value, kdb_initial_cpu,
1307 kdb_state);
1308}
1309
1310/*
1311 * kdb_main_loop - After initial setup and assignment of the
1312 * controlling cpu, all cpus are in this loop. One cpu is in
1313 * control and will issue the kdb prompt, the others will spin
1314 * until 'go' or cpu switch.
1315 *
1316 * To get a consistent view of the kernel stacks for all
1317 * processes, this routine is invoked from the main kdb code via
1318 * an architecture specific routine. kdba_main_loop is
1319 * responsible for making the kernel stacks consistent for all
1320 * processes, there should be no difference between a blocked
1321 * process and a running process as far as kdb is concerned.
1322 * Inputs:
1323 * reason The reason KDB was invoked
1324 * error The hardware-defined error code
1325 * reason2 kdb's current reason code.
1326 * Initially error but can change
25985edc 1327 * according to kdb state.
5d5314d6
JW
1328 * db_result Result code from break or debug point.
1329 * regs The exception frame at time of fault/breakpoint.
1330 * should always be valid.
1331 * Returns:
1332 * 0 KDB was invoked for an event which it wasn't responsible
1333 * 1 KDB handled the event for which it was invoked.
1334 */
1335int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error,
1336 kdb_dbtrap_t db_result, struct pt_regs *regs)
1337{
1338 int result = 1;
1339 /* Stay in kdb() until 'go', 'ss[b]' or an error */
1340 while (1) {
1341 /*
1342 * All processors except the one that is in control
1343 * will spin here.
1344 */
1345 KDB_DEBUG_STATE("kdb_main_loop 1", reason);
1346 while (KDB_STATE(HOLD_CPU)) {
1347 /* state KDB is turned off by kdb_cpu to see if the
1348 * other cpus are still live, each cpu in this loop
1349 * turns it back on.
1350 */
1351 if (!KDB_STATE(KDB))
1352 KDB_STATE_SET(KDB);
1353 }
1354
1355 KDB_STATE_CLEAR(SUPPRESS);
1356 KDB_DEBUG_STATE("kdb_main_loop 2", reason);
1357 if (KDB_STATE(LEAVING))
1358 break; /* Another cpu said 'go' */
1359 /* Still using kdb, this processor is in control */
1360 result = kdb_local(reason2, error, regs, db_result);
1361 KDB_DEBUG_STATE("kdb_main_loop 3", result);
1362
1363 if (result == KDB_CMD_CPU)
1364 break;
1365
1366 if (result == KDB_CMD_SS) {
1367 KDB_STATE_SET(DOING_SS);
1368 break;
1369 }
1370
1371 if (result == KDB_CMD_SSB) {
1372 KDB_STATE_SET(DOING_SS);
1373 KDB_STATE_SET(DOING_SSB);
1374 break;
1375 }
1376
1377 if (result == KDB_CMD_KGDB) {
d613d828 1378 if (!KDB_STATE(DOING_KGDB))
5d5314d6
JW
1379 kdb_printf("Entering please attach debugger "
1380 "or use $D#44+ or $3#33\n");
1381 break;
1382 }
1383 if (result && result != 1 && result != KDB_CMD_GO)
1384 kdb_printf("\nUnexpected kdb_local return code %d\n",
1385 result);
1386 KDB_DEBUG_STATE("kdb_main_loop 4", reason);
1387 break;
1388 }
1389 if (KDB_STATE(DOING_SS))
1390 KDB_STATE_CLEAR(SSBPT);
1391
8f30d411
AW
1392 /* Clean up any keyboard devices before leaving */
1393 kdb_kbd_cleanup_state();
1394
5d5314d6
JW
1395 return result;
1396}
1397
1398/*
1399 * kdb_mdr - This function implements the guts of the 'mdr', memory
1400 * read command.
1401 * mdr <addr arg>,<byte count>
1402 * Inputs:
1403 * addr Start address
1404 * count Number of bytes
1405 * Returns:
1406 * Always 0. Any errors are detected and printed by kdb_getarea.
1407 */
1408static int kdb_mdr(unsigned long addr, unsigned int count)
1409{
1410 unsigned char c;
1411 while (count--) {
1412 if (kdb_getarea(c, addr))
1413 return 0;
1414 kdb_printf("%02x", c);
1415 addr++;
1416 }
1417 kdb_printf("\n");
1418 return 0;
1419}
1420
1421/*
1422 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4',
1423 * 'md8' 'mdr' and 'mds' commands.
1424 *
1425 * md|mds [<addr arg> [<line count> [<radix>]]]
1426 * mdWcN [<addr arg> [<line count> [<radix>]]]
1427 * where W = is the width (1, 2, 4 or 8) and N is the count.
1428 * for eg., md1c20 reads 20 bytes, 1 at a time.
1429 * mdr <addr arg>,<byte count>
1430 */
1431static void kdb_md_line(const char *fmtstr, unsigned long addr,
1432 int symbolic, int nosect, int bytesperword,
1433 int num, int repeat, int phys)
1434{
1435 /* print just one line of data */
1436 kdb_symtab_t symtab;
1437 char cbuf[32];
1438 char *c = cbuf;
1439 int i;
1440 unsigned long word;
1441
1442 memset(cbuf, '\0', sizeof(cbuf));
1443 if (phys)
1444 kdb_printf("phys " kdb_machreg_fmt0 " ", addr);
1445 else
1446 kdb_printf(kdb_machreg_fmt0 " ", addr);
1447
1448 for (i = 0; i < num && repeat--; i++) {
1449 if (phys) {
1450 if (kdb_getphysword(&word, addr, bytesperword))
1451 break;
1452 } else if (kdb_getword(&word, addr, bytesperword))
1453 break;
1454 kdb_printf(fmtstr, word);
1455 if (symbolic)
1456 kdbnearsym(word, &symtab);
1457 else
1458 memset(&symtab, 0, sizeof(symtab));
1459 if (symtab.sym_name) {
1460 kdb_symbol_print(word, &symtab, 0);
1461 if (!nosect) {
1462 kdb_printf("\n");
1463 kdb_printf(" %s %s "
1464 kdb_machreg_fmt " "
1465 kdb_machreg_fmt " "
1466 kdb_machreg_fmt, symtab.mod_name,
1467 symtab.sec_name, symtab.sec_start,
1468 symtab.sym_start, symtab.sym_end);
1469 }
1470 addr += bytesperword;
1471 } else {
1472 union {
1473 u64 word;
1474 unsigned char c[8];
1475 } wc;
1476 unsigned char *cp;
1477#ifdef __BIG_ENDIAN
1478 cp = wc.c + 8 - bytesperword;
1479#else
1480 cp = wc.c;
1481#endif
1482 wc.word = word;
1483#define printable_char(c) \
1484 ({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; })
1485 switch (bytesperword) {
1486 case 8:
1487 *c++ = printable_char(*cp++);
1488 *c++ = printable_char(*cp++);
1489 *c++ = printable_char(*cp++);
1490 *c++ = printable_char(*cp++);
1491 addr += 4;
1492 case 4:
1493 *c++ = printable_char(*cp++);
1494 *c++ = printable_char(*cp++);
1495 addr += 2;
1496 case 2:
1497 *c++ = printable_char(*cp++);
1498 addr++;
1499 case 1:
