Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm...
[deliverable/linux.git] / kernel / events / core.c
CommitLineData
0793a61d 1/*
57c0c15b 2 * Performance events core code:
0793a61d 3 *
98144511 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e
IM
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
d36b6910 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7b732a75 8 *
57c0c15b 9 * For licensing details see kernel-base/COPYING
0793a61d
TG
10 */
11
12#include <linux/fs.h>
b9cacc7b 13#include <linux/mm.h>
0793a61d
TG
14#include <linux/cpu.h>
15#include <linux/smp.h>
2e80a82a 16#include <linux/idr.h>
04289bb9 17#include <linux/file.h>
0793a61d 18#include <linux/poll.h>
5a0e3ad6 19#include <linux/slab.h>
76e1d904 20#include <linux/hash.h>
12351ef8 21#include <linux/tick.h>
0793a61d 22#include <linux/sysfs.h>
22a4f650 23#include <linux/dcache.h>
0793a61d 24#include <linux/percpu.h>
22a4f650 25#include <linux/ptrace.h>
c277443c 26#include <linux/reboot.h>
b9cacc7b 27#include <linux/vmstat.h>
abe43400 28#include <linux/device.h>
6e5fdeed 29#include <linux/export.h>
906010b2 30#include <linux/vmalloc.h>
b9cacc7b
PZ
31#include <linux/hardirq.h>
32#include <linux/rculist.h>
0793a61d
TG
33#include <linux/uaccess.h>
34#include <linux/syscalls.h>
35#include <linux/anon_inodes.h>
aa9c4c0f 36#include <linux/kernel_stat.h>
39bed6cb 37#include <linux/cgroup.h>
cdd6c482 38#include <linux/perf_event.h>
af658dca 39#include <linux/trace_events.h>
3c502e7a 40#include <linux/hw_breakpoint.h>
c5ebcedb 41#include <linux/mm_types.h>
c464c76e 42#include <linux/module.h>
f972eb63 43#include <linux/mman.h>
b3f20785 44#include <linux/compat.h>
2541517c
AS
45#include <linux/bpf.h>
46#include <linux/filter.h>
0793a61d 47
76369139
FW
48#include "internal.h"
49
4e193bd4
TB
50#include <asm/irq_regs.h>
51
fadfe7be
JO
52static struct workqueue_struct *perf_wq;
53
272325c4
PZ
54typedef int (*remote_function_f)(void *);
55
fe4b04fa 56struct remote_function_call {
e7e7ee2e 57 struct task_struct *p;
272325c4 58 remote_function_f func;
e7e7ee2e
IM
59 void *info;
60 int ret;
fe4b04fa
PZ
61};
62
63static void remote_function(void *data)
64{
65 struct remote_function_call *tfc = data;
66 struct task_struct *p = tfc->p;
67
68 if (p) {
69 tfc->ret = -EAGAIN;
70 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
71 return;
72 }
73
74 tfc->ret = tfc->func(tfc->info);
75}
76
77/**
78 * task_function_call - call a function on the cpu on which a task runs
79 * @p: the task to evaluate
80 * @func: the function to be called
81 * @info: the function call argument
82 *
83 * Calls the function @func when the task is currently running. This might
84 * be on the current CPU, which just calls the function directly
85 *
86 * returns: @func return value, or
87 * -ESRCH - when the process isn't running
88 * -EAGAIN - when the process moved away
89 */
90static int
272325c4 91task_function_call(struct task_struct *p, remote_function_f func, void *info)
fe4b04fa
PZ
92{
93 struct remote_function_call data = {
e7e7ee2e
IM
94 .p = p,
95 .func = func,
96 .info = info,
97 .ret = -ESRCH, /* No such (running) process */
fe4b04fa
PZ
98 };
99
100 if (task_curr(p))
101 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
102
103 return data.ret;
104}
105
106/**
107 * cpu_function_call - call a function on the cpu
108 * @func: the function to be called
109 * @info: the function call argument
110 *
111 * Calls the function @func on the remote cpu.
112 *
113 * returns: @func return value or -ENXIO when the cpu is offline
114 */
272325c4 115static int cpu_function_call(int cpu, remote_function_f func, void *info)
fe4b04fa
PZ
116{
117 struct remote_function_call data = {
e7e7ee2e
IM
118 .p = NULL,
119 .func = func,
120 .info = info,
121 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
122 };
123
124 smp_call_function_single(cpu, remote_function, &data, 1);
125
126 return data.ret;
127}
128
f8697762
JO
129#define EVENT_OWNER_KERNEL ((void *) -1)
130
131static bool is_kernel_event(struct perf_event *event)
132{
133 return event->owner == EVENT_OWNER_KERNEL;
134}
135
e5d1367f
SE
136#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
137 PERF_FLAG_FD_OUTPUT |\
a21b0b35
YD
138 PERF_FLAG_PID_CGROUP |\
139 PERF_FLAG_FD_CLOEXEC)
e5d1367f 140
bce38cd5
SE
141/*
142 * branch priv levels that need permission checks
143 */
144#define PERF_SAMPLE_BRANCH_PERM_PLM \
145 (PERF_SAMPLE_BRANCH_KERNEL |\
146 PERF_SAMPLE_BRANCH_HV)
147
0b3fcf17
SE
148enum event_type_t {
149 EVENT_FLEXIBLE = 0x1,
150 EVENT_PINNED = 0x2,
151 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
152};
153
e5d1367f
SE
154/*
155 * perf_sched_events : >0 events exist
156 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
157 */
c5905afb 158struct static_key_deferred perf_sched_events __read_mostly;
e5d1367f 159static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
ba532500 160static DEFINE_PER_CPU(int, perf_sched_cb_usages);
e5d1367f 161
cdd6c482
IM
162static atomic_t nr_mmap_events __read_mostly;
163static atomic_t nr_comm_events __read_mostly;
164static atomic_t nr_task_events __read_mostly;
948b26b6 165static atomic_t nr_freq_events __read_mostly;
45ac1403 166static atomic_t nr_switch_events __read_mostly;
9ee318a7 167
108b02cf
PZ
168static LIST_HEAD(pmus);
169static DEFINE_MUTEX(pmus_lock);
170static struct srcu_struct pmus_srcu;
171
0764771d 172/*
cdd6c482 173 * perf event paranoia level:
0fbdea19
IM
174 * -1 - not paranoid at all
175 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 176 * 1 - disallow cpu events for unpriv
0fbdea19 177 * 2 - disallow kernel profiling for unpriv
0764771d 178 */
cdd6c482 179int sysctl_perf_event_paranoid __read_mostly = 1;
0764771d 180
20443384
FW
181/* Minimum for 512 kiB + 1 user control page */
182int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
183
184/*
cdd6c482 185 * max perf event sample rate
df58ab24 186 */
14c63f17
DH
187#define DEFAULT_MAX_SAMPLE_RATE 100000
188#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
189#define DEFAULT_CPU_TIME_MAX_PERCENT 25
190
191int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
192
193static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
194static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
195
d9494cb4
PZ
196static int perf_sample_allowed_ns __read_mostly =
197 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
14c63f17
DH
198
199void update_perf_cpu_limits(void)
200{
201 u64 tmp = perf_sample_period_ns;
202
203 tmp *= sysctl_perf_cpu_time_max_percent;
e5302920 204 do_div(tmp, 100);
d9494cb4 205 ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
14c63f17 206}
163ec435 207
9e630205
SE
208static int perf_rotate_context(struct perf_cpu_context *cpuctx);
209
163ec435
PZ
210int perf_proc_update_handler(struct ctl_table *table, int write,
211 void __user *buffer, size_t *lenp,
212 loff_t *ppos)
213{
723478c8 214 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
163ec435
PZ
215
216 if (ret || !write)
217 return ret;
218
219 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
14c63f17
DH
220 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
221 update_perf_cpu_limits();
222
223 return 0;
224}
225
226int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
227
228int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
229 void __user *buffer, size_t *lenp,
230 loff_t *ppos)
231{
232 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
233
234 if (ret || !write)
235 return ret;
236
237 update_perf_cpu_limits();
163ec435
PZ
238
239 return 0;
240}
1ccd1549 241
14c63f17
DH
242/*
243 * perf samples are done in some very critical code paths (NMIs).
244 * If they take too much CPU time, the system can lock up and not
245 * get any real work done. This will drop the sample rate when
246 * we detect that events are taking too long.
247 */
248#define NR_ACCUMULATED_SAMPLES 128
d9494cb4 249static DEFINE_PER_CPU(u64, running_sample_length);
14c63f17 250
6a02ad66 251static void perf_duration_warn(struct irq_work *w)
14c63f17 252{
6a02ad66 253 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
14c63f17 254 u64 avg_local_sample_len;
e5302920 255 u64 local_samples_len;
6a02ad66 256
4a32fea9 257 local_samples_len = __this_cpu_read(running_sample_length);
6a02ad66
PZ
258 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
259
260 printk_ratelimited(KERN_WARNING
261 "perf interrupt took too long (%lld > %lld), lowering "
262 "kernel.perf_event_max_sample_rate to %d\n",
cd578abb 263 avg_local_sample_len, allowed_ns >> 1,
6a02ad66
PZ
264 sysctl_perf_event_sample_rate);
265}
266
267static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
268
269void perf_sample_event_took(u64 sample_len_ns)
270{
d9494cb4 271 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
6a02ad66
PZ
272 u64 avg_local_sample_len;
273 u64 local_samples_len;
14c63f17 274
d9494cb4 275 if (allowed_ns == 0)
14c63f17
DH
276 return;
277
278 /* decay the counter by 1 average sample */
4a32fea9 279 local_samples_len = __this_cpu_read(running_sample_length);
14c63f17
DH
280 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
281 local_samples_len += sample_len_ns;
4a32fea9 282 __this_cpu_write(running_sample_length, local_samples_len);
14c63f17
DH
283
284 /*
285 * note: this will be biased artifically low until we have
286 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
287 * from having to maintain a count.
288 */
289 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
290
d9494cb4 291 if (avg_local_sample_len <= allowed_ns)
14c63f17
DH
292 return;
293
294 if (max_samples_per_tick <= 1)
295 return;
296
297 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
298 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
299 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
300
14c63f17 301 update_perf_cpu_limits();
6a02ad66 302
cd578abb
PZ
303 if (!irq_work_queue(&perf_duration_work)) {
304 early_printk("perf interrupt took too long (%lld > %lld), lowering "
305 "kernel.perf_event_max_sample_rate to %d\n",
306 avg_local_sample_len, allowed_ns >> 1,
307 sysctl_perf_event_sample_rate);
308 }
14c63f17
DH
309}
310
cdd6c482 311static atomic64_t perf_event_id;
a96bbc16 312
0b3fcf17
SE
313static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
314 enum event_type_t event_type);
315
316static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
317 enum event_type_t event_type,
318 struct task_struct *task);
319
320static void update_context_time(struct perf_event_context *ctx);
321static u64 perf_event_time(struct perf_event *event);
0b3fcf17 322
cdd6c482 323void __weak perf_event_print_debug(void) { }
0793a61d 324
84c79910 325extern __weak const char *perf_pmu_name(void)
0793a61d 326{
84c79910 327 return "pmu";
0793a61d
TG
328}
329
0b3fcf17
SE
330static inline u64 perf_clock(void)
331{
332 return local_clock();
333}
334
34f43927
PZ
335static inline u64 perf_event_clock(struct perf_event *event)
336{
337 return event->clock();
338}
339
e5d1367f
SE
340static inline struct perf_cpu_context *
341__get_cpu_context(struct perf_event_context *ctx)
342{
343 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
344}
345
facc4307
PZ
346static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
347 struct perf_event_context *ctx)
348{
349 raw_spin_lock(&cpuctx->ctx.lock);
350 if (ctx)
351 raw_spin_lock(&ctx->lock);
352}
353
354static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
355 struct perf_event_context *ctx)
356{
357 if (ctx)
358 raw_spin_unlock(&ctx->lock);
359 raw_spin_unlock(&cpuctx->ctx.lock);
360}
361
e5d1367f
SE
362#ifdef CONFIG_CGROUP_PERF
363
e5d1367f
SE
364static inline bool
365perf_cgroup_match(struct perf_event *event)
366{
367 struct perf_event_context *ctx = event->ctx;
368 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
369
ef824fa1
TH
370 /* @event doesn't care about cgroup */
371 if (!event->cgrp)
372 return true;
373
374 /* wants specific cgroup scope but @cpuctx isn't associated with any */
375 if (!cpuctx->cgrp)
376 return false;
377
378 /*
379 * Cgroup scoping is recursive. An event enabled for a cgroup is
380 * also enabled for all its descendant cgroups. If @cpuctx's
381 * cgroup is a descendant of @event's (the test covers identity
382 * case), it's a match.
383 */
384 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
385 event->cgrp->css.cgroup);
e5d1367f
SE
386}
387
e5d1367f
SE
388static inline void perf_detach_cgroup(struct perf_event *event)
389{
4e2ba650 390 css_put(&event->cgrp->css);
e5d1367f
SE
391 event->cgrp = NULL;
392}
393
394static inline int is_cgroup_event(struct perf_event *event)
395{
396 return event->cgrp != NULL;
397}
398
399static inline u64 perf_cgroup_event_time(struct perf_event *event)
400{
401 struct perf_cgroup_info *t;
402
403 t = per_cpu_ptr(event->cgrp->info, event->cpu);
404 return t->time;
405}
406
407static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
408{
409 struct perf_cgroup_info *info;
410 u64 now;
411
412 now = perf_clock();
413
414 info = this_cpu_ptr(cgrp->info);
415
416 info->time += now - info->timestamp;
417 info->timestamp = now;
418}
419
420static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
421{
422 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
423 if (cgrp_out)
424 __update_cgrp_time(cgrp_out);
425}
426
427static inline void update_cgrp_time_from_event(struct perf_event *event)
428{
3f7cce3c
SE
429 struct perf_cgroup *cgrp;
430
e5d1367f 431 /*
3f7cce3c
SE
432 * ensure we access cgroup data only when needed and
433 * when we know the cgroup is pinned (css_get)
e5d1367f 434 */
3f7cce3c 435 if (!is_cgroup_event(event))
e5d1367f
SE
436 return;
437
3f7cce3c
SE
438 cgrp = perf_cgroup_from_task(current);
439 /*
440 * Do not update time when cgroup is not active
441 */
442 if (cgrp == event->cgrp)
443 __update_cgrp_time(event->cgrp);
e5d1367f
SE
444}
445
446static inline void
3f7cce3c
SE
447perf_cgroup_set_timestamp(struct task_struct *task,
448 struct perf_event_context *ctx)
e5d1367f
SE
449{
450 struct perf_cgroup *cgrp;
451 struct perf_cgroup_info *info;
452
3f7cce3c
SE
453 /*
454 * ctx->lock held by caller
455 * ensure we do not access cgroup data
456 * unless we have the cgroup pinned (css_get)
457 */
458 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
459 return;
460
461 cgrp = perf_cgroup_from_task(task);
462 info = this_cpu_ptr(cgrp->info);
3f7cce3c 463 info->timestamp = ctx->timestamp;
e5d1367f
SE
464}
465
466#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
467#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
468
469/*
470 * reschedule events based on the cgroup constraint of task.
471 *
472 * mode SWOUT : schedule out everything
473 * mode SWIN : schedule in based on cgroup for next
474 */
475void perf_cgroup_switch(struct task_struct *task, int mode)
476{
477 struct perf_cpu_context *cpuctx;
478 struct pmu *pmu;
479 unsigned long flags;
480
481 /*
482 * disable interrupts to avoid geting nr_cgroup
483 * changes via __perf_event_disable(). Also
484 * avoids preemption.
485 */
486 local_irq_save(flags);
487
488 /*
489 * we reschedule only in the presence of cgroup
490 * constrained events.
491 */
492 rcu_read_lock();
493
494 list_for_each_entry_rcu(pmu, &pmus, entry) {
e5d1367f 495 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95cf59ea
PZ
496 if (cpuctx->unique_pmu != pmu)
497 continue; /* ensure we process each cpuctx once */
e5d1367f 498
e5d1367f
SE
499 /*
500 * perf_cgroup_events says at least one
501 * context on this CPU has cgroup events.
502 *
503 * ctx->nr_cgroups reports the number of cgroup
504 * events for a context.
505 */
506 if (cpuctx->ctx.nr_cgroups > 0) {
facc4307
PZ
507 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
508 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f
SE
509
510 if (mode & PERF_CGROUP_SWOUT) {
511 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
512 /*
513 * must not be done before ctxswout due
514 * to event_filter_match() in event_sched_out()
515 */
516 cpuctx->cgrp = NULL;
517 }
518
519 if (mode & PERF_CGROUP_SWIN) {
e566b76e 520 WARN_ON_ONCE(cpuctx->cgrp);
95cf59ea
PZ
521 /*
522 * set cgrp before ctxsw in to allow
523 * event_filter_match() to not have to pass
524 * task around
e5d1367f
SE
525 */
526 cpuctx->cgrp = perf_cgroup_from_task(task);
527 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
528 }
facc4307
PZ
529 perf_pmu_enable(cpuctx->ctx.pmu);
530 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f 531 }
e5d1367f
SE
532 }
533
534 rcu_read_unlock();
535
536 local_irq_restore(flags);
537}
538
a8d757ef
SE
539static inline void perf_cgroup_sched_out(struct task_struct *task,
540 struct task_struct *next)
e5d1367f 541{
a8d757ef
SE
542 struct perf_cgroup *cgrp1;
543 struct perf_cgroup *cgrp2 = NULL;
544
545 /*
546 * we come here when we know perf_cgroup_events > 0
547 */
548 cgrp1 = perf_cgroup_from_task(task);
549
550 /*
551 * next is NULL when called from perf_event_enable_on_exec()
552 * that will systematically cause a cgroup_switch()
553 */
554 if (next)
555 cgrp2 = perf_cgroup_from_task(next);
556
557 /*
558 * only schedule out current cgroup events if we know
559 * that we are switching to a different cgroup. Otherwise,
560 * do no touch the cgroup events.
561 */
562 if (cgrp1 != cgrp2)
563 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
e5d1367f
SE
564}
565
a8d757ef
SE
566static inline void perf_cgroup_sched_in(struct task_struct *prev,
567 struct task_struct *task)
e5d1367f 568{
a8d757ef
SE
569 struct perf_cgroup *cgrp1;
570 struct perf_cgroup *cgrp2 = NULL;
571
572 /*
573 * we come here when we know perf_cgroup_events > 0
574 */
575 cgrp1 = perf_cgroup_from_task(task);
576
577 /* prev can never be NULL */
578 cgrp2 = perf_cgroup_from_task(prev);
579
580 /*
581 * only need to schedule in cgroup events if we are changing
582 * cgroup during ctxsw. Cgroup events were not scheduled
583 * out of ctxsw out if that was not the case.
584 */
585 if (cgrp1 != cgrp2)
586 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
e5d1367f
SE
587}
588
589static inline int perf_cgroup_connect(int fd, struct perf_event *event,
590 struct perf_event_attr *attr,
591 struct perf_event *group_leader)
592{
593 struct perf_cgroup *cgrp;
594 struct cgroup_subsys_state *css;
2903ff01
AV
595 struct fd f = fdget(fd);
596 int ret = 0;
e5d1367f 597
2903ff01 598 if (!f.file)
e5d1367f
SE
599 return -EBADF;
600
b583043e 601 css = css_tryget_online_from_dir(f.file->f_path.dentry,
ec903c0c 602 &perf_event_cgrp_subsys);
3db272c0
LZ
603 if (IS_ERR(css)) {
604 ret = PTR_ERR(css);
605 goto out;
606 }
e5d1367f
SE
607
608 cgrp = container_of(css, struct perf_cgroup, css);
609 event->cgrp = cgrp;
610
611 /*
612 * all events in a group must monitor
613 * the same cgroup because a task belongs
614 * to only one perf cgroup at a time
615 */
616 if (group_leader && group_leader->cgrp != cgrp) {
617 perf_detach_cgroup(event);
618 ret = -EINVAL;
e5d1367f 619 }
3db272c0 620out:
2903ff01 621 fdput(f);
e5d1367f
SE
622 return ret;
623}
624
625static inline void
626perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
627{
628 struct perf_cgroup_info *t;
629 t = per_cpu_ptr(event->cgrp->info, event->cpu);
630 event->shadow_ctx_time = now - t->timestamp;
631}
632
633static inline void
634perf_cgroup_defer_enabled(struct perf_event *event)
635{
636 /*
637 * when the current task's perf cgroup does not match
638 * the event's, we need to remember to call the
639 * perf_mark_enable() function the first time a task with
640 * a matching perf cgroup is scheduled in.
641 */
642 if (is_cgroup_event(event) && !perf_cgroup_match(event))
643 event->cgrp_defer_enabled = 1;
644}
645
646static inline void
647perf_cgroup_mark_enabled(struct perf_event *event,
648 struct perf_event_context *ctx)
649{
650 struct perf_event *sub;
651 u64 tstamp = perf_event_time(event);
652
653 if (!event->cgrp_defer_enabled)
654 return;
655
656 event->cgrp_defer_enabled = 0;
657
658 event->tstamp_enabled = tstamp - event->total_time_enabled;
659 list_for_each_entry(sub, &event->sibling_list, group_entry) {
660 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
661 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
662 sub->cgrp_defer_enabled = 0;
663 }
664 }
665}
666#else /* !CONFIG_CGROUP_PERF */
667
668static inline bool
669perf_cgroup_match(struct perf_event *event)
670{
671 return true;
672}
673
674static inline void perf_detach_cgroup(struct perf_event *event)
675{}
676
677static inline int is_cgroup_event(struct perf_event *event)
678{
679 return 0;
680}
681
682static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
683{
684 return 0;
685}
686
687static inline void update_cgrp_time_from_event(struct perf_event *event)
688{
689}
690
691static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
692{
693}
694
a8d757ef
SE
695static inline void perf_cgroup_sched_out(struct task_struct *task,
696 struct task_struct *next)
e5d1367f
SE
697{
698}
699
a8d757ef
SE
700static inline void perf_cgroup_sched_in(struct task_struct *prev,
701 struct task_struct *task)
e5d1367f
SE
702{
703}
704
705static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
706 struct perf_event_attr *attr,
707 struct perf_event *group_leader)
708{
709 return -EINVAL;
710}
711
712static inline void
3f7cce3c
SE
713perf_cgroup_set_timestamp(struct task_struct *task,
714 struct perf_event_context *ctx)
e5d1367f
SE
715{
716}
717
718void
719perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
720{
721}
722
723static inline void
724perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
725{
726}
727
728static inline u64 perf_cgroup_event_time(struct perf_event *event)
729{
730 return 0;
731}
732
733static inline void
734perf_cgroup_defer_enabled(struct perf_event *event)
735{
736}
737
738static inline void
739perf_cgroup_mark_enabled(struct perf_event *event,
740 struct perf_event_context *ctx)
741{
742}
743#endif
744
9e630205
SE
745/*
746 * set default to be dependent on timer tick just
747 * like original code
748 */
749#define PERF_CPU_HRTIMER (1000 / HZ)
750/*
751 * function must be called with interrupts disbled
752 */
272325c4 753static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
9e630205
SE
754{
755 struct perf_cpu_context *cpuctx;
9e630205
SE
756 int rotations = 0;
757
758 WARN_ON(!irqs_disabled());
759
760 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
9e630205
SE
761 rotations = perf_rotate_context(cpuctx);
762
4cfafd30
PZ
763 raw_spin_lock(&cpuctx->hrtimer_lock);
764 if (rotations)
9e630205 765 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
4cfafd30
PZ
766 else
767 cpuctx->hrtimer_active = 0;
768 raw_spin_unlock(&cpuctx->hrtimer_lock);
9e630205 769
4cfafd30 770 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
9e630205
SE
771}
772
272325c4 773static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
9e630205 774{
272325c4 775 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 776 struct pmu *pmu = cpuctx->ctx.pmu;
272325c4 777 u64 interval;
9e630205
SE
778
779 /* no multiplexing needed for SW PMU */
780 if (pmu->task_ctx_nr == perf_sw_context)
781 return;
782
62b85639
SE
783 /*
784 * check default is sane, if not set then force to
785 * default interval (1/tick)
786 */
272325c4
PZ
787 interval = pmu->hrtimer_interval_ms;
788 if (interval < 1)
789 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
62b85639 790
272325c4 791 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
9e630205 792
4cfafd30
PZ
793 raw_spin_lock_init(&cpuctx->hrtimer_lock);
794 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
272325c4 795 timer->function = perf_mux_hrtimer_handler;
9e630205
SE
796}
797
272325c4 798static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
9e630205 799{
272325c4 800 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 801 struct pmu *pmu = cpuctx->ctx.pmu;
4cfafd30 802 unsigned long flags;
9e630205
SE
803
804 /* not for SW PMU */
805 if (pmu->task_ctx_nr == perf_sw_context)
272325c4 806 return 0;
9e630205 807
4cfafd30
PZ
808 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
809 if (!cpuctx->hrtimer_active) {
810 cpuctx->hrtimer_active = 1;
811 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
812 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
813 }
814 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
9e630205 815
272325c4 816 return 0;
9e630205
SE
817}
818
33696fc0 819void perf_pmu_disable(struct pmu *pmu)
9e35ad38 820{
33696fc0
PZ
821 int *count = this_cpu_ptr(pmu->pmu_disable_count);
822 if (!(*count)++)
823 pmu->pmu_disable(pmu);
9e35ad38 824}
9e35ad38 825
33696fc0 826void perf_pmu_enable(struct pmu *pmu)
9e35ad38 827{
33696fc0
PZ
828 int *count = this_cpu_ptr(pmu->pmu_disable_count);
829 if (!--(*count))
830 pmu->pmu_enable(pmu);
9e35ad38 831}
9e35ad38 832
2fde4f94 833static DEFINE_PER_CPU(struct list_head, active_ctx_list);
e9d2b064
PZ
834
835/*
2fde4f94
MR
836 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
837 * perf_event_task_tick() are fully serialized because they're strictly cpu
838 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
839 * disabled, while perf_event_task_tick is called from IRQ context.
e9d2b064 840 */
2fde4f94 841static void perf_event_ctx_activate(struct perf_event_context *ctx)
9e35ad38 842{
2fde4f94 843 struct list_head *head = this_cpu_ptr(&active_ctx_list);
b5ab4cd5 844
e9d2b064 845 WARN_ON(!irqs_disabled());
b5ab4cd5 846
2fde4f94
MR
847 WARN_ON(!list_empty(&ctx->active_ctx_list));
848
849 list_add(&ctx->active_ctx_list, head);
850}
851
852static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
853{
854 WARN_ON(!irqs_disabled());
855
856 WARN_ON(list_empty(&ctx->active_ctx_list));
857
858 list_del_init(&ctx->active_ctx_list);
9e35ad38 859}
9e35ad38 860
cdd6c482 861static void get_ctx(struct perf_event_context *ctx)
a63eaf34 862{
e5289d4a 863 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
a63eaf34
PM
864}
865
4af57ef2
YZ
866static void free_ctx(struct rcu_head *head)
867{
868 struct perf_event_context *ctx;
869
870 ctx = container_of(head, struct perf_event_context, rcu_head);
871 kfree(ctx->task_ctx_data);
872 kfree(ctx);
873}
874
cdd6c482 875static void put_ctx(struct perf_event_context *ctx)
a63eaf34 876{
564c2b21
PM
877 if (atomic_dec_and_test(&ctx->refcount)) {
878 if (ctx->parent_ctx)
879 put_ctx(ctx->parent_ctx);
c93f7669
PM
880 if (ctx->task)
881 put_task_struct(ctx->task);
4af57ef2 882 call_rcu(&ctx->rcu_head, free_ctx);
564c2b21 883 }
a63eaf34
PM
884}
885
f63a8daa
PZ
886/*
887 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
888 * perf_pmu_migrate_context() we need some magic.
889 *
890 * Those places that change perf_event::ctx will hold both
891 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
892 *
8b10c5e2
PZ
893 * Lock ordering is by mutex address. There are two other sites where
894 * perf_event_context::mutex nests and those are:
895 *
896 * - perf_event_exit_task_context() [ child , 0 ]
897 * __perf_event_exit_task()
898 * sync_child_event()
899 * put_event() [ parent, 1 ]
900 *
901 * - perf_event_init_context() [ parent, 0 ]
902 * inherit_task_group()
903 * inherit_group()
904 * inherit_event()
905 * perf_event_alloc()
906 * perf_init_event()
907 * perf_try_init_event() [ child , 1 ]
908 *
909 * While it appears there is an obvious deadlock here -- the parent and child
910 * nesting levels are inverted between the two. This is in fact safe because
911 * life-time rules separate them. That is an exiting task cannot fork, and a
912 * spawning task cannot (yet) exit.
913 *
914 * But remember that that these are parent<->child context relations, and
915 * migration does not affect children, therefore these two orderings should not
916 * interact.
f63a8daa
PZ
917 *
918 * The change in perf_event::ctx does not affect children (as claimed above)
919 * because the sys_perf_event_open() case will install a new event and break
920 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
921 * concerned with cpuctx and that doesn't have children.
922 *
923 * The places that change perf_event::ctx will issue:
924 *
925 * perf_remove_from_context();
926 * synchronize_rcu();
927 * perf_install_in_context();
928 *
929 * to affect the change. The remove_from_context() + synchronize_rcu() should
930 * quiesce the event, after which we can install it in the new location. This
931 * means that only external vectors (perf_fops, prctl) can perturb the event
932 * while in transit. Therefore all such accessors should also acquire
933 * perf_event_context::mutex to serialize against this.
934 *
935 * However; because event->ctx can change while we're waiting to acquire
936 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
937 * function.
938 *
939 * Lock order:
940 * task_struct::perf_event_mutex
941 * perf_event_context::mutex
942 * perf_event_context::lock
943 * perf_event::child_mutex;
944 * perf_event::mmap_mutex
945 * mmap_sem
946 */
a83fe28e
PZ
947static struct perf_event_context *
948perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
f63a8daa
PZ
949{
950 struct perf_event_context *ctx;
951
952again:
953 rcu_read_lock();
954 ctx = ACCESS_ONCE(event->ctx);
955 if (!atomic_inc_not_zero(&ctx->refcount)) {
956 rcu_read_unlock();
957 goto again;
958 }
959 rcu_read_unlock();
960
a83fe28e 961 mutex_lock_nested(&ctx->mutex, nesting);
f63a8daa
PZ
962 if (event->ctx != ctx) {
963 mutex_unlock(&ctx->mutex);
964 put_ctx(ctx);
965 goto again;
966 }
967
968 return ctx;
969}
970
a83fe28e
PZ
971static inline struct perf_event_context *
972perf_event_ctx_lock(struct perf_event *event)
973{
974 return perf_event_ctx_lock_nested(event, 0);
975}
976
f63a8daa
PZ
977static void perf_event_ctx_unlock(struct perf_event *event,
978 struct perf_event_context *ctx)
979{
980 mutex_unlock(&ctx->mutex);
981 put_ctx(ctx);
982}
983
211de6eb
PZ
984/*
985 * This must be done under the ctx->lock, such as to serialize against
986 * context_equiv(), therefore we cannot call put_ctx() since that might end up
987 * calling scheduler related locks and ctx->lock nests inside those.
988 */
989static __must_check struct perf_event_context *
990unclone_ctx(struct perf_event_context *ctx)
71a851b4 991{
211de6eb
PZ
992 struct perf_event_context *parent_ctx = ctx->parent_ctx;
993
994 lockdep_assert_held(&ctx->lock);
995
996 if (parent_ctx)
71a851b4 997 ctx->parent_ctx = NULL;
5a3126d4 998 ctx->generation++;
211de6eb
PZ
999
1000 return parent_ctx;
71a851b4
PZ
1001}
1002
6844c09d
ACM
1003static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1004{
1005 /*
1006 * only top level events have the pid namespace they were created in
1007 */
1008 if (event->parent)
1009 event = event->parent;
1010
1011 return task_tgid_nr_ns(p, event->ns);
1012}
1013
1014static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1015{
1016 /*
1017 * only top level events have the pid namespace they were created in
1018 */
1019 if (event->parent)
1020 event = event->parent;
1021
1022 return task_pid_nr_ns(p, event->ns);
1023}
1024
7f453c24 1025/*
cdd6c482 1026 * If we inherit events we want to return the parent event id
7f453c24
PZ
1027 * to userspace.
1028 */
cdd6c482 1029static u64 primary_event_id(struct perf_event *event)
7f453c24 1030{
cdd6c482 1031 u64 id = event->id;
7f453c24 1032
cdd6c482
IM
1033 if (event->parent)
1034 id = event->parent->id;
7f453c24
PZ
1035
1036 return id;
1037}
1038
25346b93 1039/*
cdd6c482 1040 * Get the perf_event_context for a task and lock it.
25346b93
PM
1041 * This has to cope with with the fact that until it is locked,
1042 * the context could get moved to another task.
1043 */
cdd6c482 1044static struct perf_event_context *
8dc85d54 1045perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 1046{
cdd6c482 1047 struct perf_event_context *ctx;
25346b93 1048
9ed6060d 1049retry:
058ebd0e
PZ
1050 /*
1051 * One of the few rules of preemptible RCU is that one cannot do
1052 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1053 * part of the read side critical section was preemptible -- see
1054 * rcu_read_unlock_special().
1055 *
1056 * Since ctx->lock nests under rq->lock we must ensure the entire read
1057 * side critical section is non-preemptible.
1058 */
1059 preempt_disable();
1060 rcu_read_lock();
8dc85d54 1061 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
1062 if (ctx) {
1063 /*
1064 * If this context is a clone of another, it might
1065 * get swapped for another underneath us by
cdd6c482 1066 * perf_event_task_sched_out, though the
25346b93
PM
1067 * rcu_read_lock() protects us from any context
1068 * getting freed. Lock the context and check if it
1069 * got swapped before we could get the lock, and retry
1070 * if so. If we locked the right context, then it
1071 * can't get swapped on us any more.
1072 */
e625cce1 1073 raw_spin_lock_irqsave(&ctx->lock, *flags);
8dc85d54 1074 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
e625cce1 1075 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
058ebd0e
PZ
1076 rcu_read_unlock();
1077 preempt_enable();
25346b93
PM
1078 goto retry;
1079 }
b49a9e7e
PZ
1080
1081 if (!atomic_inc_not_zero(&ctx->refcount)) {
e625cce1 1082 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
b49a9e7e
PZ
1083 ctx = NULL;
1084 }
25346b93
PM
1085 }
1086 rcu_read_unlock();
058ebd0e 1087 preempt_enable();
25346b93
PM
1088 return ctx;
1089}
1090
1091/*
1092 * Get the context for a task and increment its pin_count so it
1093 * can't get swapped to another task. This also increments its
1094 * reference count so that the context can't get freed.
1095 */
8dc85d54
PZ
1096static struct perf_event_context *
1097perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 1098{
cdd6c482 1099 struct perf_event_context *ctx;
25346b93
PM
1100 unsigned long flags;
1101
8dc85d54 1102 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
1103 if (ctx) {
1104 ++ctx->pin_count;
e625cce1 1105 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1106 }
1107 return ctx;
1108}
1109
cdd6c482 1110static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
1111{
1112 unsigned long flags;
1113
e625cce1 1114 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 1115 --ctx->pin_count;
e625cce1 1116 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1117}
1118
f67218c3
PZ
1119/*
1120 * Update the record of the current time in a context.
1121 */
1122static void update_context_time(struct perf_event_context *ctx)
1123{
1124 u64 now = perf_clock();
1125
1126 ctx->time += now - ctx->timestamp;
1127 ctx->timestamp = now;
1128}
1129
4158755d
SE
1130static u64 perf_event_time(struct perf_event *event)
1131{
1132 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
1133
1134 if (is_cgroup_event(event))
1135 return perf_cgroup_event_time(event);
1136
4158755d
SE
1137 return ctx ? ctx->time : 0;
1138}
1139
f67218c3
PZ
1140/*
1141 * Update the total_time_enabled and total_time_running fields for a event.
b7526f0c 1142 * The caller of this function needs to hold the ctx->lock.
f67218c3
PZ
1143 */
1144static void update_event_times(struct perf_event *event)
1145{
1146 struct perf_event_context *ctx = event->ctx;
1147 u64 run_end;
1148
1149 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1150 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1151 return;
e5d1367f
SE
1152 /*
1153 * in cgroup mode, time_enabled represents
1154 * the time the event was enabled AND active
1155 * tasks were in the monitored cgroup. This is
1156 * independent of the activity of the context as
1157 * there may be a mix of cgroup and non-cgroup events.
1158 *
1159 * That is why we treat cgroup events differently
1160 * here.
1161 */
1162 if (is_cgroup_event(event))
46cd6a7f 1163 run_end = perf_cgroup_event_time(event);
e5d1367f
SE
1164 else if (ctx->is_active)
1165 run_end = ctx->time;
acd1d7c1
PZ
1166 else
1167 run_end = event->tstamp_stopped;
1168
1169 event->total_time_enabled = run_end - event->tstamp_enabled;
f67218c3
PZ
1170
1171 if (event->state == PERF_EVENT_STATE_INACTIVE)
1172 run_end = event->tstamp_stopped;
1173 else
4158755d 1174 run_end = perf_event_time(event);
f67218c3
PZ
1175
1176 event->total_time_running = run_end - event->tstamp_running;
e5d1367f 1177
f67218c3
PZ
1178}
1179
96c21a46
PZ
1180/*
1181 * Update total_time_enabled and total_time_running for all events in a group.
1182 */
1183static void update_group_times(struct perf_event *leader)
1184{
1185 struct perf_event *event;
1186
1187 update_event_times(leader);
1188 list_for_each_entry(event, &leader->sibling_list, group_entry)
1189 update_event_times(event);
1190}
1191
889ff015
FW
1192static struct list_head *
1193ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1194{
1195 if (event->attr.pinned)
1196 return &ctx->pinned_groups;
1197 else
1198 return &ctx->flexible_groups;
1199}
1200
fccc714b 1201/*
cdd6c482 1202 * Add a event from the lists for its context.
fccc714b
PZ
1203 * Must be called with ctx->mutex and ctx->lock held.
1204 */
04289bb9 1205static void
cdd6c482 1206list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1207{
8a49542c
PZ
1208 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1209 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9
IM
1210
1211 /*
8a49542c
PZ
1212 * If we're a stand alone event or group leader, we go to the context
1213 * list, group events are kept attached to the group so that
1214 * perf_group_detach can, at all times, locate all siblings.
04289bb9 1215 */
8a49542c 1216 if (event->group_leader == event) {
889ff015
FW
1217 struct list_head *list;
1218
d6f962b5
FW
1219 if (is_software_event(event))
1220 event->group_flags |= PERF_GROUP_SOFTWARE;
1221
889ff015
FW
1222 list = ctx_group_list(event, ctx);
1223 list_add_tail(&event->group_entry, list);
5c148194 1224 }
592903cd 1225
08309379 1226 if (is_cgroup_event(event))
e5d1367f 1227 ctx->nr_cgroups++;
e5d1367f 1228
cdd6c482
IM
1229 list_add_rcu(&event->event_entry, &ctx->event_list);
1230 ctx->nr_events++;
1231 if (event->attr.inherit_stat)
bfbd3381 1232 ctx->nr_stat++;
5a3126d4
PZ
1233
1234 ctx->generation++;
04289bb9
IM
1235}
1236
0231bb53
JO
1237/*
1238 * Initialize event state based on the perf_event_attr::disabled.
1239 */
1240static inline void perf_event__state_init(struct perf_event *event)
1241{
1242 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1243 PERF_EVENT_STATE_INACTIVE;
1244}
1245
c320c7b7
ACM
1246/*
1247 * Called at perf_event creation and when events are attached/detached from a
1248 * group.
