kdb: Fix a prompt management bug when using | grep
[deliverable/linux.git] / kernel / debug / kdb / kdb_main.c
CommitLineData
5d5314d6
JW
1/*
2 * Kernel Debugger Architecture Independent Main Code
3 *
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License. See the file "COPYING" in the main directory of this archive
6 * for more details.
7 *
8 * Copyright (C) 1999-2004 Silicon Graphics, Inc. All Rights Reserved.
9 * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com>
10 * Xscale (R) modifications copyright (C) 2003 Intel Corporation.
11 * Copyright (c) 2009 Wind River Systems, Inc. All Rights Reserved.
12 */
13
14#include <linux/ctype.h>
420c2b1b 15#include <linux/types.h>
5d5314d6
JW
16#include <linux/string.h>
17#include <linux/kernel.h>
bc792e61 18#include <linux/kmsg_dump.h>
5d5314d6
JW
19#include <linux/reboot.h>
20#include <linux/sched.h>
21#include <linux/sysrq.h>
22#include <linux/smp.h>
23#include <linux/utsname.h>
24#include <linux/vmalloc.h>
ad394f66 25#include <linux/atomic.h>
5d5314d6 26#include <linux/module.h>
420c2b1b 27#include <linux/moduleparam.h>
5d5314d6
JW
28#include <linux/mm.h>
29#include <linux/init.h>
30#include <linux/kallsyms.h>
31#include <linux/kgdb.h>
32#include <linux/kdb.h>
33#include <linux/notifier.h>
34#include <linux/interrupt.h>
35#include <linux/delay.h>
36#include <linux/nmi.h>
37#include <linux/time.h>
38#include <linux/ptrace.h>
39#include <linux/sysctl.h>
40#include <linux/cpu.h>
41#include <linux/kdebug.h>
42#include <linux/proc_fs.h>
43#include <linux/uaccess.h>
44#include <linux/slab.h>
45#include "kdb_private.h"
46
420c2b1b
AV
47#undef MODULE_PARAM_PREFIX
48#define MODULE_PARAM_PREFIX "kdb."
49
b8017177 50static int kdb_cmd_enabled = CONFIG_KDB_DEFAULT_ENABLE;
420c2b1b
AV
51module_param_named(cmd_enable, kdb_cmd_enabled, int, 0600);
52
5d5314d6
JW
53#define GREP_LEN 256
54char kdb_grep_string[GREP_LEN];
55int kdb_grepping_flag;
56EXPORT_SYMBOL(kdb_grepping_flag);
57int kdb_grep_leading;
58int kdb_grep_trailing;
59
60/*
61 * Kernel debugger state flags
62 */
63int kdb_flags;
64atomic_t kdb_event;
65
66/*
67 * kdb_lock protects updates to kdb_initial_cpu. Used to
68 * single thread processors through the kernel debugger.
69 */
70int kdb_initial_cpu = -1; /* cpu number that owns kdb */
71int kdb_nextline = 1;
72int kdb_state; /* General KDB state */
73
74struct task_struct *kdb_current_task;
75EXPORT_SYMBOL(kdb_current_task);
76struct pt_regs *kdb_current_regs;
77
78const char *kdb_diemsg;
79static int kdb_go_count;
80#ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC
81static unsigned int kdb_continue_catastrophic =
82 CONFIG_KDB_CONTINUE_CATASTROPHIC;
83#else
84static unsigned int kdb_continue_catastrophic;
85#endif
86
87/* kdb_commands describes the available commands. */
88static kdbtab_t *kdb_commands;
89#define KDB_BASE_CMD_MAX 50
90static int kdb_max_commands = KDB_BASE_CMD_MAX;
27029c33 91static kdbtab_t kdb_base_commands[KDB_BASE_CMD_MAX];
5d5314d6
JW
92#define for_each_kdbcmd(cmd, num) \
93 for ((cmd) = kdb_base_commands, (num) = 0; \
94 num < kdb_max_commands; \
5450d904 95 num++, num == KDB_BASE_CMD_MAX ? cmd = kdb_commands : cmd++)
5d5314d6
JW
96
97typedef struct _kdbmsg {
98 int km_diag; /* kdb diagnostic */
99 char *km_msg; /* Corresponding message text */
100} kdbmsg_t;
101
102#define KDBMSG(msgnum, text) \
103 { KDB_##msgnum, text }
104
105static kdbmsg_t kdbmsgs[] = {
106 KDBMSG(NOTFOUND, "Command Not Found"),
107 KDBMSG(ARGCOUNT, "Improper argument count, see usage."),
108 KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, "
109 "8 is only allowed on 64 bit systems"),
110 KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"),
111 KDBMSG(NOTENV, "Cannot find environment variable"),
112 KDBMSG(NOENVVALUE, "Environment variable should have value"),
113 KDBMSG(NOTIMP, "Command not implemented"),
114 KDBMSG(ENVFULL, "Environment full"),
115 KDBMSG(ENVBUFFULL, "Environment buffer full"),
116 KDBMSG(TOOMANYBPT, "Too many breakpoints defined"),
117#ifdef CONFIG_CPU_XSCALE
118 KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"),
119#else
120 KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"),
121#endif
122 KDBMSG(DUPBPT, "Duplicate breakpoint address"),
123 KDBMSG(BPTNOTFOUND, "Breakpoint not found"),
124 KDBMSG(BADMODE, "Invalid IDMODE"),
125 KDBMSG(BADINT, "Illegal numeric value"),
126 KDBMSG(INVADDRFMT, "Invalid symbolic address format"),
127 KDBMSG(BADREG, "Invalid register name"),
128 KDBMSG(BADCPUNUM, "Invalid cpu number"),
129 KDBMSG(BADLENGTH, "Invalid length field"),
130 KDBMSG(NOBP, "No Breakpoint exists"),
131 KDBMSG(BADADDR, "Invalid address"),
420c2b1b 132 KDBMSG(NOPERM, "Permission denied"),
5d5314d6
JW
133};
134#undef KDBMSG
135
5f784f79 136static const int __nkdb_err = ARRAY_SIZE(kdbmsgs);
5d5314d6
JW
137
138
139/*
140 * Initial environment. This is all kept static and local to
141 * this file. We don't want to rely on the memory allocation
142 * mechanisms in the kernel, so we use a very limited allocate-only
143 * heap for new and altered environment variables. The entire
144 * environment is limited to a fixed number of entries (add more
145 * to __env[] if required) and a fixed amount of heap (add more to
146 * KDB_ENVBUFSIZE if required).
147 */
148
149static char *__env[] = {
150#if defined(CONFIG_SMP)
151 "PROMPT=[%d]kdb> ",
5d5314d6
JW
152#else
153 "PROMPT=kdb> ",
5d5314d6 154#endif
0f26d0e0 155 "MOREPROMPT=more> ",
5d5314d6
JW
156 "RADIX=16",
157 "MDCOUNT=8", /* lines of md output */
5d5314d6
JW
158 KDB_PLATFORM_ENV,
159 "DTABCOUNT=30",
160 "NOSECT=1",
161 (char *)0,
162 (char *)0,
163 (char *)0,
164 (char *)0,
165 (char *)0,
166 (char *)0,
167 (char *)0,
168 (char *)0,
169 (char *)0,
170 (char *)0,
171 (char *)0,
172 (char *)0,
173 (char *)0,
174 (char *)0,
3bdb65ec 175 (char *)0,
5d5314d6
JW
176 (char *)0,
177 (char *)0,
178 (char *)0,
179 (char *)0,
180 (char *)0,
181 (char *)0,
182 (char *)0,
183 (char *)0,
184 (char *)0,
185};
186
5f784f79 187static const int __nenv = ARRAY_SIZE(__env);
5d5314d6
JW
188
189struct task_struct *kdb_curr_task(int cpu)
190{
191 struct task_struct *p = curr_task(cpu);
192#ifdef _TIF_MCA_INIT
193 if ((task_thread_info(p)->flags & _TIF_MCA_INIT) && KDB_TSK(cpu))
194 p = krp->p;
195#endif
196 return p;
197}
198
9452e977
DT
199/*
200 * Check whether the flags of the current command and the permissions
201 * of the kdb console has allow a command to be run.
202 */
203static inline bool kdb_check_flags(kdb_cmdflags_t flags, int permissions,
204 bool no_args)
205{
206 /* permissions comes from userspace so needs massaging slightly */
207 permissions &= KDB_ENABLE_MASK;
208 permissions |= KDB_ENABLE_ALWAYS_SAFE;
209
210 /* some commands change group when launched with no arguments */
211 if (no_args)
212 permissions |= permissions << KDB_ENABLE_NO_ARGS_SHIFT;
213
214 flags |= KDB_ENABLE_ALL;
215
216 return permissions & flags;
217}
218
5d5314d6
JW
219/*
220 * kdbgetenv - This function will return the character string value of
221 * an environment variable.
222 * Parameters:
223 * match A character string representing an environment variable.
224 * Returns:
225 * NULL No environment variable matches 'match'
226 * char* Pointer to string value of environment variable.
227 */
228char *kdbgetenv(const char *match)
229{
230 char **ep = __env;
231 int matchlen = strlen(match);
232 int i;
233
234 for (i = 0; i < __nenv; i++) {
235 char *e = *ep++;
236
237 if (!e)
238 continue;
239
240 if ((strncmp(match, e, matchlen) == 0)
241 && ((e[matchlen] == '\0')
242 || (e[matchlen] == '='))) {
243 char *cp = strchr(e, '=');
244 return cp ? ++cp : "";
245 }
246 }
247 return NULL;
248}
249
250/*
251 * kdballocenv - This function is used to allocate bytes for
252 * environment entries.
253 * Parameters:
254 * match A character string representing a numeric value
255 * Outputs:
256 * *value the unsigned long representation of the env variable 'match'
257 * Returns:
258 * Zero on success, a kdb diagnostic on failure.
259 * Remarks:
260 * We use a static environment buffer (envbuffer) to hold the values
261 * of dynamically generated environment variables (see kdb_set). Buffer
262 * space once allocated is never free'd, so over time, the amount of space
263 * (currently 512 bytes) will be exhausted if env variables are changed
264 * frequently.
265 */
266static char *kdballocenv(size_t bytes)
267{
268#define KDB_ENVBUFSIZE 512
269 static char envbuffer[KDB_ENVBUFSIZE];
270 static int envbufsize;
271 char *ep = NULL;
272
273 if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) {
274 ep = &envbuffer[envbufsize];
275 envbufsize += bytes;
276 }
277 return ep;
278}
279
280/*
281 * kdbgetulenv - This function will return the value of an unsigned
282 * long-valued environment variable.
283 * Parameters:
284 * match A character string representing a numeric value
285 * Outputs:
286 * *value the unsigned long represntation of the env variable 'match'
287 * Returns:
288 * Zero on success, a kdb diagnostic on failure.
289 */
290static int kdbgetulenv(const char *match, unsigned long *value)
291{
292 char *ep;
293
294 ep = kdbgetenv(match);
295 if (!ep)
296 return KDB_NOTENV;
297 if (strlen(ep) == 0)
298 return KDB_NOENVVALUE;
299
300 *value = simple_strtoul(ep, NULL, 0);
301
302 return 0;
303}
304
305/*
306 * kdbgetintenv - This function will return the value of an
307 * integer-valued environment variable.
308 * Parameters:
309 * match A character string representing an integer-valued env variable
310 * Outputs:
311 * *value the integer representation of the environment variable 'match'
312 * Returns:
313 * Zero on success, a kdb diagnostic on failure.
314 */
315int kdbgetintenv(const char *match, int *value)
316{
317 unsigned long val;
318 int diag;
319
320 diag = kdbgetulenv(match, &val);
321 if (!diag)
322 *value = (int) val;
323 return diag;
324}
325
326/*
327 * kdbgetularg - This function will convert a numeric string into an
328 * unsigned long value.
329 * Parameters:
330 * arg A character string representing a numeric value
331 * Outputs:
332 * *value the unsigned long represntation of arg.
333 * Returns:
334 * Zero on success, a kdb diagnostic on failure.
335 */
336int kdbgetularg(const char *arg, unsigned long *value)
337{
338 char *endp;
339 unsigned long val;
340
341 val = simple_strtoul(arg, &endp, 0);
342
343 if (endp == arg) {
344 /*
534af108 345 * Also try base 16, for us folks too lazy to type the
5d5314d6
JW
346 * leading 0x...
347 */
348 val = simple_strtoul(arg, &endp, 16);
349 if (endp == arg)
350 return KDB_BADINT;
351 }
352
353 *value = val;
354
355 return 0;
356}
357
534af108
JW
358int kdbgetu64arg(const char *arg, u64 *value)
359{
360 char *endp;
361 u64 val;
362
363 val = simple_strtoull(arg, &endp, 0);
364
365 if (endp == arg) {
366
367 val = simple_strtoull(arg, &endp, 16);
368 if (endp == arg)
369 return KDB_BADINT;
370 }
371
372 *value = val;
373
374 return 0;
375}
376
5d5314d6
JW
377/*
378 * kdb_set - This function implements the 'set' command. Alter an
379 * existing environment variable or create a new one.
380 */
381int kdb_set(int argc, const char **argv)
382{
383 int i;
384 char *ep;
385 size_t varlen, vallen;
386
387 /*
388 * we can be invoked two ways:
389 * set var=value argv[1]="var", argv[2]="value"
390 * set var = value argv[1]="var", argv[2]="=", argv[3]="value"
391 * - if the latter, shift 'em down.
