perf/core: Rename the perf_event_aux*() APIs to perf_event_sb*(), to separate them...
[deliverable/linux.git] / kernel / events / core.c
CommitLineData
0793a61d 1/*
57c0c15b 2 * Performance events core code:
0793a61d 3 *
98144511 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
90eec103 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
d36b6910 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7b732a75 8 *
57c0c15b 9 * For licensing details see kernel-base/COPYING
0793a61d
TG
10 */
11
12#include <linux/fs.h>
b9cacc7b 13#include <linux/mm.h>
0793a61d
TG
14#include <linux/cpu.h>
15#include <linux/smp.h>
2e80a82a 16#include <linux/idr.h>
04289bb9 17#include <linux/file.h>
0793a61d 18#include <linux/poll.h>
5a0e3ad6 19#include <linux/slab.h>
76e1d904 20#include <linux/hash.h>
12351ef8 21#include <linux/tick.h>
0793a61d 22#include <linux/sysfs.h>
22a4f650 23#include <linux/dcache.h>
0793a61d 24#include <linux/percpu.h>
22a4f650 25#include <linux/ptrace.h>
c277443c 26#include <linux/reboot.h>
b9cacc7b 27#include <linux/vmstat.h>
abe43400 28#include <linux/device.h>
6e5fdeed 29#include <linux/export.h>
906010b2 30#include <linux/vmalloc.h>
b9cacc7b
PZ
31#include <linux/hardirq.h>
32#include <linux/rculist.h>
0793a61d
TG
33#include <linux/uaccess.h>
34#include <linux/syscalls.h>
35#include <linux/anon_inodes.h>
aa9c4c0f 36#include <linux/kernel_stat.h>
39bed6cb 37#include <linux/cgroup.h>
cdd6c482 38#include <linux/perf_event.h>
af658dca 39#include <linux/trace_events.h>
3c502e7a 40#include <linux/hw_breakpoint.h>
c5ebcedb 41#include <linux/mm_types.h>
c464c76e 42#include <linux/module.h>
f972eb63 43#include <linux/mman.h>
b3f20785 44#include <linux/compat.h>
2541517c
AS
45#include <linux/bpf.h>
46#include <linux/filter.h>
375637bc
AS
47#include <linux/namei.h>
48#include <linux/parser.h>
0793a61d 49
76369139
FW
50#include "internal.h"
51
4e193bd4
TB
52#include <asm/irq_regs.h>
53
272325c4
PZ
54typedef int (*remote_function_f)(void *);
55
fe4b04fa 56struct remote_function_call {
e7e7ee2e 57 struct task_struct *p;
272325c4 58 remote_function_f func;
e7e7ee2e
IM
59 void *info;
60 int ret;
fe4b04fa
PZ
61};
62
63static void remote_function(void *data)
64{
65 struct remote_function_call *tfc = data;
66 struct task_struct *p = tfc->p;
67
68 if (p) {
0da4cf3e
PZ
69 /* -EAGAIN */
70 if (task_cpu(p) != smp_processor_id())
71 return;
72
73 /*
74 * Now that we're on right CPU with IRQs disabled, we can test
75 * if we hit the right task without races.
76 */
77
78 tfc->ret = -ESRCH; /* No such (running) process */
79 if (p != current)
fe4b04fa
PZ
80 return;
81 }
82
83 tfc->ret = tfc->func(tfc->info);
84}
85
86/**
87 * task_function_call - call a function on the cpu on which a task runs
88 * @p: the task to evaluate
89 * @func: the function to be called
90 * @info: the function call argument
91 *
92 * Calls the function @func when the task is currently running. This might
93 * be on the current CPU, which just calls the function directly
94 *
95 * returns: @func return value, or
96 * -ESRCH - when the process isn't running
97 * -EAGAIN - when the process moved away
98 */
99static int
272325c4 100task_function_call(struct task_struct *p, remote_function_f func, void *info)
fe4b04fa
PZ
101{
102 struct remote_function_call data = {
e7e7ee2e
IM
103 .p = p,
104 .func = func,
105 .info = info,
0da4cf3e 106 .ret = -EAGAIN,
fe4b04fa 107 };
0da4cf3e 108 int ret;
fe4b04fa 109
0da4cf3e
PZ
110 do {
111 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
112 if (!ret)
113 ret = data.ret;
114 } while (ret == -EAGAIN);
fe4b04fa 115
0da4cf3e 116 return ret;
fe4b04fa
PZ
117}
118
119/**
120 * cpu_function_call - call a function on the cpu
121 * @func: the function to be called
122 * @info: the function call argument
123 *
124 * Calls the function @func on the remote cpu.
125 *
126 * returns: @func return value or -ENXIO when the cpu is offline
127 */
272325c4 128static int cpu_function_call(int cpu, remote_function_f func, void *info)
fe4b04fa
PZ
129{
130 struct remote_function_call data = {
e7e7ee2e
IM
131 .p = NULL,
132 .func = func,
133 .info = info,
134 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
135 };
136
137 smp_call_function_single(cpu, remote_function, &data, 1);
138
139 return data.ret;
140}
141
fae3fde6
PZ
142static inline struct perf_cpu_context *
143__get_cpu_context(struct perf_event_context *ctx)
144{
145 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
146}
147
148static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
149 struct perf_event_context *ctx)
0017960f 150{
fae3fde6
PZ
151 raw_spin_lock(&cpuctx->ctx.lock);
152 if (ctx)
153 raw_spin_lock(&ctx->lock);
154}
155
156static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
157 struct perf_event_context *ctx)
158{
159 if (ctx)
160 raw_spin_unlock(&ctx->lock);
161 raw_spin_unlock(&cpuctx->ctx.lock);
162}
163
63b6da39
PZ
164#define TASK_TOMBSTONE ((void *)-1L)
165
166static bool is_kernel_event(struct perf_event *event)
167{
f47c02c0 168 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
63b6da39
PZ
169}
170
39a43640
PZ
171/*
172 * On task ctx scheduling...
173 *
174 * When !ctx->nr_events a task context will not be scheduled. This means
175 * we can disable the scheduler hooks (for performance) without leaving
176 * pending task ctx state.
177 *
178 * This however results in two special cases:
179 *
180 * - removing the last event from a task ctx; this is relatively straight
181 * forward and is done in __perf_remove_from_context.
182 *
183 * - adding the first event to a task ctx; this is tricky because we cannot
184 * rely on ctx->is_active and therefore cannot use event_function_call().
185 * See perf_install_in_context().
186 *
39a43640
PZ
187 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
188 */
189
fae3fde6
PZ
190typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
191 struct perf_event_context *, void *);
192
193struct event_function_struct {
194 struct perf_event *event;
195 event_f func;
196 void *data;
197};
198
199static int event_function(void *info)
200{
201 struct event_function_struct *efs = info;
202 struct perf_event *event = efs->event;
0017960f 203 struct perf_event_context *ctx = event->ctx;
fae3fde6
PZ
204 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
205 struct perf_event_context *task_ctx = cpuctx->task_ctx;
63b6da39 206 int ret = 0;
fae3fde6
PZ
207
208 WARN_ON_ONCE(!irqs_disabled());
209
63b6da39 210 perf_ctx_lock(cpuctx, task_ctx);
fae3fde6
PZ
211 /*
212 * Since we do the IPI call without holding ctx->lock things can have
213 * changed, double check we hit the task we set out to hit.
fae3fde6
PZ
214 */
215 if (ctx->task) {
63b6da39 216 if (ctx->task != current) {
0da4cf3e 217 ret = -ESRCH;
63b6da39
PZ
218 goto unlock;
219 }
fae3fde6 220
fae3fde6
PZ
221 /*
222 * We only use event_function_call() on established contexts,
223 * and event_function() is only ever called when active (or
224 * rather, we'll have bailed in task_function_call() or the
225 * above ctx->task != current test), therefore we must have
226 * ctx->is_active here.
227 */
228 WARN_ON_ONCE(!ctx->is_active);
229 /*
230 * And since we have ctx->is_active, cpuctx->task_ctx must
231 * match.
232 */
63b6da39
PZ
233 WARN_ON_ONCE(task_ctx != ctx);
234 } else {
235 WARN_ON_ONCE(&cpuctx->ctx != ctx);
fae3fde6 236 }
63b6da39 237
fae3fde6 238 efs->func(event, cpuctx, ctx, efs->data);
63b6da39 239unlock:
fae3fde6
PZ
240 perf_ctx_unlock(cpuctx, task_ctx);
241
63b6da39 242 return ret;
fae3fde6
PZ
243}
244
245static void event_function_local(struct perf_event *event, event_f func, void *data)
246{
247 struct event_function_struct efs = {
248 .event = event,
249 .func = func,
250 .data = data,
251 };
252
253 int ret = event_function(&efs);
254 WARN_ON_ONCE(ret);
255}
256
257static void event_function_call(struct perf_event *event, event_f func, void *data)
0017960f
PZ
258{
259 struct perf_event_context *ctx = event->ctx;
63b6da39 260 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
fae3fde6
PZ
261 struct event_function_struct efs = {
262 .event = event,
263 .func = func,
264 .data = data,
265 };
0017960f 266
c97f4736
PZ
267 if (!event->parent) {
268 /*
269 * If this is a !child event, we must hold ctx::mutex to
270 * stabilize the the event->ctx relation. See
271 * perf_event_ctx_lock().
272 */
273 lockdep_assert_held(&ctx->mutex);
274 }
0017960f
PZ
275
276 if (!task) {
fae3fde6 277 cpu_function_call(event->cpu, event_function, &efs);
0017960f
PZ
278 return;
279 }
280
63b6da39
PZ
281 if (task == TASK_TOMBSTONE)
282 return;
283
a096309b 284again:
fae3fde6 285 if (!task_function_call(task, event_function, &efs))
0017960f
PZ
286 return;
287
288 raw_spin_lock_irq(&ctx->lock);
63b6da39
PZ
289 /*
290 * Reload the task pointer, it might have been changed by
291 * a concurrent perf_event_context_sched_out().
292 */
293 task = ctx->task;
a096309b
PZ
294 if (task == TASK_TOMBSTONE) {
295 raw_spin_unlock_irq(&ctx->lock);
296 return;
0017960f 297 }
a096309b
PZ
298 if (ctx->is_active) {
299 raw_spin_unlock_irq(&ctx->lock);
300 goto again;
301 }
302 func(event, NULL, ctx, data);
0017960f
PZ
303 raw_spin_unlock_irq(&ctx->lock);
304}
305
e5d1367f
SE
306#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
307 PERF_FLAG_FD_OUTPUT |\
a21b0b35
YD
308 PERF_FLAG_PID_CGROUP |\
309 PERF_FLAG_FD_CLOEXEC)
e5d1367f 310
bce38cd5
SE
311/*
312 * branch priv levels that need permission checks
313 */
314#define PERF_SAMPLE_BRANCH_PERM_PLM \
315 (PERF_SAMPLE_BRANCH_KERNEL |\
316 PERF_SAMPLE_BRANCH_HV)
317
0b3fcf17
SE
318enum event_type_t {
319 EVENT_FLEXIBLE = 0x1,
320 EVENT_PINNED = 0x2,
3cbaa590 321 EVENT_TIME = 0x4,
0b3fcf17
SE
322 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
323};
324
e5d1367f
SE
325/*
326 * perf_sched_events : >0 events exist
327 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
328 */
9107c89e
PZ
329
330static void perf_sched_delayed(struct work_struct *work);
331DEFINE_STATIC_KEY_FALSE(perf_sched_events);
332static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
333static DEFINE_MUTEX(perf_sched_mutex);
334static atomic_t perf_sched_count;
335
e5d1367f 336static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
ba532500 337static DEFINE_PER_CPU(int, perf_sched_cb_usages);
f2fb6bef 338static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
e5d1367f 339
cdd6c482
IM
340static atomic_t nr_mmap_events __read_mostly;
341static atomic_t nr_comm_events __read_mostly;
342static atomic_t nr_task_events __read_mostly;
948b26b6 343static atomic_t nr_freq_events __read_mostly;
45ac1403 344static atomic_t nr_switch_events __read_mostly;
9ee318a7 345
108b02cf
PZ
346static LIST_HEAD(pmus);
347static DEFINE_MUTEX(pmus_lock);
348static struct srcu_struct pmus_srcu;
349
0764771d 350/*
cdd6c482 351 * perf event paranoia level:
0fbdea19
IM
352 * -1 - not paranoid at all
353 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 354 * 1 - disallow cpu events for unpriv
0fbdea19 355 * 2 - disallow kernel profiling for unpriv
0764771d 356 */
0161028b 357int sysctl_perf_event_paranoid __read_mostly = 2;
0764771d 358
20443384
FW
359/* Minimum for 512 kiB + 1 user control page */
360int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
361
362/*
cdd6c482 363 * max perf event sample rate
df58ab24 364 */
14c63f17
DH
365#define DEFAULT_MAX_SAMPLE_RATE 100000
366#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
367#define DEFAULT_CPU_TIME_MAX_PERCENT 25
368
369int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
370
371static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
372static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
373
d9494cb4
PZ
374static int perf_sample_allowed_ns __read_mostly =
375 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
14c63f17 376
18ab2cd3 377static void update_perf_cpu_limits(void)
14c63f17
DH
378{
379 u64 tmp = perf_sample_period_ns;
380
381 tmp *= sysctl_perf_cpu_time_max_percent;
91a612ee
PZ
382 tmp = div_u64(tmp, 100);
383 if (!tmp)
384 tmp = 1;
385
386 WRITE_ONCE(perf_sample_allowed_ns, tmp);
14c63f17 387}
163ec435 388
9e630205
SE
389static int perf_rotate_context(struct perf_cpu_context *cpuctx);
390
163ec435
PZ
391int perf_proc_update_handler(struct ctl_table *table, int write,
392 void __user *buffer, size_t *lenp,
393 loff_t *ppos)
394{
723478c8 395 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
163ec435
PZ
396
397 if (ret || !write)
398 return ret;
399
400 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
14c63f17
DH
401 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
402 update_perf_cpu_limits();
403
404 return 0;
405}
406
407int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
408
409int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
410 void __user *buffer, size_t *lenp,
411 loff_t *ppos)
412{
413 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
414
415 if (ret || !write)
416 return ret;
417
b303e7c1
PZ
418 if (sysctl_perf_cpu_time_max_percent == 100 ||
419 sysctl_perf_cpu_time_max_percent == 0) {
91a612ee
PZ
420 printk(KERN_WARNING
421 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
422 WRITE_ONCE(perf_sample_allowed_ns, 0);
423 } else {
424 update_perf_cpu_limits();
425 }
163ec435
PZ
426
427 return 0;
428}
1ccd1549 429
14c63f17
DH
430/*
431 * perf samples are done in some very critical code paths (NMIs).
432 * If they take too much CPU time, the system can lock up and not
433 * get any real work done. This will drop the sample rate when
434 * we detect that events are taking too long.
435 */
436#define NR_ACCUMULATED_SAMPLES 128
d9494cb4 437static DEFINE_PER_CPU(u64, running_sample_length);
14c63f17 438
91a612ee
PZ
439static u64 __report_avg;
440static u64 __report_allowed;
441
6a02ad66 442static void perf_duration_warn(struct irq_work *w)
14c63f17 443{
6a02ad66 444 printk_ratelimited(KERN_WARNING
91a612ee
PZ
445 "perf: interrupt took too long (%lld > %lld), lowering "
446 "kernel.perf_event_max_sample_rate to %d\n",
447 __report_avg, __report_allowed,
448 sysctl_perf_event_sample_rate);
6a02ad66
PZ
449}
450
451static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
452
453void perf_sample_event_took(u64 sample_len_ns)
454{
91a612ee
PZ
455 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
456 u64 running_len;
457 u64 avg_len;
458 u32 max;
14c63f17 459
91a612ee 460 if (max_len == 0)
14c63f17
DH
461 return;
462
91a612ee
PZ
463 /* Decay the counter by 1 average sample. */
464 running_len = __this_cpu_read(running_sample_length);
465 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
466 running_len += sample_len_ns;
467 __this_cpu_write(running_sample_length, running_len);
14c63f17
DH
468
469 /*
91a612ee
PZ
470 * Note: this will be biased artifically low until we have
471 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
14c63f17
DH
472 * from having to maintain a count.
473 */
91a612ee
PZ
474 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
475 if (avg_len <= max_len)
14c63f17
DH
476 return;
477
91a612ee
PZ
478 __report_avg = avg_len;
479 __report_allowed = max_len;
14c63f17 480
91a612ee
PZ
481 /*
482 * Compute a throttle threshold 25% below the current duration.
483 */
484 avg_len += avg_len / 4;
485 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
486 if (avg_len < max)
487 max /= (u32)avg_len;
488 else
489 max = 1;
14c63f17 490
91a612ee
PZ
491 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
492 WRITE_ONCE(max_samples_per_tick, max);
493
494 sysctl_perf_event_sample_rate = max * HZ;
495 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
6a02ad66 496
cd578abb 497 if (!irq_work_queue(&perf_duration_work)) {
91a612ee 498 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
cd578abb 499 "kernel.perf_event_max_sample_rate to %d\n",
91a612ee 500 __report_avg, __report_allowed,
cd578abb
PZ
501 sysctl_perf_event_sample_rate);
502 }
14c63f17
DH
503}
504
cdd6c482 505static atomic64_t perf_event_id;
a96bbc16 506
0b3fcf17
SE
507static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
508 enum event_type_t event_type);
509
510static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
511 enum event_type_t event_type,
512 struct task_struct *task);
513
514static void update_context_time(struct perf_event_context *ctx);
515static u64 perf_event_time(struct perf_event *event);
0b3fcf17 516
cdd6c482 517void __weak perf_event_print_debug(void) { }
0793a61d 518
84c79910 519extern __weak const char *perf_pmu_name(void)
0793a61d 520{
84c79910 521 return "pmu";
0793a61d
TG
522}
523
0b3fcf17
SE
524static inline u64 perf_clock(void)
525{
526 return local_clock();
527}
528
34f43927
PZ
529static inline u64 perf_event_clock(struct perf_event *event)
530{
531 return event->clock();
532}
533
e5d1367f
SE
534#ifdef CONFIG_CGROUP_PERF
535
e5d1367f
SE
536static inline bool
537perf_cgroup_match(struct perf_event *event)
538{
539 struct perf_event_context *ctx = event->ctx;
540 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
541
ef824fa1
TH
542 /* @event doesn't care about cgroup */
543 if (!event->cgrp)
544 return true;
545
546 /* wants specific cgroup scope but @cpuctx isn't associated with any */
547 if (!cpuctx->cgrp)
548 return false;
549
550 /*
551 * Cgroup scoping is recursive. An event enabled for a cgroup is
552 * also enabled for all its descendant cgroups. If @cpuctx's
553 * cgroup is a descendant of @event's (the test covers identity
554 * case), it's a match.
555 */
556 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
557 event->cgrp->css.cgroup);
e5d1367f
SE
558}
559
e5d1367f
SE
560static inline void perf_detach_cgroup(struct perf_event *event)
561{
4e2ba650 562 css_put(&event->cgrp->css);
e5d1367f
SE
563 event->cgrp = NULL;
564}
565
566static inline int is_cgroup_event(struct perf_event *event)
567{
568 return event->cgrp != NULL;
569}
570
571static inline u64 perf_cgroup_event_time(struct perf_event *event)
572{
573 struct perf_cgroup_info *t;
574
575 t = per_cpu_ptr(event->cgrp->info, event->cpu);
576 return t->time;
577}
578
579static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
580{
581 struct perf_cgroup_info *info;
582 u64 now;
583
584 now = perf_clock();
585
586 info = this_cpu_ptr(cgrp->info);
587
588 info->time += now - info->timestamp;
589 info->timestamp = now;
590}
591
592static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
593{
594 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
595 if (cgrp_out)
596 __update_cgrp_time(cgrp_out);
597}
598
599static inline void update_cgrp_time_from_event(struct perf_event *event)
600{
3f7cce3c
SE
601 struct perf_cgroup *cgrp;
602
e5d1367f 603 /*
3f7cce3c
SE
604 * ensure we access cgroup data only when needed and
605 * when we know the cgroup is pinned (css_get)
e5d1367f 606 */
3f7cce3c 607 if (!is_cgroup_event(event))
e5d1367f
SE
608 return;
609
614e4c4e 610 cgrp = perf_cgroup_from_task(current, event->ctx);
3f7cce3c
SE
611 /*
612 * Do not update time when cgroup is not active
613 */
614 if (cgrp == event->cgrp)
615 __update_cgrp_time(event->cgrp);
e5d1367f
SE
616}
617
618static inline void
3f7cce3c
SE
619perf_cgroup_set_timestamp(struct task_struct *task,
620 struct perf_event_context *ctx)
e5d1367f
SE
621{
622 struct perf_cgroup *cgrp;
623 struct perf_cgroup_info *info;
624
3f7cce3c
SE
625 /*
626 * ctx->lock held by caller
627 * ensure we do not access cgroup data
628 * unless we have the cgroup pinned (css_get)
629 */
630 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
631 return;
632
614e4c4e 633 cgrp = perf_cgroup_from_task(task, ctx);
e5d1367f 634 info = this_cpu_ptr(cgrp->info);
3f7cce3c 635 info->timestamp = ctx->timestamp;
e5d1367f
SE
636}
637
638#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
639#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
640
641/*
642 * reschedule events based on the cgroup constraint of task.
643 *
644 * mode SWOUT : schedule out everything
645 * mode SWIN : schedule in based on cgroup for next
646 */
18ab2cd3 647static void perf_cgroup_switch(struct task_struct *task, int mode)
e5d1367f
SE
648{
649 struct perf_cpu_context *cpuctx;
650 struct pmu *pmu;
651 unsigned long flags;
652
653 /*
654 * disable interrupts to avoid geting nr_cgroup
655 * changes via __perf_event_disable(). Also
656 * avoids preemption.
657 */
658 local_irq_save(flags);
659
660 /*
661 * we reschedule only in the presence of cgroup
662 * constrained events.
663 */
e5d1367f
SE
664
665 list_for_each_entry_rcu(pmu, &pmus, entry) {
e5d1367f 666 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95cf59ea
PZ
667 if (cpuctx->unique_pmu != pmu)
668 continue; /* ensure we process each cpuctx once */
e5d1367f 669
e5d1367f
SE
670 /*
671 * perf_cgroup_events says at least one
672 * context on this CPU has cgroup events.
673 *
674 * ctx->nr_cgroups reports the number of cgroup
675 * events for a context.
676 */
677 if (cpuctx->ctx.nr_cgroups > 0) {
facc4307
PZ
678 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
679 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f
SE
680
681 if (mode & PERF_CGROUP_SWOUT) {
682 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
683 /*
684 * must not be done before ctxswout due
685 * to event_filter_match() in event_sched_out()
686 */
687 cpuctx->cgrp = NULL;
688 }
689
690 if (mode & PERF_CGROUP_SWIN) {
e566b76e 691 WARN_ON_ONCE(cpuctx->cgrp);
95cf59ea
PZ
692 /*
693 * set cgrp before ctxsw in to allow
694 * event_filter_match() to not have to pass
695 * task around
614e4c4e
SE
696 * we pass the cpuctx->ctx to perf_cgroup_from_task()
697 * because cgorup events are only per-cpu
e5d1367f 698 */
614e4c4e 699 cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
e5d1367f
SE
700 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
701 }
facc4307
PZ
702 perf_pmu_enable(cpuctx->ctx.pmu);
703 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f 704 }
e5d1367f
SE
705 }
706
e5d1367f
SE
707 local_irq_restore(flags);
708}
709
a8d757ef
SE
710static inline void perf_cgroup_sched_out(struct task_struct *task,
711 struct task_struct *next)
e5d1367f 712{
a8d757ef
SE
713 struct perf_cgroup *cgrp1;
714 struct perf_cgroup *cgrp2 = NULL;
715
ddaaf4e2 716 rcu_read_lock();
a8d757ef
SE
717 /*
718 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
719 * we do not need to pass the ctx here because we know
720 * we are holding the rcu lock
a8d757ef 721 */
614e4c4e 722 cgrp1 = perf_cgroup_from_task(task, NULL);
70a01657 723 cgrp2 = perf_cgroup_from_task(next, NULL);
a8d757ef
SE
724
725 /*
726 * only schedule out current cgroup events if we know
727 * that we are switching to a different cgroup. Otherwise,
728 * do no touch the cgroup events.
729 */
730 if (cgrp1 != cgrp2)
731 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
ddaaf4e2
SE
732
733 rcu_read_unlock();
e5d1367f
SE
734}
735
a8d757ef
SE
736static inline void perf_cgroup_sched_in(struct task_struct *prev,
737 struct task_struct *task)
e5d1367f 738{
a8d757ef
SE
739 struct perf_cgroup *cgrp1;
740 struct perf_cgroup *cgrp2 = NULL;
741
ddaaf4e2 742 rcu_read_lock();
a8d757ef
SE
743 /*
744 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
745 * we do not need to pass the ctx here because we know
746 * we are holding the rcu lock
a8d757ef 747 */
614e4c4e 748 cgrp1 = perf_cgroup_from_task(task, NULL);
614e4c4e 749 cgrp2 = perf_cgroup_from_task(prev, NULL);
a8d757ef
SE
750
751 /*
752 * only need to schedule in cgroup events if we are changing
753 * cgroup during ctxsw. Cgroup events were not scheduled
754 * out of ctxsw out if that was not the case.
755 */
756 if (cgrp1 != cgrp2)
757 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
ddaaf4e2
SE
758
759 rcu_read_unlock();
e5d1367f
SE
760}
761
762static inline int perf_cgroup_connect(int fd, struct perf_event *event,
763 struct perf_event_attr *attr,
764 struct perf_event *group_leader)
765{
766 struct perf_cgroup *cgrp;
767 struct cgroup_subsys_state *css;
2903ff01
AV
768 struct fd f = fdget(fd);
769 int ret = 0;
e5d1367f 770
2903ff01 771 if (!f.file)
e5d1367f
SE
772 return -EBADF;
773
b583043e 774 css = css_tryget_online_from_dir(f.file->f_path.dentry,
ec903c0c 775 &perf_event_cgrp_subsys);
3db272c0
LZ
776 if (IS_ERR(css)) {
777 ret = PTR_ERR(css);
778 goto out;
779 }
e5d1367f
SE
780
781 cgrp = container_of(css, struct perf_cgroup, css);
782 event->cgrp = cgrp;
783
784 /*
785 * all events in a group must monitor
786 * the same cgroup because a task belongs
787 * to only one perf cgroup at a time
788 */
789 if (group_leader && group_leader->cgrp != cgrp) {
790 perf_detach_cgroup(event);
791 ret = -EINVAL;
e5d1367f 792 }
3db272c0 793out:
2903ff01 794 fdput(f);
e5d1367f
SE
795 return ret;
796}
797
798static inline void
799perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
800{
801 struct perf_cgroup_info *t;
802 t = per_cpu_ptr(event->cgrp->info, event->cpu);
803 event->shadow_ctx_time = now - t->timestamp;
804}
805
806static inline void
807perf_cgroup_defer_enabled(struct perf_event *event)
808{
809 /*
810 * when the current task's perf cgroup does not match
811 * the event's, we need to remember to call the
812 * perf_mark_enable() function the first time a task with
813 * a matching perf cgroup is scheduled in.
814 */
815 if (is_cgroup_event(event) && !perf_cgroup_match(event))
816 event->cgrp_defer_enabled = 1;
817}
818
819static inline void
820perf_cgroup_mark_enabled(struct perf_event *event,
821 struct perf_event_context *ctx)
822{
823 struct perf_event *sub;
824 u64 tstamp = perf_event_time(event);
825
826 if (!event->cgrp_defer_enabled)
827 return;
828
829 event->cgrp_defer_enabled = 0;
830
831 event->tstamp_enabled = tstamp - event->total_time_enabled;
832 list_for_each_entry(sub, &event->sibling_list, group_entry) {
833 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
834 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
835 sub->cgrp_defer_enabled = 0;
836 }
837 }
838}
839#else /* !CONFIG_CGROUP_PERF */
840
841static inline bool
842perf_cgroup_match(struct perf_event *event)
843{
844 return true;
845}
846
847static inline void perf_detach_cgroup(struct perf_event *event)
848{}
849
850static inline int is_cgroup_event(struct perf_event *event)
851{
852 return 0;
853}
854
855static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
856{
857 return 0;
858}
859
860static inline void update_cgrp_time_from_event(struct perf_event *event)
861{
862}
863
864static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
865{
866}
867
a8d757ef
SE
868static inline void perf_cgroup_sched_out(struct task_struct *task,
869 struct task_struct *next)
e5d1367f
SE
870{
871}
872
a8d757ef
SE
873static inline void perf_cgroup_sched_in(struct task_struct *prev,
874 struct task_struct *task)
e5d1367f
SE
875{
876}
877
878static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
879 struct perf_event_attr *attr,
880 struct perf_event *group_leader)
881{
882 return -EINVAL;
883}
884
885static inline void
3f7cce3c
SE
886perf_cgroup_set_timestamp(struct task_struct *task,
887 struct perf_event_context *ctx)
e5d1367f
SE
888{
889}
890
891void
892perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
893{
894}
895
896static inline void
897perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
898{
899}
900
901static inline u64 perf_cgroup_event_time(struct perf_event *event)
902{
903 return 0;
904}
905
906static inline void
907perf_cgroup_defer_enabled(struct perf_event *event)
908{
909}
910
911static inline void
912perf_cgroup_mark_enabled(struct perf_event *event,
913 struct perf_event_context *ctx)
914{
915}
916#endif
917
9e630205
SE
918/*
919 * set default to be dependent on timer tick just
920 * like original code
921 */
922#define PERF_CPU_HRTIMER (1000 / HZ)
923/*
924 * function must be called with interrupts disbled
925 */
272325c4 926static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
9e630205
SE
927{
928 struct perf_cpu_context *cpuctx;
9e630205
SE
929 int rotations = 0;
930
931 WARN_ON(!irqs_disabled());
932
933 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
9e630205
SE
934 rotations = perf_rotate_context(cpuctx);
935
4cfafd30
PZ
936 raw_spin_lock(&cpuctx->hrtimer_lock);
937 if (rotations)
9e630205 938 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
4cfafd30
PZ
939 else
940 cpuctx->hrtimer_active = 0;
941 raw_spin_unlock(&cpuctx->hrtimer_lock);
9e630205 942
4cfafd30 943 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
9e630205
SE
944}
945
272325c4 946static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
9e630205 947{
272325c4 948 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 949 struct pmu *pmu = cpuctx->ctx.pmu;
272325c4 950 u64 interval;
9e630205
SE
951
952 /* no multiplexing needed for SW PMU */
953 if (pmu->task_ctx_nr == perf_sw_context)
954 return;
955
62b85639
SE
956 /*
957 * check default is sane, if not set then force to
958 * default interval (1/tick)
959 */
272325c4
PZ
960 interval = pmu->hrtimer_interval_ms;
961 if (interval < 1)
962 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
62b85639 963
272325c4 964 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
9e630205 965
4cfafd30
PZ
966 raw_spin_lock_init(&cpuctx->hrtimer_lock);
967 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
272325c4 968 timer->function = perf_mux_hrtimer_handler;
9e630205
SE
969}
970
272325c4 971static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
9e630205 972{
272325c4 973 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 974 struct pmu *pmu = cpuctx->ctx.pmu;
4cfafd30 975 unsigned long flags;
9e630205
SE
976
977 /* not for SW PMU */
978 if (pmu->task_ctx_nr == perf_sw_context)
272325c4 979 return 0;
9e630205 980
4cfafd30
PZ
981 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
982 if (!cpuctx->hrtimer_active) {
983 cpuctx->hrtimer_active = 1;
984 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
985 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
986 }
987 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
9e630205 988
272325c4 989 return 0;
9e630205
SE
990}
991
33696fc0 992void perf_pmu_disable(struct pmu *pmu)
9e35ad38 993{
33696fc0
PZ
994 int *count = this_cpu_ptr(pmu->pmu_disable_count);
995 if (!(*count)++)
996 pmu->pmu_disable(pmu);
9e35ad38 997}
9e35ad38 998
33696fc0 999void perf_pmu_enable(struct pmu *pmu)
9e35ad38 1000{
33696fc0
PZ
1001 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1002 if (!--(*count))
1003 pmu->pmu_enable(pmu);
9e35ad38 1004}
9e35ad38 1005
2fde4f94 1006static DEFINE_PER_CPU(struct list_head, active_ctx_list);
e9d2b064
PZ
1007
1008/*
2fde4f94
MR
1009 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1010 * perf_event_task_tick() are fully serialized because they're strictly cpu
1011 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1012 * disabled, while perf_event_task_tick is called from IRQ context.
e9d2b064 1013 */
2fde4f94 1014static void perf_event_ctx_activate(struct perf_event_context *ctx)
9e35ad38 1015{
2fde4f94 1016 struct list_head *head = this_cpu_ptr(&active_ctx_list);
b5ab4cd5 1017
e9d2b064 1018 WARN_ON(!irqs_disabled());
b5ab4cd5 1019
2fde4f94
MR
1020 WARN_ON(!list_empty(&ctx->active_ctx_list));
1021
1022 list_add(&ctx->active_ctx_list, head);
1023}
1024
1025static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1026{
1027 WARN_ON(!irqs_disabled());
1028
1029 WARN_ON(list_empty(&ctx->active_ctx_list));
1030
1031 list_del_init(&ctx->active_ctx_list);
9e35ad38 1032}
9e35ad38 1033
cdd6c482 1034static void get_ctx(struct perf_event_context *ctx)
a63eaf34 1035{
e5289d4a 1036 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
a63eaf34
PM
1037}
1038
4af57ef2
YZ
1039static void free_ctx(struct rcu_head *head)
1040{
1041 struct perf_event_context *ctx;
1042
1043 ctx = container_of(head, struct perf_event_context, rcu_head);
1044 kfree(ctx->task_ctx_data);
1045 kfree(ctx);
1046}
1047
cdd6c482 1048static void put_ctx(struct perf_event_context *ctx)
a63eaf34 1049{
564c2b21
PM
1050 if (atomic_dec_and_test(&ctx->refcount)) {
1051 if (ctx->parent_ctx)
1052 put_ctx(ctx->parent_ctx);
63b6da39 1053 if (ctx->task && ctx->task != TASK_TOMBSTONE)
c93f7669 1054 put_task_struct(ctx->task);
4af57ef2 1055 call_rcu(&ctx->rcu_head, free_ctx);
564c2b21 1056 }
a63eaf34
PM
1057}
1058
f63a8daa
PZ
1059/*
1060 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1061 * perf_pmu_migrate_context() we need some magic.
1062 *
1063 * Those places that change perf_event::ctx will hold both
1064 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1065 *
8b10c5e2
PZ
1066 * Lock ordering is by mutex address. There are two other sites where
1067 * perf_event_context::mutex nests and those are:
1068 *
1069 * - perf_event_exit_task_context() [ child , 0 ]
8ba289b8
PZ
1070 * perf_event_exit_event()
1071 * put_event() [ parent, 1 ]
8b10c5e2
PZ
1072 *
1073 * - perf_event_init_context() [ parent, 0 ]
1074 * inherit_task_group()
1075 * inherit_group()
1076 * inherit_event()
1077 * perf_event_alloc()
1078 * perf_init_event()
1079 * perf_try_init_event() [ child , 1 ]
1080 *
1081 * While it appears there is an obvious deadlock here -- the parent and child
1082 * nesting levels are inverted between the two. This is in fact safe because
1083 * life-time rules separate them. That is an exiting task cannot fork, and a
1084 * spawning task cannot (yet) exit.
1085 *
1086 * But remember that that these are parent<->child context relations, and
1087 * migration does not affect children, therefore these two orderings should not
1088 * interact.
f63a8daa
PZ
1089 *
1090 * The change in perf_event::ctx does not affect children (as claimed above)
1091 * because the sys_perf_event_open() case will install a new event and break
1092 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1093 * concerned with cpuctx and that doesn't have children.
1094 *
1095 * The places that change perf_event::ctx will issue:
1096 *
1097 * perf_remove_from_context();
1098 * synchronize_rcu();
1099 * perf_install_in_context();
1100 *
1101 * to affect the change. The remove_from_context() + synchronize_rcu() should
1102 * quiesce the event, after which we can install it in the new location. This
1103 * means that only external vectors (perf_fops, prctl) can perturb the event
1104 * while in transit. Therefore all such accessors should also acquire
1105 * perf_event_context::mutex to serialize against this.
1106 *
1107 * However; because event->ctx can change while we're waiting to acquire
1108 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1109 * function.
1110 *
1111 * Lock order:
79c9ce57 1112 * cred_guard_mutex
f63a8daa
PZ
1113 * task_struct::perf_event_mutex
1114 * perf_event_context::mutex
f63a8daa 1115 * perf_event::child_mutex;
07c4a776 1116 * perf_event_context::lock
f63a8daa
PZ
1117 * perf_event::mmap_mutex
1118 * mmap_sem
1119 */
a83fe28e
PZ
1120static struct perf_event_context *
1121perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
f63a8daa
PZ
1122{
1123 struct perf_event_context *ctx;
1124
1125again:
1126 rcu_read_lock();
1127 ctx = ACCESS_ONCE(event->ctx);
1128 if (!atomic_inc_not_zero(&ctx->refcount)) {
1129 rcu_read_unlock();
1130 goto again;
1131 }
1132 rcu_read_unlock();
1133
a83fe28e 1134 mutex_lock_nested(&ctx->mutex, nesting);
f63a8daa
PZ
1135 if (event->ctx != ctx) {
1136 mutex_unlock(&ctx->mutex);
1137 put_ctx(ctx);
1138 goto again;
1139 }
1140
1141 return ctx;
1142}
1143
a83fe28e
PZ
1144static inline struct perf_event_context *
1145perf_event_ctx_lock(struct perf_event *event)
1146{
1147 return perf_event_ctx_lock_nested(event, 0);
1148}
1149
f63a8daa
PZ
1150static void perf_event_ctx_unlock(struct perf_event *event,
1151 struct perf_event_context *ctx)
1152{
1153 mutex_unlock(&ctx->mutex);
1154 put_ctx(ctx);
1155}
1156
211de6eb
PZ
1157/*
1158 * This must be done under the ctx->lock, such as to serialize against
1159 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1160 * calling scheduler related locks and ctx->lock nests inside those.
1161 */
1162static __must_check struct perf_event_context *
1163unclone_ctx(struct perf_event_context *ctx)
71a851b4 1164{
211de6eb
PZ
1165 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1166
1167 lockdep_assert_held(&ctx->lock);
1168
1169 if (parent_ctx)
71a851b4 1170 ctx->parent_ctx = NULL;
5a3126d4 1171 ctx->generation++;
211de6eb
PZ
1172
1173 return parent_ctx;
71a851b4
PZ
1174}
1175
6844c09d
ACM
1176static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1177{
1178 /*
1179 * only top level events have the pid namespace they were created in
1180 */
1181 if (event->parent)
1182 event = event->parent;
1183
1184 return task_tgid_nr_ns(p, event->ns);
1185}
1186
1187static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1188{
1189 /*
1190 * only top level events have the pid namespace they were created in
1191 */
1192 if (event->parent)
1193 event = event->parent;
1194
1195 return task_pid_nr_ns(p, event->ns);
1196}
1197
7f453c24 1198/*
cdd6c482 1199 * If we inherit events we want to return the parent event id
7f453c24
PZ
1200 * to userspace.
1201 */
cdd6c482 1202static u64 primary_event_id(struct perf_event *event)
7f453c24 1203{
cdd6c482 1204 u64 id = event->id;
7f453c24 1205
cdd6c482
IM
1206 if (event->parent)
1207 id = event->parent->id;
7f453c24
PZ
1208
1209 return id;
1210}
1211
25346b93 1212/*
cdd6c482 1213 * Get the perf_event_context for a task and lock it.
63b6da39 1214 *
25346b93
PM
1215 * This has to cope with with the fact that until it is locked,
1216 * the context could get moved to another task.
1217 */
cdd6c482 1218static struct perf_event_context *
8dc85d54 1219perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 1220{
cdd6c482 1221 struct perf_event_context *ctx;
25346b93 1222
9ed6060d 1223retry:
058ebd0e
PZ
1224 /*
1225 * One of the few rules of preemptible RCU is that one cannot do
1226 * rcu_read_unlock() while holding a scheduler (or nested) lock when
2fd59077 1227 * part of the read side critical section was irqs-enabled -- see
058ebd0e
PZ
1228 * rcu_read_unlock_special().
1229 *
1230 * Since ctx->lock nests under rq->lock we must ensure the entire read
2fd59077 1231 * side critical section has interrupts disabled.
058ebd0e 1232 */
2fd59077 1233 local_irq_save(*flags);
058ebd0e 1234 rcu_read_lock();
8dc85d54 1235 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
1236 if (ctx) {
1237 /*
1238 * If this context is a clone of another, it might
1239 * get swapped for another underneath us by
cdd6c482 1240 * perf_event_task_sched_out, though the
25346b93
PM
1241 * rcu_read_lock() protects us from any context
1242 * getting freed. Lock the context and check if it
1243 * got swapped before we could get the lock, and retry
1244 * if so. If we locked the right context, then it
1245 * can't get swapped on us any more.
1246 */
2fd59077 1247 raw_spin_lock(&ctx->lock);
8dc85d54 1248 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
2fd59077 1249 raw_spin_unlock(&ctx->lock);
058ebd0e 1250 rcu_read_unlock();
2fd59077 1251 local_irq_restore(*flags);
25346b93
PM
1252 goto retry;
1253 }
b49a9e7e 1254
63b6da39
PZ
1255 if (ctx->task == TASK_TOMBSTONE ||
1256 !atomic_inc_not_zero(&ctx->refcount)) {
2fd59077 1257 raw_spin_unlock(&ctx->lock);
b49a9e7e 1258 ctx = NULL;
828b6f0e
PZ
1259 } else {
1260 WARN_ON_ONCE(ctx->task != task);
b49a9e7e 1261 }
25346b93
PM
1262 }
1263 rcu_read_unlock();
2fd59077
PM
1264 if (!ctx)
1265 local_irq_restore(*flags);
25346b93
PM
1266 return ctx;
1267}
1268
1269/*
1270 * Get the context for a task and increment its pin_count so it
1271 * can't get swapped to another task. This also increments its
1272 * reference count so that the context can't get freed.
1273 */
8dc85d54
PZ
1274static struct perf_event_context *
1275perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 1276{
cdd6c482 1277 struct perf_event_context *ctx;
25346b93
PM
1278 unsigned long flags;
1279
8dc85d54 1280 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
1281 if (ctx) {
1282 ++ctx->pin_count;
e625cce1 1283 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1284 }
1285 return ctx;
1286}
1287
cdd6c482 1288static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
1289{
1290 unsigned long flags;
1291
e625cce1 1292 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 1293 --ctx->pin_count;
e625cce1 1294 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1295}
1296
f67218c3
PZ
1297/*
1298 * Update the record of the current time in a context.
1299 */
1300static void update_context_time(struct perf_event_context *ctx)
1301{
1302 u64 now = perf_clock();
1303
1304 ctx->time += now - ctx->timestamp;
1305 ctx->timestamp = now;
1306}
1307
4158755d
SE
1308static u64 perf_event_time(struct perf_event *event)
1309{
1310 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
1311
1312 if (is_cgroup_event(event))
1313 return perf_cgroup_event_time(event);
1314
4158755d
SE
1315 return ctx ? ctx->time : 0;
1316}
1317
f67218c3
PZ
1318/*
1319 * Update the total_time_enabled and total_time_running fields for a event.
1320 */
1321static void update_event_times(struct perf_event *event)
1322{
1323 struct perf_event_context *ctx = event->ctx;
1324 u64 run_end;
1325
3cbaa590
PZ
1326 lockdep_assert_held(&ctx->lock);
1327
f67218c3
PZ
1328 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1329 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1330 return;
3cbaa590 1331
e5d1367f
SE
1332 /*
1333 * in cgroup mode, time_enabled represents
1334 * the time the event was enabled AND active
1335 * tasks were in the monitored cgroup. This is
1336 * independent of the activity of the context as
1337 * there may be a mix of cgroup and non-cgroup events.
1338 *
1339 * That is why we treat cgroup events differently
1340 * here.
1341 */
1342 if (is_cgroup_event(event))
46cd6a7f 1343 run_end = perf_cgroup_event_time(event);
e5d1367f
SE
1344 else if (ctx->is_active)
1345 run_end = ctx->time;
acd1d7c1
PZ
1346 else
1347 run_end = event->tstamp_stopped;
1348
1349 event->total_time_enabled = run_end - event->tstamp_enabled;
f67218c3
PZ
1350
1351 if (event->state == PERF_EVENT_STATE_INACTIVE)
1352 run_end = event->tstamp_stopped;
1353 else
4158755d 1354 run_end = perf_event_time(event);
f67218c3
PZ
1355
1356 event->total_time_running = run_end - event->tstamp_running;
e5d1367f 1357
f67218c3
PZ
1358}
1359
96c21a46
PZ
1360/*
1361 * Update total_time_enabled and total_time_running for all events in a group.