1249 */
1250static void perf_event__read_size(struct perf_event *event)
1251{
1252 int entry = sizeof(u64); /* value */
1253 int size = 0;
1254 int nr = 1;
1255
1256 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1257 size += sizeof(u64);
1258
1259 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1260 size += sizeof(u64);
1261
1262 if (event->attr.read_format & PERF_FORMAT_ID)
1263 entry += sizeof(u64);
1264
1265 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1266 nr += event->group_leader->nr_siblings;
1267 size += sizeof(u64);
1268 }
1269
1270 size += entry * nr;
1271 event->read_size = size;
1272}
1273
1274static void perf_event__header_size(struct perf_event *event)
1275{
1276 struct perf_sample_data *data;
1277 u64 sample_type = event->attr.sample_type;
1278 u16 size = 0;
1279
1280 perf_event__read_size(event);
1281
1282 if (sample_type & PERF_SAMPLE_IP)
1283 size += sizeof(data->ip);
1284
6844c09d
ACM
1285 if (sample_type & PERF_SAMPLE_ADDR)
1286 size += sizeof(data->addr);
1287
1288 if (sample_type & PERF_SAMPLE_PERIOD)
1289 size += sizeof(data->period);
1290
c3feedf2
AK
1291 if (sample_type & PERF_SAMPLE_WEIGHT)
1292 size += sizeof(data->weight);
1293
6844c09d
ACM
1294 if (sample_type & PERF_SAMPLE_READ)
1295 size += event->read_size;
1296
d6be9ad6
SE
1297 if (sample_type & PERF_SAMPLE_DATA_SRC)
1298 size += sizeof(data->data_src.val);
1299
fdfbbd07
AK
1300 if (sample_type & PERF_SAMPLE_TRANSACTION)
1301 size += sizeof(data->txn);
1302
6844c09d
ACM
1303 event->header_size = size;
1304}
1305
1306static void perf_event__id_header_size(struct perf_event *event)
1307{
1308 struct perf_sample_data *data;
1309 u64 sample_type = event->attr.sample_type;
1310 u16 size = 0;
1311
c320c7b7
ACM
1312 if (sample_type & PERF_SAMPLE_TID)
1313 size += sizeof(data->tid_entry);
1314
1315 if (sample_type & PERF_SAMPLE_TIME)
1316 size += sizeof(data->time);
1317
ff3d527c
AH
1318 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1319 size += sizeof(data->id);
1320
c320c7b7
ACM
1321 if (sample_type & PERF_SAMPLE_ID)
1322 size += sizeof(data->id);
1323
1324 if (sample_type & PERF_SAMPLE_STREAM_ID)
1325 size += sizeof(data->stream_id);
1326
1327 if (sample_type & PERF_SAMPLE_CPU)
1328 size += sizeof(data->cpu_entry);
1329
6844c09d 1330 event->id_header_size = size;
c320c7b7
ACM
1331}
1332
8a49542c
PZ
1333static void perf_group_attach(struct perf_event *event)
1334{
c320c7b7 1335 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1336
74c3337c
PZ
1337 /*
1338 * We can have double attach due to group movement in perf_event_open.
1339 */
1340 if (event->attach_state & PERF_ATTACH_GROUP)
1341 return;
1342
8a49542c
PZ
1343 event->attach_state |= PERF_ATTACH_GROUP;
1344
1345 if (group_leader == event)
1346 return;
1347
652884fe
PZ
1348 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1349
8a49542c
PZ
1350 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1351 !is_software_event(event))
1352 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1353
1354 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1355 group_leader->nr_siblings++;
c320c7b7
ACM
1356
1357 perf_event__header_size(group_leader);
1358
1359 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1360 perf_event__header_size(pos);
8a49542c
PZ
1361}
1362
a63eaf34 1363/*
cdd6c482 1364 * Remove a event from the lists for its context.
fccc714b 1365 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1366 */
04289bb9 1367static void
cdd6c482 1368list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1369{
68cacd29 1370 struct perf_cpu_context *cpuctx;
652884fe
PZ
1371
1372 WARN_ON_ONCE(event->ctx != ctx);
1373 lockdep_assert_held(&ctx->lock);
1374
8a49542c
PZ
1375 /*
1376 * We can have double detach due to exit/hot-unplug + close.
1377 */
1378 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1379 return;
8a49542c
PZ
1380
1381 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1382
68cacd29 1383 if (is_cgroup_event(event)) {
e5d1367f 1384 ctx->nr_cgroups--;
68cacd29
SE
1385 cpuctx = __get_cpu_context(ctx);
1386 /*
1387 * if there are no more cgroup events
1388 * then cler cgrp to avoid stale pointer
1389 * in update_cgrp_time_from_cpuctx()
1390 */
1391 if (!ctx->nr_cgroups)
1392 cpuctx->cgrp = NULL;
1393 }
e5d1367f 1394
cdd6c482
IM
1395 ctx->nr_events--;
1396 if (event->attr.inherit_stat)
bfbd3381 1397 ctx->nr_stat--;
8bc20959 1398
cdd6c482 1399 list_del_rcu(&event->event_entry);
04289bb9 1400
8a49542c
PZ
1401 if (event->group_leader == event)
1402 list_del_init(&event->group_entry);
5c148194 1403
96c21a46 1404 update_group_times(event);
b2e74a26
SE
1405
1406 /*
1407 * If event was in error state, then keep it
1408 * that way, otherwise bogus counts will be
1409 * returned on read(). The only way to get out
1410 * of error state is by explicit re-enabling
1411 * of the event
1412 */
1413 if (event->state > PERF_EVENT_STATE_OFF)
1414 event->state = PERF_EVENT_STATE_OFF;
5a3126d4
PZ
1415
1416 ctx->generation++;
050735b0
PZ
1417}
1418
8a49542c 1419static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1420{
1421 struct perf_event *sibling, *tmp;
8a49542c
PZ
1422 struct list_head *list = NULL;
1423
1424 /*
1425 * We can have double detach due to exit/hot-unplug + close.
1426 */
1427 if (!(event->attach_state & PERF_ATTACH_GROUP))
1428 return;
1429
1430 event->attach_state &= ~PERF_ATTACH_GROUP;
1431
1432 /*
1433 * If this is a sibling, remove it from its group.
1434 */
1435 if (event->group_leader != event) {
1436 list_del_init(&event->group_entry);
1437 event->group_leader->nr_siblings--;
c320c7b7 1438 goto out;
8a49542c
PZ
1439 }
1440
1441 if (!list_empty(&event->group_entry))
1442 list = &event->group_entry;
2e2af50b 1443
04289bb9 1444 /*
cdd6c482
IM
1445 * If this was a group event with sibling events then
1446 * upgrade the siblings to singleton events by adding them
8a49542c 1447 * to whatever list we are on.
04289bb9 1448 */
cdd6c482 1449 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
8a49542c
PZ
1450 if (list)
1451 list_move_tail(&sibling->group_entry, list);
04289bb9 1452 sibling->group_leader = sibling;
d6f962b5
FW
1453
1454 /* Inherit group flags from the previous leader */
1455 sibling->group_flags = event->group_flags;
652884fe
PZ
1456
1457 WARN_ON_ONCE(sibling->ctx != event->ctx);
04289bb9 1458 }
c320c7b7
ACM
1459
1460out:
1461 perf_event__header_size(event->group_leader);
1462
1463 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1464 perf_event__header_size(tmp);
04289bb9
IM
1465}
1466
fadfe7be
JO
1467/*
1468 * User event without the task.
1469 */
1470static bool is_orphaned_event(struct perf_event *event)
1471{
1472 return event && !is_kernel_event(event) && !event->owner;
1473}
1474
1475/*
1476 * Event has a parent but parent's task finished and it's
1477 * alive only because of children holding refference.
1478 */
1479static bool is_orphaned_child(struct perf_event *event)
1480{
1481 return is_orphaned_event(event->parent);
1482}
1483
1484static void orphans_remove_work(struct work_struct *work);
1485
1486static void schedule_orphans_remove(struct perf_event_context *ctx)
1487{
1488 if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
1489 return;
1490
1491 if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
1492 get_ctx(ctx);
1493 ctx->orphans_remove_sched = true;
1494 }
1495}
1496
1497static int __init perf_workqueue_init(void)
1498{
1499 perf_wq = create_singlethread_workqueue("perf");
1500 WARN(!perf_wq, "failed to create perf workqueue\n");
1501 return perf_wq ? 0 : -1;
1502}
1503
1504core_initcall(perf_workqueue_init);
1505
66eb579e
MR
1506static inline int pmu_filter_match(struct perf_event *event)
1507{
1508 struct pmu *pmu = event->pmu;
1509 return pmu->filter_match ? pmu->filter_match(event) : 1;
1510}
1511
fa66f07a
SE
1512static inline int
1513event_filter_match(struct perf_event *event)
1514{
e5d1367f 1515 return (event->cpu == -1 || event->cpu == smp_processor_id())
66eb579e 1516 && perf_cgroup_match(event) && pmu_filter_match(event);
fa66f07a
SE
1517}
1518
9ffcfa6f
SE
1519static void
1520event_sched_out(struct perf_event *event,
3b6f9e5c 1521 struct perf_cpu_context *cpuctx,
cdd6c482 1522 struct perf_event_context *ctx)
3b6f9e5c 1523{
4158755d 1524 u64 tstamp = perf_event_time(event);
fa66f07a 1525 u64 delta;
652884fe
PZ
1526
1527 WARN_ON_ONCE(event->ctx != ctx);
1528 lockdep_assert_held(&ctx->lock);
1529
fa66f07a
SE
1530 /*
1531 * An event which could not be activated because of
1532 * filter mismatch still needs to have its timings
1533 * maintained, otherwise bogus information is return
1534 * via read() for time_enabled, time_running:
1535 */
1536 if (event->state == PERF_EVENT_STATE_INACTIVE
1537 && !event_filter_match(event)) {
e5d1367f 1538 delta = tstamp - event->tstamp_stopped;
fa66f07a 1539 event->tstamp_running += delta;
4158755d 1540 event->tstamp_stopped = tstamp;
fa66f07a
SE
1541 }
1542
cdd6c482 1543 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 1544 return;
3b6f9e5c 1545
44377277
AS
1546 perf_pmu_disable(event->pmu);
1547
cdd6c482
IM
1548 event->state = PERF_EVENT_STATE_INACTIVE;
1549 if (event->pending_disable) {
1550 event->pending_disable = 0;
1551 event->state = PERF_EVENT_STATE_OFF;
970892a9 1552 }
4158755d 1553 event->tstamp_stopped = tstamp;
a4eaf7f1 1554 event->pmu->del(event, 0);
cdd6c482 1555 event->oncpu = -1;
3b6f9e5c 1556
cdd6c482 1557 if (!is_software_event(event))
3b6f9e5c 1558 cpuctx->active_oncpu--;
2fde4f94
MR
1559 if (!--ctx->nr_active)
1560 perf_event_ctx_deactivate(ctx);
0f5a2601
PZ
1561 if (event->attr.freq && event->attr.sample_freq)
1562 ctx->nr_freq--;
cdd6c482 1563 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c 1564 cpuctx->exclusive = 0;
44377277 1565
fadfe7be
JO
1566 if (is_orphaned_child(event))
1567 schedule_orphans_remove(ctx);
1568
44377277 1569 perf_pmu_enable(event->pmu);
3b6f9e5c
PM
1570}
1571
d859e29f 1572static void
cdd6c482 1573group_sched_out(struct perf_event *group_event,
d859e29f 1574 struct perf_cpu_context *cpuctx,
cdd6c482 1575 struct perf_event_context *ctx)
d859e29f 1576{
cdd6c482 1577 struct perf_event *event;
fa66f07a 1578 int state = group_event->state;
d859e29f 1579
cdd6c482 1580 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
1581
1582 /*
1583 * Schedule out siblings (if any):
1584 */
cdd6c482
IM
1585 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1586 event_sched_out(event, cpuctx, ctx);
d859e29f 1587
fa66f07a 1588 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
d859e29f
PM
1589 cpuctx->exclusive = 0;
1590}
1591
46ce0fe9
PZ
1592struct remove_event {
1593 struct perf_event *event;
1594 bool detach_group;
1595};
1596
0793a61d 1597/*
cdd6c482 1598 * Cross CPU call to remove a performance event
0793a61d 1599 *
cdd6c482 1600 * We disable the event on the hardware level first. After that we
0793a61d
TG
1601 * remove it from the context list.
1602 */
fe4b04fa 1603static int __perf_remove_from_context(void *info)
0793a61d 1604{
46ce0fe9
PZ
1605 struct remove_event *re = info;
1606 struct perf_event *event = re->event;
cdd6c482 1607 struct perf_event_context *ctx = event->ctx;
108b02cf 1608 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
0793a61d 1609
e625cce1 1610 raw_spin_lock(&ctx->lock);
cdd6c482 1611 event_sched_out(event, cpuctx, ctx);
46ce0fe9
PZ
1612 if (re->detach_group)
1613 perf_group_detach(event);
cdd6c482 1614 list_del_event(event, ctx);
64ce3126
PZ
1615 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1616 ctx->is_active = 0;
1617 cpuctx->task_ctx = NULL;
1618 }
e625cce1 1619 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1620
1621 return 0;
0793a61d
TG
1622}
1623
1624
1625/*
cdd6c482 1626 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 1627 *
cdd6c482 1628 * CPU events are removed with a smp call. For task events we only
0793a61d 1629 * call when the task is on a CPU.
c93f7669 1630 *
cdd6c482
IM
1631 * If event->ctx is a cloned context, callers must make sure that
1632 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
1633 * remains valid. This is OK when called from perf_release since
1634 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 1635 * When called from perf_event_exit_task, it's OK because the
c93f7669 1636 * context has been detached from its task.
0793a61d 1637 */
46ce0fe9 1638static void perf_remove_from_context(struct perf_event *event, bool detach_group)
0793a61d 1639{
cdd6c482 1640 struct perf_event_context *ctx = event->ctx;
0793a61d 1641 struct task_struct *task = ctx->task;
46ce0fe9
PZ
1642 struct remove_event re = {
1643 .event = event,
1644 .detach_group = detach_group,
1645 };
0793a61d 1646
fe4b04fa
PZ
1647 lockdep_assert_held(&ctx->mutex);
1648
0793a61d
TG
1649 if (!task) {
1650 /*
226424ee
MR
1651 * Per cpu events are removed via an smp call. The removal can
1652 * fail if the CPU is currently offline, but in that case we
1653 * already called __perf_remove_from_context from
1654 * perf_event_exit_cpu.
0793a61d 1655 */
46ce0fe9 1656 cpu_function_call(event->cpu, __perf_remove_from_context, &re);
0793a61d
TG
1657 return;
1658 }
1659
1660retry:
46ce0fe9 1661 if (!task_function_call(task, __perf_remove_from_context, &re))
fe4b04fa 1662 return;
0793a61d 1663
e625cce1 1664 raw_spin_lock_irq(&ctx->lock);
0793a61d 1665 /*
fe4b04fa
PZ
1666 * If we failed to find a running task, but find the context active now
1667 * that we've acquired the ctx->lock, retry.
0793a61d 1668 */
fe4b04fa 1669 if (ctx->is_active) {
e625cce1 1670 raw_spin_unlock_irq(&ctx->lock);
3577af70
CW
1671 /*
1672 * Reload the task pointer, it might have been changed by
1673 * a concurrent perf_event_context_sched_out().
1674 */
1675 task = ctx->task;
0793a61d
TG
1676 goto retry;
1677 }
1678
1679 /*
fe4b04fa
PZ
1680 * Since the task isn't running, its safe to remove the event, us
1681 * holding the ctx->lock ensures the task won't get scheduled in.
0793a61d 1682 */
46ce0fe9
PZ
1683 if (detach_group)
1684 perf_group_detach(event);
fe4b04fa 1685 list_del_event(event, ctx);
e625cce1 1686 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1687}
1688
d859e29f 1689/*
cdd6c482 1690 * Cross CPU call to disable a performance event
d859e29f 1691 */
500ad2d8 1692int __perf_event_disable(void *info)
d859e29f 1693{
cdd6c482 1694 struct perf_event *event = info;
cdd6c482 1695 struct perf_event_context *ctx = event->ctx;
108b02cf 1696 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f
PM
1697
1698 /*
cdd6c482
IM
1699 * If this is a per-task event, need to check whether this
1700 * event's task is the current task on this cpu.
fe4b04fa
PZ
1701 *
1702 * Can trigger due to concurrent perf_event_context_sched_out()
1703 * flipping contexts around.
d859e29f 1704 */
665c2142 1705 if (ctx->task && cpuctx->task_ctx != ctx)
fe4b04fa 1706 return -EINVAL;
d859e29f 1707
e625cce1 1708 raw_spin_lock(&ctx->lock);
d859e29f
PM
1709
1710 /*
cdd6c482 1711 * If the event is on, turn it off.
d859e29f
PM
1712 * If it is in error state, leave it in error state.
1713 */
cdd6c482 1714 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
4af4998b 1715 update_context_time(ctx);
e5d1367f 1716 update_cgrp_time_from_event(event);
cdd6c482
IM
1717 update_group_times(event);
1718 if (event == event->group_leader)
1719 group_sched_out(event, cpuctx, ctx);
d859e29f 1720 else
cdd6c482
IM
1721 event_sched_out(event, cpuctx, ctx);
1722 event->state = PERF_EVENT_STATE_OFF;
d859e29f
PM
1723 }
1724
e625cce1 1725 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1726
1727 return 0;
d859e29f
PM
1728}
1729
1730/*
cdd6c482 1731 * Disable a event.
c93f7669 1732 *
cdd6c482
IM
1733 * If event->ctx is a cloned context, callers must make sure that
1734 * every task struct that event->ctx->task could possibly point to
c93f7669 1735 * remains valid. This condition is satisifed when called through
cdd6c482
IM
1736 * perf_event_for_each_child or perf_event_for_each because they
1737 * hold the top-level event's child_mutex, so any descendant that
1738 * goes to exit will block in sync_child_event.
1739 * When called from perf_pending_event it's OK because event->ctx
c93f7669 1740 * is the current context on this CPU and preemption is disabled,
cdd6c482 1741 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 1742 */
f63a8daa 1743static void _perf_event_disable(struct perf_event *event)
d859e29f 1744{
cdd6c482 1745 struct perf_event_context *ctx = event->ctx;
d859e29f
PM
1746 struct task_struct *task = ctx->task;
1747
1748 if (!task) {
1749 /*
cdd6c482 1750 * Disable the event on the cpu that it's on
d859e29f 1751 */
fe4b04fa 1752 cpu_function_call(event->cpu, __perf_event_disable, event);
d859e29f
PM
1753 return;
1754 }
1755
9ed6060d 1756retry:
fe4b04fa
PZ
1757 if (!task_function_call(task, __perf_event_disable, event))
1758 return;
d859e29f 1759
e625cce1 1760 raw_spin_lock_irq(&ctx->lock);
d859e29f 1761 /*
cdd6c482 1762 * If the event is still active, we need to retry the cross-call.
d859e29f 1763 */
cdd6c482 1764 if (event->state == PERF_EVENT_STATE_ACTIVE) {
e625cce1 1765 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa
PZ
1766 /*
1767 * Reload the task pointer, it might have been changed by
1768 * a concurrent perf_event_context_sched_out().
1769 */
1770 task = ctx->task;
d859e29f
PM
1771 goto retry;
1772 }
1773
1774 /*
1775 * Since we have the lock this context can't be scheduled
1776 * in, so we can change the state safely.
1777 */
cdd6c482
IM
1778 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1779 update_group_times(event);
1780 event->state = PERF_EVENT_STATE_OFF;
53cfbf59 1781 }
e625cce1 1782 raw_spin_unlock_irq(&ctx->lock);
d859e29f 1783}
f63a8daa
PZ
1784
1785/*
1786 * Strictly speaking kernel users cannot create groups and therefore this
1787 * interface does not need the perf_event_ctx_lock() magic.
1788 */
1789void perf_event_disable(struct perf_event *event)
1790{
1791 struct perf_event_context *ctx;
1792
1793 ctx = perf_event_ctx_lock(event);
1794 _perf_event_disable(event);
1795 perf_event_ctx_unlock(event, ctx);
1796}
dcfce4a0 1797EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 1798
e5d1367f
SE
1799static void perf_set_shadow_time(struct perf_event *event,
1800 struct perf_event_context *ctx,
1801 u64 tstamp)
1802{
1803 /*
1804 * use the correct time source for the time snapshot
1805 *
1806 * We could get by without this by leveraging the
1807 * fact that to get to this function, the caller
1808 * has most likely already called update_context_time()
1809 * and update_cgrp_time_xx() and thus both timestamp
1810 * are identical (or very close). Given that tstamp is,
1811 * already adjusted for cgroup, we could say that:
1812 * tstamp - ctx->timestamp
1813 * is equivalent to
1814 * tstamp - cgrp->timestamp.
1815 *
1816 * Then, in perf_output_read(), the calculation would
1817 * work with no changes because:
1818 * - event is guaranteed scheduled in
1819 * - no scheduled out in between
1820 * - thus the timestamp would be the same
1821 *
1822 * But this is a bit hairy.
1823 *
1824 * So instead, we have an explicit cgroup call to remain
1825 * within the time time source all along. We believe it
1826 * is cleaner and simpler to understand.
1827 */
1828 if (is_cgroup_event(event))
1829 perf_cgroup_set_shadow_time(event, tstamp);
1830 else
1831 event->shadow_ctx_time = tstamp - ctx->timestamp;
1832}
1833
4fe757dd
PZ
1834#define MAX_INTERRUPTS (~0ULL)
1835
1836static void perf_log_throttle(struct perf_event *event, int enable);
ec0d7729 1837static void perf_log_itrace_start(struct perf_event *event);
4fe757dd 1838
235c7fc7 1839static int
9ffcfa6f 1840event_sched_in(struct perf_event *event,
235c7fc7 1841 struct perf_cpu_context *cpuctx,
6e37738a 1842 struct perf_event_context *ctx)
235c7fc7 1843{
4158755d 1844 u64 tstamp = perf_event_time(event);
44377277 1845 int ret = 0;
4158755d 1846
63342411
PZ
1847 lockdep_assert_held(&ctx->lock);
1848
cdd6c482 1849 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
1850 return 0;
1851
cdd6c482 1852 event->state = PERF_EVENT_STATE_ACTIVE;
6e37738a 1853 event->oncpu = smp_processor_id();
4fe757dd
PZ
1854
1855 /*
1856 * Unthrottle events, since we scheduled we might have missed several
1857 * ticks already, also for a heavily scheduling task there is little
1858 * guarantee it'll get a tick in a timely manner.
1859 */
1860 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1861 perf_log_throttle(event, 1);
1862 event->hw.interrupts = 0;
1863 }
1864
235c7fc7
IM
1865 /*
1866 * The new state must be visible before we turn it on in the hardware:
1867 */
1868 smp_wmb();
1869
44377277
AS
1870 perf_pmu_disable(event->pmu);
1871
72f669c0
SL
1872 perf_set_shadow_time(event, ctx, tstamp);
1873
ec0d7729
AS
1874 perf_log_itrace_start(event);
1875
a4eaf7f1 1876 if (event->pmu->add(event, PERF_EF_START)) {
cdd6c482
IM
1877 event->state = PERF_EVENT_STATE_INACTIVE;
1878 event->oncpu = -1;
44377277
AS
1879 ret = -EAGAIN;
1880 goto out;
235c7fc7
IM
1881 }
1882
00a2916f
PZ
1883 event->tstamp_running += tstamp - event->tstamp_stopped;
1884
cdd6c482 1885 if (!is_software_event(event))
3b6f9e5c 1886 cpuctx->active_oncpu++;
2fde4f94
MR
1887 if (!ctx->nr_active++)
1888 perf_event_ctx_activate(ctx);
0f5a2601
PZ
1889 if (event->attr.freq && event->attr.sample_freq)
1890 ctx->nr_freq++;
235c7fc7 1891
cdd6c482 1892 if (event->attr.exclusive)
3b6f9e5c
PM
1893 cpuctx->exclusive = 1;
1894
fadfe7be
JO
1895 if (is_orphaned_child(event))
1896 schedule_orphans_remove(ctx);
1897
44377277
AS
1898out:
1899 perf_pmu_enable(event->pmu);
1900
1901 return ret;
235c7fc7
IM
1902}
1903
6751b71e 1904static int
cdd6c482 1905group_sched_in(struct perf_event *group_event,
6751b71e 1906 struct perf_cpu_context *cpuctx,
6e37738a 1907 struct perf_event_context *ctx)
6751b71e 1908{
6bde9b6c 1909 struct perf_event *event, *partial_group = NULL;
4a234593 1910 struct pmu *pmu = ctx->pmu;
d7842da4
SE
1911 u64 now = ctx->time;
1912 bool simulate = false;
6751b71e 1913
cdd6c482 1914 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
1915 return 0;
1916
ad5133b7 1917 pmu->start_txn(pmu);
6bde9b6c 1918
9ffcfa6f 1919 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 1920 pmu->cancel_txn(pmu);
272325c4 1921 perf_mux_hrtimer_restart(cpuctx);
6751b71e 1922 return -EAGAIN;
90151c35 1923 }
6751b71e
PM
1924
1925 /*
1926 * Schedule in siblings as one group (if any):
1927 */
cdd6c482 1928 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
9ffcfa6f 1929 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 1930 partial_group = event;
6751b71e
PM
1931 goto group_error;
1932 }
1933 }
1934
9ffcfa6f 1935 if (!pmu->commit_txn(pmu))
6e85158c 1936 return 0;
9ffcfa6f 1937
6751b71e
PM
1938group_error:
1939 /*
1940 * Groups can be scheduled in as one unit only, so undo any
1941 * partial group before returning:
d7842da4
SE
1942 * The events up to the failed event are scheduled out normally,
1943 * tstamp_stopped will be updated.
1944 *
1945 * The failed events and the remaining siblings need to have
1946 * their timings updated as if they had gone thru event_sched_in()
1947 * and event_sched_out(). This is required to get consistent timings
1948 * across the group. This also takes care of the case where the group
1949 * could never be scheduled by ensuring tstamp_stopped is set to mark
1950 * the time the event was actually stopped, such that time delta
1951 * calculation in update_event_times() is correct.
6751b71e 1952 */
cdd6c482
IM
1953 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1954 if (event == partial_group)
d7842da4
SE
1955 simulate = true;
1956
1957 if (simulate) {
1958 event->tstamp_running += now - event->tstamp_stopped;
1959 event->tstamp_stopped = now;
1960 } else {
1961 event_sched_out(event, cpuctx, ctx);
1962 }
6751b71e 1963 }
9ffcfa6f 1964 event_sched_out(group_event, cpuctx, ctx);
6751b71e 1965
ad5133b7 1966 pmu->cancel_txn(pmu);
90151c35 1967
272325c4 1968 perf_mux_hrtimer_restart(cpuctx);
9e630205 1969
6751b71e
PM
1970 return -EAGAIN;
1971}
1972
3b6f9e5c 1973/*
cdd6c482 1974 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 1975 */
cdd6c482 1976static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
1977 struct perf_cpu_context *cpuctx,
1978 int can_add_hw)
1979{
1980 /*
cdd6c482 1981 * Groups consisting entirely of software events can always go on.
3b6f9e5c 1982 */
d6f962b5 1983 if (event->group_flags & PERF_GROUP_SOFTWARE)
3b6f9e5c
PM
1984 return 1;
1985 /*
1986 * If an exclusive group is already on, no other hardware
cdd6c482 1987 * events can go on.
3b6f9e5c
PM
1988 */
1989 if (cpuctx->exclusive)
1990 return 0;
1991 /*
1992 * If this group is exclusive and there are already
cdd6c482 1993 * events on the CPU, it can't go on.
3b6f9e5c 1994 */
cdd6c482 1995 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
1996 return 0;
1997 /*
1998 * Otherwise, try to add it if all previous groups were able
1999 * to go on.
2000 */
2001 return can_add_hw;
2002}
2003
cdd6c482
IM
2004static void add_event_to_ctx(struct perf_event *event,
2005 struct perf_event_context *ctx)
53cfbf59 2006{
4158755d
SE
2007 u64 tstamp = perf_event_time(event);
2008
cdd6c482 2009 list_add_event(event, ctx);
8a49542c 2010 perf_group_attach(event);
4158755d
SE
2011 event->tstamp_enabled = tstamp;
2012 event->tstamp_running = tstamp;
2013 event->tstamp_stopped = tstamp;
53cfbf59
PM
2014}
2015
2c29ef0f
PZ
2016static void task_ctx_sched_out(struct perf_event_context *ctx);
2017static void
2018ctx_sched_in(struct perf_event_context *ctx,
2019 struct perf_cpu_context *cpuctx,
2020 enum event_type_t event_type,
2021 struct task_struct *task);
fe4b04fa 2022
dce5855b
PZ
2023static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2024 struct perf_event_context *ctx,
2025 struct task_struct *task)
2026{
2027 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2028 if (ctx)
2029 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2030 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2031 if (ctx)
2032 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2033}
2034
0793a61d 2035/*
cdd6c482 2036 * Cross CPU call to install and enable a performance event
682076ae
PZ
2037 *
2038 * Must be called with ctx->mutex held
0793a61d 2039 */
fe4b04fa 2040static int __perf_install_in_context(void *info)
0793a61d 2041{
cdd6c482
IM
2042 struct perf_event *event = info;
2043 struct perf_event_context *ctx = event->ctx;
108b02cf 2044 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f
PZ
2045 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2046 struct task_struct *task = current;
2047
b58f6b0d 2048 perf_ctx_lock(cpuctx, task_ctx);
2c29ef0f 2049 perf_pmu_disable(cpuctx->ctx.pmu);
0793a61d
TG
2050
2051 /*
2c29ef0f 2052 * If there was an active task_ctx schedule it out.
0793a61d 2053 */
b58f6b0d 2054 if (task_ctx)
2c29ef0f 2055 task_ctx_sched_out(task_ctx);
b58f6b0d
PZ
2056
2057 /*
2058 * If the context we're installing events in is not the
2059 * active task_ctx, flip them.
2060 */
2061 if (ctx->task && task_ctx != ctx) {
2062 if (task_ctx)
2063 raw_spin_unlock(&task_ctx->lock);
2064 raw_spin_lock(&ctx->lock);
2065 task_ctx = ctx;
2066 }
2067
2068 if (task_ctx) {
2069 cpuctx->task_ctx = task_ctx;
2c29ef0f
PZ
2070 task = task_ctx->task;
2071 }
b58f6b0d 2072
2c29ef0f 2073 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
0793a61d 2074
4af4998b 2075 update_context_time(ctx);
e5d1367f
SE
2076 /*
2077 * update cgrp time only if current cgrp
2078 * matches event->cgrp. Must be done before
2079 * calling add_event_to_ctx()
2080 */
2081 update_cgrp_time_from_event(event);
0793a61d 2082
cdd6c482 2083 add_event_to_ctx(event, ctx);
0793a61d 2084
d859e29f 2085 /*
2c29ef0f 2086 * Schedule everything back in
d859e29f 2087 */
dce5855b 2088 perf_event_sched_in(cpuctx, task_ctx, task);
2c29ef0f
PZ
2089
2090 perf_pmu_enable(cpuctx->ctx.pmu);
2091 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa
PZ
2092
2093 return 0;
0793a61d
TG
2094}
2095
2096/*
cdd6c482 2097 * Attach a performance event to a context
0793a61d 2098 *
cdd6c482
IM
2099 * First we add the event to the list with the hardware enable bit
2100 * in event->hw_config cleared.
0793a61d 2101 *
cdd6c482 2102 * If the event is attached to a task which is on a CPU we use a smp
0793a61d
TG
2103 * call to enable it in the task context. The task might have been
2104 * scheduled away, but we check this in the smp call again.
2105 */
2106static void
cdd6c482
IM
2107perf_install_in_context(struct perf_event_context *ctx,
2108 struct perf_event *event,
0793a61d
TG
2109 int cpu)
2110{
2111 struct task_struct *task = ctx->task;
2112
fe4b04fa
PZ
2113 lockdep_assert_held(&ctx->mutex);
2114
c3f00c70 2115 event->ctx = ctx;
0cda4c02
YZ
2116 if (event->cpu != -1)
2117 event->cpu = cpu;
c3f00c70 2118
0793a61d
TG
2119 if (!task) {
2120 /*
cdd6c482 2121 * Per cpu events are installed via an smp call and
af901ca1 2122 * the install is always successful.
0793a61d 2123 */
fe4b04fa 2124 cpu_function_call(cpu, __perf_install_in_context, event);
0793a61d
TG
2125 return;
2126 }
2127
0793a61d 2128retry:
fe4b04fa
PZ
2129 if (!task_function_call(task, __perf_install_in_context, event))
2130 return;
0793a61d 2131
e625cce1 2132 raw_spin_lock_irq(&ctx->lock);
0793a61d 2133 /*
fe4b04fa
PZ
2134 * If we failed to find a running task, but find the context active now
2135 * that we've acquired the ctx->lock, retry.
0793a61d 2136 */
fe4b04fa 2137 if (ctx->is_active) {
e625cce1 2138 raw_spin_unlock_irq(&ctx->lock);
3577af70
CW
2139 /*
2140 * Reload the task pointer, it might have been changed by
2141 * a concurrent perf_event_context_sched_out().
2142 */
2143 task = ctx->task;
0793a61d
TG
2144 goto retry;
2145 }
2146
2147 /*
fe4b04fa
PZ
2148 * Since the task isn't running, its safe to add the event, us holding
2149 * the ctx->lock ensures the task won't get scheduled in.
0793a61d 2150 */
fe4b04fa 2151 add_event_to_ctx(event, ctx);
e625cce1 2152 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
2153}
2154
fa289bec 2155/*
cdd6c482 2156 * Put a event into inactive state and update time fields.
fa289bec
PM
2157 * Enabling the leader of a group effectively enables all
2158 * the group members that aren't explicitly disabled, so we
2159 * have to update their ->tstamp_enabled also.
2160 * Note: this works for group members as well as group leaders
2161 * since the non-leader members' sibling_lists will be empty.
2162 */
1d9b482e 2163static void __perf_event_mark_enabled(struct perf_event *event)
fa289bec 2164{
cdd6c482 2165 struct perf_event *sub;
4158755d 2166 u64 tstamp = perf_event_time(event);
fa289bec 2167
cdd6c482 2168 event->state = PERF_EVENT_STATE_INACTIVE;
4158755d 2169 event->tstamp_enabled = tstamp - event->total_time_enabled;
9ed6060d 2170 list_for_each_entry(sub, &event->sibling_list, group_entry) {
4158755d
SE
2171 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2172 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
9ed6060d 2173 }
fa289bec
PM
2174}
2175
d859e29f 2176/*
cdd6c482 2177 * Cross CPU call to enable a performance event
d859e29f 2178 */
fe4b04fa 2179static int __perf_event_enable(void *info)
04289bb9 2180{
cdd6c482 2181 struct perf_event *event = info;
cdd6c482
IM
2182 struct perf_event_context *ctx = event->ctx;
2183 struct perf_event *leader = event->group_leader;
108b02cf 2184 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f 2185 int err;
04289bb9 2186
06f41796
JO
2187 /*
2188 * There's a time window between 'ctx->is_active' check
2189 * in perf_event_enable function and this place having:
2190 * - IRQs on
2191 * - ctx->lock unlocked
2192 *
2193 * where the task could be killed and 'ctx' deactivated
2194 * by perf_event_exit_task.
2195 */
2196 if (!ctx->is_active)
fe4b04fa 2197 return -EINVAL;
3cbed429 2198
e625cce1 2199 raw_spin_lock(&ctx->lock);
4af4998b 2200 update_context_time(ctx);
d859e29f 2201
cdd6c482 2202 if (event->state >= PERF_EVENT_STATE_INACTIVE)
d859e29f 2203 goto unlock;
e5d1367f
SE
2204
2205 /*
2206 * set current task's cgroup time reference point
2207 */
3f7cce3c 2208 perf_cgroup_set_timestamp(current, ctx);
e5d1367f 2209
1d9b482e 2210 __perf_event_mark_enabled(event);
04289bb9 2211
e5d1367f
SE
2212 if (!event_filter_match(event)) {
2213 if (is_cgroup_event(event))
2214 perf_cgroup_defer_enabled(event);
f4c4176f 2215 goto unlock;
e5d1367f 2216 }
f4c4176f 2217
04289bb9 2218 /*
cdd6c482 2219 * If the event is in a group and isn't the group leader,
d859e29f 2220 * then don't put it on unless the group is on.
04289bb9 2221 */
cdd6c482 2222 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
d859e29f 2223 goto unlock;
3b6f9e5c 2224
cdd6c482 2225 if (!group_can_go_on(event, cpuctx, 1)) {
d859e29f 2226 err = -EEXIST;
e758a33d 2227 } else {
cdd6c482 2228 if (event == leader)
6e37738a 2229 err = group_sched_in(event, cpuctx, ctx);
e758a33d 2230 else
6e37738a 2231 err = event_sched_in(event, cpuctx, ctx);
e758a33d 2232 }
d859e29f
PM
2233
2234 if (err) {
2235 /*
cdd6c482 2236 * If this event can't go on and it's part of a
d859e29f
PM
2237 * group, then the whole group has to come off.
2238 */
9e630205 2239 if (leader != event) {
d859e29f 2240 group_sched_out(leader, cpuctx, ctx);
272325c4 2241 perf_mux_hrtimer_restart(cpuctx);
9e630205 2242 }
0d48696f 2243 if (leader->attr.pinned) {
53cfbf59 2244 update_group_times(leader);
cdd6c482 2245 leader->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2246 }
d859e29f
PM
2247 }
2248
9ed6060d 2249unlock:
e625cce1 2250 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
2251
2252 return 0;
d859e29f
PM
2253}
2254
2255/*
cdd6c482 2256 * Enable a event.
c93f7669 2257 *
cdd6c482
IM
2258 * If event->ctx is a cloned context, callers must make sure that
2259 * every task struct that event->ctx->task could possibly point to
c93f7669 2260 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2261 * perf_event_for_each_child or perf_event_for_each as described
2262 * for perf_event_disable.
d859e29f 2263 */
f63a8daa 2264static void _perf_event_enable(struct perf_event *event)
d859e29f 2265{
cdd6c482 2266 struct perf_event_context *ctx = event->ctx;
d859e29f
PM
2267 struct task_struct *task = ctx->task;
2268
2269 if (!task) {
2270 /*
cdd6c482 2271 * Enable the event on the cpu that it's on
d859e29f 2272 */
fe4b04fa 2273 cpu_function_call(event->cpu, __perf_event_enable, event);
d859e29f
PM
2274 return;
2275 }
2276
e625cce1 2277 raw_spin_lock_irq(&ctx->lock);
cdd6c482 2278 if (event->state >= PERF_EVENT_STATE_INACTIVE)
d859e29f
PM
2279 goto out;
2280
2281 /*
cdd6c482
IM
2282 * If the event is in error state, clear that first.
2283 * That way, if we see the event in error state below, we
d859e29f
PM
2284 * know that it has gone back into error state, as distinct
2285 * from the task having been scheduled away before the
2286 * cross-call arrived.
2287 */
cdd6c482
IM
2288 if (event->state == PERF_EVENT_STATE_ERROR)
2289 event->state = PERF_EVENT_STATE_OFF;
d859e29f 2290
9ed6060d 2291retry:
fe4b04fa 2292 if (!ctx->is_active) {
1d9b482e 2293 __perf_event_mark_enabled(event);
fe4b04fa
PZ
2294 goto out;
2295 }
2296
e625cce1 2297 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa
PZ
2298
2299 if (!task_function_call(task, __perf_event_enable, event))
2300 return;
d859e29f 2301
e625cce1 2302 raw_spin_lock_irq(&ctx->lock);
d859e29f
PM
2303
2304 /*
cdd6c482 2305 * If the context is active and the event is still off,
d859e29f
PM
2306 * we need to retry the cross-call.