1500 *c++ = printable_char(*cp++);
1501 addr++;
1502 break;
1503 }
1504#undef printable_char
1505 }
1506 }
1507 kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1),
1508 " ", cbuf);
1509}
1510
1511static int kdb_md(int argc, const char **argv)
1512{
1513 static unsigned long last_addr;
1514 static int last_radix, last_bytesperword, last_repeat;
1515 int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat;
1516 int nosect = 0;
1517 char fmtchar, fmtstr[64];
1518 unsigned long addr;
1519 unsigned long word;
1520 long offset = 0;
1521 int symbolic = 0;
1522 int valid = 0;
1523 int phys = 0;
1524
1525 kdbgetintenv("MDCOUNT", &mdcount);
1526 kdbgetintenv("RADIX", &radix);
1527 kdbgetintenv("BYTESPERWORD", &bytesperword);
1528
1529 /* Assume 'md <addr>' and start with environment values */
1530 repeat = mdcount * 16 / bytesperword;
1531
1532 if (strcmp(argv[0], "mdr") == 0) {
1533 if (argc != 2)
1534 return KDB_ARGCOUNT;
1535 valid = 1;
1536 } else if (isdigit(argv[0][2])) {
1537 bytesperword = (int)(argv[0][2] - '0');
1538 if (bytesperword == 0) {
1539 bytesperword = last_bytesperword;
1540 if (bytesperword == 0)
1541 bytesperword = 4;
1542 }
1543 last_bytesperword = bytesperword;
1544 repeat = mdcount * 16 / bytesperword;
1545 if (!argv[0][3])
1546 valid = 1;
1547 else if (argv[0][3] == 'c' && argv[0][4]) {
1548 char *p;
1549 repeat = simple_strtoul(argv[0] + 4, &p, 10);
1550 mdcount = ((repeat * bytesperword) + 15) / 16;
1551 valid = !*p;
1552 }
1553 last_repeat = repeat;
1554 } else if (strcmp(argv[0], "md") == 0)
1555 valid = 1;
1556 else if (strcmp(argv[0], "mds") == 0)
1557 valid = 1;
1558 else if (strcmp(argv[0], "mdp") == 0) {
1559 phys = valid = 1;
1560 }
1561 if (!valid)
1562 return KDB_NOTFOUND;
1563
1564 if (argc == 0) {
1565 if (last_addr == 0)
1566 return KDB_ARGCOUNT;
1567 addr = last_addr;
1568 radix = last_radix;
1569 bytesperword = last_bytesperword;
1570 repeat = last_repeat;
1571 mdcount = ((repeat * bytesperword) + 15) / 16;
1572 }
1573
1574 if (argc) {
1575 unsigned long val;
1576 int diag, nextarg = 1;
1577 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr,
1578 &offset, NULL);
1579 if (diag)
1580 return diag;
1581 if (argc > nextarg+2)
1582 return KDB_ARGCOUNT;
1583
1584 if (argc >= nextarg) {
1585 diag = kdbgetularg(argv[nextarg], &val);
1586 if (!diag) {
1587 mdcount = (int) val;
1588 repeat = mdcount * 16 / bytesperword;
1589 }
1590 }
1591 if (argc >= nextarg+1) {
1592 diag = kdbgetularg(argv[nextarg+1], &val);
1593 if (!diag)
1594 radix = (int) val;
1595 }
1596 }
1597
1598 if (strcmp(argv[0], "mdr") == 0)
1599 return kdb_mdr(addr, mdcount);
1600
1601 switch (radix) {
1602 case 10:
1603 fmtchar = 'd';
1604 break;
1605 case 16:
1606 fmtchar = 'x';
1607 break;
1608 case 8:
1609 fmtchar = 'o';
1610 break;
1611 default:
1612 return KDB_BADRADIX;
1613 }
1614
1615 last_radix = radix;
1616
1617 if (bytesperword > KDB_WORD_SIZE)
1618 return KDB_BADWIDTH;
1619
1620 switch (bytesperword) {
1621 case 8:
1622 sprintf(fmtstr, "%%16.16l%c ", fmtchar);
1623 break;
1624 case 4:
1625 sprintf(fmtstr, "%%8.8l%c ", fmtchar);
1626 break;
1627 case 2:
1628 sprintf(fmtstr, "%%4.4l%c ", fmtchar);
1629 break;
1630 case 1:
1631 sprintf(fmtstr, "%%2.2l%c ", fmtchar);
1632 break;
1633 default:
1634 return KDB_BADWIDTH;
1635 }
1636
1637 last_repeat = repeat;
1638 last_bytesperword = bytesperword;
1639
1640 if (strcmp(argv[0], "mds") == 0) {
1641 symbolic = 1;
1642 /* Do not save these changes as last_*, they are temporary mds
1643 * overrides.
1644 */
1645 bytesperword = KDB_WORD_SIZE;
1646 repeat = mdcount;
1647 kdbgetintenv("NOSECT", &nosect);
1648 }
1649
1650 /* Round address down modulo BYTESPERWORD */
1651
1652 addr &= ~(bytesperword-1);
1653
1654 while (repeat > 0) {
1655 unsigned long a;
1656 int n, z, num = (symbolic ? 1 : (16 / bytesperword));
1657
1658 if (KDB_FLAG(CMD_INTERRUPT))
1659 return 0;
1660 for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) {
1661 if (phys) {
1662 if (kdb_getphysword(&word, a, bytesperword)
1663 || word)
1664 break;
1665 } else if (kdb_getword(&word, a, bytesperword) || word)
1666 break;
1667 }
1668 n = min(num, repeat);
1669 kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword,
1670 num, repeat, phys);
1671 addr += bytesperword * n;
1672 repeat -= n;
1673 z = (z + num - 1) / num;
1674 if (z > 2) {
1675 int s = num * (z-2);
1676 kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0
1677 " zero suppressed\n",
1678 addr, addr + bytesperword * s - 1);
1679 addr += bytesperword * s;
1680 repeat -= s;
1681 }
1682 }
1683 last_addr = addr;
1684
1685 return 0;
1686}
1687
1688/*
1689 * kdb_mm - This function implements the 'mm' command.
1690 * mm address-expression new-value
1691 * Remarks:
1692 * mm works on machine words, mmW works on bytes.
1693 */
1694static int kdb_mm(int argc, const char **argv)
1695{
1696 int diag;
1697 unsigned long addr;
1698 long offset = 0;
1699 unsigned long contents;
1700 int nextarg;
1701 int width;
1702
1703 if (argv[0][2] && !isdigit(argv[0][2]))
1704 return KDB_NOTFOUND;
1705
1706 if (argc < 2)
1707 return KDB_ARGCOUNT;
1708
1709 nextarg = 1;
1710 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1711 if (diag)
1712 return diag;
1713
1714 if (nextarg > argc)
1715 return KDB_ARGCOUNT;
1716 diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL);
1717 if (diag)
1718 return diag;
1719
1720 if (nextarg != argc + 1)
1721 return KDB_ARGCOUNT;
1722
1723 width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE);
1724 diag = kdb_putword(addr, contents, width);
1725 if (diag)
1726 return diag;
1727
1728 kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents);
1729
1730 return 0;
1731}
1732
1733/*
1734 * kdb_go - This function implements the 'go' command.