392 */
393 if (argc == 3) {
394 argv[2] = argv[3];
395 argc--;
396 }
397
398 if (argc != 2)
399 return KDB_ARGCOUNT;
400
401 /*
402 * Check for internal variables
403 */
404 if (strcmp(argv[1], "KDBDEBUG") == 0) {
405 unsigned int debugflags;
406 char *cp;
407
408 debugflags = simple_strtoul(argv[2], &cp, 0);
409 if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) {
410 kdb_printf("kdb: illegal debug flags '%s'\n",
411 argv[2]);
412 return 0;
413 }
414 kdb_flags = (kdb_flags &
415 ~(KDB_DEBUG_FLAG_MASK << KDB_DEBUG_FLAG_SHIFT))
416 | (debugflags << KDB_DEBUG_FLAG_SHIFT);
417
418 return 0;
419 }
420
421 /*
422 * Tokenizer squashed the '=' sign. argv[1] is variable
423 * name, argv[2] = value.
424 */
425 varlen = strlen(argv[1]);
426 vallen = strlen(argv[2]);
427 ep = kdballocenv(varlen + vallen + 2);
428 if (ep == (char *)0)
429 return KDB_ENVBUFFULL;
430
431 sprintf(ep, "%s=%s", argv[1], argv[2]);
432
433 ep[varlen+vallen+1] = '\0';
434
435 for (i = 0; i < __nenv; i++) {
436 if (__env[i]
437 && ((strncmp(__env[i], argv[1], varlen) == 0)
438 && ((__env[i][varlen] == '\0')
439 || (__env[i][varlen] == '=')))) {
440 __env[i] = ep;
441 return 0;
442 }
443 }
444
445 /*
446 * Wasn't existing variable. Fit into slot.
447 */
448 for (i = 0; i < __nenv-1; i++) {
449 if (__env[i] == (char *)0) {
450 __env[i] = ep;
451 return 0;
452 }
453 }
454
455 return KDB_ENVFULL;
456}
457
458static int kdb_check_regs(void)
459{
460 if (!kdb_current_regs) {
461 kdb_printf("No current kdb registers."
462 " You may need to select another task\n");
463 return KDB_BADREG;
464 }
465 return 0;
466}
467
468/*
469 * kdbgetaddrarg - This function is responsible for parsing an
470 * address-expression and returning the value of the expression,
471 * symbol name, and offset to the caller.
472 *
473 * The argument may consist of a numeric value (decimal or
25985edc 474 * hexidecimal), a symbol name, a register name (preceded by the
5d5314d6 475 * percent sign), an environment variable with a numeric value
25985edc 476 * (preceded by a dollar sign) or a simple arithmetic expression
5d5314d6
JW
477 * consisting of a symbol name, +/-, and a numeric constant value
478 * (offset).
479 * Parameters:
480 * argc - count of arguments in argv
481 * argv - argument vector
482 * *nextarg - index to next unparsed argument in argv[]
483 * regs - Register state at time of KDB entry
484 * Outputs:
485 * *value - receives the value of the address-expression
486 * *offset - receives the offset specified, if any
487 * *name - receives the symbol name, if any
488 * *nextarg - index to next unparsed argument in argv[]
489 * Returns:
490 * zero is returned on success, a kdb diagnostic code is
491 * returned on error.
492 */
493int kdbgetaddrarg(int argc, const char **argv, int *nextarg,
494 unsigned long *value, long *offset,
495 char **name)
496{
497 unsigned long addr;
498 unsigned long off = 0;
499 int positive;
500 int diag;
501 int found = 0;
502 char *symname;
503 char symbol = '\0';
504 char *cp;
505 kdb_symtab_t symtab;
506
420c2b1b
AV
507 /*
508 * If the enable flags prohibit both arbitrary memory access
509 * and flow control then there are no reasonable grounds to
510 * provide symbol lookup.
511 */
512 if (!kdb_check_flags(KDB_ENABLE_MEM_READ | KDB_ENABLE_FLOW_CTRL,
513 kdb_cmd_enabled, false))
514 return KDB_NOPERM;
515
5d5314d6
JW
516 /*
517 * Process arguments which follow the following syntax:
518 *
519 * symbol | numeric-address [+/- numeric-offset]
520 * %register
521 * $environment-variable
522 */
523
524 if (*nextarg > argc)
525 return KDB_ARGCOUNT;
526
527 symname = (char *)argv[*nextarg];
528
529 /*
530 * If there is no whitespace between the symbol
531 * or address and the '+' or '-' symbols, we
532 * remember the character and replace it with a
533 * null so the symbol/value can be properly parsed
534 */
535 cp = strpbrk(symname, "+-");
536 if (cp != NULL) {
537 symbol = *cp;
538 *cp++ = '\0';
539 }
540
541 if (symname[0] == '$') {
542 diag = kdbgetulenv(&symname[1], &addr);
543 if (diag)
544 return diag;
545 } else if (symname[0] == '%') {
546 diag = kdb_check_regs();
547 if (diag)
548 return diag;
549 /* Implement register values with % at a later time as it is
550 * arch optional.
551 */
552 return KDB_NOTIMP;
553 } else {
554 found = kdbgetsymval(symname, &symtab);
555 if (found) {
556 addr = symtab.sym_start;
557 } else {
558 diag = kdbgetularg(argv[*nextarg], &addr);
559 if (diag)
560 return diag;
561 }
562 }
563
564 if (!found)
565 found = kdbnearsym(addr, &symtab);
566
567 (*nextarg)++;
568
569 if (name)
570 *name = symname;
571 if (value)
572 *value = addr;
573 if (offset && name && *name)
574 *offset = addr - symtab.sym_start;
575
576 if ((*nextarg > argc)
577 && (symbol == '\0'))
578 return 0;
579
580 /*
581 * check for +/- and offset
582 */
583
584 if (symbol == '\0') {
585 if ((argv[*nextarg][0] != '+')
586 && (argv[*nextarg][0] != '-')) {
587 /*
588 * Not our argument. Return.
589 */
590 return 0;
591 } else {
592 positive = (argv[*nextarg][0] == '+');
593 (*nextarg)++;
594 }
595 } else
596 positive = (symbol == '+');
597
598 /*
599 * Now there must be an offset!
600 */
601 if ((*nextarg > argc)
602 && (symbol == '\0')) {
603 return KDB_INVADDRFMT;
604 }
605
606 if (!symbol) {
607 cp = (char *)argv[*nextarg];
608 (*nextarg)++;
609 }
610
611 diag = kdbgetularg(cp, &off);
612 if (diag)
613 return diag;
614
615 if (!positive)
616 off = -off;
617
618 if (offset)
619 *offset += off;
620
621 if (value)
622 *value += off;
623
624 return 0;
625}
626
627static void kdb_cmderror(int diag)
628{
629 int i;
630
631 if (diag >= 0) {
632 kdb_printf("no error detected (diagnostic is %d)\n", diag);
633 return;
634 }
635
636 for (i = 0; i < __nkdb_err; i++) {
637 if (kdbmsgs[i].km_diag == diag) {
638 kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg);
639 return;
640 }
641 }
642
643 kdb_printf("Unknown diag %d\n", -diag);
644}
645
646/*
647 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd'
648 * command which defines one command as a set of other commands,
649 * terminated by endefcmd. kdb_defcmd processes the initial
650 * 'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for
651 * the following commands until 'endefcmd'.
652 * Inputs:
653 * argc argument count
654 * argv argument vector
655 * Returns:
656 * zero for success, a kdb diagnostic if error
657 */
658struct defcmd_set {
659 int count;
660 int usable;
661 char *name;
662 char *usage;
663 char *help;
664 char **command;
665};
666static struct defcmd_set *defcmd_set;
667static int defcmd_set_count;
668static int defcmd_in_progress;
669
670/* Forward references */
671static int kdb_exec_defcmd(int argc, const char **argv);
672
673static int kdb_defcmd2(const char *cmdstr, const char *argv0)
674{
675 struct defcmd_set *s = defcmd_set + defcmd_set_count - 1;
676 char **save_command = s->command;
677 if (strcmp(argv0, "endefcmd") == 0) {
678 defcmd_in_progress = 0;
679 if (!s->count)
680 s->usable = 0;
681 if (s->usable)
9452e977
DT
682 /* macros are always safe because when executed each
683 * internal command re-enters kdb_parse() and is
684 * safety checked individually.
685 */
686 kdb_register_flags(s->name, kdb_exec_defcmd, s->usage,
687 s->help, 0,
688 KDB_ENABLE_ALWAYS_SAFE);
5d5314d6
JW
689 return 0;
690 }
691 if (!s->usable)
692 return KDB_NOTIMP;
5450d904 693 s->command = kzalloc((s->count + 1) * sizeof(*(s->command)), GFP_KDB);
5d5314d6
JW
694 if (!s->command) {
695 kdb_printf("Could not allocate new kdb_defcmd table for %s\n",
696 cmdstr);
697 s->usable = 0;
698 return KDB_NOTIMP;
699 }
700 memcpy(s->command, save_command, s->count * sizeof(*(s->command)));
701 s->command[s->count++] = kdb_strdup(cmdstr, GFP_KDB);
702 kfree(save_command);
703 return 0;
704}
705
706static int kdb_defcmd(int argc, const char **argv)
707{
708 struct defcmd_set *save_defcmd_set = defcmd_set, *s;
709 if (defcmd_in_progress) {
710 kdb_printf("kdb: nested defcmd detected, assuming missing "
711 "endefcmd\n");
712 kdb_defcmd2("endefcmd", "endefcmd");
713 }
714 if (argc == 0) {
715 int i;
716 for (s = defcmd_set; s < defcmd_set + defcmd_set_count; ++s) {
717 kdb_printf("defcmd %s \"%s\" \"%s\"\n", s->name,
718 s->usage, s->help);
719 for (i = 0; i < s->count; ++i)
720 kdb_printf("%s", s->command[i]);
721 kdb_printf("endefcmd\n");
722 }
723 return 0;
724 }
725 if (argc != 3)
726 return KDB_ARGCOUNT;
a37372f6
JW
727 if (in_dbg_master()) {
728 kdb_printf("Command only available during kdb_init()\n");
729 return KDB_NOTIMP;
730 }
5d5314d6
JW
731 defcmd_set = kmalloc((defcmd_set_count + 1) * sizeof(*defcmd_set),
732 GFP_KDB);
4eb7a66d
JW
733 if (!defcmd_set)
734 goto fail_defcmd;
5d5314d6
JW
735 memcpy(defcmd_set, save_defcmd_set,
736 defcmd_set_count * sizeof(*defcmd_set));
5d5314d6
JW
737 s = defcmd_set + defcmd_set_count;
738 memset(s, 0, sizeof(*s));
739 s->usable = 1;
740 s->name = kdb_strdup(argv[1], GFP_KDB);
4eb7a66d
JW
741 if (!s->name)
742 goto fail_name;
5d5314d6 743 s->usage = kdb_strdup(argv[2], GFP_KDB);
4eb7a66d
JW
744 if (!s->usage)
745 goto fail_usage;
5d5314d6 746 s->help = kdb_strdup(argv[3], GFP_KDB);
4eb7a66d
JW
747 if (!s->help)
748 goto fail_help;
5d5314d6 749 if (s->usage[0] == '"') {
4eb7a66d 750 strcpy(s->usage, argv[2]+1);
5d5314d6
JW
751 s->usage[strlen(s->usage)-1] = '\0';
752 }
753 if (s->help[0] == '"') {
4eb7a66d 754 strcpy(s->help, argv[3]+1);
5d5314d6
JW
755 s->help[strlen(s->help)-1] = '\0';
756 }
757 ++defcmd_set_count;
758 defcmd_in_progress = 1;
4eb7a66d 759 kfree(save_defcmd_set);
5d5314d6 760 return 0;
4eb7a66d
JW
761fail_help:
762 kfree(s->usage);
763fail_usage:
764 kfree(s->name);
765fail_name:
766 kfree(defcmd_set);
767fail_defcmd:
768 kdb_printf("Could not allocate new defcmd_set entry for %s\n", argv[1]);
769 defcmd_set = save_defcmd_set;
770 return KDB_NOTIMP;
5d5314d6
JW
771}
772
773/*
774 * kdb_exec_defcmd - Execute the set of commands associated with this
775 * defcmd name.