2307 */
fe4b04fa
PZ
2308 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
2309 /*
2310 * task could have been flipped by a concurrent
2311 * perf_event_context_sched_out()
2312 */
2313 task = ctx->task;
d859e29f 2314 goto retry;
fe4b04fa 2315 }
fa289bec 2316
9ed6060d 2317out:
e625cce1 2318 raw_spin_unlock_irq(&ctx->lock);
d859e29f 2319}
f63a8daa
PZ
2320
2321/*
2322 * See perf_event_disable();
2323 */
2324void perf_event_enable(struct perf_event *event)
2325{
2326 struct perf_event_context *ctx;
2327
2328 ctx = perf_event_ctx_lock(event);
2329 _perf_event_enable(event);
2330 perf_event_ctx_unlock(event, ctx);
2331}
dcfce4a0 2332EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 2333
f63a8daa 2334static int _perf_event_refresh(struct perf_event *event, int refresh)
79f14641 2335{
2023b359 2336 /*
cdd6c482 2337 * not supported on inherited events
2023b359 2338 */
2e939d1d 2339 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
2340 return -EINVAL;
2341
cdd6c482 2342 atomic_add(refresh, &event->event_limit);
f63a8daa 2343 _perf_event_enable(event);
2023b359
PZ
2344
2345 return 0;
79f14641 2346}
f63a8daa
PZ
2347
2348/*
2349 * See perf_event_disable()
2350 */
2351int perf_event_refresh(struct perf_event *event, int refresh)
2352{
2353 struct perf_event_context *ctx;
2354 int ret;
2355
2356 ctx = perf_event_ctx_lock(event);
2357 ret = _perf_event_refresh(event, refresh);
2358 perf_event_ctx_unlock(event, ctx);
2359
2360 return ret;
2361}
26ca5c11 2362EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 2363
5b0311e1
FW
2364static void ctx_sched_out(struct perf_event_context *ctx,
2365 struct perf_cpu_context *cpuctx,
2366 enum event_type_t event_type)
235c7fc7 2367{
cdd6c482 2368 struct perf_event *event;
db24d33e 2369 int is_active = ctx->is_active;
235c7fc7 2370
db24d33e 2371 ctx->is_active &= ~event_type;
cdd6c482 2372 if (likely(!ctx->nr_events))
facc4307
PZ
2373 return;
2374
4af4998b 2375 update_context_time(ctx);
e5d1367f 2376 update_cgrp_time_from_cpuctx(cpuctx);
5b0311e1 2377 if (!ctx->nr_active)
facc4307 2378 return;
5b0311e1 2379
075e0b00 2380 perf_pmu_disable(ctx->pmu);
db24d33e 2381 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
889ff015
FW
2382 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2383 group_sched_out(event, cpuctx, ctx);
9ed6060d 2384 }
889ff015 2385
db24d33e 2386 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
889ff015 2387 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
8c9ed8e1 2388 group_sched_out(event, cpuctx, ctx);
9ed6060d 2389 }
1b9a644f 2390 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
2391}
2392
564c2b21 2393/*
5a3126d4
PZ
2394 * Test whether two contexts are equivalent, i.e. whether they have both been
2395 * cloned from the same version of the same context.
2396 *
2397 * Equivalence is measured using a generation number in the context that is
2398 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2399 * and list_del_event().
564c2b21 2400 */
cdd6c482
IM
2401static int context_equiv(struct perf_event_context *ctx1,
2402 struct perf_event_context *ctx2)
564c2b21 2403{
211de6eb
PZ
2404 lockdep_assert_held(&ctx1->lock);
2405 lockdep_assert_held(&ctx2->lock);
2406
5a3126d4
PZ
2407 /* Pinning disables the swap optimization */
2408 if (ctx1->pin_count || ctx2->pin_count)
2409 return 0;
2410
2411 /* If ctx1 is the parent of ctx2 */
2412 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2413 return 1;
2414
2415 /* If ctx2 is the parent of ctx1 */
2416 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2417 return 1;
2418
2419 /*
2420 * If ctx1 and ctx2 have the same parent; we flatten the parent
2421 * hierarchy, see perf_event_init_context().
2422 */
2423 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2424 ctx1->parent_gen == ctx2->parent_gen)
2425 return 1;
2426
2427 /* Unmatched */
2428 return 0;
564c2b21
PM
2429}
2430
cdd6c482
IM
2431static void __perf_event_sync_stat(struct perf_event *event,
2432 struct perf_event *next_event)
bfbd3381
PZ
2433{
2434 u64 value;
2435
cdd6c482 2436 if (!event->attr.inherit_stat)
bfbd3381
PZ
2437 return;
2438
2439 /*
cdd6c482 2440 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
2441 * because we're in the middle of a context switch and have IRQs
2442 * disabled, which upsets smp_call_function_single(), however
cdd6c482 2443 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
2444 * don't need to use it.
2445 */
cdd6c482
IM
2446 switch (event->state) {
2447 case PERF_EVENT_STATE_ACTIVE:
3dbebf15
PZ
2448 event->pmu->read(event);
2449 /* fall-through */
bfbd3381 2450
cdd6c482
IM
2451 case PERF_EVENT_STATE_INACTIVE:
2452 update_event_times(event);
bfbd3381
PZ
2453 break;
2454
2455 default:
2456 break;
2457 }
2458
2459 /*
cdd6c482 2460 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
2461 * values when we flip the contexts.
2462 */
e7850595
PZ
2463 value = local64_read(&next_event->count);
2464 value = local64_xchg(&event->count, value);
2465 local64_set(&next_event->count, value);
bfbd3381 2466
cdd6c482
IM
2467 swap(event->total_time_enabled, next_event->total_time_enabled);
2468 swap(event->total_time_running, next_event->total_time_running);
19d2e755 2469
bfbd3381 2470 /*
19d2e755 2471 * Since we swizzled the values, update the user visible data too.
bfbd3381 2472 */
cdd6c482
IM
2473 perf_event_update_userpage(event);
2474 perf_event_update_userpage(next_event);
bfbd3381
PZ
2475}
2476
cdd6c482
IM
2477static void perf_event_sync_stat(struct perf_event_context *ctx,
2478 struct perf_event_context *next_ctx)
bfbd3381 2479{
cdd6c482 2480 struct perf_event *event, *next_event;
bfbd3381
PZ
2481
2482 if (!ctx->nr_stat)
2483 return;
2484
02ffdbc8
PZ
2485 update_context_time(ctx);
2486
cdd6c482
IM
2487 event = list_first_entry(&ctx->event_list,
2488 struct perf_event, event_entry);
bfbd3381 2489
cdd6c482
IM
2490 next_event = list_first_entry(&next_ctx->event_list,
2491 struct perf_event, event_entry);
bfbd3381 2492
cdd6c482
IM
2493 while (&event->event_entry != &ctx->event_list &&
2494 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 2495
cdd6c482 2496 __perf_event_sync_stat(event, next_event);
bfbd3381 2497
cdd6c482
IM
2498 event = list_next_entry(event, event_entry);
2499 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
2500 }
2501}
2502
fe4b04fa
PZ
2503static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2504 struct task_struct *next)
0793a61d 2505{
8dc85d54 2506 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482 2507 struct perf_event_context *next_ctx;
5a3126d4 2508 struct perf_event_context *parent, *next_parent;
108b02cf 2509 struct perf_cpu_context *cpuctx;
c93f7669 2510 int do_switch = 1;
0793a61d 2511
108b02cf
PZ
2512 if (likely(!ctx))
2513 return;
10989fb2 2514
108b02cf
PZ
2515 cpuctx = __get_cpu_context(ctx);
2516 if (!cpuctx->task_ctx)
0793a61d
TG
2517 return;
2518
c93f7669 2519 rcu_read_lock();
8dc85d54 2520 next_ctx = next->perf_event_ctxp[ctxn];
5a3126d4
PZ
2521 if (!next_ctx)
2522 goto unlock;
2523
2524 parent = rcu_dereference(ctx->parent_ctx);
2525 next_parent = rcu_dereference(next_ctx->parent_ctx);
2526
2527 /* If neither context have a parent context; they cannot be clones. */
802c8a61 2528 if (!parent && !next_parent)
5a3126d4
PZ
2529 goto unlock;
2530
2531 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
c93f7669
PM
2532 /*
2533 * Looks like the two contexts are clones, so we might be
2534 * able to optimize the context switch. We lock both
2535 * contexts and check that they are clones under the
2536 * lock (including re-checking that neither has been
2537 * uncloned in the meantime). It doesn't matter which
2538 * order we take the locks because no other cpu could
2539 * be trying to lock both of these tasks.
2540 */
e625cce1
TG
2541 raw_spin_lock(&ctx->lock);
2542 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 2543 if (context_equiv(ctx, next_ctx)) {
665c2142
PZ
2544 /*
2545 * XXX do we need a memory barrier of sorts
cdd6c482 2546 * wrt to rcu_dereference() of perf_event_ctxp
665c2142 2547 */
8dc85d54
PZ
2548 task->perf_event_ctxp[ctxn] = next_ctx;
2549 next->perf_event_ctxp[ctxn] = ctx;
c93f7669
PM
2550 ctx->task = next;
2551 next_ctx->task = task;
5a158c3c
YZ
2552
2553 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2554
c93f7669 2555 do_switch = 0;
bfbd3381 2556
cdd6c482 2557 perf_event_sync_stat(ctx, next_ctx);
c93f7669 2558 }
e625cce1
TG
2559 raw_spin_unlock(&next_ctx->lock);
2560 raw_spin_unlock(&ctx->lock);
564c2b21 2561 }
5a3126d4 2562unlock:
c93f7669 2563 rcu_read_unlock();
564c2b21 2564
c93f7669 2565 if (do_switch) {
facc4307 2566 raw_spin_lock(&ctx->lock);
5b0311e1 2567 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
c93f7669 2568 cpuctx->task_ctx = NULL;
facc4307 2569 raw_spin_unlock(&ctx->lock);
c93f7669 2570 }
0793a61d
TG
2571}
2572
ba532500
YZ
2573void perf_sched_cb_dec(struct pmu *pmu)
2574{
2575 this_cpu_dec(perf_sched_cb_usages);
2576}
2577
2578void perf_sched_cb_inc(struct pmu *pmu)
2579{
2580 this_cpu_inc(perf_sched_cb_usages);
2581}
2582
2583/*
2584 * This function provides the context switch callback to the lower code
2585 * layer. It is invoked ONLY when the context switch callback is enabled.
2586 */
2587static void perf_pmu_sched_task(struct task_struct *prev,
2588 struct task_struct *next,
2589 bool sched_in)
2590{
2591 struct perf_cpu_context *cpuctx;
2592 struct pmu *pmu;
2593 unsigned long flags;
2594
2595 if (prev == next)
2596 return;
2597
2598 local_irq_save(flags);
2599
2600 rcu_read_lock();
2601
2602 list_for_each_entry_rcu(pmu, &pmus, entry) {
2603 if (pmu->sched_task) {
2604 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2605
2606 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2607
2608 perf_pmu_disable(pmu);
2609
2610 pmu->sched_task(cpuctx->task_ctx, sched_in);
2611
2612 perf_pmu_enable(pmu);
2613
2614 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2615 }
2616 }
2617
2618 rcu_read_unlock();
2619
2620 local_irq_restore(flags);
2621}
2622
45ac1403
AH
2623static void perf_event_switch(struct task_struct *task,
2624 struct task_struct *next_prev, bool sched_in);
2625
8dc85d54
PZ
2626#define for_each_task_context_nr(ctxn) \
2627 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2628
2629/*
2630 * Called from scheduler to remove the events of the current task,
2631 * with interrupts disabled.
2632 *
2633 * We stop each event and update the event value in event->count.
2634 *
2635 * This does not protect us against NMI, but disable()
2636 * sets the disabled bit in the control field of event _before_
2637 * accessing the event control register. If a NMI hits, then it will
2638 * not restart the event.
2639 */
ab0cce56
JO
2640void __perf_event_task_sched_out(struct task_struct *task,
2641 struct task_struct *next)
8dc85d54
PZ
2642{
2643 int ctxn;
2644
ba532500
YZ
2645 if (__this_cpu_read(perf_sched_cb_usages))
2646 perf_pmu_sched_task(task, next, false);
2647
45ac1403
AH
2648 if (atomic_read(&nr_switch_events))
2649 perf_event_switch(task, next, false);
2650
8dc85d54
PZ
2651 for_each_task_context_nr(ctxn)
2652 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
2653
2654 /*
2655 * if cgroup events exist on this CPU, then we need
2656 * to check if we have to switch out PMU state.
2657 * cgroup event are system-wide mode only
2658 */
4a32fea9 2659 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 2660 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
2661}
2662
04dc2dbb 2663static void task_ctx_sched_out(struct perf_event_context *ctx)
a08b159f 2664{
108b02cf 2665 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
a08b159f 2666
a63eaf34
PM
2667 if (!cpuctx->task_ctx)
2668 return;
012b84da
IM
2669
2670 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2671 return;
2672
04dc2dbb 2673 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
a08b159f
PM
2674 cpuctx->task_ctx = NULL;
2675}
2676
5b0311e1
FW
2677/*
2678 * Called with IRQs disabled
2679 */
2680static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2681 enum event_type_t event_type)
2682{
2683 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
2684}
2685
235c7fc7 2686static void
5b0311e1 2687ctx_pinned_sched_in(struct perf_event_context *ctx,
6e37738a 2688 struct perf_cpu_context *cpuctx)
0793a61d 2689{
cdd6c482 2690 struct perf_event *event;
0793a61d 2691
889ff015
FW
2692 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2693 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2694 continue;
5632ab12 2695 if (!event_filter_match(event))
3b6f9e5c
PM
2696 continue;
2697
e5d1367f
SE
2698 /* may need to reset tstamp_enabled */
2699 if (is_cgroup_event(event))
2700 perf_cgroup_mark_enabled(event, ctx);
2701
8c9ed8e1 2702 if (group_can_go_on(event, cpuctx, 1))
6e37738a 2703 group_sched_in(event, cpuctx, ctx);
3b6f9e5c
PM
2704
2705 /*
2706 * If this pinned group hasn't been scheduled,
2707 * put it in error state.
2708 */
cdd6c482
IM
2709 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2710 update_group_times(event);
2711 event->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2712 }
3b6f9e5c 2713 }
5b0311e1
FW
2714}
2715
2716static void
2717ctx_flexible_sched_in(struct perf_event_context *ctx,
6e37738a 2718 struct perf_cpu_context *cpuctx)
5b0311e1
FW
2719{
2720 struct perf_event *event;
2721 int can_add_hw = 1;
3b6f9e5c 2722
889ff015
FW
2723 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2724 /* Ignore events in OFF or ERROR state */
2725 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2726 continue;
04289bb9
IM
2727 /*
2728 * Listen to the 'cpu' scheduling filter constraint
cdd6c482 2729 * of events:
04289bb9 2730 */
5632ab12 2731 if (!event_filter_match(event))
0793a61d
TG
2732 continue;
2733
e5d1367f
SE
2734 /* may need to reset tstamp_enabled */
2735 if (is_cgroup_event(event))
2736 perf_cgroup_mark_enabled(event, ctx);
2737
9ed6060d 2738 if (group_can_go_on(event, cpuctx, can_add_hw)) {
6e37738a 2739 if (group_sched_in(event, cpuctx, ctx))
dd0e6ba2 2740 can_add_hw = 0;
9ed6060d 2741 }
0793a61d 2742 }
5b0311e1
FW
2743}
2744
2745static void
2746ctx_sched_in(struct perf_event_context *ctx,
2747 struct perf_cpu_context *cpuctx,
e5d1367f
SE
2748 enum event_type_t event_type,
2749 struct task_struct *task)
5b0311e1 2750{
e5d1367f 2751 u64 now;
db24d33e 2752 int is_active = ctx->is_active;
e5d1367f 2753
db24d33e 2754 ctx->is_active |= event_type;
5b0311e1 2755 if (likely(!ctx->nr_events))
facc4307 2756 return;
5b0311e1 2757
e5d1367f
SE
2758 now = perf_clock();
2759 ctx->timestamp = now;
3f7cce3c 2760 perf_cgroup_set_timestamp(task, ctx);
5b0311e1
FW
2761 /*
2762 * First go through the list and put on any pinned groups
2763 * in order to give them the best chance of going on.
2764 */
db24d33e 2765 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
6e37738a 2766 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
2767
2768 /* Then walk through the lower prio flexible groups */
db24d33e 2769 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
6e37738a 2770 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
2771}
2772
329c0e01 2773static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
2774 enum event_type_t event_type,
2775 struct task_struct *task)
329c0e01
FW
2776{
2777 struct perf_event_context *ctx = &cpuctx->ctx;
2778
e5d1367f 2779 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
2780}
2781
e5d1367f
SE
2782static void perf_event_context_sched_in(struct perf_event_context *ctx,
2783 struct task_struct *task)
235c7fc7 2784{
108b02cf 2785 struct perf_cpu_context *cpuctx;
235c7fc7 2786
108b02cf 2787 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
2788 if (cpuctx->task_ctx == ctx)
2789 return;
2790
facc4307 2791 perf_ctx_lock(cpuctx, ctx);
1b9a644f 2792 perf_pmu_disable(ctx->pmu);
329c0e01
FW
2793 /*
2794 * We want to keep the following priority order:
2795 * cpu pinned (that don't need to move), task pinned,
2796 * cpu flexible, task flexible.
2797 */
2798 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2799
1d5f003f
GN
2800 if (ctx->nr_events)
2801 cpuctx->task_ctx = ctx;
9b33fa6b 2802
86b47c25
GN
2803 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2804
facc4307
PZ
2805 perf_pmu_enable(ctx->pmu);
2806 perf_ctx_unlock(cpuctx, ctx);
235c7fc7
IM
2807}
2808
8dc85d54
PZ
2809/*
2810 * Called from scheduler to add the events of the current task
2811 * with interrupts disabled.
2812 *
2813 * We restore the event value and then enable it.
2814 *
2815 * This does not protect us against NMI, but enable()
2816 * sets the enabled bit in the control field of event _before_
2817 * accessing the event control register. If a NMI hits, then it will
2818 * keep the event running.
2819 */
ab0cce56
JO
2820void __perf_event_task_sched_in(struct task_struct *prev,
2821 struct task_struct *task)
8dc85d54
PZ
2822{
2823 struct perf_event_context *ctx;
2824 int ctxn;
2825
2826 for_each_task_context_nr(ctxn) {
2827 ctx = task->perf_event_ctxp[ctxn];
2828 if (likely(!ctx))
2829 continue;
2830
e5d1367f 2831 perf_event_context_sched_in(ctx, task);
8dc85d54 2832 }
e5d1367f
SE
2833 /*
2834 * if cgroup events exist on this CPU, then we need
2835 * to check if we have to switch in PMU state.
2836 * cgroup event are system-wide mode only
2837 */
4a32fea9 2838 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 2839 perf_cgroup_sched_in(prev, task);
d010b332 2840
45ac1403
AH
2841 if (atomic_read(&nr_switch_events))
2842 perf_event_switch(task, prev, true);
2843
ba532500
YZ
2844 if (__this_cpu_read(perf_sched_cb_usages))
2845 perf_pmu_sched_task(prev, task, true);
235c7fc7
IM
2846}
2847
abd50713
PZ
2848static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2849{
2850 u64 frequency = event->attr.sample_freq;
2851 u64 sec = NSEC_PER_SEC;
2852 u64 divisor, dividend;
2853
2854 int count_fls, nsec_fls, frequency_fls, sec_fls;
2855
2856 count_fls = fls64(count);
2857 nsec_fls = fls64(nsec);
2858 frequency_fls = fls64(frequency);
2859 sec_fls = 30;
2860
2861 /*
2862 * We got @count in @nsec, with a target of sample_freq HZ
2863 * the target period becomes:
2864 *
2865 * @count * 10^9
2866 * period = -------------------
2867 * @nsec * sample_freq
2868 *
2869 */
2870
2871 /*
2872 * Reduce accuracy by one bit such that @a and @b converge
2873 * to a similar magnitude.
2874 */
fe4b04fa 2875#define REDUCE_FLS(a, b) \
abd50713
PZ
2876do { \
2877 if (a##_fls > b##_fls) { \
2878 a >>= 1; \
2879 a##_fls--; \
2880 } else { \
2881 b >>= 1; \
2882 b##_fls--; \
2883 } \
2884} while (0)
2885
2886 /*
2887 * Reduce accuracy until either term fits in a u64, then proceed with
2888 * the other, so that finally we can do a u64/u64 division.
2889 */
2890 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2891 REDUCE_FLS(nsec, frequency);
2892 REDUCE_FLS(sec, count);
2893 }
2894
2895 if (count_fls + sec_fls > 64) {
2896 divisor = nsec * frequency;
2897
2898 while (count_fls + sec_fls > 64) {
2899 REDUCE_FLS(count, sec);
2900 divisor >>= 1;
2901 }
2902
2903 dividend = count * sec;
2904 } else {
2905 dividend = count * sec;
2906
2907 while (nsec_fls + frequency_fls > 64) {
2908 REDUCE_FLS(nsec, frequency);
2909 dividend >>= 1;
2910 }
2911
2912 divisor = nsec * frequency;
2913 }
2914
f6ab91ad
PZ
2915 if (!divisor)
2916 return dividend;
2917
abd50713
PZ
2918 return div64_u64(dividend, divisor);
2919}
2920
e050e3f0
SE
2921static DEFINE_PER_CPU(int, perf_throttled_count);
2922static DEFINE_PER_CPU(u64, perf_throttled_seq);
2923
f39d47ff 2924static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 2925{
cdd6c482 2926 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 2927 s64 period, sample_period;
bd2b5b12
PZ
2928 s64 delta;
2929
abd50713 2930 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
2931
2932 delta = (s64)(period - hwc->sample_period);
2933 delta = (delta + 7) / 8; /* low pass filter */
2934
2935 sample_period = hwc->sample_period + delta;
2936
2937 if (!sample_period)
2938 sample_period = 1;
2939
bd2b5b12 2940 hwc->sample_period = sample_period;
abd50713 2941
e7850595 2942 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
2943 if (disable)
2944 event->pmu->stop(event, PERF_EF_UPDATE);
2945
e7850595 2946 local64_set(&hwc->period_left, 0);
f39d47ff
SE
2947
2948 if (disable)
2949 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 2950 }
bd2b5b12
PZ
2951}
2952
e050e3f0
SE
2953/*
2954 * combine freq adjustment with unthrottling to avoid two passes over the
2955 * events. At the same time, make sure, having freq events does not change
2956 * the rate of unthrottling as that would introduce bias.
2957 */
2958static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2959 int needs_unthr)
60db5e09 2960{
cdd6c482
IM
2961 struct perf_event *event;
2962 struct hw_perf_event *hwc;
e050e3f0 2963 u64 now, period = TICK_NSEC;
abd50713 2964 s64 delta;
60db5e09 2965
e050e3f0
SE
2966 /*
2967 * only need to iterate over all events iff:
2968 * - context have events in frequency mode (needs freq adjust)
2969 * - there are events to unthrottle on this cpu
2970 */
2971 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
2972 return;
2973
e050e3f0 2974 raw_spin_lock(&ctx->lock);
f39d47ff 2975 perf_pmu_disable(ctx->pmu);
e050e3f0 2976
03541f8b 2977 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 2978 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
2979 continue;
2980
5632ab12 2981 if (!event_filter_match(event))
5d27c23d
PZ
2982 continue;
2983
44377277
AS
2984 perf_pmu_disable(event->pmu);
2985
cdd6c482 2986 hwc = &event->hw;
6a24ed6c 2987
ae23bff1 2988 if (hwc->interrupts == MAX_INTERRUPTS) {
e050e3f0 2989 hwc->interrupts = 0;
cdd6c482 2990 perf_log_throttle(event, 1);
a4eaf7f1 2991 event->pmu->start(event, 0);
a78ac325
PZ
2992 }
2993
cdd6c482 2994 if (!event->attr.freq || !event->attr.sample_freq)
44377277 2995 goto next;
60db5e09 2996
e050e3f0
SE
2997 /*
2998 * stop the event and update event->count
2999 */
3000 event->pmu->stop(event, PERF_EF_UPDATE);
3001
e7850595 3002 now = local64_read(&event->count);
abd50713
PZ
3003 delta = now - hwc->freq_count_stamp;
3004 hwc->freq_count_stamp = now;
60db5e09 3005
e050e3f0
SE
3006 /*
3007 * restart the event
3008 * reload only if value has changed
f39d47ff
SE
3009 * we have stopped the event so tell that
3010 * to perf_adjust_period() to avoid stopping it
3011 * twice.
e050e3f0 3012 */
abd50713 3013 if (delta > 0)
f39d47ff 3014 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
3015
3016 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
44377277
AS
3017 next:
3018 perf_pmu_enable(event->pmu);
60db5e09 3019 }
e050e3f0 3020
f39d47ff 3021 perf_pmu_enable(ctx->pmu);
e050e3f0 3022 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
3023}
3024
235c7fc7 3025/*
cdd6c482 3026 * Round-robin a context's events:
235c7fc7 3027 */
cdd6c482 3028static void rotate_ctx(struct perf_event_context *ctx)
0793a61d 3029{
dddd3379
TG
3030 /*
3031 * Rotate the first entry last of non-pinned groups. Rotation might be
3032 * disabled by the inheritance code.
3033 */
3034 if (!ctx->rotate_disable)
3035 list_rotate_left(&ctx->flexible_groups);
235c7fc7
IM
3036}
3037
9e630205 3038static int perf_rotate_context(struct perf_cpu_context *cpuctx)
235c7fc7 3039{
8dc85d54 3040 struct perf_event_context *ctx = NULL;
2fde4f94 3041 int rotate = 0;
7fc23a53 3042
b5ab4cd5 3043 if (cpuctx->ctx.nr_events) {
b5ab4cd5
PZ
3044 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3045 rotate = 1;
3046 }
235c7fc7 3047
8dc85d54 3048 ctx = cpuctx->task_ctx;
b5ab4cd5 3049 if (ctx && ctx->nr_events) {
b5ab4cd5
PZ
3050 if (ctx->nr_events != ctx->nr_active)
3051 rotate = 1;
3052 }
9717e6cd 3053
e050e3f0 3054 if (!rotate)
0f5a2601
PZ
3055 goto done;
3056
facc4307 3057 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 3058 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 3059
e050e3f0
SE
3060 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3061 if (ctx)
3062 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
0793a61d 3063
e050e3f0
SE
3064 rotate_ctx(&cpuctx->ctx);
3065 if (ctx)
3066 rotate_ctx(ctx);
235c7fc7 3067
e050e3f0 3068 perf_event_sched_in(cpuctx, ctx, current);
235c7fc7 3069
0f5a2601
PZ
3070 perf_pmu_enable(cpuctx->ctx.pmu);
3071 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
b5ab4cd5 3072done:
9e630205
SE
3073
3074 return rotate;
e9d2b064
PZ
3075}
3076
026249ef
FW
3077#ifdef CONFIG_NO_HZ_FULL
3078bool perf_event_can_stop_tick(void)
3079{
948b26b6 3080 if (atomic_read(&nr_freq_events) ||
d84153d6 3081 __this_cpu_read(perf_throttled_count))
026249ef 3082 return false;
d84153d6
FW
3083 else
3084 return true;
026249ef
FW
3085}
3086#endif
3087
e9d2b064
PZ
3088void perf_event_task_tick(void)
3089{
2fde4f94
MR
3090 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3091 struct perf_event_context *ctx, *tmp;
e050e3f0 3092 int throttled;
b5ab4cd5 3093
e9d2b064
PZ
3094 WARN_ON(!irqs_disabled());
3095
e050e3f0
SE
3096 __this_cpu_inc(perf_throttled_seq);
3097 throttled = __this_cpu_xchg(perf_throttled_count, 0);
3098
2fde4f94 3099 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
e050e3f0 3100 perf_adjust_freq_unthr_context(ctx, throttled);
0793a61d
TG
3101}
3102
889ff015
FW
3103static int event_enable_on_exec(struct perf_event *event,
3104 struct perf_event_context *ctx)
3105{
3106 if (!event->attr.enable_on_exec)
3107 return 0;
3108
3109 event->attr.enable_on_exec = 0;
3110 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3111 return 0;
3112
1d9b482e 3113 __perf_event_mark_enabled(event);
889ff015
FW
3114
3115 return 1;
3116}
3117
57e7986e 3118/*
cdd6c482 3119 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
3120 * This expects task == current.
3121 */
8dc85d54 3122static void perf_event_enable_on_exec(struct perf_event_context *ctx)
57e7986e 3123{
211de6eb 3124 struct perf_event_context *clone_ctx = NULL;
cdd6c482 3125 struct perf_event *event;
57e7986e
PM
3126 unsigned long flags;
3127 int enabled = 0;
889ff015 3128 int ret;
57e7986e
PM
3129
3130 local_irq_save(flags);
cdd6c482 3131 if (!ctx || !ctx->nr_events)
57e7986e
PM
3132 goto out;
3133
e566b76e
SE
3134 /*
3135 * We must ctxsw out cgroup events to avoid conflict
3136 * when invoking perf_task_event_sched_in() later on
3137 * in this function. Otherwise we end up trying to
3138 * ctxswin cgroup events which are already scheduled
3139 * in.
3140 */
a8d757ef 3141 perf_cgroup_sched_out(current, NULL);
57e7986e 3142
e625cce1 3143 raw_spin_lock(&ctx->lock);
04dc2dbb 3144 task_ctx_sched_out(ctx);
57e7986e 3145
b79387ef 3146 list_for_each_entry(event, &ctx->event_list, event_entry) {
889ff015
FW
3147 ret = event_enable_on_exec(event, ctx);
3148 if (ret)
3149 enabled = 1;
57e7986e
PM
3150 }
3151
3152 /*
cdd6c482 3153 * Unclone this context if we enabled any event.
57e7986e 3154 */
71a851b4 3155 if (enabled)
211de6eb 3156 clone_ctx = unclone_ctx(ctx);
57e7986e 3157
e625cce1 3158 raw_spin_unlock(&ctx->lock);
57e7986e 3159
e566b76e
SE
3160 /*
3161 * Also calls ctxswin for cgroup events, if any:
3162 */
e5d1367f 3163 perf_event_context_sched_in(ctx, ctx->task);
9ed6060d 3164out:
57e7986e 3165 local_irq_restore(flags);
211de6eb
PZ
3166
3167 if (clone_ctx)
3168 put_ctx(clone_ctx);
57e7986e
PM
3169}
3170
e041e328
PZ
3171void perf_event_exec(void)
3172{
3173 struct perf_event_context *ctx;
3174 int ctxn;
3175
3176 rcu_read_lock();
3177 for_each_task_context_nr(ctxn) {
3178 ctx = current->perf_event_ctxp[ctxn];
3179 if (!ctx)
3180 continue;
3181
3182 perf_event_enable_on_exec(ctx);
3183 }
3184 rcu_read_unlock();
3185}
3186
0793a61d 3187/*
cdd6c482 3188 * Cross CPU call to read the hardware event
0793a61d 3189 */
cdd6c482 3190static void __perf_event_read(void *info)
0793a61d 3191{
cdd6c482
IM
3192 struct perf_event *event = info;
3193 struct perf_event_context *ctx = event->ctx;
108b02cf 3194 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
621a01ea 3195
e1ac3614
PM
3196 /*
3197 * If this is a task context, we need to check whether it is
3198 * the current task context of this cpu. If not it has been
3199 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
3200 * event->count would have been updated to a recent sample
3201 * when the event was scheduled out.
e1ac3614
PM
3202 */
3203 if (ctx->task && cpuctx->task_ctx != ctx)
3204 return;
3205
e625cce1 3206 raw_spin_lock(&ctx->lock);
e5d1367f 3207 if (ctx->is_active) {
542e72fc 3208 update_context_time(ctx);
e5d1367f
SE
3209 update_cgrp_time_from_event(event);
3210 }
cdd6c482 3211 update_event_times(event);
542e72fc
PZ
3212 if (event->state == PERF_EVENT_STATE_ACTIVE)
3213 event->pmu->read(event);
e625cce1 3214 raw_spin_unlock(&ctx->lock);
0793a61d
TG
3215}
3216
b5e58793
PZ
3217static inline u64 perf_event_count(struct perf_event *event)
3218{
eacd3ecc
MF
3219 if (event->pmu->count)
3220 return event->pmu->count(event);
3221
3222 return __perf_event_count(event);
b5e58793
PZ
3223}
3224
cdd6c482 3225static u64 perf_event_read(struct perf_event *event)
0793a61d
TG
3226{
3227 /*
cdd6c482
IM
3228 * If event is enabled and currently active on a CPU, update the
3229 * value in the event structure:
0793a61d 3230 */
cdd6c482
IM
3231 if (event->state == PERF_EVENT_STATE_ACTIVE) {
3232 smp_call_function_single(event->oncpu,
3233 __perf_event_read, event, 1);
3234 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
3235 struct perf_event_context *ctx = event->ctx;
3236 unsigned long flags;
3237
e625cce1 3238 raw_spin_lock_irqsave(&ctx->lock, flags);
c530ccd9
SE
3239 /*
3240 * may read while context is not active
3241 * (e.g., thread is blocked), in that case
3242 * we cannot update context time
3243 */
e5d1367f 3244 if (ctx->is_active) {
c530ccd9 3245 update_context_time(ctx);
e5d1367f
SE
3246 update_cgrp_time_from_event(event);
3247 }
cdd6c482 3248 update_event_times(event);
e625cce1 3249 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d
TG
3250 }
3251
b5e58793 3252 return perf_event_count(event);
0793a61d
TG
3253}
3254
a63eaf34 3255/*
cdd6c482 3256 * Initialize the perf_event context in a task_struct:
a63eaf34 3257 */
eb184479 3258static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 3259{
e625cce1 3260 raw_spin_lock_init(&ctx->lock);
a63eaf34 3261 mutex_init(&ctx->mutex);
2fde4f94 3262 INIT_LIST_HEAD(&ctx->active_ctx_list);
889ff015
FW
3263 INIT_LIST_HEAD(&ctx->pinned_groups);
3264 INIT_LIST_HEAD(&ctx->flexible_groups);
a63eaf34
PM
3265 INIT_LIST_HEAD(&ctx->event_list);
3266 atomic_set(&ctx->refcount, 1);
fadfe7be 3267 INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
eb184479
PZ
3268}
3269
3270static struct perf_event_context *
3271alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3272{
3273 struct perf_event_context *ctx;
3274
3275 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3276 if (!ctx)
3277 return NULL;
3278
3279 __perf_event_init_context(ctx);
3280 if (task) {
3281 ctx->task = task;
3282 get_task_struct(task);
0793a61d 3283 }
eb184479
PZ
3284 ctx->pmu = pmu;
3285
3286 return ctx;
a63eaf34
PM
3287}
3288
2ebd4ffb
MH
3289static struct task_struct *
3290find_lively_task_by_vpid(pid_t vpid)
3291{
3292 struct task_struct *task;
3293 int err;
0793a61d
TG
3294
3295 rcu_read_lock();
2ebd4ffb 3296 if (!vpid)
0793a61d
TG
3297 task = current;
3298 else
2ebd4ffb 3299 task = find_task_by_vpid(vpid);
0793a61d
TG
3300 if (task)
3301 get_task_struct(task);
3302 rcu_read_unlock();
3303
3304 if (!task)
3305 return ERR_PTR(-ESRCH);
3306
0793a61d 3307 /* Reuse ptrace permission checks for now. */
c93f7669
PM
3308 err = -EACCES;
3309 if (!ptrace_may_access(task, PTRACE_MODE_READ))
3310 goto errout;
3311
2ebd4ffb
MH
3312 return task;
3313errout:
3314 put_task_struct(task);
3315 return ERR_PTR(err);
3316
3317}
3318
fe4b04fa
PZ
3319/*
3320 * Returns a matching context with refcount and pincount.
3321 */
108b02cf 3322static struct perf_event_context *
4af57ef2
YZ
3323find_get_context(struct pmu *pmu, struct task_struct *task,
3324 struct perf_event *event)
0793a61d 3325{
211de6eb 3326 struct perf_event_context *ctx, *clone_ctx = NULL;
22a4f650 3327 struct perf_cpu_context *cpuctx;
4af57ef2 3328 void *task_ctx_data = NULL;
25346b93 3329 unsigned long flags;
8dc85d54 3330 int ctxn, err;
4af57ef2 3331 int cpu = event->cpu;
0793a61d 3332
22a4ec72 3333 if (!task) {
cdd6c482 3334 /* Must be root to operate on a CPU event: */
0764771d 3335 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
3336 return ERR_PTR(-EACCES);
3337
0793a61d 3338 /*
cdd6c482 3339 * We could be clever and allow to attach a event to an
0793a61d
TG
3340 * offline CPU and activate it when the CPU comes up, but
3341 * that's for later.
3342 */
f6325e30 3343 if (!cpu_online(cpu))
0793a61d
TG
3344 return ERR_PTR(-ENODEV);
3345
108b02cf 3346 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 3347 ctx = &cpuctx->ctx;
c93f7669 3348 get_ctx(ctx);
fe4b04fa 3349 ++ctx->pin_count;
0793a61d 3350
0793a61d
TG
3351 return ctx;
3352 }
3353
8dc85d54
PZ
3354 err = -EINVAL;
3355 ctxn = pmu->task_ctx_nr;
3356 if (ctxn < 0)
3357 goto errout;
3358
4af57ef2
YZ
3359 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3360 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3361 if (!task_ctx_data) {
3362 err = -ENOMEM;
3363 goto errout;
3364 }
3365 }
3366
9ed6060d 3367retry:
8dc85d54 3368 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 3369 if (ctx) {
211de6eb 3370 clone_ctx = unclone_ctx(ctx);
fe4b04fa 3371 ++ctx->pin_count;
4af57ef2
YZ
3372
3373 if (task_ctx_data && !ctx->task_ctx_data) {
3374 ctx->task_ctx_data = task_ctx_data;
3375 task_ctx_data = NULL;
3376 }
e625cce1 3377 raw_spin_unlock_irqrestore(&ctx->lock, flags);
211de6eb
PZ
3378
3379 if (clone_ctx)
3380 put_ctx(clone_ctx);
9137fb28 3381 } else {
eb184479 3382 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
3383 err = -ENOMEM;
3384 if (!ctx)
3385 goto errout;
eb184479 3386
4af57ef2
YZ
3387 if (task_ctx_data) {
3388 ctx->task_ctx_data = task_ctx_data;
3389 task_ctx_data = NULL;
3390 }
3391
dbe08d82
ON
3392 err = 0;
3393 mutex_lock(&task->perf_event_mutex);
3394 /*
3395 * If it has already passed perf_event_exit_task().
3396 * we must see PF_EXITING, it takes this mutex too.