1735 * go [address-expression]
1736 */
1737static int kdb_go(int argc, const char **argv)
1738{
1739 unsigned long addr;
1740 int diag;
1741 int nextarg;
1742 long offset;
1743
495363d3
JW
1744 if (raw_smp_processor_id() != kdb_initial_cpu) {
1745 kdb_printf("go must execute on the entry cpu, "
1746 "please use \"cpu %d\" and then execute go\n",
1747 kdb_initial_cpu);
1748 return KDB_BADCPUNUM;
1749 }
5d5314d6 1750 if (argc == 1) {
5d5314d6
JW
1751 nextarg = 1;
1752 diag = kdbgetaddrarg(argc, argv, &nextarg,
1753 &addr, &offset, NULL);
1754 if (diag)
1755 return diag;
1756 } else if (argc) {
1757 return KDB_ARGCOUNT;
1758 }
1759
1760 diag = KDB_CMD_GO;
1761 if (KDB_FLAG(CATASTROPHIC)) {
1762 kdb_printf("Catastrophic error detected\n");
1763 kdb_printf("kdb_continue_catastrophic=%d, ",
1764 kdb_continue_catastrophic);
1765 if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) {
1766 kdb_printf("type go a second time if you really want "
1767 "to continue\n");
1768 return 0;
1769 }
1770 if (kdb_continue_catastrophic == 2) {
1771 kdb_printf("forcing reboot\n");
1772 kdb_reboot(0, NULL);
1773 }
1774 kdb_printf("attempting to continue\n");
1775 }
1776 return diag;
1777}
1778
1779/*
1780 * kdb_rd - This function implements the 'rd' command.
1781 */
1782static int kdb_rd(int argc, const char **argv)
1783{
534af108
JW
1784 int len = kdb_check_regs();
1785#if DBG_MAX_REG_NUM > 0
1786 int i;
1787 char *rname;
1788 int rsize;
1789 u64 reg64;
1790 u32 reg32;
1791 u16 reg16;
1792 u8 reg8;
1793
1794 if (len)
1795 return len;
1796
1797 for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1798 rsize = dbg_reg_def[i].size * 2;
1799 if (rsize > 16)
1800 rsize = 2;
1801 if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) {
1802 len = 0;
1803 kdb_printf("\n");
1804 }
1805 if (len)
1806 len += kdb_printf(" ");
1807 switch(dbg_reg_def[i].size * 8) {
1808 case 8:
1809 rname = dbg_get_reg(i, &reg8, kdb_current_regs);
1810 if (!rname)
1811 break;
1812 len += kdb_printf("%s: %02x", rname, reg8);
1813 break;
1814 case 16:
1815 rname = dbg_get_reg(i, &reg16, kdb_current_regs);
1816 if (!rname)
1817 break;
1818 len += kdb_printf("%s: %04x", rname, reg16);
1819 break;
1820 case 32:
1821 rname = dbg_get_reg(i, &reg32, kdb_current_regs);
1822 if (!rname)
1823 break;
1824 len += kdb_printf("%s: %08x", rname, reg32);
1825 break;
1826 case 64:
1827 rname = dbg_get_reg(i, &reg64, kdb_current_regs);
1828 if (!rname)
1829 break;
1830 len += kdb_printf("%s: %016llx", rname, reg64);
1831 break;
1832 default:
1833 len += kdb_printf("%s: ??", dbg_reg_def[i].name);
1834 }
1835 }
1836 kdb_printf("\n");
1837#else
1838 if (len)
1839 return len;
5d5314d6
JW
1840
1841 kdb_dumpregs(kdb_current_regs);
534af108 1842#endif
5d5314d6
JW
1843 return 0;
1844}
1845
1846/*
1847 * kdb_rm - This function implements the 'rm' (register modify) command.
1848 * rm register-name new-contents
1849 * Remarks:
534af108 1850 * Allows register modification with the same restrictions as gdb
5d5314d6
JW
1851 */
1852static int kdb_rm(int argc, const char **argv)
1853{
534af108 1854#if DBG_MAX_REG_NUM > 0
5d5314d6 1855 int diag;
534af108
JW
1856 const char *rname;
1857 int i;
1858 u64 reg64;
1859 u32 reg32;
1860 u16 reg16;
1861 u8 reg8;
5d5314d6
JW
1862
1863 if (argc != 2)
1864 return KDB_ARGCOUNT;
1865 /*
1866 * Allow presence or absence of leading '%' symbol.
1867 */
534af108
JW
1868 rname = argv[1];
1869 if (*rname == '%')
1870 rname++;
5d5314d6 1871
534af108 1872 diag = kdbgetu64arg(argv[2], &reg64);
5d5314d6
JW
1873 if (diag)
1874 return diag;
1875
1876 diag = kdb_check_regs();
1877 if (diag)
1878 return diag;
534af108
JW
1879
1880 diag = KDB_BADREG;
1881 for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1882 if (strcmp(rname, dbg_reg_def[i].name) == 0) {
1883 diag = 0;
1884 break;
1885 }
1886 }
1887 if (!diag) {
1888 switch(dbg_reg_def[i].size * 8) {
1889 case 8:
1890 reg8 = reg64;
1891 dbg_set_reg(i, &reg8, kdb_current_regs);
1892 break;
1893 case 16:
1894 reg16 = reg64;
1895 dbg_set_reg(i, &reg16, kdb_current_regs);
1896 break;
1897 case 32:
1898 reg32 = reg64;
1899 dbg_set_reg(i, &reg32, kdb_current_regs);
1900 break;
1901 case 64:
1902 dbg_set_reg(i, &reg64, kdb_current_regs);
1903 break;
1904 }
1905 }
1906 return diag;
1907#else
5d5314d6 1908 kdb_printf("ERROR: Register set currently not implemented\n");
534af108
JW
1909 return 0;
1910#endif
5d5314d6
JW
1911}
1912
1913#if defined(CONFIG_MAGIC_SYSRQ)
1914/*
1915 * kdb_sr - This function implements the 'sr' (SYSRQ key) command
1916 * which interfaces to the soi-disant MAGIC SYSRQ functionality.
1917 * sr <magic-sysrq-code>
1918 */
1919static int kdb_sr(int argc, const char **argv)
1920{
1921 if (argc != 1)
1922 return KDB_ARGCOUNT;
d37d39ae 1923 kdb_trap_printk++;
f335397d 1924 __handle_sysrq(*argv[1], false);
d37d39ae 1925 kdb_trap_printk--;
5d5314d6
JW
1926
1927 return 0;
1928}
1929#endif /* CONFIG_MAGIC_SYSRQ */
1930
1931/*
1932 * kdb_ef - This function implements the 'regs' (display exception
1933 * frame) command. This command takes an address and expects to
1934 * find an exception frame at that address, formats and prints
1935 * it.
1936 * regs address-expression
1937 * Remarks:
1938 * Not done yet.
1939 */
1940static int kdb_ef(int argc, const char **argv)
1941{
1942 int diag;
1943 unsigned long addr;
1944 long offset;
1945 int nextarg;
1946
1947 if (argc != 1)
1948 return KDB_ARGCOUNT;
1949
1950 nextarg = 1;
1951 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1952 if (diag)
1953 return diag;
1954 show_regs((struct pt_regs *)addr);
1955 return 0;
1956}
1957
1958#if defined(CONFIG_MODULES)
5d5314d6
JW
1959/*
1960 * kdb_lsmod - This function implements the 'lsmod' command. Lists
1961 * currently loaded kernel modules.
1962 * Mostly taken from userland lsmod.