1362 */
1363static void update_group_times(struct perf_event *leader)
1364{
1365 struct perf_event *event;
1366
1367 update_event_times(leader);
1368 list_for_each_entry(event, &leader->sibling_list, group_entry)
1369 update_event_times(event);
1370}
1371
889ff015
FW
1372static struct list_head *
1373ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1374{
1375 if (event->attr.pinned)
1376 return &ctx->pinned_groups;
1377 else
1378 return &ctx->flexible_groups;
1379}
1380
fccc714b 1381/*
cdd6c482 1382 * Add a event from the lists for its context.
fccc714b
PZ
1383 * Must be called with ctx->mutex and ctx->lock held.
1384 */
04289bb9 1385static void
cdd6c482 1386list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1387{
c994d613
PZ
1388 lockdep_assert_held(&ctx->lock);
1389
8a49542c
PZ
1390 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1391 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9
IM
1392
1393 /*
8a49542c
PZ
1394 * If we're a stand alone event or group leader, we go to the context
1395 * list, group events are kept attached to the group so that
1396 * perf_group_detach can, at all times, locate all siblings.
04289bb9 1397 */
8a49542c 1398 if (event->group_leader == event) {
889ff015
FW
1399 struct list_head *list;
1400
d6f962b5
FW
1401 if (is_software_event(event))
1402 event->group_flags |= PERF_GROUP_SOFTWARE;
1403
889ff015
FW
1404 list = ctx_group_list(event, ctx);
1405 list_add_tail(&event->group_entry, list);
5c148194 1406 }
592903cd 1407
08309379 1408 if (is_cgroup_event(event))
e5d1367f 1409 ctx->nr_cgroups++;
e5d1367f 1410
cdd6c482
IM
1411 list_add_rcu(&event->event_entry, &ctx->event_list);
1412 ctx->nr_events++;
1413 if (event->attr.inherit_stat)
bfbd3381 1414 ctx->nr_stat++;
5a3126d4
PZ
1415
1416 ctx->generation++;
04289bb9
IM
1417}
1418
0231bb53
JO
1419/*
1420 * Initialize event state based on the perf_event_attr::disabled.
1421 */
1422static inline void perf_event__state_init(struct perf_event *event)
1423{
1424 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1425 PERF_EVENT_STATE_INACTIVE;
1426}
1427
a723968c 1428static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
c320c7b7
ACM
1429{
1430 int entry = sizeof(u64); /* value */
1431 int size = 0;
1432 int nr = 1;
1433
1434 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1435 size += sizeof(u64);
1436
1437 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1438 size += sizeof(u64);
1439
1440 if (event->attr.read_format & PERF_FORMAT_ID)
1441 entry += sizeof(u64);
1442
1443 if (event->attr.read_format & PERF_FORMAT_GROUP) {
a723968c 1444 nr += nr_siblings;
c320c7b7
ACM
1445 size += sizeof(u64);
1446 }
1447
1448 size += entry * nr;
1449 event->read_size = size;
1450}
1451
a723968c 1452static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
c320c7b7
ACM
1453{
1454 struct perf_sample_data *data;
c320c7b7
ACM
1455 u16 size = 0;
1456
c320c7b7
ACM
1457 if (sample_type & PERF_SAMPLE_IP)
1458 size += sizeof(data->ip);
1459
6844c09d
ACM
1460 if (sample_type & PERF_SAMPLE_ADDR)
1461 size += sizeof(data->addr);
1462
1463 if (sample_type & PERF_SAMPLE_PERIOD)
1464 size += sizeof(data->period);
1465
c3feedf2
AK
1466 if (sample_type & PERF_SAMPLE_WEIGHT)
1467 size += sizeof(data->weight);
1468
6844c09d
ACM
1469 if (sample_type & PERF_SAMPLE_READ)
1470 size += event->read_size;
1471
d6be9ad6
SE
1472 if (sample_type & PERF_SAMPLE_DATA_SRC)
1473 size += sizeof(data->data_src.val);
1474
fdfbbd07
AK
1475 if (sample_type & PERF_SAMPLE_TRANSACTION)
1476 size += sizeof(data->txn);
1477
6844c09d
ACM
1478 event->header_size = size;
1479}
1480
a723968c
PZ
1481/*
1482 * Called at perf_event creation and when events are attached/detached from a
1483 * group.
1484 */
1485static void perf_event__header_size(struct perf_event *event)
1486{
1487 __perf_event_read_size(event,
1488 event->group_leader->nr_siblings);
1489 __perf_event_header_size(event, event->attr.sample_type);
1490}
1491
6844c09d
ACM
1492static void perf_event__id_header_size(struct perf_event *event)
1493{
1494 struct perf_sample_data *data;
1495 u64 sample_type = event->attr.sample_type;
1496 u16 size = 0;
1497
c320c7b7
ACM
1498 if (sample_type & PERF_SAMPLE_TID)
1499 size += sizeof(data->tid_entry);
1500
1501 if (sample_type & PERF_SAMPLE_TIME)
1502 size += sizeof(data->time);
1503
ff3d527c
AH
1504 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1505 size += sizeof(data->id);
1506
c320c7b7
ACM
1507 if (sample_type & PERF_SAMPLE_ID)
1508 size += sizeof(data->id);
1509
1510 if (sample_type & PERF_SAMPLE_STREAM_ID)
1511 size += sizeof(data->stream_id);
1512
1513 if (sample_type & PERF_SAMPLE_CPU)
1514 size += sizeof(data->cpu_entry);
1515
6844c09d 1516 event->id_header_size = size;
c320c7b7
ACM
1517}
1518
a723968c
PZ
1519static bool perf_event_validate_size(struct perf_event *event)
1520{
1521 /*
1522 * The values computed here will be over-written when we actually
1523 * attach the event.
1524 */
1525 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1526 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1527 perf_event__id_header_size(event);
1528
1529 /*
1530 * Sum the lot; should not exceed the 64k limit we have on records.
1531 * Conservative limit to allow for callchains and other variable fields.
1532 */
1533 if (event->read_size + event->header_size +
1534 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1535 return false;
1536
1537 return true;
1538}
1539
8a49542c
PZ
1540static void perf_group_attach(struct perf_event *event)
1541{
c320c7b7 1542 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1543
74c3337c
PZ
1544 /*
1545 * We can have double attach due to group movement in perf_event_open.
1546 */
1547 if (event->attach_state & PERF_ATTACH_GROUP)
1548 return;
1549
8a49542c
PZ
1550 event->attach_state |= PERF_ATTACH_GROUP;
1551
1552 if (group_leader == event)
1553 return;
1554
652884fe
PZ
1555 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1556
8a49542c
PZ
1557 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1558 !is_software_event(event))
1559 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1560
1561 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1562 group_leader->nr_siblings++;
c320c7b7
ACM
1563
1564 perf_event__header_size(group_leader);
1565
1566 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1567 perf_event__header_size(pos);
8a49542c
PZ
1568}
1569
a63eaf34 1570/*
cdd6c482 1571 * Remove a event from the lists for its context.
fccc714b 1572 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1573 */
04289bb9 1574static void
cdd6c482 1575list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1576{
68cacd29 1577 struct perf_cpu_context *cpuctx;
652884fe
PZ
1578
1579 WARN_ON_ONCE(event->ctx != ctx);
1580 lockdep_assert_held(&ctx->lock);
1581
8a49542c
PZ
1582 /*
1583 * We can have double detach due to exit/hot-unplug + close.
1584 */
1585 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1586 return;
8a49542c
PZ
1587
1588 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1589
68cacd29 1590 if (is_cgroup_event(event)) {
e5d1367f 1591 ctx->nr_cgroups--;
70a01657
PZ
1592 /*
1593 * Because cgroup events are always per-cpu events, this will
1594 * always be called from the right CPU.
1595 */
68cacd29
SE
1596 cpuctx = __get_cpu_context(ctx);
1597 /*
70a01657
PZ
1598 * If there are no more cgroup events then clear cgrp to avoid
1599 * stale pointer in update_cgrp_time_from_cpuctx().
68cacd29
SE
1600 */
1601 if (!ctx->nr_cgroups)
1602 cpuctx->cgrp = NULL;
1603 }
e5d1367f 1604
cdd6c482
IM
1605 ctx->nr_events--;
1606 if (event->attr.inherit_stat)
bfbd3381 1607 ctx->nr_stat--;
8bc20959 1608
cdd6c482 1609 list_del_rcu(&event->event_entry);
04289bb9 1610
8a49542c
PZ
1611 if (event->group_leader == event)
1612 list_del_init(&event->group_entry);
5c148194 1613
96c21a46 1614 update_group_times(event);
b2e74a26
SE
1615
1616 /*
1617 * If event was in error state, then keep it
1618 * that way, otherwise bogus counts will be
1619 * returned on read(). The only way to get out
1620 * of error state is by explicit re-enabling
1621 * of the event
1622 */
1623 if (event->state > PERF_EVENT_STATE_OFF)
1624 event->state = PERF_EVENT_STATE_OFF;
5a3126d4
PZ
1625
1626 ctx->generation++;
050735b0
PZ
1627}
1628
8a49542c 1629static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1630{
1631 struct perf_event *sibling, *tmp;
8a49542c
PZ
1632 struct list_head *list = NULL;
1633
1634 /*
1635 * We can have double detach due to exit/hot-unplug + close.
1636 */
1637 if (!(event->attach_state & PERF_ATTACH_GROUP))
1638 return;
1639
1640 event->attach_state &= ~PERF_ATTACH_GROUP;
1641
1642 /*
1643 * If this is a sibling, remove it from its group.
1644 */
1645 if (event->group_leader != event) {
1646 list_del_init(&event->group_entry);
1647 event->group_leader->nr_siblings--;
c320c7b7 1648 goto out;
8a49542c
PZ
1649 }
1650
1651 if (!list_empty(&event->group_entry))
1652 list = &event->group_entry;
2e2af50b 1653
04289bb9 1654 /*
cdd6c482
IM
1655 * If this was a group event with sibling events then
1656 * upgrade the siblings to singleton events by adding them
8a49542c 1657 * to whatever list we are on.
04289bb9 1658 */
cdd6c482 1659 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
8a49542c
PZ
1660 if (list)
1661 list_move_tail(&sibling->group_entry, list);
04289bb9 1662 sibling->group_leader = sibling;
d6f962b5
FW
1663
1664 /* Inherit group flags from the previous leader */
1665 sibling->group_flags = event->group_flags;
652884fe
PZ
1666
1667 WARN_ON_ONCE(sibling->ctx != event->ctx);
04289bb9 1668 }
c320c7b7
ACM
1669
1670out:
1671 perf_event__header_size(event->group_leader);
1672
1673 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1674 perf_event__header_size(tmp);
04289bb9
IM
1675}
1676
fadfe7be
JO
1677static bool is_orphaned_event(struct perf_event *event)
1678{
a69b0ca4 1679 return event->state == PERF_EVENT_STATE_DEAD;
fadfe7be
JO
1680}
1681
66eb579e
MR
1682static inline int pmu_filter_match(struct perf_event *event)
1683{
1684 struct pmu *pmu = event->pmu;
1685 return pmu->filter_match ? pmu->filter_match(event) : 1;
1686}
1687
fa66f07a
SE
1688static inline int
1689event_filter_match(struct perf_event *event)
1690{
e5d1367f 1691 return (event->cpu == -1 || event->cpu == smp_processor_id())
66eb579e 1692 && perf_cgroup_match(event) && pmu_filter_match(event);
fa66f07a
SE
1693}
1694
9ffcfa6f
SE
1695static void
1696event_sched_out(struct perf_event *event,
3b6f9e5c 1697 struct perf_cpu_context *cpuctx,
cdd6c482 1698 struct perf_event_context *ctx)
3b6f9e5c 1699{
4158755d 1700 u64 tstamp = perf_event_time(event);
fa66f07a 1701 u64 delta;
652884fe
PZ
1702
1703 WARN_ON_ONCE(event->ctx != ctx);
1704 lockdep_assert_held(&ctx->lock);
1705
fa66f07a
SE
1706 /*
1707 * An event which could not be activated because of
1708 * filter mismatch still needs to have its timings
1709 * maintained, otherwise bogus information is return
1710 * via read() for time_enabled, time_running:
1711 */
1712 if (event->state == PERF_EVENT_STATE_INACTIVE
1713 && !event_filter_match(event)) {
e5d1367f 1714 delta = tstamp - event->tstamp_stopped;
fa66f07a 1715 event->tstamp_running += delta;
4158755d 1716 event->tstamp_stopped = tstamp;
fa66f07a
SE
1717 }
1718
cdd6c482 1719 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 1720 return;
3b6f9e5c 1721
44377277
AS
1722 perf_pmu_disable(event->pmu);
1723
28a967c3
PZ
1724 event->tstamp_stopped = tstamp;
1725 event->pmu->del(event, 0);
1726 event->oncpu = -1;
cdd6c482
IM
1727 event->state = PERF_EVENT_STATE_INACTIVE;
1728 if (event->pending_disable) {
1729 event->pending_disable = 0;
1730 event->state = PERF_EVENT_STATE_OFF;
970892a9 1731 }
3b6f9e5c 1732
cdd6c482 1733 if (!is_software_event(event))
3b6f9e5c 1734 cpuctx->active_oncpu--;
2fde4f94
MR
1735 if (!--ctx->nr_active)
1736 perf_event_ctx_deactivate(ctx);
0f5a2601
PZ
1737 if (event->attr.freq && event->attr.sample_freq)
1738 ctx->nr_freq--;
cdd6c482 1739 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c 1740 cpuctx->exclusive = 0;
44377277
AS
1741
1742 perf_pmu_enable(event->pmu);
3b6f9e5c
PM
1743}
1744
d859e29f 1745static void
cdd6c482 1746group_sched_out(struct perf_event *group_event,
d859e29f 1747 struct perf_cpu_context *cpuctx,
cdd6c482 1748 struct perf_event_context *ctx)
d859e29f 1749{
cdd6c482 1750 struct perf_event *event;
fa66f07a 1751 int state = group_event->state;
d859e29f 1752
cdd6c482 1753 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
1754
1755 /*
1756 * Schedule out siblings (if any):
1757 */
cdd6c482
IM
1758 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1759 event_sched_out(event, cpuctx, ctx);
d859e29f 1760
fa66f07a 1761 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
d859e29f
PM
1762 cpuctx->exclusive = 0;
1763}
1764
45a0e07a 1765#define DETACH_GROUP 0x01UL
0017960f 1766
0793a61d 1767/*
cdd6c482 1768 * Cross CPU call to remove a performance event
0793a61d 1769 *
cdd6c482 1770 * We disable the event on the hardware level first. After that we
0793a61d
TG
1771 * remove it from the context list.
1772 */
fae3fde6
PZ
1773static void
1774__perf_remove_from_context(struct perf_event *event,
1775 struct perf_cpu_context *cpuctx,
1776 struct perf_event_context *ctx,
1777 void *info)
0793a61d 1778{
45a0e07a 1779 unsigned long flags = (unsigned long)info;
0793a61d 1780
cdd6c482 1781 event_sched_out(event, cpuctx, ctx);
45a0e07a 1782 if (flags & DETACH_GROUP)
46ce0fe9 1783 perf_group_detach(event);
cdd6c482 1784 list_del_event(event, ctx);
39a43640
PZ
1785
1786 if (!ctx->nr_events && ctx->is_active) {
64ce3126 1787 ctx->is_active = 0;
39a43640
PZ
1788 if (ctx->task) {
1789 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1790 cpuctx->task_ctx = NULL;
1791 }
64ce3126 1792 }
0793a61d
TG
1793}
1794
0793a61d 1795/*
cdd6c482 1796 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 1797 *
cdd6c482
IM
1798 * If event->ctx is a cloned context, callers must make sure that
1799 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
1800 * remains valid. This is OK when called from perf_release since
1801 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 1802 * When called from perf_event_exit_task, it's OK because the
c93f7669 1803 * context has been detached from its task.
0793a61d 1804 */
45a0e07a 1805static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
0793a61d 1806{
fae3fde6 1807 lockdep_assert_held(&event->ctx->mutex);
0793a61d 1808
45a0e07a 1809 event_function_call(event, __perf_remove_from_context, (void *)flags);
0793a61d
TG
1810}
1811
d859e29f 1812/*
cdd6c482 1813 * Cross CPU call to disable a performance event
d859e29f 1814 */
fae3fde6
PZ
1815static void __perf_event_disable(struct perf_event *event,
1816 struct perf_cpu_context *cpuctx,
1817 struct perf_event_context *ctx,
1818 void *info)
7b648018 1819{
fae3fde6
PZ
1820 if (event->state < PERF_EVENT_STATE_INACTIVE)
1821 return;
7b648018 1822
fae3fde6
PZ
1823 update_context_time(ctx);
1824 update_cgrp_time_from_event(event);
1825 update_group_times(event);
1826 if (event == event->group_leader)
1827 group_sched_out(event, cpuctx, ctx);
1828 else
1829 event_sched_out(event, cpuctx, ctx);
1830 event->state = PERF_EVENT_STATE_OFF;
7b648018
PZ
1831}
1832
d859e29f 1833/*
cdd6c482 1834 * Disable a event.
c93f7669 1835 *
cdd6c482
IM
1836 * If event->ctx is a cloned context, callers must make sure that
1837 * every task struct that event->ctx->task could possibly point to
c93f7669 1838 * remains valid. This condition is satisifed when called through
cdd6c482
IM
1839 * perf_event_for_each_child or perf_event_for_each because they
1840 * hold the top-level event's child_mutex, so any descendant that
8ba289b8
PZ
1841 * goes to exit will block in perf_event_exit_event().
1842 *
cdd6c482 1843 * When called from perf_pending_event it's OK because event->ctx
c93f7669 1844 * is the current context on this CPU and preemption is disabled,
cdd6c482 1845 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 1846 */
f63a8daa 1847static void _perf_event_disable(struct perf_event *event)
d859e29f 1848{
cdd6c482 1849 struct perf_event_context *ctx = event->ctx;
d859e29f 1850
e625cce1 1851 raw_spin_lock_irq(&ctx->lock);
7b648018 1852 if (event->state <= PERF_EVENT_STATE_OFF) {
e625cce1 1853 raw_spin_unlock_irq(&ctx->lock);
7b648018 1854 return;
53cfbf59 1855 }
e625cce1 1856 raw_spin_unlock_irq(&ctx->lock);
7b648018 1857
fae3fde6
PZ
1858 event_function_call(event, __perf_event_disable, NULL);
1859}
1860
1861void perf_event_disable_local(struct perf_event *event)
1862{
1863 event_function_local(event, __perf_event_disable, NULL);
d859e29f 1864}
f63a8daa
PZ
1865
1866/*
1867 * Strictly speaking kernel users cannot create groups and therefore this
1868 * interface does not need the perf_event_ctx_lock() magic.
1869 */
1870void perf_event_disable(struct perf_event *event)
1871{
1872 struct perf_event_context *ctx;
1873
1874 ctx = perf_event_ctx_lock(event);
1875 _perf_event_disable(event);
1876 perf_event_ctx_unlock(event, ctx);
1877}
dcfce4a0 1878EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 1879
e5d1367f
SE
1880static void perf_set_shadow_time(struct perf_event *event,
1881 struct perf_event_context *ctx,
1882 u64 tstamp)
1883{
1884 /*
1885 * use the correct time source for the time snapshot
1886 *
1887 * We could get by without this by leveraging the
1888 * fact that to get to this function, the caller
1889 * has most likely already called update_context_time()
1890 * and update_cgrp_time_xx() and thus both timestamp
1891 * are identical (or very close). Given that tstamp is,
1892 * already adjusted for cgroup, we could say that:
1893 * tstamp - ctx->timestamp
1894 * is equivalent to
1895 * tstamp - cgrp->timestamp.
1896 *
1897 * Then, in perf_output_read(), the calculation would
1898 * work with no changes because:
1899 * - event is guaranteed scheduled in
1900 * - no scheduled out in between
1901 * - thus the timestamp would be the same
1902 *
1903 * But this is a bit hairy.
1904 *
1905 * So instead, we have an explicit cgroup call to remain
1906 * within the time time source all along. We believe it
1907 * is cleaner and simpler to understand.
1908 */
1909 if (is_cgroup_event(event))
1910 perf_cgroup_set_shadow_time(event, tstamp);
1911 else
1912 event->shadow_ctx_time = tstamp - ctx->timestamp;
1913}
1914
4fe757dd
PZ
1915#define MAX_INTERRUPTS (~0ULL)
1916
1917static void perf_log_throttle(struct perf_event *event, int enable);
ec0d7729 1918static void perf_log_itrace_start(struct perf_event *event);
4fe757dd 1919
235c7fc7 1920static int
9ffcfa6f 1921event_sched_in(struct perf_event *event,
235c7fc7 1922 struct perf_cpu_context *cpuctx,
6e37738a 1923 struct perf_event_context *ctx)
235c7fc7 1924{
4158755d 1925 u64 tstamp = perf_event_time(event);
44377277 1926 int ret = 0;
4158755d 1927
63342411
PZ
1928 lockdep_assert_held(&ctx->lock);
1929
cdd6c482 1930 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
1931 return 0;
1932
95ff4ca2
AS
1933 WRITE_ONCE(event->oncpu, smp_processor_id());
1934 /*
1935 * Order event::oncpu write to happen before the ACTIVE state
1936 * is visible.
1937 */
1938 smp_wmb();
1939 WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
4fe757dd
PZ
1940
1941 /*
1942 * Unthrottle events, since we scheduled we might have missed several
1943 * ticks already, also for a heavily scheduling task there is little
1944 * guarantee it'll get a tick in a timely manner.
1945 */
1946 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1947 perf_log_throttle(event, 1);
1948 event->hw.interrupts = 0;
1949 }
1950
235c7fc7
IM
1951 /*
1952 * The new state must be visible before we turn it on in the hardware:
1953 */
1954 smp_wmb();
1955
44377277
AS
1956 perf_pmu_disable(event->pmu);
1957
72f669c0
SL
1958 perf_set_shadow_time(event, ctx, tstamp);
1959
ec0d7729
AS
1960 perf_log_itrace_start(event);
1961
a4eaf7f1 1962 if (event->pmu->add(event, PERF_EF_START)) {
cdd6c482
IM
1963 event->state = PERF_EVENT_STATE_INACTIVE;
1964 event->oncpu = -1;
44377277
AS
1965 ret = -EAGAIN;
1966 goto out;
235c7fc7
IM
1967 }
1968
00a2916f
PZ
1969 event->tstamp_running += tstamp - event->tstamp_stopped;
1970
cdd6c482 1971 if (!is_software_event(event))
3b6f9e5c 1972 cpuctx->active_oncpu++;
2fde4f94
MR
1973 if (!ctx->nr_active++)
1974 perf_event_ctx_activate(ctx);
0f5a2601
PZ
1975 if (event->attr.freq && event->attr.sample_freq)
1976 ctx->nr_freq++;
235c7fc7 1977
cdd6c482 1978 if (event->attr.exclusive)
3b6f9e5c
PM
1979 cpuctx->exclusive = 1;
1980
44377277
AS
1981out:
1982 perf_pmu_enable(event->pmu);
1983
1984 return ret;
235c7fc7
IM
1985}
1986
6751b71e 1987static int
cdd6c482 1988group_sched_in(struct perf_event *group_event,
6751b71e 1989 struct perf_cpu_context *cpuctx,
6e37738a 1990 struct perf_event_context *ctx)
6751b71e 1991{
6bde9b6c 1992 struct perf_event *event, *partial_group = NULL;
4a234593 1993 struct pmu *pmu = ctx->pmu;
d7842da4
SE
1994 u64 now = ctx->time;
1995 bool simulate = false;
6751b71e 1996
cdd6c482 1997 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
1998 return 0;
1999
fbbe0701 2000 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
6bde9b6c 2001
9ffcfa6f 2002 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 2003 pmu->cancel_txn(pmu);
272325c4 2004 perf_mux_hrtimer_restart(cpuctx);
6751b71e 2005 return -EAGAIN;
90151c35 2006 }
6751b71e
PM
2007
2008 /*
2009 * Schedule in siblings as one group (if any):
2010 */
cdd6c482 2011 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
9ffcfa6f 2012 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 2013 partial_group = event;
6751b71e
PM
2014 goto group_error;
2015 }
2016 }
2017
9ffcfa6f 2018 if (!pmu->commit_txn(pmu))
6e85158c 2019 return 0;
9ffcfa6f 2020
6751b71e
PM
2021group_error:
2022 /*
2023 * Groups can be scheduled in as one unit only, so undo any
2024 * partial group before returning:
d7842da4
SE
2025 * The events up to the failed event are scheduled out normally,
2026 * tstamp_stopped will be updated.
2027 *
2028 * The failed events and the remaining siblings need to have
2029 * their timings updated as if they had gone thru event_sched_in()
2030 * and event_sched_out(). This is required to get consistent timings
2031 * across the group. This also takes care of the case where the group
2032 * could never be scheduled by ensuring tstamp_stopped is set to mark
2033 * the time the event was actually stopped, such that time delta
2034 * calculation in update_event_times() is correct.
6751b71e 2035 */
cdd6c482
IM
2036 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2037 if (event == partial_group)
d7842da4
SE
2038 simulate = true;
2039
2040 if (simulate) {
2041 event->tstamp_running += now - event->tstamp_stopped;
2042 event->tstamp_stopped = now;
2043 } else {
2044 event_sched_out(event, cpuctx, ctx);
2045 }
6751b71e 2046 }
9ffcfa6f 2047 event_sched_out(group_event, cpuctx, ctx);
6751b71e 2048
ad5133b7 2049 pmu->cancel_txn(pmu);
90151c35 2050
272325c4 2051 perf_mux_hrtimer_restart(cpuctx);
9e630205 2052
6751b71e
PM
2053 return -EAGAIN;
2054}
2055
3b6f9e5c 2056/*
cdd6c482 2057 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 2058 */
cdd6c482 2059static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
2060 struct perf_cpu_context *cpuctx,
2061 int can_add_hw)
2062{
2063 /*
cdd6c482 2064 * Groups consisting entirely of software events can always go on.
3b6f9e5c 2065 */
d6f962b5 2066 if (event->group_flags & PERF_GROUP_SOFTWARE)
3b6f9e5c
PM
2067 return 1;
2068 /*
2069 * If an exclusive group is already on, no other hardware
cdd6c482 2070 * events can go on.
3b6f9e5c
PM
2071 */
2072 if (cpuctx->exclusive)
2073 return 0;
2074 /*
2075 * If this group is exclusive and there are already
cdd6c482 2076 * events on the CPU, it can't go on.
3b6f9e5c 2077 */
cdd6c482 2078 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
2079 return 0;
2080 /*
2081 * Otherwise, try to add it if all previous groups were able
2082 * to go on.
2083 */
2084 return can_add_hw;
2085}
2086
cdd6c482
IM
2087static void add_event_to_ctx(struct perf_event *event,
2088 struct perf_event_context *ctx)
53cfbf59 2089{
4158755d
SE
2090 u64 tstamp = perf_event_time(event);
2091
cdd6c482 2092 list_add_event(event, ctx);
8a49542c 2093 perf_group_attach(event);
4158755d
SE
2094 event->tstamp_enabled = tstamp;
2095 event->tstamp_running = tstamp;
2096 event->tstamp_stopped = tstamp;
53cfbf59
PM
2097}
2098
bd2afa49
PZ
2099static void ctx_sched_out(struct perf_event_context *ctx,
2100 struct perf_cpu_context *cpuctx,
2101 enum event_type_t event_type);
2c29ef0f
PZ
2102static void
2103ctx_sched_in(struct perf_event_context *ctx,
2104 struct perf_cpu_context *cpuctx,
2105 enum event_type_t event_type,
2106 struct task_struct *task);
fe4b04fa 2107
bd2afa49
PZ
2108static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2109 struct perf_event_context *ctx)
2110{
2111 if (!cpuctx->task_ctx)
2112 return;
2113
2114 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2115 return;
2116
2117 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2118}
2119
dce5855b
PZ
2120static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2121 struct perf_event_context *ctx,
2122 struct task_struct *task)
2123{
2124 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2125 if (ctx)
2126 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2127 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2128 if (ctx)
2129 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2130}
2131
3e349507
PZ
2132static void ctx_resched(struct perf_cpu_context *cpuctx,
2133 struct perf_event_context *task_ctx)
0017960f 2134{
3e349507
PZ
2135 perf_pmu_disable(cpuctx->ctx.pmu);
2136 if (task_ctx)
2137 task_ctx_sched_out(cpuctx, task_ctx);
2138 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2139 perf_event_sched_in(cpuctx, task_ctx, current);
2140 perf_pmu_enable(cpuctx->ctx.pmu);
0017960f
PZ
2141}
2142
0793a61d 2143/*
cdd6c482 2144 * Cross CPU call to install and enable a performance event
682076ae 2145 *
a096309b
PZ
2146 * Very similar to remote_function() + event_function() but cannot assume that
2147 * things like ctx->is_active and cpuctx->task_ctx are set.
0793a61d 2148 */
fe4b04fa 2149static int __perf_install_in_context(void *info)
0793a61d 2150{
a096309b
PZ
2151 struct perf_event *event = info;
2152 struct perf_event_context *ctx = event->ctx;
108b02cf 2153 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f 2154 struct perf_event_context *task_ctx = cpuctx->task_ctx;
a096309b
PZ
2155 bool activate = true;
2156 int ret = 0;
0793a61d 2157
63b6da39 2158 raw_spin_lock(&cpuctx->ctx.lock);
39a43640 2159 if (ctx->task) {
b58f6b0d
PZ
2160 raw_spin_lock(&ctx->lock);
2161 task_ctx = ctx;
a096309b
PZ
2162
2163 /* If we're on the wrong CPU, try again */
2164 if (task_cpu(ctx->task) != smp_processor_id()) {
2165 ret = -ESRCH;
63b6da39 2166 goto unlock;
a096309b 2167 }
b58f6b0d 2168
39a43640 2169 /*
a096309b
PZ
2170 * If we're on the right CPU, see if the task we target is
2171 * current, if not we don't have to activate the ctx, a future
2172 * context switch will do that for us.
39a43640 2173 */
a096309b
PZ
2174 if (ctx->task != current)
2175 activate = false;
2176 else
2177 WARN_ON_ONCE(cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2178
63b6da39
PZ
2179 } else if (task_ctx) {
2180 raw_spin_lock(&task_ctx->lock);
2c29ef0f 2181 }
b58f6b0d 2182
a096309b
PZ
2183 if (activate) {
2184 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2185 add_event_to_ctx(event, ctx);
2186 ctx_resched(cpuctx, task_ctx);
2187 } else {
2188 add_event_to_ctx(event, ctx);
2189 }
2190
63b6da39 2191unlock:
2c29ef0f 2192 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa 2193
a096309b 2194 return ret;
0793a61d
TG
2195}
2196
2197/*
a096309b
PZ
2198 * Attach a performance event to a context.
2199 *
2200 * Very similar to event_function_call, see comment there.
0793a61d
TG
2201 */
2202static void
cdd6c482
IM
2203perf_install_in_context(struct perf_event_context *ctx,
2204 struct perf_event *event,
0793a61d
TG
2205 int cpu)
2206{
a096309b 2207 struct task_struct *task = READ_ONCE(ctx->task);
39a43640 2208
fe4b04fa
PZ
2209 lockdep_assert_held(&ctx->mutex);
2210
c3f00c70 2211 event->ctx = ctx;
0cda4c02
YZ
2212 if (event->cpu != -1)
2213 event->cpu = cpu;
c3f00c70 2214
a096309b
PZ
2215 if (!task) {
2216 cpu_function_call(cpu, __perf_install_in_context, event);
2217 return;
2218 }
2219
2220 /*
2221 * Should not happen, we validate the ctx is still alive before calling.
2222 */
2223 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2224 return;
2225
39a43640
PZ
2226 /*
2227 * Installing events is tricky because we cannot rely on ctx->is_active
2228 * to be set in case this is the nr_events 0 -> 1 transition.
39a43640 2229 */
a096309b 2230again:
63b6da39 2231 /*
a096309b
PZ
2232 * Cannot use task_function_call() because we need to run on the task's
2233 * CPU regardless of whether its current or not.
63b6da39 2234 */
a096309b
PZ
2235 if (!cpu_function_call(task_cpu(task), __perf_install_in_context, event))
2236 return;
2237
2238 raw_spin_lock_irq(&ctx->lock);
2239 task = ctx->task;
84c4e620 2240 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
a096309b
PZ
2241 /*
2242 * Cannot happen because we already checked above (which also
2243 * cannot happen), and we hold ctx->mutex, which serializes us
2244 * against perf_event_exit_task_context().
2245 */
63b6da39
PZ
2246 raw_spin_unlock_irq(&ctx->lock);
2247 return;
2248 }
39a43640 2249 raw_spin_unlock_irq(&ctx->lock);
39a43640 2250 /*
a096309b
PZ
2251 * Since !ctx->is_active doesn't mean anything, we must IPI
2252 * unconditionally.
39a43640 2253 */
a096309b 2254 goto again;
0793a61d
TG
2255}
2256
fa289bec 2257/*
cdd6c482 2258 * Put a event into inactive state and update time fields.
fa289bec
PM
2259 * Enabling the leader of a group effectively enables all
2260 * the group members that aren't explicitly disabled, so we
2261 * have to update their ->tstamp_enabled also.
2262 * Note: this works for group members as well as group leaders
2263 * since the non-leader members' sibling_lists will be empty.
2264 */
1d9b482e 2265static void __perf_event_mark_enabled(struct perf_event *event)
fa289bec 2266{
cdd6c482 2267 struct perf_event *sub;
4158755d 2268 u64 tstamp = perf_event_time(event);
fa289bec 2269
cdd6c482 2270 event->state = PERF_EVENT_STATE_INACTIVE;
4158755d 2271 event->tstamp_enabled = tstamp - event->total_time_enabled;
9ed6060d 2272 list_for_each_entry(sub, &event->sibling_list, group_entry) {
4158755d
SE
2273 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2274 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
9ed6060d 2275 }
fa289bec
PM
2276}
2277
d859e29f 2278/*
cdd6c482 2279 * Cross CPU call to enable a performance event
d859e29f 2280 */
fae3fde6
PZ
2281static void __perf_event_enable(struct perf_event *event,
2282 struct perf_cpu_context *cpuctx,
2283 struct perf_event_context *ctx,
2284 void *info)
04289bb9 2285{
cdd6c482 2286 struct perf_event *leader = event->group_leader;
fae3fde6 2287 struct perf_event_context *task_ctx;
04289bb9 2288
6e801e01
PZ
2289 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2290 event->state <= PERF_EVENT_STATE_ERROR)
fae3fde6 2291 return;
3cbed429 2292
bd2afa49
PZ
2293 if (ctx->is_active)
2294 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2295
1d9b482e 2296 __perf_event_mark_enabled(event);
04289bb9 2297
fae3fde6
PZ
2298 if (!ctx->is_active)
2299 return;
2300
e5d1367f 2301 if (!event_filter_match(event)) {
bd2afa49 2302 if (is_cgroup_event(event))
e5d1367f 2303 perf_cgroup_defer_enabled(event);
bd2afa49 2304 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2305 return;
e5d1367f 2306 }
f4c4176f 2307
04289bb9 2308 /*
cdd6c482 2309 * If the event is in a group and isn't the group leader,
d859e29f 2310 * then don't put it on unless the group is on.
04289bb9 2311 */
bd2afa49
PZ
2312 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2313 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2314 return;
bd2afa49 2315 }
fe4b04fa 2316
fae3fde6
PZ
2317 task_ctx = cpuctx->task_ctx;
2318 if (ctx->task)
2319 WARN_ON_ONCE(task_ctx != ctx);
d859e29f 2320
fae3fde6 2321 ctx_resched(cpuctx, task_ctx);
7b648018
PZ
2322}
2323
d859e29f 2324/*
cdd6c482 2325 * Enable a event.
c93f7669 2326 *
cdd6c482
IM
2327 * If event->ctx is a cloned context, callers must make sure that
2328 * every task struct that event->ctx->task could possibly point to
c93f7669 2329 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2330 * perf_event_for_each_child or perf_event_for_each as described
2331 * for perf_event_disable.
d859e29f 2332 */
f63a8daa 2333static void _perf_event_enable(struct perf_event *event)
d859e29f 2334{
cdd6c482 2335 struct perf_event_context *ctx = event->ctx;
d859e29f 2336
7b648018 2337 raw_spin_lock_irq(&ctx->lock);
6e801e01
PZ
2338 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2339 event->state < PERF_EVENT_STATE_ERROR) {
7b648018 2340 raw_spin_unlock_irq(&ctx->lock);
d859e29f
PM
2341 return;
2342 }
2343
d859e29f 2344 /*
cdd6c482 2345 * If the event is in error state, clear that first.
7b648018
PZ
2346 *
2347 * That way, if we see the event in error state below, we know that it
2348 * has gone back into error state, as distinct from the task having
2349 * been scheduled away before the cross-call arrived.
d859e29f 2350 */
cdd6c482
IM
2351 if (event->state == PERF_EVENT_STATE_ERROR)
2352 event->state = PERF_EVENT_STATE_OFF;
e625cce1 2353 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa 2354
fae3fde6 2355 event_function_call(event, __perf_event_enable, NULL);
d859e29f 2356}
f63a8daa
PZ
2357
2358/*
2359 * See perf_event_disable();
2360 */
2361void perf_event_enable(struct perf_event *event)
2362{
2363 struct perf_event_context *ctx;
2364
2365 ctx = perf_event_ctx_lock(event);
2366 _perf_event_enable(event);
2367 perf_event_ctx_unlock(event, ctx);
2368}
dcfce4a0 2369EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 2370
375637bc
AS
2371struct stop_event_data {
2372 struct perf_event *event;
2373 unsigned int restart;
2374};
2375
95ff4ca2
AS
2376static int __perf_event_stop(void *info)
2377{
375637bc
AS
2378 struct stop_event_data *sd = info;
2379 struct perf_event *event = sd->event;
95ff4ca2 2380
375637bc 2381 /* if it's already INACTIVE, do nothing */
95ff4ca2
AS
2382 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2383 return 0;
2384
2385 /* matches smp_wmb() in event_sched_in() */
2386 smp_rmb();
2387
2388 /*
2389 * There is a window with interrupts enabled before we get here,
2390 * so we need to check again lest we try to stop another CPU's event.
2391 */
2392 if (READ_ONCE(event->oncpu) != smp_processor_id())
2393 return -EAGAIN;
2394
2395 event->pmu->stop(event, PERF_EF_UPDATE);
2396
375637bc
AS
2397 /*
2398 * May race with the actual stop (through perf_pmu_output_stop()),
2399 * but it is only used for events with AUX ring buffer, and such
2400 * events will refuse to restart because of rb::aux_mmap_count==0,
2401 * see comments in perf_aux_output_begin().
2402 *
2403 * Since this is happening on a event-local CPU, no trace is lost
2404 * while restarting.
2405 */
2406 if (sd->restart)
2407 event->pmu->start(event, PERF_EF_START);
2408
95ff4ca2
AS
2409 return 0;
2410}
2411
375637bc
AS
2412static int perf_event_restart(struct perf_event *event)
2413{
2414 struct stop_event_data sd = {
2415 .event = event,
2416 .restart = 1,
2417 };
2418 int ret = 0;
2419
2420 do {
2421 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2422 return 0;
2423
2424 /* matches smp_wmb() in event_sched_in() */
2425 smp_rmb();
2426
2427 /*
2428 * We only want to restart ACTIVE events, so if the event goes
2429 * inactive here (event->oncpu==-1), there's nothing more to do;
2430 * fall through with ret==-ENXIO.
2431 */
2432 ret = cpu_function_call(READ_ONCE(event->oncpu),
2433 __perf_event_stop, &sd);
2434 } while (ret == -EAGAIN);
2435
2436 return ret;
2437}
2438
2439/*
2440 * In order to contain the amount of racy and tricky in the address filter
2441 * configuration management, it is a two part process:
2442 *
2443 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2444 * we update the addresses of corresponding vmas in
2445 * event::addr_filters_offs array and bump the event::addr_filters_gen;
2446 * (p2) when an event is scheduled in (pmu::add), it calls
2447 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2448 * if the generation has changed since the previous call.
2449 *
2450 * If (p1) happens while the event is active, we restart it to force (p2).
2451 *
2452 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2453 * pre-existing mappings, called once when new filters arrive via SET_FILTER
2454 * ioctl;
2455 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2456 * registered mapping, called for every new mmap(), with mm::mmap_sem down
2457 * for reading;
2458 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2459 * of exec.
2460 */
2461void perf_event_addr_filters_sync(struct perf_event *event)
2462{
2463 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2464
2465 if (!has_addr_filter(event))
2466 return;
2467
2468 raw_spin_lock(&ifh->lock);
2469 if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2470 event->pmu->addr_filters_sync(event);
2471 event->hw.addr_filters_gen = event->addr_filters_gen;
2472 }
2473 raw_spin_unlock(&ifh->lock);
2474}
2475EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2476
f63a8daa 2477static int _perf_event_refresh(struct perf_event *event, int refresh)
79f14641 2478{
2023b359 2479 /*
cdd6c482 2480 * not supported on inherited events
2023b359 2481 */
2e939d1d 2482 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
2483 return -EINVAL;
2484
cdd6c482 2485 atomic_add(refresh, &event->event_limit);
f63a8daa 2486 _perf_event_enable(event);
2023b359
PZ
2487
2488 return 0;
79f14641 2489}
f63a8daa
PZ
2490
2491/*
2492 * See perf_event_disable()
2493 */
2494int perf_event_refresh(struct perf_event *event, int refresh)
2495{
2496 struct perf_event_context *ctx;
2497 int ret;
2498
2499 ctx = perf_event_ctx_lock(event);
2500 ret = _perf_event_refresh(event, refresh);
2501 perf_event_ctx_unlock(event, ctx);
2502
2503 return ret;
2504}
26ca5c11 2505EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 2506
5b0311e1
FW
2507static void ctx_sched_out(struct perf_event_context *ctx,
2508 struct perf_cpu_context *cpuctx,
2509 enum event_type_t event_type)
235c7fc7 2510{
db24d33e 2511 int is_active = ctx->is_active;
c994d613 2512 struct perf_event *event;
235c7fc7 2513
c994d613 2514 lockdep_assert_held(&ctx->lock);
235c7fc7 2515
39a43640
PZ
2516 if (likely(!ctx->nr_events)) {
2517 /*
2518 * See __perf_remove_from_context().
2519 */
2520 WARN_ON_ONCE(ctx->is_active);
2521 if (ctx->task)
2522 WARN_ON_ONCE(cpuctx->task_ctx);
facc4307 2523 return;
39a43640
PZ
2524 }
2525
db24d33e 2526 ctx->is_active &= ~event_type;
3cbaa590
PZ
2527 if (!(ctx->is_active & EVENT_ALL))
2528 ctx->is_active = 0;
2529
63e30d3e
PZ
2530 if (ctx->task) {
2531 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2532 if (!ctx->is_active)
2533 cpuctx->task_ctx = NULL;
2534 }
facc4307 2535
8fdc6539
PZ
2536 /*
2537 * Always update time if it was set; not only when it changes.
2538 * Otherwise we can 'forget' to update time for any but the last
2539 * context we sched out. For example:
2540 *
2541 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2542 * ctx_sched_out(.event_type = EVENT_PINNED)
2543 *
2544 * would only update time for the pinned events.
2545 */
3cbaa590
PZ
2546 if (is_active & EVENT_TIME) {
2547 /* update (and stop) ctx time */
2548 update_context_time(ctx);
2549 update_cgrp_time_from_cpuctx(cpuctx);
2550 }
2551
8fdc6539
PZ
2552 is_active ^= ctx->is_active; /* changed bits */
2553
3cbaa590 2554 if (!ctx->nr_active || !(is_active & EVENT_ALL))
facc4307 2555 return;
5b0311e1 2556
075e0b00 2557 perf_pmu_disable(ctx->pmu);
3cbaa590 2558 if (is_active & EVENT_PINNED) {
889ff015
FW
2559 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2560 group_sched_out(event, cpuctx, ctx);
9ed6060d 2561 }
889ff015 2562
3cbaa590 2563 if (is_active & EVENT_FLEXIBLE) {
889ff015 2564 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
8c9ed8e1 2565 group_sched_out(event, cpuctx, ctx);
9ed6060d 2566 }
1b9a644f 2567 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
2568}
2569
564c2b21 2570/*
5a3126d4
PZ
2571 * Test whether two contexts are equivalent, i.e. whether they have both been
2572 * cloned from the same version of the same context.