776 * Inputs:
777 * argc argument count
778 * argv argument vector
779 * Returns:
780 * zero for success, a kdb diagnostic if error
781 */
782static int kdb_exec_defcmd(int argc, const char **argv)
783{
784 int i, ret;
785 struct defcmd_set *s;
786 if (argc != 0)
787 return KDB_ARGCOUNT;
788 for (s = defcmd_set, i = 0; i < defcmd_set_count; ++i, ++s) {
789 if (strcmp(s->name, argv[0]) == 0)
790 break;
791 }
792 if (i == defcmd_set_count) {
793 kdb_printf("kdb_exec_defcmd: could not find commands for %s\n",
794 argv[0]);
795 return KDB_NOTIMP;
796 }
797 for (i = 0; i < s->count; ++i) {
798 /* Recursive use of kdb_parse, do not use argv after
799 * this point */
800 argv = NULL;
801 kdb_printf("[%s]kdb> %s\n", s->name, s->command[i]);
802 ret = kdb_parse(s->command[i]);
803 if (ret)
804 return ret;
805 }
806 return 0;
807}
808
809/* Command history */
810#define KDB_CMD_HISTORY_COUNT 32
811#define CMD_BUFLEN 200 /* kdb_printf: max printline
812 * size == 256 */
813static unsigned int cmd_head, cmd_tail;
814static unsigned int cmdptr;
815static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN];
816static char cmd_cur[CMD_BUFLEN];
817
818/*
819 * The "str" argument may point to something like | grep xyz
820 */
821static void parse_grep(const char *str)
822{
823 int len;
824 char *cp = (char *)str, *cp2;
825
826 /* sanity check: we should have been called with the \ first */
827 if (*cp != '|')
828 return;
829 cp++;
830 while (isspace(*cp))
831 cp++;
832 if (strncmp(cp, "grep ", 5)) {
833 kdb_printf("invalid 'pipe', see grephelp\n");
834 return;
835 }
836 cp += 5;
837 while (isspace(*cp))
838 cp++;
839 cp2 = strchr(cp, '\n');
840 if (cp2)
841 *cp2 = '\0'; /* remove the trailing newline */
842 len = strlen(cp);
843 if (len == 0) {
844 kdb_printf("invalid 'pipe', see grephelp\n");
845 return;
846 }
847 /* now cp points to a nonzero length search string */
848 if (*cp == '"') {
849 /* allow it be "x y z" by removing the "'s - there must
850 be two of them */
851 cp++;
852 cp2 = strchr(cp, '"');
853 if (!cp2) {
854 kdb_printf("invalid quoted string, see grephelp\n");
855 return;
856 }
857 *cp2 = '\0'; /* end the string where the 2nd " was */
858 }
859 kdb_grep_leading = 0;
860 if (*cp == '^') {
861 kdb_grep_leading = 1;
862 cp++;
863 }
864 len = strlen(cp);
865 kdb_grep_trailing = 0;
866 if (*(cp+len-1) == '$') {
867 kdb_grep_trailing = 1;
868 *(cp+len-1) = '\0';
869 }
870 len = strlen(cp);
871 if (!len)
872 return;
873 if (len >= GREP_LEN) {
874 kdb_printf("search string too long\n");
875 return;
876 }
877 strcpy(kdb_grep_string, cp);
878 kdb_grepping_flag++;
879 return;
880}
881
882/*
883 * kdb_parse - Parse the command line, search the command table for a
884 * matching command and invoke the command function. This
885 * function may be called recursively, if it is, the second call
886 * will overwrite argv and cbuf. It is the caller's
887 * responsibility to save their argv if they recursively call
888 * kdb_parse().
889 * Parameters:
890 * cmdstr The input command line to be parsed.
891 * regs The registers at the time kdb was entered.
892 * Returns:
893 * Zero for success, a kdb diagnostic if failure.
894 * Remarks:
895 * Limited to 20 tokens.
896 *
897 * Real rudimentary tokenization. Basically only whitespace
898 * is considered a token delimeter (but special consideration
899 * is taken of the '=' sign as used by the 'set' command).
900 *
901 * The algorithm used to tokenize the input string relies on
902 * there being at least one whitespace (or otherwise useless)
903 * character between tokens as the character immediately following
904 * the token is altered in-place to a null-byte to terminate the
905 * token string.
906 */
907
908#define MAXARGC 20
909
910int kdb_parse(const char *cmdstr)
911{
912 static char *argv[MAXARGC];
913 static int argc;
914 static char cbuf[CMD_BUFLEN+2];
915 char *cp;
916 char *cpp, quoted;
917 kdbtab_t *tp;
ab08e464 918 int i, escaped, ignore_errors = 0, check_grep = 0;
5d5314d6
JW
919
920 /*
921 * First tokenize the command string.
922 */
923 cp = (char *)cmdstr;
5d5314d6
JW
924
925 if (KDB_FLAG(CMD_INTERRUPT)) {
926 /* Previous command was interrupted, newline must not
927 * repeat the command */
928 KDB_FLAG_CLEAR(CMD_INTERRUPT);
929 KDB_STATE_SET(PAGER);
930 argc = 0; /* no repeat */
931 }
932
933 if (*cp != '\n' && *cp != '\0') {
934 argc = 0;
935 cpp = cbuf;
936 while (*cp) {
937 /* skip whitespace */
938 while (isspace(*cp))
939 cp++;
940 if ((*cp == '\0') || (*cp == '\n') ||
941 (*cp == '#' && !defcmd_in_progress))
942 break;
943 /* special case: check for | grep pattern */
944 if (*cp == '|') {
945 check_grep++;
946 break;
947 }
948 if (cpp >= cbuf + CMD_BUFLEN) {
949 kdb_printf("kdb_parse: command buffer "
950 "overflow, command ignored\n%s\n",
951 cmdstr);
952 return KDB_NOTFOUND;
953 }
954 if (argc >= MAXARGC - 1) {
955 kdb_printf("kdb_parse: too many arguments, "
956 "command ignored\n%s\n", cmdstr);
957 return KDB_NOTFOUND;
958 }
959 argv[argc++] = cpp;
960 escaped = 0;
961 quoted = '\0';
962 /* Copy to next unquoted and unescaped
963 * whitespace or '=' */
964 while (*cp && *cp != '\n' &&
965 (escaped || quoted || !isspace(*cp))) {
966 if (cpp >= cbuf + CMD_BUFLEN)
967 break;
968 if (escaped) {
969 escaped = 0;
970 *cpp++ = *cp++;
971 continue;
972 }
973 if (*cp == '\\') {
974 escaped = 1;
975 ++cp;
976 continue;
977 }
978 if (*cp == quoted)
979 quoted = '\0';
980 else if (*cp == '\'' || *cp == '"')
981 quoted = *cp;
982 *cpp = *cp++;
983 if (*cpp == '=' && !quoted)
984 break;
985 ++cpp;
986 }
987 *cpp++ = '\0'; /* Squash a ws or '=' character */
988 }
989 }
990 if (!argc)
991 return 0;
992 if (check_grep)
993 parse_grep(cp);
994 if (defcmd_in_progress) {
995 int result = kdb_defcmd2(cmdstr, argv[0]);
996 if (!defcmd_in_progress) {
997 argc = 0; /* avoid repeat on endefcmd */
998 *(argv[0]) = '\0';
999 }
1000 return result;
1001 }
1002 if (argv[0][0] == '-' && argv[0][1] &&
1003 (argv[0][1] < '0' || argv[0][1] > '9')) {
1004 ignore_errors = 1;
1005 ++argv[0];
1006 }
1007
1008 for_each_kdbcmd(tp, i) {
1009 if (tp->cmd_name) {
1010 /*
1011 * If this command is allowed to be abbreviated,
1012 * check to see if this is it.
1013 */
1014
1015 if (tp->cmd_minlen
1016 && (strlen(argv[0]) <= tp->cmd_minlen)) {
1017 if (strncmp(argv[0],
1018 tp->cmd_name,
1019 tp->cmd_minlen) == 0) {
1020 break;
1021 }
1022 }
1023
1024 if (strcmp(argv[0], tp->cmd_name) == 0)
1025 break;
1026 }
1027 }
1028
1029 /*
1030 * If we don't find a command by this name, see if the first
1031 * few characters of this match any of the known commands.
1032 * e.g., md1c20 should match md.
1033 */
1034 if (i == kdb_max_commands) {
1035 for_each_kdbcmd(tp, i) {
1036 if (tp->cmd_name) {
1037 if (strncmp(argv[0],
1038 tp->cmd_name,
1039 strlen(tp->cmd_name)) == 0) {
1040 break;
1041 }
1042 }
1043 }
1044 }
1045
1046 if (i < kdb_max_commands) {
1047 int result;
420c2b1b
AV
1048
1049 if (!kdb_check_flags(tp->cmd_flags, kdb_cmd_enabled, argc <= 1))
1050 return KDB_NOPERM;
1051
5d5314d6
JW
1052 KDB_STATE_SET(CMD);
1053 result = (*tp->cmd_func)(argc-1, (const char **)argv);
1054 if (result && ignore_errors && result > KDB_CMD_GO)
1055 result = 0;
1056 KDB_STATE_CLEAR(CMD);
04bb171e
AV
1057
1058 if (tp->cmd_flags & KDB_REPEAT_WITH_ARGS)
1059 return result;
1060
1061 argc = tp->cmd_flags & KDB_REPEAT_NO_ARGS ? 1 : 0;
1062 if (argv[argc])
1063 *(argv[argc]) = '\0';
5d5314d6
JW
1064 return result;
1065 }
1066
1067 /*
1068 * If the input with which we were presented does not
1069 * map to an existing command, attempt to parse it as an
1070 * address argument and display the result. Useful for
1071 * obtaining the address of a variable, or the nearest symbol
1072 * to an address contained in a register.
1073 */
1074 {
1075 unsigned long value;
1076 char *name = NULL;
1077 long offset;
1078 int nextarg = 0;
1079
1080 if (kdbgetaddrarg(0, (const char **)argv, &nextarg,
1081 &value, &offset, &name)) {
1082 return KDB_NOTFOUND;
1083 }
1084
1085 kdb_printf("%s = ", argv[0]);
1086 kdb_symbol_print(value, NULL, KDB_SP_DEFAULT);
1087 kdb_printf("\n");
1088 return 0;
1089 }
1090}
1091
1092
1093static int handle_ctrl_cmd(char *cmd)
1094{
1095#define CTRL_P 16
1096#define CTRL_N 14
1097
1098 /* initial situation */
1099 if (cmd_head == cmd_tail)
1100 return 0;
1101 switch (*cmd) {
1102 case CTRL_P:
1103 if (cmdptr != cmd_tail)
1104 cmdptr = (cmdptr-1) % KDB_CMD_HISTORY_COUNT;
1105 strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1106 return 1;
1107 case CTRL_N:
1108 if (cmdptr != cmd_head)
1109 cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT;
1110 strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1111 return 1;
1112 }
1113 return 0;
1114}
1115
1116/*
1117 * kdb_reboot - This function implements the 'reboot' command. Reboot
1118 * the system immediately, or loop for ever on failure.
1119 */
1120static int kdb_reboot(int argc, const char **argv)
1121{
1122 emergency_restart();
1123 kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n");
1124 while (1)
1125 cpu_relax();
1126 /* NOTREACHED */
1127 return 0;
1128}
1129
1130static void kdb_dumpregs(struct pt_regs *regs)
1131{
1132 int old_lvl = console_loglevel;
a8fe19eb 1133 console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH;
d37d39ae 1134 kdb_trap_printk++;
5d5314d6 1135 show_regs(regs);
d37d39ae 1136 kdb_trap_printk--;
5d5314d6
JW
1137 kdb_printf("\n");
1138 console_loglevel = old_lvl;
1139}
1140
1141void kdb_set_current_task(struct task_struct *p)
1142{
1143 kdb_current_task = p;
1144
1145 if (kdb_task_has_cpu(p)) {
1146 kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p));
1147 return;
1148 }
1149 kdb_current_regs = NULL;
1150}
1151
1152/*
1153 * kdb_local - The main code for kdb. This routine is invoked on a
1154 * specific processor, it is not global. The main kdb() routine
1155 * ensures that only one processor at a time is in this routine.
1156 * This code is called with the real reason code on the first
1157 * entry to a kdb session, thereafter it is called with reason
1158 * SWITCH, even if the user goes back to the original cpu.
1159 * Inputs:
1160 * reason The reason KDB was invoked
1161 * error The hardware-defined error code
1162 * regs The exception frame at time of fault/breakpoint.
1163 * db_result Result code from the break or debug point.
1164 * Returns:
1165 * 0 KDB was invoked for an event which it wasn't responsible
1166 * 1 KDB handled the event for which it was invoked.
1167 * KDB_CMD_GO User typed 'go'.
1168 * KDB_CMD_CPU User switched to another cpu.
1169 * KDB_CMD_SS Single step.
5d5314d6
JW
1170 */
1171static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs,
1172 kdb_dbtrap_t db_result)
1173{
1174 char *cmdbuf;
1175 int diag;
1176 struct task_struct *kdb_current =
1177 kdb_curr_task(raw_smp_processor_id());
1178
1179 KDB_DEBUG_STATE("kdb_local 1", reason);
1180 kdb_go_count = 0;
1181 if (reason == KDB_REASON_DEBUG) {
1182 /* special case below */
1183 } else {
1184 kdb_printf("\nEntering kdb (current=0x%p, pid %d) ",
578bd4df 1185 kdb_current, kdb_current ? kdb_current->pid : 0);
5d5314d6
JW
1186#if defined(CONFIG_SMP)
1187 kdb_printf("on processor %d ", raw_smp_processor_id());
1188#endif
1189 }
1190
1191 switch (reason) {
1192 case KDB_REASON_DEBUG:
1193 {
1194 /*
1195 * If re-entering kdb after a single step
1196 * command, don't print the message.