1963 */
1964static int kdb_lsmod(int argc, const char **argv)
1965{
1966 struct module *mod;
1967
1968 if (argc != 0)
1969 return KDB_ARGCOUNT;
1970
1971 kdb_printf("Module Size modstruct Used by\n");
1972 list_for_each_entry(mod, kdb_modules, list) {
1973
1974 kdb_printf("%-20s%8u 0x%p ", mod->name,
1975 mod->core_size, (void *)mod);
1976#ifdef CONFIG_MODULE_UNLOAD
bd77c047 1977 kdb_printf("%4ld ", module_refcount(mod));
5d5314d6
JW
1978#endif
1979 if (mod->state == MODULE_STATE_GOING)
1980 kdb_printf(" (Unloading)");
1981 else if (mod->state == MODULE_STATE_COMING)
1982 kdb_printf(" (Loading)");
1983 else
1984 kdb_printf(" (Live)");
9e8b624f 1985 kdb_printf(" 0x%p", mod->module_core);
5d5314d6
JW
1986
1987#ifdef CONFIG_MODULE_UNLOAD
1988 {
1989 struct module_use *use;
1990 kdb_printf(" [ ");
c8e21ced
RR
1991 list_for_each_entry(use, &mod->source_list,
1992 source_list)
1993 kdb_printf("%s ", use->target->name);
5d5314d6
JW
1994 kdb_printf("]\n");
1995 }
1996#endif
1997 }
1998
1999 return 0;
2000}
2001
2002#endif /* CONFIG_MODULES */
2003
2004/*
2005 * kdb_env - This function implements the 'env' command. Display the
2006 * current environment variables.
2007 */
2008
2009static int kdb_env(int argc, const char **argv)
2010{
2011 int i;
2012
2013 for (i = 0; i < __nenv; i++) {
2014 if (__env[i])
2015 kdb_printf("%s\n", __env[i]);
2016 }
2017
2018 if (KDB_DEBUG(MASK))
2019 kdb_printf("KDBFLAGS=0x%x\n", kdb_flags);
2020
2021 return 0;
2022}
2023
2024#ifdef CONFIG_PRINTK
2025/*
2026 * kdb_dmesg - This function implements the 'dmesg' command to display
2027 * the contents of the syslog buffer.
2028 * dmesg [lines] [adjust]
2029 */
2030static int kdb_dmesg(int argc, const char **argv)
2031{
bc792e61
AV
2032 int diag;
2033 int logging;
2034 int lines = 0;
2035 int adjust = 0;
2036 int n = 0;
2037 int skip = 0;
2038 struct kmsg_dumper dumper = { .active = 1 };
2039 size_t len;
2040 char buf[201];
5d5314d6
JW
2041
2042 if (argc > 2)
2043 return KDB_ARGCOUNT;
2044 if (argc) {
2045 char *cp;
2046 lines = simple_strtol(argv[1], &cp, 0);
2047 if (*cp)
2048 lines = 0;
2049 if (argc > 1) {
2050 adjust = simple_strtoul(argv[2], &cp, 0);
2051 if (*cp || adjust < 0)
2052 adjust = 0;
2053 }
2054 }
2055
2056 /* disable LOGGING if set */
2057 diag = kdbgetintenv("LOGGING", &logging);
2058 if (!diag && logging) {
2059 const char *setargs[] = { "set", "LOGGING", "0" };
2060 kdb_set(2, setargs);
2061 }
2062
c064da47
AV
2063 kmsg_dump_rewind_nolock(&dumper);
2064 while (kmsg_dump_get_line_nolock(&dumper, 1, NULL, 0, NULL))
bc792e61
AV
2065 n++;
2066
5d5314d6
JW
2067 if (lines < 0) {
2068 if (adjust >= n)
2069 kdb_printf("buffer only contains %d lines, nothing "
2070 "printed\n", n);
2071 else if (adjust - lines >= n)
2072 kdb_printf("buffer only contains %d lines, last %d "
2073 "lines printed\n", n, n - adjust);
bc792e61
AV
2074 skip = adjust;
2075 lines = abs(lines);
5d5314d6 2076 } else if (lines > 0) {
bc792e61
AV
2077 skip = n - lines - adjust;
2078 lines = abs(lines);
5d5314d6
JW
2079 if (adjust >= n) {
2080 kdb_printf("buffer only contains %d lines, "
2081 "nothing printed\n", n);
2082 skip = n;
2083 } else if (skip < 0) {
2084 lines += skip;
2085 skip = 0;
2086 kdb_printf("buffer only contains %d lines, first "
2087 "%d lines printed\n", n, lines);
2088 }
bc792e61
AV
2089 } else {
2090 lines = n;
5d5314d6 2091 }
bc792e61
AV
2092
2093 if (skip >= n || skip < 0)
2094 return 0;
2095
c064da47
AV
2096 kmsg_dump_rewind_nolock(&dumper);
2097 while (kmsg_dump_get_line_nolock(&dumper, 1, buf, sizeof(buf), &len)) {
bc792e61
AV
2098 if (skip) {
2099 skip--;
2100 continue;
5d5314d6 2101 }
bc792e61
AV
2102 if (!lines--)
2103 break;
2104
2105 kdb_printf("%.*s\n", (int)len - 1, buf);
5d5314d6 2106 }
5d5314d6
JW
2107
2108 return 0;
2109}
2110#endif /* CONFIG_PRINTK */
ad394f66
AV
2111
2112/* Make sure we balance enable/disable calls, must disable first. */
2113static atomic_t kdb_nmi_disabled;
2114
2115static int kdb_disable_nmi(int argc, const char *argv[])
2116{
2117 if (atomic_read(&kdb_nmi_disabled))
2118 return 0;
2119 atomic_set(&kdb_nmi_disabled, 1);
2120 arch_kgdb_ops.enable_nmi(0);
2121 return 0;
2122}
2123
2124static int kdb_param_enable_nmi(const char *val, const struct kernel_param *kp)
2125{
2126 if (!atomic_add_unless(&kdb_nmi_disabled, -1, 0))
2127 return -EINVAL;
2128 arch_kgdb_ops.enable_nmi(1);
2129 return 0;
2130}
2131
2132static const struct kernel_param_ops kdb_param_ops_enable_nmi = {
2133 .set = kdb_param_enable_nmi,
2134};
2135module_param_cb(enable_nmi, &kdb_param_ops_enable_nmi, NULL, 0600);
2136
5d5314d6
JW
2137/*
2138 * kdb_cpu - This function implements the 'cpu' command.
2139 * cpu [<cpunum>]
2140 * Returns:
2141 * KDB_CMD_CPU for success, a kdb diagnostic if error
2142 */
2143static void kdb_cpu_status(void)
2144{
2145 int i, start_cpu, first_print = 1;
2146 char state, prev_state = '?';
2147
2148 kdb_printf("Currently on cpu %d\n", raw_smp_processor_id());
2149 kdb_printf("Available cpus: ");
2150 for (start_cpu = -1, i = 0; i < NR_CPUS; i++) {
2151 if (!cpu_online(i)) {
2152 state = 'F'; /* cpu is offline */
2153 } else {
2154 state = ' '; /* cpu is responding to kdb */
2155 if (kdb_task_state_char(KDB_TSK(i)) == 'I')
2156 state = 'I'; /* idle task */
2157 }
2158 if (state != prev_state) {
2159 if (prev_state != '?') {
2160 if (!first_print)
2161 kdb_printf(", ");
2162 first_print = 0;
2163 kdb_printf("%d", start_cpu);
2164 if (start_cpu < i-1)
2165 kdb_printf("-%d", i-1);
2166 if (prev_state != ' ')
2167 kdb_printf("(%c)", prev_state);
2168 }
2169 prev_state = state;
2170 start_cpu = i;
2171 }
2172 }
2173 /* print the trailing cpus, ignoring them if they are all offline */
2174 if (prev_state != 'F') {
2175 if (!first_print)
2176 kdb_printf(", ");
2177 kdb_printf("%d", start_cpu);
2178 if (start_cpu < i-1)
2179 kdb_printf("-%d", i-1);
2180 if (prev_state != ' ')
2181 kdb_printf("(%c)", prev_state);
2182 }
2183 kdb_printf("\n");
2184}
2185
2186static int kdb_cpu(int argc, const char **argv)
2187{
2188 unsigned long cpunum;
2189 int diag;
2190
2191 if (argc == 0) {
2192 kdb_cpu_status();
2193 return 0;
2194 }
2195
2196 if (argc != 1)
2197 return KDB_ARGCOUNT;
2198
2199 diag = kdbgetularg(argv[1], &cpunum);
2200 if (diag)
2201 return diag;
2202
2203 /*
2204 * Validate cpunum
2205 */
2206 if ((cpunum > NR_CPUS) || !cpu_online(cpunum))
2207 return KDB_BADCPUNUM;
2208
2209 dbg_switch_cpu = cpunum;
2210
2211 /*
2212 * Switch to other cpu
2213 */
2214 return KDB_CMD_CPU;
2215}
2216
2217/* The user may not realize that ps/bta with no parameters does not print idle
2218 * or sleeping system daemon processes, so tell them how many were suppressed.