2573 *
2574 * Equivalence is measured using a generation number in the context that is
2575 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2576 * and list_del_event().
564c2b21 2577 */
cdd6c482
IM
2578static int context_equiv(struct perf_event_context *ctx1,
2579 struct perf_event_context *ctx2)
564c2b21 2580{
211de6eb
PZ
2581 lockdep_assert_held(&ctx1->lock);
2582 lockdep_assert_held(&ctx2->lock);
2583
5a3126d4
PZ
2584 /* Pinning disables the swap optimization */
2585 if (ctx1->pin_count || ctx2->pin_count)
2586 return 0;
2587
2588 /* If ctx1 is the parent of ctx2 */
2589 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2590 return 1;
2591
2592 /* If ctx2 is the parent of ctx1 */
2593 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2594 return 1;
2595
2596 /*
2597 * If ctx1 and ctx2 have the same parent; we flatten the parent
2598 * hierarchy, see perf_event_init_context().
2599 */
2600 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2601 ctx1->parent_gen == ctx2->parent_gen)
2602 return 1;
2603
2604 /* Unmatched */
2605 return 0;
564c2b21
PM
2606}
2607
cdd6c482
IM
2608static void __perf_event_sync_stat(struct perf_event *event,
2609 struct perf_event *next_event)
bfbd3381
PZ
2610{
2611 u64 value;
2612
cdd6c482 2613 if (!event->attr.inherit_stat)
bfbd3381
PZ
2614 return;
2615
2616 /*
cdd6c482 2617 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
2618 * because we're in the middle of a context switch and have IRQs
2619 * disabled, which upsets smp_call_function_single(), however
cdd6c482 2620 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
2621 * don't need to use it.
2622 */
cdd6c482
IM
2623 switch (event->state) {
2624 case PERF_EVENT_STATE_ACTIVE:
3dbebf15
PZ
2625 event->pmu->read(event);
2626 /* fall-through */
bfbd3381 2627
cdd6c482
IM
2628 case PERF_EVENT_STATE_INACTIVE:
2629 update_event_times(event);
bfbd3381
PZ
2630 break;
2631
2632 default:
2633 break;
2634 }
2635
2636 /*
cdd6c482 2637 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
2638 * values when we flip the contexts.
2639 */
e7850595
PZ
2640 value = local64_read(&next_event->count);
2641 value = local64_xchg(&event->count, value);
2642 local64_set(&next_event->count, value);
bfbd3381 2643
cdd6c482
IM
2644 swap(event->total_time_enabled, next_event->total_time_enabled);
2645 swap(event->total_time_running, next_event->total_time_running);
19d2e755 2646
bfbd3381 2647 /*
19d2e755 2648 * Since we swizzled the values, update the user visible data too.
bfbd3381 2649 */
cdd6c482
IM
2650 perf_event_update_userpage(event);
2651 perf_event_update_userpage(next_event);
bfbd3381
PZ
2652}
2653
cdd6c482
IM
2654static void perf_event_sync_stat(struct perf_event_context *ctx,
2655 struct perf_event_context *next_ctx)
bfbd3381 2656{
cdd6c482 2657 struct perf_event *event, *next_event;
bfbd3381
PZ
2658
2659 if (!ctx->nr_stat)
2660 return;
2661
02ffdbc8
PZ
2662 update_context_time(ctx);
2663
cdd6c482
IM
2664 event = list_first_entry(&ctx->event_list,
2665 struct perf_event, event_entry);
bfbd3381 2666
cdd6c482
IM
2667 next_event = list_first_entry(&next_ctx->event_list,
2668 struct perf_event, event_entry);
bfbd3381 2669
cdd6c482
IM
2670 while (&event->event_entry != &ctx->event_list &&
2671 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 2672
cdd6c482 2673 __perf_event_sync_stat(event, next_event);
bfbd3381 2674
cdd6c482
IM
2675 event = list_next_entry(event, event_entry);
2676 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
2677 }
2678}
2679
fe4b04fa
PZ
2680static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2681 struct task_struct *next)
0793a61d 2682{
8dc85d54 2683 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482 2684 struct perf_event_context *next_ctx;
5a3126d4 2685 struct perf_event_context *parent, *next_parent;
108b02cf 2686 struct perf_cpu_context *cpuctx;
c93f7669 2687 int do_switch = 1;
0793a61d 2688
108b02cf
PZ
2689 if (likely(!ctx))
2690 return;
10989fb2 2691
108b02cf
PZ
2692 cpuctx = __get_cpu_context(ctx);
2693 if (!cpuctx->task_ctx)
0793a61d
TG
2694 return;
2695
c93f7669 2696 rcu_read_lock();
8dc85d54 2697 next_ctx = next->perf_event_ctxp[ctxn];
5a3126d4
PZ
2698 if (!next_ctx)
2699 goto unlock;
2700
2701 parent = rcu_dereference(ctx->parent_ctx);
2702 next_parent = rcu_dereference(next_ctx->parent_ctx);
2703
2704 /* If neither context have a parent context; they cannot be clones. */
802c8a61 2705 if (!parent && !next_parent)
5a3126d4
PZ
2706 goto unlock;
2707
2708 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
c93f7669
PM
2709 /*
2710 * Looks like the two contexts are clones, so we might be
2711 * able to optimize the context switch. We lock both
2712 * contexts and check that they are clones under the
2713 * lock (including re-checking that neither has been
2714 * uncloned in the meantime). It doesn't matter which
2715 * order we take the locks because no other cpu could
2716 * be trying to lock both of these tasks.
2717 */
e625cce1
TG
2718 raw_spin_lock(&ctx->lock);
2719 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 2720 if (context_equiv(ctx, next_ctx)) {
63b6da39
PZ
2721 WRITE_ONCE(ctx->task, next);
2722 WRITE_ONCE(next_ctx->task, task);
5a158c3c
YZ
2723
2724 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2725
63b6da39
PZ
2726 /*
2727 * RCU_INIT_POINTER here is safe because we've not
2728 * modified the ctx and the above modification of
2729 * ctx->task and ctx->task_ctx_data are immaterial
2730 * since those values are always verified under
2731 * ctx->lock which we're now holding.
2732 */
2733 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2734 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2735
c93f7669 2736 do_switch = 0;
bfbd3381 2737
cdd6c482 2738 perf_event_sync_stat(ctx, next_ctx);
c93f7669 2739 }
e625cce1
TG
2740 raw_spin_unlock(&next_ctx->lock);
2741 raw_spin_unlock(&ctx->lock);
564c2b21 2742 }
5a3126d4 2743unlock:
c93f7669 2744 rcu_read_unlock();
564c2b21 2745
c93f7669 2746 if (do_switch) {
facc4307 2747 raw_spin_lock(&ctx->lock);
8833d0e2 2748 task_ctx_sched_out(cpuctx, ctx);
facc4307 2749 raw_spin_unlock(&ctx->lock);
c93f7669 2750 }
0793a61d
TG
2751}
2752
ba532500
YZ
2753void perf_sched_cb_dec(struct pmu *pmu)
2754{
2755 this_cpu_dec(perf_sched_cb_usages);
2756}
2757
2758void perf_sched_cb_inc(struct pmu *pmu)
2759{
2760 this_cpu_inc(perf_sched_cb_usages);
2761}
2762
2763/*
2764 * This function provides the context switch callback to the lower code
2765 * layer. It is invoked ONLY when the context switch callback is enabled.
2766 */
2767static void perf_pmu_sched_task(struct task_struct *prev,
2768 struct task_struct *next,
2769 bool sched_in)
2770{
2771 struct perf_cpu_context *cpuctx;
2772 struct pmu *pmu;
2773 unsigned long flags;
2774
2775 if (prev == next)
2776 return;
2777
2778 local_irq_save(flags);
2779
2780 rcu_read_lock();
2781
2782 list_for_each_entry_rcu(pmu, &pmus, entry) {
2783 if (pmu->sched_task) {
2784 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2785
2786 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2787
2788 perf_pmu_disable(pmu);
2789
2790 pmu->sched_task(cpuctx->task_ctx, sched_in);
2791
2792 perf_pmu_enable(pmu);
2793
2794 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2795 }
2796 }
2797
2798 rcu_read_unlock();
2799
2800 local_irq_restore(flags);
2801}
2802
45ac1403
AH
2803static void perf_event_switch(struct task_struct *task,
2804 struct task_struct *next_prev, bool sched_in);
2805
8dc85d54
PZ
2806#define for_each_task_context_nr(ctxn) \
2807 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2808
2809/*
2810 * Called from scheduler to remove the events of the current task,
2811 * with interrupts disabled.
2812 *
2813 * We stop each event and update the event value in event->count.
2814 *
2815 * This does not protect us against NMI, but disable()
2816 * sets the disabled bit in the control field of event _before_
2817 * accessing the event control register. If a NMI hits, then it will
2818 * not restart the event.
2819 */
ab0cce56
JO
2820void __perf_event_task_sched_out(struct task_struct *task,
2821 struct task_struct *next)
8dc85d54
PZ
2822{
2823 int ctxn;
2824
ba532500
YZ
2825 if (__this_cpu_read(perf_sched_cb_usages))
2826 perf_pmu_sched_task(task, next, false);
2827
45ac1403
AH
2828 if (atomic_read(&nr_switch_events))
2829 perf_event_switch(task, next, false);
2830
8dc85d54
PZ
2831 for_each_task_context_nr(ctxn)
2832 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
2833
2834 /*
2835 * if cgroup events exist on this CPU, then we need
2836 * to check if we have to switch out PMU state.
2837 * cgroup event are system-wide mode only
2838 */
4a32fea9 2839 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 2840 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
2841}
2842
5b0311e1
FW
2843/*
2844 * Called with IRQs disabled
2845 */
2846static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2847 enum event_type_t event_type)
2848{
2849 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
2850}
2851
235c7fc7 2852static void
5b0311e1 2853ctx_pinned_sched_in(struct perf_event_context *ctx,
6e37738a 2854 struct perf_cpu_context *cpuctx)
0793a61d 2855{
cdd6c482 2856 struct perf_event *event;
0793a61d 2857
889ff015
FW
2858 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2859 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2860 continue;
5632ab12 2861 if (!event_filter_match(event))
3b6f9e5c
PM
2862 continue;
2863
e5d1367f
SE
2864 /* may need to reset tstamp_enabled */
2865 if (is_cgroup_event(event))
2866 perf_cgroup_mark_enabled(event, ctx);
2867
8c9ed8e1 2868 if (group_can_go_on(event, cpuctx, 1))
6e37738a 2869 group_sched_in(event, cpuctx, ctx);
3b6f9e5c
PM
2870
2871 /*
2872 * If this pinned group hasn't been scheduled,
2873 * put it in error state.
2874 */
cdd6c482
IM
2875 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2876 update_group_times(event);
2877 event->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2878 }
3b6f9e5c 2879 }
5b0311e1
FW
2880}
2881
2882static void
2883ctx_flexible_sched_in(struct perf_event_context *ctx,
6e37738a 2884 struct perf_cpu_context *cpuctx)
5b0311e1
FW
2885{
2886 struct perf_event *event;
2887 int can_add_hw = 1;
3b6f9e5c 2888
889ff015
FW
2889 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2890 /* Ignore events in OFF or ERROR state */
2891 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2892 continue;
04289bb9
IM
2893 /*
2894 * Listen to the 'cpu' scheduling filter constraint
cdd6c482 2895 * of events:
04289bb9 2896 */
5632ab12 2897 if (!event_filter_match(event))
0793a61d
TG
2898 continue;
2899
e5d1367f
SE
2900 /* may need to reset tstamp_enabled */
2901 if (is_cgroup_event(event))
2902 perf_cgroup_mark_enabled(event, ctx);
2903
9ed6060d 2904 if (group_can_go_on(event, cpuctx, can_add_hw)) {
6e37738a 2905 if (group_sched_in(event, cpuctx, ctx))
dd0e6ba2 2906 can_add_hw = 0;
9ed6060d 2907 }
0793a61d 2908 }
5b0311e1
FW
2909}
2910
2911static void
2912ctx_sched_in(struct perf_event_context *ctx,
2913 struct perf_cpu_context *cpuctx,
e5d1367f
SE
2914 enum event_type_t event_type,
2915 struct task_struct *task)
5b0311e1 2916{
db24d33e 2917 int is_active = ctx->is_active;
c994d613
PZ
2918 u64 now;
2919
2920 lockdep_assert_held(&ctx->lock);
e5d1367f 2921
5b0311e1 2922 if (likely(!ctx->nr_events))
facc4307 2923 return;
5b0311e1 2924
3cbaa590 2925 ctx->is_active |= (event_type | EVENT_TIME);
63e30d3e
PZ
2926 if (ctx->task) {
2927 if (!is_active)
2928 cpuctx->task_ctx = ctx;
2929 else
2930 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2931 }
2932
3cbaa590
PZ
2933 is_active ^= ctx->is_active; /* changed bits */
2934
2935 if (is_active & EVENT_TIME) {
2936 /* start ctx time */
2937 now = perf_clock();
2938 ctx->timestamp = now;
2939 perf_cgroup_set_timestamp(task, ctx);
2940 }
2941
5b0311e1
FW
2942 /*
2943 * First go through the list and put on any pinned groups
2944 * in order to give them the best chance of going on.
2945 */
3cbaa590 2946 if (is_active & EVENT_PINNED)
6e37738a 2947 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
2948
2949 /* Then walk through the lower prio flexible groups */
3cbaa590 2950 if (is_active & EVENT_FLEXIBLE)
6e37738a 2951 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
2952}
2953
329c0e01 2954static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
2955 enum event_type_t event_type,
2956 struct task_struct *task)
329c0e01
FW
2957{
2958 struct perf_event_context *ctx = &cpuctx->ctx;
2959
e5d1367f 2960 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
2961}
2962
e5d1367f
SE
2963static void perf_event_context_sched_in(struct perf_event_context *ctx,
2964 struct task_struct *task)
235c7fc7 2965{
108b02cf 2966 struct perf_cpu_context *cpuctx;
235c7fc7 2967
108b02cf 2968 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
2969 if (cpuctx->task_ctx == ctx)
2970 return;
2971
facc4307 2972 perf_ctx_lock(cpuctx, ctx);
1b9a644f 2973 perf_pmu_disable(ctx->pmu);
329c0e01
FW
2974 /*
2975 * We want to keep the following priority order:
2976 * cpu pinned (that don't need to move), task pinned,
2977 * cpu flexible, task flexible.
2978 */
2979 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
63e30d3e 2980 perf_event_sched_in(cpuctx, ctx, task);
facc4307
PZ
2981 perf_pmu_enable(ctx->pmu);
2982 perf_ctx_unlock(cpuctx, ctx);
235c7fc7
IM
2983}
2984
8dc85d54
PZ
2985/*
2986 * Called from scheduler to add the events of the current task
2987 * with interrupts disabled.
2988 *
2989 * We restore the event value and then enable it.
2990 *
2991 * This does not protect us against NMI, but enable()
2992 * sets the enabled bit in the control field of event _before_
2993 * accessing the event control register. If a NMI hits, then it will
2994 * keep the event running.
2995 */
ab0cce56
JO
2996void __perf_event_task_sched_in(struct task_struct *prev,
2997 struct task_struct *task)
8dc85d54
PZ
2998{
2999 struct perf_event_context *ctx;
3000 int ctxn;
3001
7e41d177
PZ
3002 /*
3003 * If cgroup events exist on this CPU, then we need to check if we have
3004 * to switch in PMU state; cgroup event are system-wide mode only.
3005 *
3006 * Since cgroup events are CPU events, we must schedule these in before
3007 * we schedule in the task events.
3008 */
3009 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3010 perf_cgroup_sched_in(prev, task);
3011
8dc85d54
PZ
3012 for_each_task_context_nr(ctxn) {
3013 ctx = task->perf_event_ctxp[ctxn];
3014 if (likely(!ctx))
3015 continue;
3016
e5d1367f 3017 perf_event_context_sched_in(ctx, task);
8dc85d54 3018 }
d010b332 3019
45ac1403
AH
3020 if (atomic_read(&nr_switch_events))
3021 perf_event_switch(task, prev, true);
3022
ba532500
YZ
3023 if (__this_cpu_read(perf_sched_cb_usages))
3024 perf_pmu_sched_task(prev, task, true);
235c7fc7
IM
3025}
3026
abd50713
PZ
3027static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3028{
3029 u64 frequency = event->attr.sample_freq;
3030 u64 sec = NSEC_PER_SEC;
3031 u64 divisor, dividend;
3032
3033 int count_fls, nsec_fls, frequency_fls, sec_fls;
3034
3035 count_fls = fls64(count);
3036 nsec_fls = fls64(nsec);
3037 frequency_fls = fls64(frequency);
3038 sec_fls = 30;
3039
3040 /*
3041 * We got @count in @nsec, with a target of sample_freq HZ
3042 * the target period becomes:
3043 *
3044 * @count * 10^9
3045 * period = -------------------
3046 * @nsec * sample_freq
3047 *
3048 */
3049
3050 /*
3051 * Reduce accuracy by one bit such that @a and @b converge
3052 * to a similar magnitude.
3053 */
fe4b04fa 3054#define REDUCE_FLS(a, b) \
abd50713
PZ
3055do { \
3056 if (a##_fls > b##_fls) { \
3057 a >>= 1; \
3058 a##_fls--; \
3059 } else { \
3060 b >>= 1; \
3061 b##_fls--; \
3062 } \
3063} while (0)
3064
3065 /*
3066 * Reduce accuracy until either term fits in a u64, then proceed with
3067 * the other, so that finally we can do a u64/u64 division.
3068 */
3069 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3070 REDUCE_FLS(nsec, frequency);
3071 REDUCE_FLS(sec, count);
3072 }
3073
3074 if (count_fls + sec_fls > 64) {
3075 divisor = nsec * frequency;
3076
3077 while (count_fls + sec_fls > 64) {
3078 REDUCE_FLS(count, sec);
3079 divisor >>= 1;
3080 }
3081
3082 dividend = count * sec;
3083 } else {
3084 dividend = count * sec;
3085
3086 while (nsec_fls + frequency_fls > 64) {
3087 REDUCE_FLS(nsec, frequency);
3088 dividend >>= 1;
3089 }
3090
3091 divisor = nsec * frequency;
3092 }
3093
f6ab91ad
PZ
3094 if (!divisor)
3095 return dividend;
3096
abd50713
PZ
3097 return div64_u64(dividend, divisor);
3098}
3099
e050e3f0
SE
3100static DEFINE_PER_CPU(int, perf_throttled_count);
3101static DEFINE_PER_CPU(u64, perf_throttled_seq);
3102
f39d47ff 3103static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 3104{
cdd6c482 3105 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 3106 s64 period, sample_period;
bd2b5b12
PZ
3107 s64 delta;
3108
abd50713 3109 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
3110
3111 delta = (s64)(period - hwc->sample_period);
3112 delta = (delta + 7) / 8; /* low pass filter */
3113
3114 sample_period = hwc->sample_period + delta;
3115
3116 if (!sample_period)
3117 sample_period = 1;
3118
bd2b5b12 3119 hwc->sample_period = sample_period;
abd50713 3120
e7850595 3121 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
3122 if (disable)
3123 event->pmu->stop(event, PERF_EF_UPDATE);
3124
e7850595 3125 local64_set(&hwc->period_left, 0);
f39d47ff
SE
3126
3127 if (disable)
3128 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 3129 }
bd2b5b12
PZ
3130}
3131
e050e3f0
SE
3132/*
3133 * combine freq adjustment with unthrottling to avoid two passes over the
3134 * events. At the same time, make sure, having freq events does not change
3135 * the rate of unthrottling as that would introduce bias.
3136 */
3137static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3138 int needs_unthr)
60db5e09 3139{
cdd6c482
IM
3140 struct perf_event *event;
3141 struct hw_perf_event *hwc;
e050e3f0 3142 u64 now, period = TICK_NSEC;
abd50713 3143 s64 delta;
60db5e09 3144
e050e3f0
SE
3145 /*
3146 * only need to iterate over all events iff:
3147 * - context have events in frequency mode (needs freq adjust)
3148 * - there are events to unthrottle on this cpu
3149 */
3150 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
3151 return;
3152
e050e3f0 3153 raw_spin_lock(&ctx->lock);
f39d47ff 3154 perf_pmu_disable(ctx->pmu);
e050e3f0 3155
03541f8b 3156 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 3157 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
3158 continue;
3159
5632ab12 3160 if (!event_filter_match(event))
5d27c23d
PZ
3161 continue;
3162
44377277
AS
3163 perf_pmu_disable(event->pmu);
3164
cdd6c482 3165 hwc = &event->hw;
6a24ed6c 3166
ae23bff1 3167 if (hwc->interrupts == MAX_INTERRUPTS) {
e050e3f0 3168 hwc->interrupts = 0;
cdd6c482 3169 perf_log_throttle(event, 1);
a4eaf7f1 3170 event->pmu->start(event, 0);
a78ac325
PZ
3171 }
3172
cdd6c482 3173 if (!event->attr.freq || !event->attr.sample_freq)
44377277 3174 goto next;
60db5e09 3175
e050e3f0
SE
3176 /*
3177 * stop the event and update event->count
3178 */
3179 event->pmu->stop(event, PERF_EF_UPDATE);
3180
e7850595 3181 now = local64_read(&event->count);
abd50713
PZ
3182 delta = now - hwc->freq_count_stamp;
3183 hwc->freq_count_stamp = now;
60db5e09 3184
e050e3f0
SE
3185 /*
3186 * restart the event
3187 * reload only if value has changed
f39d47ff
SE
3188 * we have stopped the event so tell that
3189 * to perf_adjust_period() to avoid stopping it
3190 * twice.
e050e3f0 3191 */
abd50713 3192 if (delta > 0)
f39d47ff 3193 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
3194
3195 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
44377277
AS
3196 next:
3197 perf_pmu_enable(event->pmu);
60db5e09 3198 }
e050e3f0 3199
f39d47ff 3200 perf_pmu_enable(ctx->pmu);
e050e3f0 3201 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
3202}
3203
235c7fc7 3204/*
cdd6c482 3205 * Round-robin a context's events:
235c7fc7 3206 */
cdd6c482 3207static void rotate_ctx(struct perf_event_context *ctx)
0793a61d 3208{
dddd3379
TG
3209 /*
3210 * Rotate the first entry last of non-pinned groups. Rotation might be
3211 * disabled by the inheritance code.
3212 */
3213 if (!ctx->rotate_disable)
3214 list_rotate_left(&ctx->flexible_groups);
235c7fc7
IM
3215}
3216
9e630205 3217static int perf_rotate_context(struct perf_cpu_context *cpuctx)
235c7fc7 3218{
8dc85d54 3219 struct perf_event_context *ctx = NULL;
2fde4f94 3220 int rotate = 0;
7fc23a53 3221
b5ab4cd5 3222 if (cpuctx->ctx.nr_events) {
b5ab4cd5
PZ
3223 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3224 rotate = 1;
3225 }
235c7fc7 3226
8dc85d54 3227 ctx = cpuctx->task_ctx;
b5ab4cd5 3228 if (ctx && ctx->nr_events) {
b5ab4cd5
PZ
3229 if (ctx->nr_events != ctx->nr_active)
3230 rotate = 1;
3231 }
9717e6cd 3232
e050e3f0 3233 if (!rotate)
0f5a2601
PZ
3234 goto done;
3235
facc4307 3236 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 3237 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 3238
e050e3f0
SE
3239 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3240 if (ctx)
3241 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
0793a61d 3242
e050e3f0
SE
3243 rotate_ctx(&cpuctx->ctx);
3244 if (ctx)
3245 rotate_ctx(ctx);
235c7fc7 3246
e050e3f0 3247 perf_event_sched_in(cpuctx, ctx, current);
235c7fc7 3248
0f5a2601
PZ
3249 perf_pmu_enable(cpuctx->ctx.pmu);
3250 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
b5ab4cd5 3251done:
9e630205
SE
3252
3253 return rotate;
e9d2b064
PZ
3254}
3255
3256void perf_event_task_tick(void)
3257{
2fde4f94
MR
3258 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3259 struct perf_event_context *ctx, *tmp;
e050e3f0 3260 int throttled;
b5ab4cd5 3261
e9d2b064
PZ
3262 WARN_ON(!irqs_disabled());
3263
e050e3f0
SE
3264 __this_cpu_inc(perf_throttled_seq);
3265 throttled = __this_cpu_xchg(perf_throttled_count, 0);
555e0c1e 3266 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
e050e3f0 3267
2fde4f94 3268 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
e050e3f0 3269 perf_adjust_freq_unthr_context(ctx, throttled);
0793a61d
TG
3270}
3271
889ff015
FW
3272static int event_enable_on_exec(struct perf_event *event,
3273 struct perf_event_context *ctx)
3274{
3275 if (!event->attr.enable_on_exec)
3276 return 0;
3277
3278 event->attr.enable_on_exec = 0;
3279 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3280 return 0;
3281
1d9b482e 3282 __perf_event_mark_enabled(event);
889ff015
FW
3283
3284 return 1;
3285}
3286
57e7986e 3287/*
cdd6c482 3288 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
3289 * This expects task == current.
3290 */
c1274499 3291static void perf_event_enable_on_exec(int ctxn)
57e7986e 3292{
c1274499 3293 struct perf_event_context *ctx, *clone_ctx = NULL;
3e349507 3294 struct perf_cpu_context *cpuctx;
cdd6c482 3295 struct perf_event *event;
57e7986e
PM
3296 unsigned long flags;
3297 int enabled = 0;
3298
3299 local_irq_save(flags);
c1274499 3300 ctx = current->perf_event_ctxp[ctxn];
cdd6c482 3301 if (!ctx || !ctx->nr_events)
57e7986e
PM
3302 goto out;
3303
3e349507
PZ
3304 cpuctx = __get_cpu_context(ctx);
3305 perf_ctx_lock(cpuctx, ctx);
7fce2509 3306 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3e349507
PZ
3307 list_for_each_entry(event, &ctx->event_list, event_entry)
3308 enabled |= event_enable_on_exec(event, ctx);
57e7986e
PM
3309
3310 /*
3e349507 3311 * Unclone and reschedule this context if we enabled any event.
57e7986e 3312 */
3e349507 3313 if (enabled) {
211de6eb 3314 clone_ctx = unclone_ctx(ctx);
3e349507
PZ
3315 ctx_resched(cpuctx, ctx);
3316 }
3317 perf_ctx_unlock(cpuctx, ctx);
57e7986e 3318
9ed6060d 3319out:
57e7986e 3320 local_irq_restore(flags);
211de6eb
PZ
3321
3322 if (clone_ctx)
3323 put_ctx(clone_ctx);
57e7986e
PM
3324}
3325
0492d4c5
PZ
3326struct perf_read_data {
3327 struct perf_event *event;
3328 bool group;
7d88962e 3329 int ret;
0492d4c5
PZ
3330};
3331
0793a61d 3332/*
cdd6c482 3333 * Cross CPU call to read the hardware event
0793a61d 3334 */
cdd6c482 3335static void __perf_event_read(void *info)
0793a61d 3336{
0492d4c5
PZ
3337 struct perf_read_data *data = info;
3338 struct perf_event *sub, *event = data->event;
cdd6c482 3339 struct perf_event_context *ctx = event->ctx;
108b02cf 3340 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4a00c16e 3341 struct pmu *pmu = event->pmu;
621a01ea 3342
e1ac3614
PM
3343 /*
3344 * If this is a task context, we need to check whether it is
3345 * the current task context of this cpu. If not it has been
3346 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
3347 * event->count would have been updated to a recent sample
3348 * when the event was scheduled out.
e1ac3614
PM
3349 */
3350 if (ctx->task && cpuctx->task_ctx != ctx)
3351 return;
3352
e625cce1 3353 raw_spin_lock(&ctx->lock);
e5d1367f 3354 if (ctx->is_active) {
542e72fc 3355 update_context_time(ctx);
e5d1367f
SE
3356 update_cgrp_time_from_event(event);
3357 }
0492d4c5 3358
cdd6c482 3359 update_event_times(event);
4a00c16e
SB
3360 if (event->state != PERF_EVENT_STATE_ACTIVE)
3361 goto unlock;
0492d4c5 3362
4a00c16e
SB
3363 if (!data->group) {
3364 pmu->read(event);
3365 data->ret = 0;
0492d4c5 3366 goto unlock;
4a00c16e
SB
3367 }
3368
3369 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3370
3371 pmu->read(event);
0492d4c5
PZ
3372
3373 list_for_each_entry(sub, &event->sibling_list, group_entry) {
3374 update_event_times(sub);
4a00c16e
SB
3375 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3376 /*
3377 * Use sibling's PMU rather than @event's since
3378 * sibling could be on different (eg: software) PMU.
3379 */
0492d4c5 3380 sub->pmu->read(sub);
4a00c16e 3381 }
0492d4c5 3382 }
4a00c16e
SB
3383
3384 data->ret = pmu->commit_txn(pmu);
0492d4c5
PZ
3385
3386unlock:
e625cce1 3387 raw_spin_unlock(&ctx->lock);
0793a61d
TG
3388}
3389
b5e58793
PZ
3390static inline u64 perf_event_count(struct perf_event *event)
3391{
eacd3ecc
MF
3392 if (event->pmu->count)
3393 return event->pmu->count(event);
3394
3395 return __perf_event_count(event);
b5e58793
PZ
3396}
3397
ffe8690c
KX
3398/*
3399 * NMI-safe method to read a local event, that is an event that
3400 * is:
3401 * - either for the current task, or for this CPU
3402 * - does not have inherit set, for inherited task events
3403 * will not be local and we cannot read them atomically
3404 * - must not have a pmu::count method
3405 */
3406u64 perf_event_read_local(struct perf_event *event)
3407{
3408 unsigned long flags;
3409 u64 val;
3410
3411 /*
3412 * Disabling interrupts avoids all counter scheduling (context
3413 * switches, timer based rotation and IPIs).
3414 */
3415 local_irq_save(flags);
3416
3417 /* If this is a per-task event, it must be for current */
3418 WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3419 event->hw.target != current);
3420
3421 /* If this is a per-CPU event, it must be for this CPU */
3422 WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3423 event->cpu != smp_processor_id());
3424
3425 /*
3426 * It must not be an event with inherit set, we cannot read
3427 * all child counters from atomic context.
3428 */
3429 WARN_ON_ONCE(event->attr.inherit);
3430
3431 /*
3432 * It must not have a pmu::count method, those are not
3433 * NMI safe.
3434 */
3435 WARN_ON_ONCE(event->pmu->count);
3436
3437 /*
3438 * If the event is currently on this CPU, its either a per-task event,
3439 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3440 * oncpu == -1).
3441 */
3442 if (event->oncpu == smp_processor_id())
3443 event->pmu->read(event);
3444
3445 val = local64_read(&event->count);
3446 local_irq_restore(flags);
3447
3448 return val;
3449}
3450
7d88962e 3451static int perf_event_read(struct perf_event *event, bool group)
0793a61d 3452{
7d88962e
SB
3453 int ret = 0;
3454
0793a61d 3455 /*
cdd6c482
IM
3456 * If event is enabled and currently active on a CPU, update the
3457 * value in the event structure:
0793a61d 3458 */
cdd6c482 3459 if (event->state == PERF_EVENT_STATE_ACTIVE) {
0492d4c5
PZ
3460 struct perf_read_data data = {
3461 .event = event,
3462 .group = group,
7d88962e 3463 .ret = 0,
0492d4c5 3464 };
cdd6c482 3465 smp_call_function_single(event->oncpu,
0492d4c5 3466 __perf_event_read, &data, 1);
7d88962e 3467 ret = data.ret;
cdd6c482 3468 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
3469 struct perf_event_context *ctx = event->ctx;
3470 unsigned long flags;
3471
e625cce1 3472 raw_spin_lock_irqsave(&ctx->lock, flags);
c530ccd9
SE
3473 /*
3474 * may read while context is not active
3475 * (e.g., thread is blocked), in that case
3476 * we cannot update context time
3477 */
e5d1367f 3478 if (ctx->is_active) {
c530ccd9 3479 update_context_time(ctx);
e5d1367f
SE
3480 update_cgrp_time_from_event(event);
3481 }
0492d4c5
PZ
3482 if (group)
3483 update_group_times(event);
3484 else
3485 update_event_times(event);
e625cce1 3486 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d 3487 }
7d88962e
SB
3488
3489 return ret;
0793a61d
TG
3490}
3491
a63eaf34 3492/*
cdd6c482 3493 * Initialize the perf_event context in a task_struct:
a63eaf34 3494 */
eb184479 3495static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 3496{
e625cce1 3497 raw_spin_lock_init(&ctx->lock);
a63eaf34 3498 mutex_init(&ctx->mutex);
2fde4f94 3499 INIT_LIST_HEAD(&ctx->active_ctx_list);
889ff015
FW
3500 INIT_LIST_HEAD(&ctx->pinned_groups);
3501 INIT_LIST_HEAD(&ctx->flexible_groups);
a63eaf34
PM
3502 INIT_LIST_HEAD(&ctx->event_list);
3503 atomic_set(&ctx->refcount, 1);
eb184479
PZ
3504}
3505
3506static struct perf_event_context *
3507alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3508{
3509 struct perf_event_context *ctx;
3510
3511 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3512 if (!ctx)
3513 return NULL;
3514
3515 __perf_event_init_context(ctx);
3516 if (task) {
3517 ctx->task = task;
3518 get_task_struct(task);
0793a61d 3519 }
eb184479
PZ
3520 ctx->pmu = pmu;
3521
3522 return ctx;
a63eaf34
PM
3523}
3524
2ebd4ffb
MH
3525static struct task_struct *
3526find_lively_task_by_vpid(pid_t vpid)
3527{
3528 struct task_struct *task;
0793a61d
TG
3529
3530 rcu_read_lock();
2ebd4ffb 3531 if (!vpid)
0793a61d
TG
3532 task = current;
3533 else
2ebd4ffb 3534 task = find_task_by_vpid(vpid);
0793a61d
TG
3535 if (task)
3536 get_task_struct(task);
3537 rcu_read_unlock();
3538
3539 if (!task)
3540 return ERR_PTR(-ESRCH);
3541
2ebd4ffb 3542 return task;
2ebd4ffb
MH
3543}
3544
fe4b04fa
PZ
3545/*
3546 * Returns a matching context with refcount and pincount.
3547 */
108b02cf 3548static struct perf_event_context *
4af57ef2
YZ
3549find_get_context(struct pmu *pmu, struct task_struct *task,
3550 struct perf_event *event)
0793a61d 3551{
211de6eb 3552 struct perf_event_context *ctx, *clone_ctx = NULL;
22a4f650 3553 struct perf_cpu_context *cpuctx;
4af57ef2 3554 void *task_ctx_data = NULL;
25346b93 3555 unsigned long flags;
8dc85d54 3556 int ctxn, err;
4af57ef2 3557 int cpu = event->cpu;
0793a61d 3558
22a4ec72 3559 if (!task) {
cdd6c482 3560 /* Must be root to operate on a CPU event: */
0764771d 3561 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
3562 return ERR_PTR(-EACCES);
3563
0793a61d 3564 /*
cdd6c482 3565 * We could be clever and allow to attach a event to an
0793a61d
TG
3566 * offline CPU and activate it when the CPU comes up, but
3567 * that's for later.
3568 */
f6325e30 3569 if (!cpu_online(cpu))
0793a61d
TG
3570 return ERR_PTR(-ENODEV);
3571
108b02cf 3572 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 3573 ctx = &cpuctx->ctx;
c93f7669 3574 get_ctx(ctx);
fe4b04fa 3575 ++ctx->pin_count;
0793a61d 3576
0793a61d
TG
3577 return ctx;
3578 }
3579
8dc85d54
PZ
3580 err = -EINVAL;
3581 ctxn = pmu->task_ctx_nr;
3582 if (ctxn < 0)
3583 goto errout;
3584
4af57ef2
YZ
3585 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3586 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3587 if (!task_ctx_data) {
3588 err = -ENOMEM;
3589 goto errout;
3590 }
3591 }
3592
9ed6060d 3593retry:
8dc85d54 3594 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 3595 if (ctx) {
211de6eb 3596 clone_ctx = unclone_ctx(ctx);
fe4b04fa 3597 ++ctx->pin_count;
4af57ef2
YZ
3598
3599 if (task_ctx_data && !ctx->task_ctx_data) {
3600 ctx->task_ctx_data = task_ctx_data;
3601 task_ctx_data = NULL;
3602 }
e625cce1 3603 raw_spin_unlock_irqrestore(&ctx->lock, flags);
211de6eb
PZ
3604
3605 if (clone_ctx)
3606 put_ctx(clone_ctx);
9137fb28 3607 } else {
eb184479 3608 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
3609 err = -ENOMEM;
3610 if (!ctx)
3611 goto errout;
eb184479 3612
4af57ef2
YZ
3613 if (task_ctx_data) {
3614 ctx->task_ctx_data = task_ctx_data;
3615 task_ctx_data = NULL;
3616 }
3617
dbe08d82
ON
3618 err = 0;
3619 mutex_lock(&task->perf_event_mutex);
3620 /*
3621 * If it has already passed perf_event_exit_task().
3622 * we must see PF_EXITING, it takes this mutex too.
3623 */
3624 if (task->flags & PF_EXITING)
3625 err = -ESRCH;
3626 else if (task->perf_event_ctxp[ctxn])
3627 err = -EAGAIN;
fe4b04fa 3628 else {
9137fb28 3629 get_ctx(ctx);
fe4b04fa 3630 ++ctx->pin_count;
dbe08d82 3631 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 3632 }
dbe08d82
ON
3633 mutex_unlock(&task->perf_event_mutex);
3634
3635 if (unlikely(err)) {
9137fb28 3636 put_ctx(ctx);
dbe08d82
ON
3637
3638 if (err == -EAGAIN)
3639 goto retry;
3640 goto errout;
a63eaf34
PM
3641 }
3642 }
3643
4af57ef2 3644 kfree(task_ctx_data);
0793a61d 3645 return ctx;
c93f7669 3646
9ed6060d 3647errout:
4af57ef2 3648 kfree(task_ctx_data);
c93f7669 3649 return ERR_PTR(err);
0793a61d
TG
3650}
3651
6fb2915d 3652static void perf_event_free_filter(struct perf_event *event);
2541517c 3653static void perf_event_free_bpf_prog(struct perf_event *event);
6fb2915d 3654
cdd6c482 3655static void free_event_rcu(struct rcu_head *head)
592903cd 3656{
cdd6c482 3657 struct perf_event *event;
592903cd 3658
cdd6c482
IM
3659 event = container_of(head, struct perf_event, rcu_head);
3660 if (event->ns)
3661 put_pid_ns(event->ns);
6fb2915d 3662 perf_event_free_filter(event);
cdd6c482 3663 kfree(event);
592903cd
PZ
3664}
3665
b69cf536
PZ
3666static void ring_buffer_attach(struct perf_event *event,
3667 struct ring_buffer *rb);
925d519a 3668
f2fb6bef
KL
3669static void detach_sb_event(struct perf_event *event)
3670{
3671 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3672
3673 raw_spin_lock(&pel->lock);
3674 list_del_rcu(&event->sb_list);
3675 raw_spin_unlock(&pel->lock);
3676}
3677
3678static void unaccount_pmu_sb_event(struct perf_event *event)
3679{
3680 if (event->parent)
3681 return;
3682
3683 if (event->attach_state & PERF_ATTACH_TASK)
3684 return;
3685
3686 detach_sb_event(event);
3687}
3688
4beb31f3 3689static void unaccount_event_cpu(struct perf_event *event, int cpu)
f1600952 3690{
4beb31f3
FW
3691 if (event->parent)
3692 return;
3693
4beb31f3
FW
3694 if (is_cgroup_event(event))
3695 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3696}
925d519a 3697
555e0c1e
FW
3698#ifdef CONFIG_NO_HZ_FULL
3699static DEFINE_SPINLOCK(nr_freq_lock);
3700#endif
3701
3702static void unaccount_freq_event_nohz(void)
3703{
3704#ifdef CONFIG_NO_HZ_FULL
3705 spin_lock(&nr_freq_lock);
3706 if (atomic_dec_and_test(&nr_freq_events))
3707 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3708 spin_unlock(&nr_freq_lock);
3709#endif
3710}
3711
3712static void unaccount_freq_event(void)
3713{
3714 if (tick_nohz_full_enabled())
3715 unaccount_freq_event_nohz();
3716 else
3717 atomic_dec(&nr_freq_events);
3718}
3719
4beb31f3
FW
3720static void unaccount_event(struct perf_event *event)
3721{
25432ae9
PZ
3722 bool dec = false;
3723
4beb31f3
FW
3724 if (event->parent)
3725 return;
3726
3727 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 3728 dec = true;
4beb31f3
FW
3729 if (event->attr.mmap || event->attr.mmap_data)
3730 atomic_dec(&nr_mmap_events);
3731 if (event->attr.comm)
3732 atomic_dec(&nr_comm_events);
3733 if (event->attr.task)
3734 atomic_dec(&nr_task_events);
948b26b6 3735 if (event->attr.freq)
555e0c1e 3736 unaccount_freq_event();
45ac1403 3737 if (event->attr.context_switch) {
25432ae9 3738 dec = true;
45ac1403
AH
3739 atomic_dec(&nr_switch_events);
3740 }
4beb31f3 3741 if (is_cgroup_event(event))
25432ae9 3742 dec = true;
4beb31f3 3743 if (has_branch_stack(event))
25432ae9
PZ
3744 dec = true;
3745
9107c89e
PZ
3746 if (dec) {
3747 if (!atomic_add_unless(&perf_sched_count, -1, 1))
3748 schedule_delayed_work(&perf_sched_work, HZ);
3749 }
4beb31f3
FW
3750
3751 unaccount_event_cpu(event, event->cpu);
f2fb6bef
KL
3752
3753 unaccount_pmu_sb_event(event);
4beb31f3 3754}
925d519a 3755
9107c89e
PZ
3756static void perf_sched_delayed(struct work_struct *work)
3757{
3758 mutex_lock(&perf_sched_mutex);
3759 if (atomic_dec_and_test(&perf_sched_count))
3760 static_branch_disable(&perf_sched_events);
3761 mutex_unlock(&perf_sched_mutex);
3762}
3763
bed5b25a
AS
3764/*
3765 * The following implement mutual exclusion of events on "exclusive" pmus
3766 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3767 * at a time, so we disallow creating events that might conflict, namely:
3768 *
3769 * 1) cpu-wide events in the presence of per-task events,
3770 * 2) per-task events in the presence of cpu-wide events,
3771 * 3) two matching events on the same context.
3772 *
3773 * The former two cases are handled in the allocation path (perf_event_alloc(),
a0733e69 3774 * _free_event()), the latter -- before the first perf_install_in_context().
bed5b25a
AS
3775 */
3776static int exclusive_event_init(struct perf_event *event)
3777{
3778 struct pmu *pmu = event->pmu;
3779
3780 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3781 return 0;
3782
3783 /*
3784 * Prevent co-existence of per-task and cpu-wide events on the
3785 * same exclusive pmu.
3786 *
3787 * Negative pmu::exclusive_cnt means there are cpu-wide
3788 * events on this "exclusive" pmu, positive means there are
3789 * per-task events.
3790 *
3791 * Since this is called in perf_event_alloc() path, event::ctx
3792 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3793 * to mean "per-task event", because unlike other attach states it
3794 * never gets cleared.
3795 */
3796 if (event->attach_state & PERF_ATTACH_TASK) {
3797 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3798 return -EBUSY;
3799 } else {
3800 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3801 return -EBUSY;
3802 }
3803
3804 return 0;
3805}
3806
3807static void exclusive_event_destroy(struct perf_event *event)
3808{
3809 struct pmu *pmu = event->pmu;
3810
3811 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3812 return;
3813
3814 /* see comment in exclusive_event_init() */
3815 if (event->attach_state & PERF_ATTACH_TASK)
3816 atomic_dec(&pmu->exclusive_cnt);
3817 else
3818 atomic_inc(&pmu->exclusive_cnt);
3819}
3820
3821static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3822{
3823 if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
3824 (e1->cpu == e2->cpu ||
3825 e1->cpu == -1 ||
3826 e2->cpu == -1))
3827 return true;
3828 return false;
3829}
3830
3831/* Called under the same ctx::mutex as perf_install_in_context() */
3832static bool exclusive_event_installable(struct perf_event *event,
3833 struct perf_event_context *ctx)
3834{
3835 struct perf_event *iter_event;
3836 struct pmu *pmu = event->pmu;
3837
3838 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3839 return true;
3840
3841 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3842 if (exclusive_event_match(iter_event, event))
3843 return false;
3844 }
3845
3846 return true;
3847}
3848
375637bc
AS
3849static void perf_addr_filters_splice(struct perf_event *event,
3850 struct list_head *head);
3851
683ede43 3852static void _free_event(struct perf_event *event)
f1600952 3853{
e360adbe 3854 irq_work_sync(&event->pending);
925d519a 3855
4beb31f3 3856 unaccount_event(event);
9ee318a7 3857
76369139 3858 if (event->rb) {
9bb5d40c
PZ
3859 /*
3860 * Can happen when we close an event with re-directed output.