3397 */
3398 if (task->flags & PF_EXITING)
3399 err = -ESRCH;
3400 else if (task->perf_event_ctxp[ctxn])
3401 err = -EAGAIN;
fe4b04fa 3402 else {
9137fb28 3403 get_ctx(ctx);
fe4b04fa 3404 ++ctx->pin_count;
dbe08d82 3405 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 3406 }
dbe08d82
ON
3407 mutex_unlock(&task->perf_event_mutex);
3408
3409 if (unlikely(err)) {
9137fb28 3410 put_ctx(ctx);
dbe08d82
ON
3411
3412 if (err == -EAGAIN)
3413 goto retry;
3414 goto errout;
a63eaf34
PM
3415 }
3416 }
3417
4af57ef2 3418 kfree(task_ctx_data);
0793a61d 3419 return ctx;
c93f7669 3420
9ed6060d 3421errout:
4af57ef2 3422 kfree(task_ctx_data);
c93f7669 3423 return ERR_PTR(err);
0793a61d
TG
3424}
3425
6fb2915d 3426static void perf_event_free_filter(struct perf_event *event);
2541517c 3427static void perf_event_free_bpf_prog(struct perf_event *event);
6fb2915d 3428
cdd6c482 3429static void free_event_rcu(struct rcu_head *head)
592903cd 3430{
cdd6c482 3431 struct perf_event *event;
592903cd 3432
cdd6c482
IM
3433 event = container_of(head, struct perf_event, rcu_head);
3434 if (event->ns)
3435 put_pid_ns(event->ns);
6fb2915d 3436 perf_event_free_filter(event);
cdd6c482 3437 kfree(event);
592903cd
PZ
3438}
3439
b69cf536
PZ
3440static void ring_buffer_attach(struct perf_event *event,
3441 struct ring_buffer *rb);
925d519a 3442
4beb31f3 3443static void unaccount_event_cpu(struct perf_event *event, int cpu)
f1600952 3444{
4beb31f3
FW
3445 if (event->parent)
3446 return;
3447
4beb31f3
FW
3448 if (is_cgroup_event(event))
3449 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3450}
925d519a 3451
4beb31f3
FW
3452static void unaccount_event(struct perf_event *event)
3453{
3454 if (event->parent)
3455 return;
3456
3457 if (event->attach_state & PERF_ATTACH_TASK)
3458 static_key_slow_dec_deferred(&perf_sched_events);
3459 if (event->attr.mmap || event->attr.mmap_data)
3460 atomic_dec(&nr_mmap_events);
3461 if (event->attr.comm)
3462 atomic_dec(&nr_comm_events);
3463 if (event->attr.task)
3464 atomic_dec(&nr_task_events);
948b26b6
FW
3465 if (event->attr.freq)
3466 atomic_dec(&nr_freq_events);
45ac1403
AH
3467 if (event->attr.context_switch) {
3468 static_key_slow_dec_deferred(&perf_sched_events);
3469 atomic_dec(&nr_switch_events);
3470 }
4beb31f3
FW
3471 if (is_cgroup_event(event))
3472 static_key_slow_dec_deferred(&perf_sched_events);
3473 if (has_branch_stack(event))
3474 static_key_slow_dec_deferred(&perf_sched_events);
3475
3476 unaccount_event_cpu(event, event->cpu);
3477}
925d519a 3478
bed5b25a
AS
3479/*
3480 * The following implement mutual exclusion of events on "exclusive" pmus
3481 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3482 * at a time, so we disallow creating events that might conflict, namely:
3483 *
3484 * 1) cpu-wide events in the presence of per-task events,
3485 * 2) per-task events in the presence of cpu-wide events,
3486 * 3) two matching events on the same context.
3487 *
3488 * The former two cases are handled in the allocation path (perf_event_alloc(),
3489 * __free_event()), the latter -- before the first perf_install_in_context().
3490 */
3491static int exclusive_event_init(struct perf_event *event)
3492{
3493 struct pmu *pmu = event->pmu;
3494
3495 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3496 return 0;
3497
3498 /*
3499 * Prevent co-existence of per-task and cpu-wide events on the
3500 * same exclusive pmu.
3501 *
3502 * Negative pmu::exclusive_cnt means there are cpu-wide
3503 * events on this "exclusive" pmu, positive means there are
3504 * per-task events.
3505 *
3506 * Since this is called in perf_event_alloc() path, event::ctx
3507 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3508 * to mean "per-task event", because unlike other attach states it
3509 * never gets cleared.
3510 */
3511 if (event->attach_state & PERF_ATTACH_TASK) {
3512 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3513 return -EBUSY;
3514 } else {
3515 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3516 return -EBUSY;
3517 }
3518
3519 return 0;
3520}
3521
3522static void exclusive_event_destroy(struct perf_event *event)
3523{
3524 struct pmu *pmu = event->pmu;
3525
3526 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3527 return;
3528
3529 /* see comment in exclusive_event_init() */
3530 if (event->attach_state & PERF_ATTACH_TASK)
3531 atomic_dec(&pmu->exclusive_cnt);
3532 else
3533 atomic_inc(&pmu->exclusive_cnt);
3534}
3535
3536static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3537{
3538 if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
3539 (e1->cpu == e2->cpu ||
3540 e1->cpu == -1 ||
3541 e2->cpu == -1))
3542 return true;
3543 return false;
3544}
3545
3546/* Called under the same ctx::mutex as perf_install_in_context() */
3547static bool exclusive_event_installable(struct perf_event *event,
3548 struct perf_event_context *ctx)
3549{
3550 struct perf_event *iter_event;
3551 struct pmu *pmu = event->pmu;
3552
3553 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3554 return true;
3555
3556 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3557 if (exclusive_event_match(iter_event, event))
3558 return false;
3559 }
3560
3561 return true;
3562}
3563
766d6c07
FW
3564static void __free_event(struct perf_event *event)
3565{
cdd6c482 3566 if (!event->parent) {
927c7a9e
FW
3567 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3568 put_callchain_buffers();
f344011c 3569 }
9ee318a7 3570
dead9f29
AS
3571 perf_event_free_bpf_prog(event);
3572
766d6c07
FW
3573 if (event->destroy)
3574 event->destroy(event);
3575
3576 if (event->ctx)
3577 put_ctx(event->ctx);
3578
bed5b25a
AS
3579 if (event->pmu) {
3580 exclusive_event_destroy(event);
c464c76e 3581 module_put(event->pmu->module);
bed5b25a 3582 }
c464c76e 3583
766d6c07
FW
3584 call_rcu(&event->rcu_head, free_event_rcu);
3585}
683ede43
PZ
3586
3587static void _free_event(struct perf_event *event)
f1600952 3588{
e360adbe 3589 irq_work_sync(&event->pending);
925d519a 3590
4beb31f3 3591 unaccount_event(event);
9ee318a7 3592
76369139 3593 if (event->rb) {
9bb5d40c
PZ
3594 /*
3595 * Can happen when we close an event with re-directed output.
3596 *
3597 * Since we have a 0 refcount, perf_mmap_close() will skip
3598 * over us; possibly making our ring_buffer_put() the last.
3599 */
3600 mutex_lock(&event->mmap_mutex);
b69cf536 3601 ring_buffer_attach(event, NULL);
9bb5d40c 3602 mutex_unlock(&event->mmap_mutex);
a4be7c27
PZ
3603 }
3604
e5d1367f
SE
3605 if (is_cgroup_event(event))
3606 perf_detach_cgroup(event);
3607
766d6c07 3608 __free_event(event);
f1600952
PZ
3609}
3610
683ede43
PZ
3611/*
3612 * Used to free events which have a known refcount of 1, such as in error paths
3613 * where the event isn't exposed yet and inherited events.
3614 */
3615static void free_event(struct perf_event *event)
0793a61d 3616{
683ede43
PZ
3617 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3618 "unexpected event refcount: %ld; ptr=%p\n",
3619 atomic_long_read(&event->refcount), event)) {
3620 /* leak to avoid use-after-free */
3621 return;
3622 }
0793a61d 3623
683ede43 3624 _free_event(event);
0793a61d
TG
3625}
3626
a66a3052 3627/*
f8697762 3628 * Remove user event from the owner task.
a66a3052 3629 */
f8697762 3630static void perf_remove_from_owner(struct perf_event *event)
fb0459d7 3631{
8882135b 3632 struct task_struct *owner;
fb0459d7 3633
8882135b
PZ
3634 rcu_read_lock();
3635 owner = ACCESS_ONCE(event->owner);
3636 /*
3637 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3638 * !owner it means the list deletion is complete and we can indeed
3639 * free this event, otherwise we need to serialize on
3640 * owner->perf_event_mutex.
3641 */
3642 smp_read_barrier_depends();
3643 if (owner) {
3644 /*
3645 * Since delayed_put_task_struct() also drops the last
3646 * task reference we can safely take a new reference
3647 * while holding the rcu_read_lock().
3648 */
3649 get_task_struct(owner);
3650 }
3651 rcu_read_unlock();
3652
3653 if (owner) {
f63a8daa
PZ
3654 /*
3655 * If we're here through perf_event_exit_task() we're already
3656 * holding ctx->mutex which would be an inversion wrt. the
3657 * normal lock order.
3658 *
3659 * However we can safely take this lock because its the child
3660 * ctx->mutex.
3661 */
3662 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
3663
8882135b
PZ
3664 /*
3665 * We have to re-check the event->owner field, if it is cleared
3666 * we raced with perf_event_exit_task(), acquiring the mutex
3667 * ensured they're done, and we can proceed with freeing the
3668 * event.
3669 */
3670 if (event->owner)
3671 list_del_init(&event->owner_entry);
3672 mutex_unlock(&owner->perf_event_mutex);
3673 put_task_struct(owner);
3674 }
f8697762
JO
3675}
3676
f8697762
JO
3677static void put_event(struct perf_event *event)
3678{
a83fe28e 3679 struct perf_event_context *ctx;
f8697762
JO
3680
3681 if (!atomic_long_dec_and_test(&event->refcount))
3682 return;
3683
3684 if (!is_kernel_event(event))
3685 perf_remove_from_owner(event);
8882135b 3686
683ede43
PZ
3687 /*
3688 * There are two ways this annotation is useful:
3689 *
3690 * 1) there is a lock recursion from perf_event_exit_task
3691 * see the comment there.
3692 *
3693 * 2) there is a lock-inversion with mmap_sem through
3694 * perf_event_read_group(), which takes faults while
3695 * holding ctx->mutex, however this is called after
3696 * the last filedesc died, so there is no possibility
3697 * to trigger the AB-BA case.
3698 */
a83fe28e
PZ
3699 ctx = perf_event_ctx_lock_nested(event, SINGLE_DEPTH_NESTING);
3700 WARN_ON_ONCE(ctx->parent_ctx);
683ede43 3701 perf_remove_from_context(event, true);
d415a7f1 3702 perf_event_ctx_unlock(event, ctx);
683ede43
PZ
3703
3704 _free_event(event);
a6fa941d
AV
3705}
3706
683ede43
PZ
3707int perf_event_release_kernel(struct perf_event *event)
3708{
3709 put_event(event);
3710 return 0;
3711}
3712EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3713
8b10c5e2
PZ
3714/*
3715 * Called when the last reference to the file is gone.
3716 */
a6fa941d
AV
3717static int perf_release(struct inode *inode, struct file *file)
3718{
3719 put_event(file->private_data);
3720 return 0;
fb0459d7 3721}
fb0459d7 3722
fadfe7be
JO
3723/*
3724 * Remove all orphanes events from the context.
3725 */
3726static void orphans_remove_work(struct work_struct *work)
3727{
3728 struct perf_event_context *ctx;
3729 struct perf_event *event, *tmp;
3730
3731 ctx = container_of(work, struct perf_event_context,
3732 orphans_remove.work);
3733
3734 mutex_lock(&ctx->mutex);
3735 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
3736 struct perf_event *parent_event = event->parent;
3737
3738 if (!is_orphaned_child(event))
3739 continue;
3740
3741 perf_remove_from_context(event, true);
3742
3743 mutex_lock(&parent_event->child_mutex);
3744 list_del_init(&event->child_list);
3745 mutex_unlock(&parent_event->child_mutex);
3746
3747 free_event(event);
3748 put_event(parent_event);
3749 }
3750
3751 raw_spin_lock_irq(&ctx->lock);
3752 ctx->orphans_remove_sched = false;
3753 raw_spin_unlock_irq(&ctx->lock);
3754 mutex_unlock(&ctx->mutex);
3755
3756 put_ctx(ctx);
3757}
3758
59ed446f 3759u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 3760{
cdd6c482 3761 struct perf_event *child;
e53c0994
PZ
3762 u64 total = 0;
3763
59ed446f
PZ
3764 *enabled = 0;
3765 *running = 0;
3766
6f10581a 3767 mutex_lock(&event->child_mutex);
cdd6c482 3768 total += perf_event_read(event);
59ed446f
PZ
3769 *enabled += event->total_time_enabled +
3770 atomic64_read(&event->child_total_time_enabled);
3771 *running += event->total_time_running +
3772 atomic64_read(&event->child_total_time_running);
3773
3774 list_for_each_entry(child, &event->child_list, child_list) {
cdd6c482 3775 total += perf_event_read(child);
59ed446f
PZ
3776 *enabled += child->total_time_enabled;
3777 *running += child->total_time_running;
3778 }
6f10581a 3779 mutex_unlock(&event->child_mutex);
e53c0994
PZ
3780
3781 return total;
3782}
fb0459d7 3783EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 3784
cdd6c482 3785static int perf_event_read_group(struct perf_event *event,
3dab77fb
PZ
3786 u64 read_format, char __user *buf)
3787{
cdd6c482 3788 struct perf_event *leader = event->group_leader, *sub;
6f10581a 3789 struct perf_event_context *ctx = leader->ctx;
f63a8daa 3790 int n = 0, size = 0, ret;
59ed446f 3791 u64 count, enabled, running;
f63a8daa
PZ
3792 u64 values[5];
3793
3794 lockdep_assert_held(&ctx->mutex);
abf4868b 3795
59ed446f 3796 count = perf_event_read_value(leader, &enabled, &running);
3dab77fb
PZ
3797
3798 values[n++] = 1 + leader->nr_siblings;
59ed446f
PZ
3799 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3800 values[n++] = enabled;
3801 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3802 values[n++] = running;
abf4868b
PZ
3803 values[n++] = count;
3804 if (read_format & PERF_FORMAT_ID)
3805 values[n++] = primary_event_id(leader);
3dab77fb
PZ
3806
3807 size = n * sizeof(u64);
3808
3809 if (copy_to_user(buf, values, size))
f63a8daa 3810 return -EFAULT;
3dab77fb 3811
6f10581a 3812 ret = size;
3dab77fb 3813
65abc865 3814 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
abf4868b 3815 n = 0;
3dab77fb 3816
59ed446f 3817 values[n++] = perf_event_read_value(sub, &enabled, &running);
abf4868b
PZ
3818 if (read_format & PERF_FORMAT_ID)
3819 values[n++] = primary_event_id(sub);
3820
3821 size = n * sizeof(u64);
3822
184d3da8 3823 if (copy_to_user(buf + ret, values, size)) {
f63a8daa 3824 return -EFAULT;
6f10581a 3825 }
abf4868b
PZ
3826
3827 ret += size;
3dab77fb
PZ
3828 }
3829
abf4868b 3830 return ret;
3dab77fb
PZ
3831}
3832
cdd6c482 3833static int perf_event_read_one(struct perf_event *event,
3dab77fb
PZ
3834 u64 read_format, char __user *buf)
3835{
59ed446f 3836 u64 enabled, running;
3dab77fb
PZ
3837 u64 values[4];
3838 int n = 0;
3839
59ed446f
PZ
3840 values[n++] = perf_event_read_value(event, &enabled, &running);
3841 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3842 values[n++] = enabled;
3843 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3844 values[n++] = running;
3dab77fb 3845 if (read_format & PERF_FORMAT_ID)
cdd6c482 3846 values[n++] = primary_event_id(event);
3dab77fb
PZ
3847
3848 if (copy_to_user(buf, values, n * sizeof(u64)))
3849 return -EFAULT;
3850
3851 return n * sizeof(u64);
3852}
3853
dc633982
JO
3854static bool is_event_hup(struct perf_event *event)
3855{
3856 bool no_children;
3857
3858 if (event->state != PERF_EVENT_STATE_EXIT)
3859 return false;
3860
3861 mutex_lock(&event->child_mutex);
3862 no_children = list_empty(&event->child_list);
3863 mutex_unlock(&event->child_mutex);
3864 return no_children;
3865}
3866
0793a61d 3867/*
cdd6c482 3868 * Read the performance event - simple non blocking version for now
0793a61d
TG
3869 */
3870static ssize_t
cdd6c482 3871perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
0793a61d 3872{
cdd6c482 3873 u64 read_format = event->attr.read_format;
3dab77fb 3874 int ret;
0793a61d 3875
3b6f9e5c 3876 /*
cdd6c482 3877 * Return end-of-file for a read on a event that is in
3b6f9e5c
PM
3878 * error state (i.e. because it was pinned but it couldn't be
3879 * scheduled on to the CPU at some point).
3880 */
cdd6c482 3881 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
3882 return 0;
3883
c320c7b7 3884 if (count < event->read_size)
3dab77fb
PZ
3885 return -ENOSPC;
3886
cdd6c482 3887 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 3888 if (read_format & PERF_FORMAT_GROUP)
cdd6c482 3889 ret = perf_event_read_group(event, read_format, buf);
3dab77fb 3890 else
cdd6c482 3891 ret = perf_event_read_one(event, read_format, buf);
0793a61d 3892
3dab77fb 3893 return ret;
0793a61d
TG
3894}
3895
0793a61d
TG
3896static ssize_t
3897perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3898{
cdd6c482 3899 struct perf_event *event = file->private_data;
f63a8daa
PZ
3900 struct perf_event_context *ctx;
3901 int ret;
0793a61d 3902
f63a8daa
PZ
3903 ctx = perf_event_ctx_lock(event);
3904 ret = perf_read_hw(event, buf, count);
3905 perf_event_ctx_unlock(event, ctx);
3906
3907 return ret;
0793a61d
TG
3908}
3909
3910static unsigned int perf_poll(struct file *file, poll_table *wait)
3911{
cdd6c482 3912 struct perf_event *event = file->private_data;
76369139 3913 struct ring_buffer *rb;
61b67684 3914 unsigned int events = POLLHUP;
c7138f37 3915
e708d7ad 3916 poll_wait(file, &event->waitq, wait);
179033b3 3917
dc633982 3918 if (is_event_hup(event))
179033b3 3919 return events;
c7138f37 3920
10c6db11 3921 /*
9bb5d40c
PZ
3922 * Pin the event->rb by taking event->mmap_mutex; otherwise
3923 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
10c6db11
PZ
3924 */
3925 mutex_lock(&event->mmap_mutex);
9bb5d40c
PZ
3926 rb = event->rb;
3927 if (rb)
76369139 3928 events = atomic_xchg(&rb->poll, 0);
10c6db11 3929 mutex_unlock(&event->mmap_mutex);
0793a61d
TG
3930 return events;
3931}
3932
f63a8daa 3933static void _perf_event_reset(struct perf_event *event)
6de6a7b9 3934{
cdd6c482 3935 (void)perf_event_read(event);
e7850595 3936 local64_set(&event->count, 0);
cdd6c482 3937 perf_event_update_userpage(event);
3df5edad
PZ
3938}
3939
c93f7669 3940/*
cdd6c482
IM
3941 * Holding the top-level event's child_mutex means that any
3942 * descendant process that has inherited this event will block
3943 * in sync_child_event if it goes to exit, thus satisfying the
3944 * task existence requirements of perf_event_enable/disable.
c93f7669 3945 */
cdd6c482
IM
3946static void perf_event_for_each_child(struct perf_event *event,
3947 void (*func)(struct perf_event *))
3df5edad 3948{
cdd6c482 3949 struct perf_event *child;
3df5edad 3950
cdd6c482 3951 WARN_ON_ONCE(event->ctx->parent_ctx);
f63a8daa 3952
cdd6c482
IM
3953 mutex_lock(&event->child_mutex);
3954 func(event);
3955 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 3956 func(child);
cdd6c482 3957 mutex_unlock(&event->child_mutex);
3df5edad
PZ
3958}
3959
cdd6c482
IM
3960static void perf_event_for_each(struct perf_event *event,
3961 void (*func)(struct perf_event *))
3df5edad 3962{
cdd6c482
IM
3963 struct perf_event_context *ctx = event->ctx;
3964 struct perf_event *sibling;
3df5edad 3965
f63a8daa
PZ
3966 lockdep_assert_held(&ctx->mutex);
3967
cdd6c482 3968 event = event->group_leader;
75f937f2 3969
cdd6c482 3970 perf_event_for_each_child(event, func);
cdd6c482 3971 list_for_each_entry(sibling, &event->sibling_list, group_entry)
724b6daa 3972 perf_event_for_each_child(sibling, func);
6de6a7b9
PZ
3973}
3974
c7999c6f
PZ
3975struct period_event {
3976 struct perf_event *event;
08247e31 3977 u64 value;
c7999c6f 3978};
08247e31 3979
c7999c6f
PZ
3980static int __perf_event_period(void *info)
3981{
3982 struct period_event *pe = info;
3983 struct perf_event *event = pe->event;
3984 struct perf_event_context *ctx = event->ctx;
3985 u64 value = pe->value;
3986 bool active;
08247e31 3987
c7999c6f 3988 raw_spin_lock(&ctx->lock);
cdd6c482 3989 if (event->attr.freq) {
cdd6c482 3990 event->attr.sample_freq = value;
08247e31 3991 } else {
cdd6c482
IM
3992 event->attr.sample_period = value;
3993 event->hw.sample_period = value;
08247e31 3994 }
bad7192b
PZ
3995
3996 active = (event->state == PERF_EVENT_STATE_ACTIVE);
3997 if (active) {
3998 perf_pmu_disable(ctx->pmu);
3999 event->pmu->stop(event, PERF_EF_UPDATE);
4000 }
4001
4002 local64_set(&event->hw.period_left, 0);
4003
4004 if (active) {
4005 event->pmu->start(event, PERF_EF_RELOAD);
4006 perf_pmu_enable(ctx->pmu);
4007 }
c7999c6f 4008 raw_spin_unlock(&ctx->lock);
bad7192b 4009
c7999c6f
PZ
4010 return 0;
4011}
4012
4013static int perf_event_period(struct perf_event *event, u64 __user *arg)
4014{
4015 struct period_event pe = { .event = event, };
4016 struct perf_event_context *ctx = event->ctx;
4017 struct task_struct *task;
4018 u64 value;
4019
4020 if (!is_sampling_event(event))
4021 return -EINVAL;
4022
4023 if (copy_from_user(&value, arg, sizeof(value)))
4024 return -EFAULT;
4025
4026 if (!value)
4027 return -EINVAL;
4028
4029 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4030 return -EINVAL;
4031
4032 task = ctx->task;
4033 pe.value = value;
4034
4035 if (!task) {
4036 cpu_function_call(event->cpu, __perf_event_period, &pe);
4037 return 0;
4038 }
4039
4040retry:
4041 if (!task_function_call(task, __perf_event_period, &pe))
4042 return 0;
4043
4044 raw_spin_lock_irq(&ctx->lock);
4045 if (ctx->is_active) {
4046 raw_spin_unlock_irq(&ctx->lock);
4047 task = ctx->task;
4048 goto retry;
4049 }
4050
4051 __perf_event_period(&pe);
e625cce1 4052 raw_spin_unlock_irq(&ctx->lock);
08247e31 4053
c7999c6f 4054 return 0;
08247e31
PZ
4055}
4056
ac9721f3
PZ
4057static const struct file_operations perf_fops;
4058
2903ff01 4059static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 4060{
2903ff01
AV
4061 struct fd f = fdget(fd);
4062 if (!f.file)
4063 return -EBADF;
ac9721f3 4064
2903ff01
AV
4065 if (f.file->f_op != &perf_fops) {
4066 fdput(f);
4067 return -EBADF;
ac9721f3 4068 }
2903ff01
AV
4069 *p = f;
4070 return 0;
ac9721f3
PZ
4071}
4072
4073static int perf_event_set_output(struct perf_event *event,
4074 struct perf_event *output_event);
6fb2915d 4075static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2541517c 4076static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
a4be7c27 4077
f63a8daa 4078static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
d859e29f 4079{
cdd6c482 4080 void (*func)(struct perf_event *);
3df5edad 4081 u32 flags = arg;
d859e29f
PM
4082
4083 switch (cmd) {
cdd6c482 4084 case PERF_EVENT_IOC_ENABLE:
f63a8daa 4085 func = _perf_event_enable;
d859e29f 4086 break;
cdd6c482 4087 case PERF_EVENT_IOC_DISABLE:
f63a8daa 4088 func = _perf_event_disable;
79f14641 4089 break;
cdd6c482 4090 case PERF_EVENT_IOC_RESET:
f63a8daa 4091 func = _perf_event_reset;
6de6a7b9 4092 break;
3df5edad 4093
cdd6c482 4094 case PERF_EVENT_IOC_REFRESH:
f63a8daa 4095 return _perf_event_refresh(event, arg);
08247e31 4096
cdd6c482
IM
4097 case PERF_EVENT_IOC_PERIOD:
4098 return perf_event_period(event, (u64 __user *)arg);
08247e31 4099
cf4957f1
JO
4100 case PERF_EVENT_IOC_ID:
4101 {
4102 u64 id = primary_event_id(event);
4103
4104 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4105 return -EFAULT;
4106 return 0;
4107 }
4108
cdd6c482 4109 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 4110 {
ac9721f3 4111 int ret;
ac9721f3 4112 if (arg != -1) {
2903ff01
AV
4113 struct perf_event *output_event;
4114 struct fd output;
4115 ret = perf_fget_light(arg, &output);
4116 if (ret)
4117 return ret;
4118 output_event = output.file->private_data;
4119 ret = perf_event_set_output(event, output_event);
4120 fdput(output);
4121 } else {
4122 ret = perf_event_set_output(event, NULL);
ac9721f3 4123 }
ac9721f3
PZ
4124 return ret;
4125 }
a4be7c27 4126
6fb2915d
LZ
4127 case PERF_EVENT_IOC_SET_FILTER:
4128 return perf_event_set_filter(event, (void __user *)arg);
4129
2541517c
AS
4130 case PERF_EVENT_IOC_SET_BPF:
4131 return perf_event_set_bpf_prog(event, arg);
4132
d859e29f 4133 default:
3df5edad 4134 return -ENOTTY;
d859e29f 4135 }
3df5edad
PZ
4136
4137 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 4138 perf_event_for_each(event, func);
3df5edad 4139 else
cdd6c482 4140 perf_event_for_each_child(event, func);
3df5edad
PZ
4141
4142 return 0;
d859e29f
PM
4143}
4144
f63a8daa
PZ
4145static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4146{
4147 struct perf_event *event = file->private_data;
4148 struct perf_event_context *ctx;
4149 long ret;
4150
4151 ctx = perf_event_ctx_lock(event);
4152 ret = _perf_ioctl(event, cmd, arg);
4153 perf_event_ctx_unlock(event, ctx);
4154
4155 return ret;
4156}
4157
b3f20785
PM
4158#ifdef CONFIG_COMPAT
4159static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4160 unsigned long arg)
4161{
4162 switch (_IOC_NR(cmd)) {
4163 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4164 case _IOC_NR(PERF_EVENT_IOC_ID):
4165 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4166 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4167 cmd &= ~IOCSIZE_MASK;
4168 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4169 }
4170 break;
4171 }
4172 return perf_ioctl(file, cmd, arg);
4173}
4174#else
4175# define perf_compat_ioctl NULL
4176#endif
4177
cdd6c482 4178int perf_event_task_enable(void)
771d7cde 4179{
f63a8daa 4180 struct perf_event_context *ctx;
cdd6c482 4181 struct perf_event *event;
771d7cde 4182
cdd6c482 4183 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4184 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4185 ctx = perf_event_ctx_lock(event);
4186 perf_event_for_each_child(event, _perf_event_enable);
4187 perf_event_ctx_unlock(event, ctx);
4188 }
cdd6c482 4189 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4190
4191 return 0;
4192}
4193
cdd6c482 4194int perf_event_task_disable(void)
771d7cde 4195{
f63a8daa 4196 struct perf_event_context *ctx;
cdd6c482 4197 struct perf_event *event;
771d7cde 4198
cdd6c482 4199 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4200 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4201 ctx = perf_event_ctx_lock(event);
4202 perf_event_for_each_child(event, _perf_event_disable);
4203 perf_event_ctx_unlock(event, ctx);
4204 }
cdd6c482 4205 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4206
4207 return 0;
4208}
4209
cdd6c482 4210static int perf_event_index(struct perf_event *event)
194002b2 4211{
a4eaf7f1
PZ
4212 if (event->hw.state & PERF_HES_STOPPED)
4213 return 0;
4214
cdd6c482 4215 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
4216 return 0;
4217
35edc2a5 4218 return event->pmu->event_idx(event);
194002b2
PZ
4219}
4220
c4794295 4221static void calc_timer_values(struct perf_event *event,
e3f3541c 4222 u64 *now,
7f310a5d
EM
4223 u64 *enabled,
4224 u64 *running)
c4794295 4225{
e3f3541c 4226 u64 ctx_time;
c4794295 4227
e3f3541c
PZ
4228 *now = perf_clock();
4229 ctx_time = event->shadow_ctx_time + *now;
c4794295
EM
4230 *enabled = ctx_time - event->tstamp_enabled;
4231 *running = ctx_time - event->tstamp_running;
4232}
4233
fa731587
PZ
4234static void perf_event_init_userpage(struct perf_event *event)
4235{
4236 struct perf_event_mmap_page *userpg;
4237 struct ring_buffer *rb;
4238
4239 rcu_read_lock();
4240 rb = rcu_dereference(event->rb);
4241 if (!rb)
4242 goto unlock;
4243
4244 userpg = rb->user_page;
4245
4246 /* Allow new userspace to detect that bit 0 is deprecated */
4247 userpg->cap_bit0_is_deprecated = 1;
4248 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
e8c6deac
AS
4249 userpg->data_offset = PAGE_SIZE;
4250 userpg->data_size = perf_data_size(rb);
fa731587
PZ
4251
4252unlock:
4253 rcu_read_unlock();
4254}
4255
c1317ec2
AL
4256void __weak arch_perf_update_userpage(
4257 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
4258{
4259}
4260
38ff667b
PZ
4261/*
4262 * Callers need to ensure there can be no nesting of this function, otherwise
4263 * the seqlock logic goes bad. We can not serialize this because the arch
4264 * code calls this from NMI context.
4265 */
cdd6c482 4266void perf_event_update_userpage(struct perf_event *event)
37d81828 4267{
cdd6c482 4268 struct perf_event_mmap_page *userpg;
76369139 4269 struct ring_buffer *rb;
e3f3541c 4270 u64 enabled, running, now;
38ff667b
PZ
4271
4272 rcu_read_lock();
5ec4c599
PZ
4273 rb = rcu_dereference(event->rb);
4274 if (!rb)
4275 goto unlock;
4276
0d641208
EM
4277 /*
4278 * compute total_time_enabled, total_time_running
4279 * based on snapshot values taken when the event
4280 * was last scheduled in.
4281 *
4282 * we cannot simply called update_context_time()
4283 * because of locking issue as we can be called in
4284 * NMI context
4285 */
e3f3541c 4286 calc_timer_values(event, &now, &enabled, &running);
38ff667b 4287
76369139 4288 userpg = rb->user_page;
7b732a75
PZ
4289 /*
4290 * Disable preemption so as to not let the corresponding user-space
4291 * spin too long if we get preempted.
4292 */
4293 preempt_disable();
37d81828 4294 ++userpg->lock;
92f22a38 4295 barrier();
cdd6c482 4296 userpg->index = perf_event_index(event);
b5e58793 4297 userpg->offset = perf_event_count(event);
365a4038 4298 if (userpg->index)
e7850595 4299 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 4300
0d641208 4301 userpg->time_enabled = enabled +
cdd6c482 4302 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 4303
0d641208 4304 userpg->time_running = running +
cdd6c482 4305 atomic64_read(&event->child_total_time_running);
7f8b4e4e 4306
c1317ec2 4307 arch_perf_update_userpage(event, userpg, now);
e3f3541c 4308
92f22a38 4309 barrier();
37d81828 4310 ++userpg->lock;
7b732a75 4311 preempt_enable();
38ff667b 4312unlock:
7b732a75 4313 rcu_read_unlock();
37d81828
PM
4314}
4315
906010b2
PZ
4316static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4317{
4318 struct perf_event *event = vma->vm_file->private_data;
76369139 4319 struct ring_buffer *rb;
906010b2
PZ
4320 int ret = VM_FAULT_SIGBUS;
4321
4322 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4323 if (vmf->pgoff == 0)
4324 ret = 0;
4325 return ret;
4326 }
4327
4328 rcu_read_lock();
76369139
FW
4329 rb = rcu_dereference(event->rb);
4330 if (!rb)
906010b2
PZ
4331 goto unlock;
4332
4333 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4334 goto unlock;
4335
76369139 4336 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
4337 if (!vmf->page)
4338 goto unlock;
4339
4340 get_page(vmf->page);
4341 vmf->page->mapping = vma->vm_file->f_mapping;
4342 vmf->page->index = vmf->pgoff;
4343
4344 ret = 0;
4345unlock:
4346 rcu_read_unlock();
4347
4348 return ret;
4349}
4350
10c6db11
PZ
4351static void ring_buffer_attach(struct perf_event *event,
4352 struct ring_buffer *rb)
4353{
b69cf536 4354 struct ring_buffer *old_rb = NULL;
10c6db11
PZ
4355 unsigned long flags;
4356
b69cf536
PZ
4357 if (event->rb) {
4358 /*
4359 * Should be impossible, we set this when removing
4360 * event->rb_entry and wait/clear when adding event->rb_entry.
4361 */
4362 WARN_ON_ONCE(event->rcu_pending);
10c6db11 4363
b69cf536 4364 old_rb = event->rb;
b69cf536
PZ
4365 spin_lock_irqsave(&old_rb->event_lock, flags);
4366 list_del_rcu(&event->rb_entry);
4367 spin_unlock_irqrestore(&old_rb->event_lock, flags);
10c6db11 4368
2f993cf0
ON
4369 event->rcu_batches = get_state_synchronize_rcu();
4370 event->rcu_pending = 1;
b69cf536 4371 }
10c6db11 4372
b69cf536 4373 if (rb) {
2f993cf0
ON
4374 if (event->rcu_pending) {
4375 cond_synchronize_rcu(event->rcu_batches);
4376 event->rcu_pending = 0;
4377 }
4378
b69cf536
PZ
4379 spin_lock_irqsave(&rb->event_lock, flags);
4380 list_add_rcu(&event->rb_entry, &rb->event_list);
4381 spin_unlock_irqrestore(&rb->event_lock, flags);
4382 }
4383
4384 rcu_assign_pointer(event->rb, rb);
4385
4386 if (old_rb) {
4387 ring_buffer_put(old_rb);
4388 /*
4389 * Since we detached before setting the new rb, so that we
4390 * could attach the new rb, we could have missed a wakeup.
4391 * Provide it now.
4392 */
4393 wake_up_all(&event->waitq);
4394 }
10c6db11
PZ
4395}
4396
4397static void ring_buffer_wakeup(struct perf_event *event)
4398{
4399 struct ring_buffer *rb;
4400
4401 rcu_read_lock();
4402 rb = rcu_dereference(event->rb);
9bb5d40c
PZ
4403 if (rb) {
4404 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4405 wake_up_all(&event->waitq);
4406 }
10c6db11
PZ
4407 rcu_read_unlock();
4408}
4409
fdc26706 4410struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 4411{
76369139 4412 struct ring_buffer *rb;
7b732a75 4413
ac9721f3 4414 rcu_read_lock();
76369139
FW
4415 rb = rcu_dereference(event->rb);
4416 if (rb) {
4417 if (!atomic_inc_not_zero(&rb->refcount))
4418 rb = NULL;
ac9721f3
PZ
4419 }
4420 rcu_read_unlock();
4421
76369139 4422 return rb;
ac9721f3
PZ
4423}
4424
fdc26706 4425void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 4426{
76369139 4427 if (!atomic_dec_and_test(&rb->refcount))
ac9721f3 4428 return;
7b732a75 4429
9bb5d40c 4430 WARN_ON_ONCE(!list_empty(&rb->event_list));
10c6db11 4431
76369139 4432 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
4433}
4434
4435static void perf_mmap_open(struct vm_area_struct *vma)
4436{
cdd6c482 4437 struct perf_event *event = vma->vm_file->private_data;
7b732a75 4438
cdd6c482 4439 atomic_inc(&event->mmap_count);
9bb5d40c 4440 atomic_inc(&event->rb->mmap_count);
1e0fb9ec 4441
45bfb2e5
PZ
4442 if (vma->vm_pgoff)
4443 atomic_inc(&event->rb->aux_mmap_count);
4444
1e0fb9ec
AL
4445 if (event->pmu->event_mapped)
4446 event->pmu->event_mapped(event);
7b732a75
PZ
4447}
4448
9bb5d40c
PZ
4449/*
4450 * A buffer can be mmap()ed multiple times; either directly through the same
4451 * event, or through other events by use of perf_event_set_output().
4452 *
4453 * In order to undo the VM accounting done by perf_mmap() we need to destroy
4454 * the buffer here, where we still have a VM context. This means we need
4455 * to detach all events redirecting to us.
4456 */
7b732a75
PZ
4457static void perf_mmap_close(struct vm_area_struct *vma)
4458{
cdd6c482 4459 struct perf_event *event = vma->vm_file->private_data;
7b732a75 4460
b69cf536 4461 struct ring_buffer *rb = ring_buffer_get(event);
9bb5d40c
PZ
4462 struct user_struct *mmap_user = rb->mmap_user;
4463 int mmap_locked = rb->mmap_locked;
4464 unsigned long size = perf_data_size(rb);
789f90fc 4465
1e0fb9ec
AL
4466 if (event->pmu->event_unmapped)
4467 event->pmu->event_unmapped(event);
4468
45bfb2e5
PZ
4469 /*
4470 * rb->aux_mmap_count will always drop before rb->mmap_count and
4471 * event->mmap_count, so it is ok to use event->mmap_mutex to
4472 * serialize with perf_mmap here.
4473 */
4474 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4475 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
4476 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
4477 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
4478
4479 rb_free_aux(rb);
4480 mutex_unlock(&event->mmap_mutex);
4481 }
4482
9bb5d40c
PZ
4483 atomic_dec(&rb->mmap_count);
4484
4485 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
b69cf536 4486 goto out_put;
9bb5d40c 4487
b69cf536 4488 ring_buffer_attach(event, NULL);
9bb5d40c
PZ
4489 mutex_unlock(&event->mmap_mutex);
4490
4491 /* If there's still other mmap()s of this buffer, we're done. */
b69cf536
PZ
4492 if (atomic_read(&rb->mmap_count))
4493 goto out_put;
ac9721f3 4494
9bb5d40c
PZ
4495 /*
4496 * No other mmap()s, detach from all other events that might redirect
4497 * into the now unreachable buffer. Somewhat complicated by the
4498 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4499 */
4500again:
4501 rcu_read_lock();
4502 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4503 if (!atomic_long_inc_not_zero(&event->refcount)) {
4504 /*
4505 * This event is en-route to free_event() which will
4506 * detach it and remove it from the list.
4507 */
4508 continue;
4509 }
4510 rcu_read_unlock();
789f90fc 4511
9bb5d40c
PZ
4512 mutex_lock(&event->mmap_mutex);
4513 /*
4514 * Check we didn't race with perf_event_set_output() which can
4515 * swizzle the rb from under us while we were waiting to
4516 * acquire mmap_mutex.
4517 *
4518 * If we find a different rb; ignore this event, a next
4519 * iteration will no longer find it on the list. We have to
4520 * still restart the iteration to make sure we're not now
4521 * iterating the wrong list.
4522 */
b69cf536
PZ
4523 if (event->rb == rb)
4524 ring_buffer_attach(event, NULL);
4525
cdd6c482 4526 mutex_unlock(&event->mmap_mutex);
9bb5d40c 4527 put_event(event);
ac9721f3 4528
9bb5d40c
PZ
4529 /*
4530 * Restart the iteration; either we're on the wrong list or
4531 * destroyed its integrity by doing a deletion.
4532 */
4533 goto again;
7b732a75 4534 }
9bb5d40c
PZ
4535 rcu_read_unlock();
4536
4537 /*
4538 * It could be there's still a few 0-ref events on the list; they'll
4539 * get cleaned up by free_event() -- they'll also still have their
4540 * ref on the rb and will free it whenever they are done with it.
4541 *
4542 * Aside from that, this buffer is 'fully' detached and unmapped,
4543 * undo the VM accounting.