2219 */
2220void kdb_ps_suppressed(void)
2221{
2222 int idle = 0, daemon = 0;
2223 unsigned long mask_I = kdb_task_state_string("I"),
2224 mask_M = kdb_task_state_string("M");
2225 unsigned long cpu;
2226 const struct task_struct *p, *g;
2227 for_each_online_cpu(cpu) {
2228 p = kdb_curr_task(cpu);
2229 if (kdb_task_state(p, mask_I))
2230 ++idle;
2231 }
2232 kdb_do_each_thread(g, p) {
2233 if (kdb_task_state(p, mask_M))
2234 ++daemon;
2235 } kdb_while_each_thread(g, p);
2236 if (idle || daemon) {
2237 if (idle)
2238 kdb_printf("%d idle process%s (state I)%s\n",
2239 idle, idle == 1 ? "" : "es",
2240 daemon ? " and " : "");
2241 if (daemon)
2242 kdb_printf("%d sleeping system daemon (state M) "
2243 "process%s", daemon,
2244 daemon == 1 ? "" : "es");
2245 kdb_printf(" suppressed,\nuse 'ps A' to see all.\n");
2246 }
2247}
2248
2249/*
2250 * kdb_ps - This function implements the 'ps' command which shows a
2251 * list of the active processes.
2252 * ps [DRSTCZEUIMA] All processes, optionally filtered by state
2253 */
2254void kdb_ps1(const struct task_struct *p)
2255{
2256 int cpu;
2257 unsigned long tmp;
2258
2259 if (!p || probe_kernel_read(&tmp, (char *)p, sizeof(unsigned long)))
2260 return;
2261
2262 cpu = kdb_process_cpu(p);
2263 kdb_printf("0x%p %8d %8d %d %4d %c 0x%p %c%s\n",
2264 (void *)p, p->pid, p->parent->pid,
2265 kdb_task_has_cpu(p), kdb_process_cpu(p),
2266 kdb_task_state_char(p),
2267 (void *)(&p->thread),
2268 p == kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ',
2269 p->comm);
2270 if (kdb_task_has_cpu(p)) {
2271 if (!KDB_TSK(cpu)) {
2272 kdb_printf(" Error: no saved data for this cpu\n");
2273 } else {
2274 if (KDB_TSK(cpu) != p)
2275 kdb_printf(" Error: does not match running "
2276 "process table (0x%p)\n", KDB_TSK(cpu));
2277 }
2278 }
2279}
2280
2281static int kdb_ps(int argc, const char **argv)
2282{
2283 struct task_struct *g, *p;
2284 unsigned long mask, cpu;
2285
2286 if (argc == 0)
2287 kdb_ps_suppressed();
2288 kdb_printf("%-*s Pid Parent [*] cpu State %-*s Command\n",
2289 (int)(2*sizeof(void *))+2, "Task Addr",
2290 (int)(2*sizeof(void *))+2, "Thread");
2291 mask = kdb_task_state_string(argc ? argv[1] : NULL);
2292 /* Run the active tasks first */
2293 for_each_online_cpu(cpu) {
2294 if (KDB_FLAG(CMD_INTERRUPT))
2295 return 0;
2296 p = kdb_curr_task(cpu);
2297 if (kdb_task_state(p, mask))
2298 kdb_ps1(p);
2299 }
2300 kdb_printf("\n");
2301 /* Now the real tasks */
2302 kdb_do_each_thread(g, p) {
2303 if (KDB_FLAG(CMD_INTERRUPT))
2304 return 0;
2305 if (kdb_task_state(p, mask))
2306 kdb_ps1(p);
2307 } kdb_while_each_thread(g, p);
2308
2309 return 0;
2310}
2311
2312/*
2313 * kdb_pid - This function implements the 'pid' command which switches
2314 * the currently active process.
2315 * pid [<pid> | R]
2316 */
2317static int kdb_pid(int argc, const char **argv)
2318{
2319 struct task_struct *p;
2320 unsigned long val;
2321 int diag;
2322
2323 if (argc > 1)
2324 return KDB_ARGCOUNT;
2325
2326 if (argc) {
2327 if (strcmp(argv[1], "R") == 0) {
2328 p = KDB_TSK(kdb_initial_cpu);
2329 } else {
2330 diag = kdbgetularg(argv[1], &val);
2331 if (diag)
2332 return KDB_BADINT;
2333
2334 p = find_task_by_pid_ns((pid_t)val, &init_pid_ns);
2335 if (!p) {
2336 kdb_printf("No task with pid=%d\n", (pid_t)val);
2337 return 0;
2338 }
2339 }
2340 kdb_set_current_task(p);
2341 }
2342 kdb_printf("KDB current process is %s(pid=%d)\n",
2343 kdb_current_task->comm,
2344 kdb_current_task->pid);
2345
2346 return 0;
2347}
2348
2349/*
2350 * kdb_ll - This function implements the 'll' command which follows a
2351 * linked list and executes an arbitrary command for each
2352 * element.
2353 */
2354static int kdb_ll(int argc, const char **argv)
2355{
85e76ab5 2356 int diag = 0;
5d5314d6
JW
2357 unsigned long addr;
2358 long offset = 0;
2359 unsigned long va;
2360 unsigned long linkoffset;
2361 int nextarg;
2362 const char *command;
2363
2364 if (argc != 3)
2365 return KDB_ARGCOUNT;
2366
2367 nextarg = 1;
2368 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
2369 if (diag)
2370 return diag;
2371
2372 diag = kdbgetularg(argv[2], &linkoffset);
2373 if (diag)
2374 return diag;
2375
2376 /*
2377 * Using the starting address as
2378 * the first element in the list, and assuming that
2379 * the list ends with a null pointer.
2380 */
2381
2382 va = addr;
2383 command = kdb_strdup(argv[3], GFP_KDB);
2384 if (!command) {
2385 kdb_printf("%s: cannot duplicate command\n", __func__);
2386 return 0;
2387 }
2388 /* Recursive use of kdb_parse, do not use argv after this point */
2389 argv = NULL;
2390
2391 while (va) {
2392 char buf[80];
2393
1396a21b 2394 if (KDB_FLAG(CMD_INTERRUPT))
85e76ab5 2395 goto out;
1396a21b 2396
5d5314d6
JW
2397 sprintf(buf, "%s " kdb_machreg_fmt "\n", command, va);
2398 diag = kdb_parse(buf);
2399 if (diag)
85e76ab5 2400 goto out;
5d5314d6
JW
2401
2402 addr = va + linkoffset;
2403 if (kdb_getword(&va, addr, sizeof(va)))
85e76ab5 2404 goto out;
5d5314d6 2405 }
5d5314d6 2406
85e76ab5
JZ
2407out:
2408 kfree(command);
2409 return diag;
5d5314d6
JW
2410}
2411
2412static int kdb_kgdb(int argc, const char **argv)
2413{
2414 return KDB_CMD_KGDB;
2415}
2416
2417/*
2418 * kdb_help - This function implements the 'help' and '?' commands.