1197 */
1198 switch (db_result) {
1199 case KDB_DB_BPT:
1200 kdb_printf("\nEntering kdb (0x%p, pid %d) ",
1201 kdb_current, kdb_current->pid);
1202#if defined(CONFIG_SMP)
1203 kdb_printf("on processor %d ", raw_smp_processor_id());
1204#endif
1205 kdb_printf("due to Debug @ " kdb_machreg_fmt "\n",
1206 instruction_pointer(regs));
1207 break;
5d5314d6
JW
1208 case KDB_DB_SS:
1209 break;
1210 case KDB_DB_SSBPT:
1211 KDB_DEBUG_STATE("kdb_local 4", reason);
1212 return 1; /* kdba_db_trap did the work */
1213 default:
1214 kdb_printf("kdb: Bad result from kdba_db_trap: %d\n",
1215 db_result);
1216 break;
1217 }
1218
1219 }
1220 break;
1221 case KDB_REASON_ENTER:
1222 if (KDB_STATE(KEYBOARD))
1223 kdb_printf("due to Keyboard Entry\n");
1224 else
1225 kdb_printf("due to KDB_ENTER()\n");
1226 break;
1227 case KDB_REASON_KEYBOARD:
1228 KDB_STATE_SET(KEYBOARD);
1229 kdb_printf("due to Keyboard Entry\n");
1230 break;
1231 case KDB_REASON_ENTER_SLAVE:
1232 /* drop through, slaves only get released via cpu switch */
1233 case KDB_REASON_SWITCH:
1234 kdb_printf("due to cpu switch\n");
1235 break;
1236 case KDB_REASON_OOPS:
1237 kdb_printf("Oops: %s\n", kdb_diemsg);
1238 kdb_printf("due to oops @ " kdb_machreg_fmt "\n",
1239 instruction_pointer(regs));
1240 kdb_dumpregs(regs);
1241 break;
8daaa5f8
MT
1242 case KDB_REASON_SYSTEM_NMI:
1243 kdb_printf("due to System NonMaskable Interrupt\n");
1244 break;
5d5314d6
JW
1245 case KDB_REASON_NMI:
1246 kdb_printf("due to NonMaskable Interrupt @ "
1247 kdb_machreg_fmt "\n",
1248 instruction_pointer(regs));
5d5314d6
JW
1249 break;
1250 case KDB_REASON_SSTEP:
1251 case KDB_REASON_BREAK:
1252 kdb_printf("due to %s @ " kdb_machreg_fmt "\n",
1253 reason == KDB_REASON_BREAK ?
1254 "Breakpoint" : "SS trap", instruction_pointer(regs));
1255 /*
1256 * Determine if this breakpoint is one that we
1257 * are interested in.
1258 */
1259 if (db_result != KDB_DB_BPT) {
1260 kdb_printf("kdb: error return from kdba_bp_trap: %d\n",
1261 db_result);
1262 KDB_DEBUG_STATE("kdb_local 6", reason);
1263 return 0; /* Not for us, dismiss it */
1264 }
1265 break;
1266 case KDB_REASON_RECURSE:
1267 kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n",
1268 instruction_pointer(regs));
1269 break;
1270 default:
1271 kdb_printf("kdb: unexpected reason code: %d\n", reason);
1272 KDB_DEBUG_STATE("kdb_local 8", reason);
1273 return 0; /* Not for us, dismiss it */
1274 }
1275
1276 while (1) {
1277 /*
1278 * Initialize pager context.
1279 */
1280 kdb_nextline = 1;
1281 KDB_STATE_CLEAR(SUPPRESS);
ab08e464 1282 kdb_grepping_flag = 0;
5d5314d6
JW
1283
1284 cmdbuf = cmd_cur;
1285 *cmdbuf = '\0';
1286 *(cmd_hist[cmd_head]) = '\0';
1287
5d5314d6
JW
1288do_full_getstr:
1289#if defined(CONFIG_SMP)
1290 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"),
1291 raw_smp_processor_id());
1292#else
1293 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"));
1294#endif
1295 if (defcmd_in_progress)
1296 strncat(kdb_prompt_str, "[defcmd]", CMD_BUFLEN);
1297
1298 /*
1299 * Fetch command from keyboard
1300 */
1301 cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str);
1302 if (*cmdbuf != '\n') {
1303 if (*cmdbuf < 32) {
1304 if (cmdptr == cmd_head) {
1305 strncpy(cmd_hist[cmd_head], cmd_cur,
1306 CMD_BUFLEN);
1307 *(cmd_hist[cmd_head] +
1308 strlen(cmd_hist[cmd_head])-1) = '\0';
1309 }
1310 if (!handle_ctrl_cmd(cmdbuf))
1311 *(cmd_cur+strlen(cmd_cur)-1) = '\0';
1312 cmdbuf = cmd_cur;
1313 goto do_full_getstr;
1314 } else {
1315 strncpy(cmd_hist[cmd_head], cmd_cur,
1316 CMD_BUFLEN);
1317 }
1318
1319 cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT;
1320 if (cmd_head == cmd_tail)
1321 cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT;
1322 }
1323
1324 cmdptr = cmd_head;
1325 diag = kdb_parse(cmdbuf);
1326 if (diag == KDB_NOTFOUND) {
1327 kdb_printf("Unknown kdb command: '%s'\n", cmdbuf);
1328 diag = 0;
1329 }
1330 if (diag == KDB_CMD_GO
1331 || diag == KDB_CMD_CPU
1332 || diag == KDB_CMD_SS
5d5314d6
JW
1333 || diag == KDB_CMD_KGDB)
1334 break;
1335
1336 if (diag)
1337 kdb_cmderror(diag);
1338 }
1339 KDB_DEBUG_STATE("kdb_local 9", diag);
1340 return diag;
1341}
1342
1343
1344/*
1345 * kdb_print_state - Print the state data for the current processor
1346 * for debugging.
1347 * Inputs:
1348 * text Identifies the debug point
1349 * value Any integer value to be printed, e.g. reason code.
1350 */
1351void kdb_print_state(const char *text, int value)
1352{
1353 kdb_printf("state: %s cpu %d value %d initial %d state %x\n",
1354 text, raw_smp_processor_id(), value, kdb_initial_cpu,
1355 kdb_state);
1356}
1357
1358/*
1359 * kdb_main_loop - After initial setup and assignment of the
1360 * controlling cpu, all cpus are in this loop. One cpu is in
1361 * control and will issue the kdb prompt, the others will spin
1362 * until 'go' or cpu switch.
1363 *
1364 * To get a consistent view of the kernel stacks for all
1365 * processes, this routine is invoked from the main kdb code via
1366 * an architecture specific routine. kdba_main_loop is
1367 * responsible for making the kernel stacks consistent for all
1368 * processes, there should be no difference between a blocked
1369 * process and a running process as far as kdb is concerned.
1370 * Inputs:
1371 * reason The reason KDB was invoked
1372 * error The hardware-defined error code
1373 * reason2 kdb's current reason code.
1374 * Initially error but can change
25985edc 1375 * according to kdb state.
5d5314d6
JW
1376 * db_result Result code from break or debug point.
1377 * regs The exception frame at time of fault/breakpoint.
1378 * should always be valid.
1379 * Returns:
1380 * 0 KDB was invoked for an event which it wasn't responsible
1381 * 1 KDB handled the event for which it was invoked.
1382 */
1383int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error,
1384 kdb_dbtrap_t db_result, struct pt_regs *regs)
1385{
1386 int result = 1;
1387 /* Stay in kdb() until 'go', 'ss[b]' or an error */
1388 while (1) {
1389 /*
1390 * All processors except the one that is in control
1391 * will spin here.
1392 */
1393 KDB_DEBUG_STATE("kdb_main_loop 1", reason);
1394 while (KDB_STATE(HOLD_CPU)) {
1395 /* state KDB is turned off by kdb_cpu to see if the
1396 * other cpus are still live, each cpu in this loop
1397 * turns it back on.
1398 */
1399 if (!KDB_STATE(KDB))
1400 KDB_STATE_SET(KDB);
1401 }
1402
1403 KDB_STATE_CLEAR(SUPPRESS);
1404 KDB_DEBUG_STATE("kdb_main_loop 2", reason);
1405 if (KDB_STATE(LEAVING))
1406 break; /* Another cpu said 'go' */
1407 /* Still using kdb, this processor is in control */
1408 result = kdb_local(reason2, error, regs, db_result);
1409 KDB_DEBUG_STATE("kdb_main_loop 3", result);
1410
1411 if (result == KDB_CMD_CPU)
1412 break;
1413
1414 if (result == KDB_CMD_SS) {
1415 KDB_STATE_SET(DOING_SS);
1416 break;
1417 }
1418
5d5314d6 1419 if (result == KDB_CMD_KGDB) {
d613d828 1420 if (!KDB_STATE(DOING_KGDB))
5d5314d6
JW
1421 kdb_printf("Entering please attach debugger "
1422 "or use $D#44+ or $3#33\n");
1423 break;
1424 }
1425 if (result && result != 1 && result != KDB_CMD_GO)
1426 kdb_printf("\nUnexpected kdb_local return code %d\n",
1427 result);
1428 KDB_DEBUG_STATE("kdb_main_loop 4", reason);
1429 break;
1430 }
1431 if (KDB_STATE(DOING_SS))
1432 KDB_STATE_CLEAR(SSBPT);
1433
8f30d411
AW
1434 /* Clean up any keyboard devices before leaving */
1435 kdb_kbd_cleanup_state();
1436
5d5314d6
JW
1437 return result;
1438}
1439
1440/*
1441 * kdb_mdr - This function implements the guts of the 'mdr', memory
1442 * read command.
1443 * mdr <addr arg>,<byte count>
1444 * Inputs:
1445 * addr Start address
1446 * count Number of bytes
1447 * Returns:
1448 * Always 0. Any errors are detected and printed by kdb_getarea.
1449 */
1450static int kdb_mdr(unsigned long addr, unsigned int count)
1451{
1452 unsigned char c;
1453 while (count--) {
1454 if (kdb_getarea(c, addr))
1455 return 0;
1456 kdb_printf("%02x", c);
1457 addr++;
1458 }
1459 kdb_printf("\n");
1460 return 0;
1461}
1462
1463/*
1464 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4',
1465 * 'md8' 'mdr' and 'mds' commands.
1466 *
1467 * md|mds [<addr arg> [<line count> [<radix>]]]
1468 * mdWcN [<addr arg> [<line count> [<radix>]]]
1469 * where W = is the width (1, 2, 4 or 8) and N is the count.
1470 * for eg., md1c20 reads 20 bytes, 1 at a time.