4544 */
4545
4546 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4547 vma->vm_mm->pinned_vm -= mmap_locked;
4548 free_uid(mmap_user);
4549
b69cf536 4550out_put:
9bb5d40c 4551 ring_buffer_put(rb); /* could be last */
37d81828
PM
4552}
4553
f0f37e2f 4554static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8 4555 .open = perf_mmap_open,
45bfb2e5 4556 .close = perf_mmap_close, /* non mergable */
43a21ea8
PZ
4557 .fault = perf_mmap_fault,
4558 .page_mkwrite = perf_mmap_fault,
37d81828
PM
4559};
4560
4561static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4562{
cdd6c482 4563 struct perf_event *event = file->private_data;
22a4f650 4564 unsigned long user_locked, user_lock_limit;
789f90fc 4565 struct user_struct *user = current_user();
22a4f650 4566 unsigned long locked, lock_limit;
45bfb2e5 4567 struct ring_buffer *rb = NULL;
7b732a75
PZ
4568 unsigned long vma_size;
4569 unsigned long nr_pages;
45bfb2e5 4570 long user_extra = 0, extra = 0;
d57e34fd 4571 int ret = 0, flags = 0;
37d81828 4572
c7920614
PZ
4573 /*
4574 * Don't allow mmap() of inherited per-task counters. This would
4575 * create a performance issue due to all children writing to the
76369139 4576 * same rb.
c7920614
PZ
4577 */
4578 if (event->cpu == -1 && event->attr.inherit)
4579 return -EINVAL;
4580
43a21ea8 4581 if (!(vma->vm_flags & VM_SHARED))
37d81828 4582 return -EINVAL;
7b732a75
PZ
4583
4584 vma_size = vma->vm_end - vma->vm_start;
45bfb2e5
PZ
4585
4586 if (vma->vm_pgoff == 0) {
4587 nr_pages = (vma_size / PAGE_SIZE) - 1;
4588 } else {
4589 /*
4590 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
4591 * mapped, all subsequent mappings should have the same size
4592 * and offset. Must be above the normal perf buffer.
4593 */
4594 u64 aux_offset, aux_size;
4595
4596 if (!event->rb)
4597 return -EINVAL;
4598
4599 nr_pages = vma_size / PAGE_SIZE;
4600
4601 mutex_lock(&event->mmap_mutex);
4602 ret = -EINVAL;
4603
4604 rb = event->rb;
4605 if (!rb)
4606 goto aux_unlock;
4607
4608 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
4609 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
4610
4611 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
4612 goto aux_unlock;
4613
4614 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
4615 goto aux_unlock;
4616
4617 /* already mapped with a different offset */
4618 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
4619 goto aux_unlock;
4620
4621 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
4622 goto aux_unlock;
4623
4624 /* already mapped with a different size */
4625 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
4626 goto aux_unlock;
4627
4628 if (!is_power_of_2(nr_pages))
4629 goto aux_unlock;
4630
4631 if (!atomic_inc_not_zero(&rb->mmap_count))
4632 goto aux_unlock;
4633
4634 if (rb_has_aux(rb)) {
4635 atomic_inc(&rb->aux_mmap_count);
4636 ret = 0;
4637 goto unlock;
4638 }
4639
4640 atomic_set(&rb->aux_mmap_count, 1);
4641 user_extra = nr_pages;
4642
4643 goto accounting;
4644 }
7b732a75 4645
7730d865 4646 /*
76369139 4647 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
4648 * can do bitmasks instead of modulo.
4649 */
2ed11312 4650 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
4651 return -EINVAL;
4652
7b732a75 4653 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
4654 return -EINVAL;
4655
cdd6c482 4656 WARN_ON_ONCE(event->ctx->parent_ctx);
9bb5d40c 4657again:
cdd6c482 4658 mutex_lock(&event->mmap_mutex);
76369139 4659 if (event->rb) {
9bb5d40c 4660 if (event->rb->nr_pages != nr_pages) {
ebb3c4c4 4661 ret = -EINVAL;
9bb5d40c
PZ
4662 goto unlock;
4663 }
4664
4665 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4666 /*
4667 * Raced against perf_mmap_close() through
4668 * perf_event_set_output(). Try again, hope for better
4669 * luck.
4670 */
4671 mutex_unlock(&event->mmap_mutex);
4672 goto again;
4673 }
4674
ebb3c4c4
PZ
4675 goto unlock;
4676 }
4677
789f90fc 4678 user_extra = nr_pages + 1;
45bfb2e5
PZ
4679
4680accounting:
cdd6c482 4681 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
4682
4683 /*
4684 * Increase the limit linearly with more CPUs:
4685 */
4686 user_lock_limit *= num_online_cpus();
4687
789f90fc 4688 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 4689
789f90fc
PZ
4690 if (user_locked > user_lock_limit)
4691 extra = user_locked - user_lock_limit;
7b732a75 4692
78d7d407 4693 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 4694 lock_limit >>= PAGE_SHIFT;
bc3e53f6 4695 locked = vma->vm_mm->pinned_vm + extra;
7b732a75 4696
459ec28a
IM
4697 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4698 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
4699 ret = -EPERM;
4700 goto unlock;
4701 }
7b732a75 4702
45bfb2e5 4703 WARN_ON(!rb && event->rb);
906010b2 4704
d57e34fd 4705 if (vma->vm_flags & VM_WRITE)
76369139 4706 flags |= RING_BUFFER_WRITABLE;
d57e34fd 4707
76369139 4708 if (!rb) {
45bfb2e5
PZ
4709 rb = rb_alloc(nr_pages,
4710 event->attr.watermark ? event->attr.wakeup_watermark : 0,
4711 event->cpu, flags);
26cb63ad 4712
45bfb2e5
PZ
4713 if (!rb) {
4714 ret = -ENOMEM;
4715 goto unlock;
4716 }
43a21ea8 4717
45bfb2e5
PZ
4718 atomic_set(&rb->mmap_count, 1);
4719 rb->mmap_user = get_current_user();
4720 rb->mmap_locked = extra;
26cb63ad 4721
45bfb2e5 4722 ring_buffer_attach(event, rb);
ac9721f3 4723
45bfb2e5
PZ
4724 perf_event_init_userpage(event);
4725 perf_event_update_userpage(event);
4726 } else {
1a594131
AS
4727 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
4728 event->attr.aux_watermark, flags);
45bfb2e5
PZ
4729 if (!ret)
4730 rb->aux_mmap_locked = extra;
4731 }
9a0f05cb 4732
ebb3c4c4 4733unlock:
45bfb2e5
PZ
4734 if (!ret) {
4735 atomic_long_add(user_extra, &user->locked_vm);
4736 vma->vm_mm->pinned_vm += extra;
4737
ac9721f3 4738 atomic_inc(&event->mmap_count);
45bfb2e5
PZ
4739 } else if (rb) {
4740 atomic_dec(&rb->mmap_count);
4741 }
4742aux_unlock:
cdd6c482 4743 mutex_unlock(&event->mmap_mutex);
37d81828 4744
9bb5d40c
PZ
4745 /*
4746 * Since pinned accounting is per vm we cannot allow fork() to copy our
4747 * vma.
4748 */
26cb63ad 4749 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
37d81828 4750 vma->vm_ops = &perf_mmap_vmops;
7b732a75 4751
1e0fb9ec
AL
4752 if (event->pmu->event_mapped)
4753 event->pmu->event_mapped(event);
4754
7b732a75 4755 return ret;
37d81828
PM
4756}
4757
3c446b3d
PZ
4758static int perf_fasync(int fd, struct file *filp, int on)
4759{
496ad9aa 4760 struct inode *inode = file_inode(filp);
cdd6c482 4761 struct perf_event *event = filp->private_data;
3c446b3d
PZ
4762 int retval;
4763
4764 mutex_lock(&inode->i_mutex);
cdd6c482 4765 retval = fasync_helper(fd, filp, on, &event->fasync);
3c446b3d
PZ
4766 mutex_unlock(&inode->i_mutex);
4767
4768 if (retval < 0)
4769 return retval;
4770
4771 return 0;
4772}
4773
0793a61d 4774static const struct file_operations perf_fops = {
3326c1ce 4775 .llseek = no_llseek,
0793a61d
TG
4776 .release = perf_release,
4777 .read = perf_read,
4778 .poll = perf_poll,
d859e29f 4779 .unlocked_ioctl = perf_ioctl,
b3f20785 4780 .compat_ioctl = perf_compat_ioctl,
37d81828 4781 .mmap = perf_mmap,
3c446b3d 4782 .fasync = perf_fasync,
0793a61d
TG
4783};
4784
925d519a 4785/*
cdd6c482 4786 * Perf event wakeup
925d519a
PZ
4787 *
4788 * If there's data, ensure we set the poll() state and publish everything
4789 * to user-space before waking everybody up.
4790 */
4791
fed66e2c
PZ
4792static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
4793{
4794 /* only the parent has fasync state */
4795 if (event->parent)
4796 event = event->parent;
4797 return &event->fasync;
4798}
4799
cdd6c482 4800void perf_event_wakeup(struct perf_event *event)
925d519a 4801{
10c6db11 4802 ring_buffer_wakeup(event);
4c9e2542 4803
cdd6c482 4804 if (event->pending_kill) {
fed66e2c 4805 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
cdd6c482 4806 event->pending_kill = 0;
4c9e2542 4807 }
925d519a
PZ
4808}
4809
e360adbe 4810static void perf_pending_event(struct irq_work *entry)
79f14641 4811{
cdd6c482
IM
4812 struct perf_event *event = container_of(entry,
4813 struct perf_event, pending);
d525211f
PZ
4814 int rctx;
4815
4816 rctx = perf_swevent_get_recursion_context();
4817 /*
4818 * If we 'fail' here, that's OK, it means recursion is already disabled
4819 * and we won't recurse 'further'.
4820 */
79f14641 4821
cdd6c482
IM
4822 if (event->pending_disable) {
4823 event->pending_disable = 0;
4824 __perf_event_disable(event);
79f14641
PZ
4825 }
4826
cdd6c482
IM
4827 if (event->pending_wakeup) {
4828 event->pending_wakeup = 0;
4829 perf_event_wakeup(event);
79f14641 4830 }
d525211f
PZ
4831
4832 if (rctx >= 0)
4833 perf_swevent_put_recursion_context(rctx);
79f14641
PZ
4834}
4835
39447b38
ZY
4836/*
4837 * We assume there is only KVM supporting the callbacks.
4838 * Later on, we might change it to a list if there is
4839 * another virtualization implementation supporting the callbacks.
4840 */
4841struct perf_guest_info_callbacks *perf_guest_cbs;
4842
4843int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4844{
4845 perf_guest_cbs = cbs;
4846 return 0;
4847}
4848EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4849
4850int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4851{
4852 perf_guest_cbs = NULL;
4853 return 0;
4854}
4855EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4856
4018994f
JO
4857static void
4858perf_output_sample_regs(struct perf_output_handle *handle,
4859 struct pt_regs *regs, u64 mask)
4860{
4861 int bit;
4862
4863 for_each_set_bit(bit, (const unsigned long *) &mask,
4864 sizeof(mask) * BITS_PER_BYTE) {
4865 u64 val;
4866
4867 val = perf_reg_value(regs, bit);
4868 perf_output_put(handle, val);
4869 }
4870}
4871
60e2364e 4872static void perf_sample_regs_user(struct perf_regs *regs_user,
88a7c26a
AL
4873 struct pt_regs *regs,
4874 struct pt_regs *regs_user_copy)
4018994f 4875{
88a7c26a
AL
4876 if (user_mode(regs)) {
4877 regs_user->abi = perf_reg_abi(current);
2565711f 4878 regs_user->regs = regs;
88a7c26a
AL
4879 } else if (current->mm) {
4880 perf_get_regs_user(regs_user, regs, regs_user_copy);
2565711f
PZ
4881 } else {
4882 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
4883 regs_user->regs = NULL;
4018994f
JO
4884 }
4885}
4886
60e2364e
SE
4887static void perf_sample_regs_intr(struct perf_regs *regs_intr,
4888 struct pt_regs *regs)
4889{
4890 regs_intr->regs = regs;
4891 regs_intr->abi = perf_reg_abi(current);
4892}
4893
4894
c5ebcedb
JO
4895/*
4896 * Get remaining task size from user stack pointer.
4897 *
4898 * It'd be better to take stack vma map and limit this more
4899 * precisly, but there's no way to get it safely under interrupt,
4900 * so using TASK_SIZE as limit.
4901 */
4902static u64 perf_ustack_task_size(struct pt_regs *regs)
4903{
4904 unsigned long addr = perf_user_stack_pointer(regs);
4905
4906 if (!addr || addr >= TASK_SIZE)
4907 return 0;
4908
4909 return TASK_SIZE - addr;
4910}
4911
4912static u16
4913perf_sample_ustack_size(u16 stack_size, u16 header_size,
4914 struct pt_regs *regs)
4915{
4916 u64 task_size;
4917
4918 /* No regs, no stack pointer, no dump. */
4919 if (!regs)
4920 return 0;
4921
4922 /*
4923 * Check if we fit in with the requested stack size into the:
4924 * - TASK_SIZE
4925 * If we don't, we limit the size to the TASK_SIZE.
4926 *
4927 * - remaining sample size
4928 * If we don't, we customize the stack size to
4929 * fit in to the remaining sample size.
4930 */
4931
4932 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
4933 stack_size = min(stack_size, (u16) task_size);
4934
4935 /* Current header size plus static size and dynamic size. */
4936 header_size += 2 * sizeof(u64);
4937
4938 /* Do we fit in with the current stack dump size? */
4939 if ((u16) (header_size + stack_size) < header_size) {
4940 /*
4941 * If we overflow the maximum size for the sample,
4942 * we customize the stack dump size to fit in.
4943 */
4944 stack_size = USHRT_MAX - header_size - sizeof(u64);
4945 stack_size = round_up(stack_size, sizeof(u64));
4946 }
4947
4948 return stack_size;
4949}
4950
4951static void
4952perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
4953 struct pt_regs *regs)
4954{
4955 /* Case of a kernel thread, nothing to dump */
4956 if (!regs) {
4957 u64 size = 0;
4958 perf_output_put(handle, size);
4959 } else {
4960 unsigned long sp;
4961 unsigned int rem;
4962 u64 dyn_size;
4963
4964 /*
4965 * We dump:
4966 * static size
4967 * - the size requested by user or the best one we can fit
4968 * in to the sample max size
4969 * data
4970 * - user stack dump data
4971 * dynamic size
4972 * - the actual dumped size
4973 */
4974
4975 /* Static size. */
4976 perf_output_put(handle, dump_size);
4977
4978 /* Data. */
4979 sp = perf_user_stack_pointer(regs);
4980 rem = __output_copy_user(handle, (void *) sp, dump_size);
4981 dyn_size = dump_size - rem;
4982
4983 perf_output_skip(handle, rem);
4984
4985 /* Dynamic size. */
4986 perf_output_put(handle, dyn_size);
4987 }
4988}
4989
c980d109
ACM
4990static void __perf_event_header__init_id(struct perf_event_header *header,
4991 struct perf_sample_data *data,
4992 struct perf_event *event)
6844c09d
ACM
4993{
4994 u64 sample_type = event->attr.sample_type;
4995
4996 data->type = sample_type;
4997 header->size += event->id_header_size;
4998
4999 if (sample_type & PERF_SAMPLE_TID) {
5000 /* namespace issues */
5001 data->tid_entry.pid = perf_event_pid(event, current);
5002 data->tid_entry.tid = perf_event_tid(event, current);
5003 }
5004
5005 if (sample_type & PERF_SAMPLE_TIME)
34f43927 5006 data->time = perf_event_clock(event);
6844c09d 5007
ff3d527c 5008 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6844c09d
ACM
5009 data->id = primary_event_id(event);
5010
5011 if (sample_type & PERF_SAMPLE_STREAM_ID)
5012 data->stream_id = event->id;
5013
5014 if (sample_type & PERF_SAMPLE_CPU) {
5015 data->cpu_entry.cpu = raw_smp_processor_id();
5016 data->cpu_entry.reserved = 0;
5017 }
5018}
5019
76369139
FW
5020void perf_event_header__init_id(struct perf_event_header *header,
5021 struct perf_sample_data *data,
5022 struct perf_event *event)
c980d109
ACM
5023{
5024 if (event->attr.sample_id_all)
5025 __perf_event_header__init_id(header, data, event);
5026}
5027
5028static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5029 struct perf_sample_data *data)
5030{
5031 u64 sample_type = data->type;
5032
5033 if (sample_type & PERF_SAMPLE_TID)
5034 perf_output_put(handle, data->tid_entry);
5035
5036 if (sample_type & PERF_SAMPLE_TIME)
5037 perf_output_put(handle, data->time);
5038
5039 if (sample_type & PERF_SAMPLE_ID)
5040 perf_output_put(handle, data->id);
5041
5042 if (sample_type & PERF_SAMPLE_STREAM_ID)
5043 perf_output_put(handle, data->stream_id);
5044
5045 if (sample_type & PERF_SAMPLE_CPU)
5046 perf_output_put(handle, data->cpu_entry);
ff3d527c
AH
5047
5048 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5049 perf_output_put(handle, data->id);
c980d109
ACM
5050}
5051
76369139
FW
5052void perf_event__output_id_sample(struct perf_event *event,
5053 struct perf_output_handle *handle,
5054 struct perf_sample_data *sample)
c980d109
ACM
5055{
5056 if (event->attr.sample_id_all)
5057 __perf_event__output_id_sample(handle, sample);
5058}
5059
3dab77fb 5060static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
5061 struct perf_event *event,
5062 u64 enabled, u64 running)
3dab77fb 5063{
cdd6c482 5064 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5065 u64 values[4];
5066 int n = 0;
5067
b5e58793 5068 values[n++] = perf_event_count(event);
3dab77fb 5069 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 5070 values[n++] = enabled +
cdd6c482 5071 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
5072 }
5073 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 5074 values[n++] = running +
cdd6c482 5075 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
5076 }
5077 if (read_format & PERF_FORMAT_ID)
cdd6c482 5078 values[n++] = primary_event_id(event);
3dab77fb 5079
76369139 5080 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5081}
5082
5083/*
cdd6c482 5084 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3dab77fb
PZ
5085 */
5086static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
5087 struct perf_event *event,
5088 u64 enabled, u64 running)
3dab77fb 5089{
cdd6c482
IM
5090 struct perf_event *leader = event->group_leader, *sub;
5091 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5092 u64 values[5];
5093 int n = 0;
5094
5095 values[n++] = 1 + leader->nr_siblings;
5096
5097 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 5098 values[n++] = enabled;
3dab77fb
PZ
5099
5100 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 5101 values[n++] = running;
3dab77fb 5102
cdd6c482 5103 if (leader != event)
3dab77fb
PZ
5104 leader->pmu->read(leader);
5105
b5e58793 5106 values[n++] = perf_event_count(leader);
3dab77fb 5107 if (read_format & PERF_FORMAT_ID)
cdd6c482 5108 values[n++] = primary_event_id(leader);
3dab77fb 5109
76369139 5110 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 5111
65abc865 5112 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3dab77fb
PZ
5113 n = 0;
5114
6f5ab001
JO
5115 if ((sub != event) &&
5116 (sub->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
5117 sub->pmu->read(sub);
5118
b5e58793 5119 values[n++] = perf_event_count(sub);
3dab77fb 5120 if (read_format & PERF_FORMAT_ID)
cdd6c482 5121 values[n++] = primary_event_id(sub);
3dab77fb 5122
76369139 5123 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5124 }
5125}
5126
eed01528
SE
5127#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5128 PERF_FORMAT_TOTAL_TIME_RUNNING)
5129
3dab77fb 5130static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 5131 struct perf_event *event)
3dab77fb 5132{
e3f3541c 5133 u64 enabled = 0, running = 0, now;
eed01528
SE
5134 u64 read_format = event->attr.read_format;
5135
5136 /*
5137 * compute total_time_enabled, total_time_running
5138 * based on snapshot values taken when the event
5139 * was last scheduled in.
5140 *
5141 * we cannot simply called update_context_time()
5142 * because of locking issue as we are called in
5143 * NMI context
5144 */
c4794295 5145 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 5146 calc_timer_values(event, &now, &enabled, &running);
eed01528 5147
cdd6c482 5148 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 5149 perf_output_read_group(handle, event, enabled, running);
3dab77fb 5150 else
eed01528 5151 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
5152}
5153
5622f295
MM
5154void perf_output_sample(struct perf_output_handle *handle,
5155 struct perf_event_header *header,
5156 struct perf_sample_data *data,
cdd6c482 5157 struct perf_event *event)
5622f295
MM
5158{
5159 u64 sample_type = data->type;
5160
5161 perf_output_put(handle, *header);
5162
ff3d527c
AH
5163 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5164 perf_output_put(handle, data->id);
5165
5622f295
MM
5166 if (sample_type & PERF_SAMPLE_IP)
5167 perf_output_put(handle, data->ip);
5168
5169 if (sample_type & PERF_SAMPLE_TID)
5170 perf_output_put(handle, data->tid_entry);
5171
5172 if (sample_type & PERF_SAMPLE_TIME)
5173 perf_output_put(handle, data->time);
5174
5175 if (sample_type & PERF_SAMPLE_ADDR)
5176 perf_output_put(handle, data->addr);
5177
5178 if (sample_type & PERF_SAMPLE_ID)
5179 perf_output_put(handle, data->id);
5180
5181 if (sample_type & PERF_SAMPLE_STREAM_ID)
5182 perf_output_put(handle, data->stream_id);
5183
5184 if (sample_type & PERF_SAMPLE_CPU)
5185 perf_output_put(handle, data->cpu_entry);
5186
5187 if (sample_type & PERF_SAMPLE_PERIOD)
5188 perf_output_put(handle, data->period);
5189
5190 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 5191 perf_output_read(handle, event);
5622f295
MM
5192
5193 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5194 if (data->callchain) {
5195 int size = 1;
5196
5197 if (data->callchain)
5198 size += data->callchain->nr;
5199
5200 size *= sizeof(u64);
5201
76369139 5202 __output_copy(handle, data->callchain, size);
5622f295
MM
5203 } else {
5204 u64 nr = 0;
5205 perf_output_put(handle, nr);
5206 }
5207 }
5208
5209 if (sample_type & PERF_SAMPLE_RAW) {
5210 if (data->raw) {
5211 perf_output_put(handle, data->raw->size);
76369139
FW
5212 __output_copy(handle, data->raw->data,
5213 data->raw->size);
5622f295
MM
5214 } else {
5215 struct {
5216 u32 size;
5217 u32 data;
5218 } raw = {
5219 .size = sizeof(u32),
5220 .data = 0,
5221 };
5222 perf_output_put(handle, raw);
5223 }
5224 }
a7ac67ea 5225
bce38cd5
SE
5226 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5227 if (data->br_stack) {
5228 size_t size;
5229
5230 size = data->br_stack->nr
5231 * sizeof(struct perf_branch_entry);
5232
5233 perf_output_put(handle, data->br_stack->nr);
5234 perf_output_copy(handle, data->br_stack->entries, size);
5235 } else {
5236 /*
5237 * we always store at least the value of nr
5238 */
5239 u64 nr = 0;
5240 perf_output_put(handle, nr);
5241 }
5242 }
4018994f
JO
5243
5244 if (sample_type & PERF_SAMPLE_REGS_USER) {
5245 u64 abi = data->regs_user.abi;
5246
5247 /*
5248 * If there are no regs to dump, notice it through
5249 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5250 */
5251 perf_output_put(handle, abi);
5252
5253 if (abi) {
5254 u64 mask = event->attr.sample_regs_user;
5255 perf_output_sample_regs(handle,
5256 data->regs_user.regs,
5257 mask);
5258 }
5259 }
c5ebcedb 5260
a5cdd40c 5261 if (sample_type & PERF_SAMPLE_STACK_USER) {
c5ebcedb
JO
5262 perf_output_sample_ustack(handle,
5263 data->stack_user_size,
5264 data->regs_user.regs);
a5cdd40c 5265 }
c3feedf2
AK
5266
5267 if (sample_type & PERF_SAMPLE_WEIGHT)
5268 perf_output_put(handle, data->weight);
d6be9ad6
SE
5269
5270 if (sample_type & PERF_SAMPLE_DATA_SRC)
5271 perf_output_put(handle, data->data_src.val);
a5cdd40c 5272
fdfbbd07
AK
5273 if (sample_type & PERF_SAMPLE_TRANSACTION)
5274 perf_output_put(handle, data->txn);
5275
60e2364e
SE
5276 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5277 u64 abi = data->regs_intr.abi;
5278 /*
5279 * If there are no regs to dump, notice it through
5280 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5281 */
5282 perf_output_put(handle, abi);
5283
5284 if (abi) {
5285 u64 mask = event->attr.sample_regs_intr;
5286
5287 perf_output_sample_regs(handle,
5288 data->regs_intr.regs,
5289 mask);
5290 }
5291 }
5292
a5cdd40c
PZ
5293 if (!event->attr.watermark) {
5294 int wakeup_events = event->attr.wakeup_events;
5295
5296 if (wakeup_events) {
5297 struct ring_buffer *rb = handle->rb;
5298 int events = local_inc_return(&rb->events);
5299
5300 if (events >= wakeup_events) {
5301 local_sub(wakeup_events, &rb->events);
5302 local_inc(&rb->wakeup);
5303 }
5304 }
5305 }
5622f295
MM
5306}
5307
5308void perf_prepare_sample(struct perf_event_header *header,
5309 struct perf_sample_data *data,
cdd6c482 5310 struct perf_event *event,
5622f295 5311 struct pt_regs *regs)
7b732a75 5312{
cdd6c482 5313 u64 sample_type = event->attr.sample_type;
7b732a75 5314
cdd6c482 5315 header->type = PERF_RECORD_SAMPLE;
c320c7b7 5316 header->size = sizeof(*header) + event->header_size;
5622f295
MM
5317
5318 header->misc = 0;
5319 header->misc |= perf_misc_flags(regs);
6fab0192 5320
c980d109 5321 __perf_event_header__init_id(header, data, event);
6844c09d 5322
c320c7b7 5323 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
5324 data->ip = perf_instruction_pointer(regs);
5325
b23f3325 5326 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 5327 int size = 1;
394ee076 5328
e6dab5ff 5329 data->callchain = perf_callchain(event, regs);
5622f295
MM
5330
5331 if (data->callchain)
5332 size += data->callchain->nr;
5333
5334 header->size += size * sizeof(u64);
394ee076
PZ
5335 }
5336
3a43ce68 5337 if (sample_type & PERF_SAMPLE_RAW) {
a044560c
PZ
5338 int size = sizeof(u32);
5339
5340 if (data->raw)
5341 size += data->raw->size;
5342 else
5343 size += sizeof(u32);
5344
5345 WARN_ON_ONCE(size & (sizeof(u64)-1));
5622f295 5346 header->size += size;
7f453c24 5347 }
bce38cd5
SE
5348
5349 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5350 int size = sizeof(u64); /* nr */
5351 if (data->br_stack) {
5352 size += data->br_stack->nr
5353 * sizeof(struct perf_branch_entry);
5354 }
5355 header->size += size;
5356 }
4018994f 5357
2565711f 5358 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
88a7c26a
AL
5359 perf_sample_regs_user(&data->regs_user, regs,
5360 &data->regs_user_copy);
2565711f 5361
4018994f
JO
5362 if (sample_type & PERF_SAMPLE_REGS_USER) {
5363 /* regs dump ABI info */
5364 int size = sizeof(u64);
5365
4018994f
JO
5366 if (data->regs_user.regs) {
5367 u64 mask = event->attr.sample_regs_user;
5368 size += hweight64(mask) * sizeof(u64);
5369 }
5370
5371 header->size += size;
5372 }
c5ebcedb
JO
5373
5374 if (sample_type & PERF_SAMPLE_STACK_USER) {
5375 /*
5376 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5377 * processed as the last one or have additional check added
5378 * in case new sample type is added, because we could eat
5379 * up the rest of the sample size.
5380 */
c5ebcedb
JO
5381 u16 stack_size = event->attr.sample_stack_user;
5382 u16 size = sizeof(u64);
5383
c5ebcedb 5384 stack_size = perf_sample_ustack_size(stack_size, header->size,
2565711f 5385 data->regs_user.regs);
c5ebcedb
JO
5386
5387 /*
5388 * If there is something to dump, add space for the dump
5389 * itself and for the field that tells the dynamic size,
5390 * which is how many have been actually dumped.
5391 */
5392 if (stack_size)
5393 size += sizeof(u64) + stack_size;
5394
5395 data->stack_user_size = stack_size;
5396 header->size += size;
5397 }
60e2364e
SE
5398
5399 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5400 /* regs dump ABI info */
5401 int size = sizeof(u64);
5402
5403 perf_sample_regs_intr(&data->regs_intr, regs);
5404
5405 if (data->regs_intr.regs) {
5406 u64 mask = event->attr.sample_regs_intr;
5407
5408 size += hweight64(mask) * sizeof(u64);
5409 }
5410
5411 header->size += size;
5412 }
5622f295 5413}
7f453c24 5414
21509084
YZ
5415void perf_event_output(struct perf_event *event,
5416 struct perf_sample_data *data,
5417 struct pt_regs *regs)
5622f295
MM
5418{
5419 struct perf_output_handle handle;
5420 struct perf_event_header header;
689802b2 5421
927c7a9e
FW
5422 /* protect the callchain buffers */
5423 rcu_read_lock();
5424
cdd6c482 5425 perf_prepare_sample(&header, data, event, regs);
5c148194 5426
a7ac67ea 5427 if (perf_output_begin(&handle, event, header.size))
927c7a9e 5428 goto exit;
0322cd6e 5429
cdd6c482 5430 perf_output_sample(&handle, &header, data, event);
f413cdb8 5431
8a057d84 5432 perf_output_end(&handle);
927c7a9e
FW
5433
5434exit:
5435 rcu_read_unlock();
0322cd6e
PZ
5436}
5437
38b200d6 5438/*
cdd6c482 5439 * read event_id
38b200d6
PZ
5440 */
5441
5442struct perf_read_event {
5443 struct perf_event_header header;
5444
5445 u32 pid;
5446 u32 tid;
38b200d6
PZ
5447};
5448
5449static void
cdd6c482 5450perf_event_read_event(struct perf_event *event,
38b200d6
PZ
5451 struct task_struct *task)
5452{
5453 struct perf_output_handle handle;
c980d109 5454 struct perf_sample_data sample;
dfc65094 5455 struct perf_read_event read_event = {
38b200d6 5456 .header = {
cdd6c482 5457 .type = PERF_RECORD_READ,
38b200d6 5458 .misc = 0,
c320c7b7 5459 .size = sizeof(read_event) + event->read_size,
38b200d6 5460 },
cdd6c482
IM
5461 .pid = perf_event_pid(event, task),
5462 .tid = perf_event_tid(event, task),
38b200d6 5463 };
3dab77fb 5464 int ret;
38b200d6 5465
c980d109 5466 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 5467 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
5468 if (ret)
5469 return;
5470
dfc65094 5471 perf_output_put(&handle, read_event);
cdd6c482 5472 perf_output_read(&handle, event);
c980d109 5473 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 5474
38b200d6
PZ
5475 perf_output_end(&handle);
5476}
5477
52d857a8
JO
5478typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
5479
5480static void
5481perf_event_aux_ctx(struct perf_event_context *ctx,
52d857a8
JO
5482 perf_event_aux_output_cb output,
5483 void *data)
5484{
5485 struct perf_event *event;
5486
5487 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5488 if (event->state < PERF_EVENT_STATE_INACTIVE)
5489 continue;
5490 if (!event_filter_match(event))
5491 continue;
67516844 5492 output(event, data);
52d857a8
JO
5493 }
5494}
5495
5496static void
67516844 5497perf_event_aux(perf_event_aux_output_cb output, void *data,
52d857a8
JO
5498 struct perf_event_context *task_ctx)
5499{
5500 struct perf_cpu_context *cpuctx;
5501 struct perf_event_context *ctx;
5502 struct pmu *pmu;
5503 int ctxn;
5504
5505 rcu_read_lock();
5506 list_for_each_entry_rcu(pmu, &pmus, entry) {
5507 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
5508 if (cpuctx->unique_pmu != pmu)
5509 goto next;
67516844 5510 perf_event_aux_ctx(&cpuctx->ctx, output, data);
52d857a8
JO
5511 if (task_ctx)
5512 goto next;
5513 ctxn = pmu->task_ctx_nr;
5514 if (ctxn < 0)
5515 goto next;
5516 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5517 if (ctx)
67516844 5518 perf_event_aux_ctx(ctx, output, data);
52d857a8
JO
5519next:
5520 put_cpu_ptr(pmu->pmu_cpu_context);
5521 }
5522
5523 if (task_ctx) {
5524 preempt_disable();
67516844 5525 perf_event_aux_ctx(task_ctx, output, data);
52d857a8
JO
5526 preempt_enable();
5527 }
5528 rcu_read_unlock();
5529}
5530
60313ebe 5531/*
9f498cc5
PZ
5532 * task tracking -- fork/exit
5533 *
13d7a241 5534 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
60313ebe
PZ
5535 */
5536
9f498cc5 5537struct perf_task_event {
3a80b4a3 5538 struct task_struct *task;
cdd6c482 5539 struct perf_event_context *task_ctx;
60313ebe
PZ
5540
5541 struct {
5542 struct perf_event_header header;
5543
5544 u32 pid;
5545 u32 ppid;
9f498cc5
PZ
5546 u32 tid;
5547 u32 ptid;
393b2ad8 5548 u64 time;
cdd6c482 5549 } event_id;
60313ebe
PZ
5550};
5551
67516844
JO
5552static int perf_event_task_match(struct perf_event *event)
5553{
13d7a241
SE
5554 return event->attr.comm || event->attr.mmap ||
5555 event->attr.mmap2 || event->attr.mmap_data ||
5556 event->attr.task;
67516844
JO
5557}
5558
cdd6c482 5559static void perf_event_task_output(struct perf_event *event,
52d857a8 5560 void *data)
60313ebe 5561{
52d857a8 5562 struct perf_task_event *task_event = data;
60313ebe 5563 struct perf_output_handle handle;
c980d109 5564 struct perf_sample_data sample;
9f498cc5 5565 struct task_struct *task = task_event->task;
c980d109 5566 int ret, size = task_event->event_id.header.size;
8bb39f9a 5567
67516844
JO
5568 if (!perf_event_task_match(event))
5569 return;
5570
c980d109 5571 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 5572
c980d109 5573 ret = perf_output_begin(&handle, event,
a7ac67ea 5574 task_event->event_id.header.size);
ef60777c 5575 if (ret)
c980d109 5576 goto out;
60313ebe 5577
cdd6c482
IM
5578 task_event->event_id.pid = perf_event_pid(event, task);
5579 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 5580
cdd6c482
IM
5581 task_event->event_id.tid = perf_event_tid(event, task);
5582 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 5583
34f43927
PZ
5584 task_event->event_id.time = perf_event_clock(event);
5585
cdd6c482 5586 perf_output_put(&handle, task_event->event_id);
393b2ad8 5587
c980d109
ACM
5588 perf_event__output_id_sample(event, &handle, &sample);
5589
60313ebe 5590 perf_output_end(&handle);
c980d109
ACM
5591out:
5592 task_event->event_id.header.size = size;
60313ebe
PZ
5593}
5594
cdd6c482
IM
5595static void perf_event_task(struct task_struct *task,
5596 struct perf_event_context *task_ctx,
3a80b4a3 5597 int new)
60313ebe 5598{
9f498cc5 5599 struct perf_task_event task_event;
60313ebe 5600
cdd6c482
IM
5601 if (!atomic_read(&nr_comm_events) &&
5602 !atomic_read(&nr_mmap_events) &&
5603 !atomic_read(&nr_task_events))
60313ebe
PZ
5604 return;
5605
9f498cc5 5606 task_event = (struct perf_task_event){
3a80b4a3
PZ
5607 .task = task,
5608 .task_ctx = task_ctx,
cdd6c482 5609 .event_id = {
60313ebe 5610 .header = {
cdd6c482 5611 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 5612 .misc = 0,
cdd6c482 5613 .size = sizeof(task_event.event_id),
60313ebe 5614 },
573402db
PZ
5615 /* .pid */
5616 /* .ppid */
9f498cc5
PZ
5617 /* .tid */
5618 /* .ptid */
34f43927 5619 /* .time */
60313ebe
PZ
5620 },
5621 };
5622
67516844 5623 perf_event_aux(perf_event_task_output,
52d857a8
JO
5624 &task_event,
5625 task_ctx);
9f498cc5
PZ
5626}
5627
cdd6c482 5628void perf_event_fork(struct task_struct *task)
9f498cc5 5629{
cdd6c482 5630 perf_event_task(task, NULL, 1);
60313ebe
PZ
5631}
5632
8d1b2d93
PZ
5633/*
5634 * comm tracking
5635 */
5636
5637struct perf_comm_event {
22a4f650
IM
5638 struct task_struct *task;
5639 char *comm;
8d1b2d93
PZ
5640 int comm_size;
5641
5642 struct {
5643 struct perf_event_header header;
5644
5645 u32 pid;
5646 u32 tid;
cdd6c482 5647 } event_id;
8d1b2d93
PZ
5648};
5649
67516844
JO
5650static int perf_event_comm_match(struct perf_event *event)
5651{
5652 return event->attr.comm;
5653}
5654
cdd6c482 5655static void perf_event_comm_output(struct perf_event *event,
52d857a8 5656 void *data)
8d1b2d93 5657{
52d857a8 5658 struct perf_comm_event *comm_event = data;
8d1b2d93 5659 struct perf_output_handle handle;
c980d109 5660 struct perf_sample_data sample;
cdd6c482 5661 int size = comm_event->event_id.header.size;
c980d109
ACM
5662 int ret;
5663
67516844
JO
5664 if (!perf_event_comm_match(event))
5665 return;
5666
c980d109
ACM
5667 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
5668 ret = perf_output_begin(&handle, event,
a7ac67ea 5669 comm_event->event_id.header.size);
8d1b2d93
PZ
5670
5671 if (ret)
c980d109 5672 goto out;
8d1b2d93 5673
cdd6c482
IM
5674 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
5675 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 5676
cdd6c482 5677 perf_output_put(&handle, comm_event->event_id);
76369139 5678 __output_copy(&handle, comm_event->comm,
8d1b2d93 5679 comm_event->comm_size);
c980d109
ACM
5680
5681 perf_event__output_id_sample(event, &handle, &sample);
5682
8d1b2d93 5683 perf_output_end(&handle);
c980d109
ACM
5684out:
5685 comm_event->event_id.header.size = size;
8d1b2d93
PZ
5686}
5687
cdd6c482 5688static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93 5689{
413ee3b4 5690 char comm[TASK_COMM_LEN];
8d1b2d93 5691 unsigned int size;
8d1b2d93 5692
413ee3b4 5693 memset(comm, 0, sizeof(comm));
96b02d78 5694 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 5695 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
5696
5697 comm_event->comm = comm;
5698 comm_event->comm_size = size;
5699
cdd6c482 5700 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8dc85d54 5701
67516844 5702 perf_event_aux(perf_event_comm_output,
52d857a8
JO
5703 comm_event,
5704 NULL);
8d1b2d93
PZ
5705}
5706
82b89778 5707void perf_event_comm(struct task_struct *task, bool exec)
8d1b2d93 5708{
9ee318a7
PZ
5709 struct perf_comm_event comm_event;
5710
cdd6c482 5711 if (!atomic_read(&nr_comm_events))
9ee318a7 5712 return;
a63eaf34 5713
9ee318a7 5714 comm_event = (struct perf_comm_event){
8d1b2d93 5715 .task = task,
573402db
PZ
5716 /* .comm */
5717 /* .comm_size */
cdd6c482 5718 .event_id = {
573402db 5719 .header = {
cdd6c482 5720 .type = PERF_RECORD_COMM,
82b89778 5721 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
573402db
PZ
5722 /* .size */
5723 },
5724 /* .pid */
5725 /* .tid */
8d1b2d93
PZ
5726 },
5727 };
5728
cdd6c482 5729 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
5730}
5731
0a4a9391
PZ
5732/*
5733 * mmap tracking
5734 */
5735
5736struct perf_mmap_event {
089dd79d
PZ
5737 struct vm_area_struct *vma;
5738
5739 const char *file_name;
5740 int file_size;
13d7a241
SE
5741 int maj, min;
5742 u64 ino;
5743 u64 ino_generation;
f972eb63 5744 u32 prot, flags;
0a4a9391
PZ
5745
5746 struct {
5747 struct perf_event_header header;
5748
5749 u32 pid;
5750 u32 tid;
5751 u64 start;
5752 u64 len;
5753 u64 pgoff;
cdd6c482 5754 } event_id;
0a4a9391
PZ
5755};
5756
67516844
JO
5757static int perf_event_mmap_match(struct perf_event *event,
5758 void *data)
5759{
5760 struct perf_mmap_event *mmap_event = data;
5761 struct vm_area_struct *vma = mmap_event->vma;
5762 int executable = vma->vm_flags & VM_EXEC;
5763
5764 return (!executable && event->attr.mmap_data) ||
13d7a241 5765 (executable && (event->attr.mmap || event->attr.mmap2));
67516844
JO
5766}
5767
cdd6c482 5768static void perf_event_mmap_output(struct perf_event *event,
52d857a8 5769 void *data)
0a4a9391 5770{
52d857a8 5771 struct perf_mmap_event *mmap_event = data;
0a4a9391 5772 struct perf_output_handle handle;
c980d109 5773 struct perf_sample_data sample;
cdd6c482 5774 int size = mmap_event->event_id.header.size;
c980d109 5775 int ret;
0a4a9391 5776
67516844
JO
5777 if (!perf_event_mmap_match(event, data))
5778 return;
5779
13d7a241
SE
5780 if (event->attr.mmap2) {
5781 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5782 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5783 mmap_event->event_id.header.size += sizeof(mmap_event->min);
5784 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
d008d525 5785 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
f972eb63
PZ
5786 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
5787 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
13d7a241
SE
5788 }
5789
c980d109
ACM
5790 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5791 ret = perf_output_begin(&handle, event,
a7ac67ea 5792 mmap_event->event_id.header.size);
0a4a9391 5793 if (ret)
c980d109 5794 goto out;
0a4a9391 5795
cdd6c482
IM
5796 mmap_event->event_id.pid = perf_event_pid(event, current);
5797 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 5798
cdd6c482 5799 perf_output_put(&handle, mmap_event->event_id);
13d7a241
SE
5800
5801 if (event->attr.mmap2) {
5802 perf_output_put(&handle, mmap_event->maj);
5803 perf_output_put(&handle, mmap_event->min);
5804 perf_output_put(&handle, mmap_event->ino);
5805 perf_output_put(&handle, mmap_event->ino_generation);
f972eb63
PZ
5806 perf_output_put(&handle, mmap_event->prot);
5807 perf_output_put(&handle, mmap_event->flags);
13d7a241
SE
5808 }
5809
76369139 5810 __output_copy(&handle, mmap_event->file_name,
0a4a9391 5811 mmap_event->file_size);
c980d109
ACM
5812
5813 perf_event__output_id_sample(event, &handle, &sample);
5814
78d613eb 5815 perf_output_end(&handle);
c980d109
ACM
5816out:
5817 mmap_event->event_id.header.size = size;
0a4a9391
PZ
5818}
5819
cdd6c482 5820static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391 5821{
089dd79d
PZ
5822 struct vm_area_struct *vma = mmap_event->vma;
5823 struct file *file = vma->vm_file;
13d7a241
SE
5824 int maj = 0, min = 0;
5825 u64 ino = 0, gen = 0;
f972eb63 5826 u32 prot = 0, flags = 0;
0a4a9391
PZ
5827 unsigned int size;
5828 char tmp[16];
5829 char *buf = NULL;
2c42cfbf 5830 char *name;
413ee3b4 5831
0a4a9391 5832 if (file) {
13d7a241
SE
5833 struct inode *inode;
5834 dev_t dev;
3ea2f2b9 5835
2c42cfbf 5836 buf = kmalloc(PATH_MAX, GFP_KERNEL);
0a4a9391 5837 if (!buf) {
c7e548b4
ON
5838 name = "//enomem";
5839 goto cpy_name;
0a4a9391 5840 }
413ee3b4 5841 /*
3ea2f2b9 5842 * d_path() works from the end of the rb backwards, so we
413ee3b4
AB
5843 * need to add enough zero bytes after the string to handle
5844 * the 64bit alignment we do later.