2419 */
2420static int kdb_help(int argc, const char **argv)
2421{
2422 kdbtab_t *kt;
2423 int i;
2424
2425 kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description");
2426 kdb_printf("-----------------------------"
2427 "-----------------------------\n");
2428 for_each_kdbcmd(kt, i) {
2429 if (kt->cmd_name)
2430 kdb_printf("%-15.15s %-20.20s %s\n", kt->cmd_name,
2431 kt->cmd_usage, kt->cmd_help);
2432 if (KDB_FLAG(CMD_INTERRUPT))
2433 return 0;
2434 }
2435 return 0;
2436}
2437
2438/*
2439 * kdb_kill - This function implements the 'kill' commands.
2440 */
2441static int kdb_kill(int argc, const char **argv)
2442{
2443 long sig, pid;
2444 char *endp;
2445 struct task_struct *p;
2446 struct siginfo info;
2447
2448 if (argc != 2)
2449 return KDB_ARGCOUNT;
2450
2451 sig = simple_strtol(argv[1], &endp, 0);
2452 if (*endp)
2453 return KDB_BADINT;
2454 if (sig >= 0) {
2455 kdb_printf("Invalid signal parameter.<-signal>\n");
2456 return 0;
2457 }
2458 sig = -sig;
2459
2460 pid = simple_strtol(argv[2], &endp, 0);
2461 if (*endp)
2462 return KDB_BADINT;
2463 if (pid <= 0) {
2464 kdb_printf("Process ID must be large than 0.\n");
2465 return 0;
2466 }
2467
2468 /* Find the process. */
2469 p = find_task_by_pid_ns(pid, &init_pid_ns);
2470 if (!p) {
2471 kdb_printf("The specified process isn't found.\n");
2472 return 0;
2473 }
2474 p = p->group_leader;
2475 info.si_signo = sig;
2476 info.si_errno = 0;
2477 info.si_code = SI_USER;
2478 info.si_pid = pid; /* same capabilities as process being signalled */
2479 info.si_uid = 0; /* kdb has root authority */
2480 kdb_send_sig_info(p, &info);
2481 return 0;
2482}
2483
2484struct kdb_tm {
2485 int tm_sec; /* seconds */
2486 int tm_min; /* minutes */
2487 int tm_hour; /* hours */
2488 int tm_mday; /* day of the month */
2489 int tm_mon; /* month */
2490 int tm_year; /* year */
2491};
2492
2493static void kdb_gmtime(struct timespec *tv, struct kdb_tm *tm)
2494{
2495 /* This will work from 1970-2099, 2100 is not a leap year */
2496 static int mon_day[] = { 31, 29, 31, 30, 31, 30, 31,
2497 31, 30, 31, 30, 31 };
2498 memset(tm, 0, sizeof(*tm));
2499 tm->tm_sec = tv->tv_sec % (24 * 60 * 60);
2500 tm->tm_mday = tv->tv_sec / (24 * 60 * 60) +
2501 (2 * 365 + 1); /* shift base from 1970 to 1968 */
2502 tm->tm_min = tm->tm_sec / 60 % 60;
2503 tm->tm_hour = tm->tm_sec / 60 / 60;
2504 tm->tm_sec = tm->tm_sec % 60;
2505 tm->tm_year = 68 + 4*(tm->tm_mday / (4*365+1));
2506 tm->tm_mday %= (4*365+1);
2507 mon_day[1] = 29;
2508 while (tm->tm_mday >= mon_day[tm->tm_mon]) {
2509 tm->tm_mday -= mon_day[tm->tm_mon];
2510 if (++tm->tm_mon == 12) {
2511 tm->tm_mon = 0;
2512 ++tm->tm_year;
2513 mon_day[1] = 28;
2514 }
2515 }
2516 ++tm->tm_mday;
2517}
2518
2519/*
2520 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo().
2521 * I cannot call that code directly from kdb, it has an unconditional
2522 * cli()/sti() and calls routines that take locks which can stop the debugger.
2523 */
2524static void kdb_sysinfo(struct sysinfo *val)
2525{
2526 struct timespec uptime;
2527 do_posix_clock_monotonic_gettime(&uptime);
2528 memset(val, 0, sizeof(*val));
2529 val->uptime = uptime.tv_sec;
2530 val->loads[0] = avenrun[0];
2531 val->loads[1] = avenrun[1];
2532 val->loads[2] = avenrun[2];
2533 val->procs = nr_threads-1;
2534 si_meminfo(val);
2535
2536 return;
2537}
2538
2539/*
2540 * kdb_summary - This function implements the 'summary' command.
2541 */
2542static int kdb_summary(int argc, const char **argv)
2543{
157b1a23 2544 struct timespec now;
5d5314d6
JW
2545 struct kdb_tm tm;
2546 struct sysinfo val;
2547
2548 if (argc)
2549 return KDB_ARGCOUNT;
2550
2551 kdb_printf("sysname %s\n", init_uts_ns.name.sysname);
2552 kdb_printf("release %s\n", init_uts_ns.name.release);
2553 kdb_printf("version %s\n", init_uts_ns.name.version);
2554 kdb_printf("machine %s\n", init_uts_ns.name.machine);
2555 kdb_printf("nodename %s\n", init_uts_ns.name.nodename);
2556 kdb_printf("domainname %s\n", init_uts_ns.name.domainname);
2557 kdb_printf("ccversion %s\n", __stringify(CCVERSION));
2558
157b1a23
TG
2559 now = __current_kernel_time();
2560 kdb_gmtime(&now, &tm);
5d5314d6
JW
2561 kdb_printf("date %04d-%02d-%02d %02d:%02d:%02d "
2562 "tz_minuteswest %d\n",
2563 1900+tm.tm_year, tm.tm_mon+1, tm.tm_mday,
2564 tm.tm_hour, tm.tm_min, tm.tm_sec,
2565 sys_tz.tz_minuteswest);
2566
2567 kdb_sysinfo(&val);
2568 kdb_printf("uptime ");
2569 if (val.uptime > (24*60*60)) {
2570 int days = val.uptime / (24*60*60);
2571 val.uptime %= (24*60*60);
2572 kdb_printf("%d day%s ", days, days == 1 ? "" : "s");
2573 }
2574 kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60);
2575
2576 /* lifted from fs/proc/proc_misc.c::loadavg_read_proc() */
2577
2578#define LOAD_INT(x) ((x) >> FSHIFT)
2579#define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
2580 kdb_printf("load avg %ld.%02ld %ld.%02ld %ld.%02ld\n",
2581 LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]),
2582 LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]),
2583 LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2]));
2584#undef LOAD_INT
2585#undef LOAD_FRAC
2586 /* Display in kilobytes */
2587#define K(x) ((x) << (PAGE_SHIFT - 10))
2588 kdb_printf("\nMemTotal: %8lu kB\nMemFree: %8lu kB\n"
2589 "Buffers: %8lu kB\n",
2590 val.totalram, val.freeram, val.bufferram);
2591 return 0;
2592}
2593
2594/*
2595 * kdb_per_cpu - This function implements the 'per_cpu' command.