3861 *
3862 * Since we have a 0 refcount, perf_mmap_close() will skip
3863 * over us; possibly making our ring_buffer_put() the last.
3864 */
3865 mutex_lock(&event->mmap_mutex);
b69cf536 3866 ring_buffer_attach(event, NULL);
9bb5d40c 3867 mutex_unlock(&event->mmap_mutex);
a4be7c27
PZ
3868 }
3869
e5d1367f
SE
3870 if (is_cgroup_event(event))
3871 perf_detach_cgroup(event);
3872
a0733e69
PZ
3873 if (!event->parent) {
3874 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3875 put_callchain_buffers();
3876 }
3877
3878 perf_event_free_bpf_prog(event);
375637bc
AS
3879 perf_addr_filters_splice(event, NULL);
3880 kfree(event->addr_filters_offs);
a0733e69
PZ
3881
3882 if (event->destroy)
3883 event->destroy(event);
3884
3885 if (event->ctx)
3886 put_ctx(event->ctx);
3887
3888 if (event->pmu) {
3889 exclusive_event_destroy(event);
3890 module_put(event->pmu->module);
3891 }
3892
3893 call_rcu(&event->rcu_head, free_event_rcu);
f1600952
PZ
3894}
3895
683ede43
PZ
3896/*
3897 * Used to free events which have a known refcount of 1, such as in error paths
3898 * where the event isn't exposed yet and inherited events.
3899 */
3900static void free_event(struct perf_event *event)
0793a61d 3901{
683ede43
PZ
3902 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3903 "unexpected event refcount: %ld; ptr=%p\n",
3904 atomic_long_read(&event->refcount), event)) {
3905 /* leak to avoid use-after-free */
3906 return;
3907 }
0793a61d 3908
683ede43 3909 _free_event(event);
0793a61d
TG
3910}
3911
a66a3052 3912/*
f8697762 3913 * Remove user event from the owner task.
a66a3052 3914 */
f8697762 3915static void perf_remove_from_owner(struct perf_event *event)
fb0459d7 3916{
8882135b 3917 struct task_struct *owner;
fb0459d7 3918
8882135b 3919 rcu_read_lock();
8882135b 3920 /*
f47c02c0
PZ
3921 * Matches the smp_store_release() in perf_event_exit_task(). If we
3922 * observe !owner it means the list deletion is complete and we can
3923 * indeed free this event, otherwise we need to serialize on
8882135b
PZ
3924 * owner->perf_event_mutex.
3925 */
f47c02c0 3926 owner = lockless_dereference(event->owner);
8882135b
PZ
3927 if (owner) {
3928 /*
3929 * Since delayed_put_task_struct() also drops the last
3930 * task reference we can safely take a new reference
3931 * while holding the rcu_read_lock().
3932 */
3933 get_task_struct(owner);
3934 }
3935 rcu_read_unlock();
3936
3937 if (owner) {
f63a8daa
PZ
3938 /*
3939 * If we're here through perf_event_exit_task() we're already
3940 * holding ctx->mutex which would be an inversion wrt. the
3941 * normal lock order.
3942 *
3943 * However we can safely take this lock because its the child
3944 * ctx->mutex.
3945 */
3946 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
3947
8882135b
PZ
3948 /*
3949 * We have to re-check the event->owner field, if it is cleared
3950 * we raced with perf_event_exit_task(), acquiring the mutex
3951 * ensured they're done, and we can proceed with freeing the
3952 * event.
3953 */
f47c02c0 3954 if (event->owner) {
8882135b 3955 list_del_init(&event->owner_entry);
f47c02c0
PZ
3956 smp_store_release(&event->owner, NULL);
3957 }
8882135b
PZ
3958 mutex_unlock(&owner->perf_event_mutex);
3959 put_task_struct(owner);
3960 }
f8697762
JO
3961}
3962
f8697762
JO
3963static void put_event(struct perf_event *event)
3964{
f8697762
JO
3965 if (!atomic_long_dec_and_test(&event->refcount))
3966 return;
3967
c6e5b732
PZ
3968 _free_event(event);
3969}
3970
3971/*
3972 * Kill an event dead; while event:refcount will preserve the event
3973 * object, it will not preserve its functionality. Once the last 'user'
3974 * gives up the object, we'll destroy the thing.
3975 */
3976int perf_event_release_kernel(struct perf_event *event)
3977{
a4f4bb6d 3978 struct perf_event_context *ctx = event->ctx;
c6e5b732
PZ
3979 struct perf_event *child, *tmp;
3980
a4f4bb6d
PZ
3981 /*
3982 * If we got here through err_file: fput(event_file); we will not have
3983 * attached to a context yet.
3984 */
3985 if (!ctx) {
3986 WARN_ON_ONCE(event->attach_state &
3987 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
3988 goto no_ctx;
3989 }
3990
f8697762
JO
3991 if (!is_kernel_event(event))
3992 perf_remove_from_owner(event);
8882135b 3993
5fa7c8ec 3994 ctx = perf_event_ctx_lock(event);
a83fe28e 3995 WARN_ON_ONCE(ctx->parent_ctx);
a69b0ca4 3996 perf_remove_from_context(event, DETACH_GROUP);
683ede43 3997
a69b0ca4 3998 raw_spin_lock_irq(&ctx->lock);
683ede43 3999 /*
a69b0ca4
PZ
4000 * Mark this even as STATE_DEAD, there is no external reference to it
4001 * anymore.
683ede43 4002 *
a69b0ca4
PZ
4003 * Anybody acquiring event->child_mutex after the below loop _must_
4004 * also see this, most importantly inherit_event() which will avoid
4005 * placing more children on the list.
683ede43 4006 *
c6e5b732
PZ
4007 * Thus this guarantees that we will in fact observe and kill _ALL_
4008 * child events.
683ede43 4009 */
a69b0ca4
PZ
4010 event->state = PERF_EVENT_STATE_DEAD;
4011 raw_spin_unlock_irq(&ctx->lock);
4012
4013 perf_event_ctx_unlock(event, ctx);
683ede43 4014
c6e5b732
PZ
4015again:
4016 mutex_lock(&event->child_mutex);
4017 list_for_each_entry(child, &event->child_list, child_list) {
a6fa941d 4018
c6e5b732
PZ
4019 /*
4020 * Cannot change, child events are not migrated, see the
4021 * comment with perf_event_ctx_lock_nested().
4022 */
4023 ctx = lockless_dereference(child->ctx);
4024 /*
4025 * Since child_mutex nests inside ctx::mutex, we must jump
4026 * through hoops. We start by grabbing a reference on the ctx.
4027 *
4028 * Since the event cannot get freed while we hold the
4029 * child_mutex, the context must also exist and have a !0
4030 * reference count.
4031 */
4032 get_ctx(ctx);
4033
4034 /*
4035 * Now that we have a ctx ref, we can drop child_mutex, and
4036 * acquire ctx::mutex without fear of it going away. Then we
4037 * can re-acquire child_mutex.
4038 */
4039 mutex_unlock(&event->child_mutex);
4040 mutex_lock(&ctx->mutex);
4041 mutex_lock(&event->child_mutex);
4042
4043 /*
4044 * Now that we hold ctx::mutex and child_mutex, revalidate our
4045 * state, if child is still the first entry, it didn't get freed
4046 * and we can continue doing so.
4047 */
4048 tmp = list_first_entry_or_null(&event->child_list,
4049 struct perf_event, child_list);
4050 if (tmp == child) {
4051 perf_remove_from_context(child, DETACH_GROUP);
4052 list_del(&child->child_list);
4053 free_event(child);
4054 /*
4055 * This matches the refcount bump in inherit_event();
4056 * this can't be the last reference.
4057 */
4058 put_event(event);
4059 }
4060
4061 mutex_unlock(&event->child_mutex);
4062 mutex_unlock(&ctx->mutex);
4063 put_ctx(ctx);
4064 goto again;
4065 }
4066 mutex_unlock(&event->child_mutex);
4067
a4f4bb6d
PZ
4068no_ctx:
4069 put_event(event); /* Must be the 'last' reference */
683ede43
PZ
4070 return 0;
4071}
4072EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4073
8b10c5e2
PZ
4074/*
4075 * Called when the last reference to the file is gone.
4076 */
a6fa941d
AV
4077static int perf_release(struct inode *inode, struct file *file)
4078{
c6e5b732 4079 perf_event_release_kernel(file->private_data);
a6fa941d 4080 return 0;
fb0459d7 4081}
fb0459d7 4082
59ed446f 4083u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 4084{
cdd6c482 4085 struct perf_event *child;
e53c0994
PZ
4086 u64 total = 0;
4087
59ed446f
PZ
4088 *enabled = 0;
4089 *running = 0;
4090
6f10581a 4091 mutex_lock(&event->child_mutex);
01add3ea 4092
7d88962e 4093 (void)perf_event_read(event, false);
01add3ea
SB
4094 total += perf_event_count(event);
4095
59ed446f
PZ
4096 *enabled += event->total_time_enabled +
4097 atomic64_read(&event->child_total_time_enabled);
4098 *running += event->total_time_running +
4099 atomic64_read(&event->child_total_time_running);
4100
4101 list_for_each_entry(child, &event->child_list, child_list) {
7d88962e 4102 (void)perf_event_read(child, false);
01add3ea 4103 total += perf_event_count(child);
59ed446f
PZ
4104 *enabled += child->total_time_enabled;
4105 *running += child->total_time_running;
4106 }
6f10581a 4107 mutex_unlock(&event->child_mutex);
e53c0994
PZ
4108
4109 return total;
4110}
fb0459d7 4111EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 4112
7d88962e 4113static int __perf_read_group_add(struct perf_event *leader,
fa8c2693 4114 u64 read_format, u64 *values)
3dab77fb 4115{
fa8c2693
PZ
4116 struct perf_event *sub;
4117 int n = 1; /* skip @nr */
7d88962e 4118 int ret;
f63a8daa 4119
7d88962e
SB
4120 ret = perf_event_read(leader, true);
4121 if (ret)
4122 return ret;
abf4868b 4123
fa8c2693
PZ
4124 /*
4125 * Since we co-schedule groups, {enabled,running} times of siblings
4126 * will be identical to those of the leader, so we only publish one
4127 * set.
4128 */
4129 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4130 values[n++] += leader->total_time_enabled +
4131 atomic64_read(&leader->child_total_time_enabled);
4132 }
3dab77fb 4133
fa8c2693
PZ
4134 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4135 values[n++] += leader->total_time_running +
4136 atomic64_read(&leader->child_total_time_running);
4137 }
4138
4139 /*
4140 * Write {count,id} tuples for every sibling.
4141 */
4142 values[n++] += perf_event_count(leader);
abf4868b
PZ
4143 if (read_format & PERF_FORMAT_ID)
4144 values[n++] = primary_event_id(leader);
3dab77fb 4145
fa8c2693
PZ
4146 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4147 values[n++] += perf_event_count(sub);
4148 if (read_format & PERF_FORMAT_ID)
4149 values[n++] = primary_event_id(sub);
4150 }
7d88962e
SB
4151
4152 return 0;
fa8c2693 4153}
3dab77fb 4154
fa8c2693
PZ
4155static int perf_read_group(struct perf_event *event,
4156 u64 read_format, char __user *buf)
4157{
4158 struct perf_event *leader = event->group_leader, *child;
4159 struct perf_event_context *ctx = leader->ctx;
7d88962e 4160 int ret;
fa8c2693 4161 u64 *values;
3dab77fb 4162
fa8c2693 4163 lockdep_assert_held(&ctx->mutex);
3dab77fb 4164
fa8c2693
PZ
4165 values = kzalloc(event->read_size, GFP_KERNEL);
4166 if (!values)
4167 return -ENOMEM;
3dab77fb 4168
fa8c2693
PZ
4169 values[0] = 1 + leader->nr_siblings;
4170
4171 /*
4172 * By locking the child_mutex of the leader we effectively
4173 * lock the child list of all siblings.. XXX explain how.
4174 */
4175 mutex_lock(&leader->child_mutex);
abf4868b 4176
7d88962e
SB
4177 ret = __perf_read_group_add(leader, read_format, values);
4178 if (ret)
4179 goto unlock;
4180
4181 list_for_each_entry(child, &leader->child_list, child_list) {
4182 ret = __perf_read_group_add(child, read_format, values);
4183 if (ret)
4184 goto unlock;
4185 }
abf4868b 4186
fa8c2693 4187 mutex_unlock(&leader->child_mutex);
abf4868b 4188
7d88962e 4189 ret = event->read_size;
fa8c2693
PZ
4190 if (copy_to_user(buf, values, event->read_size))
4191 ret = -EFAULT;
7d88962e 4192 goto out;
fa8c2693 4193
7d88962e
SB
4194unlock:
4195 mutex_unlock(&leader->child_mutex);
4196out:
fa8c2693 4197 kfree(values);
abf4868b 4198 return ret;
3dab77fb
PZ
4199}
4200
b15f495b 4201static int perf_read_one(struct perf_event *event,
3dab77fb
PZ
4202 u64 read_format, char __user *buf)
4203{
59ed446f 4204 u64 enabled, running;
3dab77fb
PZ
4205 u64 values[4];
4206 int n = 0;
4207
59ed446f
PZ
4208 values[n++] = perf_event_read_value(event, &enabled, &running);
4209 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4210 values[n++] = enabled;
4211 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4212 values[n++] = running;
3dab77fb 4213 if (read_format & PERF_FORMAT_ID)
cdd6c482 4214 values[n++] = primary_event_id(event);
3dab77fb
PZ
4215
4216 if (copy_to_user(buf, values, n * sizeof(u64)))
4217 return -EFAULT;
4218
4219 return n * sizeof(u64);
4220}
4221
dc633982
JO
4222static bool is_event_hup(struct perf_event *event)
4223{
4224 bool no_children;
4225
a69b0ca4 4226 if (event->state > PERF_EVENT_STATE_EXIT)
dc633982
JO
4227 return false;
4228
4229 mutex_lock(&event->child_mutex);
4230 no_children = list_empty(&event->child_list);
4231 mutex_unlock(&event->child_mutex);
4232 return no_children;
4233}
4234
0793a61d 4235/*
cdd6c482 4236 * Read the performance event - simple non blocking version for now
0793a61d
TG
4237 */
4238static ssize_t
b15f495b 4239__perf_read(struct perf_event *event, char __user *buf, size_t count)
0793a61d 4240{
cdd6c482 4241 u64 read_format = event->attr.read_format;
3dab77fb 4242 int ret;
0793a61d 4243
3b6f9e5c 4244 /*
cdd6c482 4245 * Return end-of-file for a read on a event that is in
3b6f9e5c
PM
4246 * error state (i.e. because it was pinned but it couldn't be
4247 * scheduled on to the CPU at some point).
4248 */
cdd6c482 4249 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
4250 return 0;
4251
c320c7b7 4252 if (count < event->read_size)
3dab77fb
PZ
4253 return -ENOSPC;
4254
cdd6c482 4255 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 4256 if (read_format & PERF_FORMAT_GROUP)
b15f495b 4257 ret = perf_read_group(event, read_format, buf);
3dab77fb 4258 else
b15f495b 4259 ret = perf_read_one(event, read_format, buf);
0793a61d 4260
3dab77fb 4261 return ret;
0793a61d
TG
4262}
4263
0793a61d
TG
4264static ssize_t
4265perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4266{
cdd6c482 4267 struct perf_event *event = file->private_data;
f63a8daa
PZ
4268 struct perf_event_context *ctx;
4269 int ret;
0793a61d 4270
f63a8daa 4271 ctx = perf_event_ctx_lock(event);
b15f495b 4272 ret = __perf_read(event, buf, count);
f63a8daa
PZ
4273 perf_event_ctx_unlock(event, ctx);
4274
4275 return ret;
0793a61d
TG
4276}
4277
4278static unsigned int perf_poll(struct file *file, poll_table *wait)
4279{
cdd6c482 4280 struct perf_event *event = file->private_data;
76369139 4281 struct ring_buffer *rb;
61b67684 4282 unsigned int events = POLLHUP;
c7138f37 4283
e708d7ad 4284 poll_wait(file, &event->waitq, wait);
179033b3 4285
dc633982 4286 if (is_event_hup(event))
179033b3 4287 return events;
c7138f37 4288
10c6db11 4289 /*
9bb5d40c
PZ
4290 * Pin the event->rb by taking event->mmap_mutex; otherwise
4291 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
10c6db11
PZ
4292 */
4293 mutex_lock(&event->mmap_mutex);
9bb5d40c
PZ
4294 rb = event->rb;
4295 if (rb)
76369139 4296 events = atomic_xchg(&rb->poll, 0);
10c6db11 4297 mutex_unlock(&event->mmap_mutex);
0793a61d
TG
4298 return events;
4299}
4300
f63a8daa 4301static void _perf_event_reset(struct perf_event *event)
6de6a7b9 4302{
7d88962e 4303 (void)perf_event_read(event, false);
e7850595 4304 local64_set(&event->count, 0);
cdd6c482 4305 perf_event_update_userpage(event);
3df5edad
PZ
4306}
4307
c93f7669 4308/*
cdd6c482
IM
4309 * Holding the top-level event's child_mutex means that any
4310 * descendant process that has inherited this event will block
8ba289b8 4311 * in perf_event_exit_event() if it goes to exit, thus satisfying the
cdd6c482 4312 * task existence requirements of perf_event_enable/disable.
c93f7669 4313 */
cdd6c482
IM
4314static void perf_event_for_each_child(struct perf_event *event,
4315 void (*func)(struct perf_event *))
3df5edad 4316{
cdd6c482 4317 struct perf_event *child;
3df5edad 4318
cdd6c482 4319 WARN_ON_ONCE(event->ctx->parent_ctx);
f63a8daa 4320
cdd6c482
IM
4321 mutex_lock(&event->child_mutex);
4322 func(event);
4323 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 4324 func(child);
cdd6c482 4325 mutex_unlock(&event->child_mutex);
3df5edad
PZ
4326}
4327
cdd6c482
IM
4328static void perf_event_for_each(struct perf_event *event,
4329 void (*func)(struct perf_event *))
3df5edad 4330{
cdd6c482
IM
4331 struct perf_event_context *ctx = event->ctx;
4332 struct perf_event *sibling;
3df5edad 4333
f63a8daa
PZ
4334 lockdep_assert_held(&ctx->mutex);
4335
cdd6c482 4336 event = event->group_leader;
75f937f2 4337
cdd6c482 4338 perf_event_for_each_child(event, func);
cdd6c482 4339 list_for_each_entry(sibling, &event->sibling_list, group_entry)
724b6daa 4340 perf_event_for_each_child(sibling, func);
6de6a7b9
PZ
4341}
4342
fae3fde6
PZ
4343static void __perf_event_period(struct perf_event *event,
4344 struct perf_cpu_context *cpuctx,
4345 struct perf_event_context *ctx,
4346 void *info)
c7999c6f 4347{
fae3fde6 4348 u64 value = *((u64 *)info);
c7999c6f 4349 bool active;
08247e31 4350
cdd6c482 4351 if (event->attr.freq) {
cdd6c482 4352 event->attr.sample_freq = value;
08247e31 4353 } else {
cdd6c482
IM
4354 event->attr.sample_period = value;
4355 event->hw.sample_period = value;
08247e31 4356 }
bad7192b
PZ
4357
4358 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4359 if (active) {
4360 perf_pmu_disable(ctx->pmu);
1e02cd40
PZ
4361 /*
4362 * We could be throttled; unthrottle now to avoid the tick
4363 * trying to unthrottle while we already re-started the event.
4364 */
4365 if (event->hw.interrupts == MAX_INTERRUPTS) {
4366 event->hw.interrupts = 0;
4367 perf_log_throttle(event, 1);
4368 }
bad7192b
PZ
4369 event->pmu->stop(event, PERF_EF_UPDATE);
4370 }
4371
4372 local64_set(&event->hw.period_left, 0);
4373
4374 if (active) {
4375 event->pmu->start(event, PERF_EF_RELOAD);
4376 perf_pmu_enable(ctx->pmu);
4377 }
c7999c6f
PZ
4378}
4379
4380static int perf_event_period(struct perf_event *event, u64 __user *arg)
4381{
c7999c6f
PZ
4382 u64 value;
4383
4384 if (!is_sampling_event(event))
4385 return -EINVAL;
4386
4387 if (copy_from_user(&value, arg, sizeof(value)))
4388 return -EFAULT;
4389
4390 if (!value)
4391 return -EINVAL;
4392
4393 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4394 return -EINVAL;
4395
fae3fde6 4396 event_function_call(event, __perf_event_period, &value);
08247e31 4397
c7999c6f 4398 return 0;
08247e31
PZ
4399}
4400
ac9721f3
PZ
4401static const struct file_operations perf_fops;
4402
2903ff01 4403static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 4404{
2903ff01
AV
4405 struct fd f = fdget(fd);
4406 if (!f.file)
4407 return -EBADF;
ac9721f3 4408
2903ff01
AV
4409 if (f.file->f_op != &perf_fops) {
4410 fdput(f);
4411 return -EBADF;
ac9721f3 4412 }
2903ff01
AV
4413 *p = f;
4414 return 0;
ac9721f3
PZ
4415}
4416
4417static int perf_event_set_output(struct perf_event *event,
4418 struct perf_event *output_event);
6fb2915d 4419static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2541517c 4420static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
a4be7c27 4421
f63a8daa 4422static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
d859e29f 4423{
cdd6c482 4424 void (*func)(struct perf_event *);
3df5edad 4425 u32 flags = arg;
d859e29f
PM
4426
4427 switch (cmd) {
cdd6c482 4428 case PERF_EVENT_IOC_ENABLE:
f63a8daa 4429 func = _perf_event_enable;
d859e29f 4430 break;
cdd6c482 4431 case PERF_EVENT_IOC_DISABLE:
f63a8daa 4432 func = _perf_event_disable;
79f14641 4433 break;
cdd6c482 4434 case PERF_EVENT_IOC_RESET:
f63a8daa 4435 func = _perf_event_reset;
6de6a7b9 4436 break;
3df5edad 4437
cdd6c482 4438 case PERF_EVENT_IOC_REFRESH:
f63a8daa 4439 return _perf_event_refresh(event, arg);
08247e31 4440
cdd6c482
IM
4441 case PERF_EVENT_IOC_PERIOD:
4442 return perf_event_period(event, (u64 __user *)arg);
08247e31 4443
cf4957f1
JO
4444 case PERF_EVENT_IOC_ID:
4445 {
4446 u64 id = primary_event_id(event);
4447
4448 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4449 return -EFAULT;
4450 return 0;
4451 }
4452
cdd6c482 4453 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 4454 {
ac9721f3 4455 int ret;
ac9721f3 4456 if (arg != -1) {
2903ff01
AV
4457 struct perf_event *output_event;
4458 struct fd output;
4459 ret = perf_fget_light(arg, &output);
4460 if (ret)
4461 return ret;
4462 output_event = output.file->private_data;
4463 ret = perf_event_set_output(event, output_event);
4464 fdput(output);
4465 } else {
4466 ret = perf_event_set_output(event, NULL);
ac9721f3 4467 }
ac9721f3
PZ
4468 return ret;
4469 }
a4be7c27 4470
6fb2915d
LZ
4471 case PERF_EVENT_IOC_SET_FILTER:
4472 return perf_event_set_filter(event, (void __user *)arg);
4473
2541517c
AS
4474 case PERF_EVENT_IOC_SET_BPF:
4475 return perf_event_set_bpf_prog(event, arg);
4476
86e7972f
WN
4477 case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4478 struct ring_buffer *rb;
4479
4480 rcu_read_lock();
4481 rb = rcu_dereference(event->rb);
4482 if (!rb || !rb->nr_pages) {
4483 rcu_read_unlock();
4484 return -EINVAL;
4485 }
4486 rb_toggle_paused(rb, !!arg);
4487 rcu_read_unlock();
4488 return 0;
4489 }
d859e29f 4490 default:
3df5edad 4491 return -ENOTTY;
d859e29f 4492 }
3df5edad
PZ
4493
4494 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 4495 perf_event_for_each(event, func);
3df5edad 4496 else
cdd6c482 4497 perf_event_for_each_child(event, func);
3df5edad
PZ
4498
4499 return 0;
d859e29f
PM
4500}
4501
f63a8daa
PZ
4502static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4503{
4504 struct perf_event *event = file->private_data;
4505 struct perf_event_context *ctx;
4506 long ret;
4507
4508 ctx = perf_event_ctx_lock(event);
4509 ret = _perf_ioctl(event, cmd, arg);
4510 perf_event_ctx_unlock(event, ctx);
4511
4512 return ret;
4513}
4514
b3f20785
PM
4515#ifdef CONFIG_COMPAT
4516static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4517 unsigned long arg)
4518{
4519 switch (_IOC_NR(cmd)) {
4520 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4521 case _IOC_NR(PERF_EVENT_IOC_ID):
4522 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4523 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4524 cmd &= ~IOCSIZE_MASK;
4525 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4526 }
4527 break;
4528 }
4529 return perf_ioctl(file, cmd, arg);
4530}
4531#else
4532# define perf_compat_ioctl NULL
4533#endif
4534
cdd6c482 4535int perf_event_task_enable(void)
771d7cde 4536{
f63a8daa 4537 struct perf_event_context *ctx;
cdd6c482 4538 struct perf_event *event;
771d7cde 4539
cdd6c482 4540 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4541 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4542 ctx = perf_event_ctx_lock(event);
4543 perf_event_for_each_child(event, _perf_event_enable);
4544 perf_event_ctx_unlock(event, ctx);
4545 }
cdd6c482 4546 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4547
4548 return 0;
4549}
4550
cdd6c482 4551int perf_event_task_disable(void)
771d7cde 4552{
f63a8daa 4553 struct perf_event_context *ctx;
cdd6c482 4554 struct perf_event *event;
771d7cde 4555
cdd6c482 4556 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4557 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4558 ctx = perf_event_ctx_lock(event);
4559 perf_event_for_each_child(event, _perf_event_disable);
4560 perf_event_ctx_unlock(event, ctx);
4561 }
cdd6c482 4562 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4563
4564 return 0;
4565}
4566
cdd6c482 4567static int perf_event_index(struct perf_event *event)
194002b2 4568{
a4eaf7f1
PZ
4569 if (event->hw.state & PERF_HES_STOPPED)
4570 return 0;
4571
cdd6c482 4572 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
4573 return 0;
4574
35edc2a5 4575 return event->pmu->event_idx(event);
194002b2
PZ
4576}
4577
c4794295 4578static void calc_timer_values(struct perf_event *event,
e3f3541c 4579 u64 *now,
7f310a5d
EM
4580 u64 *enabled,
4581 u64 *running)
c4794295 4582{
e3f3541c 4583 u64 ctx_time;
c4794295 4584
e3f3541c
PZ
4585 *now = perf_clock();
4586 ctx_time = event->shadow_ctx_time + *now;
c4794295
EM
4587 *enabled = ctx_time - event->tstamp_enabled;
4588 *running = ctx_time - event->tstamp_running;
4589}
4590
fa731587
PZ
4591static void perf_event_init_userpage(struct perf_event *event)
4592{
4593 struct perf_event_mmap_page *userpg;
4594 struct ring_buffer *rb;
4595
4596 rcu_read_lock();
4597 rb = rcu_dereference(event->rb);
4598 if (!rb)
4599 goto unlock;
4600
4601 userpg = rb->user_page;
4602
4603 /* Allow new userspace to detect that bit 0 is deprecated */
4604 userpg->cap_bit0_is_deprecated = 1;
4605 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
e8c6deac
AS
4606 userpg->data_offset = PAGE_SIZE;
4607 userpg->data_size = perf_data_size(rb);
fa731587
PZ
4608
4609unlock:
4610 rcu_read_unlock();
4611}
4612
c1317ec2
AL
4613void __weak arch_perf_update_userpage(
4614 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
4615{
4616}
4617
38ff667b
PZ
4618/*
4619 * Callers need to ensure there can be no nesting of this function, otherwise
4620 * the seqlock logic goes bad. We can not serialize this because the arch
4621 * code calls this from NMI context.
4622 */
cdd6c482 4623void perf_event_update_userpage(struct perf_event *event)
37d81828 4624{
cdd6c482 4625 struct perf_event_mmap_page *userpg;
76369139 4626 struct ring_buffer *rb;
e3f3541c 4627 u64 enabled, running, now;
38ff667b
PZ
4628
4629 rcu_read_lock();
5ec4c599
PZ
4630 rb = rcu_dereference(event->rb);
4631 if (!rb)
4632 goto unlock;
4633
0d641208
EM
4634 /*
4635 * compute total_time_enabled, total_time_running
4636 * based on snapshot values taken when the event
4637 * was last scheduled in.
4638 *
4639 * we cannot simply called update_context_time()
4640 * because of locking issue as we can be called in
4641 * NMI context
4642 */
e3f3541c 4643 calc_timer_values(event, &now, &enabled, &running);
38ff667b 4644
76369139 4645 userpg = rb->user_page;
7b732a75
PZ
4646 /*
4647 * Disable preemption so as to not let the corresponding user-space
4648 * spin too long if we get preempted.
4649 */
4650 preempt_disable();
37d81828 4651 ++userpg->lock;
92f22a38 4652 barrier();
cdd6c482 4653 userpg->index = perf_event_index(event);
b5e58793 4654 userpg->offset = perf_event_count(event);
365a4038 4655 if (userpg->index)
e7850595 4656 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 4657
0d641208 4658 userpg->time_enabled = enabled +
cdd6c482 4659 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 4660
0d641208 4661 userpg->time_running = running +
cdd6c482 4662 atomic64_read(&event->child_total_time_running);
7f8b4e4e 4663
c1317ec2 4664 arch_perf_update_userpage(event, userpg, now);
e3f3541c 4665
92f22a38 4666 barrier();
37d81828 4667 ++userpg->lock;
7b732a75 4668 preempt_enable();
38ff667b 4669unlock:
7b732a75 4670 rcu_read_unlock();
37d81828
PM
4671}
4672
906010b2
PZ
4673static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4674{
4675 struct perf_event *event = vma->vm_file->private_data;
76369139 4676 struct ring_buffer *rb;
906010b2
PZ
4677 int ret = VM_FAULT_SIGBUS;
4678
4679 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4680 if (vmf->pgoff == 0)
4681 ret = 0;
4682 return ret;
4683 }
4684
4685 rcu_read_lock();
76369139
FW
4686 rb = rcu_dereference(event->rb);
4687 if (!rb)
906010b2
PZ
4688 goto unlock;
4689
4690 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4691 goto unlock;
4692
76369139 4693 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
4694 if (!vmf->page)
4695 goto unlock;
4696
4697 get_page(vmf->page);
4698 vmf->page->mapping = vma->vm_file->f_mapping;
4699 vmf->page->index = vmf->pgoff;
4700
4701 ret = 0;
4702unlock:
4703 rcu_read_unlock();
4704
4705 return ret;
4706}
4707
10c6db11
PZ
4708static void ring_buffer_attach(struct perf_event *event,
4709 struct ring_buffer *rb)
4710{
b69cf536 4711 struct ring_buffer *old_rb = NULL;
10c6db11
PZ
4712 unsigned long flags;
4713
b69cf536
PZ
4714 if (event->rb) {
4715 /*
4716 * Should be impossible, we set this when removing
4717 * event->rb_entry and wait/clear when adding event->rb_entry.
4718 */
4719 WARN_ON_ONCE(event->rcu_pending);
10c6db11 4720
b69cf536 4721 old_rb = event->rb;
b69cf536
PZ
4722 spin_lock_irqsave(&old_rb->event_lock, flags);
4723 list_del_rcu(&event->rb_entry);
4724 spin_unlock_irqrestore(&old_rb->event_lock, flags);
10c6db11 4725
2f993cf0
ON
4726 event->rcu_batches = get_state_synchronize_rcu();
4727 event->rcu_pending = 1;
b69cf536 4728 }
10c6db11 4729
b69cf536 4730 if (rb) {
2f993cf0
ON
4731 if (event->rcu_pending) {
4732 cond_synchronize_rcu(event->rcu_batches);
4733 event->rcu_pending = 0;
4734 }
4735
b69cf536
PZ
4736 spin_lock_irqsave(&rb->event_lock, flags);
4737 list_add_rcu(&event->rb_entry, &rb->event_list);
4738 spin_unlock_irqrestore(&rb->event_lock, flags);
4739 }
4740
4741 rcu_assign_pointer(event->rb, rb);
4742
4743 if (old_rb) {
4744 ring_buffer_put(old_rb);
4745 /*
4746 * Since we detached before setting the new rb, so that we
4747 * could attach the new rb, we could have missed a wakeup.
4748 * Provide it now.
4749 */
4750 wake_up_all(&event->waitq);
4751 }
10c6db11
PZ
4752}
4753
4754static void ring_buffer_wakeup(struct perf_event *event)
4755{
4756 struct ring_buffer *rb;
4757
4758 rcu_read_lock();
4759 rb = rcu_dereference(event->rb);
9bb5d40c
PZ
4760 if (rb) {
4761 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4762 wake_up_all(&event->waitq);
4763 }
10c6db11
PZ
4764 rcu_read_unlock();
4765}
4766
fdc26706 4767struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 4768{
76369139 4769 struct ring_buffer *rb;
7b732a75 4770
ac9721f3 4771 rcu_read_lock();
76369139
FW
4772 rb = rcu_dereference(event->rb);
4773 if (rb) {
4774 if (!atomic_inc_not_zero(&rb->refcount))
4775 rb = NULL;
ac9721f3
PZ
4776 }
4777 rcu_read_unlock();
4778
76369139 4779 return rb;
ac9721f3
PZ
4780}
4781
fdc26706 4782void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 4783{
76369139 4784 if (!atomic_dec_and_test(&rb->refcount))
ac9721f3 4785 return;
7b732a75 4786
9bb5d40c 4787 WARN_ON_ONCE(!list_empty(&rb->event_list));
10c6db11 4788
76369139 4789 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
4790}
4791
4792static void perf_mmap_open(struct vm_area_struct *vma)
4793{
cdd6c482 4794 struct perf_event *event = vma->vm_file->private_data;
7b732a75 4795
cdd6c482 4796 atomic_inc(&event->mmap_count);
9bb5d40c 4797 atomic_inc(&event->rb->mmap_count);
1e0fb9ec 4798
45bfb2e5
PZ
4799 if (vma->vm_pgoff)
4800 atomic_inc(&event->rb->aux_mmap_count);
4801
1e0fb9ec
AL
4802 if (event->pmu->event_mapped)
4803 event->pmu->event_mapped(event);
7b732a75
PZ
4804}
4805
95ff4ca2
AS
4806static void perf_pmu_output_stop(struct perf_event *event);
4807
9bb5d40c
PZ
4808/*
4809 * A buffer can be mmap()ed multiple times; either directly through the same
4810 * event, or through other events by use of perf_event_set_output().
4811 *
4812 * In order to undo the VM accounting done by perf_mmap() we need to destroy
4813 * the buffer here, where we still have a VM context. This means we need
4814 * to detach all events redirecting to us.
4815 */
7b732a75
PZ
4816static void perf_mmap_close(struct vm_area_struct *vma)
4817{
cdd6c482 4818 struct perf_event *event = vma->vm_file->private_data;
7b732a75 4819
b69cf536 4820 struct ring_buffer *rb = ring_buffer_get(event);
9bb5d40c
PZ
4821 struct user_struct *mmap_user = rb->mmap_user;
4822 int mmap_locked = rb->mmap_locked;
4823 unsigned long size = perf_data_size(rb);
789f90fc 4824
1e0fb9ec
AL
4825 if (event->pmu->event_unmapped)
4826 event->pmu->event_unmapped(event);
4827
45bfb2e5
PZ
4828 /*
4829 * rb->aux_mmap_count will always drop before rb->mmap_count and
4830 * event->mmap_count, so it is ok to use event->mmap_mutex to
4831 * serialize with perf_mmap here.
4832 */
4833 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4834 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
95ff4ca2
AS
4835 /*
4836 * Stop all AUX events that are writing to this buffer,
4837 * so that we can free its AUX pages and corresponding PMU
4838 * data. Note that after rb::aux_mmap_count dropped to zero,
4839 * they won't start any more (see perf_aux_output_begin()).
4840 */
4841 perf_pmu_output_stop(event);
4842
4843 /* now it's safe to free the pages */
45bfb2e5
PZ
4844 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
4845 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
4846
95ff4ca2 4847 /* this has to be the last one */
45bfb2e5 4848 rb_free_aux(rb);
95ff4ca2
AS
4849 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
4850
45bfb2e5
PZ
4851 mutex_unlock(&event->mmap_mutex);
4852 }
4853
9bb5d40c
PZ
4854 atomic_dec(&rb->mmap_count);
4855
4856 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
b69cf536 4857 goto out_put;
9bb5d40c 4858
b69cf536 4859 ring_buffer_attach(event, NULL);
9bb5d40c
PZ
4860 mutex_unlock(&event->mmap_mutex);
4861
4862 /* If there's still other mmap()s of this buffer, we're done. */
b69cf536
PZ
4863 if (atomic_read(&rb->mmap_count))
4864 goto out_put;
ac9721f3 4865
9bb5d40c
PZ
4866 /*
4867 * No other mmap()s, detach from all other events that might redirect
4868 * into the now unreachable buffer. Somewhat complicated by the
4869 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4870 */
4871again:
4872 rcu_read_lock();
4873 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4874 if (!atomic_long_inc_not_zero(&event->refcount)) {
4875 /*
4876 * This event is en-route to free_event() which will
4877 * detach it and remove it from the list.
4878 */
4879 continue;
4880 }
4881 rcu_read_unlock();
789f90fc 4882
9bb5d40c
PZ
4883 mutex_lock(&event->mmap_mutex);
4884 /*
4885 * Check we didn't race with perf_event_set_output() which can
4886 * swizzle the rb from under us while we were waiting to
4887 * acquire mmap_mutex.
4888 *
4889 * If we find a different rb; ignore this event, a next
4890 * iteration will no longer find it on the list. We have to
4891 * still restart the iteration to make sure we're not now
4892 * iterating the wrong list.
4893 */
b69cf536
PZ
4894 if (event->rb == rb)
4895 ring_buffer_attach(event, NULL);
4896
cdd6c482 4897 mutex_unlock(&event->mmap_mutex);
9bb5d40c 4898 put_event(event);
ac9721f3 4899
9bb5d40c
PZ
4900 /*
4901 * Restart the iteration; either we're on the wrong list or
4902 * destroyed its integrity by doing a deletion.
4903 */
4904 goto again;
7b732a75 4905 }
9bb5d40c
PZ
4906 rcu_read_unlock();
4907
4908 /*
4909 * It could be there's still a few 0-ref events on the list; they'll
4910 * get cleaned up by free_event() -- they'll also still have their
4911 * ref on the rb and will free it whenever they are done with it.
4912 *
4913 * Aside from that, this buffer is 'fully' detached and unmapped,
4914 * undo the VM accounting.
4915 */
4916
4917 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4918 vma->vm_mm->pinned_vm -= mmap_locked;
4919 free_uid(mmap_user);
4920
b69cf536 4921out_put:
9bb5d40c 4922 ring_buffer_put(rb); /* could be last */
37d81828
PM
4923}
4924
f0f37e2f 4925static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8 4926 .open = perf_mmap_open,
45bfb2e5 4927 .close = perf_mmap_close, /* non mergable */
43a21ea8
PZ
4928 .fault = perf_mmap_fault,
4929 .page_mkwrite = perf_mmap_fault,
37d81828
PM
4930};
4931
4932static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4933{
cdd6c482 4934 struct perf_event *event = file->private_data;
22a4f650 4935 unsigned long user_locked, user_lock_limit;
789f90fc 4936 struct user_struct *user = current_user();
22a4f650 4937 unsigned long locked, lock_limit;
45bfb2e5 4938 struct ring_buffer *rb = NULL;
7b732a75
PZ
4939 unsigned long vma_size;
4940 unsigned long nr_pages;
45bfb2e5 4941 long user_extra = 0, extra = 0;
d57e34fd 4942 int ret = 0, flags = 0;
37d81828 4943
c7920614
PZ
4944 /*
4945 * Don't allow mmap() of inherited per-task counters. This would
4946 * create a performance issue due to all children writing to the
76369139 4947 * same rb.
c7920614
PZ
4948 */
4949 if (event->cpu == -1 && event->attr.inherit)
4950 return -EINVAL;
4951
43a21ea8 4952 if (!(vma->vm_flags & VM_SHARED))
37d81828 4953 return -EINVAL;
7b732a75
PZ
4954
4955 vma_size = vma->vm_end - vma->vm_start;
45bfb2e5
PZ
4956
4957 if (vma->vm_pgoff == 0) {
4958 nr_pages = (vma_size / PAGE_SIZE) - 1;
4959 } else {
4960 /*
4961 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
4962 * mapped, all subsequent mappings should have the same size
4963 * and offset. Must be above the normal perf buffer.
4964 */
4965 u64 aux_offset, aux_size;
4966
4967 if (!event->rb)
4968 return -EINVAL;
4969
4970 nr_pages = vma_size / PAGE_SIZE;
4971
4972 mutex_lock(&event->mmap_mutex);
4973 ret = -EINVAL;
4974
4975 rb = event->rb;
4976 if (!rb)
4977 goto aux_unlock;
4978
4979 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
4980 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
4981
4982 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
4983 goto aux_unlock;
4984
4985 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
4986 goto aux_unlock;
4987
4988 /* already mapped with a different offset */
4989 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
4990 goto aux_unlock;
4991
4992 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
4993 goto aux_unlock;
4994
4995 /* already mapped with a different size */
4996 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
4997 goto aux_unlock;
4998
4999 if (!is_power_of_2(nr_pages))
5000 goto aux_unlock;
5001
5002 if (!atomic_inc_not_zero(&rb->mmap_count))
5003 goto aux_unlock;
5004
5005 if (rb_has_aux(rb)) {
5006 atomic_inc(&rb->aux_mmap_count);
5007 ret = 0;
5008 goto unlock;
5009 }
5010
5011 atomic_set(&rb->aux_mmap_count, 1);
5012 user_extra = nr_pages;
5013
5014 goto accounting;
5015 }
7b732a75 5016
7730d865 5017 /*
76369139 5018 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
5019 * can do bitmasks instead of modulo.
5020 */
2ed11312 5021 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
5022 return -EINVAL;
5023
7b732a75 5024 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
5025 return -EINVAL;
5026
cdd6c482 5027 WARN_ON_ONCE(event->ctx->parent_ctx);
9bb5d40c 5028again:
cdd6c482 5029 mutex_lock(&event->mmap_mutex);
76369139 5030 if (event->rb) {
9bb5d40c 5031 if (event->rb->nr_pages != nr_pages) {
ebb3c4c4 5032 ret = -EINVAL;
9bb5d40c
PZ
5033 goto unlock;
5034 }
5035
5036 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5037 /*
5038 * Raced against perf_mmap_close() through
5039 * perf_event_set_output(). Try again, hope for better
5040 * luck.