5845 */
9bf39ab2 5846 name = file_path(file, buf, PATH_MAX - sizeof(u64));
0a4a9391 5847 if (IS_ERR(name)) {
c7e548b4
ON
5848 name = "//toolong";
5849 goto cpy_name;
0a4a9391 5850 }
13d7a241
SE
5851 inode = file_inode(vma->vm_file);
5852 dev = inode->i_sb->s_dev;
5853 ino = inode->i_ino;
5854 gen = inode->i_generation;
5855 maj = MAJOR(dev);
5856 min = MINOR(dev);
f972eb63
PZ
5857
5858 if (vma->vm_flags & VM_READ)
5859 prot |= PROT_READ;
5860 if (vma->vm_flags & VM_WRITE)
5861 prot |= PROT_WRITE;
5862 if (vma->vm_flags & VM_EXEC)
5863 prot |= PROT_EXEC;
5864
5865 if (vma->vm_flags & VM_MAYSHARE)
5866 flags = MAP_SHARED;
5867 else
5868 flags = MAP_PRIVATE;
5869
5870 if (vma->vm_flags & VM_DENYWRITE)
5871 flags |= MAP_DENYWRITE;
5872 if (vma->vm_flags & VM_MAYEXEC)
5873 flags |= MAP_EXECUTABLE;
5874 if (vma->vm_flags & VM_LOCKED)
5875 flags |= MAP_LOCKED;
5876 if (vma->vm_flags & VM_HUGETLB)
5877 flags |= MAP_HUGETLB;
5878
c7e548b4 5879 goto got_name;
0a4a9391 5880 } else {
fbe26abe
JO
5881 if (vma->vm_ops && vma->vm_ops->name) {
5882 name = (char *) vma->vm_ops->name(vma);
5883 if (name)
5884 goto cpy_name;
5885 }
5886
2c42cfbf 5887 name = (char *)arch_vma_name(vma);
c7e548b4
ON
5888 if (name)
5889 goto cpy_name;
089dd79d 5890
32c5fb7e 5891 if (vma->vm_start <= vma->vm_mm->start_brk &&
3af9e859 5892 vma->vm_end >= vma->vm_mm->brk) {
c7e548b4
ON
5893 name = "[heap]";
5894 goto cpy_name;
32c5fb7e
ON
5895 }
5896 if (vma->vm_start <= vma->vm_mm->start_stack &&
3af9e859 5897 vma->vm_end >= vma->vm_mm->start_stack) {
c7e548b4
ON
5898 name = "[stack]";
5899 goto cpy_name;
089dd79d
PZ
5900 }
5901
c7e548b4
ON
5902 name = "//anon";
5903 goto cpy_name;
0a4a9391
PZ
5904 }
5905
c7e548b4
ON
5906cpy_name:
5907 strlcpy(tmp, name, sizeof(tmp));
5908 name = tmp;
0a4a9391 5909got_name:
2c42cfbf
PZ
5910 /*
5911 * Since our buffer works in 8 byte units we need to align our string
5912 * size to a multiple of 8. However, we must guarantee the tail end is
5913 * zero'd out to avoid leaking random bits to userspace.
5914 */
5915 size = strlen(name)+1;
5916 while (!IS_ALIGNED(size, sizeof(u64)))
5917 name[size++] = '\0';
0a4a9391
PZ
5918
5919 mmap_event->file_name = name;
5920 mmap_event->file_size = size;
13d7a241
SE
5921 mmap_event->maj = maj;
5922 mmap_event->min = min;
5923 mmap_event->ino = ino;
5924 mmap_event->ino_generation = gen;
f972eb63
PZ
5925 mmap_event->prot = prot;
5926 mmap_event->flags = flags;
0a4a9391 5927
2fe85427
SE
5928 if (!(vma->vm_flags & VM_EXEC))
5929 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
5930
cdd6c482 5931 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 5932
67516844 5933 perf_event_aux(perf_event_mmap_output,
52d857a8
JO
5934 mmap_event,
5935 NULL);
665c2142 5936
0a4a9391
PZ
5937 kfree(buf);
5938}
5939
3af9e859 5940void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 5941{
9ee318a7
PZ
5942 struct perf_mmap_event mmap_event;
5943
cdd6c482 5944 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
5945 return;
5946
5947 mmap_event = (struct perf_mmap_event){
089dd79d 5948 .vma = vma,
573402db
PZ
5949 /* .file_name */
5950 /* .file_size */
cdd6c482 5951 .event_id = {
573402db 5952 .header = {
cdd6c482 5953 .type = PERF_RECORD_MMAP,
39447b38 5954 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
5955 /* .size */
5956 },
5957 /* .pid */
5958 /* .tid */
089dd79d
PZ
5959 .start = vma->vm_start,
5960 .len = vma->vm_end - vma->vm_start,
3a0304e9 5961 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391 5962 },
13d7a241
SE
5963 /* .maj (attr_mmap2 only) */
5964 /* .min (attr_mmap2 only) */
5965 /* .ino (attr_mmap2 only) */
5966 /* .ino_generation (attr_mmap2 only) */
f972eb63
PZ
5967 /* .prot (attr_mmap2 only) */
5968 /* .flags (attr_mmap2 only) */
0a4a9391
PZ
5969 };
5970
cdd6c482 5971 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
5972}
5973
68db7e98
AS
5974void perf_event_aux_event(struct perf_event *event, unsigned long head,
5975 unsigned long size, u64 flags)
5976{
5977 struct perf_output_handle handle;
5978 struct perf_sample_data sample;
5979 struct perf_aux_event {
5980 struct perf_event_header header;
5981 u64 offset;
5982 u64 size;
5983 u64 flags;
5984 } rec = {
5985 .header = {
5986 .type = PERF_RECORD_AUX,
5987 .misc = 0,
5988 .size = sizeof(rec),
5989 },
5990 .offset = head,
5991 .size = size,
5992 .flags = flags,
5993 };
5994 int ret;
5995
5996 perf_event_header__init_id(&rec.header, &sample, event);
5997 ret = perf_output_begin(&handle, event, rec.header.size);
5998
5999 if (ret)
6000 return;
6001
6002 perf_output_put(&handle, rec);
6003 perf_event__output_id_sample(event, &handle, &sample);
6004
6005 perf_output_end(&handle);
6006}
6007
f38b0dbb
KL
6008/*
6009 * Lost/dropped samples logging
6010 */
6011void perf_log_lost_samples(struct perf_event *event, u64 lost)
6012{
6013 struct perf_output_handle handle;
6014 struct perf_sample_data sample;
6015 int ret;
6016
6017 struct {
6018 struct perf_event_header header;
6019 u64 lost;
6020 } lost_samples_event = {
6021 .header = {
6022 .type = PERF_RECORD_LOST_SAMPLES,
6023 .misc = 0,
6024 .size = sizeof(lost_samples_event),
6025 },
6026 .lost = lost,
6027 };
6028
6029 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6030
6031 ret = perf_output_begin(&handle, event,
6032 lost_samples_event.header.size);
6033 if (ret)
6034 return;
6035
6036 perf_output_put(&handle, lost_samples_event);
6037 perf_event__output_id_sample(event, &handle, &sample);
6038 perf_output_end(&handle);
6039}
6040
45ac1403
AH
6041/*
6042 * context_switch tracking
6043 */
6044
6045struct perf_switch_event {
6046 struct task_struct *task;
6047 struct task_struct *next_prev;
6048
6049 struct {
6050 struct perf_event_header header;
6051 u32 next_prev_pid;
6052 u32 next_prev_tid;
6053 } event_id;
6054};
6055
6056static int perf_event_switch_match(struct perf_event *event)
6057{
6058 return event->attr.context_switch;
6059}
6060
6061static void perf_event_switch_output(struct perf_event *event, void *data)
6062{
6063 struct perf_switch_event *se = data;
6064 struct perf_output_handle handle;
6065 struct perf_sample_data sample;
6066 int ret;
6067
6068 if (!perf_event_switch_match(event))
6069 return;
6070
6071 /* Only CPU-wide events are allowed to see next/prev pid/tid */
6072 if (event->ctx->task) {
6073 se->event_id.header.type = PERF_RECORD_SWITCH;
6074 se->event_id.header.size = sizeof(se->event_id.header);
6075 } else {
6076 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6077 se->event_id.header.size = sizeof(se->event_id);
6078 se->event_id.next_prev_pid =
6079 perf_event_pid(event, se->next_prev);
6080 se->event_id.next_prev_tid =
6081 perf_event_tid(event, se->next_prev);
6082 }
6083
6084 perf_event_header__init_id(&se->event_id.header, &sample, event);
6085
6086 ret = perf_output_begin(&handle, event, se->event_id.header.size);
6087 if (ret)
6088 return;
6089
6090 if (event->ctx->task)
6091 perf_output_put(&handle, se->event_id.header);
6092 else
6093 perf_output_put(&handle, se->event_id);
6094
6095 perf_event__output_id_sample(event, &handle, &sample);
6096
6097 perf_output_end(&handle);
6098}
6099
6100static void perf_event_switch(struct task_struct *task,
6101 struct task_struct *next_prev, bool sched_in)
6102{
6103 struct perf_switch_event switch_event;
6104
6105 /* N.B. caller checks nr_switch_events != 0 */
6106
6107 switch_event = (struct perf_switch_event){
6108 .task = task,
6109 .next_prev = next_prev,
6110 .event_id = {
6111 .header = {
6112 /* .type */
6113 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
6114 /* .size */
6115 },
6116 /* .next_prev_pid */
6117 /* .next_prev_tid */
6118 },
6119 };
6120
6121 perf_event_aux(perf_event_switch_output,
6122 &switch_event,
6123 NULL);
6124}
6125
a78ac325
PZ
6126/*
6127 * IRQ throttle logging
6128 */
6129
cdd6c482 6130static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
6131{
6132 struct perf_output_handle handle;
c980d109 6133 struct perf_sample_data sample;
a78ac325
PZ
6134 int ret;
6135
6136 struct {
6137 struct perf_event_header header;
6138 u64 time;
cca3f454 6139 u64 id;
7f453c24 6140 u64 stream_id;
a78ac325
PZ
6141 } throttle_event = {
6142 .header = {
cdd6c482 6143 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
6144 .misc = 0,
6145 .size = sizeof(throttle_event),
6146 },
34f43927 6147 .time = perf_event_clock(event),
cdd6c482
IM
6148 .id = primary_event_id(event),
6149 .stream_id = event->id,
a78ac325
PZ
6150 };
6151
966ee4d6 6152 if (enable)
cdd6c482 6153 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 6154
c980d109
ACM
6155 perf_event_header__init_id(&throttle_event.header, &sample, event);
6156
6157 ret = perf_output_begin(&handle, event,
a7ac67ea 6158 throttle_event.header.size);
a78ac325
PZ
6159 if (ret)
6160 return;
6161
6162 perf_output_put(&handle, throttle_event);
c980d109 6163 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
6164 perf_output_end(&handle);
6165}
6166
ec0d7729
AS
6167static void perf_log_itrace_start(struct perf_event *event)
6168{
6169 struct perf_output_handle handle;
6170 struct perf_sample_data sample;
6171 struct perf_aux_event {
6172 struct perf_event_header header;
6173 u32 pid;
6174 u32 tid;
6175 } rec;
6176 int ret;
6177
6178 if (event->parent)
6179 event = event->parent;
6180
6181 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
6182 event->hw.itrace_started)
6183 return;
6184
ec0d7729
AS
6185 rec.header.type = PERF_RECORD_ITRACE_START;
6186 rec.header.misc = 0;
6187 rec.header.size = sizeof(rec);
6188 rec.pid = perf_event_pid(event, current);
6189 rec.tid = perf_event_tid(event, current);
6190
6191 perf_event_header__init_id(&rec.header, &sample, event);
6192 ret = perf_output_begin(&handle, event, rec.header.size);
6193
6194 if (ret)
6195 return;
6196
6197 perf_output_put(&handle, rec);
6198 perf_event__output_id_sample(event, &handle, &sample);
6199
6200 perf_output_end(&handle);
6201}
6202
f6c7d5fe 6203/*
cdd6c482 6204 * Generic event overflow handling, sampling.
f6c7d5fe
PZ
6205 */
6206
a8b0ca17 6207static int __perf_event_overflow(struct perf_event *event,
5622f295
MM
6208 int throttle, struct perf_sample_data *data,
6209 struct pt_regs *regs)
f6c7d5fe 6210{
cdd6c482
IM
6211 int events = atomic_read(&event->event_limit);
6212 struct hw_perf_event *hwc = &event->hw;
e050e3f0 6213 u64 seq;
79f14641
PZ
6214 int ret = 0;
6215
96398826
PZ
6216 /*
6217 * Non-sampling counters might still use the PMI to fold short
6218 * hardware counters, ignore those.
6219 */
6220 if (unlikely(!is_sampling_event(event)))
6221 return 0;
6222
e050e3f0
SE
6223 seq = __this_cpu_read(perf_throttled_seq);
6224 if (seq != hwc->interrupts_seq) {
6225 hwc->interrupts_seq = seq;
6226 hwc->interrupts = 1;
6227 } else {
6228 hwc->interrupts++;
6229 if (unlikely(throttle
6230 && hwc->interrupts >= max_samples_per_tick)) {
6231 __this_cpu_inc(perf_throttled_count);
163ec435
PZ
6232 hwc->interrupts = MAX_INTERRUPTS;
6233 perf_log_throttle(event, 0);
d84153d6 6234 tick_nohz_full_kick();
a78ac325
PZ
6235 ret = 1;
6236 }
e050e3f0 6237 }
60db5e09 6238
cdd6c482 6239 if (event->attr.freq) {
def0a9b2 6240 u64 now = perf_clock();
abd50713 6241 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 6242
abd50713 6243 hwc->freq_time_stamp = now;
bd2b5b12 6244
abd50713 6245 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 6246 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
6247 }
6248
2023b359
PZ
6249 /*
6250 * XXX event_limit might not quite work as expected on inherited
cdd6c482 6251 * events
2023b359
PZ
6252 */
6253
cdd6c482
IM
6254 event->pending_kill = POLL_IN;
6255 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 6256 ret = 1;
cdd6c482 6257 event->pending_kill = POLL_HUP;
a8b0ca17
PZ
6258 event->pending_disable = 1;
6259 irq_work_queue(&event->pending);
79f14641
PZ
6260 }
6261
453f19ee 6262 if (event->overflow_handler)
a8b0ca17 6263 event->overflow_handler(event, data, regs);
453f19ee 6264 else
a8b0ca17 6265 perf_event_output(event, data, regs);
453f19ee 6266
fed66e2c 6267 if (*perf_event_fasync(event) && event->pending_kill) {
a8b0ca17
PZ
6268 event->pending_wakeup = 1;
6269 irq_work_queue(&event->pending);
f506b3dc
PZ
6270 }
6271
79f14641 6272 return ret;
f6c7d5fe
PZ
6273}
6274
a8b0ca17 6275int perf_event_overflow(struct perf_event *event,
5622f295
MM
6276 struct perf_sample_data *data,
6277 struct pt_regs *regs)
850bc73f 6278{
a8b0ca17 6279 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
6280}
6281
15dbf27c 6282/*
cdd6c482 6283 * Generic software event infrastructure
15dbf27c
PZ
6284 */
6285
b28ab83c
PZ
6286struct swevent_htable {
6287 struct swevent_hlist *swevent_hlist;
6288 struct mutex hlist_mutex;
6289 int hlist_refcount;
6290
6291 /* Recursion avoidance in each contexts */
6292 int recursion[PERF_NR_CONTEXTS];
39af6b16
JO
6293
6294 /* Keeps track of cpu being initialized/exited */
6295 bool online;
b28ab83c
PZ
6296};
6297
6298static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
6299
7b4b6658 6300/*
cdd6c482
IM
6301 * We directly increment event->count and keep a second value in
6302 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
6303 * is kept in the range [-sample_period, 0] so that we can use the
6304 * sign as trigger.
6305 */
6306
ab573844 6307u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 6308{
cdd6c482 6309 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
6310 u64 period = hwc->last_period;
6311 u64 nr, offset;
6312 s64 old, val;
6313
6314 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
6315
6316again:
e7850595 6317 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
6318 if (val < 0)
6319 return 0;
15dbf27c 6320
7b4b6658
PZ
6321 nr = div64_u64(period + val, period);
6322 offset = nr * period;
6323 val -= offset;
e7850595 6324 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 6325 goto again;
15dbf27c 6326
7b4b6658 6327 return nr;
15dbf27c
PZ
6328}
6329
0cff784a 6330static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 6331 struct perf_sample_data *data,
5622f295 6332 struct pt_regs *regs)
15dbf27c 6333{
cdd6c482 6334 struct hw_perf_event *hwc = &event->hw;
850bc73f 6335 int throttle = 0;
15dbf27c 6336
0cff784a
PZ
6337 if (!overflow)
6338 overflow = perf_swevent_set_period(event);
15dbf27c 6339
7b4b6658
PZ
6340 if (hwc->interrupts == MAX_INTERRUPTS)
6341 return;
15dbf27c 6342
7b4b6658 6343 for (; overflow; overflow--) {
a8b0ca17 6344 if (__perf_event_overflow(event, throttle,
5622f295 6345 data, regs)) {
7b4b6658
PZ
6346 /*
6347 * We inhibit the overflow from happening when
6348 * hwc->interrupts == MAX_INTERRUPTS.
6349 */
6350 break;
6351 }
cf450a73 6352 throttle = 1;
7b4b6658 6353 }
15dbf27c
PZ
6354}
6355
a4eaf7f1 6356static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 6357 struct perf_sample_data *data,
5622f295 6358 struct pt_regs *regs)
7b4b6658 6359{
cdd6c482 6360 struct hw_perf_event *hwc = &event->hw;
d6d020e9 6361
e7850595 6362 local64_add(nr, &event->count);
d6d020e9 6363
0cff784a
PZ
6364 if (!regs)
6365 return;
6366
6c7e550f 6367 if (!is_sampling_event(event))
7b4b6658 6368 return;
d6d020e9 6369
5d81e5cf
AV
6370 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
6371 data->period = nr;
6372 return perf_swevent_overflow(event, 1, data, regs);
6373 } else
6374 data->period = event->hw.last_period;
6375
0cff784a 6376 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 6377 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 6378
e7850595 6379 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 6380 return;
df1a132b 6381
a8b0ca17 6382 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
6383}
6384
f5ffe02e
FW
6385static int perf_exclude_event(struct perf_event *event,
6386 struct pt_regs *regs)
6387{
a4eaf7f1 6388 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 6389 return 1;
a4eaf7f1 6390
f5ffe02e
FW
6391 if (regs) {
6392 if (event->attr.exclude_user && user_mode(regs))
6393 return 1;
6394
6395 if (event->attr.exclude_kernel && !user_mode(regs))
6396 return 1;
6397 }
6398
6399 return 0;
6400}
6401
cdd6c482 6402static int perf_swevent_match(struct perf_event *event,
1c432d89 6403 enum perf_type_id type,
6fb2915d
LZ
6404 u32 event_id,
6405 struct perf_sample_data *data,
6406 struct pt_regs *regs)
15dbf27c 6407{
cdd6c482 6408 if (event->attr.type != type)
a21ca2ca 6409 return 0;
f5ffe02e 6410
cdd6c482 6411 if (event->attr.config != event_id)
15dbf27c
PZ
6412 return 0;
6413
f5ffe02e
FW
6414 if (perf_exclude_event(event, regs))
6415 return 0;
15dbf27c
PZ
6416
6417 return 1;
6418}
6419
76e1d904
FW
6420static inline u64 swevent_hash(u64 type, u32 event_id)
6421{
6422 u64 val = event_id | (type << 32);
6423
6424 return hash_64(val, SWEVENT_HLIST_BITS);
6425}
6426
49f135ed
FW
6427static inline struct hlist_head *
6428__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 6429{
49f135ed
FW
6430 u64 hash = swevent_hash(type, event_id);
6431
6432 return &hlist->heads[hash];
6433}
76e1d904 6434
49f135ed
FW
6435/* For the read side: events when they trigger */
6436static inline struct hlist_head *
b28ab83c 6437find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
6438{
6439 struct swevent_hlist *hlist;
76e1d904 6440
b28ab83c 6441 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
6442 if (!hlist)
6443 return NULL;
6444
49f135ed
FW
6445 return __find_swevent_head(hlist, type, event_id);
6446}
6447
6448/* For the event head insertion and removal in the hlist */
6449static inline struct hlist_head *
b28ab83c 6450find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
6451{
6452 struct swevent_hlist *hlist;
6453 u32 event_id = event->attr.config;
6454 u64 type = event->attr.type;
6455
6456 /*
6457 * Event scheduling is always serialized against hlist allocation
6458 * and release. Which makes the protected version suitable here.
6459 * The context lock guarantees that.
6460 */
b28ab83c 6461 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
6462 lockdep_is_held(&event->ctx->lock));
6463 if (!hlist)
6464 return NULL;
6465
6466 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
6467}
6468
6469static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 6470 u64 nr,
76e1d904
FW
6471 struct perf_sample_data *data,
6472 struct pt_regs *regs)
15dbf27c 6473{
4a32fea9 6474 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 6475 struct perf_event *event;
76e1d904 6476 struct hlist_head *head;
15dbf27c 6477
76e1d904 6478 rcu_read_lock();
b28ab83c 6479 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
6480 if (!head)
6481 goto end;
6482
b67bfe0d 6483 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 6484 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 6485 perf_swevent_event(event, nr, data, regs);
15dbf27c 6486 }
76e1d904
FW
6487end:
6488 rcu_read_unlock();
15dbf27c
PZ
6489}
6490
86038c5e
PZI
6491DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
6492
4ed7c92d 6493int perf_swevent_get_recursion_context(void)
96f6d444 6494{
4a32fea9 6495 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
96f6d444 6496
b28ab83c 6497 return get_recursion_context(swhash->recursion);
96f6d444 6498}
645e8cc0 6499EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 6500
fa9f90be 6501inline void perf_swevent_put_recursion_context(int rctx)
15dbf27c 6502{
4a32fea9 6503 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
927c7a9e 6504
b28ab83c 6505 put_recursion_context(swhash->recursion, rctx);
ce71b9df 6506}
15dbf27c 6507
86038c5e 6508void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 6509{
a4234bfc 6510 struct perf_sample_data data;
4ed7c92d 6511
86038c5e 6512 if (WARN_ON_ONCE(!regs))
4ed7c92d 6513 return;
a4234bfc 6514
fd0d000b 6515 perf_sample_data_init(&data, addr, 0);
a8b0ca17 6516 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
86038c5e
PZI
6517}
6518
6519void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6520{
6521 int rctx;
6522
6523 preempt_disable_notrace();
6524 rctx = perf_swevent_get_recursion_context();
6525 if (unlikely(rctx < 0))
6526 goto fail;
6527
6528 ___perf_sw_event(event_id, nr, regs, addr);
4ed7c92d
PZ
6529
6530 perf_swevent_put_recursion_context(rctx);
86038c5e 6531fail:
1c024eca 6532 preempt_enable_notrace();
b8e83514
PZ
6533}
6534
cdd6c482 6535static void perf_swevent_read(struct perf_event *event)
15dbf27c 6536{
15dbf27c
PZ
6537}
6538
a4eaf7f1 6539static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 6540{
4a32fea9 6541 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 6542 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
6543 struct hlist_head *head;
6544
6c7e550f 6545 if (is_sampling_event(event)) {
7b4b6658 6546 hwc->last_period = hwc->sample_period;
cdd6c482 6547 perf_swevent_set_period(event);
7b4b6658 6548 }
76e1d904 6549
a4eaf7f1
PZ
6550 hwc->state = !(flags & PERF_EF_START);
6551
b28ab83c 6552 head = find_swevent_head(swhash, event);
39af6b16
JO
6553 if (!head) {
6554 /*
6555 * We can race with cpu hotplug code. Do not
6556 * WARN if the cpu just got unplugged.
6557 */
6558 WARN_ON_ONCE(swhash->online);
76e1d904 6559 return -EINVAL;
39af6b16 6560 }
76e1d904
FW
6561
6562 hlist_add_head_rcu(&event->hlist_entry, head);
6a694a60 6563 perf_event_update_userpage(event);
76e1d904 6564
15dbf27c
PZ
6565 return 0;
6566}
6567
a4eaf7f1 6568static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 6569{
76e1d904 6570 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
6571}
6572
a4eaf7f1 6573static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 6574{
a4eaf7f1 6575 event->hw.state = 0;
d6d020e9 6576}
aa9c4c0f 6577
a4eaf7f1 6578static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 6579{
a4eaf7f1 6580 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
6581}
6582
49f135ed
FW
6583/* Deref the hlist from the update side */
6584static inline struct swevent_hlist *
b28ab83c 6585swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 6586{
b28ab83c
PZ
6587 return rcu_dereference_protected(swhash->swevent_hlist,
6588 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
6589}
6590
b28ab83c 6591static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 6592{
b28ab83c 6593 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 6594
49f135ed 6595 if (!hlist)
76e1d904
FW
6596 return;
6597
70691d4a 6598 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
fa4bbc4c 6599 kfree_rcu(hlist, rcu_head);
76e1d904
FW
6600}
6601
6602static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
6603{
b28ab83c 6604 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 6605
b28ab83c 6606 mutex_lock(&swhash->hlist_mutex);
76e1d904 6607
b28ab83c
PZ
6608 if (!--swhash->hlist_refcount)
6609 swevent_hlist_release(swhash);
76e1d904 6610
b28ab83c 6611 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
6612}
6613
6614static void swevent_hlist_put(struct perf_event *event)
6615{
6616 int cpu;
6617
76e1d904
FW
6618 for_each_possible_cpu(cpu)
6619 swevent_hlist_put_cpu(event, cpu);
6620}
6621
6622static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
6623{
b28ab83c 6624 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
6625 int err = 0;
6626
b28ab83c 6627 mutex_lock(&swhash->hlist_mutex);
76e1d904 6628
b28ab83c 6629 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
76e1d904
FW
6630 struct swevent_hlist *hlist;
6631
6632 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
6633 if (!hlist) {
6634 err = -ENOMEM;
6635 goto exit;
6636 }
b28ab83c 6637 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 6638 }
b28ab83c 6639 swhash->hlist_refcount++;
9ed6060d 6640exit:
b28ab83c 6641 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
6642
6643 return err;
6644}
6645
6646static int swevent_hlist_get(struct perf_event *event)
6647{
6648 int err;
6649 int cpu, failed_cpu;
6650
76e1d904
FW
6651 get_online_cpus();
6652 for_each_possible_cpu(cpu) {
6653 err = swevent_hlist_get_cpu(event, cpu);
6654 if (err) {
6655 failed_cpu = cpu;
6656 goto fail;
6657 }
6658 }
6659 put_online_cpus();
6660
6661 return 0;
9ed6060d 6662fail:
76e1d904
FW
6663 for_each_possible_cpu(cpu) {
6664 if (cpu == failed_cpu)
6665 break;
6666 swevent_hlist_put_cpu(event, cpu);
6667 }
6668
6669 put_online_cpus();
6670 return err;
6671}
6672
c5905afb 6673struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 6674
b0a873eb
PZ
6675static void sw_perf_event_destroy(struct perf_event *event)
6676{
6677 u64 event_id = event->attr.config;
95476b64 6678
b0a873eb
PZ
6679 WARN_ON(event->parent);
6680
c5905afb 6681 static_key_slow_dec(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
6682 swevent_hlist_put(event);
6683}
6684
6685static int perf_swevent_init(struct perf_event *event)
6686{
8176cced 6687 u64 event_id = event->attr.config;
b0a873eb
PZ
6688
6689 if (event->attr.type != PERF_TYPE_SOFTWARE)
6690 return -ENOENT;
6691
2481c5fa
SE
6692 /*
6693 * no branch sampling for software events
6694 */
6695 if (has_branch_stack(event))
6696 return -EOPNOTSUPP;
6697
b0a873eb
PZ
6698 switch (event_id) {
6699 case PERF_COUNT_SW_CPU_CLOCK:
6700 case PERF_COUNT_SW_TASK_CLOCK:
6701 return -ENOENT;
6702
6703 default:
6704 break;
6705 }
6706
ce677831 6707 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
6708 return -ENOENT;
6709
6710 if (!event->parent) {
6711 int err;
6712
6713 err = swevent_hlist_get(event);
6714 if (err)
6715 return err;
6716
c5905afb 6717 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
6718 event->destroy = sw_perf_event_destroy;
6719 }
6720
6721 return 0;
6722}
6723
6724static struct pmu perf_swevent = {
89a1e187 6725 .task_ctx_nr = perf_sw_context,
95476b64 6726
34f43927
PZ
6727 .capabilities = PERF_PMU_CAP_NO_NMI,
6728
b0a873eb 6729 .event_init = perf_swevent_init,
a4eaf7f1
PZ
6730 .add = perf_swevent_add,
6731 .del = perf_swevent_del,
6732 .start = perf_swevent_start,
6733 .stop = perf_swevent_stop,
1c024eca 6734 .read = perf_swevent_read,
1c024eca
PZ
6735};
6736
b0a873eb
PZ
6737#ifdef CONFIG_EVENT_TRACING
6738
1c024eca
PZ
6739static int perf_tp_filter_match(struct perf_event *event,
6740 struct perf_sample_data *data)
6741{
6742 void *record = data->raw->data;
6743
6744 if (likely(!event->filter) || filter_match_preds(event->filter, record))
6745 return 1;
6746 return 0;
6747}
6748
6749static int perf_tp_event_match(struct perf_event *event,
6750 struct perf_sample_data *data,
6751 struct pt_regs *regs)
6752{
a0f7d0f7
FW
6753 if (event->hw.state & PERF_HES_STOPPED)
6754 return 0;
580d607c
PZ
6755 /*
6756 * All tracepoints are from kernel-space.
6757 */
6758 if (event->attr.exclude_kernel)
1c024eca
PZ
6759 return 0;
6760
6761 if (!perf_tp_filter_match(event, data))
6762 return 0;
6763
6764 return 1;
6765}
6766
6767void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
e6dab5ff
AV
6768 struct pt_regs *regs, struct hlist_head *head, int rctx,
6769 struct task_struct *task)
95476b64
FW
6770{
6771 struct perf_sample_data data;
1c024eca 6772 struct perf_event *event;
1c024eca 6773
95476b64
FW
6774 struct perf_raw_record raw = {
6775 .size = entry_size,
6776 .data = record,
6777 };
6778
fd0d000b 6779 perf_sample_data_init(&data, addr, 0);
95476b64
FW
6780 data.raw = &raw;
6781
b67bfe0d 6782 hlist_for_each_entry_rcu(event, head, hlist_entry) {
1c024eca 6783 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 6784 perf_swevent_event(event, count, &data, regs);
4f41c013 6785 }
ecc55f84 6786
e6dab5ff
AV
6787 /*
6788 * If we got specified a target task, also iterate its context and
6789 * deliver this event there too.
6790 */
6791 if (task && task != current) {
6792 struct perf_event_context *ctx;
6793 struct trace_entry *entry = record;
6794
6795 rcu_read_lock();
6796 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
6797 if (!ctx)
6798 goto unlock;
6799
6800 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6801 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6802 continue;
6803 if (event->attr.config != entry->type)
6804 continue;
6805 if (perf_tp_event_match(event, &data, regs))
6806 perf_swevent_event(event, count, &data, regs);
6807 }
6808unlock:
6809 rcu_read_unlock();
6810 }
6811
ecc55f84 6812 perf_swevent_put_recursion_context(rctx);
95476b64
FW
6813}
6814EXPORT_SYMBOL_GPL(perf_tp_event);
6815
cdd6c482 6816static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 6817{
1c024eca 6818 perf_trace_destroy(event);
e077df4f
PZ
6819}
6820
b0a873eb 6821static int perf_tp_event_init(struct perf_event *event)
e077df4f 6822{
76e1d904
FW
6823 int err;
6824
b0a873eb
PZ
6825 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6826 return -ENOENT;
6827
2481c5fa
SE
6828 /*
6829 * no branch sampling for tracepoint events
6830 */
6831 if (has_branch_stack(event))
6832 return -EOPNOTSUPP;
6833
1c024eca
PZ
6834 err = perf_trace_init(event);
6835 if (err)
b0a873eb 6836 return err;
e077df4f 6837
cdd6c482 6838 event->destroy = tp_perf_event_destroy;
e077df4f 6839
b0a873eb
PZ
6840 return 0;
6841}
6842
6843static struct pmu perf_tracepoint = {
89a1e187
PZ
6844 .task_ctx_nr = perf_sw_context,
6845
b0a873eb 6846 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
6847 .add = perf_trace_add,
6848 .del = perf_trace_del,
6849 .start = perf_swevent_start,
6850 .stop = perf_swevent_stop,
b0a873eb 6851 .read = perf_swevent_read,
b0a873eb
PZ
6852};
6853
6854static inline void perf_tp_register(void)
6855{
2e80a82a 6856 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e077df4f 6857}
6fb2915d
LZ
6858
6859static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6860{
6861 char *filter_str;
6862 int ret;
6863
6864 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6865 return -EINVAL;
6866
6867 filter_str = strndup_user(arg, PAGE_SIZE);
6868 if (IS_ERR(filter_str))
6869 return PTR_ERR(filter_str);
6870
6871 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
6872
6873 kfree(filter_str);
6874 return ret;
6875}
6876
6877static void perf_event_free_filter(struct perf_event *event)
6878{
6879 ftrace_profile_free_filter(event);
6880}
6881
2541517c
AS
6882static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
6883{
6884 struct bpf_prog *prog;
6885
6886 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6887 return -EINVAL;
6888
6889 if (event->tp_event->prog)
6890 return -EEXIST;
6891
04a22fae
WN
6892 if (!(event->tp_event->flags & TRACE_EVENT_FL_UKPROBE))
6893 /* bpf programs can only be attached to u/kprobes */
2541517c
AS
6894 return -EINVAL;
6895
6896 prog = bpf_prog_get(prog_fd);
6897 if (IS_ERR(prog))
6898 return PTR_ERR(prog);
6899
6c373ca8 6900 if (prog->type != BPF_PROG_TYPE_KPROBE) {
2541517c
AS
6901 /* valid fd, but invalid bpf program type */
6902 bpf_prog_put(prog);
6903 return -EINVAL;
6904 }
6905
6906 event->tp_event->prog = prog;
6907
6908 return 0;
6909}
6910
6911static void perf_event_free_bpf_prog(struct perf_event *event)
6912{
6913 struct bpf_prog *prog;
6914
6915 if (!event->tp_event)
6916 return;
6917
6918 prog = event->tp_event->prog;
6919 if (prog) {
6920 event->tp_event->prog = NULL;
6921 bpf_prog_put(prog);
6922 }
6923}
6924
e077df4f 6925#else
6fb2915d 6926
b0a873eb 6927static inline void perf_tp_register(void)
e077df4f 6928{
e077df4f 6929}
6fb2915d
LZ
6930
6931static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6932{
6933 return -ENOENT;
6934}
6935
6936static void perf_event_free_filter(struct perf_event *event)
6937{
6938}
6939
2541517c
AS
6940static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
6941{
6942 return -ENOENT;
6943}
6944
6945static void perf_event_free_bpf_prog(struct perf_event *event)
6946{
6947}
07b139c8 6948#endif /* CONFIG_EVENT_TRACING */
e077df4f 6949
24f1e32c 6950#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 6951void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 6952{
f5ffe02e
FW
6953 struct perf_sample_data sample;
6954 struct pt_regs *regs = data;
6955
fd0d000b 6956 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 6957
a4eaf7f1 6958 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 6959 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
6960}
6961#endif
6962
b0a873eb
PZ
6963/*
6964 * hrtimer based swevent callback
6965 */
f29ac756 6966
b0a873eb 6967static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 6968{
b0a873eb
PZ
6969 enum hrtimer_restart ret = HRTIMER_RESTART;
6970 struct perf_sample_data data;
6971 struct pt_regs *regs;
6972 struct perf_event *event;
6973 u64 period;
f29ac756 6974
b0a873eb 6975 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
6976
6977 if (event->state != PERF_EVENT_STATE_ACTIVE)
6978 return HRTIMER_NORESTART;
6979
b0a873eb 6980 event->pmu->read(event);
f344011c 6981
fd0d000b 6982 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
6983 regs = get_irq_regs();
6984
6985 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 6986 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 6987 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
6988 ret = HRTIMER_NORESTART;
6989 }
24f1e32c 6990
b0a873eb
PZ
6991 period = max_t(u64, 10000, event->hw.sample_period);
6992 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 6993
b0a873eb 6994 return ret;
f29ac756
PZ
6995}
6996
b0a873eb 6997static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 6998{
b0a873eb 6999 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
7000 s64 period;
7001
7002 if (!is_sampling_event(event))
7003 return;
f5ffe02e 7004
5d508e82
FBH
7005 period = local64_read(&hwc->period_left);
7006 if (period) {
7007 if (period < 0)
7008 period = 10000;
fa407f35 7009
5d508e82
FBH
7010 local64_set(&hwc->period_left, 0);
7011 } else {
7012 period = max_t(u64, 10000, hwc->sample_period);
7013 }
3497d206
TG
7014 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
7015 HRTIMER_MODE_REL_PINNED);
24f1e32c 7016}
b0a873eb
PZ
7017
7018static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 7019{
b0a873eb
PZ
7020 struct hw_perf_event *hwc = &event->hw;
7021
6c7e550f 7022 if (is_sampling_event(event)) {
b0a873eb 7023 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 7024 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
7025
7026 hrtimer_cancel(&hwc->hrtimer);
7027 }
24f1e32c
FW
7028}
7029
ba3dd36c
PZ
7030static void perf_swevent_init_hrtimer(struct perf_event *event)
7031{
7032 struct hw_perf_event *hwc = &event->hw;
7033
7034 if (!is_sampling_event(event))
7035 return;
7036
7037 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
7038 hwc->hrtimer.function = perf_swevent_hrtimer;
7039
7040 /*
7041 * Since hrtimers have a fixed rate, we can do a static freq->period
7042 * mapping and avoid the whole period adjust feedback stuff.