1471 * mdr <addr arg>,<byte count>
1472 */
1473static void kdb_md_line(const char *fmtstr, unsigned long addr,
1474 int symbolic, int nosect, int bytesperword,
1475 int num, int repeat, int phys)
1476{
1477 /* print just one line of data */
1478 kdb_symtab_t symtab;
1479 char cbuf[32];
1480 char *c = cbuf;
1481 int i;
1482 unsigned long word;
1483
1484 memset(cbuf, '\0', sizeof(cbuf));
1485 if (phys)
1486 kdb_printf("phys " kdb_machreg_fmt0 " ", addr);
1487 else
1488 kdb_printf(kdb_machreg_fmt0 " ", addr);
1489
1490 for (i = 0; i < num && repeat--; i++) {
1491 if (phys) {
1492 if (kdb_getphysword(&word, addr, bytesperword))
1493 break;
1494 } else if (kdb_getword(&word, addr, bytesperword))
1495 break;
1496 kdb_printf(fmtstr, word);
1497 if (symbolic)
1498 kdbnearsym(word, &symtab);
1499 else
1500 memset(&symtab, 0, sizeof(symtab));
1501 if (symtab.sym_name) {
1502 kdb_symbol_print(word, &symtab, 0);
1503 if (!nosect) {
1504 kdb_printf("\n");
1505 kdb_printf(" %s %s "
1506 kdb_machreg_fmt " "
1507 kdb_machreg_fmt " "
1508 kdb_machreg_fmt, symtab.mod_name,
1509 symtab.sec_name, symtab.sec_start,
1510 symtab.sym_start, symtab.sym_end);
1511 }
1512 addr += bytesperword;
1513 } else {
1514 union {
1515 u64 word;
1516 unsigned char c[8];
1517 } wc;
1518 unsigned char *cp;
1519#ifdef __BIG_ENDIAN
1520 cp = wc.c + 8 - bytesperword;
1521#else
1522 cp = wc.c;
1523#endif
1524 wc.word = word;
1525#define printable_char(c) \
1526 ({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; })
1527 switch (bytesperword) {
1528 case 8:
1529 *c++ = printable_char(*cp++);
1530 *c++ = printable_char(*cp++);
1531 *c++ = printable_char(*cp++);
1532 *c++ = printable_char(*cp++);
1533 addr += 4;
1534 case 4:
1535 *c++ = printable_char(*cp++);
1536 *c++ = printable_char(*cp++);
1537 addr += 2;
1538 case 2:
1539 *c++ = printable_char(*cp++);
1540 addr++;
1541 case 1:
1542 *c++ = printable_char(*cp++);
1543 addr++;
1544 break;
1545 }
1546#undef printable_char
1547 }
1548 }
1549 kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1),
1550 " ", cbuf);
1551}
1552
1553static int kdb_md(int argc, const char **argv)
1554{
1555 static unsigned long last_addr;
1556 static int last_radix, last_bytesperword, last_repeat;
1557 int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat;
1558 int nosect = 0;
1559 char fmtchar, fmtstr[64];
1560 unsigned long addr;
1561 unsigned long word;
1562 long offset = 0;
1563 int symbolic = 0;
1564 int valid = 0;
1565 int phys = 0;
1566
1567 kdbgetintenv("MDCOUNT", &mdcount);
1568 kdbgetintenv("RADIX", &radix);
1569 kdbgetintenv("BYTESPERWORD", &bytesperword);
1570
1571 /* Assume 'md <addr>' and start with environment values */
1572 repeat = mdcount * 16 / bytesperword;
1573
1574 if (strcmp(argv[0], "mdr") == 0) {
1575 if (argc != 2)
1576 return KDB_ARGCOUNT;
1577 valid = 1;
1578 } else if (isdigit(argv[0][2])) {
1579 bytesperword = (int)(argv[0][2] - '0');
1580 if (bytesperword == 0) {
1581 bytesperword = last_bytesperword;
1582 if (bytesperword == 0)
1583 bytesperword = 4;
1584 }
1585 last_bytesperword = bytesperword;
1586 repeat = mdcount * 16 / bytesperword;
1587 if (!argv[0][3])
1588 valid = 1;
1589 else if (argv[0][3] == 'c' && argv[0][4]) {
1590 char *p;
1591 repeat = simple_strtoul(argv[0] + 4, &p, 10);
1592 mdcount = ((repeat * bytesperword) + 15) / 16;
1593 valid = !*p;
1594 }
1595 last_repeat = repeat;
1596 } else if (strcmp(argv[0], "md") == 0)
1597 valid = 1;
1598 else if (strcmp(argv[0], "mds") == 0)
1599 valid = 1;
1600 else if (strcmp(argv[0], "mdp") == 0) {
1601 phys = valid = 1;
1602 }
1603 if (!valid)
1604 return KDB_NOTFOUND;
1605
1606 if (argc == 0) {
1607 if (last_addr == 0)
1608 return KDB_ARGCOUNT;
1609 addr = last_addr;
1610 radix = last_radix;
1611 bytesperword = last_bytesperword;
1612 repeat = last_repeat;
1613 mdcount = ((repeat * bytesperword) + 15) / 16;
1614 }
1615
1616 if (argc) {
1617 unsigned long val;
1618 int diag, nextarg = 1;
1619 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr,
1620 &offset, NULL);
1621 if (diag)
1622 return diag;
1623 if (argc > nextarg+2)
1624 return KDB_ARGCOUNT;
1625
1626 if (argc >= nextarg) {
1627 diag = kdbgetularg(argv[nextarg], &val);
1628 if (!diag) {
1629 mdcount = (int) val;
1630 repeat = mdcount * 16 / bytesperword;
1631 }
1632 }
1633 if (argc >= nextarg+1) {
1634 diag = kdbgetularg(argv[nextarg+1], &val);
1635 if (!diag)
1636 radix = (int) val;
1637 }
1638 }
1639
1640 if (strcmp(argv[0], "mdr") == 0)
1641 return kdb_mdr(addr, mdcount);
1642
1643 switch (radix) {
1644 case 10:
1645 fmtchar = 'd';
1646 break;
1647 case 16:
1648 fmtchar = 'x';
1649 break;
1650 case 8:
1651 fmtchar = 'o';
1652 break;
1653 default:
1654 return KDB_BADRADIX;
1655 }
1656
1657 last_radix = radix;
1658
1659 if (bytesperword > KDB_WORD_SIZE)
1660 return KDB_BADWIDTH;
1661
1662 switch (bytesperword) {
1663 case 8:
1664 sprintf(fmtstr, "%%16.16l%c ", fmtchar);
1665 break;
1666 case 4:
1667 sprintf(fmtstr, "%%8.8l%c ", fmtchar);
1668 break;
1669 case 2:
1670 sprintf(fmtstr, "%%4.4l%c ", fmtchar);
1671 break;
1672 case 1:
1673 sprintf(fmtstr, "%%2.2l%c ", fmtchar);
1674 break;
1675 default:
1676 return KDB_BADWIDTH;
1677 }
1678
1679 last_repeat = repeat;
1680 last_bytesperword = bytesperword;
1681
1682 if (strcmp(argv[0], "mds") == 0) {
1683 symbolic = 1;
1684 /* Do not save these changes as last_*, they are temporary mds
1685 * overrides.
1686 */
1687 bytesperword = KDB_WORD_SIZE;
1688 repeat = mdcount;
1689 kdbgetintenv("NOSECT", &nosect);
1690 }
1691
1692 /* Round address down modulo BYTESPERWORD */
1693
1694 addr &= ~(bytesperword-1);
1695
1696 while (repeat > 0) {
1697 unsigned long a;
1698 int n, z, num = (symbolic ? 1 : (16 / bytesperword));
1699
1700 if (KDB_FLAG(CMD_INTERRUPT))
1701 return 0;
1702 for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) {
1703 if (phys) {
1704 if (kdb_getphysword(&word, a, bytesperword)
1705 || word)
1706 break;
1707 } else if (kdb_getword(&word, a, bytesperword) || word)
1708 break;
1709 }
1710 n = min(num, repeat);
1711 kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword,
1712 num, repeat, phys);
1713 addr += bytesperword * n;
1714 repeat -= n;
1715 z = (z + num - 1) / num;
1716 if (z > 2) {
1717 int s = num * (z-2);
1718 kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0
1719 " zero suppressed\n",
1720 addr, addr + bytesperword * s - 1);
1721 addr += bytesperword * s;
1722 repeat -= s;
1723 }
1724 }
1725 last_addr = addr;
1726
1727 return 0;
1728}
1729
1730/*
1731 * kdb_mm - This function implements the 'mm' command.
1732 * mm address-expression new-value
1733 * Remarks:
1734 * mm works on machine words, mmW works on bytes.
1735 */
1736static int kdb_mm(int argc, const char **argv)
1737{
1738 int diag;
1739 unsigned long addr;
1740 long offset = 0;
1741 unsigned long contents;
1742 int nextarg;
1743 int width;
1744
1745 if (argv[0][2] && !isdigit(argv[0][2]))
1746 return KDB_NOTFOUND;
1747
1748 if (argc < 2)
1749 return KDB_ARGCOUNT;
1750
1751 nextarg = 1;
1752 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1753 if (diag)
1754 return diag;
1755
1756 if (nextarg > argc)
1757 return KDB_ARGCOUNT;
1758 diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL);
1759 if (diag)
1760 return diag;
1761
1762 if (nextarg != argc + 1)
1763 return KDB_ARGCOUNT;
1764
1765 width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE);
1766 diag = kdb_putword(addr, contents, width);
1767 if (diag)
1768 return diag;
1769
1770 kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents);
1771
1772 return 0;
1773}
1774
1775/*
1776 * kdb_go - This function implements the 'go' command.
1777 * go [address-expression]
1778 */
1779static int kdb_go(int argc, const char **argv)
1780{
1781 unsigned long addr;
1782 int diag;
1783 int nextarg;
1784 long offset;
1785
495363d3
JW
1786 if (raw_smp_processor_id() != kdb_initial_cpu) {
1787 kdb_printf("go must execute on the entry cpu, "
1788 "please use \"cpu %d\" and then execute go\n",
1789 kdb_initial_cpu);
1790 return KDB_BADCPUNUM;
1791 }
5d5314d6 1792 if (argc == 1) {
5d5314d6
JW
1793 nextarg = 1;
1794 diag = kdbgetaddrarg(argc, argv, &nextarg,
1795 &addr, &offset, NULL);
1796 if (diag)
1797 return diag;
1798 } else if (argc) {
1799 return KDB_ARGCOUNT;
1800 }
1801
1802 diag = KDB_CMD_GO;
1803 if (KDB_FLAG(CATASTROPHIC)) {
1804 kdb_printf("Catastrophic error detected\n");
1805 kdb_printf("kdb_continue_catastrophic=%d, ",
1806 kdb_continue_catastrophic);
1807 if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) {
1808 kdb_printf("type go a second time if you really want "
1809 "to continue\n");
1810 return 0;
1811 }
1812 if (kdb_continue_catastrophic == 2) {
1813 kdb_printf("forcing reboot\n");
1814 kdb_reboot(0, NULL);
1815 }
1816 kdb_printf("attempting to continue\n");
1817 }
1818 return diag;
1819}
1820
1821/*
1822 * kdb_rd - This function implements the 'rd' command.
1823 */
1824static int kdb_rd(int argc, const char **argv)
1825{
534af108
JW
1826 int len = kdb_check_regs();
1827#if DBG_MAX_REG_NUM > 0
1828 int i;
1829 char *rname;
1830 int rsize;
1831 u64 reg64;
1832 u32 reg32;
1833 u16 reg16;
1834 u8 reg8;
1835
1836 if (len)
1837 return len;
1838
1839 for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1840 rsize = dbg_reg_def[i].size * 2;
1841 if (rsize > 16)
1842 rsize = 2;
1843 if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) {
1844 len = 0;
1845 kdb_printf("\n");
1846 }
1847 if (len)
1848 len += kdb_printf(" ");
1849 switch(dbg_reg_def[i].size * 8) {
1850 case 8:
1851 rname = dbg_get_reg(i, &reg8, kdb_current_regs);
1852 if (!rname)
1853 break;
1854 len += kdb_printf("%s: %02x", rname, reg8);
1855 break;
1856 case 16:
1857 rname = dbg_get_reg(i, &reg16, kdb_current_regs);
1858 if (!rname)
1859 break;
1860 len += kdb_printf("%s: %04x", rname, reg16);
1861 break;
1862 case 32:
1863 rname = dbg_get_reg(i, &reg32, kdb_current_regs);
1864 if (!rname)
1865 break;
1866 len += kdb_printf("%s: %08x", rname, reg32);
1867 break;
1868 case 64:
1869 rname = dbg_get_reg(i, &reg64, kdb_current_regs);
1870 if (!rname)
1871 break;
1872 len += kdb_printf("%s: %016llx", rname, reg64);
1873 break;
1874 default:
1875 len += kdb_printf("%s: ??", dbg_reg_def[i].name);
1876 }
1877 }
1878 kdb_printf("\n");
1879#else
1880 if (len)
1881 return len;
5d5314d6
JW
1882
1883 kdb_dumpregs(kdb_current_regs);
534af108 1884#endif
5d5314d6
JW
1885 return 0;
1886}
1887
1888/*
1889 * kdb_rm - This function implements the 'rm' (register modify) command.
1890 * rm register-name new-contents
1891 * Remarks:
534af108 1892 * Allows register modification with the same restrictions as gdb
5d5314d6
JW
1893 */
1894static int kdb_rm(int argc, const char **argv)
1895{
534af108 1896#if DBG_MAX_REG_NUM > 0
5d5314d6 1897 int diag;
534af108
JW
1898 const char *rname;
1899 int i;
1900 u64 reg64;
1901 u32 reg32;
1902 u16 reg16;
1903 u8 reg8;
5d5314d6
JW
1904
1905 if (argc != 2)
1906 return KDB_ARGCOUNT;
1907 /*
1908 * Allow presence or absence of leading '%' symbol.
1909 */
534af108
JW
1910 rname = argv[1];
1911 if (*rname == '%')
1912 rname++;
5d5314d6 1913
534af108 1914 diag = kdbgetu64arg(argv[2], &reg64);
5d5314d6
JW
1915 if (diag)
1916 return diag;
1917
1918 diag = kdb_check_regs();
1919 if (diag)
1920 return diag;
534af108
JW
1921
1922 diag = KDB_BADREG;
1923 for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1924 if (strcmp(rname, dbg_reg_def[i].name) == 0) {
1925 diag = 0;
1926 break;
1927 }
1928 }
1929 if (!diag) {
1930 switch(dbg_reg_def[i].size * 8) {
1931 case 8:
1932 reg8 = reg64;
1933 dbg_set_reg(i, &reg8, kdb_current_regs);
1934 break;
1935 case 16:
1936 reg16 = reg64;
1937 dbg_set_reg(i, &reg16, kdb_current_regs);
1938 break;
1939 case 32:
1940 reg32 = reg64;
1941 dbg_set_reg(i, &reg32, kdb_current_regs);
1942 break;
1943 case 64:
1944 dbg_set_reg(i, &reg64, kdb_current_regs);
1945 break;
1946 }
1947 }
1948 return diag;
1949#else
5d5314d6 1950 kdb_printf("ERROR: Register set currently not implemented\n");
534af108
JW
1951 return 0;
1952#endif
5d5314d6
JW
1953}
1954
1955#if defined(CONFIG_MAGIC_SYSRQ)
1956/*
1957 * kdb_sr - This function implements the 'sr' (SYSRQ key) command
1958 * which interfaces to the soi-disant MAGIC SYSRQ functionality.
1959 * sr <magic-sysrq-code>
1960 */
1961static int kdb_sr(int argc, const char **argv)
1962{
420c2b1b
AV
1963 bool check_mask =
1964 !kdb_check_flags(KDB_ENABLE_ALL, kdb_cmd_enabled, false);
1965
5d5314d6
JW
1966 if (argc != 1)
1967 return KDB_ARGCOUNT;
420c2b1b 1968
d37d39ae 1969 kdb_trap_printk++;
420c2b1b 1970 __handle_sysrq(*argv[1], check_mask);
d37d39ae 1971 kdb_trap_printk--;
5d5314d6
JW
1972
1973 return 0;
1974}
1975#endif /* CONFIG_MAGIC_SYSRQ */
1976
1977/*
1978 * kdb_ef - This function implements the 'regs' (display exception
1979 * frame) command. This command takes an address and expects to
1980 * find an exception frame at that address, formats and prints
1981 * it.