5041 */
5042 mutex_unlock(&event->mmap_mutex);
5043 goto again;
5044 }
5045
ebb3c4c4
PZ
5046 goto unlock;
5047 }
5048
789f90fc 5049 user_extra = nr_pages + 1;
45bfb2e5
PZ
5050
5051accounting:
cdd6c482 5052 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
5053
5054 /*
5055 * Increase the limit linearly with more CPUs:
5056 */
5057 user_lock_limit *= num_online_cpus();
5058
789f90fc 5059 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 5060
789f90fc
PZ
5061 if (user_locked > user_lock_limit)
5062 extra = user_locked - user_lock_limit;
7b732a75 5063
78d7d407 5064 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 5065 lock_limit >>= PAGE_SHIFT;
bc3e53f6 5066 locked = vma->vm_mm->pinned_vm + extra;
7b732a75 5067
459ec28a
IM
5068 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5069 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
5070 ret = -EPERM;
5071 goto unlock;
5072 }
7b732a75 5073
45bfb2e5 5074 WARN_ON(!rb && event->rb);
906010b2 5075
d57e34fd 5076 if (vma->vm_flags & VM_WRITE)
76369139 5077 flags |= RING_BUFFER_WRITABLE;
d57e34fd 5078
76369139 5079 if (!rb) {
45bfb2e5
PZ
5080 rb = rb_alloc(nr_pages,
5081 event->attr.watermark ? event->attr.wakeup_watermark : 0,
5082 event->cpu, flags);
26cb63ad 5083
45bfb2e5
PZ
5084 if (!rb) {
5085 ret = -ENOMEM;
5086 goto unlock;
5087 }
43a21ea8 5088
45bfb2e5
PZ
5089 atomic_set(&rb->mmap_count, 1);
5090 rb->mmap_user = get_current_user();
5091 rb->mmap_locked = extra;
26cb63ad 5092
45bfb2e5 5093 ring_buffer_attach(event, rb);
ac9721f3 5094
45bfb2e5
PZ
5095 perf_event_init_userpage(event);
5096 perf_event_update_userpage(event);
5097 } else {
1a594131
AS
5098 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5099 event->attr.aux_watermark, flags);
45bfb2e5
PZ
5100 if (!ret)
5101 rb->aux_mmap_locked = extra;
5102 }
9a0f05cb 5103
ebb3c4c4 5104unlock:
45bfb2e5
PZ
5105 if (!ret) {
5106 atomic_long_add(user_extra, &user->locked_vm);
5107 vma->vm_mm->pinned_vm += extra;
5108
ac9721f3 5109 atomic_inc(&event->mmap_count);
45bfb2e5
PZ
5110 } else if (rb) {
5111 atomic_dec(&rb->mmap_count);
5112 }
5113aux_unlock:
cdd6c482 5114 mutex_unlock(&event->mmap_mutex);
37d81828 5115
9bb5d40c
PZ
5116 /*
5117 * Since pinned accounting is per vm we cannot allow fork() to copy our
5118 * vma.
5119 */
26cb63ad 5120 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
37d81828 5121 vma->vm_ops = &perf_mmap_vmops;
7b732a75 5122
1e0fb9ec
AL
5123 if (event->pmu->event_mapped)
5124 event->pmu->event_mapped(event);
5125
7b732a75 5126 return ret;
37d81828
PM
5127}
5128
3c446b3d
PZ
5129static int perf_fasync(int fd, struct file *filp, int on)
5130{
496ad9aa 5131 struct inode *inode = file_inode(filp);
cdd6c482 5132 struct perf_event *event = filp->private_data;
3c446b3d
PZ
5133 int retval;
5134
5955102c 5135 inode_lock(inode);
cdd6c482 5136 retval = fasync_helper(fd, filp, on, &event->fasync);
5955102c 5137 inode_unlock(inode);
3c446b3d
PZ
5138
5139 if (retval < 0)
5140 return retval;
5141
5142 return 0;
5143}
5144
0793a61d 5145static const struct file_operations perf_fops = {
3326c1ce 5146 .llseek = no_llseek,
0793a61d
TG
5147 .release = perf_release,
5148 .read = perf_read,
5149 .poll = perf_poll,
d859e29f 5150 .unlocked_ioctl = perf_ioctl,
b3f20785 5151 .compat_ioctl = perf_compat_ioctl,
37d81828 5152 .mmap = perf_mmap,
3c446b3d 5153 .fasync = perf_fasync,
0793a61d
TG
5154};
5155
925d519a 5156/*
cdd6c482 5157 * Perf event wakeup
925d519a
PZ
5158 *
5159 * If there's data, ensure we set the poll() state and publish everything
5160 * to user-space before waking everybody up.
5161 */
5162
fed66e2c
PZ
5163static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5164{
5165 /* only the parent has fasync state */
5166 if (event->parent)
5167 event = event->parent;
5168 return &event->fasync;
5169}
5170
cdd6c482 5171void perf_event_wakeup(struct perf_event *event)
925d519a 5172{
10c6db11 5173 ring_buffer_wakeup(event);
4c9e2542 5174
cdd6c482 5175 if (event->pending_kill) {
fed66e2c 5176 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
cdd6c482 5177 event->pending_kill = 0;
4c9e2542 5178 }
925d519a
PZ
5179}
5180
e360adbe 5181static void perf_pending_event(struct irq_work *entry)
79f14641 5182{
cdd6c482
IM
5183 struct perf_event *event = container_of(entry,
5184 struct perf_event, pending);
d525211f
PZ
5185 int rctx;
5186
5187 rctx = perf_swevent_get_recursion_context();
5188 /*
5189 * If we 'fail' here, that's OK, it means recursion is already disabled
5190 * and we won't recurse 'further'.
5191 */
79f14641 5192
cdd6c482
IM
5193 if (event->pending_disable) {
5194 event->pending_disable = 0;
fae3fde6 5195 perf_event_disable_local(event);
79f14641
PZ
5196 }
5197
cdd6c482
IM
5198 if (event->pending_wakeup) {
5199 event->pending_wakeup = 0;
5200 perf_event_wakeup(event);
79f14641 5201 }
d525211f
PZ
5202
5203 if (rctx >= 0)
5204 perf_swevent_put_recursion_context(rctx);
79f14641
PZ
5205}
5206
39447b38
ZY
5207/*
5208 * We assume there is only KVM supporting the callbacks.
5209 * Later on, we might change it to a list if there is
5210 * another virtualization implementation supporting the callbacks.
5211 */
5212struct perf_guest_info_callbacks *perf_guest_cbs;
5213
5214int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5215{
5216 perf_guest_cbs = cbs;
5217 return 0;
5218}
5219EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5220
5221int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5222{
5223 perf_guest_cbs = NULL;
5224 return 0;
5225}
5226EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5227
4018994f
JO
5228static void
5229perf_output_sample_regs(struct perf_output_handle *handle,
5230 struct pt_regs *regs, u64 mask)
5231{
5232 int bit;
5233
5234 for_each_set_bit(bit, (const unsigned long *) &mask,
5235 sizeof(mask) * BITS_PER_BYTE) {
5236 u64 val;
5237
5238 val = perf_reg_value(regs, bit);
5239 perf_output_put(handle, val);
5240 }
5241}
5242
60e2364e 5243static void perf_sample_regs_user(struct perf_regs *regs_user,
88a7c26a
AL
5244 struct pt_regs *regs,
5245 struct pt_regs *regs_user_copy)
4018994f 5246{
88a7c26a
AL
5247 if (user_mode(regs)) {
5248 regs_user->abi = perf_reg_abi(current);
2565711f 5249 regs_user->regs = regs;
88a7c26a
AL
5250 } else if (current->mm) {
5251 perf_get_regs_user(regs_user, regs, regs_user_copy);
2565711f
PZ
5252 } else {
5253 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5254 regs_user->regs = NULL;
4018994f
JO
5255 }
5256}
5257
60e2364e
SE
5258static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5259 struct pt_regs *regs)
5260{
5261 regs_intr->regs = regs;
5262 regs_intr->abi = perf_reg_abi(current);
5263}
5264
5265
c5ebcedb
JO
5266/*
5267 * Get remaining task size from user stack pointer.
5268 *
5269 * It'd be better to take stack vma map and limit this more
5270 * precisly, but there's no way to get it safely under interrupt,
5271 * so using TASK_SIZE as limit.
5272 */
5273static u64 perf_ustack_task_size(struct pt_regs *regs)
5274{
5275 unsigned long addr = perf_user_stack_pointer(regs);
5276
5277 if (!addr || addr >= TASK_SIZE)
5278 return 0;
5279
5280 return TASK_SIZE - addr;
5281}
5282
5283static u16
5284perf_sample_ustack_size(u16 stack_size, u16 header_size,
5285 struct pt_regs *regs)
5286{
5287 u64 task_size;
5288
5289 /* No regs, no stack pointer, no dump. */
5290 if (!regs)
5291 return 0;
5292
5293 /*
5294 * Check if we fit in with the requested stack size into the:
5295 * - TASK_SIZE
5296 * If we don't, we limit the size to the TASK_SIZE.
5297 *
5298 * - remaining sample size
5299 * If we don't, we customize the stack size to
5300 * fit in to the remaining sample size.
5301 */
5302
5303 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5304 stack_size = min(stack_size, (u16) task_size);
5305
5306 /* Current header size plus static size and dynamic size. */
5307 header_size += 2 * sizeof(u64);
5308
5309 /* Do we fit in with the current stack dump size? */
5310 if ((u16) (header_size + stack_size) < header_size) {
5311 /*
5312 * If we overflow the maximum size for the sample,
5313 * we customize the stack dump size to fit in.
5314 */
5315 stack_size = USHRT_MAX - header_size - sizeof(u64);
5316 stack_size = round_up(stack_size, sizeof(u64));
5317 }
5318
5319 return stack_size;
5320}
5321
5322static void
5323perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5324 struct pt_regs *regs)
5325{
5326 /* Case of a kernel thread, nothing to dump */
5327 if (!regs) {
5328 u64 size = 0;
5329 perf_output_put(handle, size);
5330 } else {
5331 unsigned long sp;
5332 unsigned int rem;
5333 u64 dyn_size;
5334
5335 /*
5336 * We dump:
5337 * static size
5338 * - the size requested by user or the best one we can fit
5339 * in to the sample max size
5340 * data
5341 * - user stack dump data
5342 * dynamic size
5343 * - the actual dumped size
5344 */
5345
5346 /* Static size. */
5347 perf_output_put(handle, dump_size);
5348
5349 /* Data. */
5350 sp = perf_user_stack_pointer(regs);
5351 rem = __output_copy_user(handle, (void *) sp, dump_size);
5352 dyn_size = dump_size - rem;
5353
5354 perf_output_skip(handle, rem);
5355
5356 /* Dynamic size. */
5357 perf_output_put(handle, dyn_size);
5358 }
5359}
5360
c980d109
ACM
5361static void __perf_event_header__init_id(struct perf_event_header *header,
5362 struct perf_sample_data *data,
5363 struct perf_event *event)
6844c09d
ACM
5364{
5365 u64 sample_type = event->attr.sample_type;
5366
5367 data->type = sample_type;
5368 header->size += event->id_header_size;
5369
5370 if (sample_type & PERF_SAMPLE_TID) {
5371 /* namespace issues */
5372 data->tid_entry.pid = perf_event_pid(event, current);
5373 data->tid_entry.tid = perf_event_tid(event, current);
5374 }
5375
5376 if (sample_type & PERF_SAMPLE_TIME)
34f43927 5377 data->time = perf_event_clock(event);
6844c09d 5378
ff3d527c 5379 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6844c09d
ACM
5380 data->id = primary_event_id(event);
5381
5382 if (sample_type & PERF_SAMPLE_STREAM_ID)
5383 data->stream_id = event->id;
5384
5385 if (sample_type & PERF_SAMPLE_CPU) {
5386 data->cpu_entry.cpu = raw_smp_processor_id();
5387 data->cpu_entry.reserved = 0;
5388 }
5389}
5390
76369139
FW
5391void perf_event_header__init_id(struct perf_event_header *header,
5392 struct perf_sample_data *data,
5393 struct perf_event *event)
c980d109
ACM
5394{
5395 if (event->attr.sample_id_all)
5396 __perf_event_header__init_id(header, data, event);
5397}
5398
5399static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5400 struct perf_sample_data *data)
5401{
5402 u64 sample_type = data->type;
5403
5404 if (sample_type & PERF_SAMPLE_TID)
5405 perf_output_put(handle, data->tid_entry);
5406
5407 if (sample_type & PERF_SAMPLE_TIME)
5408 perf_output_put(handle, data->time);
5409
5410 if (sample_type & PERF_SAMPLE_ID)
5411 perf_output_put(handle, data->id);
5412
5413 if (sample_type & PERF_SAMPLE_STREAM_ID)
5414 perf_output_put(handle, data->stream_id);
5415
5416 if (sample_type & PERF_SAMPLE_CPU)
5417 perf_output_put(handle, data->cpu_entry);
ff3d527c
AH
5418
5419 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5420 perf_output_put(handle, data->id);
c980d109
ACM
5421}
5422
76369139
FW
5423void perf_event__output_id_sample(struct perf_event *event,
5424 struct perf_output_handle *handle,
5425 struct perf_sample_data *sample)
c980d109
ACM
5426{
5427 if (event->attr.sample_id_all)
5428 __perf_event__output_id_sample(handle, sample);
5429}
5430
3dab77fb 5431static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
5432 struct perf_event *event,
5433 u64 enabled, u64 running)
3dab77fb 5434{
cdd6c482 5435 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5436 u64 values[4];
5437 int n = 0;
5438
b5e58793 5439 values[n++] = perf_event_count(event);
3dab77fb 5440 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 5441 values[n++] = enabled +
cdd6c482 5442 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
5443 }
5444 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 5445 values[n++] = running +
cdd6c482 5446 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
5447 }
5448 if (read_format & PERF_FORMAT_ID)
cdd6c482 5449 values[n++] = primary_event_id(event);
3dab77fb 5450
76369139 5451 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5452}
5453
5454/*
cdd6c482 5455 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3dab77fb
PZ
5456 */
5457static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
5458 struct perf_event *event,
5459 u64 enabled, u64 running)
3dab77fb 5460{
cdd6c482
IM
5461 struct perf_event *leader = event->group_leader, *sub;
5462 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5463 u64 values[5];
5464 int n = 0;
5465
5466 values[n++] = 1 + leader->nr_siblings;
5467
5468 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 5469 values[n++] = enabled;
3dab77fb
PZ
5470
5471 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 5472 values[n++] = running;
3dab77fb 5473
cdd6c482 5474 if (leader != event)
3dab77fb
PZ
5475 leader->pmu->read(leader);
5476
b5e58793 5477 values[n++] = perf_event_count(leader);
3dab77fb 5478 if (read_format & PERF_FORMAT_ID)
cdd6c482 5479 values[n++] = primary_event_id(leader);
3dab77fb 5480
76369139 5481 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 5482
65abc865 5483 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3dab77fb
PZ
5484 n = 0;
5485
6f5ab001
JO
5486 if ((sub != event) &&
5487 (sub->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
5488 sub->pmu->read(sub);
5489
b5e58793 5490 values[n++] = perf_event_count(sub);
3dab77fb 5491 if (read_format & PERF_FORMAT_ID)
cdd6c482 5492 values[n++] = primary_event_id(sub);
3dab77fb 5493
76369139 5494 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5495 }
5496}
5497
eed01528
SE
5498#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5499 PERF_FORMAT_TOTAL_TIME_RUNNING)
5500
3dab77fb 5501static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 5502 struct perf_event *event)
3dab77fb 5503{
e3f3541c 5504 u64 enabled = 0, running = 0, now;
eed01528
SE
5505 u64 read_format = event->attr.read_format;
5506
5507 /*
5508 * compute total_time_enabled, total_time_running
5509 * based on snapshot values taken when the event
5510 * was last scheduled in.
5511 *
5512 * we cannot simply called update_context_time()
5513 * because of locking issue as we are called in
5514 * NMI context
5515 */
c4794295 5516 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 5517 calc_timer_values(event, &now, &enabled, &running);
eed01528 5518
cdd6c482 5519 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 5520 perf_output_read_group(handle, event, enabled, running);
3dab77fb 5521 else
eed01528 5522 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
5523}
5524
5622f295
MM
5525void perf_output_sample(struct perf_output_handle *handle,
5526 struct perf_event_header *header,
5527 struct perf_sample_data *data,
cdd6c482 5528 struct perf_event *event)
5622f295
MM
5529{
5530 u64 sample_type = data->type;
5531
5532 perf_output_put(handle, *header);
5533
ff3d527c
AH
5534 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5535 perf_output_put(handle, data->id);
5536
5622f295
MM
5537 if (sample_type & PERF_SAMPLE_IP)
5538 perf_output_put(handle, data->ip);
5539
5540 if (sample_type & PERF_SAMPLE_TID)
5541 perf_output_put(handle, data->tid_entry);
5542
5543 if (sample_type & PERF_SAMPLE_TIME)
5544 perf_output_put(handle, data->time);
5545
5546 if (sample_type & PERF_SAMPLE_ADDR)
5547 perf_output_put(handle, data->addr);
5548
5549 if (sample_type & PERF_SAMPLE_ID)
5550 perf_output_put(handle, data->id);
5551
5552 if (sample_type & PERF_SAMPLE_STREAM_ID)
5553 perf_output_put(handle, data->stream_id);
5554
5555 if (sample_type & PERF_SAMPLE_CPU)
5556 perf_output_put(handle, data->cpu_entry);
5557
5558 if (sample_type & PERF_SAMPLE_PERIOD)
5559 perf_output_put(handle, data->period);
5560
5561 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 5562 perf_output_read(handle, event);
5622f295
MM
5563
5564 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5565 if (data->callchain) {
5566 int size = 1;
5567
5568 if (data->callchain)
5569 size += data->callchain->nr;
5570
5571 size *= sizeof(u64);
5572
76369139 5573 __output_copy(handle, data->callchain, size);
5622f295
MM
5574 } else {
5575 u64 nr = 0;
5576 perf_output_put(handle, nr);
5577 }
5578 }
5579
5580 if (sample_type & PERF_SAMPLE_RAW) {
5581 if (data->raw) {
fa128e6a
AS
5582 u32 raw_size = data->raw->size;
5583 u32 real_size = round_up(raw_size + sizeof(u32),
5584 sizeof(u64)) - sizeof(u32);
5585 u64 zero = 0;
5586
5587 perf_output_put(handle, real_size);
5588 __output_copy(handle, data->raw->data, raw_size);
5589 if (real_size - raw_size)
5590 __output_copy(handle, &zero, real_size - raw_size);
5622f295
MM
5591 } else {
5592 struct {
5593 u32 size;
5594 u32 data;
5595 } raw = {
5596 .size = sizeof(u32),
5597 .data = 0,
5598 };
5599 perf_output_put(handle, raw);
5600 }
5601 }
a7ac67ea 5602
bce38cd5
SE
5603 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5604 if (data->br_stack) {
5605 size_t size;
5606
5607 size = data->br_stack->nr
5608 * sizeof(struct perf_branch_entry);
5609
5610 perf_output_put(handle, data->br_stack->nr);
5611 perf_output_copy(handle, data->br_stack->entries, size);
5612 } else {
5613 /*
5614 * we always store at least the value of nr
5615 */
5616 u64 nr = 0;
5617 perf_output_put(handle, nr);
5618 }
5619 }
4018994f
JO
5620
5621 if (sample_type & PERF_SAMPLE_REGS_USER) {
5622 u64 abi = data->regs_user.abi;
5623
5624 /*
5625 * If there are no regs to dump, notice it through
5626 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5627 */
5628 perf_output_put(handle, abi);
5629
5630 if (abi) {
5631 u64 mask = event->attr.sample_regs_user;
5632 perf_output_sample_regs(handle,
5633 data->regs_user.regs,
5634 mask);
5635 }
5636 }
c5ebcedb 5637
a5cdd40c 5638 if (sample_type & PERF_SAMPLE_STACK_USER) {
c5ebcedb
JO
5639 perf_output_sample_ustack(handle,
5640 data->stack_user_size,
5641 data->regs_user.regs);
a5cdd40c 5642 }
c3feedf2
AK
5643
5644 if (sample_type & PERF_SAMPLE_WEIGHT)
5645 perf_output_put(handle, data->weight);
d6be9ad6
SE
5646
5647 if (sample_type & PERF_SAMPLE_DATA_SRC)
5648 perf_output_put(handle, data->data_src.val);
a5cdd40c 5649
fdfbbd07
AK
5650 if (sample_type & PERF_SAMPLE_TRANSACTION)
5651 perf_output_put(handle, data->txn);
5652
60e2364e
SE
5653 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5654 u64 abi = data->regs_intr.abi;
5655 /*
5656 * If there are no regs to dump, notice it through
5657 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5658 */
5659 perf_output_put(handle, abi);
5660
5661 if (abi) {
5662 u64 mask = event->attr.sample_regs_intr;
5663
5664 perf_output_sample_regs(handle,
5665 data->regs_intr.regs,
5666 mask);
5667 }
5668 }
5669
a5cdd40c
PZ
5670 if (!event->attr.watermark) {
5671 int wakeup_events = event->attr.wakeup_events;
5672
5673 if (wakeup_events) {
5674 struct ring_buffer *rb = handle->rb;
5675 int events = local_inc_return(&rb->events);
5676
5677 if (events >= wakeup_events) {
5678 local_sub(wakeup_events, &rb->events);
5679 local_inc(&rb->wakeup);
5680 }
5681 }
5682 }
5622f295
MM
5683}
5684
5685void perf_prepare_sample(struct perf_event_header *header,
5686 struct perf_sample_data *data,
cdd6c482 5687 struct perf_event *event,
5622f295 5688 struct pt_regs *regs)
7b732a75 5689{
cdd6c482 5690 u64 sample_type = event->attr.sample_type;
7b732a75 5691
cdd6c482 5692 header->type = PERF_RECORD_SAMPLE;
c320c7b7 5693 header->size = sizeof(*header) + event->header_size;
5622f295
MM
5694
5695 header->misc = 0;
5696 header->misc |= perf_misc_flags(regs);
6fab0192 5697
c980d109 5698 __perf_event_header__init_id(header, data, event);
6844c09d 5699
c320c7b7 5700 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
5701 data->ip = perf_instruction_pointer(regs);
5702
b23f3325 5703 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 5704 int size = 1;
394ee076 5705
e6dab5ff 5706 data->callchain = perf_callchain(event, regs);
5622f295
MM
5707
5708 if (data->callchain)
5709 size += data->callchain->nr;
5710
5711 header->size += size * sizeof(u64);
394ee076
PZ
5712 }
5713
3a43ce68 5714 if (sample_type & PERF_SAMPLE_RAW) {
a044560c
PZ
5715 int size = sizeof(u32);
5716
5717 if (data->raw)
5718 size += data->raw->size;
5719 else
5720 size += sizeof(u32);
5721
fa128e6a 5722 header->size += round_up(size, sizeof(u64));
7f453c24 5723 }
bce38cd5
SE
5724
5725 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5726 int size = sizeof(u64); /* nr */
5727 if (data->br_stack) {
5728 size += data->br_stack->nr
5729 * sizeof(struct perf_branch_entry);
5730 }
5731 header->size += size;
5732 }
4018994f 5733
2565711f 5734 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
88a7c26a
AL
5735 perf_sample_regs_user(&data->regs_user, regs,
5736 &data->regs_user_copy);
2565711f 5737
4018994f
JO
5738 if (sample_type & PERF_SAMPLE_REGS_USER) {
5739 /* regs dump ABI info */
5740 int size = sizeof(u64);
5741
4018994f
JO
5742 if (data->regs_user.regs) {
5743 u64 mask = event->attr.sample_regs_user;
5744 size += hweight64(mask) * sizeof(u64);
5745 }
5746
5747 header->size += size;
5748 }
c5ebcedb
JO
5749
5750 if (sample_type & PERF_SAMPLE_STACK_USER) {
5751 /*
5752 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5753 * processed as the last one or have additional check added
5754 * in case new sample type is added, because we could eat
5755 * up the rest of the sample size.
5756 */
c5ebcedb
JO
5757 u16 stack_size = event->attr.sample_stack_user;
5758 u16 size = sizeof(u64);
5759
c5ebcedb 5760 stack_size = perf_sample_ustack_size(stack_size, header->size,
2565711f 5761 data->regs_user.regs);
c5ebcedb
JO
5762
5763 /*
5764 * If there is something to dump, add space for the dump
5765 * itself and for the field that tells the dynamic size,
5766 * which is how many have been actually dumped.
5767 */
5768 if (stack_size)
5769 size += sizeof(u64) + stack_size;
5770
5771 data->stack_user_size = stack_size;
5772 header->size += size;
5773 }
60e2364e
SE
5774
5775 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5776 /* regs dump ABI info */
5777 int size = sizeof(u64);
5778
5779 perf_sample_regs_intr(&data->regs_intr, regs);
5780
5781 if (data->regs_intr.regs) {
5782 u64 mask = event->attr.sample_regs_intr;
5783
5784 size += hweight64(mask) * sizeof(u64);
5785 }
5786
5787 header->size += size;
5788 }
5622f295 5789}
7f453c24 5790
9ecda41a
WN
5791static void __always_inline
5792__perf_event_output(struct perf_event *event,
5793 struct perf_sample_data *data,
5794 struct pt_regs *regs,
5795 int (*output_begin)(struct perf_output_handle *,
5796 struct perf_event *,
5797 unsigned int))
5622f295
MM
5798{
5799 struct perf_output_handle handle;
5800 struct perf_event_header header;
689802b2 5801
927c7a9e
FW
5802 /* protect the callchain buffers */
5803 rcu_read_lock();
5804
cdd6c482 5805 perf_prepare_sample(&header, data, event, regs);
5c148194 5806
9ecda41a 5807 if (output_begin(&handle, event, header.size))
927c7a9e 5808 goto exit;
0322cd6e 5809
cdd6c482 5810 perf_output_sample(&handle, &header, data, event);
f413cdb8 5811
8a057d84 5812 perf_output_end(&handle);
927c7a9e
FW
5813
5814exit:
5815 rcu_read_unlock();
0322cd6e
PZ
5816}
5817
9ecda41a
WN
5818void
5819perf_event_output_forward(struct perf_event *event,
5820 struct perf_sample_data *data,
5821 struct pt_regs *regs)
5822{
5823 __perf_event_output(event, data, regs, perf_output_begin_forward);
5824}
5825
5826void
5827perf_event_output_backward(struct perf_event *event,
5828 struct perf_sample_data *data,
5829 struct pt_regs *regs)
5830{
5831 __perf_event_output(event, data, regs, perf_output_begin_backward);
5832}
5833
5834void
5835perf_event_output(struct perf_event *event,
5836 struct perf_sample_data *data,
5837 struct pt_regs *regs)
5838{
5839 __perf_event_output(event, data, regs, perf_output_begin);
5840}
5841
38b200d6 5842/*
cdd6c482 5843 * read event_id
38b200d6
PZ
5844 */
5845
5846struct perf_read_event {
5847 struct perf_event_header header;
5848
5849 u32 pid;
5850 u32 tid;
38b200d6
PZ
5851};
5852
5853static void
cdd6c482 5854perf_event_read_event(struct perf_event *event,
38b200d6
PZ
5855 struct task_struct *task)
5856{
5857 struct perf_output_handle handle;
c980d109 5858 struct perf_sample_data sample;
dfc65094 5859 struct perf_read_event read_event = {
38b200d6 5860 .header = {
cdd6c482 5861 .type = PERF_RECORD_READ,
38b200d6 5862 .misc = 0,
c320c7b7 5863 .size = sizeof(read_event) + event->read_size,
38b200d6 5864 },
cdd6c482
IM
5865 .pid = perf_event_pid(event, task),
5866 .tid = perf_event_tid(event, task),
38b200d6 5867 };
3dab77fb 5868 int ret;
38b200d6 5869
c980d109 5870 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 5871 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
5872 if (ret)
5873 return;
5874
dfc65094 5875 perf_output_put(&handle, read_event);
cdd6c482 5876 perf_output_read(&handle, event);
c980d109 5877 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 5878
38b200d6
PZ
5879 perf_output_end(&handle);
5880}
5881
aab5b71e 5882typedef void (perf_iterate_f)(struct perf_event *event, void *data);
52d857a8
JO
5883
5884static void
aab5b71e
PZ
5885perf_iterate_ctx(struct perf_event_context *ctx,
5886 perf_iterate_f output,
b73e4fef 5887 void *data, bool all)
52d857a8
JO
5888{
5889 struct perf_event *event;
5890
5891 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
b73e4fef
AS
5892 if (!all) {
5893 if (event->state < PERF_EVENT_STATE_INACTIVE)
5894 continue;
5895 if (!event_filter_match(event))
5896 continue;
5897 }
5898
67516844 5899 output(event, data);
52d857a8
JO
5900 }
5901}
5902
aab5b71e 5903static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
f2fb6bef
KL
5904{
5905 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
5906 struct perf_event *event;
5907
5908 list_for_each_entry_rcu(event, &pel->list, sb_list) {
5909 if (event->state < PERF_EVENT_STATE_INACTIVE)
5910 continue;
5911 if (!event_filter_match(event))
5912 continue;
5913 output(event, data);
5914 }
5915}
5916
aab5b71e
PZ
5917/*
5918 * Iterate all events that need to receive side-band events.
5919 *
5920 * For new callers; ensure that account_pmu_sb_event() includes
5921 * your event, otherwise it might not get delivered.
5922 */
52d857a8 5923static void
aab5b71e 5924perf_iterate_sb(perf_iterate_f output, void *data,
52d857a8
JO
5925 struct perf_event_context *task_ctx)
5926{
52d857a8 5927 struct perf_event_context *ctx;
52d857a8
JO
5928 int ctxn;
5929
aab5b71e
PZ
5930 rcu_read_lock();
5931 preempt_disable();
5932
4e93ad60 5933 /*
aab5b71e
PZ
5934 * If we have task_ctx != NULL we only notify the task context itself.
5935 * The task_ctx is set only for EXIT events before releasing task
4e93ad60
JO
5936 * context.
5937 */
5938 if (task_ctx) {
aab5b71e
PZ
5939 perf_iterate_ctx(task_ctx, output, data, false);
5940 goto done;
4e93ad60
JO
5941 }
5942
aab5b71e 5943 perf_iterate_sb_cpu(output, data);
f2fb6bef
KL
5944
5945 for_each_task_context_nr(ctxn) {
52d857a8
JO
5946 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5947 if (ctx)
aab5b71e 5948 perf_iterate_ctx(ctx, output, data, false);
52d857a8 5949 }
aab5b71e 5950done:
f2fb6bef 5951 preempt_enable();
52d857a8 5952 rcu_read_unlock();
95ff4ca2
AS
5953}
5954
375637bc
AS
5955/*
5956 * Clear all file-based filters at exec, they'll have to be
5957 * re-instated when/if these objects are mmapped again.
5958 */
5959static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
5960{
5961 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
5962 struct perf_addr_filter *filter;
5963 unsigned int restart = 0, count = 0;
5964 unsigned long flags;
5965
5966 if (!has_addr_filter(event))
5967 return;
5968
5969 raw_spin_lock_irqsave(&ifh->lock, flags);
5970 list_for_each_entry(filter, &ifh->list, entry) {
5971 if (filter->inode) {
5972 event->addr_filters_offs[count] = 0;
5973 restart++;
5974 }
5975
5976 count++;
5977 }
5978
5979 if (restart)
5980 event->addr_filters_gen++;
5981 raw_spin_unlock_irqrestore(&ifh->lock, flags);
5982
5983 if (restart)
5984 perf_event_restart(event);
5985}
5986
5987void perf_event_exec(void)
5988{
5989 struct perf_event_context *ctx;
5990 int ctxn;
5991
5992 rcu_read_lock();
5993 for_each_task_context_nr(ctxn) {
5994 ctx = current->perf_event_ctxp[ctxn];
5995 if (!ctx)
5996 continue;
5997
5998 perf_event_enable_on_exec(ctxn);
5999
aab5b71e 6000 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
375637bc
AS
6001 true);
6002 }
6003 rcu_read_unlock();
6004}
6005
95ff4ca2
AS
6006struct remote_output {
6007 struct ring_buffer *rb;
6008 int err;
6009};
6010
6011static void __perf_event_output_stop(struct perf_event *event, void *data)
6012{
6013 struct perf_event *parent = event->parent;
6014 struct remote_output *ro = data;
6015 struct ring_buffer *rb = ro->rb;
375637bc
AS
6016 struct stop_event_data sd = {
6017 .event = event,
6018 };
95ff4ca2
AS
6019
6020 if (!has_aux(event))
6021 return;
6022
6023 if (!parent)
6024 parent = event;
6025
6026 /*
6027 * In case of inheritance, it will be the parent that links to the
6028 * ring-buffer, but it will be the child that's actually using it:
6029 */
6030 if (rcu_dereference(parent->rb) == rb)
375637bc 6031 ro->err = __perf_event_stop(&sd);
95ff4ca2
AS
6032}
6033
6034static int __perf_pmu_output_stop(void *info)
6035{
6036 struct perf_event *event = info;
6037 struct pmu *pmu = event->pmu;
6038 struct perf_cpu_context *cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
6039 struct remote_output ro = {
6040 .rb = event->rb,
6041 };
6042
6043 rcu_read_lock();
aab5b71e 6044 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
95ff4ca2 6045 if (cpuctx->task_ctx)
aab5b71e 6046 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
b73e4fef 6047 &ro, false);
95ff4ca2
AS
6048 rcu_read_unlock();
6049
6050 return ro.err;
6051}
6052
6053static void perf_pmu_output_stop(struct perf_event *event)
6054{
6055 struct perf_event *iter;
6056 int err, cpu;
6057
6058restart:
6059 rcu_read_lock();
6060 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6061 /*
6062 * For per-CPU events, we need to make sure that neither they
6063 * nor their children are running; for cpu==-1 events it's
6064 * sufficient to stop the event itself if it's active, since
6065 * it can't have children.
6066 */
6067 cpu = iter->cpu;
6068 if (cpu == -1)
6069 cpu = READ_ONCE(iter->oncpu);
6070
6071 if (cpu == -1)
6072 continue;
6073
6074 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6075 if (err == -EAGAIN) {
6076 rcu_read_unlock();
6077 goto restart;
6078 }
6079 }
6080 rcu_read_unlock();
52d857a8
JO
6081}
6082
60313ebe 6083/*
9f498cc5
PZ
6084 * task tracking -- fork/exit
6085 *
13d7a241 6086 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
60313ebe
PZ
6087 */
6088
9f498cc5 6089struct perf_task_event {
3a80b4a3 6090 struct task_struct *task;
cdd6c482 6091 struct perf_event_context *task_ctx;
60313ebe
PZ
6092
6093 struct {
6094 struct perf_event_header header;
6095
6096 u32 pid;
6097 u32 ppid;
9f498cc5
PZ
6098 u32 tid;
6099 u32 ptid;
393b2ad8 6100 u64 time;
cdd6c482 6101 } event_id;
60313ebe
PZ
6102};
6103
67516844
JO
6104static int perf_event_task_match(struct perf_event *event)
6105{
13d7a241
SE
6106 return event->attr.comm || event->attr.mmap ||
6107 event->attr.mmap2 || event->attr.mmap_data ||
6108 event->attr.task;
67516844
JO
6109}
6110
cdd6c482 6111static void perf_event_task_output(struct perf_event *event,
52d857a8 6112 void *data)
60313ebe 6113{
52d857a8 6114 struct perf_task_event *task_event = data;
60313ebe 6115 struct perf_output_handle handle;
c980d109 6116 struct perf_sample_data sample;
9f498cc5 6117 struct task_struct *task = task_event->task;
c980d109 6118 int ret, size = task_event->event_id.header.size;
8bb39f9a 6119
67516844
JO
6120 if (!perf_event_task_match(event))
6121 return;
6122
c980d109 6123 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 6124
c980d109 6125 ret = perf_output_begin(&handle, event,
a7ac67ea 6126 task_event->event_id.header.size);
ef60777c 6127 if (ret)
c980d109 6128 goto out;
60313ebe 6129
cdd6c482
IM
6130 task_event->event_id.pid = perf_event_pid(event, task);
6131 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 6132
cdd6c482
IM
6133 task_event->event_id.tid = perf_event_tid(event, task);
6134 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 6135
34f43927
PZ
6136 task_event->event_id.time = perf_event_clock(event);
6137
cdd6c482 6138 perf_output_put(&handle, task_event->event_id);
393b2ad8 6139
c980d109
ACM
6140 perf_event__output_id_sample(event, &handle, &sample);
6141
60313ebe 6142 perf_output_end(&handle);
c980d109
ACM
6143out:
6144 task_event->event_id.header.size = size;
60313ebe
PZ
6145}
6146
cdd6c482
IM
6147static void perf_event_task(struct task_struct *task,
6148 struct perf_event_context *task_ctx,
3a80b4a3 6149 int new)
60313ebe 6150{
9f498cc5 6151 struct perf_task_event task_event;
60313ebe 6152
cdd6c482
IM
6153 if (!atomic_read(&nr_comm_events) &&
6154 !atomic_read(&nr_mmap_events) &&
6155 !atomic_read(&nr_task_events))
60313ebe
PZ
6156 return;
6157
9f498cc5 6158 task_event = (struct perf_task_event){
3a80b4a3
PZ
6159 .task = task,
6160 .task_ctx = task_ctx,
cdd6c482 6161 .event_id = {
60313ebe 6162 .header = {
cdd6c482 6163 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 6164 .misc = 0,
cdd6c482 6165 .size = sizeof(task_event.event_id),
60313ebe 6166 },
573402db
PZ
6167 /* .pid */
6168 /* .ppid */
9f498cc5
PZ
6169 /* .tid */
6170 /* .ptid */
34f43927 6171 /* .time */
60313ebe
PZ
6172 },
6173 };
6174
aab5b71e 6175 perf_iterate_sb(perf_event_task_output,
52d857a8
JO
6176 &task_event,
6177 task_ctx);
9f498cc5
PZ
6178}
6179
cdd6c482 6180void perf_event_fork(struct task_struct *task)
9f498cc5 6181{
cdd6c482 6182 perf_event_task(task, NULL, 1);
60313ebe
PZ
6183}
6184
8d1b2d93
PZ
6185/*
6186 * comm tracking
6187 */
6188
6189struct perf_comm_event {
22a4f650
IM
6190 struct task_struct *task;
6191 char *comm;
8d1b2d93
PZ
6192 int comm_size;
6193
6194 struct {
6195 struct perf_event_header header;
6196
6197 u32 pid;
6198 u32 tid;
cdd6c482 6199 } event_id;
8d1b2d93
PZ
6200};
6201
67516844
JO
6202static int perf_event_comm_match(struct perf_event *event)
6203{
6204 return event->attr.comm;
6205}
6206
cdd6c482 6207static void perf_event_comm_output(struct perf_event *event,
52d857a8 6208 void *data)
8d1b2d93 6209{
52d857a8 6210 struct perf_comm_event *comm_event = data;
8d1b2d93 6211 struct perf_output_handle handle;
c980d109 6212 struct perf_sample_data sample;
cdd6c482 6213 int size = comm_event->event_id.header.size;
c980d109
ACM
6214 int ret;
6215
67516844
JO
6216 if (!perf_event_comm_match(event))
6217 return;
6218
c980d109
ACM
6219 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6220 ret = perf_output_begin(&handle, event,
a7ac67ea 6221 comm_event->event_id.header.size);
8d1b2d93
PZ
6222
6223 if (ret)
c980d109 6224 goto out;
8d1b2d93 6225
cdd6c482
IM
6226 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6227 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 6228
cdd6c482 6229 perf_output_put(&handle, comm_event->event_id);
76369139 6230 __output_copy(&handle, comm_event->comm,
8d1b2d93 6231 comm_event->comm_size);
c980d109
ACM
6232
6233 perf_event__output_id_sample(event, &handle, &sample);
6234
8d1b2d93 6235 perf_output_end(&handle);
c980d109
ACM
6236out:
6237 comm_event->event_id.header.size = size;
8d1b2d93
PZ
6238}
6239
cdd6c482 6240static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93 6241{
413ee3b4 6242 char comm[TASK_COMM_LEN];
8d1b2d93 6243 unsigned int size;
8d1b2d93 6244
413ee3b4 6245 memset(comm, 0, sizeof(comm));
96b02d78 6246 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 6247 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
6248
6249 comm_event->comm = comm;
6250 comm_event->comm_size = size;
6251
cdd6c482 6252 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8dc85d54 6253
aab5b71e 6254 perf_iterate_sb(perf_event_comm_output,
52d857a8
JO
6255 comm_event,
6256 NULL);
8d1b2d93
PZ
6257}
6258
82b89778 6259void perf_event_comm(struct task_struct *task, bool exec)
8d1b2d93 6260{
9ee318a7
PZ
6261 struct perf_comm_event comm_event;
6262
cdd6c482 6263 if (!atomic_read(&nr_comm_events))
9ee318a7 6264 return;
a63eaf34 6265
9ee318a7 6266 comm_event = (struct perf_comm_event){
8d1b2d93 6267 .task = task,
573402db
PZ
6268 /* .comm */
6269 /* .comm_size */
cdd6c482 6270 .event_id = {
573402db 6271 .header = {
cdd6c482 6272 .type = PERF_RECORD_COMM,
82b89778 6273 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
573402db
PZ
6274 /* .size */
6275 },
6276 /* .pid */
6277 /* .tid */
8d1b2d93
PZ
6278 },
6279 };
6280
cdd6c482 6281 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
6282}
6283
0a4a9391
PZ
6284/*
6285 * mmap tracking
6286 */
6287
6288struct perf_mmap_event {
089dd79d
PZ
6289 struct vm_area_struct *vma;
6290
6291 const char *file_name;
6292 int file_size;
13d7a241
SE
6293 int maj, min;
6294 u64 ino;
6295 u64 ino_generation;
f972eb63 6296 u32 prot, flags;
0a4a9391
PZ
6297
6298 struct {
6299 struct perf_event_header header;
6300
6301 u32 pid;
6302 u32 tid;
6303 u64 start;
6304 u64 len;
6305 u64 pgoff;
cdd6c482 6306 } event_id;
0a4a9391
PZ
6307};
6308
67516844
JO
6309static int perf_event_mmap_match(struct perf_event *event,
6310 void *data)
6311{
6312 struct perf_mmap_event *mmap_event = data;
6313 struct vm_area_struct *vma = mmap_event->vma;
6314 int executable = vma->vm_flags & VM_EXEC;
6315
6316 return (!executable && event->attr.mmap_data) ||
13d7a241 6317 (executable && (event->attr.mmap || event->attr.mmap2));
67516844
JO
6318}
6319
cdd6c482 6320static void perf_event_mmap_output(struct perf_event *event,
52d857a8 6321 void *data)
0a4a9391 6322{
52d857a8 6323 struct perf_mmap_event *mmap_event = data;
0a4a9391 6324 struct perf_output_handle handle;
c980d109 6325 struct perf_sample_data sample;
cdd6c482 6326 int size = mmap_event->event_id.header.size;
c980d109 6327 int ret;
0a4a9391 6328
67516844
JO
6329 if (!perf_event_mmap_match(event, data))
6330 return;
6331
13d7a241
SE
6332 if (event->attr.mmap2) {
6333 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6334 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6335 mmap_event->event_id.header.size += sizeof(mmap_event->min);
6336 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
d008d525 6337 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
f972eb63
PZ
6338 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6339 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
13d7a241
SE
6340 }
6341
c980d109
ACM
6342 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6343 ret = perf_output_begin(&handle, event,
a7ac67ea 6344 mmap_event->event_id.header.size);
0a4a9391 6345 if (ret)
c980d109 6346 goto out;
0a4a9391 6347
cdd6c482
IM
6348 mmap_event->event_id.pid = perf_event_pid(event, current);
6349 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 6350
cdd6c482 6351 perf_output_put(&handle, mmap_event->event_id);
13d7a241
SE
6352
6353 if (event->attr.mmap2) {
6354 perf_output_put(&handle, mmap_event->maj);
6355 perf_output_put(&handle, mmap_event->min);
6356 perf_output_put(&handle, mmap_event->ino);
6357 perf_output_put(&handle, mmap_event->ino_generation);
f972eb63
PZ
6358 perf_output_put(&handle, mmap_event->prot);
6359 perf_output_put(&handle, mmap_event->flags);
13d7a241
SE
6360 }
6361
76369139 6362 __output_copy(&handle, mmap_event->file_name,
0a4a9391 6363 mmap_event->file_size);
c980d109
ACM
6364
6365 perf_event__output_id_sample(event, &handle, &sample);
6366
78d613eb 6367 perf_output_end(&handle);
c980d109
ACM
6368out:
6369 mmap_event->event_id.header.size = size;
0a4a9391
PZ
6370}
6371
cdd6c482 6372static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391 6373{
089dd79d
PZ
6374 struct vm_area_struct *vma = mmap_event->vma;
6375 struct file *file = vma->vm_file;
13d7a241
SE
6376 int maj = 0, min = 0;
6377 u64 ino = 0, gen = 0;
f972eb63 6378 u32 prot = 0, flags = 0;
0a4a9391
PZ
6379 unsigned int size;
6380 char tmp[16];
6381 char *buf = NULL;
2c42cfbf 6382 char *name;
413ee3b4 6383
0a4a9391 6384 if (file) {
13d7a241
SE
6385 struct inode *inode;
6386 dev_t dev;
3ea2f2b9 6387
2c42cfbf 6388 buf = kmalloc(PATH_MAX, GFP_KERNEL);
0a4a9391 6389 if (!buf) {
c7e548b4
ON
6390 name = "//enomem";
6391 goto cpy_name;
0a4a9391 6392 }
413ee3b4 6393 /*
3ea2f2b9 6394 * d_path() works from the end of the rb backwards, so we
413ee3b4
AB
6395 * need to add enough zero bytes after the string to handle
6396 * the 64bit alignment we do later.