2596 */
2597static int kdb_per_cpu(int argc, const char **argv)
2598{
931ea248
JW
2599 char fmtstr[64];
2600 int cpu, diag, nextarg = 1;
2601 unsigned long addr, symaddr, val, bytesperword = 0, whichcpu = ~0UL;
5d5314d6
JW
2602
2603 if (argc < 1 || argc > 3)
2604 return KDB_ARGCOUNT;
2605
931ea248
JW
2606 diag = kdbgetaddrarg(argc, argv, &nextarg, &symaddr, NULL, NULL);
2607 if (diag)
2608 return diag;
2609
5d5314d6
JW
2610 if (argc >= 2) {
2611 diag = kdbgetularg(argv[2], &bytesperword);
2612 if (diag)
2613 return diag;
2614 }
2615 if (!bytesperword)
2616 bytesperword = KDB_WORD_SIZE;
2617 else if (bytesperword > KDB_WORD_SIZE)
2618 return KDB_BADWIDTH;
2619 sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword));
2620 if (argc >= 3) {
2621 diag = kdbgetularg(argv[3], &whichcpu);
2622 if (diag)
2623 return diag;
2624 if (!cpu_online(whichcpu)) {
2625 kdb_printf("cpu %ld is not online\n", whichcpu);
2626 return KDB_BADCPUNUM;
2627 }
2628 }
2629
2630 /* Most architectures use __per_cpu_offset[cpu], some use
2631 * __per_cpu_offset(cpu), smp has no __per_cpu_offset.
2632 */
2633#ifdef __per_cpu_offset
2634#define KDB_PCU(cpu) __per_cpu_offset(cpu)
2635#else
2636#ifdef CONFIG_SMP
2637#define KDB_PCU(cpu) __per_cpu_offset[cpu]
2638#else
2639#define KDB_PCU(cpu) 0
2640#endif
2641#endif
5d5314d6 2642 for_each_online_cpu(cpu) {
931ea248
JW
2643 if (KDB_FLAG(CMD_INTERRUPT))
2644 return 0;
2645
5d5314d6
JW
2646 if (whichcpu != ~0UL && whichcpu != cpu)
2647 continue;
931ea248 2648 addr = symaddr + KDB_PCU(cpu);
5d5314d6
JW
2649 diag = kdb_getword(&val, addr, bytesperword);
2650 if (diag) {
2651 kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to "
2652 "read, diag=%d\n", cpu, addr, diag);
2653 continue;
2654 }
5d5314d6
JW
2655 kdb_printf("%5d ", cpu);
2656 kdb_md_line(fmtstr, addr,
2657 bytesperword == KDB_WORD_SIZE,
2658 1, bytesperword, 1, 1, 0);
2659 }
5d5314d6 2660#undef KDB_PCU
5d5314d6
JW
2661 return 0;
2662}
2663
2664/*
2665 * display help for the use of cmd | grep pattern
2666 */
2667static int kdb_grep_help(int argc, const char **argv)
2668{
2669 kdb_printf("Usage of cmd args | grep pattern:\n");
2670 kdb_printf(" Any command's output may be filtered through an ");
2671 kdb_printf("emulated 'pipe'.\n");
2672 kdb_printf(" 'grep' is just a key word.\n");
2673 kdb_printf(" The pattern may include a very limited set of "
2674 "metacharacters:\n");
2675 kdb_printf(" pattern or ^pattern or pattern$ or ^pattern$\n");
2676 kdb_printf(" And if there are spaces in the pattern, you may "
2677 "quote it:\n");
2678 kdb_printf(" \"pat tern\" or \"^pat tern\" or \"pat tern$\""
2679 " or \"^pat tern$\"\n");
2680 return 0;
2681}
2682
2683/*
2684 * kdb_register_repeat - This function is used to register a kernel
2685 * debugger command.
2686 * Inputs:
2687 * cmd Command name
2688 * func Function to execute the command
2689 * usage A simple usage string showing arguments
2690 * help A simple help string describing command
2691 * repeat Does the command auto repeat on enter?
2692 * Returns:
2693 * zero for success, one if a duplicate command.
2694 */
2695#define kdb_command_extend 50 /* arbitrary */
2696int kdb_register_repeat(char *cmd,
2697 kdb_func_t func,
2698 char *usage,
2699 char *help,
2700 short minlen,
2701 kdb_repeat_t repeat)
2702{
2703 int i;
2704 kdbtab_t *kp;
2705
2706 /*
2707 * Brute force method to determine duplicates
2708 */
2709 for_each_kdbcmd(kp, i) {
2710 if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2711 kdb_printf("Duplicate kdb command registered: "
2712 "%s, func %p help %s\n", cmd, func, help);
2713 return 1;
2714 }
2715 }
2716
2717 /*
2718 * Insert command into first available location in table
2719 */
2720 for_each_kdbcmd(kp, i) {
2721 if (kp->cmd_name == NULL)
2722 break;
2723 }
2724
2725 if (i >= kdb_max_commands) {
2726 kdbtab_t *new = kmalloc((kdb_max_commands - KDB_BASE_CMD_MAX +
2727 kdb_command_extend) * sizeof(*new), GFP_KDB);
2728 if (!new) {
2729 kdb_printf("Could not allocate new kdb_command "
2730 "table\n");
2731 return 1;
2732 }
2733 if (kdb_commands) {
2734 memcpy(new, kdb_commands,
5450d904 2735 (kdb_max_commands - KDB_BASE_CMD_MAX) * sizeof(*new));
5d5314d6
JW
2736 kfree(kdb_commands);
2737 }
2738 memset(new + kdb_max_commands, 0,
2739 kdb_command_extend * sizeof(*new));
2740 kdb_commands = new;
5450d904 2741 kp = kdb_commands + kdb_max_commands - KDB_BASE_CMD_MAX;
5d5314d6
JW
2742 kdb_max_commands += kdb_command_extend;
2743 }
2744
2745 kp->cmd_name = cmd;
2746 kp->cmd_func = func;
2747 kp->cmd_usage = usage;
2748 kp->cmd_help = help;
2749 kp->cmd_flags = 0;
2750 kp->cmd_minlen = minlen;
2751 kp->cmd_repeat = repeat;
2752
2753 return 0;
2754}
f7030bbc
JW
2755EXPORT_SYMBOL_GPL(kdb_register_repeat);
2756
5d5314d6
JW
2757
2758/*
2759 * kdb_register - Compatibility register function for commands that do
2760 * not need to specify a repeat state. Equivalent to
2761 * kdb_register_repeat with KDB_REPEAT_NONE.
2762 * Inputs:
2763 * cmd Command name
2764 * func Function to execute the command
2765 * usage A simple usage string showing arguments
2766 * help A simple help string describing command
2767 * Returns:
2768 * zero for success, one if a duplicate command.
2769 */
2770int kdb_register(char *cmd,
2771 kdb_func_t func,
2772 char *usage,
2773 char *help,
2774 short minlen)
2775{
2776 return kdb_register_repeat(cmd, func, usage, help, minlen,
2777 KDB_REPEAT_NONE);
2778}
f7030bbc 2779EXPORT_SYMBOL_GPL(kdb_register);
5d5314d6
JW
2780
2781/*
2782 * kdb_unregister - This function is used to unregister a kernel
2783 * debugger command. It is generally called when a module which
2784 * implements kdb commands is unloaded.
2785 * Inputs:
2786 * cmd Command name
2787 * Returns:
2788 * zero for success, one command not registered.
2789 */
2790int kdb_unregister(char *cmd)
2791{
2792 int i;
2793 kdbtab_t *kp;
2794
2795 /*
2796 * find the command.