1982 * regs address-expression
1983 * Remarks:
1984 * Not done yet.
1985 */
1986static int kdb_ef(int argc, const char **argv)
1987{
1988 int diag;
1989 unsigned long addr;
1990 long offset;
1991 int nextarg;
1992
1993 if (argc != 1)
1994 return KDB_ARGCOUNT;
1995
1996 nextarg = 1;
1997 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1998 if (diag)
1999 return diag;
2000 show_regs((struct pt_regs *)addr);
2001 return 0;
2002}
2003
2004#if defined(CONFIG_MODULES)
5d5314d6
JW
2005/*
2006 * kdb_lsmod - This function implements the 'lsmod' command. Lists
2007 * currently loaded kernel modules.
2008 * Mostly taken from userland lsmod.
2009 */
2010static int kdb_lsmod(int argc, const char **argv)
2011{
2012 struct module *mod;
2013
2014 if (argc != 0)
2015 return KDB_ARGCOUNT;
2016
2017 kdb_printf("Module Size modstruct Used by\n");
2018 list_for_each_entry(mod, kdb_modules, list) {
0d21b0e3
RR
2019 if (mod->state == MODULE_STATE_UNFORMED)
2020 continue;
5d5314d6
JW
2021
2022 kdb_printf("%-20s%8u 0x%p ", mod->name,
2023 mod->core_size, (void *)mod);
2024#ifdef CONFIG_MODULE_UNLOAD
d5db139a 2025 kdb_printf("%4d ", module_refcount(mod));
5d5314d6
JW
2026#endif
2027 if (mod->state == MODULE_STATE_GOING)
2028 kdb_printf(" (Unloading)");
2029 else if (mod->state == MODULE_STATE_COMING)
2030 kdb_printf(" (Loading)");
2031 else
2032 kdb_printf(" (Live)");
9e8b624f 2033 kdb_printf(" 0x%p", mod->module_core);
5d5314d6
JW
2034
2035#ifdef CONFIG_MODULE_UNLOAD
2036 {
2037 struct module_use *use;
2038 kdb_printf(" [ ");
c8e21ced
RR
2039 list_for_each_entry(use, &mod->source_list,
2040 source_list)
2041 kdb_printf("%s ", use->target->name);
5d5314d6
JW
2042 kdb_printf("]\n");
2043 }
2044#endif
2045 }
2046
2047 return 0;
2048}
2049
2050#endif /* CONFIG_MODULES */
2051
2052/*
2053 * kdb_env - This function implements the 'env' command. Display the
2054 * current environment variables.
2055 */
2056
2057static int kdb_env(int argc, const char **argv)
2058{
2059 int i;
2060
2061 for (i = 0; i < __nenv; i++) {
2062 if (__env[i])
2063 kdb_printf("%s\n", __env[i]);
2064 }
2065
2066 if (KDB_DEBUG(MASK))
2067 kdb_printf("KDBFLAGS=0x%x\n", kdb_flags);
2068
2069 return 0;
2070}
2071
2072#ifdef CONFIG_PRINTK
2073/*
2074 * kdb_dmesg - This function implements the 'dmesg' command to display
2075 * the contents of the syslog buffer.
2076 * dmesg [lines] [adjust]
2077 */
2078static int kdb_dmesg(int argc, const char **argv)
2079{
bc792e61
AV
2080 int diag;
2081 int logging;
2082 int lines = 0;
2083 int adjust = 0;
2084 int n = 0;
2085 int skip = 0;
2086 struct kmsg_dumper dumper = { .active = 1 };
2087 size_t len;
2088 char buf[201];
5d5314d6
JW
2089
2090 if (argc > 2)
2091 return KDB_ARGCOUNT;
2092 if (argc) {
2093 char *cp;
2094 lines = simple_strtol(argv[1], &cp, 0);
2095 if (*cp)
2096 lines = 0;
2097 if (argc > 1) {
2098 adjust = simple_strtoul(argv[2], &cp, 0);
2099 if (*cp || adjust < 0)
2100 adjust = 0;
2101 }
2102 }
2103
2104 /* disable LOGGING if set */
2105 diag = kdbgetintenv("LOGGING", &logging);
2106 if (!diag && logging) {
2107 const char *setargs[] = { "set", "LOGGING", "0" };
2108 kdb_set(2, setargs);
2109 }
2110
c064da47
AV
2111 kmsg_dump_rewind_nolock(&dumper);
2112 while (kmsg_dump_get_line_nolock(&dumper, 1, NULL, 0, NULL))
bc792e61
AV
2113 n++;
2114
5d5314d6
JW
2115 if (lines < 0) {
2116 if (adjust >= n)
2117 kdb_printf("buffer only contains %d lines, nothing "
2118 "printed\n", n);
2119 else if (adjust - lines >= n)
2120 kdb_printf("buffer only contains %d lines, last %d "
2121 "lines printed\n", n, n - adjust);
bc792e61
AV
2122 skip = adjust;
2123 lines = abs(lines);
5d5314d6 2124 } else if (lines > 0) {
bc792e61
AV
2125 skip = n - lines - adjust;
2126 lines = abs(lines);
5d5314d6
JW
2127 if (adjust >= n) {
2128 kdb_printf("buffer only contains %d lines, "
2129 "nothing printed\n", n);
2130 skip = n;
2131 } else if (skip < 0) {
2132 lines += skip;
2133 skip = 0;
2134 kdb_printf("buffer only contains %d lines, first "
2135 "%d lines printed\n", n, lines);
2136 }
bc792e61
AV
2137 } else {
2138 lines = n;
5d5314d6 2139 }
bc792e61
AV
2140
2141 if (skip >= n || skip < 0)
2142 return 0;
2143
c064da47
AV
2144 kmsg_dump_rewind_nolock(&dumper);
2145 while (kmsg_dump_get_line_nolock(&dumper, 1, buf, sizeof(buf), &len)) {
bc792e61
AV
2146 if (skip) {
2147 skip--;
2148 continue;
5d5314d6 2149 }
bc792e61
AV
2150 if (!lines--)
2151 break;
d1871b38
JW
2152 if (KDB_FLAG(CMD_INTERRUPT))
2153 return 0;
bc792e61
AV
2154
2155 kdb_printf("%.*s\n", (int)len - 1, buf);
5d5314d6 2156 }
5d5314d6
JW
2157
2158 return 0;
2159}
2160#endif /* CONFIG_PRINTK */
ad394f66
AV
2161
2162/* Make sure we balance enable/disable calls, must disable first. */
2163static atomic_t kdb_nmi_disabled;
2164
2165static int kdb_disable_nmi(int argc, const char *argv[])
2166{
2167 if (atomic_read(&kdb_nmi_disabled))
2168 return 0;
2169 atomic_set(&kdb_nmi_disabled, 1);
2170 arch_kgdb_ops.enable_nmi(0);
2171 return 0;
2172}
2173
2174static int kdb_param_enable_nmi(const char *val, const struct kernel_param *kp)
2175{
2176 if (!atomic_add_unless(&kdb_nmi_disabled, -1, 0))
2177 return -EINVAL;
2178 arch_kgdb_ops.enable_nmi(1);
2179 return 0;
2180}
2181
2182static const struct kernel_param_ops kdb_param_ops_enable_nmi = {
2183 .set = kdb_param_enable_nmi,
2184};
2185module_param_cb(enable_nmi, &kdb_param_ops_enable_nmi, NULL, 0600);
2186
5d5314d6
JW
2187/*
2188 * kdb_cpu - This function implements the 'cpu' command.
2189 * cpu [<cpunum>]
2190 * Returns:
2191 * KDB_CMD_CPU for success, a kdb diagnostic if error
2192 */
2193static void kdb_cpu_status(void)
2194{
2195 int i, start_cpu, first_print = 1;
2196 char state, prev_state = '?';
2197
2198 kdb_printf("Currently on cpu %d\n", raw_smp_processor_id());
2199 kdb_printf("Available cpus: ");
2200 for (start_cpu = -1, i = 0; i < NR_CPUS; i++) {
2201 if (!cpu_online(i)) {
2202 state = 'F'; /* cpu is offline */
a1465d2f
DT
2203 } else if (!kgdb_info[i].enter_kgdb) {
2204 state = 'D'; /* cpu is online but unresponsive */
5d5314d6
JW
2205 } else {
2206 state = ' '; /* cpu is responding to kdb */
2207 if (kdb_task_state_char(KDB_TSK(i)) == 'I')
2208 state = 'I'; /* idle task */
2209 }
2210 if (state != prev_state) {
2211 if (prev_state != '?') {
2212 if (!first_print)
2213 kdb_printf(", ");
2214 first_print = 0;
2215 kdb_printf("%d", start_cpu);
2216 if (start_cpu < i-1)
2217 kdb_printf("-%d", i-1);
2218 if (prev_state != ' ')
2219 kdb_printf("(%c)", prev_state);
2220 }
2221 prev_state = state;
2222 start_cpu = i;
2223 }
2224 }
2225 /* print the trailing cpus, ignoring them if they are all offline */
2226 if (prev_state != 'F') {
2227 if (!first_print)
2228 kdb_printf(", ");
2229 kdb_printf("%d", start_cpu);
2230 if (start_cpu < i-1)
2231 kdb_printf("-%d", i-1);
2232 if (prev_state != ' ')
2233 kdb_printf("(%c)", prev_state);
2234 }
2235 kdb_printf("\n");
2236}
2237
2238static int kdb_cpu(int argc, const char **argv)
2239{
2240 unsigned long cpunum;
2241 int diag;
2242
2243 if (argc == 0) {
2244 kdb_cpu_status();
2245 return 0;
2246 }
2247
2248 if (argc != 1)
2249 return KDB_ARGCOUNT;
2250
2251 diag = kdbgetularg(argv[1], &cpunum);
2252 if (diag)
2253 return diag;
2254
2255 /*
2256 * Validate cpunum
2257 */
df0036d1 2258 if ((cpunum >= CONFIG_NR_CPUS) || !kgdb_info[cpunum].enter_kgdb)
5d5314d6
JW
2259 return KDB_BADCPUNUM;
2260
2261 dbg_switch_cpu = cpunum;
2262
2263 /*
2264 * Switch to other cpu
2265 */
2266 return KDB_CMD_CPU;
2267}
2268
2269/* The user may not realize that ps/bta with no parameters does not print idle
2270 * or sleeping system daemon processes, so tell them how many were suppressed.
2271 */
2272void kdb_ps_suppressed(void)
2273{
2274 int idle = 0, daemon = 0;
2275 unsigned long mask_I = kdb_task_state_string("I"),
2276 mask_M = kdb_task_state_string("M");
2277 unsigned long cpu;
2278 const struct task_struct *p, *g;
2279 for_each_online_cpu(cpu) {
2280 p = kdb_curr_task(cpu);
2281 if (kdb_task_state(p, mask_I))
2282 ++idle;
2283 }
2284 kdb_do_each_thread(g, p) {
2285 if (kdb_task_state(p, mask_M))
2286 ++daemon;
2287 } kdb_while_each_thread(g, p);
2288 if (idle || daemon) {
2289 if (idle)
2290 kdb_printf("%d idle process%s (state I)%s\n",
2291 idle, idle == 1 ? "" : "es",
2292 daemon ? " and " : "");
2293 if (daemon)
2294 kdb_printf("%d sleeping system daemon (state M) "
2295 "process%s", daemon,
2296 daemon == 1 ? "" : "es");
2297 kdb_printf(" suppressed,\nuse 'ps A' to see all.\n");
2298 }
2299}
2300
2301/*
2302 * kdb_ps - This function implements the 'ps' command which shows a
2303 * list of the active processes.
2304 * ps [DRSTCZEUIMA] All processes, optionally filtered by state
2305 */
2306void kdb_ps1(const struct task_struct *p)
2307{
2308 int cpu;
2309 unsigned long tmp;
2310
2311 if (!p || probe_kernel_read(&tmp, (char *)p, sizeof(unsigned long)))
2312 return;
2313
2314 cpu = kdb_process_cpu(p);
2315 kdb_printf("0x%p %8d %8d %d %4d %c 0x%p %c%s\n",
2316 (void *)p, p->pid, p->parent->pid,
2317 kdb_task_has_cpu(p), kdb_process_cpu(p),
2318 kdb_task_state_char(p),
2319 (void *)(&p->thread),
2320 p == kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ',
2321 p->comm);
2322 if (kdb_task_has_cpu(p)) {
2323 if (!KDB_TSK(cpu)) {
2324 kdb_printf(" Error: no saved data for this cpu\n");
2325 } else {
2326 if (KDB_TSK(cpu) != p)
2327 kdb_printf(" Error: does not match running "
2328 "process table (0x%p)\n", KDB_TSK(cpu));
2329 }
2330 }
2331}
2332
2333static int kdb_ps(int argc, const char **argv)
2334{
2335 struct task_struct *g, *p;
2336 unsigned long mask, cpu;
2337
2338 if (argc == 0)
2339 kdb_ps_suppressed();
2340 kdb_printf("%-*s Pid Parent [*] cpu State %-*s Command\n",
2341 (int)(2*sizeof(void *))+2, "Task Addr",
2342 (int)(2*sizeof(void *))+2, "Thread");
2343 mask = kdb_task_state_string(argc ? argv[1] : NULL);
2344 /* Run the active tasks first */
2345 for_each_online_cpu(cpu) {
2346 if (KDB_FLAG(CMD_INTERRUPT))
2347 return 0;
2348 p = kdb_curr_task(cpu);
2349 if (kdb_task_state(p, mask))
2350 kdb_ps1(p);
2351 }
2352 kdb_printf("\n");
2353 /* Now the real tasks */
2354 kdb_do_each_thread(g, p) {
2355 if (KDB_FLAG(CMD_INTERRUPT))
2356 return 0;
2357 if (kdb_task_state(p, mask))
2358 kdb_ps1(p);
2359 } kdb_while_each_thread(g, p);
2360
2361 return 0;
2362}
2363
2364/*
2365 * kdb_pid - This function implements the 'pid' command which switches
2366 * the currently active process.