6397 */
9bf39ab2 6398 name = file_path(file, buf, PATH_MAX - sizeof(u64));
0a4a9391 6399 if (IS_ERR(name)) {
c7e548b4
ON
6400 name = "//toolong";
6401 goto cpy_name;
0a4a9391 6402 }
13d7a241
SE
6403 inode = file_inode(vma->vm_file);
6404 dev = inode->i_sb->s_dev;
6405 ino = inode->i_ino;
6406 gen = inode->i_generation;
6407 maj = MAJOR(dev);
6408 min = MINOR(dev);
f972eb63
PZ
6409
6410 if (vma->vm_flags & VM_READ)
6411 prot |= PROT_READ;
6412 if (vma->vm_flags & VM_WRITE)
6413 prot |= PROT_WRITE;
6414 if (vma->vm_flags & VM_EXEC)
6415 prot |= PROT_EXEC;
6416
6417 if (vma->vm_flags & VM_MAYSHARE)
6418 flags = MAP_SHARED;
6419 else
6420 flags = MAP_PRIVATE;
6421
6422 if (vma->vm_flags & VM_DENYWRITE)
6423 flags |= MAP_DENYWRITE;
6424 if (vma->vm_flags & VM_MAYEXEC)
6425 flags |= MAP_EXECUTABLE;
6426 if (vma->vm_flags & VM_LOCKED)
6427 flags |= MAP_LOCKED;
6428 if (vma->vm_flags & VM_HUGETLB)
6429 flags |= MAP_HUGETLB;
6430
c7e548b4 6431 goto got_name;
0a4a9391 6432 } else {
fbe26abe
JO
6433 if (vma->vm_ops && vma->vm_ops->name) {
6434 name = (char *) vma->vm_ops->name(vma);
6435 if (name)
6436 goto cpy_name;
6437 }
6438
2c42cfbf 6439 name = (char *)arch_vma_name(vma);
c7e548b4
ON
6440 if (name)
6441 goto cpy_name;
089dd79d 6442
32c5fb7e 6443 if (vma->vm_start <= vma->vm_mm->start_brk &&
3af9e859 6444 vma->vm_end >= vma->vm_mm->brk) {
c7e548b4
ON
6445 name = "[heap]";
6446 goto cpy_name;
32c5fb7e
ON
6447 }
6448 if (vma->vm_start <= vma->vm_mm->start_stack &&
3af9e859 6449 vma->vm_end >= vma->vm_mm->start_stack) {
c7e548b4
ON
6450 name = "[stack]";
6451 goto cpy_name;
089dd79d
PZ
6452 }
6453
c7e548b4
ON
6454 name = "//anon";
6455 goto cpy_name;
0a4a9391
PZ
6456 }
6457
c7e548b4
ON
6458cpy_name:
6459 strlcpy(tmp, name, sizeof(tmp));
6460 name = tmp;
0a4a9391 6461got_name:
2c42cfbf
PZ
6462 /*
6463 * Since our buffer works in 8 byte units we need to align our string
6464 * size to a multiple of 8. However, we must guarantee the tail end is
6465 * zero'd out to avoid leaking random bits to userspace.
6466 */
6467 size = strlen(name)+1;
6468 while (!IS_ALIGNED(size, sizeof(u64)))
6469 name[size++] = '\0';
0a4a9391
PZ
6470
6471 mmap_event->file_name = name;
6472 mmap_event->file_size = size;
13d7a241
SE
6473 mmap_event->maj = maj;
6474 mmap_event->min = min;
6475 mmap_event->ino = ino;
6476 mmap_event->ino_generation = gen;
f972eb63
PZ
6477 mmap_event->prot = prot;
6478 mmap_event->flags = flags;
0a4a9391 6479
2fe85427
SE
6480 if (!(vma->vm_flags & VM_EXEC))
6481 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6482
cdd6c482 6483 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 6484
aab5b71e 6485 perf_iterate_sb(perf_event_mmap_output,
52d857a8
JO
6486 mmap_event,
6487 NULL);
665c2142 6488
0a4a9391
PZ
6489 kfree(buf);
6490}
6491
375637bc
AS
6492/*
6493 * Whether this @filter depends on a dynamic object which is not loaded
6494 * yet or its load addresses are not known.
6495 */
6496static bool perf_addr_filter_needs_mmap(struct perf_addr_filter *filter)
6497{
6498 return filter->filter && filter->inode;
6499}
6500
6501/*
6502 * Check whether inode and address range match filter criteria.
6503 */
6504static bool perf_addr_filter_match(struct perf_addr_filter *filter,
6505 struct file *file, unsigned long offset,
6506 unsigned long size)
6507{
6508 if (filter->inode != file->f_inode)
6509 return false;
6510
6511 if (filter->offset > offset + size)
6512 return false;
6513
6514 if (filter->offset + filter->size < offset)
6515 return false;
6516
6517 return true;
6518}
6519
6520static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
6521{
6522 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6523 struct vm_area_struct *vma = data;
6524 unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
6525 struct file *file = vma->vm_file;
6526 struct perf_addr_filter *filter;
6527 unsigned int restart = 0, count = 0;
6528
6529 if (!has_addr_filter(event))
6530 return;
6531
6532 if (!file)
6533 return;
6534
6535 raw_spin_lock_irqsave(&ifh->lock, flags);
6536 list_for_each_entry(filter, &ifh->list, entry) {
6537 if (perf_addr_filter_match(filter, file, off,
6538 vma->vm_end - vma->vm_start)) {
6539 event->addr_filters_offs[count] = vma->vm_start;
6540 restart++;
6541 }
6542
6543 count++;
6544 }
6545
6546 if (restart)
6547 event->addr_filters_gen++;
6548 raw_spin_unlock_irqrestore(&ifh->lock, flags);
6549
6550 if (restart)
6551 perf_event_restart(event);
6552}
6553
6554/*
6555 * Adjust all task's events' filters to the new vma
6556 */
6557static void perf_addr_filters_adjust(struct vm_area_struct *vma)
6558{
6559 struct perf_event_context *ctx;
6560 int ctxn;
6561
6562 rcu_read_lock();
6563 for_each_task_context_nr(ctxn) {
6564 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6565 if (!ctx)
6566 continue;
6567
aab5b71e 6568 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
375637bc
AS
6569 }
6570 rcu_read_unlock();
6571}
6572
3af9e859 6573void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 6574{
9ee318a7
PZ
6575 struct perf_mmap_event mmap_event;
6576
cdd6c482 6577 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
6578 return;
6579
6580 mmap_event = (struct perf_mmap_event){
089dd79d 6581 .vma = vma,
573402db
PZ
6582 /* .file_name */
6583 /* .file_size */
cdd6c482 6584 .event_id = {
573402db 6585 .header = {
cdd6c482 6586 .type = PERF_RECORD_MMAP,
39447b38 6587 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
6588 /* .size */
6589 },
6590 /* .pid */
6591 /* .tid */
089dd79d
PZ
6592 .start = vma->vm_start,
6593 .len = vma->vm_end - vma->vm_start,
3a0304e9 6594 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391 6595 },
13d7a241
SE
6596 /* .maj (attr_mmap2 only) */
6597 /* .min (attr_mmap2 only) */
6598 /* .ino (attr_mmap2 only) */
6599 /* .ino_generation (attr_mmap2 only) */
f972eb63
PZ
6600 /* .prot (attr_mmap2 only) */
6601 /* .flags (attr_mmap2 only) */
0a4a9391
PZ
6602 };
6603
375637bc 6604 perf_addr_filters_adjust(vma);
cdd6c482 6605 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
6606}
6607
68db7e98
AS
6608void perf_event_aux_event(struct perf_event *event, unsigned long head,
6609 unsigned long size, u64 flags)
6610{
6611 struct perf_output_handle handle;
6612 struct perf_sample_data sample;
6613 struct perf_aux_event {
6614 struct perf_event_header header;
6615 u64 offset;
6616 u64 size;
6617 u64 flags;
6618 } rec = {
6619 .header = {
6620 .type = PERF_RECORD_AUX,
6621 .misc = 0,
6622 .size = sizeof(rec),
6623 },
6624 .offset = head,
6625 .size = size,
6626 .flags = flags,
6627 };
6628 int ret;
6629
6630 perf_event_header__init_id(&rec.header, &sample, event);
6631 ret = perf_output_begin(&handle, event, rec.header.size);
6632
6633 if (ret)
6634 return;
6635
6636 perf_output_put(&handle, rec);
6637 perf_event__output_id_sample(event, &handle, &sample);
6638
6639 perf_output_end(&handle);
6640}
6641
f38b0dbb
KL
6642/*
6643 * Lost/dropped samples logging
6644 */
6645void perf_log_lost_samples(struct perf_event *event, u64 lost)
6646{
6647 struct perf_output_handle handle;
6648 struct perf_sample_data sample;
6649 int ret;
6650
6651 struct {
6652 struct perf_event_header header;
6653 u64 lost;
6654 } lost_samples_event = {
6655 .header = {
6656 .type = PERF_RECORD_LOST_SAMPLES,
6657 .misc = 0,
6658 .size = sizeof(lost_samples_event),
6659 },
6660 .lost = lost,
6661 };
6662
6663 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6664
6665 ret = perf_output_begin(&handle, event,
6666 lost_samples_event.header.size);
6667 if (ret)
6668 return;
6669
6670 perf_output_put(&handle, lost_samples_event);
6671 perf_event__output_id_sample(event, &handle, &sample);
6672 perf_output_end(&handle);
6673}
6674
45ac1403
AH
6675/*
6676 * context_switch tracking
6677 */
6678
6679struct perf_switch_event {
6680 struct task_struct *task;
6681 struct task_struct *next_prev;
6682
6683 struct {
6684 struct perf_event_header header;
6685 u32 next_prev_pid;
6686 u32 next_prev_tid;
6687 } event_id;
6688};
6689
6690static int perf_event_switch_match(struct perf_event *event)
6691{
6692 return event->attr.context_switch;
6693}
6694
6695static void perf_event_switch_output(struct perf_event *event, void *data)
6696{
6697 struct perf_switch_event *se = data;
6698 struct perf_output_handle handle;
6699 struct perf_sample_data sample;
6700 int ret;
6701
6702 if (!perf_event_switch_match(event))
6703 return;
6704
6705 /* Only CPU-wide events are allowed to see next/prev pid/tid */
6706 if (event->ctx->task) {
6707 se->event_id.header.type = PERF_RECORD_SWITCH;
6708 se->event_id.header.size = sizeof(se->event_id.header);
6709 } else {
6710 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6711 se->event_id.header.size = sizeof(se->event_id);
6712 se->event_id.next_prev_pid =
6713 perf_event_pid(event, se->next_prev);
6714 se->event_id.next_prev_tid =
6715 perf_event_tid(event, se->next_prev);
6716 }
6717
6718 perf_event_header__init_id(&se->event_id.header, &sample, event);
6719
6720 ret = perf_output_begin(&handle, event, se->event_id.header.size);
6721 if (ret)
6722 return;
6723
6724 if (event->ctx->task)
6725 perf_output_put(&handle, se->event_id.header);
6726 else
6727 perf_output_put(&handle, se->event_id);
6728
6729 perf_event__output_id_sample(event, &handle, &sample);
6730
6731 perf_output_end(&handle);
6732}
6733
6734static void perf_event_switch(struct task_struct *task,
6735 struct task_struct *next_prev, bool sched_in)
6736{
6737 struct perf_switch_event switch_event;
6738
6739 /* N.B. caller checks nr_switch_events != 0 */
6740
6741 switch_event = (struct perf_switch_event){
6742 .task = task,
6743 .next_prev = next_prev,
6744 .event_id = {
6745 .header = {
6746 /* .type */
6747 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
6748 /* .size */
6749 },
6750 /* .next_prev_pid */
6751 /* .next_prev_tid */
6752 },
6753 };
6754
aab5b71e 6755 perf_iterate_sb(perf_event_switch_output,
45ac1403
AH
6756 &switch_event,
6757 NULL);
6758}
6759
a78ac325
PZ
6760/*
6761 * IRQ throttle logging
6762 */
6763
cdd6c482 6764static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
6765{
6766 struct perf_output_handle handle;
c980d109 6767 struct perf_sample_data sample;
a78ac325
PZ
6768 int ret;
6769
6770 struct {
6771 struct perf_event_header header;
6772 u64 time;
cca3f454 6773 u64 id;
7f453c24 6774 u64 stream_id;
a78ac325
PZ
6775 } throttle_event = {
6776 .header = {
cdd6c482 6777 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
6778 .misc = 0,
6779 .size = sizeof(throttle_event),
6780 },
34f43927 6781 .time = perf_event_clock(event),
cdd6c482
IM
6782 .id = primary_event_id(event),
6783 .stream_id = event->id,
a78ac325
PZ
6784 };
6785
966ee4d6 6786 if (enable)
cdd6c482 6787 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 6788
c980d109
ACM
6789 perf_event_header__init_id(&throttle_event.header, &sample, event);
6790
6791 ret = perf_output_begin(&handle, event,
a7ac67ea 6792 throttle_event.header.size);
a78ac325
PZ
6793 if (ret)
6794 return;
6795
6796 perf_output_put(&handle, throttle_event);
c980d109 6797 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
6798 perf_output_end(&handle);
6799}
6800
ec0d7729
AS
6801static void perf_log_itrace_start(struct perf_event *event)
6802{
6803 struct perf_output_handle handle;
6804 struct perf_sample_data sample;
6805 struct perf_aux_event {
6806 struct perf_event_header header;
6807 u32 pid;
6808 u32 tid;
6809 } rec;
6810 int ret;
6811
6812 if (event->parent)
6813 event = event->parent;
6814
6815 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
6816 event->hw.itrace_started)
6817 return;
6818
ec0d7729
AS
6819 rec.header.type = PERF_RECORD_ITRACE_START;
6820 rec.header.misc = 0;
6821 rec.header.size = sizeof(rec);
6822 rec.pid = perf_event_pid(event, current);
6823 rec.tid = perf_event_tid(event, current);
6824
6825 perf_event_header__init_id(&rec.header, &sample, event);
6826 ret = perf_output_begin(&handle, event, rec.header.size);
6827
6828 if (ret)
6829 return;
6830
6831 perf_output_put(&handle, rec);
6832 perf_event__output_id_sample(event, &handle, &sample);
6833
6834 perf_output_end(&handle);
6835}
6836
f6c7d5fe 6837/*
cdd6c482 6838 * Generic event overflow handling, sampling.
f6c7d5fe
PZ
6839 */
6840
a8b0ca17 6841static int __perf_event_overflow(struct perf_event *event,
5622f295
MM
6842 int throttle, struct perf_sample_data *data,
6843 struct pt_regs *regs)
f6c7d5fe 6844{
cdd6c482
IM
6845 int events = atomic_read(&event->event_limit);
6846 struct hw_perf_event *hwc = &event->hw;
e050e3f0 6847 u64 seq;
79f14641
PZ
6848 int ret = 0;
6849
96398826
PZ
6850 /*
6851 * Non-sampling counters might still use the PMI to fold short
6852 * hardware counters, ignore those.
6853 */
6854 if (unlikely(!is_sampling_event(event)))
6855 return 0;
6856
e050e3f0
SE
6857 seq = __this_cpu_read(perf_throttled_seq);
6858 if (seq != hwc->interrupts_seq) {
6859 hwc->interrupts_seq = seq;
6860 hwc->interrupts = 1;
6861 } else {
6862 hwc->interrupts++;
6863 if (unlikely(throttle
6864 && hwc->interrupts >= max_samples_per_tick)) {
6865 __this_cpu_inc(perf_throttled_count);
555e0c1e 6866 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
163ec435
PZ
6867 hwc->interrupts = MAX_INTERRUPTS;
6868 perf_log_throttle(event, 0);
a78ac325
PZ
6869 ret = 1;
6870 }
e050e3f0 6871 }
60db5e09 6872
cdd6c482 6873 if (event->attr.freq) {
def0a9b2 6874 u64 now = perf_clock();
abd50713 6875 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 6876
abd50713 6877 hwc->freq_time_stamp = now;
bd2b5b12 6878
abd50713 6879 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 6880 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
6881 }
6882
2023b359
PZ
6883 /*
6884 * XXX event_limit might not quite work as expected on inherited
cdd6c482 6885 * events
2023b359
PZ
6886 */
6887
cdd6c482
IM
6888 event->pending_kill = POLL_IN;
6889 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 6890 ret = 1;
cdd6c482 6891 event->pending_kill = POLL_HUP;
a8b0ca17
PZ
6892 event->pending_disable = 1;
6893 irq_work_queue(&event->pending);
79f14641
PZ
6894 }
6895
1879445d 6896 event->overflow_handler(event, data, regs);
453f19ee 6897
fed66e2c 6898 if (*perf_event_fasync(event) && event->pending_kill) {
a8b0ca17
PZ
6899 event->pending_wakeup = 1;
6900 irq_work_queue(&event->pending);
f506b3dc
PZ
6901 }
6902
79f14641 6903 return ret;
f6c7d5fe
PZ
6904}
6905
a8b0ca17 6906int perf_event_overflow(struct perf_event *event,
5622f295
MM
6907 struct perf_sample_data *data,
6908 struct pt_regs *regs)
850bc73f 6909{
a8b0ca17 6910 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
6911}
6912
15dbf27c 6913/*
cdd6c482 6914 * Generic software event infrastructure
15dbf27c
PZ
6915 */
6916
b28ab83c
PZ
6917struct swevent_htable {
6918 struct swevent_hlist *swevent_hlist;
6919 struct mutex hlist_mutex;
6920 int hlist_refcount;
6921
6922 /* Recursion avoidance in each contexts */
6923 int recursion[PERF_NR_CONTEXTS];
6924};
6925
6926static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
6927
7b4b6658 6928/*
cdd6c482
IM
6929 * We directly increment event->count and keep a second value in
6930 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
6931 * is kept in the range [-sample_period, 0] so that we can use the
6932 * sign as trigger.
6933 */
6934
ab573844 6935u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 6936{
cdd6c482 6937 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
6938 u64 period = hwc->last_period;
6939 u64 nr, offset;
6940 s64 old, val;
6941
6942 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
6943
6944again:
e7850595 6945 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
6946 if (val < 0)
6947 return 0;
15dbf27c 6948
7b4b6658
PZ
6949 nr = div64_u64(period + val, period);
6950 offset = nr * period;
6951 val -= offset;
e7850595 6952 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 6953 goto again;
15dbf27c 6954
7b4b6658 6955 return nr;
15dbf27c
PZ
6956}
6957
0cff784a 6958static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 6959 struct perf_sample_data *data,
5622f295 6960 struct pt_regs *regs)
15dbf27c 6961{
cdd6c482 6962 struct hw_perf_event *hwc = &event->hw;
850bc73f 6963 int throttle = 0;
15dbf27c 6964
0cff784a
PZ
6965 if (!overflow)
6966 overflow = perf_swevent_set_period(event);
15dbf27c 6967
7b4b6658
PZ
6968 if (hwc->interrupts == MAX_INTERRUPTS)
6969 return;
15dbf27c 6970
7b4b6658 6971 for (; overflow; overflow--) {
a8b0ca17 6972 if (__perf_event_overflow(event, throttle,
5622f295 6973 data, regs)) {
7b4b6658
PZ
6974 /*
6975 * We inhibit the overflow from happening when
6976 * hwc->interrupts == MAX_INTERRUPTS.
6977 */
6978 break;
6979 }
cf450a73 6980 throttle = 1;
7b4b6658 6981 }
15dbf27c
PZ
6982}
6983
a4eaf7f1 6984static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 6985 struct perf_sample_data *data,
5622f295 6986 struct pt_regs *regs)
7b4b6658 6987{
cdd6c482 6988 struct hw_perf_event *hwc = &event->hw;
d6d020e9 6989
e7850595 6990 local64_add(nr, &event->count);
d6d020e9 6991
0cff784a
PZ
6992 if (!regs)
6993 return;
6994
6c7e550f 6995 if (!is_sampling_event(event))
7b4b6658 6996 return;
d6d020e9 6997
5d81e5cf
AV
6998 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
6999 data->period = nr;
7000 return perf_swevent_overflow(event, 1, data, regs);
7001 } else
7002 data->period = event->hw.last_period;
7003
0cff784a 7004 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 7005 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 7006
e7850595 7007 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 7008 return;
df1a132b 7009
a8b0ca17 7010 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
7011}
7012
f5ffe02e
FW
7013static int perf_exclude_event(struct perf_event *event,
7014 struct pt_regs *regs)
7015{
a4eaf7f1 7016 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 7017 return 1;
a4eaf7f1 7018
f5ffe02e
FW
7019 if (regs) {
7020 if (event->attr.exclude_user && user_mode(regs))
7021 return 1;
7022
7023 if (event->attr.exclude_kernel && !user_mode(regs))
7024 return 1;
7025 }
7026
7027 return 0;
7028}
7029
cdd6c482 7030static int perf_swevent_match(struct perf_event *event,
1c432d89 7031 enum perf_type_id type,
6fb2915d
LZ
7032 u32 event_id,
7033 struct perf_sample_data *data,
7034 struct pt_regs *regs)
15dbf27c 7035{
cdd6c482 7036 if (event->attr.type != type)
a21ca2ca 7037 return 0;
f5ffe02e 7038
cdd6c482 7039 if (event->attr.config != event_id)
15dbf27c
PZ
7040 return 0;
7041
f5ffe02e
FW
7042 if (perf_exclude_event(event, regs))
7043 return 0;
15dbf27c
PZ
7044
7045 return 1;
7046}
7047
76e1d904
FW
7048static inline u64 swevent_hash(u64 type, u32 event_id)
7049{
7050 u64 val = event_id | (type << 32);
7051
7052 return hash_64(val, SWEVENT_HLIST_BITS);
7053}
7054
49f135ed
FW
7055static inline struct hlist_head *
7056__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 7057{
49f135ed
FW
7058 u64 hash = swevent_hash(type, event_id);
7059
7060 return &hlist->heads[hash];
7061}
76e1d904 7062
49f135ed
FW
7063/* For the read side: events when they trigger */
7064static inline struct hlist_head *
b28ab83c 7065find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
7066{
7067 struct swevent_hlist *hlist;
76e1d904 7068
b28ab83c 7069 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
7070 if (!hlist)
7071 return NULL;
7072
49f135ed
FW
7073 return __find_swevent_head(hlist, type, event_id);
7074}
7075
7076/* For the event head insertion and removal in the hlist */
7077static inline struct hlist_head *
b28ab83c 7078find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
7079{
7080 struct swevent_hlist *hlist;
7081 u32 event_id = event->attr.config;
7082 u64 type = event->attr.type;
7083
7084 /*
7085 * Event scheduling is always serialized against hlist allocation
7086 * and release. Which makes the protected version suitable here.
7087 * The context lock guarantees that.
7088 */
b28ab83c 7089 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
7090 lockdep_is_held(&event->ctx->lock));
7091 if (!hlist)
7092 return NULL;
7093
7094 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
7095}
7096
7097static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 7098 u64 nr,
76e1d904
FW
7099 struct perf_sample_data *data,
7100 struct pt_regs *regs)
15dbf27c 7101{
4a32fea9 7102 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 7103 struct perf_event *event;
76e1d904 7104 struct hlist_head *head;
15dbf27c 7105
76e1d904 7106 rcu_read_lock();
b28ab83c 7107 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
7108 if (!head)
7109 goto end;
7110
b67bfe0d 7111 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 7112 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 7113 perf_swevent_event(event, nr, data, regs);
15dbf27c 7114 }
76e1d904
FW
7115end:
7116 rcu_read_unlock();
15dbf27c
PZ
7117}
7118
86038c5e
PZI
7119DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7120
4ed7c92d 7121int perf_swevent_get_recursion_context(void)
96f6d444 7122{
4a32fea9 7123 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
96f6d444 7124
b28ab83c 7125 return get_recursion_context(swhash->recursion);
96f6d444 7126}
645e8cc0 7127EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 7128
fa9f90be 7129inline void perf_swevent_put_recursion_context(int rctx)
15dbf27c 7130{
4a32fea9 7131 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
927c7a9e 7132
b28ab83c 7133 put_recursion_context(swhash->recursion, rctx);
ce71b9df 7134}
15dbf27c 7135
86038c5e 7136void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 7137{
a4234bfc 7138 struct perf_sample_data data;
4ed7c92d 7139
86038c5e 7140 if (WARN_ON_ONCE(!regs))
4ed7c92d 7141 return;
a4234bfc 7142
fd0d000b 7143 perf_sample_data_init(&data, addr, 0);
a8b0ca17 7144 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
86038c5e
PZI
7145}
7146
7147void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7148{
7149 int rctx;
7150
7151 preempt_disable_notrace();
7152 rctx = perf_swevent_get_recursion_context();
7153 if (unlikely(rctx < 0))
7154 goto fail;
7155
7156 ___perf_sw_event(event_id, nr, regs, addr);
4ed7c92d
PZ
7157
7158 perf_swevent_put_recursion_context(rctx);
86038c5e 7159fail:
1c024eca 7160 preempt_enable_notrace();
b8e83514
PZ
7161}
7162
cdd6c482 7163static void perf_swevent_read(struct perf_event *event)
15dbf27c 7164{
15dbf27c
PZ
7165}
7166
a4eaf7f1 7167static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 7168{
4a32fea9 7169 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 7170 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
7171 struct hlist_head *head;
7172
6c7e550f 7173 if (is_sampling_event(event)) {
7b4b6658 7174 hwc->last_period = hwc->sample_period;
cdd6c482 7175 perf_swevent_set_period(event);
7b4b6658 7176 }
76e1d904 7177
a4eaf7f1
PZ
7178 hwc->state = !(flags & PERF_EF_START);
7179
b28ab83c 7180 head = find_swevent_head(swhash, event);
12ca6ad2 7181 if (WARN_ON_ONCE(!head))
76e1d904
FW
7182 return -EINVAL;
7183
7184 hlist_add_head_rcu(&event->hlist_entry, head);
6a694a60 7185 perf_event_update_userpage(event);
76e1d904 7186
15dbf27c
PZ
7187 return 0;
7188}
7189
a4eaf7f1 7190static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 7191{
76e1d904 7192 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
7193}
7194
a4eaf7f1 7195static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 7196{
a4eaf7f1 7197 event->hw.state = 0;
d6d020e9 7198}
aa9c4c0f 7199
a4eaf7f1 7200static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 7201{
a4eaf7f1 7202 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
7203}
7204
49f135ed
FW
7205/* Deref the hlist from the update side */
7206static inline struct swevent_hlist *
b28ab83c 7207swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 7208{
b28ab83c
PZ
7209 return rcu_dereference_protected(swhash->swevent_hlist,
7210 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
7211}
7212
b28ab83c 7213static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 7214{
b28ab83c 7215 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 7216
49f135ed 7217 if (!hlist)
76e1d904
FW
7218 return;
7219
70691d4a 7220 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
fa4bbc4c 7221 kfree_rcu(hlist, rcu_head);
76e1d904
FW
7222}
7223
3b364d7b 7224static void swevent_hlist_put_cpu(int cpu)
76e1d904 7225{
b28ab83c 7226 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 7227
b28ab83c 7228 mutex_lock(&swhash->hlist_mutex);
76e1d904 7229
b28ab83c
PZ
7230 if (!--swhash->hlist_refcount)
7231 swevent_hlist_release(swhash);
76e1d904 7232
b28ab83c 7233 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
7234}
7235
3b364d7b 7236static void swevent_hlist_put(void)
76e1d904
FW
7237{
7238 int cpu;
7239
76e1d904 7240 for_each_possible_cpu(cpu)
3b364d7b 7241 swevent_hlist_put_cpu(cpu);
76e1d904
FW
7242}
7243
3b364d7b 7244static int swevent_hlist_get_cpu(int cpu)
76e1d904 7245{
b28ab83c 7246 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
7247 int err = 0;
7248
b28ab83c 7249 mutex_lock(&swhash->hlist_mutex);
b28ab83c 7250 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
76e1d904
FW
7251 struct swevent_hlist *hlist;
7252
7253 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7254 if (!hlist) {
7255 err = -ENOMEM;
7256 goto exit;
7257 }
b28ab83c 7258 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 7259 }
b28ab83c 7260 swhash->hlist_refcount++;
9ed6060d 7261exit:
b28ab83c 7262 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
7263
7264 return err;
7265}
7266
3b364d7b 7267static int swevent_hlist_get(void)
76e1d904 7268{
3b364d7b 7269 int err, cpu, failed_cpu;
76e1d904 7270
76e1d904
FW
7271 get_online_cpus();
7272 for_each_possible_cpu(cpu) {
3b364d7b 7273 err = swevent_hlist_get_cpu(cpu);
76e1d904
FW
7274 if (err) {
7275 failed_cpu = cpu;
7276 goto fail;
7277 }
7278 }
7279 put_online_cpus();
7280
7281 return 0;
9ed6060d 7282fail:
76e1d904
FW
7283 for_each_possible_cpu(cpu) {
7284 if (cpu == failed_cpu)
7285 break;
3b364d7b 7286 swevent_hlist_put_cpu(cpu);
76e1d904
FW
7287 }
7288
7289 put_online_cpus();
7290 return err;
7291}
7292
c5905afb 7293struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 7294
b0a873eb
PZ
7295static void sw_perf_event_destroy(struct perf_event *event)
7296{
7297 u64 event_id = event->attr.config;
95476b64 7298
b0a873eb
PZ
7299 WARN_ON(event->parent);
7300
c5905afb 7301 static_key_slow_dec(&perf_swevent_enabled[event_id]);
3b364d7b 7302 swevent_hlist_put();
b0a873eb
PZ
7303}
7304
7305static int perf_swevent_init(struct perf_event *event)
7306{
8176cced 7307 u64 event_id = event->attr.config;
b0a873eb
PZ
7308
7309 if (event->attr.type != PERF_TYPE_SOFTWARE)
7310 return -ENOENT;
7311
2481c5fa
SE
7312 /*
7313 * no branch sampling for software events
7314 */
7315 if (has_branch_stack(event))
7316 return -EOPNOTSUPP;
7317
b0a873eb
PZ
7318 switch (event_id) {
7319 case PERF_COUNT_SW_CPU_CLOCK:
7320 case PERF_COUNT_SW_TASK_CLOCK:
7321 return -ENOENT;
7322
7323 default:
7324 break;
7325 }
7326
ce677831 7327 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
7328 return -ENOENT;
7329
7330 if (!event->parent) {
7331 int err;
7332
3b364d7b 7333 err = swevent_hlist_get();
b0a873eb
PZ
7334 if (err)
7335 return err;
7336
c5905afb 7337 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
7338 event->destroy = sw_perf_event_destroy;
7339 }
7340
7341 return 0;
7342}
7343
7344static struct pmu perf_swevent = {
89a1e187 7345 .task_ctx_nr = perf_sw_context,
95476b64 7346
34f43927
PZ
7347 .capabilities = PERF_PMU_CAP_NO_NMI,
7348
b0a873eb 7349 .event_init = perf_swevent_init,
a4eaf7f1
PZ
7350 .add = perf_swevent_add,
7351 .del = perf_swevent_del,
7352 .start = perf_swevent_start,
7353 .stop = perf_swevent_stop,
1c024eca 7354 .read = perf_swevent_read,
1c024eca
PZ
7355};
7356
b0a873eb
PZ
7357#ifdef CONFIG_EVENT_TRACING
7358
1c024eca
PZ
7359static int perf_tp_filter_match(struct perf_event *event,
7360 struct perf_sample_data *data)
7361{
7362 void *record = data->raw->data;
7363
b71b437e
PZ
7364 /* only top level events have filters set */
7365 if (event->parent)
7366 event = event->parent;
7367
1c024eca
PZ
7368 if (likely(!event->filter) || filter_match_preds(event->filter, record))
7369 return 1;
7370 return 0;
7371}
7372
7373static int perf_tp_event_match(struct perf_event *event,
7374 struct perf_sample_data *data,
7375 struct pt_regs *regs)
7376{
a0f7d0f7
FW
7377 if (event->hw.state & PERF_HES_STOPPED)
7378 return 0;
580d607c
PZ
7379 /*
7380 * All tracepoints are from kernel-space.
7381 */
7382 if (event->attr.exclude_kernel)
1c024eca
PZ
7383 return 0;
7384
7385 if (!perf_tp_filter_match(event, data))
7386 return 0;
7387
7388 return 1;
7389}
7390
7391void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
e6dab5ff
AV
7392 struct pt_regs *regs, struct hlist_head *head, int rctx,
7393 struct task_struct *task)
95476b64
FW
7394{
7395 struct perf_sample_data data;
1c024eca 7396 struct perf_event *event;
1c024eca 7397
95476b64
FW
7398 struct perf_raw_record raw = {
7399 .size = entry_size,
7400 .data = record,
7401 };
7402
fd0d000b 7403 perf_sample_data_init(&data, addr, 0);
95476b64
FW
7404 data.raw = &raw;
7405
b67bfe0d 7406 hlist_for_each_entry_rcu(event, head, hlist_entry) {
1c024eca 7407 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 7408 perf_swevent_event(event, count, &data, regs);
4f41c013 7409 }
ecc55f84 7410
e6dab5ff
AV
7411 /*
7412 * If we got specified a target task, also iterate its context and
7413 * deliver this event there too.
7414 */
7415 if (task && task != current) {
7416 struct perf_event_context *ctx;
7417 struct trace_entry *entry = record;
7418
7419 rcu_read_lock();
7420 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7421 if (!ctx)
7422 goto unlock;
7423
7424 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7425 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7426 continue;
7427 if (event->attr.config != entry->type)
7428 continue;
7429 if (perf_tp_event_match(event, &data, regs))
7430 perf_swevent_event(event, count, &data, regs);
7431 }
7432unlock:
7433 rcu_read_unlock();
7434 }
7435
ecc55f84 7436 perf_swevent_put_recursion_context(rctx);
95476b64
FW
7437}
7438EXPORT_SYMBOL_GPL(perf_tp_event);
7439
cdd6c482 7440static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 7441{
1c024eca 7442 perf_trace_destroy(event);
e077df4f
PZ
7443}
7444
b0a873eb 7445static int perf_tp_event_init(struct perf_event *event)
e077df4f 7446{
76e1d904
FW
7447 int err;
7448
b0a873eb
PZ
7449 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7450 return -ENOENT;
7451
2481c5fa
SE
7452 /*
7453 * no branch sampling for tracepoint events
7454 */
7455 if (has_branch_stack(event))
7456 return -EOPNOTSUPP;
7457
1c024eca
PZ
7458 err = perf_trace_init(event);
7459 if (err)
b0a873eb 7460 return err;
e077df4f 7461
cdd6c482 7462 event->destroy = tp_perf_event_destroy;
e077df4f 7463
b0a873eb
PZ
7464 return 0;
7465}
7466
7467static struct pmu perf_tracepoint = {
89a1e187
PZ
7468 .task_ctx_nr = perf_sw_context,
7469
b0a873eb 7470 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
7471 .add = perf_trace_add,
7472 .del = perf_trace_del,
7473 .start = perf_swevent_start,
7474 .stop = perf_swevent_stop,
b0a873eb 7475 .read = perf_swevent_read,
b0a873eb
PZ
7476};
7477
7478static inline void perf_tp_register(void)
7479{
2e80a82a 7480 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e077df4f 7481}
6fb2915d 7482
6fb2915d
LZ
7483static void perf_event_free_filter(struct perf_event *event)
7484{
7485 ftrace_profile_free_filter(event);
7486}
7487
2541517c
AS
7488static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7489{
7490 struct bpf_prog *prog;
7491
7492 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7493 return -EINVAL;
7494
7495 if (event->tp_event->prog)
7496 return -EEXIST;
7497
04a22fae
WN
7498 if (!(event->tp_event->flags & TRACE_EVENT_FL_UKPROBE))
7499 /* bpf programs can only be attached to u/kprobes */
2541517c
AS
7500 return -EINVAL;
7501
7502 prog = bpf_prog_get(prog_fd);
7503 if (IS_ERR(prog))
7504 return PTR_ERR(prog);
7505
6c373ca8 7506 if (prog->type != BPF_PROG_TYPE_KPROBE) {
2541517c
AS
7507 /* valid fd, but invalid bpf program type */
7508 bpf_prog_put(prog);
7509 return -EINVAL;
7510 }
7511
7512 event->tp_event->prog = prog;
7513
7514 return 0;
7515}
7516
7517static void perf_event_free_bpf_prog(struct perf_event *event)
7518{
7519 struct bpf_prog *prog;
7520
7521 if (!event->tp_event)
7522 return;
7523
7524 prog = event->tp_event->prog;
7525 if (prog) {
7526 event->tp_event->prog = NULL;
7527 bpf_prog_put(prog);
7528 }
7529}
7530
e077df4f 7531#else
6fb2915d 7532
b0a873eb 7533static inline void perf_tp_register(void)
e077df4f 7534{
e077df4f 7535}
6fb2915d 7536
6fb2915d
LZ
7537static void perf_event_free_filter(struct perf_event *event)
7538{
7539}
7540
2541517c
AS
7541static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7542{
7543 return -ENOENT;
7544}
7545
7546static void perf_event_free_bpf_prog(struct perf_event *event)
7547{
7548}
07b139c8 7549#endif /* CONFIG_EVENT_TRACING */
e077df4f 7550
24f1e32c 7551#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 7552void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 7553{
f5ffe02e
FW
7554 struct perf_sample_data sample;
7555 struct pt_regs *regs = data;
7556
fd0d000b 7557 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 7558
a4eaf7f1 7559 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 7560 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
7561}
7562#endif
7563
375637bc
AS
7564/*
7565 * Allocate a new address filter
7566 */
7567static struct perf_addr_filter *
7568perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
7569{
7570 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
7571 struct perf_addr_filter *filter;
7572
7573 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
7574 if (!filter)
7575 return NULL;
7576
7577 INIT_LIST_HEAD(&filter->entry);
7578 list_add_tail(&filter->entry, filters);
7579
7580 return filter;
7581}
7582
7583static void free_filters_list(struct list_head *filters)
7584{
7585 struct perf_addr_filter *filter, *iter;
7586
7587 list_for_each_entry_safe(filter, iter, filters, entry) {
7588 if (filter->inode)
7589 iput(filter->inode);
7590 list_del(&filter->entry);
7591 kfree(filter);
7592 }
7593}
7594
7595/*
7596 * Free existing address filters and optionally install new ones
7597 */
7598static void perf_addr_filters_splice(struct perf_event *event,
7599 struct list_head *head)
7600{
7601 unsigned long flags;
7602 LIST_HEAD(list);
7603
7604 if (!has_addr_filter(event))
7605 return;
7606
7607 /* don't bother with children, they don't have their own filters */
7608 if (event->parent)
7609 return;
7610
7611 raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
7612
7613 list_splice_init(&event->addr_filters.list, &list);
7614 if (head)
7615 list_splice(head, &event->addr_filters.list);
7616
7617 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
7618
7619 free_filters_list(&list);
7620}
7621
7622/*
7623 * Scan through mm's vmas and see if one of them matches the
7624 * @filter; if so, adjust filter's address range.
7625 * Called with mm::mmap_sem down for reading.
7626 */
7627static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
7628 struct mm_struct *mm)
7629{
7630 struct vm_area_struct *vma;
7631
7632 for (vma = mm->mmap; vma; vma = vma->vm_next) {
7633 struct file *file = vma->vm_file;
7634 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
7635 unsigned long vma_size = vma->vm_end - vma->vm_start;
7636
7637 if (!file)
7638 continue;
7639
7640 if (!perf_addr_filter_match(filter, file, off, vma_size))
7641 continue;
7642
7643 return vma->vm_start;
7644 }
7645
7646 return 0;
7647}
7648
7649/*
7650 * Update event's address range filters based on the
7651 * task's existing mappings, if any.
7652 */
7653static void perf_event_addr_filters_apply(struct perf_event *event)
7654{
7655 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7656 struct task_struct *task = READ_ONCE(event->ctx->task);
7657 struct perf_addr_filter *filter;
7658 struct mm_struct *mm = NULL;
7659 unsigned int count = 0;
7660 unsigned long flags;
7661
7662 /*
7663 * We may observe TASK_TOMBSTONE, which means that the event tear-down
7664 * will stop on the parent's child_mutex that our caller is also holding
7665 */
7666 if (task == TASK_TOMBSTONE)
7667 return;
7668
7669 mm = get_task_mm(event->ctx->task);
7670 if (!mm)
7671 goto restart;
7672
7673 down_read(&mm->mmap_sem);
7674
7675 raw_spin_lock_irqsave(&ifh->lock, flags);
7676 list_for_each_entry(filter, &ifh->list, entry) {
7677 event->addr_filters_offs[count] = 0;
7678
7679 if (perf_addr_filter_needs_mmap(filter))
7680 event->addr_filters_offs[count] =
7681 perf_addr_filter_apply(filter, mm);
7682
7683 count++;
7684 }
7685
7686 event->addr_filters_gen++;
7687 raw_spin_unlock_irqrestore(&ifh->lock, flags);
7688
7689 up_read(&mm->mmap_sem);
7690
7691 mmput(mm);
7692
7693restart:
7694 perf_event_restart(event);
7695}
7696
7697/*
7698 * Address range filtering: limiting the data to certain
7699 * instruction address ranges. Filters are ioctl()ed to us from
7700 * userspace as ascii strings.
7701 *
7702 * Filter string format:
7703 *
7704 * ACTION RANGE_SPEC
7705 * where ACTION is one of the
7706 * * "filter": limit the trace to this region
7707 * * "start": start tracing from this address
7708 * * "stop": stop tracing at this address/region;
7709 * RANGE_SPEC is
7710 * * for kernel addresses: <start address>[/<size>]
7711 * * for object files: <start address>[/<size>]@</path/to/object/file>
7712 *
7713 * if <size> is not specified, the range is treated as a single address.
7714 */
7715enum {
7716 IF_ACT_FILTER,
7717 IF_ACT_START,
7718 IF_ACT_STOP,
7719 IF_SRC_FILE,
7720 IF_SRC_KERNEL,
7721 IF_SRC_FILEADDR,
7722 IF_SRC_KERNELADDR,
7723};
7724
7725enum {
7726 IF_STATE_ACTION = 0,
7727 IF_STATE_SOURCE,
7728 IF_STATE_END,
7729};
7730
7731static const match_table_t if_tokens = {
7732 { IF_ACT_FILTER, "filter" },
7733 { IF_ACT_START, "start" },
7734 { IF_ACT_STOP, "stop" },
7735 { IF_SRC_FILE, "%u/%u@%s" },
7736 { IF_SRC_KERNEL, "%u/%u" },
7737 { IF_SRC_FILEADDR, "%u@%s" },
7738 { IF_SRC_KERNELADDR, "%u" },
7739};
7740
7741/*
7742 * Address filter string parser
7743 */
7744static int
7745perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
7746 struct list_head *filters)
7747{
7748 struct perf_addr_filter *filter = NULL;
7749 char *start, *orig, *filename = NULL;
7750 struct path path;
7751 substring_t args[MAX_OPT_ARGS];
7752 int state = IF_STATE_ACTION, token;
7753 unsigned int kernel = 0;
7754 int ret = -EINVAL;
7755
7756 orig = fstr = kstrdup(fstr, GFP_KERNEL);
7757 if (!fstr)
7758 return -ENOMEM;
7759
7760 while ((start = strsep(&fstr, " ,\n")) != NULL) {
7761 ret = -EINVAL;
7762
7763 if (!*start)
7764 continue;
7765
7766 /* filter definition begins */
7767 if (state == IF_STATE_ACTION) {
7768 filter = perf_addr_filter_new(event, filters);
7769 if (!filter)
7770 goto fail;
7771 }
7772
7773 token = match_token(start, if_tokens, args);
7774 switch (token) {
7775 case IF_ACT_FILTER:
7776 case IF_ACT_START:
7777 filter->filter = 1;
7778
7779 case IF_ACT_STOP:
7780 if (state != IF_STATE_ACTION)
7781 goto fail;
7782
7783 state = IF_STATE_SOURCE;
7784 break;
7785
7786 case IF_SRC_KERNELADDR:
7787 case IF_SRC_KERNEL:
7788 kernel = 1;
7789
7790 case IF_SRC_FILEADDR:
7791 case IF_SRC_FILE:
7792 if (state != IF_STATE_SOURCE)
7793 goto fail;
7794
7795 if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
7796 filter->range = 1;
7797
7798 *args[0].to = 0;
7799 ret = kstrtoul(args[0].from, 0, &filter->offset);
7800 if (ret)
7801 goto fail;
7802
7803 if (filter->range) {
7804 *args[1].to = 0;
7805 ret = kstrtoul(args[1].from, 0, &filter->size);
7806 if (ret)
7807 goto fail;
7808 }
7809
7810 if (token == IF_SRC_FILE) {
7811 filename = match_strdup(&args[2]);
7812 if (!filename) {
7813 ret = -ENOMEM;
7814 goto fail;
7815 }
7816 }
7817
7818 state = IF_STATE_END;
7819 break;
7820
7821 default:
7822 goto fail;
7823 }
7824
7825 /*
7826 * Filter definition is fully parsed, validate and install it.