2797 */
75d14ede 2798 for_each_kdbcmd(kp, i) {
5d5314d6
JW
2799 if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2800 kp->cmd_name = NULL;
2801 return 0;
2802 }
2803 }
2804
2805 /* Couldn't find it. */
2806 return 1;
2807}
f7030bbc 2808EXPORT_SYMBOL_GPL(kdb_unregister);
5d5314d6
JW
2809
2810/* Initialize the kdb command table. */
2811static void __init kdb_inittab(void)
2812{
2813 int i;
2814 kdbtab_t *kp;
2815
2816 for_each_kdbcmd(kp, i)
2817 kp->cmd_name = NULL;
2818
2819 kdb_register_repeat("md", kdb_md, "<vaddr>",
2820 "Display Memory Contents, also mdWcN, e.g. md8c1", 1,
2821 KDB_REPEAT_NO_ARGS);
2822 kdb_register_repeat("mdr", kdb_md, "<vaddr> <bytes>",
2823 "Display Raw Memory", 0, KDB_REPEAT_NO_ARGS);
2824 kdb_register_repeat("mdp", kdb_md, "<paddr> <bytes>",
2825 "Display Physical Memory", 0, KDB_REPEAT_NO_ARGS);
2826 kdb_register_repeat("mds", kdb_md, "<vaddr>",
2827 "Display Memory Symbolically", 0, KDB_REPEAT_NO_ARGS);
2828 kdb_register_repeat("mm", kdb_mm, "<vaddr> <contents>",
2829 "Modify Memory Contents", 0, KDB_REPEAT_NO_ARGS);
2830 kdb_register_repeat("go", kdb_go, "[<vaddr>]",
2831 "Continue Execution", 1, KDB_REPEAT_NONE);
2832 kdb_register_repeat("rd", kdb_rd, "",
2833 "Display Registers", 0, KDB_REPEAT_NONE);
2834 kdb_register_repeat("rm", kdb_rm, "<reg> <contents>",
2835 "Modify Registers", 0, KDB_REPEAT_NONE);
2836 kdb_register_repeat("ef", kdb_ef, "<vaddr>",
2837 "Display exception frame", 0, KDB_REPEAT_NONE);
2838 kdb_register_repeat("bt", kdb_bt, "[<vaddr>]",
2839 "Stack traceback", 1, KDB_REPEAT_NONE);
2840 kdb_register_repeat("btp", kdb_bt, "<pid>",
2841 "Display stack for process <pid>", 0, KDB_REPEAT_NONE);
2842 kdb_register_repeat("bta", kdb_bt, "[DRSTCZEUIMA]",
2843 "Display stack all processes", 0, KDB_REPEAT_NONE);
2844 kdb_register_repeat("btc", kdb_bt, "",
2845 "Backtrace current process on each cpu", 0, KDB_REPEAT_NONE);
2846 kdb_register_repeat("btt", kdb_bt, "<vaddr>",
2847 "Backtrace process given its struct task address", 0,
2848 KDB_REPEAT_NONE);
2849 kdb_register_repeat("ll", kdb_ll, "<first-element> <linkoffset> <cmd>",
2850 "Execute cmd for each element in linked list", 0, KDB_REPEAT_NONE);
2851 kdb_register_repeat("env", kdb_env, "",
2852 "Show environment variables", 0, KDB_REPEAT_NONE);
2853 kdb_register_repeat("set", kdb_set, "",
2854 "Set environment variables", 0, KDB_REPEAT_NONE);
2855 kdb_register_repeat("help", kdb_help, "",
2856 "Display Help Message", 1, KDB_REPEAT_NONE);
2857 kdb_register_repeat("?", kdb_help, "",
2858 "Display Help Message", 0, KDB_REPEAT_NONE);
2859 kdb_register_repeat("cpu", kdb_cpu, "<cpunum>",
2860 "Switch to new cpu", 0, KDB_REPEAT_NONE);
2861 kdb_register_repeat("kgdb", kdb_kgdb, "",
2862 "Enter kgdb mode", 0, KDB_REPEAT_NONE);
2863 kdb_register_repeat("ps", kdb_ps, "[<flags>|A]",
2864 "Display active task list", 0, KDB_REPEAT_NONE);
2865 kdb_register_repeat("pid", kdb_pid, "<pidnum>",
2866 "Switch to another task", 0, KDB_REPEAT_NONE);
2867 kdb_register_repeat("reboot", kdb_reboot, "",
2868 "Reboot the machine immediately", 0, KDB_REPEAT_NONE);
2869#if defined(CONFIG_MODULES)
2870 kdb_register_repeat("lsmod", kdb_lsmod, "",
2871 "List loaded kernel modules", 0, KDB_REPEAT_NONE);
2872#endif
2873#if defined(CONFIG_MAGIC_SYSRQ)
2874 kdb_register_repeat("sr", kdb_sr, "<key>",
2875 "Magic SysRq key", 0, KDB_REPEAT_NONE);
2876#endif
2877#if defined(CONFIG_PRINTK)
2878 kdb_register_repeat("dmesg", kdb_dmesg, "[lines]",
2879 "Display syslog buffer", 0, KDB_REPEAT_NONE);
2880#endif
ad394f66
AV
2881 if (arch_kgdb_ops.enable_nmi) {
2882 kdb_register_repeat("disable_nmi", kdb_disable_nmi, "",
2883 "Disable NMI entry to KDB", 0, KDB_REPEAT_NONE);
2884 }
5d5314d6
JW
2885 kdb_register_repeat("defcmd", kdb_defcmd, "name \"usage\" \"help\"",
2886 "Define a set of commands, down to endefcmd", 0, KDB_REPEAT_NONE);
2887 kdb_register_repeat("kill", kdb_kill, "<-signal> <pid>",
2888 "Send a signal to a process", 0, KDB_REPEAT_NONE);
2889 kdb_register_repeat("summary", kdb_summary, "",
2890 "Summarize the system", 4, KDB_REPEAT_NONE);
0d3db28d 2891 kdb_register_repeat("per_cpu", kdb_per_cpu, "<sym> [<bytes>] [<cpu>]",
5d5314d6
JW
2892 "Display per_cpu variables", 3, KDB_REPEAT_NONE);
2893 kdb_register_repeat("grephelp", kdb_grep_help, "",
2894 "Display help on | grep", 0, KDB_REPEAT_NONE);
2895}
2896
2897/* Execute any commands defined in kdb_cmds. */
2898static void __init kdb_cmd_init(void)
2899{
2900 int i, diag;
2901 for (i = 0; kdb_cmds[i]; ++i) {
2902 diag = kdb_parse(kdb_cmds[i]);
2903 if (diag)
2904 kdb_printf("kdb command %s failed, kdb diag %d\n",
2905 kdb_cmds[i], diag);
2906 }
2907 if (defcmd_in_progress) {
2908 kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n");
2909 kdb_parse("endefcmd");
2910 }
2911}
2912
b595076a 2913/* Initialize kdb_printf, breakpoint tables and kdb state */
5d5314d6
JW
2914void __init kdb_init(int lvl)
2915{
2916 static int kdb_init_lvl = KDB_NOT_INITIALIZED;
2917 int i;
2918
2919 if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl)
2920 return;
2921 for (i = kdb_init_lvl; i < lvl; i++) {
2922 switch (i) {
2923 case KDB_NOT_INITIALIZED:
2924 kdb_inittab(); /* Initialize Command Table */
2925 kdb_initbptab(); /* Initialize Breakpoints */
2926 break;
2927 case KDB_INIT_EARLY:
2928 kdb_cmd_init(); /* Build kdb_cmds tables */
2929 break;
2930 }
2931 }
2932 kdb_init_lvl = lvl;
2933}
This page took 0.262245 seconds and 5 git commands to generate.