2367 * pid [<pid> | R]
2368 */
2369static int kdb_pid(int argc, const char **argv)
2370{
2371 struct task_struct *p;
2372 unsigned long val;
2373 int diag;
2374
2375 if (argc > 1)
2376 return KDB_ARGCOUNT;
2377
2378 if (argc) {
2379 if (strcmp(argv[1], "R") == 0) {
2380 p = KDB_TSK(kdb_initial_cpu);
2381 } else {
2382 diag = kdbgetularg(argv[1], &val);
2383 if (diag)
2384 return KDB_BADINT;
2385
2386 p = find_task_by_pid_ns((pid_t)val, &init_pid_ns);
2387 if (!p) {
2388 kdb_printf("No task with pid=%d\n", (pid_t)val);
2389 return 0;
2390 }
2391 }
2392 kdb_set_current_task(p);
2393 }
2394 kdb_printf("KDB current process is %s(pid=%d)\n",
2395 kdb_current_task->comm,
2396 kdb_current_task->pid);
2397
2398 return 0;
2399}
2400
5d5314d6
JW
2401static int kdb_kgdb(int argc, const char **argv)
2402{
2403 return KDB_CMD_KGDB;
2404}
2405
2406/*
2407 * kdb_help - This function implements the 'help' and '?' commands.
2408 */
2409static int kdb_help(int argc, const char **argv)
2410{
2411 kdbtab_t *kt;
2412 int i;
2413
2414 kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description");
2415 kdb_printf("-----------------------------"
2416 "-----------------------------\n");
2417 for_each_kdbcmd(kt, i) {
074604af 2418 char *space = "";
5d5314d6
JW
2419 if (KDB_FLAG(CMD_INTERRUPT))
2420 return 0;
074604af
JW
2421 if (!kt->cmd_name)
2422 continue;
420c2b1b
AV
2423 if (!kdb_check_flags(kt->cmd_flags, kdb_cmd_enabled, true))
2424 continue;
074604af
JW
2425 if (strlen(kt->cmd_usage) > 20)
2426 space = "\n ";
2427 kdb_printf("%-15.15s %-20s%s%s\n", kt->cmd_name,
2428 kt->cmd_usage, space, kt->cmd_help);
5d5314d6
JW
2429 }
2430 return 0;
2431}
2432
2433/*
2434 * kdb_kill - This function implements the 'kill' commands.
2435 */
2436static int kdb_kill(int argc, const char **argv)
2437{
2438 long sig, pid;
2439 char *endp;
2440 struct task_struct *p;
2441 struct siginfo info;
2442
2443 if (argc != 2)
2444 return KDB_ARGCOUNT;
2445
2446 sig = simple_strtol(argv[1], &endp, 0);
2447 if (*endp)
2448 return KDB_BADINT;
2449 if (sig >= 0) {
2450 kdb_printf("Invalid signal parameter.<-signal>\n");
2451 return 0;
2452 }
2453 sig = -sig;
2454
2455 pid = simple_strtol(argv[2], &endp, 0);
2456 if (*endp)
2457 return KDB_BADINT;
2458 if (pid <= 0) {
2459 kdb_printf("Process ID must be large than 0.\n");
2460 return 0;
2461 }
2462
2463 /* Find the process. */
2464 p = find_task_by_pid_ns(pid, &init_pid_ns);
2465 if (!p) {
2466 kdb_printf("The specified process isn't found.\n");
2467 return 0;
2468 }
2469 p = p->group_leader;
2470 info.si_signo = sig;
2471 info.si_errno = 0;
2472 info.si_code = SI_USER;
2473 info.si_pid = pid; /* same capabilities as process being signalled */
2474 info.si_uid = 0; /* kdb has root authority */
2475 kdb_send_sig_info(p, &info);
2476 return 0;
2477}
2478
2479struct kdb_tm {
2480 int tm_sec; /* seconds */
2481 int tm_min; /* minutes */
2482 int tm_hour; /* hours */
2483 int tm_mday; /* day of the month */
2484 int tm_mon; /* month */
2485 int tm_year; /* year */
2486};
2487
2488static void kdb_gmtime(struct timespec *tv, struct kdb_tm *tm)
2489{
2490 /* This will work from 1970-2099, 2100 is not a leap year */
2491 static int mon_day[] = { 31, 29, 31, 30, 31, 30, 31,
2492 31, 30, 31, 30, 31 };
2493 memset(tm, 0, sizeof(*tm));
2494 tm->tm_sec = tv->tv_sec % (24 * 60 * 60);
2495 tm->tm_mday = tv->tv_sec / (24 * 60 * 60) +
2496 (2 * 365 + 1); /* shift base from 1970 to 1968 */
2497 tm->tm_min = tm->tm_sec / 60 % 60;
2498 tm->tm_hour = tm->tm_sec / 60 / 60;
2499 tm->tm_sec = tm->tm_sec % 60;
2500 tm->tm_year = 68 + 4*(tm->tm_mday / (4*365+1));
2501 tm->tm_mday %= (4*365+1);
2502 mon_day[1] = 29;
2503 while (tm->tm_mday >= mon_day[tm->tm_mon]) {
2504 tm->tm_mday -= mon_day[tm->tm_mon];
2505 if (++tm->tm_mon == 12) {
2506 tm->tm_mon = 0;
2507 ++tm->tm_year;
2508 mon_day[1] = 28;
2509 }
2510 }
2511 ++tm->tm_mday;
2512}
2513
2514/*
2515 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo().
2516 * I cannot call that code directly from kdb, it has an unconditional
2517 * cli()/sti() and calls routines that take locks which can stop the debugger.
2518 */
2519static void kdb_sysinfo(struct sysinfo *val)
2520{
2521 struct timespec uptime;
a9821c74 2522 ktime_get_ts(&uptime);
5d5314d6
JW
2523 memset(val, 0, sizeof(*val));
2524 val->uptime = uptime.tv_sec;
2525 val->loads[0] = avenrun[0];
2526 val->loads[1] = avenrun[1];
2527 val->loads[2] = avenrun[2];
2528 val->procs = nr_threads-1;
2529 si_meminfo(val);
2530
2531 return;
2532}
2533
2534/*
2535 * kdb_summary - This function implements the 'summary' command.
2536 */
2537static int kdb_summary(int argc, const char **argv)
2538{
157b1a23 2539 struct timespec now;
5d5314d6
JW
2540 struct kdb_tm tm;
2541 struct sysinfo val;
2542
2543 if (argc)
2544 return KDB_ARGCOUNT;
2545
2546 kdb_printf("sysname %s\n", init_uts_ns.name.sysname);
2547 kdb_printf("release %s\n", init_uts_ns.name.release);
2548 kdb_printf("version %s\n", init_uts_ns.name.version);
2549 kdb_printf("machine %s\n", init_uts_ns.name.machine);
2550 kdb_printf("nodename %s\n", init_uts_ns.name.nodename);
2551 kdb_printf("domainname %s\n", init_uts_ns.name.domainname);
2552 kdb_printf("ccversion %s\n", __stringify(CCVERSION));
2553
157b1a23
TG
2554 now = __current_kernel_time();
2555 kdb_gmtime(&now, &tm);
5d5314d6
JW
2556 kdb_printf("date %04d-%02d-%02d %02d:%02d:%02d "
2557 "tz_minuteswest %d\n",
2558 1900+tm.tm_year, tm.tm_mon+1, tm.tm_mday,
2559 tm.tm_hour, tm.tm_min, tm.tm_sec,
2560 sys_tz.tz_minuteswest);
2561
2562 kdb_sysinfo(&val);
2563 kdb_printf("uptime ");
2564 if (val.uptime > (24*60*60)) {
2565 int days = val.uptime / (24*60*60);
2566 val.uptime %= (24*60*60);
2567 kdb_printf("%d day%s ", days, days == 1 ? "" : "s");
2568 }
2569 kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60);
2570
2571 /* lifted from fs/proc/proc_misc.c::loadavg_read_proc() */
2572
2573#define LOAD_INT(x) ((x) >> FSHIFT)
2574#define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
2575 kdb_printf("load avg %ld.%02ld %ld.%02ld %ld.%02ld\n",
2576 LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]),
2577 LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]),
2578 LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2]));
2579#undef LOAD_INT
2580#undef LOAD_FRAC
2581 /* Display in kilobytes */
2582#define K(x) ((x) << (PAGE_SHIFT - 10))
2583 kdb_printf("\nMemTotal: %8lu kB\nMemFree: %8lu kB\n"
2584 "Buffers: %8lu kB\n",
14675592 2585 K(val.totalram), K(val.freeram), K(val.bufferram));
5d5314d6
JW
2586 return 0;
2587}
2588
2589/*
2590 * kdb_per_cpu - This function implements the 'per_cpu' command.
2591 */
2592static int kdb_per_cpu(int argc, const char **argv)
2593{
931ea248
JW
2594 char fmtstr[64];
2595 int cpu, diag, nextarg = 1;
2596 unsigned long addr, symaddr, val, bytesperword = 0, whichcpu = ~0UL;
5d5314d6
JW
2597
2598 if (argc < 1 || argc > 3)
2599 return KDB_ARGCOUNT;
2600
931ea248
JW
2601 diag = kdbgetaddrarg(argc, argv, &nextarg, &symaddr, NULL, NULL);
2602 if (diag)
2603 return diag;
2604
5d5314d6
JW
2605 if (argc >= 2) {
2606 diag = kdbgetularg(argv[2], &bytesperword);
2607 if (diag)
2608 return diag;
2609 }
2610 if (!bytesperword)
2611 bytesperword = KDB_WORD_SIZE;
2612 else if (bytesperword > KDB_WORD_SIZE)
2613 return KDB_BADWIDTH;
2614 sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword));
2615 if (argc >= 3) {
2616 diag = kdbgetularg(argv[3], &whichcpu);
2617 if (diag)
2618 return diag;
2619 if (!cpu_online(whichcpu)) {
2620 kdb_printf("cpu %ld is not online\n", whichcpu);
2621 return KDB_BADCPUNUM;
2622 }
2623 }
2624
2625 /* Most architectures use __per_cpu_offset[cpu], some use
2626 * __per_cpu_offset(cpu), smp has no __per_cpu_offset.
2627 */
2628#ifdef __per_cpu_offset
2629#define KDB_PCU(cpu) __per_cpu_offset(cpu)
2630#else
2631#ifdef CONFIG_SMP
2632#define KDB_PCU(cpu) __per_cpu_offset[cpu]
2633#else
2634#define KDB_PCU(cpu) 0
2635#endif
2636#endif
5d5314d6 2637 for_each_online_cpu(cpu) {
931ea248
JW
2638 if (KDB_FLAG(CMD_INTERRUPT))
2639 return 0;
2640
5d5314d6
JW
2641 if (whichcpu != ~0UL && whichcpu != cpu)
2642 continue;
931ea248 2643 addr = symaddr + KDB_PCU(cpu);
5d5314d6
JW
2644 diag = kdb_getword(&val, addr, bytesperword);
2645 if (diag) {
2646 kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to "
2647 "read, diag=%d\n", cpu, addr, diag);
2648 continue;
2649 }
5d5314d6
JW
2650 kdb_printf("%5d ", cpu);
2651 kdb_md_line(fmtstr, addr,
2652 bytesperword == KDB_WORD_SIZE,
2653 1, bytesperword, 1, 1, 0);
2654 }
5d5314d6 2655#undef KDB_PCU
5d5314d6
JW
2656 return 0;
2657}
2658
2659/*
2660 * display help for the use of cmd | grep pattern
2661 */
2662static int kdb_grep_help(int argc, const char **argv)
2663{
2664 kdb_printf("Usage of cmd args | grep pattern:\n");
2665 kdb_printf(" Any command's output may be filtered through an ");
2666 kdb_printf("emulated 'pipe'.\n");
2667 kdb_printf(" 'grep' is just a key word.\n");
2668 kdb_printf(" The pattern may include a very limited set of "
2669 "metacharacters:\n");
2670 kdb_printf(" pattern or ^pattern or pattern$ or ^pattern$\n");
2671 kdb_printf(" And if there are spaces in the pattern, you may "
2672 "quote it:\n");
2673 kdb_printf(" \"pat tern\" or \"^pat tern\" or \"pat tern$\""
2674 " or \"^pat tern$\"\n");
2675 return 0;
2676}
2677
2678/*
42c884c1 2679 * kdb_register_flags - This function is used to register a kernel
5d5314d6
JW
2680 * debugger command.