7827 * Make sure that it doesn't contradict itself or the event's
7828 * attribute.
7829 */
7830 if (state == IF_STATE_END) {
7831 if (kernel && event->attr.exclude_kernel)
7832 goto fail;
7833
7834 if (!kernel) {
7835 if (!filename)
7836 goto fail;
7837
7838 /* look up the path and grab its inode */
7839 ret = kern_path(filename, LOOKUP_FOLLOW, &path);
7840 if (ret)
7841 goto fail_free_name;
7842
7843 filter->inode = igrab(d_inode(path.dentry));
7844 path_put(&path);
7845 kfree(filename);
7846 filename = NULL;
7847
7848 ret = -EINVAL;
7849 if (!filter->inode ||
7850 !S_ISREG(filter->inode->i_mode))
7851 /* free_filters_list() will iput() */
7852 goto fail;
7853 }
7854
7855 /* ready to consume more filters */
7856 state = IF_STATE_ACTION;
7857 filter = NULL;
7858 }
7859 }
7860
7861 if (state != IF_STATE_ACTION)
7862 goto fail;
7863
7864 kfree(orig);
7865
7866 return 0;
7867
7868fail_free_name:
7869 kfree(filename);
7870fail:
7871 free_filters_list(filters);
7872 kfree(orig);
7873
7874 return ret;
7875}
7876
7877static int
7878perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
7879{
7880 LIST_HEAD(filters);
7881 int ret;
7882
7883 /*
7884 * Since this is called in perf_ioctl() path, we're already holding
7885 * ctx::mutex.
7886 */
7887 lockdep_assert_held(&event->ctx->mutex);
7888
7889 if (WARN_ON_ONCE(event->parent))
7890 return -EINVAL;
7891
7892 /*
7893 * For now, we only support filtering in per-task events; doing so
7894 * for CPU-wide events requires additional context switching trickery,
7895 * since same object code will be mapped at different virtual
7896 * addresses in different processes.
7897 */
7898 if (!event->ctx->task)
7899 return -EOPNOTSUPP;
7900
7901 ret = perf_event_parse_addr_filter(event, filter_str, &filters);
7902 if (ret)
7903 return ret;
7904
7905 ret = event->pmu->addr_filters_validate(&filters);
7906 if (ret) {
7907 free_filters_list(&filters);
7908 return ret;
7909 }
7910
7911 /* remove existing filters, if any */
7912 perf_addr_filters_splice(event, &filters);
7913
7914 /* install new filters */
7915 perf_event_for_each_child(event, perf_event_addr_filters_apply);
7916
7917 return ret;
7918}
7919
c796bbbe
AS
7920static int perf_event_set_filter(struct perf_event *event, void __user *arg)
7921{
7922 char *filter_str;
7923 int ret = -EINVAL;
7924
375637bc
AS
7925 if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
7926 !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
7927 !has_addr_filter(event))
c796bbbe
AS
7928 return -EINVAL;
7929
7930 filter_str = strndup_user(arg, PAGE_SIZE);
7931 if (IS_ERR(filter_str))
7932 return PTR_ERR(filter_str);
7933
7934 if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
7935 event->attr.type == PERF_TYPE_TRACEPOINT)
7936 ret = ftrace_profile_set_filter(event, event->attr.config,
7937 filter_str);
375637bc
AS
7938 else if (has_addr_filter(event))
7939 ret = perf_event_set_addr_filter(event, filter_str);
c796bbbe
AS
7940
7941 kfree(filter_str);
7942 return ret;
7943}
7944
b0a873eb
PZ
7945/*
7946 * hrtimer based swevent callback
7947 */
f29ac756 7948
b0a873eb 7949static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 7950{
b0a873eb
PZ
7951 enum hrtimer_restart ret = HRTIMER_RESTART;
7952 struct perf_sample_data data;
7953 struct pt_regs *regs;
7954 struct perf_event *event;
7955 u64 period;
f29ac756 7956
b0a873eb 7957 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
7958
7959 if (event->state != PERF_EVENT_STATE_ACTIVE)
7960 return HRTIMER_NORESTART;
7961
b0a873eb 7962 event->pmu->read(event);
f344011c 7963
fd0d000b 7964 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
7965 regs = get_irq_regs();
7966
7967 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 7968 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 7969 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
7970 ret = HRTIMER_NORESTART;
7971 }
24f1e32c 7972
b0a873eb
PZ
7973 period = max_t(u64, 10000, event->hw.sample_period);
7974 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 7975
b0a873eb 7976 return ret;
f29ac756
PZ
7977}
7978
b0a873eb 7979static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 7980{
b0a873eb 7981 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
7982 s64 period;
7983
7984 if (!is_sampling_event(event))
7985 return;
f5ffe02e 7986
5d508e82
FBH
7987 period = local64_read(&hwc->period_left);
7988 if (period) {
7989 if (period < 0)
7990 period = 10000;
fa407f35 7991
5d508e82
FBH
7992 local64_set(&hwc->period_left, 0);
7993 } else {
7994 period = max_t(u64, 10000, hwc->sample_period);
7995 }
3497d206
TG
7996 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
7997 HRTIMER_MODE_REL_PINNED);
24f1e32c 7998}
b0a873eb
PZ
7999
8000static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 8001{
b0a873eb
PZ
8002 struct hw_perf_event *hwc = &event->hw;
8003
6c7e550f 8004 if (is_sampling_event(event)) {
b0a873eb 8005 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 8006 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
8007
8008 hrtimer_cancel(&hwc->hrtimer);
8009 }
24f1e32c
FW
8010}
8011
ba3dd36c
PZ
8012static void perf_swevent_init_hrtimer(struct perf_event *event)
8013{
8014 struct hw_perf_event *hwc = &event->hw;
8015
8016 if (!is_sampling_event(event))
8017 return;
8018
8019 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8020 hwc->hrtimer.function = perf_swevent_hrtimer;
8021
8022 /*
8023 * Since hrtimers have a fixed rate, we can do a static freq->period
8024 * mapping and avoid the whole period adjust feedback stuff.
8025 */
8026 if (event->attr.freq) {
8027 long freq = event->attr.sample_freq;
8028
8029 event->attr.sample_period = NSEC_PER_SEC / freq;
8030 hwc->sample_period = event->attr.sample_period;
8031 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 8032 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
8033 event->attr.freq = 0;
8034 }
8035}
8036
b0a873eb
PZ
8037/*
8038 * Software event: cpu wall time clock
8039 */
8040
8041static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 8042{
b0a873eb
PZ
8043 s64 prev;
8044 u64 now;
8045
a4eaf7f1 8046 now = local_clock();
b0a873eb
PZ
8047 prev = local64_xchg(&event->hw.prev_count, now);
8048 local64_add(now - prev, &event->count);
24f1e32c 8049}
24f1e32c 8050
a4eaf7f1 8051static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 8052{
a4eaf7f1 8053 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 8054 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
8055}
8056
a4eaf7f1 8057static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 8058{
b0a873eb
PZ
8059 perf_swevent_cancel_hrtimer(event);
8060 cpu_clock_event_update(event);
8061}
f29ac756 8062
a4eaf7f1
PZ
8063static int cpu_clock_event_add(struct perf_event *event, int flags)
8064{
8065 if (flags & PERF_EF_START)
8066 cpu_clock_event_start(event, flags);
6a694a60 8067 perf_event_update_userpage(event);
a4eaf7f1
PZ
8068
8069 return 0;
8070}
8071
8072static void cpu_clock_event_del(struct perf_event *event, int flags)
8073{
8074 cpu_clock_event_stop(event, flags);
8075}
8076
b0a873eb
PZ
8077static void cpu_clock_event_read(struct perf_event *event)
8078{
8079 cpu_clock_event_update(event);
8080}
f344011c 8081
b0a873eb
PZ
8082static int cpu_clock_event_init(struct perf_event *event)
8083{
8084 if (event->attr.type != PERF_TYPE_SOFTWARE)
8085 return -ENOENT;
8086
8087 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8088 return -ENOENT;
8089
2481c5fa
SE
8090 /*
8091 * no branch sampling for software events
8092 */
8093 if (has_branch_stack(event))
8094 return -EOPNOTSUPP;
8095
ba3dd36c
PZ
8096 perf_swevent_init_hrtimer(event);
8097
b0a873eb 8098 return 0;
f29ac756
PZ
8099}
8100
b0a873eb 8101static struct pmu perf_cpu_clock = {
89a1e187
PZ
8102 .task_ctx_nr = perf_sw_context,
8103
34f43927
PZ
8104 .capabilities = PERF_PMU_CAP_NO_NMI,
8105
b0a873eb 8106 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
8107 .add = cpu_clock_event_add,
8108 .del = cpu_clock_event_del,
8109 .start = cpu_clock_event_start,
8110 .stop = cpu_clock_event_stop,
b0a873eb
PZ
8111 .read = cpu_clock_event_read,
8112};
8113
8114/*
8115 * Software event: task time clock
8116 */
8117
8118static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 8119{
b0a873eb
PZ
8120 u64 prev;
8121 s64 delta;
5c92d124 8122
b0a873eb
PZ
8123 prev = local64_xchg(&event->hw.prev_count, now);
8124 delta = now - prev;
8125 local64_add(delta, &event->count);
8126}
5c92d124 8127
a4eaf7f1 8128static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 8129{
a4eaf7f1 8130 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 8131 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
8132}
8133
a4eaf7f1 8134static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
8135{
8136 perf_swevent_cancel_hrtimer(event);
8137 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
8138}
8139
8140static int task_clock_event_add(struct perf_event *event, int flags)
8141{
8142 if (flags & PERF_EF_START)
8143 task_clock_event_start(event, flags);
6a694a60 8144 perf_event_update_userpage(event);
b0a873eb 8145
a4eaf7f1
PZ
8146 return 0;
8147}
8148
8149static void task_clock_event_del(struct perf_event *event, int flags)
8150{
8151 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
8152}
8153
8154static void task_clock_event_read(struct perf_event *event)
8155{
768a06e2
PZ
8156 u64 now = perf_clock();
8157 u64 delta = now - event->ctx->timestamp;
8158 u64 time = event->ctx->time + delta;
b0a873eb
PZ
8159
8160 task_clock_event_update(event, time);
8161}
8162
8163static int task_clock_event_init(struct perf_event *event)
6fb2915d 8164{
b0a873eb
PZ
8165 if (event->attr.type != PERF_TYPE_SOFTWARE)
8166 return -ENOENT;
8167
8168 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8169 return -ENOENT;
8170
2481c5fa
SE
8171 /*
8172 * no branch sampling for software events
8173 */
8174 if (has_branch_stack(event))
8175 return -EOPNOTSUPP;
8176
ba3dd36c
PZ
8177 perf_swevent_init_hrtimer(event);
8178
b0a873eb 8179 return 0;
6fb2915d
LZ
8180}
8181
b0a873eb 8182static struct pmu perf_task_clock = {
89a1e187
PZ
8183 .task_ctx_nr = perf_sw_context,
8184
34f43927
PZ
8185 .capabilities = PERF_PMU_CAP_NO_NMI,
8186
b0a873eb 8187 .event_init = task_clock_event_init,
a4eaf7f1
PZ
8188 .add = task_clock_event_add,
8189 .del = task_clock_event_del,
8190 .start = task_clock_event_start,
8191 .stop = task_clock_event_stop,
b0a873eb
PZ
8192 .read = task_clock_event_read,
8193};
6fb2915d 8194
ad5133b7 8195static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 8196{
e077df4f 8197}
6fb2915d 8198
fbbe0701
SB
8199static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8200{
8201}
8202
ad5133b7 8203static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 8204{
ad5133b7 8205 return 0;
6fb2915d
LZ
8206}
8207
18ab2cd3 8208static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
fbbe0701
SB
8209
8210static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
6fb2915d 8211{
fbbe0701
SB
8212 __this_cpu_write(nop_txn_flags, flags);
8213
8214 if (flags & ~PERF_PMU_TXN_ADD)
8215 return;
8216
ad5133b7 8217 perf_pmu_disable(pmu);
6fb2915d
LZ
8218}
8219
ad5133b7
PZ
8220static int perf_pmu_commit_txn(struct pmu *pmu)
8221{
fbbe0701
SB
8222 unsigned int flags = __this_cpu_read(nop_txn_flags);
8223
8224 __this_cpu_write(nop_txn_flags, 0);
8225
8226 if (flags & ~PERF_PMU_TXN_ADD)
8227 return 0;
8228
ad5133b7
PZ
8229 perf_pmu_enable(pmu);
8230 return 0;
8231}
e077df4f 8232
ad5133b7 8233static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 8234{
fbbe0701
SB
8235 unsigned int flags = __this_cpu_read(nop_txn_flags);
8236
8237 __this_cpu_write(nop_txn_flags, 0);
8238
8239 if (flags & ~PERF_PMU_TXN_ADD)
8240 return;
8241
ad5133b7 8242 perf_pmu_enable(pmu);
24f1e32c
FW
8243}
8244
35edc2a5
PZ
8245static int perf_event_idx_default(struct perf_event *event)
8246{
c719f560 8247 return 0;
35edc2a5
PZ
8248}
8249
8dc85d54
PZ
8250/*
8251 * Ensures all contexts with the same task_ctx_nr have the same
8252 * pmu_cpu_context too.
8253 */
9e317041 8254static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
24f1e32c 8255{
8dc85d54 8256 struct pmu *pmu;
b326e956 8257
8dc85d54
PZ
8258 if (ctxn < 0)
8259 return NULL;
24f1e32c 8260
8dc85d54
PZ
8261 list_for_each_entry(pmu, &pmus, entry) {
8262 if (pmu->task_ctx_nr == ctxn)
8263 return pmu->pmu_cpu_context;
8264 }
24f1e32c 8265
8dc85d54 8266 return NULL;
24f1e32c
FW
8267}
8268
51676957 8269static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
24f1e32c 8270{
51676957
PZ
8271 int cpu;
8272
8273 for_each_possible_cpu(cpu) {
8274 struct perf_cpu_context *cpuctx;
8275
8276 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8277
3f1f3320
PZ
8278 if (cpuctx->unique_pmu == old_pmu)
8279 cpuctx->unique_pmu = pmu;
51676957
PZ
8280 }
8281}
8282
8283static void free_pmu_context(struct pmu *pmu)
8284{
8285 struct pmu *i;
f5ffe02e 8286
8dc85d54 8287 mutex_lock(&pmus_lock);
0475f9ea 8288 /*
8dc85d54 8289 * Like a real lame refcount.
0475f9ea 8290 */
51676957
PZ
8291 list_for_each_entry(i, &pmus, entry) {
8292 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
8293 update_pmu_context(i, pmu);
8dc85d54 8294 goto out;
51676957 8295 }
8dc85d54 8296 }
d6d020e9 8297
51676957 8298 free_percpu(pmu->pmu_cpu_context);
8dc85d54
PZ
8299out:
8300 mutex_unlock(&pmus_lock);
24f1e32c 8301}
6e855cd4
AS
8302
8303/*
8304 * Let userspace know that this PMU supports address range filtering:
8305 */
8306static ssize_t nr_addr_filters_show(struct device *dev,
8307 struct device_attribute *attr,
8308 char *page)
8309{
8310 struct pmu *pmu = dev_get_drvdata(dev);
8311
8312 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8313}
8314DEVICE_ATTR_RO(nr_addr_filters);
8315
2e80a82a 8316static struct idr pmu_idr;
d6d020e9 8317
abe43400
PZ
8318static ssize_t
8319type_show(struct device *dev, struct device_attribute *attr, char *page)
8320{
8321 struct pmu *pmu = dev_get_drvdata(dev);
8322
8323 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8324}
90826ca7 8325static DEVICE_ATTR_RO(type);
abe43400 8326
62b85639
SE
8327static ssize_t
8328perf_event_mux_interval_ms_show(struct device *dev,
8329 struct device_attribute *attr,
8330 char *page)
8331{
8332 struct pmu *pmu = dev_get_drvdata(dev);
8333
8334 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
8335}
8336
272325c4
PZ
8337static DEFINE_MUTEX(mux_interval_mutex);
8338
62b85639
SE
8339static ssize_t
8340perf_event_mux_interval_ms_store(struct device *dev,
8341 struct device_attribute *attr,
8342 const char *buf, size_t count)
8343{
8344 struct pmu *pmu = dev_get_drvdata(dev);
8345 int timer, cpu, ret;
8346
8347 ret = kstrtoint(buf, 0, &timer);
8348 if (ret)
8349 return ret;
8350
8351 if (timer < 1)
8352 return -EINVAL;
8353
8354 /* same value, noting to do */
8355 if (timer == pmu->hrtimer_interval_ms)
8356 return count;
8357
272325c4 8358 mutex_lock(&mux_interval_mutex);
62b85639
SE
8359 pmu->hrtimer_interval_ms = timer;
8360
8361 /* update all cpuctx for this PMU */
272325c4
PZ
8362 get_online_cpus();
8363 for_each_online_cpu(cpu) {
62b85639
SE
8364 struct perf_cpu_context *cpuctx;
8365 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8366 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
8367
272325c4
PZ
8368 cpu_function_call(cpu,
8369 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
62b85639 8370 }
272325c4
PZ
8371 put_online_cpus();
8372 mutex_unlock(&mux_interval_mutex);
62b85639
SE
8373
8374 return count;
8375}
90826ca7 8376static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
62b85639 8377
90826ca7
GKH
8378static struct attribute *pmu_dev_attrs[] = {
8379 &dev_attr_type.attr,
8380 &dev_attr_perf_event_mux_interval_ms.attr,
8381 NULL,
abe43400 8382};
90826ca7 8383ATTRIBUTE_GROUPS(pmu_dev);
abe43400
PZ
8384
8385static int pmu_bus_running;
8386static struct bus_type pmu_bus = {
8387 .name = "event_source",
90826ca7 8388 .dev_groups = pmu_dev_groups,
abe43400
PZ
8389};
8390
8391static void pmu_dev_release(struct device *dev)
8392{
8393 kfree(dev);
8394}
8395
8396static int pmu_dev_alloc(struct pmu *pmu)
8397{
8398 int ret = -ENOMEM;
8399
8400 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
8401 if (!pmu->dev)
8402 goto out;
8403
0c9d42ed 8404 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
8405 device_initialize(pmu->dev);
8406 ret = dev_set_name(pmu->dev, "%s", pmu->name);
8407 if (ret)
8408 goto free_dev;
8409
8410 dev_set_drvdata(pmu->dev, pmu);
8411 pmu->dev->bus = &pmu_bus;
8412 pmu->dev->release = pmu_dev_release;
8413 ret = device_add(pmu->dev);
8414 if (ret)
8415 goto free_dev;
8416
6e855cd4
AS
8417 /* For PMUs with address filters, throw in an extra attribute: */
8418 if (pmu->nr_addr_filters)
8419 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
8420
8421 if (ret)
8422 goto del_dev;
8423
abe43400
PZ
8424out:
8425 return ret;
8426
6e855cd4
AS
8427del_dev:
8428 device_del(pmu->dev);
8429
abe43400
PZ
8430free_dev:
8431 put_device(pmu->dev);
8432 goto out;
8433}
8434
547e9fd7 8435static struct lock_class_key cpuctx_mutex;
facc4307 8436static struct lock_class_key cpuctx_lock;
547e9fd7 8437
03d8e80b 8438int perf_pmu_register(struct pmu *pmu, const char *name, int type)
24f1e32c 8439{
108b02cf 8440 int cpu, ret;
24f1e32c 8441
b0a873eb 8442 mutex_lock(&pmus_lock);
33696fc0
PZ
8443 ret = -ENOMEM;
8444 pmu->pmu_disable_count = alloc_percpu(int);
8445 if (!pmu->pmu_disable_count)
8446 goto unlock;
f29ac756 8447
2e80a82a
PZ
8448 pmu->type = -1;
8449 if (!name)
8450 goto skip_type;
8451 pmu->name = name;
8452
8453 if (type < 0) {
0e9c3be2
TH
8454 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
8455 if (type < 0) {
8456 ret = type;
2e80a82a
PZ
8457 goto free_pdc;
8458 }
8459 }
8460 pmu->type = type;
8461
abe43400
PZ
8462 if (pmu_bus_running) {
8463 ret = pmu_dev_alloc(pmu);
8464 if (ret)
8465 goto free_idr;
8466 }
8467
2e80a82a 8468skip_type:
26657848
PZ
8469 if (pmu->task_ctx_nr == perf_hw_context) {
8470 static int hw_context_taken = 0;
8471
5101ef20
MR
8472 /*
8473 * Other than systems with heterogeneous CPUs, it never makes
8474 * sense for two PMUs to share perf_hw_context. PMUs which are
8475 * uncore must use perf_invalid_context.
8476 */
8477 if (WARN_ON_ONCE(hw_context_taken &&
8478 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
26657848
PZ
8479 pmu->task_ctx_nr = perf_invalid_context;
8480
8481 hw_context_taken = 1;
8482 }
8483
8dc85d54
PZ
8484 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
8485 if (pmu->pmu_cpu_context)
8486 goto got_cpu_context;
f29ac756 8487
c4814202 8488 ret = -ENOMEM;
108b02cf
PZ
8489 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
8490 if (!pmu->pmu_cpu_context)
abe43400 8491 goto free_dev;
f344011c 8492
108b02cf
PZ
8493 for_each_possible_cpu(cpu) {
8494 struct perf_cpu_context *cpuctx;
8495
8496 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 8497 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 8498 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 8499 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
108b02cf 8500 cpuctx->ctx.pmu = pmu;
9e630205 8501
272325c4 8502 __perf_mux_hrtimer_init(cpuctx, cpu);
9e630205 8503
3f1f3320 8504 cpuctx->unique_pmu = pmu;
108b02cf 8505 }
76e1d904 8506
8dc85d54 8507got_cpu_context:
ad5133b7
PZ
8508 if (!pmu->start_txn) {
8509 if (pmu->pmu_enable) {
8510 /*
8511 * If we have pmu_enable/pmu_disable calls, install
8512 * transaction stubs that use that to try and batch
8513 * hardware accesses.
8514 */
8515 pmu->start_txn = perf_pmu_start_txn;
8516 pmu->commit_txn = perf_pmu_commit_txn;
8517 pmu->cancel_txn = perf_pmu_cancel_txn;
8518 } else {
fbbe0701 8519 pmu->start_txn = perf_pmu_nop_txn;
ad5133b7
PZ
8520 pmu->commit_txn = perf_pmu_nop_int;
8521 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 8522 }
5c92d124 8523 }
15dbf27c 8524
ad5133b7
PZ
8525 if (!pmu->pmu_enable) {
8526 pmu->pmu_enable = perf_pmu_nop_void;
8527 pmu->pmu_disable = perf_pmu_nop_void;
8528 }
8529
35edc2a5
PZ
8530 if (!pmu->event_idx)
8531 pmu->event_idx = perf_event_idx_default;
8532
b0a873eb 8533 list_add_rcu(&pmu->entry, &pmus);
bed5b25a 8534 atomic_set(&pmu->exclusive_cnt, 0);
33696fc0
PZ
8535 ret = 0;
8536unlock:
b0a873eb
PZ
8537 mutex_unlock(&pmus_lock);
8538
33696fc0 8539 return ret;
108b02cf 8540
abe43400
PZ
8541free_dev:
8542 device_del(pmu->dev);
8543 put_device(pmu->dev);
8544
2e80a82a
PZ
8545free_idr:
8546 if (pmu->type >= PERF_TYPE_MAX)
8547 idr_remove(&pmu_idr, pmu->type);
8548
108b02cf
PZ
8549free_pdc:
8550 free_percpu(pmu->pmu_disable_count);
8551 goto unlock;
f29ac756 8552}
c464c76e 8553EXPORT_SYMBOL_GPL(perf_pmu_register);
f29ac756 8554
b0a873eb 8555void perf_pmu_unregister(struct pmu *pmu)
5c92d124 8556{
b0a873eb
PZ
8557 mutex_lock(&pmus_lock);
8558 list_del_rcu(&pmu->entry);
8559 mutex_unlock(&pmus_lock);
5c92d124 8560
0475f9ea 8561 /*
cde8e884
PZ
8562 * We dereference the pmu list under both SRCU and regular RCU, so
8563 * synchronize against both of those.
0475f9ea 8564 */
b0a873eb 8565 synchronize_srcu(&pmus_srcu);
cde8e884 8566 synchronize_rcu();
d6d020e9 8567
33696fc0 8568 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
8569 if (pmu->type >= PERF_TYPE_MAX)
8570 idr_remove(&pmu_idr, pmu->type);
6e855cd4
AS
8571 if (pmu->nr_addr_filters)
8572 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
abe43400
PZ
8573 device_del(pmu->dev);
8574 put_device(pmu->dev);
51676957 8575 free_pmu_context(pmu);
b0a873eb 8576}
c464c76e 8577EXPORT_SYMBOL_GPL(perf_pmu_unregister);
d6d020e9 8578
cc34b98b
MR
8579static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
8580{
ccd41c86 8581 struct perf_event_context *ctx = NULL;
cc34b98b
MR
8582 int ret;
8583
8584 if (!try_module_get(pmu->module))
8585 return -ENODEV;
ccd41c86
PZ
8586
8587 if (event->group_leader != event) {
8b10c5e2
PZ
8588 /*
8589 * This ctx->mutex can nest when we're called through
8590 * inheritance. See the perf_event_ctx_lock_nested() comment.
8591 */
8592 ctx = perf_event_ctx_lock_nested(event->group_leader,
8593 SINGLE_DEPTH_NESTING);
ccd41c86
PZ
8594 BUG_ON(!ctx);
8595 }
8596
cc34b98b
MR
8597 event->pmu = pmu;
8598 ret = pmu->event_init(event);
ccd41c86
PZ
8599
8600 if (ctx)
8601 perf_event_ctx_unlock(event->group_leader, ctx);
8602
cc34b98b
MR
8603 if (ret)
8604 module_put(pmu->module);
8605
8606 return ret;
8607}
8608
18ab2cd3 8609static struct pmu *perf_init_event(struct perf_event *event)
b0a873eb
PZ
8610{
8611 struct pmu *pmu = NULL;
8612 int idx;
940c5b29 8613 int ret;
b0a873eb
PZ
8614
8615 idx = srcu_read_lock(&pmus_srcu);
2e80a82a
PZ
8616
8617 rcu_read_lock();
8618 pmu = idr_find(&pmu_idr, event->attr.type);
8619 rcu_read_unlock();
940c5b29 8620 if (pmu) {
cc34b98b 8621 ret = perf_try_init_event(pmu, event);
940c5b29
LM
8622 if (ret)
8623 pmu = ERR_PTR(ret);
2e80a82a 8624 goto unlock;
940c5b29 8625 }
2e80a82a 8626
b0a873eb 8627 list_for_each_entry_rcu(pmu, &pmus, entry) {
cc34b98b 8628 ret = perf_try_init_event(pmu, event);
b0a873eb 8629 if (!ret)
e5f4d339 8630 goto unlock;
76e1d904 8631
b0a873eb
PZ
8632 if (ret != -ENOENT) {
8633 pmu = ERR_PTR(ret);
e5f4d339 8634 goto unlock;
f344011c 8635 }
5c92d124 8636 }
e5f4d339
PZ
8637 pmu = ERR_PTR(-ENOENT);
8638unlock:
b0a873eb 8639 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 8640
4aeb0b42 8641 return pmu;
5c92d124
IM
8642}
8643
f2fb6bef
KL
8644static void attach_sb_event(struct perf_event *event)
8645{
8646 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
8647
8648 raw_spin_lock(&pel->lock);
8649 list_add_rcu(&event->sb_list, &pel->list);
8650 raw_spin_unlock(&pel->lock);
8651}
8652
aab5b71e
PZ
8653/*
8654 * We keep a list of all !task (and therefore per-cpu) events
8655 * that need to receive side-band records.
8656 *
8657 * This avoids having to scan all the various PMU per-cpu contexts
8658 * looking for them.
8659 */
f2fb6bef
KL
8660static void account_pmu_sb_event(struct perf_event *event)
8661{
8662 struct perf_event_attr *attr = &event->attr;
8663
8664 if (event->parent)
8665 return;
8666
8667 if (event->attach_state & PERF_ATTACH_TASK)
8668 return;
8669
8670 if (attr->mmap || attr->mmap_data || attr->mmap2 ||
8671 attr->comm || attr->comm_exec ||
8672 attr->task ||
8673 attr->context_switch)
8674 attach_sb_event(event);
8675}
8676
4beb31f3
FW
8677static void account_event_cpu(struct perf_event *event, int cpu)
8678{
8679 if (event->parent)
8680 return;
8681
4beb31f3
FW
8682 if (is_cgroup_event(event))
8683 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
8684}
8685
555e0c1e
FW
8686/* Freq events need the tick to stay alive (see perf_event_task_tick). */
8687static void account_freq_event_nohz(void)
8688{
8689#ifdef CONFIG_NO_HZ_FULL
8690 /* Lock so we don't race with concurrent unaccount */
8691 spin_lock(&nr_freq_lock);
8692 if (atomic_inc_return(&nr_freq_events) == 1)
8693 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
8694 spin_unlock(&nr_freq_lock);
8695#endif
8696}
8697
8698static void account_freq_event(void)
8699{
8700 if (tick_nohz_full_enabled())
8701 account_freq_event_nohz();
8702 else
8703 atomic_inc(&nr_freq_events);
8704}
8705
8706
766d6c07
FW
8707static void account_event(struct perf_event *event)
8708{
25432ae9
PZ
8709 bool inc = false;
8710
4beb31f3
FW
8711 if (event->parent)
8712 return;
8713
766d6c07 8714 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 8715 inc = true;
766d6c07
FW
8716 if (event->attr.mmap || event->attr.mmap_data)
8717 atomic_inc(&nr_mmap_events);
8718 if (event->attr.comm)
8719 atomic_inc(&nr_comm_events);
8720 if (event->attr.task)
8721 atomic_inc(&nr_task_events);
555e0c1e
FW
8722 if (event->attr.freq)
8723 account_freq_event();
45ac1403
AH
8724 if (event->attr.context_switch) {
8725 atomic_inc(&nr_switch_events);
25432ae9 8726 inc = true;
45ac1403 8727 }
4beb31f3 8728 if (has_branch_stack(event))
25432ae9 8729 inc = true;
4beb31f3 8730 if (is_cgroup_event(event))
25432ae9
PZ
8731 inc = true;
8732
9107c89e
PZ
8733 if (inc) {
8734 if (atomic_inc_not_zero(&perf_sched_count))
8735 goto enabled;
8736
8737 mutex_lock(&perf_sched_mutex);
8738 if (!atomic_read(&perf_sched_count)) {
8739 static_branch_enable(&perf_sched_events);
8740 /*
8741 * Guarantee that all CPUs observe they key change and
8742 * call the perf scheduling hooks before proceeding to
8743 * install events that need them.
8744 */
8745 synchronize_sched();
8746 }
8747 /*
8748 * Now that we have waited for the sync_sched(), allow further
8749 * increments to by-pass the mutex.
8750 */
8751 atomic_inc(&perf_sched_count);
8752 mutex_unlock(&perf_sched_mutex);
8753 }
8754enabled:
4beb31f3
FW
8755
8756 account_event_cpu(event, event->cpu);
f2fb6bef
KL
8757
8758 account_pmu_sb_event(event);
766d6c07
FW
8759}
8760
0793a61d 8761/*
cdd6c482 8762 * Allocate and initialize a event structure
0793a61d 8763 */
cdd6c482 8764static struct perf_event *
c3f00c70 8765perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
8766 struct task_struct *task,
8767 struct perf_event *group_leader,
8768 struct perf_event *parent_event,
4dc0da86 8769 perf_overflow_handler_t overflow_handler,
79dff51e 8770 void *context, int cgroup_fd)
0793a61d 8771{
51b0fe39 8772 struct pmu *pmu;
cdd6c482
IM
8773 struct perf_event *event;
8774 struct hw_perf_event *hwc;
90983b16 8775 long err = -EINVAL;
0793a61d 8776
66832eb4
ON
8777 if ((unsigned)cpu >= nr_cpu_ids) {
8778 if (!task || cpu != -1)
8779 return ERR_PTR(-EINVAL);
8780 }
8781
c3f00c70 8782 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 8783 if (!event)
d5d2bc0d 8784 return ERR_PTR(-ENOMEM);
0793a61d 8785
04289bb9 8786 /*
cdd6c482 8787 * Single events are their own group leaders, with an
04289bb9
IM
8788 * empty sibling list:
8789 */
8790 if (!group_leader)
cdd6c482 8791 group_leader = event;
04289bb9 8792
cdd6c482
IM
8793 mutex_init(&event->child_mutex);
8794 INIT_LIST_HEAD(&event->child_list);
fccc714b 8795
cdd6c482
IM
8796 INIT_LIST_HEAD(&event->group_entry);
8797 INIT_LIST_HEAD(&event->event_entry);
8798 INIT_LIST_HEAD(&event->sibling_list);
10c6db11 8799 INIT_LIST_HEAD(&event->rb_entry);
71ad88ef 8800 INIT_LIST_HEAD(&event->active_entry);
375637bc 8801 INIT_LIST_HEAD(&event->addr_filters.list);
f3ae75de
SE
8802 INIT_HLIST_NODE(&event->hlist_entry);
8803
10c6db11 8804
cdd6c482 8805 init_waitqueue_head(&event->waitq);
e360adbe 8806 init_irq_work(&event->pending, perf_pending_event);
0793a61d 8807
cdd6c482 8808 mutex_init(&event->mmap_mutex);
375637bc 8809 raw_spin_lock_init(&event->addr_filters.lock);
7b732a75 8810
a6fa941d 8811 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
8812 event->cpu = cpu;
8813 event->attr = *attr;
8814 event->group_leader = group_leader;
8815 event->pmu = NULL;
cdd6c482 8816 event->oncpu = -1;
a96bbc16 8817
cdd6c482 8818 event->parent = parent_event;
b84fbc9f 8819
17cf22c3 8820 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 8821 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 8822
cdd6c482 8823 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 8824
d580ff86
PZ
8825 if (task) {
8826 event->attach_state = PERF_ATTACH_TASK;
d580ff86 8827 /*
50f16a8b
PZ
8828 * XXX pmu::event_init needs to know what task to account to
8829 * and we cannot use the ctx information because we need the
8830 * pmu before we get a ctx.
d580ff86 8831 */
50f16a8b 8832 event->hw.target = task;
d580ff86
PZ
8833 }
8834
34f43927
PZ
8835 event->clock = &local_clock;
8836 if (parent_event)
8837 event->clock = parent_event->clock;
8838
4dc0da86 8839 if (!overflow_handler && parent_event) {
b326e956 8840 overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
8841 context = parent_event->overflow_handler_context;
8842 }
66832eb4 8843
1879445d
WN
8844 if (overflow_handler) {
8845 event->overflow_handler = overflow_handler;
8846 event->overflow_handler_context = context;
9ecda41a
WN
8847 } else if (is_write_backward(event)){
8848 event->overflow_handler = perf_event_output_backward;
8849 event->overflow_handler_context = NULL;
1879445d 8850 } else {
9ecda41a 8851 event->overflow_handler = perf_event_output_forward;
1879445d
WN
8852 event->overflow_handler_context = NULL;
8853 }
97eaf530 8854
0231bb53 8855 perf_event__state_init(event);
a86ed508 8856
4aeb0b42 8857 pmu = NULL;
b8e83514 8858
cdd6c482 8859 hwc = &event->hw;
bd2b5b12 8860 hwc->sample_period = attr->sample_period;
0d48696f 8861 if (attr->freq && attr->sample_freq)
bd2b5b12 8862 hwc->sample_period = 1;
eced1dfc 8863 hwc->last_period = hwc->sample_period;
bd2b5b12 8864
e7850595 8865 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 8866
2023b359 8867 /*
cdd6c482 8868 * we currently do not support PERF_FORMAT_GROUP on inherited events
2023b359 8869 */
3dab77fb 8870 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
90983b16 8871 goto err_ns;
a46a2300
YZ
8872
8873 if (!has_branch_stack(event))
8874 event->attr.branch_sample_type = 0;
2023b359 8875
79dff51e
MF
8876 if (cgroup_fd != -1) {
8877 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
8878 if (err)
8879 goto err_ns;
8880 }
8881
b0a873eb 8882 pmu = perf_init_event(event);
4aeb0b42 8883 if (!pmu)
90983b16
FW
8884 goto err_ns;
8885 else if (IS_ERR(pmu)) {
4aeb0b42 8886 err = PTR_ERR(pmu);
90983b16 8887 goto err_ns;
621a01ea 8888 }
d5d2bc0d 8889
bed5b25a
AS
8890 err = exclusive_event_init(event);
8891 if (err)
8892 goto err_pmu;
8893
375637bc
AS
8894 if (has_addr_filter(event)) {
8895 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
8896 sizeof(unsigned long),
8897 GFP_KERNEL);
8898 if (!event->addr_filters_offs)
8899 goto err_per_task;
8900
8901 /* force hw sync on the address filters */
8902 event->addr_filters_gen = 1;
8903 }
8904
cdd6c482 8905 if (!event->parent) {
927c7a9e 8906 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
97c79a38 8907 err = get_callchain_buffers(attr->sample_max_stack);
90983b16 8908 if (err)
375637bc 8909 goto err_addr_filters;
d010b332 8910 }
f344011c 8911 }
9ee318a7 8912
927a5570
AS
8913 /* symmetric to unaccount_event() in _free_event() */
8914 account_event(event);
8915
cdd6c482 8916 return event;
90983b16 8917
375637bc
AS
8918err_addr_filters:
8919 kfree(event->addr_filters_offs);
8920
bed5b25a
AS
8921err_per_task:
8922 exclusive_event_destroy(event);
8923
90983b16
FW
8924err_pmu:
8925 if (event->destroy)
8926 event->destroy(event);
c464c76e 8927 module_put(pmu->module);
90983b16 8928err_ns:
79dff51e
MF
8929 if (is_cgroup_event(event))
8930 perf_detach_cgroup(event);
90983b16
FW
8931 if (event->ns)
8932 put_pid_ns(event->ns);
8933 kfree(event);
8934
8935 return ERR_PTR(err);
0793a61d
TG
8936}
8937
cdd6c482
IM
8938static int perf_copy_attr(struct perf_event_attr __user *uattr,
8939 struct perf_event_attr *attr)
974802ea 8940{
974802ea 8941 u32 size;
cdf8073d 8942 int ret;
974802ea
PZ
8943
8944 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
8945 return -EFAULT;
8946
8947 /*
8948 * zero the full structure, so that a short copy will be nice.
8949 */
8950 memset(attr, 0, sizeof(*attr));
8951
8952 ret = get_user(size, &uattr->size);
8953 if (ret)
8954 return ret;
8955
8956 if (size > PAGE_SIZE) /* silly large */
8957 goto err_size;
8958
8959 if (!size) /* abi compat */
8960 size = PERF_ATTR_SIZE_VER0;
8961
8962 if (size < PERF_ATTR_SIZE_VER0)
8963 goto err_size;
8964
8965 /*
8966 * If we're handed a bigger struct than we know of,
cdf8073d
IS
8967 * ensure all the unknown bits are 0 - i.e. new
8968 * user-space does not rely on any kernel feature
8969 * extensions we dont know about yet.
974802ea
PZ
8970 */
8971 if (size > sizeof(*attr)) {
cdf8073d
IS
8972 unsigned char __user *addr;
8973 unsigned char __user *end;
8974 unsigned char val;
974802ea 8975
cdf8073d
IS
8976 addr = (void __user *)uattr + sizeof(*attr);
8977 end = (void __user *)uattr + size;
974802ea 8978
cdf8073d 8979 for (; addr < end; addr++) {
974802ea
PZ
8980 ret = get_user(val, addr);
8981 if (ret)
8982 return ret;
8983 if (val)
8984 goto err_size;
8985 }
b3e62e35 8986 size = sizeof(*attr);
974802ea
PZ
8987 }
8988
8989 ret = copy_from_user(attr, uattr, size);
8990 if (ret)
8991 return -EFAULT;
8992
cd757645 8993 if (attr->__reserved_1)
974802ea
PZ
8994 return -EINVAL;
8995
8996 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
8997 return -EINVAL;
8998
8999 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9000 return -EINVAL;
9001
bce38cd5
SE
9002 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9003 u64 mask = attr->branch_sample_type;
9004
9005 /* only using defined bits */
9006 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9007 return -EINVAL;
9008
9009 /* at least one branch bit must be set */
9010 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9011 return -EINVAL;
9012
bce38cd5
SE
9013 /* propagate priv level, when not set for branch */
9014 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9015
9016 /* exclude_kernel checked on syscall entry */
9017 if (!attr->exclude_kernel)
9018 mask |= PERF_SAMPLE_BRANCH_KERNEL;
9019
9020 if (!attr->exclude_user)
9021 mask |= PERF_SAMPLE_BRANCH_USER;
9022
9023 if (!attr->exclude_hv)
9024 mask |= PERF_SAMPLE_BRANCH_HV;
9025 /*
9026 * adjust user setting (for HW filter setup)
9027 */
9028 attr->branch_sample_type = mask;
9029 }
e712209a
SE
9030 /* privileged levels capture (kernel, hv): check permissions */
9031 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
2b923c8f
SE
9032 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9033 return -EACCES;
bce38cd5 9034 }
4018994f 9035
c5ebcedb 9036 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 9037 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
9038 if (ret)
9039 return ret;
9040 }
9041
9042 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9043 if (!arch_perf_have_user_stack_dump())
9044 return -ENOSYS;
9045
9046 /*
9047 * We have __u32 type for the size, but so far
9048 * we can only use __u16 as maximum due to the
9049 * __u16 sample size limit.
9050 */
9051 if (attr->sample_stack_user >= USHRT_MAX)
9052 ret = -EINVAL;
9053 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9054 ret = -EINVAL;
9055 }
4018994f 9056
60e2364e
SE
9057 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9058 ret = perf_reg_validate(attr->sample_regs_intr);
974802ea
PZ
9059out:
9060 return ret;
9061
9062err_size:
9063 put_user(sizeof(*attr), &uattr->size);
9064 ret = -E2BIG;
9065 goto out;
9066}
9067
ac9721f3
PZ
9068static int
9069perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 9070{
b69cf536 9071 struct ring_buffer *rb = NULL;
a4be7c27
PZ
9072 int ret = -EINVAL;
9073
ac9721f3 9074 if (!output_event)
a4be7c27
PZ
9075 goto set;
9076
ac9721f3
PZ
9077 /* don't allow circular references */
9078 if (event == output_event)
a4be7c27
PZ
9079 goto out;
9080
0f139300
PZ
9081 /*
9082 * Don't allow cross-cpu buffers
9083 */
9084 if (output_event->cpu != event->cpu)
9085 goto out;
9086
9087 /*
76369139 9088 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
9089 */
9090 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9091 goto out;
9092
34f43927
PZ
9093 /*
9094 * Mixing clocks in the same buffer is trouble you don't need.
9095 */
9096 if (output_event->clock != event->clock)
9097 goto out;
9098
9ecda41a
WN
9099 /*
9100 * Either writing ring buffer from beginning or from end.
9101 * Mixing is not allowed.