7043 */
7044 if (event->attr.freq) {
7045 long freq = event->attr.sample_freq;
7046
7047 event->attr.sample_period = NSEC_PER_SEC / freq;
7048 hwc->sample_period = event->attr.sample_period;
7049 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 7050 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
7051 event->attr.freq = 0;
7052 }
7053}
7054
b0a873eb
PZ
7055/*
7056 * Software event: cpu wall time clock
7057 */
7058
7059static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 7060{
b0a873eb
PZ
7061 s64 prev;
7062 u64 now;
7063
a4eaf7f1 7064 now = local_clock();
b0a873eb
PZ
7065 prev = local64_xchg(&event->hw.prev_count, now);
7066 local64_add(now - prev, &event->count);
24f1e32c 7067}
24f1e32c 7068
a4eaf7f1 7069static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 7070{
a4eaf7f1 7071 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 7072 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
7073}
7074
a4eaf7f1 7075static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 7076{
b0a873eb
PZ
7077 perf_swevent_cancel_hrtimer(event);
7078 cpu_clock_event_update(event);
7079}
f29ac756 7080
a4eaf7f1
PZ
7081static int cpu_clock_event_add(struct perf_event *event, int flags)
7082{
7083 if (flags & PERF_EF_START)
7084 cpu_clock_event_start(event, flags);
6a694a60 7085 perf_event_update_userpage(event);
a4eaf7f1
PZ
7086
7087 return 0;
7088}
7089
7090static void cpu_clock_event_del(struct perf_event *event, int flags)
7091{
7092 cpu_clock_event_stop(event, flags);
7093}
7094
b0a873eb
PZ
7095static void cpu_clock_event_read(struct perf_event *event)
7096{
7097 cpu_clock_event_update(event);
7098}
f344011c 7099
b0a873eb
PZ
7100static int cpu_clock_event_init(struct perf_event *event)
7101{
7102 if (event->attr.type != PERF_TYPE_SOFTWARE)
7103 return -ENOENT;
7104
7105 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
7106 return -ENOENT;
7107
2481c5fa
SE
7108 /*
7109 * no branch sampling for software events
7110 */
7111 if (has_branch_stack(event))
7112 return -EOPNOTSUPP;
7113
ba3dd36c
PZ
7114 perf_swevent_init_hrtimer(event);
7115
b0a873eb 7116 return 0;
f29ac756
PZ
7117}
7118
b0a873eb 7119static struct pmu perf_cpu_clock = {
89a1e187
PZ
7120 .task_ctx_nr = perf_sw_context,
7121
34f43927
PZ
7122 .capabilities = PERF_PMU_CAP_NO_NMI,
7123
b0a873eb 7124 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
7125 .add = cpu_clock_event_add,
7126 .del = cpu_clock_event_del,
7127 .start = cpu_clock_event_start,
7128 .stop = cpu_clock_event_stop,
b0a873eb
PZ
7129 .read = cpu_clock_event_read,
7130};
7131
7132/*
7133 * Software event: task time clock
7134 */
7135
7136static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 7137{
b0a873eb
PZ
7138 u64 prev;
7139 s64 delta;
5c92d124 7140
b0a873eb
PZ
7141 prev = local64_xchg(&event->hw.prev_count, now);
7142 delta = now - prev;
7143 local64_add(delta, &event->count);
7144}
5c92d124 7145
a4eaf7f1 7146static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 7147{
a4eaf7f1 7148 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 7149 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
7150}
7151
a4eaf7f1 7152static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
7153{
7154 perf_swevent_cancel_hrtimer(event);
7155 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
7156}
7157
7158static int task_clock_event_add(struct perf_event *event, int flags)
7159{
7160 if (flags & PERF_EF_START)
7161 task_clock_event_start(event, flags);
6a694a60 7162 perf_event_update_userpage(event);
b0a873eb 7163
a4eaf7f1
PZ
7164 return 0;
7165}
7166
7167static void task_clock_event_del(struct perf_event *event, int flags)
7168{
7169 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
7170}
7171
7172static void task_clock_event_read(struct perf_event *event)
7173{
768a06e2
PZ
7174 u64 now = perf_clock();
7175 u64 delta = now - event->ctx->timestamp;
7176 u64 time = event->ctx->time + delta;
b0a873eb
PZ
7177
7178 task_clock_event_update(event, time);
7179}
7180
7181static int task_clock_event_init(struct perf_event *event)
6fb2915d 7182{
b0a873eb
PZ
7183 if (event->attr.type != PERF_TYPE_SOFTWARE)
7184 return -ENOENT;
7185
7186 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
7187 return -ENOENT;
7188
2481c5fa
SE
7189 /*
7190 * no branch sampling for software events
7191 */
7192 if (has_branch_stack(event))
7193 return -EOPNOTSUPP;
7194
ba3dd36c
PZ
7195 perf_swevent_init_hrtimer(event);
7196
b0a873eb 7197 return 0;
6fb2915d
LZ
7198}
7199
b0a873eb 7200static struct pmu perf_task_clock = {
89a1e187
PZ
7201 .task_ctx_nr = perf_sw_context,
7202
34f43927
PZ
7203 .capabilities = PERF_PMU_CAP_NO_NMI,
7204
b0a873eb 7205 .event_init = task_clock_event_init,
a4eaf7f1
PZ
7206 .add = task_clock_event_add,
7207 .del = task_clock_event_del,
7208 .start = task_clock_event_start,
7209 .stop = task_clock_event_stop,
b0a873eb
PZ
7210 .read = task_clock_event_read,
7211};
6fb2915d 7212
ad5133b7 7213static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 7214{
e077df4f 7215}
6fb2915d 7216
ad5133b7 7217static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 7218{
ad5133b7 7219 return 0;
6fb2915d
LZ
7220}
7221
ad5133b7 7222static void perf_pmu_start_txn(struct pmu *pmu)
6fb2915d 7223{
ad5133b7 7224 perf_pmu_disable(pmu);
6fb2915d
LZ
7225}
7226
ad5133b7
PZ
7227static int perf_pmu_commit_txn(struct pmu *pmu)
7228{
7229 perf_pmu_enable(pmu);
7230 return 0;
7231}
e077df4f 7232
ad5133b7 7233static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 7234{
ad5133b7 7235 perf_pmu_enable(pmu);
24f1e32c
FW
7236}
7237
35edc2a5
PZ
7238static int perf_event_idx_default(struct perf_event *event)
7239{
c719f560 7240 return 0;
35edc2a5
PZ
7241}
7242
8dc85d54
PZ
7243/*
7244 * Ensures all contexts with the same task_ctx_nr have the same
7245 * pmu_cpu_context too.
7246 */
9e317041 7247static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
24f1e32c 7248{
8dc85d54 7249 struct pmu *pmu;
b326e956 7250
8dc85d54
PZ
7251 if (ctxn < 0)
7252 return NULL;
24f1e32c 7253
8dc85d54
PZ
7254 list_for_each_entry(pmu, &pmus, entry) {
7255 if (pmu->task_ctx_nr == ctxn)
7256 return pmu->pmu_cpu_context;
7257 }
24f1e32c 7258
8dc85d54 7259 return NULL;
24f1e32c
FW
7260}
7261
51676957 7262static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
24f1e32c 7263{
51676957
PZ
7264 int cpu;
7265
7266 for_each_possible_cpu(cpu) {
7267 struct perf_cpu_context *cpuctx;
7268
7269 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7270
3f1f3320
PZ
7271 if (cpuctx->unique_pmu == old_pmu)
7272 cpuctx->unique_pmu = pmu;
51676957
PZ
7273 }
7274}
7275
7276static void free_pmu_context(struct pmu *pmu)
7277{
7278 struct pmu *i;
f5ffe02e 7279
8dc85d54 7280 mutex_lock(&pmus_lock);
0475f9ea 7281 /*
8dc85d54 7282 * Like a real lame refcount.
0475f9ea 7283 */
51676957
PZ
7284 list_for_each_entry(i, &pmus, entry) {
7285 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
7286 update_pmu_context(i, pmu);
8dc85d54 7287 goto out;
51676957 7288 }
8dc85d54 7289 }
d6d020e9 7290
51676957 7291 free_percpu(pmu->pmu_cpu_context);
8dc85d54
PZ
7292out:
7293 mutex_unlock(&pmus_lock);
24f1e32c 7294}
2e80a82a 7295static struct idr pmu_idr;
d6d020e9 7296
abe43400
PZ
7297static ssize_t
7298type_show(struct device *dev, struct device_attribute *attr, char *page)
7299{
7300 struct pmu *pmu = dev_get_drvdata(dev);
7301
7302 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
7303}
90826ca7 7304static DEVICE_ATTR_RO(type);
abe43400 7305
62b85639
SE
7306static ssize_t
7307perf_event_mux_interval_ms_show(struct device *dev,
7308 struct device_attribute *attr,
7309 char *page)
7310{
7311 struct pmu *pmu = dev_get_drvdata(dev);
7312
7313 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
7314}
7315
272325c4
PZ
7316static DEFINE_MUTEX(mux_interval_mutex);
7317
62b85639
SE
7318static ssize_t
7319perf_event_mux_interval_ms_store(struct device *dev,
7320 struct device_attribute *attr,
7321 const char *buf, size_t count)
7322{
7323 struct pmu *pmu = dev_get_drvdata(dev);
7324 int timer, cpu, ret;
7325
7326 ret = kstrtoint(buf, 0, &timer);
7327 if (ret)
7328 return ret;
7329
7330 if (timer < 1)
7331 return -EINVAL;
7332
7333 /* same value, noting to do */
7334 if (timer == pmu->hrtimer_interval_ms)
7335 return count;
7336
272325c4 7337 mutex_lock(&mux_interval_mutex);
62b85639
SE
7338 pmu->hrtimer_interval_ms = timer;
7339
7340 /* update all cpuctx for this PMU */
272325c4
PZ
7341 get_online_cpus();
7342 for_each_online_cpu(cpu) {
62b85639
SE
7343 struct perf_cpu_context *cpuctx;
7344 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7345 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
7346
272325c4
PZ
7347 cpu_function_call(cpu,
7348 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
62b85639 7349 }
272325c4
PZ
7350 put_online_cpus();
7351 mutex_unlock(&mux_interval_mutex);
62b85639
SE
7352
7353 return count;
7354}
90826ca7 7355static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
62b85639 7356
90826ca7
GKH
7357static struct attribute *pmu_dev_attrs[] = {
7358 &dev_attr_type.attr,
7359 &dev_attr_perf_event_mux_interval_ms.attr,
7360 NULL,
abe43400 7361};
90826ca7 7362ATTRIBUTE_GROUPS(pmu_dev);
abe43400
PZ
7363
7364static int pmu_bus_running;
7365static struct bus_type pmu_bus = {
7366 .name = "event_source",
90826ca7 7367 .dev_groups = pmu_dev_groups,
abe43400
PZ
7368};
7369
7370static void pmu_dev_release(struct device *dev)
7371{
7372 kfree(dev);
7373}
7374
7375static int pmu_dev_alloc(struct pmu *pmu)
7376{
7377 int ret = -ENOMEM;
7378
7379 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
7380 if (!pmu->dev)
7381 goto out;
7382
0c9d42ed 7383 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
7384 device_initialize(pmu->dev);
7385 ret = dev_set_name(pmu->dev, "%s", pmu->name);
7386 if (ret)
7387 goto free_dev;
7388
7389 dev_set_drvdata(pmu->dev, pmu);
7390 pmu->dev->bus = &pmu_bus;
7391 pmu->dev->release = pmu_dev_release;
7392 ret = device_add(pmu->dev);
7393 if (ret)
7394 goto free_dev;
7395
7396out:
7397 return ret;
7398
7399free_dev:
7400 put_device(pmu->dev);
7401 goto out;
7402}
7403
547e9fd7 7404static struct lock_class_key cpuctx_mutex;
facc4307 7405static struct lock_class_key cpuctx_lock;
547e9fd7 7406
03d8e80b 7407int perf_pmu_register(struct pmu *pmu, const char *name, int type)
24f1e32c 7408{
108b02cf 7409 int cpu, ret;
24f1e32c 7410
b0a873eb 7411 mutex_lock(&pmus_lock);
33696fc0
PZ
7412 ret = -ENOMEM;
7413 pmu->pmu_disable_count = alloc_percpu(int);
7414 if (!pmu->pmu_disable_count)
7415 goto unlock;
f29ac756 7416
2e80a82a
PZ
7417 pmu->type = -1;
7418 if (!name)
7419 goto skip_type;
7420 pmu->name = name;
7421
7422 if (type < 0) {
0e9c3be2
TH
7423 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
7424 if (type < 0) {
7425 ret = type;
2e80a82a
PZ
7426 goto free_pdc;
7427 }
7428 }
7429 pmu->type = type;
7430
abe43400
PZ
7431 if (pmu_bus_running) {
7432 ret = pmu_dev_alloc(pmu);
7433 if (ret)
7434 goto free_idr;
7435 }
7436
2e80a82a 7437skip_type:
8dc85d54
PZ
7438 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
7439 if (pmu->pmu_cpu_context)
7440 goto got_cpu_context;
f29ac756 7441
c4814202 7442 ret = -ENOMEM;
108b02cf
PZ
7443 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
7444 if (!pmu->pmu_cpu_context)
abe43400 7445 goto free_dev;
f344011c 7446
108b02cf
PZ
7447 for_each_possible_cpu(cpu) {
7448 struct perf_cpu_context *cpuctx;
7449
7450 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 7451 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 7452 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 7453 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
108b02cf 7454 cpuctx->ctx.pmu = pmu;
9e630205 7455
272325c4 7456 __perf_mux_hrtimer_init(cpuctx, cpu);
9e630205 7457
3f1f3320 7458 cpuctx->unique_pmu = pmu;
108b02cf 7459 }
76e1d904 7460
8dc85d54 7461got_cpu_context:
ad5133b7
PZ
7462 if (!pmu->start_txn) {
7463 if (pmu->pmu_enable) {
7464 /*
7465 * If we have pmu_enable/pmu_disable calls, install
7466 * transaction stubs that use that to try and batch
7467 * hardware accesses.
7468 */
7469 pmu->start_txn = perf_pmu_start_txn;
7470 pmu->commit_txn = perf_pmu_commit_txn;
7471 pmu->cancel_txn = perf_pmu_cancel_txn;
7472 } else {
7473 pmu->start_txn = perf_pmu_nop_void;
7474 pmu->commit_txn = perf_pmu_nop_int;
7475 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 7476 }
5c92d124 7477 }
15dbf27c 7478
ad5133b7
PZ
7479 if (!pmu->pmu_enable) {
7480 pmu->pmu_enable = perf_pmu_nop_void;
7481 pmu->pmu_disable = perf_pmu_nop_void;
7482 }
7483
35edc2a5
PZ
7484 if (!pmu->event_idx)
7485 pmu->event_idx = perf_event_idx_default;
7486
b0a873eb 7487 list_add_rcu(&pmu->entry, &pmus);
bed5b25a 7488 atomic_set(&pmu->exclusive_cnt, 0);
33696fc0
PZ
7489 ret = 0;
7490unlock:
b0a873eb
PZ
7491 mutex_unlock(&pmus_lock);
7492
33696fc0 7493 return ret;
108b02cf 7494
abe43400
PZ
7495free_dev:
7496 device_del(pmu->dev);
7497 put_device(pmu->dev);
7498
2e80a82a
PZ
7499free_idr:
7500 if (pmu->type >= PERF_TYPE_MAX)
7501 idr_remove(&pmu_idr, pmu->type);
7502
108b02cf
PZ
7503free_pdc:
7504 free_percpu(pmu->pmu_disable_count);
7505 goto unlock;
f29ac756 7506}
c464c76e 7507EXPORT_SYMBOL_GPL(perf_pmu_register);
f29ac756 7508
b0a873eb 7509void perf_pmu_unregister(struct pmu *pmu)
5c92d124 7510{
b0a873eb
PZ
7511 mutex_lock(&pmus_lock);
7512 list_del_rcu(&pmu->entry);
7513 mutex_unlock(&pmus_lock);
5c92d124 7514
0475f9ea 7515 /*
cde8e884
PZ
7516 * We dereference the pmu list under both SRCU and regular RCU, so
7517 * synchronize against both of those.
0475f9ea 7518 */
b0a873eb 7519 synchronize_srcu(&pmus_srcu);
cde8e884 7520 synchronize_rcu();
d6d020e9 7521
33696fc0 7522 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
7523 if (pmu->type >= PERF_TYPE_MAX)
7524 idr_remove(&pmu_idr, pmu->type);
abe43400
PZ
7525 device_del(pmu->dev);
7526 put_device(pmu->dev);
51676957 7527 free_pmu_context(pmu);
b0a873eb 7528}
c464c76e 7529EXPORT_SYMBOL_GPL(perf_pmu_unregister);
d6d020e9 7530
cc34b98b
MR
7531static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
7532{
ccd41c86 7533 struct perf_event_context *ctx = NULL;
cc34b98b
MR
7534 int ret;
7535
7536 if (!try_module_get(pmu->module))
7537 return -ENODEV;
ccd41c86
PZ
7538
7539 if (event->group_leader != event) {
8b10c5e2
PZ
7540 /*
7541 * This ctx->mutex can nest when we're called through
7542 * inheritance. See the perf_event_ctx_lock_nested() comment.
7543 */
7544 ctx = perf_event_ctx_lock_nested(event->group_leader,
7545 SINGLE_DEPTH_NESTING);
ccd41c86
PZ
7546 BUG_ON(!ctx);
7547 }
7548
cc34b98b
MR
7549 event->pmu = pmu;
7550 ret = pmu->event_init(event);
ccd41c86
PZ
7551
7552 if (ctx)
7553 perf_event_ctx_unlock(event->group_leader, ctx);
7554
cc34b98b
MR
7555 if (ret)
7556 module_put(pmu->module);
7557
7558 return ret;
7559}
7560
b0a873eb
PZ
7561struct pmu *perf_init_event(struct perf_event *event)
7562{
7563 struct pmu *pmu = NULL;
7564 int idx;
940c5b29 7565 int ret;
b0a873eb
PZ
7566
7567 idx = srcu_read_lock(&pmus_srcu);
2e80a82a
PZ
7568
7569 rcu_read_lock();
7570 pmu = idr_find(&pmu_idr, event->attr.type);
7571 rcu_read_unlock();
940c5b29 7572 if (pmu) {
cc34b98b 7573 ret = perf_try_init_event(pmu, event);
940c5b29
LM
7574 if (ret)
7575 pmu = ERR_PTR(ret);
2e80a82a 7576 goto unlock;
940c5b29 7577 }
2e80a82a 7578
b0a873eb 7579 list_for_each_entry_rcu(pmu, &pmus, entry) {
cc34b98b 7580 ret = perf_try_init_event(pmu, event);
b0a873eb 7581 if (!ret)
e5f4d339 7582 goto unlock;
76e1d904 7583
b0a873eb
PZ
7584 if (ret != -ENOENT) {
7585 pmu = ERR_PTR(ret);
e5f4d339 7586 goto unlock;
f344011c 7587 }
5c92d124 7588 }
e5f4d339
PZ
7589 pmu = ERR_PTR(-ENOENT);
7590unlock:
b0a873eb 7591 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 7592
4aeb0b42 7593 return pmu;
5c92d124
IM
7594}
7595
4beb31f3
FW
7596static void account_event_cpu(struct perf_event *event, int cpu)
7597{
7598 if (event->parent)
7599 return;
7600
4beb31f3
FW
7601 if (is_cgroup_event(event))
7602 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
7603}
7604
766d6c07
FW
7605static void account_event(struct perf_event *event)
7606{
4beb31f3
FW
7607 if (event->parent)
7608 return;
7609
766d6c07
FW
7610 if (event->attach_state & PERF_ATTACH_TASK)
7611 static_key_slow_inc(&perf_sched_events.key);
7612 if (event->attr.mmap || event->attr.mmap_data)
7613 atomic_inc(&nr_mmap_events);
7614 if (event->attr.comm)
7615 atomic_inc(&nr_comm_events);
7616 if (event->attr.task)
7617 atomic_inc(&nr_task_events);
948b26b6
FW
7618 if (event->attr.freq) {
7619 if (atomic_inc_return(&nr_freq_events) == 1)
7620 tick_nohz_full_kick_all();
7621 }
45ac1403
AH
7622 if (event->attr.context_switch) {
7623 atomic_inc(&nr_switch_events);
7624 static_key_slow_inc(&perf_sched_events.key);
7625 }
4beb31f3 7626 if (has_branch_stack(event))
766d6c07 7627 static_key_slow_inc(&perf_sched_events.key);
4beb31f3 7628 if (is_cgroup_event(event))
766d6c07 7629 static_key_slow_inc(&perf_sched_events.key);
4beb31f3
FW
7630
7631 account_event_cpu(event, event->cpu);
766d6c07
FW
7632}
7633
0793a61d 7634/*
cdd6c482 7635 * Allocate and initialize a event structure
0793a61d 7636 */
cdd6c482 7637static struct perf_event *
c3f00c70 7638perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
7639 struct task_struct *task,
7640 struct perf_event *group_leader,
7641 struct perf_event *parent_event,
4dc0da86 7642 perf_overflow_handler_t overflow_handler,
79dff51e 7643 void *context, int cgroup_fd)
0793a61d 7644{
51b0fe39 7645 struct pmu *pmu;
cdd6c482
IM
7646 struct perf_event *event;
7647 struct hw_perf_event *hwc;
90983b16 7648 long err = -EINVAL;
0793a61d 7649
66832eb4
ON
7650 if ((unsigned)cpu >= nr_cpu_ids) {
7651 if (!task || cpu != -1)
7652 return ERR_PTR(-EINVAL);
7653 }
7654
c3f00c70 7655 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 7656 if (!event)
d5d2bc0d 7657 return ERR_PTR(-ENOMEM);
0793a61d 7658
04289bb9 7659 /*
cdd6c482 7660 * Single events are their own group leaders, with an
04289bb9
IM
7661 * empty sibling list:
7662 */
7663 if (!group_leader)
cdd6c482 7664 group_leader = event;
04289bb9 7665
cdd6c482
IM
7666 mutex_init(&event->child_mutex);
7667 INIT_LIST_HEAD(&event->child_list);
fccc714b 7668
cdd6c482
IM
7669 INIT_LIST_HEAD(&event->group_entry);
7670 INIT_LIST_HEAD(&event->event_entry);
7671 INIT_LIST_HEAD(&event->sibling_list);
10c6db11 7672 INIT_LIST_HEAD(&event->rb_entry);
71ad88ef 7673 INIT_LIST_HEAD(&event->active_entry);
f3ae75de
SE
7674 INIT_HLIST_NODE(&event->hlist_entry);
7675
10c6db11 7676
cdd6c482 7677 init_waitqueue_head(&event->waitq);
e360adbe 7678 init_irq_work(&event->pending, perf_pending_event);
0793a61d 7679
cdd6c482 7680 mutex_init(&event->mmap_mutex);
7b732a75 7681
a6fa941d 7682 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
7683 event->cpu = cpu;
7684 event->attr = *attr;
7685 event->group_leader = group_leader;
7686 event->pmu = NULL;
cdd6c482 7687 event->oncpu = -1;
a96bbc16 7688
cdd6c482 7689 event->parent = parent_event;
b84fbc9f 7690
17cf22c3 7691 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 7692 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 7693
cdd6c482 7694 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 7695
d580ff86
PZ
7696 if (task) {
7697 event->attach_state = PERF_ATTACH_TASK;
d580ff86 7698 /*
50f16a8b
PZ
7699 * XXX pmu::event_init needs to know what task to account to
7700 * and we cannot use the ctx information because we need the
7701 * pmu before we get a ctx.
d580ff86 7702 */
50f16a8b 7703 event->hw.target = task;
d580ff86
PZ
7704 }
7705
34f43927
PZ
7706 event->clock = &local_clock;
7707 if (parent_event)
7708 event->clock = parent_event->clock;
7709
4dc0da86 7710 if (!overflow_handler && parent_event) {
b326e956 7711 overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
7712 context = parent_event->overflow_handler_context;
7713 }
66832eb4 7714
b326e956 7715 event->overflow_handler = overflow_handler;
4dc0da86 7716 event->overflow_handler_context = context;
97eaf530 7717
0231bb53 7718 perf_event__state_init(event);
a86ed508 7719
4aeb0b42 7720 pmu = NULL;
b8e83514 7721
cdd6c482 7722 hwc = &event->hw;
bd2b5b12 7723 hwc->sample_period = attr->sample_period;
0d48696f 7724 if (attr->freq && attr->sample_freq)
bd2b5b12 7725 hwc->sample_period = 1;
eced1dfc 7726 hwc->last_period = hwc->sample_period;
bd2b5b12 7727
e7850595 7728 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 7729
2023b359 7730 /*
cdd6c482 7731 * we currently do not support PERF_FORMAT_GROUP on inherited events
2023b359 7732 */
3dab77fb 7733 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
90983b16 7734 goto err_ns;
a46a2300
YZ
7735
7736 if (!has_branch_stack(event))
7737 event->attr.branch_sample_type = 0;
2023b359 7738
79dff51e
MF
7739 if (cgroup_fd != -1) {
7740 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
7741 if (err)
7742 goto err_ns;
7743 }
7744
b0a873eb 7745 pmu = perf_init_event(event);
4aeb0b42 7746 if (!pmu)
90983b16
FW
7747 goto err_ns;
7748 else if (IS_ERR(pmu)) {
4aeb0b42 7749 err = PTR_ERR(pmu);
90983b16 7750 goto err_ns;
621a01ea 7751 }
d5d2bc0d 7752
bed5b25a
AS
7753 err = exclusive_event_init(event);
7754 if (err)
7755 goto err_pmu;
7756
cdd6c482 7757 if (!event->parent) {
927c7a9e
FW
7758 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
7759 err = get_callchain_buffers();
90983b16 7760 if (err)
bed5b25a 7761 goto err_per_task;
d010b332 7762 }
f344011c 7763 }
9ee318a7 7764
cdd6c482 7765 return event;
90983b16 7766
bed5b25a
AS
7767err_per_task:
7768 exclusive_event_destroy(event);
7769
90983b16
FW
7770err_pmu:
7771 if (event->destroy)
7772 event->destroy(event);
c464c76e 7773 module_put(pmu->module);
90983b16 7774err_ns:
79dff51e
MF
7775 if (is_cgroup_event(event))
7776 perf_detach_cgroup(event);
90983b16
FW
7777 if (event->ns)
7778 put_pid_ns(event->ns);
7779 kfree(event);
7780
7781 return ERR_PTR(err);
0793a61d
TG
7782}
7783
cdd6c482
IM
7784static int perf_copy_attr(struct perf_event_attr __user *uattr,
7785 struct perf_event_attr *attr)
974802ea 7786{
974802ea 7787 u32 size;
cdf8073d 7788 int ret;
974802ea
PZ
7789
7790 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
7791 return -EFAULT;
7792
7793 /*
7794 * zero the full structure, so that a short copy will be nice.
7795 */
7796 memset(attr, 0, sizeof(*attr));
7797
7798 ret = get_user(size, &uattr->size);
7799 if (ret)
7800 return ret;
7801
7802 if (size > PAGE_SIZE) /* silly large */
7803 goto err_size;
7804
7805 if (!size) /* abi compat */
7806 size = PERF_ATTR_SIZE_VER0;
7807
7808 if (size < PERF_ATTR_SIZE_VER0)
7809 goto err_size;
7810
7811 /*
7812 * If we're handed a bigger struct than we know of,
cdf8073d
IS
7813 * ensure all the unknown bits are 0 - i.e. new
7814 * user-space does not rely on any kernel feature
7815 * extensions we dont know about yet.
974802ea
PZ
7816 */
7817 if (size > sizeof(*attr)) {
cdf8073d
IS
7818 unsigned char __user *addr;
7819 unsigned char __user *end;
7820 unsigned char val;
974802ea 7821
cdf8073d
IS
7822 addr = (void __user *)uattr + sizeof(*attr);
7823 end = (void __user *)uattr + size;
974802ea 7824
cdf8073d 7825 for (; addr < end; addr++) {
974802ea
PZ
7826 ret = get_user(val, addr);
7827 if (ret)
7828 return ret;
7829 if (val)
7830 goto err_size;
7831 }
b3e62e35 7832 size = sizeof(*attr);
974802ea
PZ
7833 }
7834
7835 ret = copy_from_user(attr, uattr, size);
7836 if (ret)
7837 return -EFAULT;
7838
cd757645 7839 if (attr->__reserved_1)
974802ea
PZ
7840 return -EINVAL;
7841
7842 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
7843 return -EINVAL;
7844
7845 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
7846 return -EINVAL;
7847
bce38cd5
SE
7848 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
7849 u64 mask = attr->branch_sample_type;
7850
7851 /* only using defined bits */
7852 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
7853 return -EINVAL;
7854
7855 /* at least one branch bit must be set */
7856 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
7857 return -EINVAL;
7858
bce38cd5
SE
7859 /* propagate priv level, when not set for branch */
7860 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
7861
7862 /* exclude_kernel checked on syscall entry */
7863 if (!attr->exclude_kernel)
7864 mask |= PERF_SAMPLE_BRANCH_KERNEL;
7865
7866 if (!attr->exclude_user)
7867 mask |= PERF_SAMPLE_BRANCH_USER;
7868
7869 if (!attr->exclude_hv)
7870 mask |= PERF_SAMPLE_BRANCH_HV;
7871 /*
7872 * adjust user setting (for HW filter setup)
7873 */
7874 attr->branch_sample_type = mask;
7875 }
e712209a
SE
7876 /* privileged levels capture (kernel, hv): check permissions */
7877 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
2b923c8f
SE
7878 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
7879 return -EACCES;
bce38cd5 7880 }
4018994f 7881
c5ebcedb 7882 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 7883 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
7884 if (ret)
7885 return ret;
7886 }
7887
7888 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
7889 if (!arch_perf_have_user_stack_dump())
7890 return -ENOSYS;
7891
7892 /*
7893 * We have __u32 type for the size, but so far
7894 * we can only use __u16 as maximum due to the
7895 * __u16 sample size limit.
7896 */
7897 if (attr->sample_stack_user >= USHRT_MAX)
7898 ret = -EINVAL;
7899 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
7900 ret = -EINVAL;
7901 }
4018994f 7902
60e2364e
SE
7903 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
7904 ret = perf_reg_validate(attr->sample_regs_intr);
974802ea
PZ
7905out:
7906 return ret;
7907
7908err_size:
7909 put_user(sizeof(*attr), &uattr->size);
7910 ret = -E2BIG;
7911 goto out;
7912}
7913
ac9721f3
PZ
7914static int
7915perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 7916{
b69cf536 7917 struct ring_buffer *rb = NULL;
a4be7c27
PZ
7918 int ret = -EINVAL;
7919
ac9721f3 7920 if (!output_event)
a4be7c27
PZ
7921 goto set;
7922
ac9721f3
PZ
7923 /* don't allow circular references */
7924 if (event == output_event)
a4be7c27
PZ
7925 goto out;
7926
0f139300
PZ
7927 /*
7928 * Don't allow cross-cpu buffers
7929 */
7930 if (output_event->cpu != event->cpu)
7931 goto out;
7932
7933 /*
76369139 7934 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
7935 */
7936 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
7937 goto out;
7938
34f43927
PZ
7939 /*
7940 * Mixing clocks in the same buffer is trouble you don't need.
7941 */
7942 if (output_event->clock != event->clock)
7943 goto out;
7944
45bfb2e5
PZ
7945 /*
7946 * If both events generate aux data, they must be on the same PMU
7947 */
7948 if (has_aux(event) && has_aux(output_event) &&
7949 event->pmu != output_event->pmu)
7950 goto out;
7951
a4be7c27 7952set:
cdd6c482 7953 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
7954 /* Can't redirect output if we've got an active mmap() */
7955 if (atomic_read(&event->mmap_count))
7956 goto unlock;
a4be7c27 7957
ac9721f3 7958 if (output_event) {
76369139
FW
7959 /* get the rb we want to redirect to */
7960 rb = ring_buffer_get(output_event);
7961 if (!rb)
ac9721f3 7962 goto unlock;
a4be7c27
PZ
7963 }
7964
b69cf536 7965 ring_buffer_attach(event, rb);
9bb5d40c 7966
a4be7c27 7967 ret = 0;
ac9721f3
PZ
7968unlock:
7969 mutex_unlock(&event->mmap_mutex);
7970
a4be7c27 7971out:
a4be7c27
PZ
7972 return ret;
7973}
7974
f63a8daa
PZ
7975static void mutex_lock_double(struct mutex *a, struct mutex *b)
7976{
7977 if (b < a)
7978 swap(a, b);
7979
7980 mutex_lock(a);
7981 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
7982}
7983
34f43927
PZ
7984static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
7985{
7986 bool nmi_safe = false;
7987
7988 switch (clk_id) {
7989 case CLOCK_MONOTONIC:
7990 event->clock = &ktime_get_mono_fast_ns;
7991 nmi_safe = true;
7992 break;
7993
7994 case CLOCK_MONOTONIC_RAW:
7995 event->clock = &ktime_get_raw_fast_ns;
7996 nmi_safe = true;
7997 break;
7998
7999 case CLOCK_REALTIME:
8000 event->clock = &ktime_get_real_ns;
8001 break;
8002
8003 case CLOCK_BOOTTIME:
8004 event->clock = &ktime_get_boot_ns;
8005 break;
8006
8007 case CLOCK_TAI:
8008 event->clock = &ktime_get_tai_ns;
8009 break;
8010
8011 default:
8012 return -EINVAL;
8013 }
8014
8015 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
8016 return -EINVAL;
8017
8018 return 0;
8019}
8020
0793a61d 8021/**
cdd6c482 8022 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 8023 *
cdd6c482 8024 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 8025 * @pid: target pid
9f66a381 8026 * @cpu: target cpu
cdd6c482 8027 * @group_fd: group leader event fd
0793a61d 8028 */
cdd6c482
IM
8029SYSCALL_DEFINE5(perf_event_open,
8030 struct perf_event_attr __user *, attr_uptr,
2743a5b0 8031 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 8032{
b04243ef
PZ
8033 struct perf_event *group_leader = NULL, *output_event = NULL;
8034 struct perf_event *event, *sibling;
cdd6c482 8035 struct perf_event_attr attr;
f63a8daa 8036 struct perf_event_context *ctx, *uninitialized_var(gctx);
cdd6c482 8037 struct file *event_file = NULL;
2903ff01 8038 struct fd group = {NULL, 0};
38a81da2 8039 struct task_struct *task = NULL;
89a1e187 8040 struct pmu *pmu;
ea635c64 8041 int event_fd;
b04243ef 8042 int move_group = 0;
dc86cabe 8043 int err;
a21b0b35 8044 int f_flags = O_RDWR;
79dff51e 8045 int cgroup_fd = -1;
0793a61d 8046
2743a5b0 8047 /* for future expandability... */
e5d1367f 8048 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
8049 return -EINVAL;
8050
dc86cabe
IM
8051 err = perf_copy_attr(attr_uptr, &attr);
8052 if (err)
8053 return err;
eab656ae 8054
0764771d
PZ
8055 if (!attr.exclude_kernel) {
8056 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8057 return -EACCES;
8058 }
8059
df58ab24 8060 if (attr.freq) {
cdd6c482 8061 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24 8062 return -EINVAL;
0819b2e3
PZ
8063 } else {
8064 if (attr.sample_period & (1ULL << 63))
8065 return -EINVAL;
df58ab24
PZ
8066 }
8067
e5d1367f
SE
8068 /*
8069 * In cgroup mode, the pid argument is used to pass the fd
8070 * opened to the cgroup directory in cgroupfs. The cpu argument
8071 * designates the cpu on which to monitor threads from that
8072 * cgroup.
8073 */
8074 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
8075 return -EINVAL;
8076
a21b0b35
YD
8077 if (flags & PERF_FLAG_FD_CLOEXEC)
8078 f_flags |= O_CLOEXEC;
8079
8080 event_fd = get_unused_fd_flags(f_flags);
ea635c64
AV
8081 if (event_fd < 0)
8082 return event_fd;
8083
ac9721f3 8084 if (group_fd != -1) {
2903ff01
AV
8085 err = perf_fget_light(group_fd, &group);
8086 if (err)
d14b12d7 8087 goto err_fd;
2903ff01 8088 group_leader = group.file->private_data;
ac9721f3
PZ
8089 if (flags & PERF_FLAG_FD_OUTPUT)
8090 output_event = group_leader;
8091 if (flags & PERF_FLAG_FD_NO_GROUP)
8092 group_leader = NULL;
8093 }
8094
e5d1367f 8095 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
8096 task = find_lively_task_by_vpid(pid);
8097 if (IS_ERR(task)) {
8098 err = PTR_ERR(task);
8099 goto err_group_fd;
8100 }
8101 }
8102
1f4ee503
PZ
8103 if (task && group_leader &&
8104 group_leader->attr.inherit != attr.inherit) {
8105 err = -EINVAL;
8106 goto err_task;
8107 }
8108
fbfc623f
YZ
8109 get_online_cpus();
8110
79dff51e
MF
8111 if (flags & PERF_FLAG_PID_CGROUP)
8112 cgroup_fd = pid;
8113
4dc0da86 8114 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
79dff51e 8115 NULL, NULL, cgroup_fd);
d14b12d7
SE
8116 if (IS_ERR(event)) {
8117 err = PTR_ERR(event);
1f4ee503 8118 goto err_cpus;
d14b12d7
SE
8119 }
8120
53b25335
VW
8121 if (is_sampling_event(event)) {
8122 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
8123 err = -ENOTSUPP;
8124 goto err_alloc;
8125 }
8126 }
8127
766d6c07
FW
8128 account_event(event);
8129
89a1e187
PZ
8130 /*
8131 * Special case software events and allow them to be part of
8132 * any hardware group.