2681 * Inputs:
2682 * cmd Command name
2683 * func Function to execute the command
2684 * usage A simple usage string showing arguments
2685 * help A simple help string describing command
2686 * repeat Does the command auto repeat on enter?
2687 * Returns:
2688 * zero for success, one if a duplicate command.
2689 */
2690#define kdb_command_extend 50 /* arbitrary */
42c884c1
AV
2691int kdb_register_flags(char *cmd,
2692 kdb_func_t func,
2693 char *usage,
2694 char *help,
2695 short minlen,
2696 kdb_cmdflags_t flags)
5d5314d6
JW
2697{
2698 int i;
2699 kdbtab_t *kp;
2700
2701 /*
2702 * Brute force method to determine duplicates
2703 */
2704 for_each_kdbcmd(kp, i) {
2705 if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2706 kdb_printf("Duplicate kdb command registered: "
2707 "%s, func %p help %s\n", cmd, func, help);
2708 return 1;
2709 }
2710 }
2711
2712 /*
2713 * Insert command into first available location in table
2714 */
2715 for_each_kdbcmd(kp, i) {
2716 if (kp->cmd_name == NULL)
2717 break;
2718 }
2719
2720 if (i >= kdb_max_commands) {
2721 kdbtab_t *new = kmalloc((kdb_max_commands - KDB_BASE_CMD_MAX +
2722 kdb_command_extend) * sizeof(*new), GFP_KDB);
2723 if (!new) {
2724 kdb_printf("Could not allocate new kdb_command "
2725 "table\n");
2726 return 1;
2727 }
2728 if (kdb_commands) {
2729 memcpy(new, kdb_commands,
5450d904 2730 (kdb_max_commands - KDB_BASE_CMD_MAX) * sizeof(*new));
5d5314d6
JW
2731 kfree(kdb_commands);
2732 }
f7c82d5a 2733 memset(new + kdb_max_commands - KDB_BASE_CMD_MAX, 0,
5d5314d6
JW
2734 kdb_command_extend * sizeof(*new));
2735 kdb_commands = new;
5450d904 2736 kp = kdb_commands + kdb_max_commands - KDB_BASE_CMD_MAX;
5d5314d6
JW
2737 kdb_max_commands += kdb_command_extend;
2738 }
2739
2740 kp->cmd_name = cmd;
2741 kp->cmd_func = func;
2742 kp->cmd_usage = usage;
2743 kp->cmd_help = help;
5d5314d6 2744 kp->cmd_minlen = minlen;
15a42a9b 2745 kp->cmd_flags = flags;
5d5314d6
JW
2746
2747 return 0;
2748}
42c884c1 2749EXPORT_SYMBOL_GPL(kdb_register_flags);
f7030bbc 2750
5d5314d6
JW
2751
2752/*
2753 * kdb_register - Compatibility register function for commands that do
2754 * not need to specify a repeat state. Equivalent to
e8ab24d9 2755 * kdb_register_flags with flags set to 0.
5d5314d6
JW
2756 * Inputs:
2757 * cmd Command name
2758 * func Function to execute the command
2759 * usage A simple usage string showing arguments
2760 * help A simple help string describing command
2761 * Returns:
2762 * zero for success, one if a duplicate command.
2763 */
2764int kdb_register(char *cmd,
2765 kdb_func_t func,
2766 char *usage,
2767 char *help,
2768 short minlen)
2769{
e8ab24d9 2770 return kdb_register_flags(cmd, func, usage, help, minlen, 0);
5d5314d6 2771}
f7030bbc 2772EXPORT_SYMBOL_GPL(kdb_register);
5d5314d6
JW
2773
2774/*
2775 * kdb_unregister - This function is used to unregister a kernel
2776 * debugger command. It is generally called when a module which
2777 * implements kdb commands is unloaded.
2778 * Inputs:
2779 * cmd Command name
2780 * Returns:
2781 * zero for success, one command not registered.
2782 */
2783int kdb_unregister(char *cmd)
2784{
2785 int i;
2786 kdbtab_t *kp;
2787
2788 /*
2789 * find the command.
2790 */
75d14ede 2791 for_each_kdbcmd(kp, i) {
5d5314d6
JW
2792 if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2793 kp->cmd_name = NULL;
2794 return 0;
2795 }
2796 }
2797
2798 /* Couldn't find it. */
2799 return 1;
2800}
f7030bbc 2801EXPORT_SYMBOL_GPL(kdb_unregister);
5d5314d6
JW
2802
2803/* Initialize the kdb command table. */
2804static void __init kdb_inittab(void)
2805{
2806 int i;
2807 kdbtab_t *kp;
2808
2809 for_each_kdbcmd(kp, i)
2810 kp->cmd_name = NULL;
2811
42c884c1 2812 kdb_register_flags("md", kdb_md, "<vaddr>",
5d5314d6 2813 "Display Memory Contents, also mdWcN, e.g. md8c1", 1,
9452e977 2814 KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
42c884c1 2815 kdb_register_flags("mdr", kdb_md, "<vaddr> <bytes>",
9452e977
DT
2816 "Display Raw Memory", 0,
2817 KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
42c884c1 2818 kdb_register_flags("mdp", kdb_md, "<paddr> <bytes>",
9452e977
DT
2819 "Display Physical Memory", 0,
2820 KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
42c884c1 2821 kdb_register_flags("mds", kdb_md, "<vaddr>",
9452e977
DT
2822 "Display Memory Symbolically", 0,
2823 KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
42c884c1 2824 kdb_register_flags("mm", kdb_mm, "<vaddr> <contents>",
9452e977
DT
2825 "Modify Memory Contents", 0,
2826 KDB_ENABLE_MEM_WRITE | KDB_REPEAT_NO_ARGS);
42c884c1 2827 kdb_register_flags("go", kdb_go, "[<vaddr>]",
9452e977
DT
2828 "Continue Execution", 1,
2829 KDB_ENABLE_REG_WRITE | KDB_ENABLE_ALWAYS_SAFE_NO_ARGS);
42c884c1 2830 kdb_register_flags("rd", kdb_rd, "",
9452e977
DT
2831 "Display Registers", 0,
2832 KDB_ENABLE_REG_READ);
42c884c1 2833 kdb_register_flags("rm", kdb_rm, "<reg> <contents>",
9452e977
DT
2834 "Modify Registers", 0,
2835 KDB_ENABLE_REG_WRITE);
42c884c1 2836 kdb_register_flags("ef", kdb_ef, "<vaddr>",
9452e977
DT
2837 "Display exception frame", 0,
2838 KDB_ENABLE_MEM_READ);
42c884c1 2839 kdb_register_flags("bt", kdb_bt, "[<vaddr>]",
9452e977
DT
2840 "Stack traceback", 1,
2841 KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS);
42c884c1 2842 kdb_register_flags("btp", kdb_bt, "<pid>",
9452e977
DT
2843 "Display stack for process <pid>", 0,
2844 KDB_ENABLE_INSPECT);
42c884c1 2845 kdb_register_flags("bta", kdb_bt, "[D|R|S|T|C|Z|E|U|I|M|A]",
9452e977
DT
2846 "Backtrace all processes matching state flag", 0,
2847 KDB_ENABLE_INSPECT);
42c884c1 2848 kdb_register_flags("btc", kdb_bt, "",
9452e977
DT
2849 "Backtrace current process on each cpu", 0,
2850 KDB_ENABLE_INSPECT);
42c884c1 2851 kdb_register_flags("btt", kdb_bt, "<vaddr>",
5d5314d6 2852 "Backtrace process given its struct task address", 0,
9452e977 2853 KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS);
42c884c1 2854 kdb_register_flags("env", kdb_env, "",
9452e977
DT
2855 "Show environment variables", 0,
2856 KDB_ENABLE_ALWAYS_SAFE);
42c884c1 2857 kdb_register_flags("set", kdb_set, "",
9452e977
DT
2858 "Set environment variables", 0,
2859 KDB_ENABLE_ALWAYS_SAFE);
42c884c1 2860 kdb_register_flags("help", kdb_help, "",
9452e977
DT
2861 "Display Help Message", 1,
2862 KDB_ENABLE_ALWAYS_SAFE);
42c884c1 2863 kdb_register_flags("?", kdb_help, "",
9452e977
DT
2864 "Display Help Message", 0,
2865 KDB_ENABLE_ALWAYS_SAFE);
42c884c1 2866 kdb_register_flags("cpu", kdb_cpu, "<cpunum>",
9452e977
DT
2867 "Switch to new cpu", 0,
2868 KDB_ENABLE_ALWAYS_SAFE_NO_ARGS);
42c884c1 2869 kdb_register_flags("kgdb", kdb_kgdb, "",
e8ab24d9 2870 "Enter kgdb mode", 0, 0);
42c884c1 2871 kdb_register_flags("ps", kdb_ps, "[<flags>|A]",
9452e977
DT
2872 "Display active task list", 0,
2873 KDB_ENABLE_INSPECT);
42c884c1 2874 kdb_register_flags("pid", kdb_pid, "<pidnum>",
9452e977
DT
2875 "Switch to another task", 0,
2876 KDB_ENABLE_INSPECT);
42c884c1 2877 kdb_register_flags("reboot", kdb_reboot, "",
9452e977
DT
2878 "Reboot the machine immediately", 0,
2879 KDB_ENABLE_REBOOT);
5d5314d6 2880#if defined(CONFIG_MODULES)
42c884c1 2881 kdb_register_flags("lsmod", kdb_lsmod, "",
9452e977
DT
2882 "List loaded kernel modules", 0,
2883 KDB_ENABLE_INSPECT);
5d5314d6
JW
2884#endif
2885#if defined(CONFIG_MAGIC_SYSRQ)
42c884c1 2886 kdb_register_flags("sr", kdb_sr, "<key>",
9452e977
DT
2887 "Magic SysRq key", 0,
2888 KDB_ENABLE_ALWAYS_SAFE);
5d5314d6
JW
2889#endif
2890#if defined(CONFIG_PRINTK)
42c884c1 2891 kdb_register_flags("dmesg", kdb_dmesg, "[lines]",
9452e977
DT
2892 "Display syslog buffer", 0,
2893 KDB_ENABLE_ALWAYS_SAFE);
5d5314d6 2894#endif
ad394f66 2895 if (arch_kgdb_ops.enable_nmi) {
42c884c1 2896 kdb_register_flags("disable_nmi", kdb_disable_nmi, "",
9452e977
DT
2897 "Disable NMI entry to KDB", 0,
2898 KDB_ENABLE_ALWAYS_SAFE);
ad394f66 2899 }
42c884c1 2900 kdb_register_flags("defcmd", kdb_defcmd, "name \"usage\" \"help\"",
9452e977
DT
2901 "Define a set of commands, down to endefcmd", 0,
2902 KDB_ENABLE_ALWAYS_SAFE);
42c884c1 2903 kdb_register_flags("kill", kdb_kill, "<-signal> <pid>",
9452e977
DT
2904 "Send a signal to a process", 0,
2905 KDB_ENABLE_SIGNAL);
42c884c1 2906 kdb_register_flags("summary", kdb_summary, "",
9452e977
DT
2907 "Summarize the system", 4,
2908 KDB_ENABLE_ALWAYS_SAFE);
42c884c1 2909 kdb_register_flags("per_cpu", kdb_per_cpu, "<sym> [<bytes>] [<cpu>]",
9452e977
DT
2910 "Display per_cpu variables", 3,
2911 KDB_ENABLE_MEM_READ);
42c884c1 2912 kdb_register_flags("grephelp", kdb_grep_help, "",
9452e977
DT
2913 "Display help on | grep", 0,
2914 KDB_ENABLE_ALWAYS_SAFE);
5d5314d6
JW
2915}
2916
2917/* Execute any commands defined in kdb_cmds. */
2918static void __init kdb_cmd_init(void)
2919{
2920 int i, diag;
2921 for (i = 0; kdb_cmds[i]; ++i) {
2922 diag = kdb_parse(kdb_cmds[i]);
2923 if (diag)
2924 kdb_printf("kdb command %s failed, kdb diag %d\n",
2925 kdb_cmds[i], diag);
2926 }
2927 if (defcmd_in_progress) {
2928 kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n");
2929 kdb_parse("endefcmd");
2930 }
2931}
2932
b595076a 2933/* Initialize kdb_printf, breakpoint tables and kdb state */
5d5314d6
JW
2934void __init kdb_init(int lvl)
2935{
2936 static int kdb_init_lvl = KDB_NOT_INITIALIZED;
2937 int i;
2938
2939 if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl)
2940 return;
2941 for (i = kdb_init_lvl; i < lvl; i++) {
2942 switch (i) {
2943 case KDB_NOT_INITIALIZED:
2944 kdb_inittab(); /* Initialize Command Table */
2945 kdb_initbptab(); /* Initialize Breakpoints */
2946 break;
2947 case KDB_INIT_EARLY:
2948 kdb_cmd_init(); /* Build kdb_cmds tables */
2949 break;
2950 }
2951 }
2952 kdb_init_lvl = lvl;
2953}
This page took 0.345119 seconds and 5 git commands to generate.