8133 */
8134 pmu = event->pmu;
b04243ef 8135
34f43927
PZ
8136 if (attr.use_clockid) {
8137 err = perf_event_set_clock(event, attr.clockid);
8138 if (err)
8139 goto err_alloc;
8140 }
8141
b04243ef
PZ
8142 if (group_leader &&
8143 (is_software_event(event) != is_software_event(group_leader))) {
8144 if (is_software_event(event)) {
8145 /*
8146 * If event and group_leader are not both a software
8147 * event, and event is, then group leader is not.
8148 *
8149 * Allow the addition of software events to !software
8150 * groups, this is safe because software events never
8151 * fail to schedule.
8152 */
8153 pmu = group_leader->pmu;
8154 } else if (is_software_event(group_leader) &&
8155 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
8156 /*
8157 * In case the group is a pure software group, and we
8158 * try to add a hardware event, move the whole group to
8159 * the hardware context.
8160 */
8161 move_group = 1;
8162 }
8163 }
89a1e187
PZ
8164
8165 /*
8166 * Get the target context (task or percpu):
8167 */
4af57ef2 8168 ctx = find_get_context(pmu, task, event);
89a1e187
PZ
8169 if (IS_ERR(ctx)) {
8170 err = PTR_ERR(ctx);
c6be5a5c 8171 goto err_alloc;
89a1e187
PZ
8172 }
8173
bed5b25a
AS
8174 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
8175 err = -EBUSY;
8176 goto err_context;
8177 }
8178
fd1edb3a
PZ
8179 if (task) {
8180 put_task_struct(task);
8181 task = NULL;
8182 }
8183
ccff286d 8184 /*
cdd6c482 8185 * Look up the group leader (we will attach this event to it):
04289bb9 8186 */
ac9721f3 8187 if (group_leader) {
dc86cabe 8188 err = -EINVAL;
04289bb9 8189
04289bb9 8190 /*
ccff286d
IM
8191 * Do not allow a recursive hierarchy (this new sibling
8192 * becoming part of another group-sibling):
8193 */
8194 if (group_leader->group_leader != group_leader)
c3f00c70 8195 goto err_context;
34f43927
PZ
8196
8197 /* All events in a group should have the same clock */
8198 if (group_leader->clock != event->clock)
8199 goto err_context;
8200
ccff286d
IM
8201 /*
8202 * Do not allow to attach to a group in a different
8203 * task or CPU context:
04289bb9 8204 */
b04243ef 8205 if (move_group) {
c3c87e77
PZ
8206 /*
8207 * Make sure we're both on the same task, or both
8208 * per-cpu events.
8209 */
8210 if (group_leader->ctx->task != ctx->task)
8211 goto err_context;
8212
8213 /*
8214 * Make sure we're both events for the same CPU;
8215 * grouping events for different CPUs is broken; since
8216 * you can never concurrently schedule them anyhow.
8217 */
8218 if (group_leader->cpu != event->cpu)
b04243ef
PZ
8219 goto err_context;
8220 } else {
8221 if (group_leader->ctx != ctx)
8222 goto err_context;
8223 }
8224
3b6f9e5c
PM
8225 /*
8226 * Only a group leader can be exclusive or pinned
8227 */
0d48696f 8228 if (attr.exclusive || attr.pinned)
c3f00c70 8229 goto err_context;
ac9721f3
PZ
8230 }
8231
8232 if (output_event) {
8233 err = perf_event_set_output(event, output_event);
8234 if (err)
c3f00c70 8235 goto err_context;
ac9721f3 8236 }
0793a61d 8237
a21b0b35
YD
8238 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
8239 f_flags);
ea635c64
AV
8240 if (IS_ERR(event_file)) {
8241 err = PTR_ERR(event_file);
c3f00c70 8242 goto err_context;
ea635c64 8243 }
9b51f66d 8244
b04243ef 8245 if (move_group) {
f63a8daa
PZ
8246 gctx = group_leader->ctx;
8247
8248 /*
8249 * See perf_event_ctx_lock() for comments on the details
8250 * of swizzling perf_event::ctx.
8251 */
8252 mutex_lock_double(&gctx->mutex, &ctx->mutex);
b04243ef 8253
46ce0fe9 8254 perf_remove_from_context(group_leader, false);
0231bb53 8255
b04243ef
PZ
8256 list_for_each_entry(sibling, &group_leader->sibling_list,
8257 group_entry) {
46ce0fe9 8258 perf_remove_from_context(sibling, false);
b04243ef
PZ
8259 put_ctx(gctx);
8260 }
f63a8daa
PZ
8261 } else {
8262 mutex_lock(&ctx->mutex);
ea635c64 8263 }
9b51f66d 8264
ad3a37de 8265 WARN_ON_ONCE(ctx->parent_ctx);
b04243ef
PZ
8266
8267 if (move_group) {
f63a8daa
PZ
8268 /*
8269 * Wait for everybody to stop referencing the events through
8270 * the old lists, before installing it on new lists.
8271 */
0cda4c02 8272 synchronize_rcu();
f63a8daa 8273
8f95b435
PZI
8274 /*
8275 * Install the group siblings before the group leader.
8276 *
8277 * Because a group leader will try and install the entire group
8278 * (through the sibling list, which is still in-tact), we can
8279 * end up with siblings installed in the wrong context.
8280 *
8281 * By installing siblings first we NO-OP because they're not
8282 * reachable through the group lists.
8283 */
b04243ef
PZ
8284 list_for_each_entry(sibling, &group_leader->sibling_list,
8285 group_entry) {
8f95b435 8286 perf_event__state_init(sibling);
9fc81d87 8287 perf_install_in_context(ctx, sibling, sibling->cpu);
b04243ef
PZ
8288 get_ctx(ctx);
8289 }
8f95b435
PZI
8290
8291 /*
8292 * Removing from the context ends up with disabled
8293 * event. What we want here is event in the initial
8294 * startup state, ready to be add into new context.
8295 */
8296 perf_event__state_init(group_leader);
8297 perf_install_in_context(ctx, group_leader, group_leader->cpu);
8298 get_ctx(ctx);
b04243ef
PZ
8299 }
8300
bed5b25a
AS
8301 if (!exclusive_event_installable(event, ctx)) {
8302 err = -EBUSY;
8303 mutex_unlock(&ctx->mutex);
8304 fput(event_file);
8305 goto err_context;
8306 }
8307
e2d37cd2 8308 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 8309 perf_unpin_context(ctx);
f63a8daa
PZ
8310
8311 if (move_group) {
8312 mutex_unlock(&gctx->mutex);
8313 put_ctx(gctx);
8314 }
d859e29f 8315 mutex_unlock(&ctx->mutex);
9b51f66d 8316
fbfc623f
YZ
8317 put_online_cpus();
8318
cdd6c482 8319 event->owner = current;
8882135b 8320
cdd6c482
IM
8321 mutex_lock(&current->perf_event_mutex);
8322 list_add_tail(&event->owner_entry, &current->perf_event_list);
8323 mutex_unlock(&current->perf_event_mutex);
082ff5a2 8324
c320c7b7
ACM
8325 /*
8326 * Precalculate sample_data sizes
8327 */
8328 perf_event__header_size(event);
6844c09d 8329 perf_event__id_header_size(event);
c320c7b7 8330
8a49542c
PZ
8331 /*
8332 * Drop the reference on the group_event after placing the
8333 * new event on the sibling_list. This ensures destruction
8334 * of the group leader will find the pointer to itself in
8335 * perf_group_detach().
8336 */
2903ff01 8337 fdput(group);
ea635c64
AV
8338 fd_install(event_fd, event_file);
8339 return event_fd;
0793a61d 8340
c3f00c70 8341err_context:
fe4b04fa 8342 perf_unpin_context(ctx);
ea635c64 8343 put_ctx(ctx);
c6be5a5c 8344err_alloc:
ea635c64 8345 free_event(event);
1f4ee503 8346err_cpus:
fbfc623f 8347 put_online_cpus();
1f4ee503 8348err_task:
e7d0bc04
PZ
8349 if (task)
8350 put_task_struct(task);
89a1e187 8351err_group_fd:
2903ff01 8352 fdput(group);
ea635c64
AV
8353err_fd:
8354 put_unused_fd(event_fd);
dc86cabe 8355 return err;
0793a61d
TG
8356}
8357
fb0459d7
AV
8358/**
8359 * perf_event_create_kernel_counter
8360 *
8361 * @attr: attributes of the counter to create
8362 * @cpu: cpu in which the counter is bound
38a81da2 8363 * @task: task to profile (NULL for percpu)
fb0459d7
AV
8364 */
8365struct perf_event *
8366perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 8367 struct task_struct *task,
4dc0da86
AK
8368 perf_overflow_handler_t overflow_handler,
8369 void *context)
fb0459d7 8370{
fb0459d7 8371 struct perf_event_context *ctx;
c3f00c70 8372 struct perf_event *event;
fb0459d7 8373 int err;
d859e29f 8374
fb0459d7
AV
8375 /*
8376 * Get the target context (task or percpu):
8377 */
d859e29f 8378
4dc0da86 8379 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
79dff51e 8380 overflow_handler, context, -1);
c3f00c70
PZ
8381 if (IS_ERR(event)) {
8382 err = PTR_ERR(event);
8383 goto err;
8384 }
d859e29f 8385
f8697762
JO
8386 /* Mark owner so we could distinguish it from user events. */
8387 event->owner = EVENT_OWNER_KERNEL;
8388
766d6c07
FW
8389 account_event(event);
8390
4af57ef2 8391 ctx = find_get_context(event->pmu, task, event);
c6567f64
FW
8392 if (IS_ERR(ctx)) {
8393 err = PTR_ERR(ctx);
c3f00c70 8394 goto err_free;
d859e29f 8395 }
fb0459d7 8396
fb0459d7
AV
8397 WARN_ON_ONCE(ctx->parent_ctx);
8398 mutex_lock(&ctx->mutex);
bed5b25a
AS
8399 if (!exclusive_event_installable(event, ctx)) {
8400 mutex_unlock(&ctx->mutex);
8401 perf_unpin_context(ctx);
8402 put_ctx(ctx);
8403 err = -EBUSY;
8404 goto err_free;
8405 }
8406
fb0459d7 8407 perf_install_in_context(ctx, event, cpu);
fe4b04fa 8408 perf_unpin_context(ctx);
fb0459d7
AV
8409 mutex_unlock(&ctx->mutex);
8410
fb0459d7
AV
8411 return event;
8412
c3f00c70
PZ
8413err_free:
8414 free_event(event);
8415err:
c6567f64 8416 return ERR_PTR(err);
9b51f66d 8417}
fb0459d7 8418EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 8419
0cda4c02
YZ
8420void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
8421{
8422 struct perf_event_context *src_ctx;
8423 struct perf_event_context *dst_ctx;
8424 struct perf_event *event, *tmp;
8425 LIST_HEAD(events);
8426
8427 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
8428 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
8429
f63a8daa
PZ
8430 /*
8431 * See perf_event_ctx_lock() for comments on the details
8432 * of swizzling perf_event::ctx.
8433 */
8434 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
0cda4c02
YZ
8435 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
8436 event_entry) {
46ce0fe9 8437 perf_remove_from_context(event, false);
9a545de0 8438 unaccount_event_cpu(event, src_cpu);
0cda4c02 8439 put_ctx(src_ctx);
9886167d 8440 list_add(&event->migrate_entry, &events);
0cda4c02 8441 }
0cda4c02 8442
8f95b435
PZI
8443 /*
8444 * Wait for the events to quiesce before re-instating them.
8445 */
0cda4c02
YZ
8446 synchronize_rcu();
8447
8f95b435
PZI
8448 /*
8449 * Re-instate events in 2 passes.
8450 *
8451 * Skip over group leaders and only install siblings on this first
8452 * pass, siblings will not get enabled without a leader, however a
8453 * leader will enable its siblings, even if those are still on the old
8454 * context.
8455 */
8456 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8457 if (event->group_leader == event)
8458 continue;
8459
8460 list_del(&event->migrate_entry);
8461 if (event->state >= PERF_EVENT_STATE_OFF)
8462 event->state = PERF_EVENT_STATE_INACTIVE;
8463 account_event_cpu(event, dst_cpu);
8464 perf_install_in_context(dst_ctx, event, dst_cpu);
8465 get_ctx(dst_ctx);
8466 }
8467
8468 /*
8469 * Once all the siblings are setup properly, install the group leaders
8470 * to make it go.
8471 */
9886167d
PZ
8472 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8473 list_del(&event->migrate_entry);
0cda4c02
YZ
8474 if (event->state >= PERF_EVENT_STATE_OFF)
8475 event->state = PERF_EVENT_STATE_INACTIVE;
9a545de0 8476 account_event_cpu(event, dst_cpu);
0cda4c02
YZ
8477 perf_install_in_context(dst_ctx, event, dst_cpu);
8478 get_ctx(dst_ctx);
8479 }
8480 mutex_unlock(&dst_ctx->mutex);
f63a8daa 8481 mutex_unlock(&src_ctx->mutex);
0cda4c02
YZ
8482}
8483EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
8484
cdd6c482 8485static void sync_child_event(struct perf_event *child_event,
38b200d6 8486 struct task_struct *child)
d859e29f 8487{
cdd6c482 8488 struct perf_event *parent_event = child_event->parent;
8bc20959 8489 u64 child_val;
d859e29f 8490
cdd6c482
IM
8491 if (child_event->attr.inherit_stat)
8492 perf_event_read_event(child_event, child);
38b200d6 8493
b5e58793 8494 child_val = perf_event_count(child_event);
d859e29f
PM
8495
8496 /*
8497 * Add back the child's count to the parent's count:
8498 */
a6e6dea6 8499 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
8500 atomic64_add(child_event->total_time_enabled,
8501 &parent_event->child_total_time_enabled);
8502 atomic64_add(child_event->total_time_running,
8503 &parent_event->child_total_time_running);
d859e29f
PM
8504
8505 /*
cdd6c482 8506 * Remove this event from the parent's list
d859e29f 8507 */
cdd6c482
IM
8508 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8509 mutex_lock(&parent_event->child_mutex);
8510 list_del_init(&child_event->child_list);
8511 mutex_unlock(&parent_event->child_mutex);
d859e29f 8512
dc633982
JO
8513 /*
8514 * Make sure user/parent get notified, that we just
8515 * lost one event.
8516 */
8517 perf_event_wakeup(parent_event);
8518
d859e29f 8519 /*
cdd6c482 8520 * Release the parent event, if this was the last
d859e29f
PM
8521 * reference to it.
8522 */
a6fa941d 8523 put_event(parent_event);
d859e29f
PM
8524}
8525
9b51f66d 8526static void
cdd6c482
IM
8527__perf_event_exit_task(struct perf_event *child_event,
8528 struct perf_event_context *child_ctx,
38b200d6 8529 struct task_struct *child)
9b51f66d 8530{
1903d50c
PZ
8531 /*
8532 * Do not destroy the 'original' grouping; because of the context
8533 * switch optimization the original events could've ended up in a
8534 * random child task.
8535 *
8536 * If we were to destroy the original group, all group related
8537 * operations would cease to function properly after this random
8538 * child dies.
8539 *
8540 * Do destroy all inherited groups, we don't care about those
8541 * and being thorough is better.
8542 */
8543 perf_remove_from_context(child_event, !!child_event->parent);
0cc0c027 8544
9b51f66d 8545 /*
38b435b1 8546 * It can happen that the parent exits first, and has events
9b51f66d 8547 * that are still around due to the child reference. These
38b435b1 8548 * events need to be zapped.
9b51f66d 8549 */
38b435b1 8550 if (child_event->parent) {
cdd6c482
IM
8551 sync_child_event(child_event, child);
8552 free_event(child_event);
179033b3
JO
8553 } else {
8554 child_event->state = PERF_EVENT_STATE_EXIT;
8555 perf_event_wakeup(child_event);
4bcf349a 8556 }
9b51f66d
IM
8557}
8558
8dc85d54 8559static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 8560{
ebf905fc 8561 struct perf_event *child_event, *next;
211de6eb 8562 struct perf_event_context *child_ctx, *clone_ctx = NULL;
a63eaf34 8563 unsigned long flags;
9b51f66d 8564
8dc85d54 8565 if (likely(!child->perf_event_ctxp[ctxn])) {
cdd6c482 8566 perf_event_task(child, NULL, 0);
9b51f66d 8567 return;
9f498cc5 8568 }
9b51f66d 8569
a63eaf34 8570 local_irq_save(flags);
ad3a37de
PM
8571 /*
8572 * We can't reschedule here because interrupts are disabled,
8573 * and either child is current or it is a task that can't be
8574 * scheduled, so we are now safe from rescheduling changing
8575 * our context.
8576 */
806839b2 8577 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
c93f7669
PM
8578
8579 /*
8580 * Take the context lock here so that if find_get_context is
cdd6c482 8581 * reading child->perf_event_ctxp, we wait until it has
c93f7669
PM
8582 * incremented the context's refcount before we do put_ctx below.
8583 */
e625cce1 8584 raw_spin_lock(&child_ctx->lock);
04dc2dbb 8585 task_ctx_sched_out(child_ctx);
8dc85d54 8586 child->perf_event_ctxp[ctxn] = NULL;
4a1c0f26 8587
71a851b4
PZ
8588 /*
8589 * If this context is a clone; unclone it so it can't get
8590 * swapped to another process while we're removing all
cdd6c482 8591 * the events from it.
71a851b4 8592 */
211de6eb 8593 clone_ctx = unclone_ctx(child_ctx);
5e942bb3 8594 update_context_time(child_ctx);
e625cce1 8595 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
9f498cc5 8596
211de6eb
PZ
8597 if (clone_ctx)
8598 put_ctx(clone_ctx);
4a1c0f26 8599
9f498cc5 8600 /*
cdd6c482
IM
8601 * Report the task dead after unscheduling the events so that we
8602 * won't get any samples after PERF_RECORD_EXIT. We can however still
8603 * get a few PERF_RECORD_READ events.
9f498cc5 8604 */
cdd6c482 8605 perf_event_task(child, child_ctx, 0);
a63eaf34 8606
66fff224
PZ
8607 /*
8608 * We can recurse on the same lock type through:
8609 *
cdd6c482
IM
8610 * __perf_event_exit_task()
8611 * sync_child_event()
a6fa941d
AV
8612 * put_event()
8613 * mutex_lock(&ctx->mutex)
66fff224
PZ
8614 *
8615 * But since its the parent context it won't be the same instance.
8616 */
a0507c84 8617 mutex_lock(&child_ctx->mutex);
a63eaf34 8618
ebf905fc 8619 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
cdd6c482 8620 __perf_event_exit_task(child_event, child_ctx, child);
8bc20959 8621
a63eaf34
PM
8622 mutex_unlock(&child_ctx->mutex);
8623
8624 put_ctx(child_ctx);
9b51f66d
IM
8625}
8626
8dc85d54
PZ
8627/*
8628 * When a child task exits, feed back event values to parent events.
8629 */
8630void perf_event_exit_task(struct task_struct *child)
8631{
8882135b 8632 struct perf_event *event, *tmp;
8dc85d54
PZ
8633 int ctxn;
8634
8882135b
PZ
8635 mutex_lock(&child->perf_event_mutex);
8636 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
8637 owner_entry) {
8638 list_del_init(&event->owner_entry);
8639
8640 /*
8641 * Ensure the list deletion is visible before we clear
8642 * the owner, closes a race against perf_release() where
8643 * we need to serialize on the owner->perf_event_mutex.
8644 */
8645 smp_wmb();
8646 event->owner = NULL;
8647 }
8648 mutex_unlock(&child->perf_event_mutex);
8649
8dc85d54
PZ
8650 for_each_task_context_nr(ctxn)
8651 perf_event_exit_task_context(child, ctxn);
8652}
8653
889ff015
FW
8654static void perf_free_event(struct perf_event *event,
8655 struct perf_event_context *ctx)
8656{
8657 struct perf_event *parent = event->parent;
8658
8659 if (WARN_ON_ONCE(!parent))
8660 return;
8661
8662 mutex_lock(&parent->child_mutex);
8663 list_del_init(&event->child_list);
8664 mutex_unlock(&parent->child_mutex);
8665
a6fa941d 8666 put_event(parent);
889ff015 8667
652884fe 8668 raw_spin_lock_irq(&ctx->lock);
8a49542c 8669 perf_group_detach(event);
889ff015 8670 list_del_event(event, ctx);
652884fe 8671 raw_spin_unlock_irq(&ctx->lock);
889ff015
FW
8672 free_event(event);
8673}
8674
bbbee908 8675/*
652884fe 8676 * Free an unexposed, unused context as created by inheritance by
8dc85d54 8677 * perf_event_init_task below, used by fork() in case of fail.
652884fe
PZ
8678 *
8679 * Not all locks are strictly required, but take them anyway to be nice and
8680 * help out with the lockdep assertions.
bbbee908 8681 */
cdd6c482 8682void perf_event_free_task(struct task_struct *task)
bbbee908 8683{
8dc85d54 8684 struct perf_event_context *ctx;
cdd6c482 8685 struct perf_event *event, *tmp;
8dc85d54 8686 int ctxn;
bbbee908 8687
8dc85d54
PZ
8688 for_each_task_context_nr(ctxn) {
8689 ctx = task->perf_event_ctxp[ctxn];
8690 if (!ctx)
8691 continue;
bbbee908 8692
8dc85d54 8693 mutex_lock(&ctx->mutex);
bbbee908 8694again:
8dc85d54
PZ
8695 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
8696 group_entry)
8697 perf_free_event(event, ctx);
bbbee908 8698
8dc85d54
PZ
8699 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
8700 group_entry)
8701 perf_free_event(event, ctx);
bbbee908 8702
8dc85d54
PZ
8703 if (!list_empty(&ctx->pinned_groups) ||
8704 !list_empty(&ctx->flexible_groups))
8705 goto again;
bbbee908 8706
8dc85d54 8707 mutex_unlock(&ctx->mutex);
bbbee908 8708
8dc85d54
PZ
8709 put_ctx(ctx);
8710 }
889ff015
FW
8711}
8712
4e231c79
PZ
8713void perf_event_delayed_put(struct task_struct *task)
8714{
8715 int ctxn;
8716
8717 for_each_task_context_nr(ctxn)
8718 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
8719}
8720
97dee4f3
PZ
8721/*
8722 * inherit a event from parent task to child task:
8723 */
8724static struct perf_event *
8725inherit_event(struct perf_event *parent_event,
8726 struct task_struct *parent,
8727 struct perf_event_context *parent_ctx,
8728 struct task_struct *child,
8729 struct perf_event *group_leader,
8730 struct perf_event_context *child_ctx)
8731{
1929def9 8732 enum perf_event_active_state parent_state = parent_event->state;
97dee4f3 8733 struct perf_event *child_event;
cee010ec 8734 unsigned long flags;
97dee4f3
PZ
8735
8736 /*
8737 * Instead of creating recursive hierarchies of events,
8738 * we link inherited events back to the original parent,
8739 * which has a filp for sure, which we use as the reference
8740 * count:
8741 */
8742 if (parent_event->parent)
8743 parent_event = parent_event->parent;
8744
8745 child_event = perf_event_alloc(&parent_event->attr,
8746 parent_event->cpu,
d580ff86 8747 child,
97dee4f3 8748 group_leader, parent_event,
79dff51e 8749 NULL, NULL, -1);
97dee4f3
PZ
8750 if (IS_ERR(child_event))
8751 return child_event;
a6fa941d 8752
fadfe7be
JO
8753 if (is_orphaned_event(parent_event) ||
8754 !atomic_long_inc_not_zero(&parent_event->refcount)) {
a6fa941d
AV
8755 free_event(child_event);
8756 return NULL;
8757 }
8758
97dee4f3
PZ
8759 get_ctx(child_ctx);
8760
8761 /*
8762 * Make the child state follow the state of the parent event,
8763 * not its attr.disabled bit. We hold the parent's mutex,
8764 * so we won't race with perf_event_{en, dis}able_family.
8765 */
1929def9 8766 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
97dee4f3
PZ
8767 child_event->state = PERF_EVENT_STATE_INACTIVE;
8768 else
8769 child_event->state = PERF_EVENT_STATE_OFF;
8770
8771 if (parent_event->attr.freq) {
8772 u64 sample_period = parent_event->hw.sample_period;
8773 struct hw_perf_event *hwc = &child_event->hw;
8774
8775 hwc->sample_period = sample_period;
8776 hwc->last_period = sample_period;
8777
8778 local64_set(&hwc->period_left, sample_period);
8779 }
8780
8781 child_event->ctx = child_ctx;
8782 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
8783 child_event->overflow_handler_context
8784 = parent_event->overflow_handler_context;
97dee4f3 8785
614b6780
TG
8786 /*
8787 * Precalculate sample_data sizes
8788 */
8789 perf_event__header_size(child_event);
6844c09d 8790 perf_event__id_header_size(child_event);
614b6780 8791
97dee4f3
PZ
8792 /*
8793 * Link it up in the child's context:
8794 */
cee010ec 8795 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 8796 add_event_to_ctx(child_event, child_ctx);
cee010ec 8797 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 8798
97dee4f3
PZ
8799 /*
8800 * Link this into the parent event's child list
8801 */
8802 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8803 mutex_lock(&parent_event->child_mutex);
8804 list_add_tail(&child_event->child_list, &parent_event->child_list);
8805 mutex_unlock(&parent_event->child_mutex);
8806
8807 return child_event;
8808}
8809
8810static int inherit_group(struct perf_event *parent_event,
8811 struct task_struct *parent,
8812 struct perf_event_context *parent_ctx,
8813 struct task_struct *child,
8814 struct perf_event_context *child_ctx)
8815{
8816 struct perf_event *leader;
8817 struct perf_event *sub;
8818 struct perf_event *child_ctr;
8819
8820 leader = inherit_event(parent_event, parent, parent_ctx,
8821 child, NULL, child_ctx);
8822 if (IS_ERR(leader))
8823 return PTR_ERR(leader);
8824 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
8825 child_ctr = inherit_event(sub, parent, parent_ctx,
8826 child, leader, child_ctx);
8827 if (IS_ERR(child_ctr))
8828 return PTR_ERR(child_ctr);
8829 }
8830 return 0;
889ff015
FW
8831}
8832
8833static int
8834inherit_task_group(struct perf_event *event, struct task_struct *parent,
8835 struct perf_event_context *parent_ctx,
8dc85d54 8836 struct task_struct *child, int ctxn,
889ff015
FW
8837 int *inherited_all)
8838{
8839 int ret;
8dc85d54 8840 struct perf_event_context *child_ctx;
889ff015
FW
8841
8842 if (!event->attr.inherit) {
8843 *inherited_all = 0;
8844 return 0;
bbbee908
PZ
8845 }
8846
fe4b04fa 8847 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
8848 if (!child_ctx) {
8849 /*
8850 * This is executed from the parent task context, so
8851 * inherit events that have been marked for cloning.
8852 * First allocate and initialize a context for the
8853 * child.
8854 */
bbbee908 8855
734df5ab 8856 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
889ff015
FW
8857 if (!child_ctx)
8858 return -ENOMEM;
bbbee908 8859
8dc85d54 8860 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
8861 }
8862
8863 ret = inherit_group(event, parent, parent_ctx,
8864 child, child_ctx);
8865
8866 if (ret)
8867 *inherited_all = 0;
8868
8869 return ret;
bbbee908
PZ
8870}
8871
9b51f66d 8872/*
cdd6c482 8873 * Initialize the perf_event context in task_struct
9b51f66d 8874 */
985c8dcb 8875static int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 8876{
889ff015 8877 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
8878 struct perf_event_context *cloned_ctx;
8879 struct perf_event *event;
9b51f66d 8880 struct task_struct *parent = current;
564c2b21 8881 int inherited_all = 1;
dddd3379 8882 unsigned long flags;
6ab423e0 8883 int ret = 0;
9b51f66d 8884
8dc85d54 8885 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
8886 return 0;
8887
ad3a37de 8888 /*
25346b93
PM
8889 * If the parent's context is a clone, pin it so it won't get
8890 * swapped under us.
ad3a37de 8891 */
8dc85d54 8892 parent_ctx = perf_pin_task_context(parent, ctxn);
ffb4ef21
PZ
8893 if (!parent_ctx)
8894 return 0;
25346b93 8895
ad3a37de
PM
8896 /*
8897 * No need to check if parent_ctx != NULL here; since we saw
8898 * it non-NULL earlier, the only reason for it to become NULL
8899 * is if we exit, and since we're currently in the middle of
8900 * a fork we can't be exiting at the same time.
8901 */
ad3a37de 8902
9b51f66d
IM
8903 /*
8904 * Lock the parent list. No need to lock the child - not PID
8905 * hashed yet and not running, so nobody can access it.
8906 */
d859e29f 8907 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
8908
8909 /*
8910 * We dont have to disable NMIs - we are only looking at
8911 * the list, not manipulating it:
8912 */
889ff015 8913 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8dc85d54
PZ
8914 ret = inherit_task_group(event, parent, parent_ctx,
8915 child, ctxn, &inherited_all);
889ff015
FW
8916 if (ret)
8917 break;
8918 }
b93f7978 8919
dddd3379
TG
8920 /*
8921 * We can't hold ctx->lock when iterating the ->flexible_group list due
8922 * to allocations, but we need to prevent rotation because
8923 * rotate_ctx() will change the list from interrupt context.
8924 */
8925 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
8926 parent_ctx->rotate_disable = 1;
8927 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
8928
889ff015 8929 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8dc85d54
PZ
8930 ret = inherit_task_group(event, parent, parent_ctx,
8931 child, ctxn, &inherited_all);
889ff015 8932 if (ret)
9b51f66d 8933 break;
564c2b21
PM
8934 }
8935
dddd3379
TG
8936 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
8937 parent_ctx->rotate_disable = 0;
dddd3379 8938
8dc85d54 8939 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 8940
05cbaa28 8941 if (child_ctx && inherited_all) {
564c2b21
PM
8942 /*
8943 * Mark the child context as a clone of the parent
8944 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
8945 *
8946 * Note that if the parent is a clone, the holding of
8947 * parent_ctx->lock avoids it from being uncloned.
564c2b21 8948 */
c5ed5145 8949 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
8950 if (cloned_ctx) {
8951 child_ctx->parent_ctx = cloned_ctx;
25346b93 8952 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
8953 } else {
8954 child_ctx->parent_ctx = parent_ctx;
8955 child_ctx->parent_gen = parent_ctx->generation;
8956 }
8957 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
8958 }
8959
c5ed5145 8960 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
d859e29f 8961 mutex_unlock(&parent_ctx->mutex);
6ab423e0 8962
25346b93 8963 perf_unpin_context(parent_ctx);
fe4b04fa 8964 put_ctx(parent_ctx);
ad3a37de 8965
6ab423e0 8966 return ret;
9b51f66d
IM
8967}
8968
8dc85d54
PZ
8969/*
8970 * Initialize the perf_event context in task_struct
8971 */
8972int perf_event_init_task(struct task_struct *child)
8973{
8974 int ctxn, ret;
8975
8550d7cb
ON
8976 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
8977 mutex_init(&child->perf_event_mutex);
8978 INIT_LIST_HEAD(&child->perf_event_list);
8979
8dc85d54
PZ
8980 for_each_task_context_nr(ctxn) {
8981 ret = perf_event_init_context(child, ctxn);
6c72e350
PZ
8982 if (ret) {
8983 perf_event_free_task(child);
8dc85d54 8984 return ret;
6c72e350 8985 }
8dc85d54
PZ
8986 }
8987
8988 return 0;
8989}
8990
220b140b
PM
8991static void __init perf_event_init_all_cpus(void)
8992{
b28ab83c 8993 struct swevent_htable *swhash;
220b140b 8994 int cpu;
220b140b
PM
8995
8996 for_each_possible_cpu(cpu) {
b28ab83c
PZ
8997 swhash = &per_cpu(swevent_htable, cpu);
8998 mutex_init(&swhash->hlist_mutex);
2fde4f94 8999 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
220b140b
PM
9000 }
9001}
9002
0db0628d 9003static void perf_event_init_cpu(int cpu)
0793a61d 9004{
108b02cf 9005 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 9006
b28ab83c 9007 mutex_lock(&swhash->hlist_mutex);
39af6b16 9008 swhash->online = true;
4536e4d1 9009 if (swhash->hlist_refcount > 0) {
76e1d904
FW
9010 struct swevent_hlist *hlist;
9011
b28ab83c
PZ
9012 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
9013 WARN_ON(!hlist);
9014 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 9015 }
b28ab83c 9016 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
9017}
9018
c277443c 9019#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
108b02cf 9020static void __perf_event_exit_context(void *__info)
0793a61d 9021{
226424ee 9022 struct remove_event re = { .detach_group = true };
108b02cf 9023 struct perf_event_context *ctx = __info;
0793a61d 9024
e3703f8c 9025 rcu_read_lock();
46ce0fe9
PZ
9026 list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
9027 __perf_remove_from_context(&re);
e3703f8c 9028 rcu_read_unlock();
0793a61d 9029}
108b02cf
PZ
9030
9031static void perf_event_exit_cpu_context(int cpu)
9032{
9033 struct perf_event_context *ctx;
9034 struct pmu *pmu;
9035 int idx;
9036
9037 idx = srcu_read_lock(&pmus_srcu);
9038 list_for_each_entry_rcu(pmu, &pmus, entry) {
917bdd1c 9039 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
108b02cf
PZ
9040
9041 mutex_lock(&ctx->mutex);
9042 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
9043 mutex_unlock(&ctx->mutex);
9044 }
9045 srcu_read_unlock(&pmus_srcu, idx);
108b02cf
PZ
9046}
9047
cdd6c482 9048static void perf_event_exit_cpu(int cpu)
0793a61d 9049{
b28ab83c 9050 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
d859e29f 9051
e3703f8c
PZ
9052 perf_event_exit_cpu_context(cpu);
9053
b28ab83c 9054 mutex_lock(&swhash->hlist_mutex);
39af6b16 9055 swhash->online = false;
b28ab83c
PZ
9056 swevent_hlist_release(swhash);
9057 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
9058}
9059#else
cdd6c482 9060static inline void perf_event_exit_cpu(int cpu) { }
0793a61d
TG
9061#endif
9062
c277443c
PZ
9063static int
9064perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
9065{
9066 int cpu;
9067
9068 for_each_online_cpu(cpu)
9069 perf_event_exit_cpu(cpu);
9070
9071 return NOTIFY_OK;
9072}
9073
9074/*
9075 * Run the perf reboot notifier at the very last possible moment so that
9076 * the generic watchdog code runs as long as possible.
9077 */
9078static struct notifier_block perf_reboot_notifier = {
9079 .notifier_call = perf_reboot,
9080 .priority = INT_MIN,
9081};
9082
0db0628d 9083static int
0793a61d
TG
9084perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
9085{
9086 unsigned int cpu = (long)hcpu;
9087
4536e4d1 9088 switch (action & ~CPU_TASKS_FROZEN) {
0793a61d
TG
9089
9090 case CPU_UP_PREPARE:
5e11637e 9091 case CPU_DOWN_FAILED:
cdd6c482 9092 perf_event_init_cpu(cpu);
0793a61d
TG
9093 break;
9094
5e11637e 9095 case CPU_UP_CANCELED:
0793a61d 9096 case CPU_DOWN_PREPARE:
cdd6c482 9097 perf_event_exit_cpu(cpu);
0793a61d 9098 break;
0793a61d
TG
9099 default:
9100 break;
9101 }
9102
9103 return NOTIFY_OK;
9104}
9105
cdd6c482 9106void __init perf_event_init(void)
0793a61d 9107{
3c502e7a
JW
9108 int ret;
9109
2e80a82a
PZ
9110 idr_init(&pmu_idr);
9111
220b140b 9112 perf_event_init_all_cpus();
b0a873eb 9113 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
9114 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
9115 perf_pmu_register(&perf_cpu_clock, NULL, -1);
9116 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb
PZ
9117 perf_tp_register();
9118 perf_cpu_notifier(perf_cpu_notify);
c277443c 9119 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
9120
9121 ret = init_hw_breakpoint();
9122 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520
GN
9123
9124 /* do not patch jump label more than once per second */
9125 jump_label_rate_limit(&perf_sched_events, HZ);
b01c3a00
JO
9126
9127 /*
9128 * Build time assertion that we keep the data_head at the intended
9129 * location. IOW, validation we got the __reserved[] size right.
9130 */
9131 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
9132 != 1024);
0793a61d 9133}
abe43400 9134
fd979c01
CS
9135ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
9136 char *page)
9137{
9138 struct perf_pmu_events_attr *pmu_attr =
9139 container_of(attr, struct perf_pmu_events_attr, attr);
9140
9141 if (pmu_attr->event_str)
9142 return sprintf(page, "%s\n", pmu_attr->event_str);
9143
9144 return 0;
9145}
9146
abe43400
PZ
9147static int __init perf_event_sysfs_init(void)
9148{
9149 struct pmu *pmu;
9150 int ret;
9151
9152 mutex_lock(&pmus_lock);
9153
9154 ret = bus_register(&pmu_bus);
9155 if (ret)
9156 goto unlock;
9157
9158 list_for_each_entry(pmu, &pmus, entry) {
9159 if (!pmu->name || pmu->type < 0)
9160 continue;
9161
9162 ret = pmu_dev_alloc(pmu);
9163 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
9164 }
9165 pmu_bus_running = 1;
9166 ret = 0;
9167
9168unlock:
9169 mutex_unlock(&pmus_lock);
9170
9171 return ret;
9172}
9173device_initcall(perf_event_sysfs_init);
e5d1367f
SE
9174
9175#ifdef CONFIG_CGROUP_PERF
eb95419b
TH
9176static struct cgroup_subsys_state *
9177perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
e5d1367f
SE
9178{
9179 struct perf_cgroup *jc;
e5d1367f 9180
1b15d055 9181 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
9182 if (!jc)
9183 return ERR_PTR(-ENOMEM);
9184
e5d1367f
SE
9185 jc->info = alloc_percpu(struct perf_cgroup_info);
9186 if (!jc->info) {
9187 kfree(jc);
9188 return ERR_PTR(-ENOMEM);
9189 }
9190
e5d1367f
SE
9191 return &jc->css;
9192}
9193
eb95419b 9194static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
e5d1367f 9195{
eb95419b
TH
9196 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
9197
e5d1367f
SE
9198 free_percpu(jc->info);
9199 kfree(jc);
9200}
9201
9202static int __perf_cgroup_move(void *info)
9203{
9204 struct task_struct *task = info;
9205 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
9206 return 0;
9207}
9208
eb95419b
TH
9209static void perf_cgroup_attach(struct cgroup_subsys_state *css,
9210 struct cgroup_taskset *tset)
e5d1367f 9211{
bb9d97b6
TH
9212 struct task_struct *task;
9213
924f0d9a 9214 cgroup_taskset_for_each(task, tset)
bb9d97b6 9215 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
9216}
9217
eb95419b
TH
9218static void perf_cgroup_exit(struct cgroup_subsys_state *css,
9219 struct cgroup_subsys_state *old_css,
761b3ef5 9220 struct task_struct *task)
e5d1367f
SE
9221{
9222 /*
9223 * cgroup_exit() is called in the copy_process() failure path.
9224 * Ignore this case since the task hasn't ran yet, this avoids
9225 * trying to poke a half freed task state from generic code.
9226 */
9227 if (!(task->flags & PF_EXITING))
9228 return;
9229
bb9d97b6 9230 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
9231}
9232
073219e9 9233struct cgroup_subsys perf_event_cgrp_subsys = {
92fb9748
TH
9234 .css_alloc = perf_cgroup_css_alloc,
9235 .css_free = perf_cgroup_css_free,
e7e7ee2e 9236 .exit = perf_cgroup_exit,
bb9d97b6 9237 .attach = perf_cgroup_attach,
e5d1367f
SE
9238};
9239#endif /* CONFIG_CGROUP_PERF */
This page took 1.21239 seconds and 5 git commands to generate.