9102 */
9103 if (is_write_backward(output_event) != is_write_backward(event))
9104 goto out;
9105
45bfb2e5
PZ
9106 /*
9107 * If both events generate aux data, they must be on the same PMU
9108 */
9109 if (has_aux(event) && has_aux(output_event) &&
9110 event->pmu != output_event->pmu)
9111 goto out;
9112
a4be7c27 9113set:
cdd6c482 9114 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
9115 /* Can't redirect output if we've got an active mmap() */
9116 if (atomic_read(&event->mmap_count))
9117 goto unlock;
a4be7c27 9118
ac9721f3 9119 if (output_event) {
76369139
FW
9120 /* get the rb we want to redirect to */
9121 rb = ring_buffer_get(output_event);
9122 if (!rb)
ac9721f3 9123 goto unlock;
a4be7c27
PZ
9124 }
9125
b69cf536 9126 ring_buffer_attach(event, rb);
9bb5d40c 9127
a4be7c27 9128 ret = 0;
ac9721f3
PZ
9129unlock:
9130 mutex_unlock(&event->mmap_mutex);
9131
a4be7c27 9132out:
a4be7c27
PZ
9133 return ret;
9134}
9135
f63a8daa
PZ
9136static void mutex_lock_double(struct mutex *a, struct mutex *b)
9137{
9138 if (b < a)
9139 swap(a, b);
9140
9141 mutex_lock(a);
9142 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9143}
9144
34f43927
PZ
9145static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9146{
9147 bool nmi_safe = false;
9148
9149 switch (clk_id) {
9150 case CLOCK_MONOTONIC:
9151 event->clock = &ktime_get_mono_fast_ns;
9152 nmi_safe = true;
9153 break;
9154
9155 case CLOCK_MONOTONIC_RAW:
9156 event->clock = &ktime_get_raw_fast_ns;
9157 nmi_safe = true;
9158 break;
9159
9160 case CLOCK_REALTIME:
9161 event->clock = &ktime_get_real_ns;
9162 break;
9163
9164 case CLOCK_BOOTTIME:
9165 event->clock = &ktime_get_boot_ns;
9166 break;
9167
9168 case CLOCK_TAI:
9169 event->clock = &ktime_get_tai_ns;
9170 break;
9171
9172 default:
9173 return -EINVAL;
9174 }
9175
9176 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9177 return -EINVAL;
9178
9179 return 0;
9180}
9181
0793a61d 9182/**
cdd6c482 9183 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 9184 *
cdd6c482 9185 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 9186 * @pid: target pid
9f66a381 9187 * @cpu: target cpu
cdd6c482 9188 * @group_fd: group leader event fd
0793a61d 9189 */
cdd6c482
IM
9190SYSCALL_DEFINE5(perf_event_open,
9191 struct perf_event_attr __user *, attr_uptr,
2743a5b0 9192 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 9193{
b04243ef
PZ
9194 struct perf_event *group_leader = NULL, *output_event = NULL;
9195 struct perf_event *event, *sibling;
cdd6c482 9196 struct perf_event_attr attr;
f63a8daa 9197 struct perf_event_context *ctx, *uninitialized_var(gctx);
cdd6c482 9198 struct file *event_file = NULL;
2903ff01 9199 struct fd group = {NULL, 0};
38a81da2 9200 struct task_struct *task = NULL;
89a1e187 9201 struct pmu *pmu;
ea635c64 9202 int event_fd;
b04243ef 9203 int move_group = 0;
dc86cabe 9204 int err;
a21b0b35 9205 int f_flags = O_RDWR;
79dff51e 9206 int cgroup_fd = -1;
0793a61d 9207
2743a5b0 9208 /* for future expandability... */
e5d1367f 9209 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
9210 return -EINVAL;
9211
dc86cabe
IM
9212 err = perf_copy_attr(attr_uptr, &attr);
9213 if (err)
9214 return err;
eab656ae 9215
0764771d
PZ
9216 if (!attr.exclude_kernel) {
9217 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9218 return -EACCES;
9219 }
9220
df58ab24 9221 if (attr.freq) {
cdd6c482 9222 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24 9223 return -EINVAL;
0819b2e3
PZ
9224 } else {
9225 if (attr.sample_period & (1ULL << 63))
9226 return -EINVAL;
df58ab24
PZ
9227 }
9228
97c79a38
ACM
9229 if (!attr.sample_max_stack)
9230 attr.sample_max_stack = sysctl_perf_event_max_stack;
9231
e5d1367f
SE
9232 /*
9233 * In cgroup mode, the pid argument is used to pass the fd
9234 * opened to the cgroup directory in cgroupfs. The cpu argument
9235 * designates the cpu on which to monitor threads from that
9236 * cgroup.
9237 */
9238 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9239 return -EINVAL;
9240
a21b0b35
YD
9241 if (flags & PERF_FLAG_FD_CLOEXEC)
9242 f_flags |= O_CLOEXEC;
9243
9244 event_fd = get_unused_fd_flags(f_flags);
ea635c64
AV
9245 if (event_fd < 0)
9246 return event_fd;
9247
ac9721f3 9248 if (group_fd != -1) {
2903ff01
AV
9249 err = perf_fget_light(group_fd, &group);
9250 if (err)
d14b12d7 9251 goto err_fd;
2903ff01 9252 group_leader = group.file->private_data;
ac9721f3
PZ
9253 if (flags & PERF_FLAG_FD_OUTPUT)
9254 output_event = group_leader;
9255 if (flags & PERF_FLAG_FD_NO_GROUP)
9256 group_leader = NULL;
9257 }
9258
e5d1367f 9259 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
9260 task = find_lively_task_by_vpid(pid);
9261 if (IS_ERR(task)) {
9262 err = PTR_ERR(task);
9263 goto err_group_fd;
9264 }
9265 }
9266
1f4ee503
PZ
9267 if (task && group_leader &&
9268 group_leader->attr.inherit != attr.inherit) {
9269 err = -EINVAL;
9270 goto err_task;
9271 }
9272
fbfc623f
YZ
9273 get_online_cpus();
9274
79c9ce57
PZ
9275 if (task) {
9276 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
9277 if (err)
9278 goto err_cpus;
9279
9280 /*
9281 * Reuse ptrace permission checks for now.
9282 *
9283 * We must hold cred_guard_mutex across this and any potential
9284 * perf_install_in_context() call for this new event to
9285 * serialize against exec() altering our credentials (and the
9286 * perf_event_exit_task() that could imply).
9287 */
9288 err = -EACCES;
9289 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
9290 goto err_cred;
9291 }
9292
79dff51e
MF
9293 if (flags & PERF_FLAG_PID_CGROUP)
9294 cgroup_fd = pid;
9295
4dc0da86 9296 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
79dff51e 9297 NULL, NULL, cgroup_fd);
d14b12d7
SE
9298 if (IS_ERR(event)) {
9299 err = PTR_ERR(event);
79c9ce57 9300 goto err_cred;
d14b12d7
SE
9301 }
9302
53b25335
VW
9303 if (is_sampling_event(event)) {
9304 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
9305 err = -ENOTSUPP;
9306 goto err_alloc;
9307 }
9308 }
9309
89a1e187
PZ
9310 /*
9311 * Special case software events and allow them to be part of
9312 * any hardware group.
9313 */
9314 pmu = event->pmu;
b04243ef 9315
34f43927
PZ
9316 if (attr.use_clockid) {
9317 err = perf_event_set_clock(event, attr.clockid);
9318 if (err)
9319 goto err_alloc;
9320 }
9321
b04243ef
PZ
9322 if (group_leader &&
9323 (is_software_event(event) != is_software_event(group_leader))) {
9324 if (is_software_event(event)) {
9325 /*
9326 * If event and group_leader are not both a software
9327 * event, and event is, then group leader is not.
9328 *
9329 * Allow the addition of software events to !software
9330 * groups, this is safe because software events never
9331 * fail to schedule.
9332 */
9333 pmu = group_leader->pmu;
9334 } else if (is_software_event(group_leader) &&
9335 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
9336 /*
9337 * In case the group is a pure software group, and we
9338 * try to add a hardware event, move the whole group to
9339 * the hardware context.
9340 */
9341 move_group = 1;
9342 }
9343 }
89a1e187
PZ
9344
9345 /*
9346 * Get the target context (task or percpu):
9347 */
4af57ef2 9348 ctx = find_get_context(pmu, task, event);
89a1e187
PZ
9349 if (IS_ERR(ctx)) {
9350 err = PTR_ERR(ctx);
c6be5a5c 9351 goto err_alloc;
89a1e187
PZ
9352 }
9353
bed5b25a
AS
9354 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
9355 err = -EBUSY;
9356 goto err_context;
9357 }
9358
ccff286d 9359 /*
cdd6c482 9360 * Look up the group leader (we will attach this event to it):
04289bb9 9361 */
ac9721f3 9362 if (group_leader) {
dc86cabe 9363 err = -EINVAL;
04289bb9 9364
04289bb9 9365 /*
ccff286d
IM
9366 * Do not allow a recursive hierarchy (this new sibling
9367 * becoming part of another group-sibling):
9368 */
9369 if (group_leader->group_leader != group_leader)
c3f00c70 9370 goto err_context;
34f43927
PZ
9371
9372 /* All events in a group should have the same clock */
9373 if (group_leader->clock != event->clock)
9374 goto err_context;
9375
ccff286d
IM
9376 /*
9377 * Do not allow to attach to a group in a different
9378 * task or CPU context:
04289bb9 9379 */
b04243ef 9380 if (move_group) {
c3c87e77
PZ
9381 /*
9382 * Make sure we're both on the same task, or both
9383 * per-cpu events.
9384 */
9385 if (group_leader->ctx->task != ctx->task)
9386 goto err_context;
9387
9388 /*
9389 * Make sure we're both events for the same CPU;
9390 * grouping events for different CPUs is broken; since
9391 * you can never concurrently schedule them anyhow.
9392 */
9393 if (group_leader->cpu != event->cpu)
b04243ef
PZ
9394 goto err_context;
9395 } else {
9396 if (group_leader->ctx != ctx)
9397 goto err_context;
9398 }
9399
3b6f9e5c
PM
9400 /*
9401 * Only a group leader can be exclusive or pinned
9402 */
0d48696f 9403 if (attr.exclusive || attr.pinned)
c3f00c70 9404 goto err_context;
ac9721f3
PZ
9405 }
9406
9407 if (output_event) {
9408 err = perf_event_set_output(event, output_event);
9409 if (err)
c3f00c70 9410 goto err_context;
ac9721f3 9411 }
0793a61d 9412
a21b0b35
YD
9413 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
9414 f_flags);
ea635c64
AV
9415 if (IS_ERR(event_file)) {
9416 err = PTR_ERR(event_file);
201c2f85 9417 event_file = NULL;
c3f00c70 9418 goto err_context;
ea635c64 9419 }
9b51f66d 9420
b04243ef 9421 if (move_group) {
f63a8daa 9422 gctx = group_leader->ctx;
f55fc2a5 9423 mutex_lock_double(&gctx->mutex, &ctx->mutex);
84c4e620
PZ
9424 if (gctx->task == TASK_TOMBSTONE) {
9425 err = -ESRCH;
9426 goto err_locked;
9427 }
f55fc2a5
PZ
9428 } else {
9429 mutex_lock(&ctx->mutex);
9430 }
9431
84c4e620
PZ
9432 if (ctx->task == TASK_TOMBSTONE) {
9433 err = -ESRCH;
9434 goto err_locked;
9435 }
9436
a723968c
PZ
9437 if (!perf_event_validate_size(event)) {
9438 err = -E2BIG;
9439 goto err_locked;
9440 }
9441
f55fc2a5
PZ
9442 /*
9443 * Must be under the same ctx::mutex as perf_install_in_context(),
9444 * because we need to serialize with concurrent event creation.
9445 */
9446 if (!exclusive_event_installable(event, ctx)) {
9447 /* exclusive and group stuff are assumed mutually exclusive */
9448 WARN_ON_ONCE(move_group);
f63a8daa 9449
f55fc2a5
PZ
9450 err = -EBUSY;
9451 goto err_locked;
9452 }
f63a8daa 9453
f55fc2a5
PZ
9454 WARN_ON_ONCE(ctx->parent_ctx);
9455
79c9ce57
PZ
9456 /*
9457 * This is the point on no return; we cannot fail hereafter. This is
9458 * where we start modifying current state.
9459 */
9460
f55fc2a5 9461 if (move_group) {
f63a8daa
PZ
9462 /*
9463 * See perf_event_ctx_lock() for comments on the details
9464 * of swizzling perf_event::ctx.
9465 */
45a0e07a 9466 perf_remove_from_context(group_leader, 0);
0231bb53 9467
b04243ef
PZ
9468 list_for_each_entry(sibling, &group_leader->sibling_list,
9469 group_entry) {
45a0e07a 9470 perf_remove_from_context(sibling, 0);
b04243ef
PZ
9471 put_ctx(gctx);
9472 }
b04243ef 9473
f63a8daa
PZ
9474 /*
9475 * Wait for everybody to stop referencing the events through
9476 * the old lists, before installing it on new lists.
9477 */
0cda4c02 9478 synchronize_rcu();
f63a8daa 9479
8f95b435
PZI
9480 /*
9481 * Install the group siblings before the group leader.
9482 *
9483 * Because a group leader will try and install the entire group
9484 * (through the sibling list, which is still in-tact), we can
9485 * end up with siblings installed in the wrong context.
9486 *
9487 * By installing siblings first we NO-OP because they're not
9488 * reachable through the group lists.
9489 */
b04243ef
PZ
9490 list_for_each_entry(sibling, &group_leader->sibling_list,
9491 group_entry) {
8f95b435 9492 perf_event__state_init(sibling);
9fc81d87 9493 perf_install_in_context(ctx, sibling, sibling->cpu);
b04243ef
PZ
9494 get_ctx(ctx);
9495 }
8f95b435
PZI
9496
9497 /*
9498 * Removing from the context ends up with disabled
9499 * event. What we want here is event in the initial
9500 * startup state, ready to be add into new context.
9501 */
9502 perf_event__state_init(group_leader);
9503 perf_install_in_context(ctx, group_leader, group_leader->cpu);
9504 get_ctx(ctx);
b04243ef 9505
f55fc2a5
PZ
9506 /*
9507 * Now that all events are installed in @ctx, nothing
9508 * references @gctx anymore, so drop the last reference we have
9509 * on it.
9510 */
9511 put_ctx(gctx);
bed5b25a
AS
9512 }
9513
f73e22ab
PZ
9514 /*
9515 * Precalculate sample_data sizes; do while holding ctx::mutex such
9516 * that we're serialized against further additions and before
9517 * perf_install_in_context() which is the point the event is active and
9518 * can use these values.
9519 */
9520 perf_event__header_size(event);
9521 perf_event__id_header_size(event);
9522
78cd2c74
PZ
9523 event->owner = current;
9524
e2d37cd2 9525 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 9526 perf_unpin_context(ctx);
f63a8daa 9527
f55fc2a5 9528 if (move_group)
f63a8daa 9529 mutex_unlock(&gctx->mutex);
d859e29f 9530 mutex_unlock(&ctx->mutex);
9b51f66d 9531
79c9ce57
PZ
9532 if (task) {
9533 mutex_unlock(&task->signal->cred_guard_mutex);
9534 put_task_struct(task);
9535 }
9536
fbfc623f
YZ
9537 put_online_cpus();
9538
cdd6c482
IM
9539 mutex_lock(&current->perf_event_mutex);
9540 list_add_tail(&event->owner_entry, &current->perf_event_list);
9541 mutex_unlock(&current->perf_event_mutex);
082ff5a2 9542
8a49542c
PZ
9543 /*
9544 * Drop the reference on the group_event after placing the
9545 * new event on the sibling_list. This ensures destruction
9546 * of the group leader will find the pointer to itself in
9547 * perf_group_detach().
9548 */
2903ff01 9549 fdput(group);
ea635c64
AV
9550 fd_install(event_fd, event_file);
9551 return event_fd;
0793a61d 9552
f55fc2a5
PZ
9553err_locked:
9554 if (move_group)
9555 mutex_unlock(&gctx->mutex);
9556 mutex_unlock(&ctx->mutex);
9557/* err_file: */
9558 fput(event_file);
c3f00c70 9559err_context:
fe4b04fa 9560 perf_unpin_context(ctx);
ea635c64 9561 put_ctx(ctx);
c6be5a5c 9562err_alloc:
13005627
PZ
9563 /*
9564 * If event_file is set, the fput() above will have called ->release()
9565 * and that will take care of freeing the event.
9566 */
9567 if (!event_file)
9568 free_event(event);
79c9ce57
PZ
9569err_cred:
9570 if (task)
9571 mutex_unlock(&task->signal->cred_guard_mutex);
1f4ee503 9572err_cpus:
fbfc623f 9573 put_online_cpus();
1f4ee503 9574err_task:
e7d0bc04
PZ
9575 if (task)
9576 put_task_struct(task);
89a1e187 9577err_group_fd:
2903ff01 9578 fdput(group);
ea635c64
AV
9579err_fd:
9580 put_unused_fd(event_fd);
dc86cabe 9581 return err;
0793a61d
TG
9582}
9583
fb0459d7
AV
9584/**
9585 * perf_event_create_kernel_counter
9586 *
9587 * @attr: attributes of the counter to create
9588 * @cpu: cpu in which the counter is bound
38a81da2 9589 * @task: task to profile (NULL for percpu)
fb0459d7
AV
9590 */
9591struct perf_event *
9592perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 9593 struct task_struct *task,
4dc0da86
AK
9594 perf_overflow_handler_t overflow_handler,
9595 void *context)
fb0459d7 9596{
fb0459d7 9597 struct perf_event_context *ctx;
c3f00c70 9598 struct perf_event *event;
fb0459d7 9599 int err;
d859e29f 9600
fb0459d7
AV
9601 /*
9602 * Get the target context (task or percpu):
9603 */
d859e29f 9604
4dc0da86 9605 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
79dff51e 9606 overflow_handler, context, -1);
c3f00c70
PZ
9607 if (IS_ERR(event)) {
9608 err = PTR_ERR(event);
9609 goto err;
9610 }
d859e29f 9611
f8697762 9612 /* Mark owner so we could distinguish it from user events. */
63b6da39 9613 event->owner = TASK_TOMBSTONE;
f8697762 9614
4af57ef2 9615 ctx = find_get_context(event->pmu, task, event);
c6567f64
FW
9616 if (IS_ERR(ctx)) {
9617 err = PTR_ERR(ctx);
c3f00c70 9618 goto err_free;
d859e29f 9619 }
fb0459d7 9620
fb0459d7
AV
9621 WARN_ON_ONCE(ctx->parent_ctx);
9622 mutex_lock(&ctx->mutex);
84c4e620
PZ
9623 if (ctx->task == TASK_TOMBSTONE) {
9624 err = -ESRCH;
9625 goto err_unlock;
9626 }
9627
bed5b25a 9628 if (!exclusive_event_installable(event, ctx)) {
bed5b25a 9629 err = -EBUSY;
84c4e620 9630 goto err_unlock;
bed5b25a
AS
9631 }
9632
fb0459d7 9633 perf_install_in_context(ctx, event, cpu);
fe4b04fa 9634 perf_unpin_context(ctx);
fb0459d7
AV
9635 mutex_unlock(&ctx->mutex);
9636
fb0459d7
AV
9637 return event;
9638
84c4e620
PZ
9639err_unlock:
9640 mutex_unlock(&ctx->mutex);
9641 perf_unpin_context(ctx);
9642 put_ctx(ctx);
c3f00c70
PZ
9643err_free:
9644 free_event(event);
9645err:
c6567f64 9646 return ERR_PTR(err);
9b51f66d 9647}
fb0459d7 9648EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 9649
0cda4c02
YZ
9650void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
9651{
9652 struct perf_event_context *src_ctx;
9653 struct perf_event_context *dst_ctx;
9654 struct perf_event *event, *tmp;
9655 LIST_HEAD(events);
9656
9657 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
9658 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
9659
f63a8daa
PZ
9660 /*
9661 * See perf_event_ctx_lock() for comments on the details
9662 * of swizzling perf_event::ctx.
9663 */
9664 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
0cda4c02
YZ
9665 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
9666 event_entry) {
45a0e07a 9667 perf_remove_from_context(event, 0);
9a545de0 9668 unaccount_event_cpu(event, src_cpu);
0cda4c02 9669 put_ctx(src_ctx);
9886167d 9670 list_add(&event->migrate_entry, &events);
0cda4c02 9671 }
0cda4c02 9672
8f95b435
PZI
9673 /*
9674 * Wait for the events to quiesce before re-instating them.
9675 */
0cda4c02
YZ
9676 synchronize_rcu();
9677
8f95b435
PZI
9678 /*
9679 * Re-instate events in 2 passes.
9680 *
9681 * Skip over group leaders and only install siblings on this first
9682 * pass, siblings will not get enabled without a leader, however a
9683 * leader will enable its siblings, even if those are still on the old
9684 * context.
9685 */
9686 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
9687 if (event->group_leader == event)
9688 continue;
9689
9690 list_del(&event->migrate_entry);
9691 if (event->state >= PERF_EVENT_STATE_OFF)
9692 event->state = PERF_EVENT_STATE_INACTIVE;
9693 account_event_cpu(event, dst_cpu);
9694 perf_install_in_context(dst_ctx, event, dst_cpu);
9695 get_ctx(dst_ctx);
9696 }
9697
9698 /*
9699 * Once all the siblings are setup properly, install the group leaders
9700 * to make it go.
9701 */
9886167d
PZ
9702 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
9703 list_del(&event->migrate_entry);
0cda4c02
YZ
9704 if (event->state >= PERF_EVENT_STATE_OFF)
9705 event->state = PERF_EVENT_STATE_INACTIVE;
9a545de0 9706 account_event_cpu(event, dst_cpu);
0cda4c02
YZ
9707 perf_install_in_context(dst_ctx, event, dst_cpu);
9708 get_ctx(dst_ctx);
9709 }
9710 mutex_unlock(&dst_ctx->mutex);
f63a8daa 9711 mutex_unlock(&src_ctx->mutex);
0cda4c02
YZ
9712}
9713EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
9714
cdd6c482 9715static void sync_child_event(struct perf_event *child_event,
38b200d6 9716 struct task_struct *child)
d859e29f 9717{
cdd6c482 9718 struct perf_event *parent_event = child_event->parent;
8bc20959 9719 u64 child_val;
d859e29f 9720
cdd6c482
IM
9721 if (child_event->attr.inherit_stat)
9722 perf_event_read_event(child_event, child);
38b200d6 9723
b5e58793 9724 child_val = perf_event_count(child_event);
d859e29f
PM
9725
9726 /*
9727 * Add back the child's count to the parent's count:
9728 */
a6e6dea6 9729 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
9730 atomic64_add(child_event->total_time_enabled,
9731 &parent_event->child_total_time_enabled);
9732 atomic64_add(child_event->total_time_running,
9733 &parent_event->child_total_time_running);
d859e29f
PM
9734}
9735
9b51f66d 9736static void
8ba289b8
PZ
9737perf_event_exit_event(struct perf_event *child_event,
9738 struct perf_event_context *child_ctx,
9739 struct task_struct *child)
9b51f66d 9740{
8ba289b8
PZ
9741 struct perf_event *parent_event = child_event->parent;
9742
1903d50c
PZ
9743 /*
9744 * Do not destroy the 'original' grouping; because of the context
9745 * switch optimization the original events could've ended up in a
9746 * random child task.
9747 *
9748 * If we were to destroy the original group, all group related
9749 * operations would cease to function properly after this random
9750 * child dies.
9751 *
9752 * Do destroy all inherited groups, we don't care about those
9753 * and being thorough is better.
9754 */
32132a3d
PZ
9755 raw_spin_lock_irq(&child_ctx->lock);
9756 WARN_ON_ONCE(child_ctx->is_active);
9757
8ba289b8 9758 if (parent_event)
32132a3d
PZ
9759 perf_group_detach(child_event);
9760 list_del_event(child_event, child_ctx);
a69b0ca4 9761 child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
32132a3d 9762 raw_spin_unlock_irq(&child_ctx->lock);
0cc0c027 9763
9b51f66d 9764 /*
8ba289b8 9765 * Parent events are governed by their filedesc, retain them.
9b51f66d 9766 */
8ba289b8 9767 if (!parent_event) {
179033b3 9768 perf_event_wakeup(child_event);
8ba289b8 9769 return;
4bcf349a 9770 }
8ba289b8
PZ
9771 /*
9772 * Child events can be cleaned up.
9773 */
9774
9775 sync_child_event(child_event, child);
9776
9777 /*
9778 * Remove this event from the parent's list
9779 */
9780 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
9781 mutex_lock(&parent_event->child_mutex);
9782 list_del_init(&child_event->child_list);
9783 mutex_unlock(&parent_event->child_mutex);
9784
9785 /*
9786 * Kick perf_poll() for is_event_hup().
9787 */
9788 perf_event_wakeup(parent_event);
9789 free_event(child_event);
9790 put_event(parent_event);
9b51f66d
IM
9791}
9792
8dc85d54 9793static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 9794{
211de6eb 9795 struct perf_event_context *child_ctx, *clone_ctx = NULL;
63b6da39 9796 struct perf_event *child_event, *next;
63b6da39
PZ
9797
9798 WARN_ON_ONCE(child != current);
9b51f66d 9799
6a3351b6 9800 child_ctx = perf_pin_task_context(child, ctxn);
63b6da39 9801 if (!child_ctx)
9b51f66d
IM
9802 return;
9803
ad3a37de 9804 /*
6a3351b6
PZ
9805 * In order to reduce the amount of tricky in ctx tear-down, we hold
9806 * ctx::mutex over the entire thing. This serializes against almost
9807 * everything that wants to access the ctx.
9808 *
9809 * The exception is sys_perf_event_open() /
9810 * perf_event_create_kernel_count() which does find_get_context()
9811 * without ctx::mutex (it cannot because of the move_group double mutex
9812 * lock thing). See the comments in perf_install_in_context().
ad3a37de 9813 */
6a3351b6 9814 mutex_lock(&child_ctx->mutex);
c93f7669
PM
9815
9816 /*
6a3351b6
PZ
9817 * In a single ctx::lock section, de-schedule the events and detach the
9818 * context from the task such that we cannot ever get it scheduled back
9819 * in.
c93f7669 9820 */
6a3351b6 9821 raw_spin_lock_irq(&child_ctx->lock);
63b6da39 9822 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx);
4a1c0f26 9823
71a851b4 9824 /*
63b6da39
PZ
9825 * Now that the context is inactive, destroy the task <-> ctx relation
9826 * and mark the context dead.
71a851b4 9827 */
63b6da39
PZ
9828 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
9829 put_ctx(child_ctx); /* cannot be last */
9830 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
9831 put_task_struct(current); /* cannot be last */
4a1c0f26 9832
211de6eb 9833 clone_ctx = unclone_ctx(child_ctx);
6a3351b6 9834 raw_spin_unlock_irq(&child_ctx->lock);
9f498cc5 9835
211de6eb
PZ
9836 if (clone_ctx)
9837 put_ctx(clone_ctx);
4a1c0f26 9838
9f498cc5 9839 /*
cdd6c482
IM
9840 * Report the task dead after unscheduling the events so that we
9841 * won't get any samples after PERF_RECORD_EXIT. We can however still
9842 * get a few PERF_RECORD_READ events.
9f498cc5 9843 */
cdd6c482 9844 perf_event_task(child, child_ctx, 0);
a63eaf34 9845
ebf905fc 9846 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8ba289b8 9847 perf_event_exit_event(child_event, child_ctx, child);
8bc20959 9848
a63eaf34
PM
9849 mutex_unlock(&child_ctx->mutex);
9850
9851 put_ctx(child_ctx);
9b51f66d
IM
9852}
9853
8dc85d54
PZ
9854/*
9855 * When a child task exits, feed back event values to parent events.
79c9ce57
PZ
9856 *
9857 * Can be called with cred_guard_mutex held when called from
9858 * install_exec_creds().
8dc85d54
PZ
9859 */
9860void perf_event_exit_task(struct task_struct *child)
9861{
8882135b 9862 struct perf_event *event, *tmp;
8dc85d54
PZ
9863 int ctxn;
9864
8882135b
PZ
9865 mutex_lock(&child->perf_event_mutex);
9866 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
9867 owner_entry) {
9868 list_del_init(&event->owner_entry);
9869
9870 /*
9871 * Ensure the list deletion is visible before we clear
9872 * the owner, closes a race against perf_release() where
9873 * we need to serialize on the owner->perf_event_mutex.
9874 */
f47c02c0 9875 smp_store_release(&event->owner, NULL);
8882135b
PZ
9876 }
9877 mutex_unlock(&child->perf_event_mutex);
9878
8dc85d54
PZ
9879 for_each_task_context_nr(ctxn)
9880 perf_event_exit_task_context(child, ctxn);
4e93ad60
JO
9881
9882 /*
9883 * The perf_event_exit_task_context calls perf_event_task
9884 * with child's task_ctx, which generates EXIT events for
9885 * child contexts and sets child->perf_event_ctxp[] to NULL.
9886 * At this point we need to send EXIT events to cpu contexts.
9887 */
9888 perf_event_task(child, NULL, 0);
8dc85d54
PZ
9889}
9890
889ff015
FW
9891static void perf_free_event(struct perf_event *event,
9892 struct perf_event_context *ctx)
9893{
9894 struct perf_event *parent = event->parent;
9895
9896 if (WARN_ON_ONCE(!parent))
9897 return;
9898
9899 mutex_lock(&parent->child_mutex);
9900 list_del_init(&event->child_list);
9901 mutex_unlock(&parent->child_mutex);
9902
a6fa941d 9903 put_event(parent);
889ff015 9904
652884fe 9905 raw_spin_lock_irq(&ctx->lock);
8a49542c 9906 perf_group_detach(event);
889ff015 9907 list_del_event(event, ctx);
652884fe 9908 raw_spin_unlock_irq(&ctx->lock);
889ff015
FW
9909 free_event(event);
9910}
9911
bbbee908 9912/*
652884fe 9913 * Free an unexposed, unused context as created by inheritance by
8dc85d54 9914 * perf_event_init_task below, used by fork() in case of fail.
652884fe
PZ
9915 *
9916 * Not all locks are strictly required, but take them anyway to be nice and
9917 * help out with the lockdep assertions.
bbbee908 9918 */
cdd6c482 9919void perf_event_free_task(struct task_struct *task)
bbbee908 9920{
8dc85d54 9921 struct perf_event_context *ctx;
cdd6c482 9922 struct perf_event *event, *tmp;
8dc85d54 9923 int ctxn;
bbbee908 9924
8dc85d54
PZ
9925 for_each_task_context_nr(ctxn) {
9926 ctx = task->perf_event_ctxp[ctxn];
9927 if (!ctx)
9928 continue;
bbbee908 9929
8dc85d54 9930 mutex_lock(&ctx->mutex);
bbbee908 9931again:
8dc85d54
PZ
9932 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
9933 group_entry)
9934 perf_free_event(event, ctx);
bbbee908 9935
8dc85d54
PZ
9936 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
9937 group_entry)
9938 perf_free_event(event, ctx);
bbbee908 9939
8dc85d54
PZ
9940 if (!list_empty(&ctx->pinned_groups) ||
9941 !list_empty(&ctx->flexible_groups))
9942 goto again;
bbbee908 9943
8dc85d54 9944 mutex_unlock(&ctx->mutex);
bbbee908 9945
8dc85d54
PZ
9946 put_ctx(ctx);
9947 }
889ff015
FW
9948}
9949
4e231c79
PZ
9950void perf_event_delayed_put(struct task_struct *task)
9951{
9952 int ctxn;
9953
9954 for_each_task_context_nr(ctxn)
9955 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
9956}
9957
e03e7ee3 9958struct file *perf_event_get(unsigned int fd)
ffe8690c 9959{
e03e7ee3 9960 struct file *file;
ffe8690c 9961
e03e7ee3
AS
9962 file = fget_raw(fd);
9963 if (!file)
9964 return ERR_PTR(-EBADF);
ffe8690c 9965
e03e7ee3
AS
9966 if (file->f_op != &perf_fops) {
9967 fput(file);
9968 return ERR_PTR(-EBADF);
9969 }
ffe8690c 9970
e03e7ee3 9971 return file;
ffe8690c
KX
9972}
9973
9974const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
9975{
9976 if (!event)
9977 return ERR_PTR(-EINVAL);
9978
9979 return &event->attr;
9980}
9981
97dee4f3
PZ
9982/*
9983 * inherit a event from parent task to child task:
9984 */
9985static struct perf_event *
9986inherit_event(struct perf_event *parent_event,
9987 struct task_struct *parent,
9988 struct perf_event_context *parent_ctx,
9989 struct task_struct *child,
9990 struct perf_event *group_leader,
9991 struct perf_event_context *child_ctx)
9992{
1929def9 9993 enum perf_event_active_state parent_state = parent_event->state;
97dee4f3 9994 struct perf_event *child_event;
cee010ec 9995 unsigned long flags;
97dee4f3
PZ
9996
9997 /*
9998 * Instead of creating recursive hierarchies of events,
9999 * we link inherited events back to the original parent,
10000 * which has a filp for sure, which we use as the reference
10001 * count:
10002 */
10003 if (parent_event->parent)
10004 parent_event = parent_event->parent;
10005
10006 child_event = perf_event_alloc(&parent_event->attr,
10007 parent_event->cpu,
d580ff86 10008 child,
97dee4f3 10009 group_leader, parent_event,
79dff51e 10010 NULL, NULL, -1);
97dee4f3
PZ
10011 if (IS_ERR(child_event))
10012 return child_event;
a6fa941d 10013
c6e5b732
PZ
10014 /*
10015 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10016 * must be under the same lock in order to serialize against
10017 * perf_event_release_kernel(), such that either we must observe
10018 * is_orphaned_event() or they will observe us on the child_list.
10019 */
10020 mutex_lock(&parent_event->child_mutex);
fadfe7be
JO
10021 if (is_orphaned_event(parent_event) ||
10022 !atomic_long_inc_not_zero(&parent_event->refcount)) {
c6e5b732 10023 mutex_unlock(&parent_event->child_mutex);
a6fa941d
AV
10024 free_event(child_event);
10025 return NULL;
10026 }
10027
97dee4f3
PZ
10028 get_ctx(child_ctx);
10029
10030 /*
10031 * Make the child state follow the state of the parent event,
10032 * not its attr.disabled bit. We hold the parent's mutex,
10033 * so we won't race with perf_event_{en, dis}able_family.
10034 */
1929def9 10035 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
97dee4f3
PZ
10036 child_event->state = PERF_EVENT_STATE_INACTIVE;
10037 else
10038 child_event->state = PERF_EVENT_STATE_OFF;
10039
10040 if (parent_event->attr.freq) {
10041 u64 sample_period = parent_event->hw.sample_period;
10042 struct hw_perf_event *hwc = &child_event->hw;
10043
10044 hwc->sample_period = sample_period;
10045 hwc->last_period = sample_period;
10046
10047 local64_set(&hwc->period_left, sample_period);
10048 }
10049
10050 child_event->ctx = child_ctx;
10051 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
10052 child_event->overflow_handler_context
10053 = parent_event->overflow_handler_context;
97dee4f3 10054
614b6780
TG
10055 /*
10056 * Precalculate sample_data sizes
10057 */
10058 perf_event__header_size(child_event);
6844c09d 10059 perf_event__id_header_size(child_event);
614b6780 10060
97dee4f3
PZ
10061 /*
10062 * Link it up in the child's context:
10063 */
cee010ec 10064 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 10065 add_event_to_ctx(child_event, child_ctx);
cee010ec 10066 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 10067
97dee4f3
PZ
10068 /*
10069 * Link this into the parent event's child list
10070 */
97dee4f3
PZ
10071 list_add_tail(&child_event->child_list, &parent_event->child_list);
10072 mutex_unlock(&parent_event->child_mutex);
10073
10074 return child_event;
10075}
10076
10077static int inherit_group(struct perf_event *parent_event,
10078 struct task_struct *parent,
10079 struct perf_event_context *parent_ctx,
10080 struct task_struct *child,
10081 struct perf_event_context *child_ctx)
10082{
10083 struct perf_event *leader;
10084 struct perf_event *sub;
10085 struct perf_event *child_ctr;
10086
10087 leader = inherit_event(parent_event, parent, parent_ctx,
10088 child, NULL, child_ctx);
10089 if (IS_ERR(leader))
10090 return PTR_ERR(leader);
10091 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10092 child_ctr = inherit_event(sub, parent, parent_ctx,
10093 child, leader, child_ctx);
10094 if (IS_ERR(child_ctr))
10095 return PTR_ERR(child_ctr);
10096 }
10097 return 0;
889ff015
FW
10098}
10099
10100static int
10101inherit_task_group(struct perf_event *event, struct task_struct *parent,
10102 struct perf_event_context *parent_ctx,
8dc85d54 10103 struct task_struct *child, int ctxn,
889ff015
FW
10104 int *inherited_all)
10105{
10106 int ret;
8dc85d54 10107 struct perf_event_context *child_ctx;
889ff015
FW
10108
10109 if (!event->attr.inherit) {
10110 *inherited_all = 0;
10111 return 0;
bbbee908
PZ
10112 }
10113
fe4b04fa 10114 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
10115 if (!child_ctx) {
10116 /*
10117 * This is executed from the parent task context, so
10118 * inherit events that have been marked for cloning.
10119 * First allocate and initialize a context for the
10120 * child.
10121 */
bbbee908 10122
734df5ab 10123 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
889ff015
FW
10124 if (!child_ctx)
10125 return -ENOMEM;
bbbee908 10126
8dc85d54 10127 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
10128 }
10129
10130 ret = inherit_group(event, parent, parent_ctx,
10131 child, child_ctx);
10132
10133 if (ret)
10134 *inherited_all = 0;
10135
10136 return ret;
bbbee908
PZ
10137}
10138
9b51f66d 10139/*
cdd6c482 10140 * Initialize the perf_event context in task_struct
9b51f66d 10141 */
985c8dcb 10142static int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 10143{
889ff015 10144 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
10145 struct perf_event_context *cloned_ctx;
10146 struct perf_event *event;
9b51f66d 10147 struct task_struct *parent = current;
564c2b21 10148 int inherited_all = 1;
dddd3379 10149 unsigned long flags;
6ab423e0 10150 int ret = 0;
9b51f66d 10151
8dc85d54 10152 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
10153 return 0;
10154
ad3a37de 10155 /*
25346b93
PM
10156 * If the parent's context is a clone, pin it so it won't get
10157 * swapped under us.
ad3a37de 10158 */
8dc85d54 10159 parent_ctx = perf_pin_task_context(parent, ctxn);
ffb4ef21
PZ
10160 if (!parent_ctx)
10161 return 0;
25346b93 10162
ad3a37de
PM
10163 /*
10164 * No need to check if parent_ctx != NULL here; since we saw
10165 * it non-NULL earlier, the only reason for it to become NULL
10166 * is if we exit, and since we're currently in the middle of
10167 * a fork we can't be exiting at the same time.
10168 */
ad3a37de 10169
9b51f66d
IM
10170 /*
10171 * Lock the parent list. No need to lock the child - not PID
10172 * hashed yet and not running, so nobody can access it.
10173 */
d859e29f 10174 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
10175
10176 /*
10177 * We dont have to disable NMIs - we are only looking at
10178 * the list, not manipulating it:
10179 */
889ff015 10180 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8dc85d54
PZ
10181 ret = inherit_task_group(event, parent, parent_ctx,
10182 child, ctxn, &inherited_all);
889ff015
FW
10183 if (ret)
10184 break;
10185 }
b93f7978 10186
dddd3379
TG
10187 /*
10188 * We can't hold ctx->lock when iterating the ->flexible_group list due
10189 * to allocations, but we need to prevent rotation because
10190 * rotate_ctx() will change the list from interrupt context.
10191 */
10192 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10193 parent_ctx->rotate_disable = 1;
10194 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10195
889ff015 10196 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8dc85d54
PZ
10197 ret = inherit_task_group(event, parent, parent_ctx,
10198 child, ctxn, &inherited_all);
889ff015 10199 if (ret)
9b51f66d 10200 break;
564c2b21
PM
10201 }
10202
dddd3379
TG
10203 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10204 parent_ctx->rotate_disable = 0;
dddd3379 10205
8dc85d54 10206 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 10207
05cbaa28 10208 if (child_ctx && inherited_all) {
564c2b21
PM
10209 /*
10210 * Mark the child context as a clone of the parent
10211 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
10212 *
10213 * Note that if the parent is a clone, the holding of
10214 * parent_ctx->lock avoids it from being uncloned.
564c2b21 10215 */
c5ed5145 10216 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
10217 if (cloned_ctx) {
10218 child_ctx->parent_ctx = cloned_ctx;
25346b93 10219 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
10220 } else {
10221 child_ctx->parent_ctx = parent_ctx;
10222 child_ctx->parent_gen = parent_ctx->generation;
10223 }
10224 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
10225 }
10226
c5ed5145 10227 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
d859e29f 10228 mutex_unlock(&parent_ctx->mutex);
6ab423e0 10229
25346b93 10230 perf_unpin_context(parent_ctx);
fe4b04fa 10231 put_ctx(parent_ctx);
ad3a37de 10232
6ab423e0 10233 return ret;
9b51f66d
IM
10234}
10235
8dc85d54
PZ
10236/*
10237 * Initialize the perf_event context in task_struct
10238 */
10239int perf_event_init_task(struct task_struct *child)
10240{
10241 int ctxn, ret;
10242
8550d7cb
ON
10243 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
10244 mutex_init(&child->perf_event_mutex);
10245 INIT_LIST_HEAD(&child->perf_event_list);
10246
8dc85d54
PZ
10247 for_each_task_context_nr(ctxn) {
10248 ret = perf_event_init_context(child, ctxn);
6c72e350
PZ
10249 if (ret) {
10250 perf_event_free_task(child);
8dc85d54 10251 return ret;
6c72e350 10252 }
8dc85d54
PZ
10253 }
10254
10255 return 0;
10256}
10257
220b140b
PM
10258static void __init perf_event_init_all_cpus(void)
10259{
b28ab83c 10260 struct swevent_htable *swhash;
220b140b 10261 int cpu;
220b140b
PM
10262
10263 for_each_possible_cpu(cpu) {
b28ab83c
PZ
10264 swhash = &per_cpu(swevent_htable, cpu);
10265 mutex_init(&swhash->hlist_mutex);
2fde4f94 10266 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
f2fb6bef
KL
10267
10268 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
10269 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
220b140b
PM
10270 }
10271}
10272
0db0628d 10273static void perf_event_init_cpu(int cpu)
0793a61d 10274{
108b02cf 10275 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 10276
b28ab83c 10277 mutex_lock(&swhash->hlist_mutex);
059fcd8c 10278 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
76e1d904
FW
10279 struct swevent_hlist *hlist;
10280
b28ab83c
PZ
10281 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
10282 WARN_ON(!hlist);
10283 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 10284 }
b28ab83c 10285 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
10286}
10287
2965faa5 10288#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
108b02cf 10289static void __perf_event_exit_context(void *__info)
0793a61d 10290{
108b02cf 10291 struct perf_event_context *ctx = __info;
fae3fde6
PZ
10292 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
10293 struct perf_event *event;
0793a61d 10294
fae3fde6
PZ
10295 raw_spin_lock(&ctx->lock);
10296 list_for_each_entry(event, &ctx->event_list, event_entry)
45a0e07a 10297 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
fae3fde6 10298 raw_spin_unlock(&ctx->lock);
0793a61d 10299}
108b02cf
PZ
10300
10301static void perf_event_exit_cpu_context(int cpu)
10302{
10303 struct perf_event_context *ctx;
10304 struct pmu *pmu;
10305 int idx;
10306
10307 idx = srcu_read_lock(&pmus_srcu);
10308 list_for_each_entry_rcu(pmu, &pmus, entry) {
917bdd1c 10309 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
108b02cf
PZ
10310
10311 mutex_lock(&ctx->mutex);
10312 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
10313 mutex_unlock(&ctx->mutex);
10314 }
10315 srcu_read_unlock(&pmus_srcu, idx);
108b02cf
PZ
10316}
10317
cdd6c482 10318static void perf_event_exit_cpu(int cpu)
0793a61d 10319{
e3703f8c 10320 perf_event_exit_cpu_context(cpu);
0793a61d
TG
10321}
10322#else
cdd6c482 10323static inline void perf_event_exit_cpu(int cpu) { }
0793a61d
TG
10324#endif
10325
c277443c
PZ
10326static int
10327perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
10328{
10329 int cpu;
10330
10331 for_each_online_cpu(cpu)
10332 perf_event_exit_cpu(cpu);
10333
10334 return NOTIFY_OK;
10335}
10336
10337/*
10338 * Run the perf reboot notifier at the very last possible moment so that
10339 * the generic watchdog code runs as long as possible.
10340 */
10341static struct notifier_block perf_reboot_notifier = {
10342 .notifier_call = perf_reboot,
10343 .priority = INT_MIN,
10344};
10345
0db0628d 10346static int
0793a61d
TG
10347perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
10348{
10349 unsigned int cpu = (long)hcpu;
10350
4536e4d1 10351 switch (action & ~CPU_TASKS_FROZEN) {
0793a61d
TG
10352
10353 case CPU_UP_PREPARE:
1dcaac1c
PZ
10354 /*
10355 * This must be done before the CPU comes alive, because the
10356 * moment we can run tasks we can encounter (software) events.
10357 *
10358 * Specifically, someone can have inherited events on kthreadd
10359 * or a pre-existing worker thread that gets re-bound.
10360 */
cdd6c482 10361 perf_event_init_cpu(cpu);
0793a61d
TG
10362 break;
10363
10364 case CPU_DOWN_PREPARE:
1dcaac1c
PZ
10365 /*
10366 * This must be done before the CPU dies because after that an
10367 * active event might want to IPI the CPU and that'll not work
10368 * so great for dead CPUs.
10369 *
10370 * XXX smp_call_function_single() return -ENXIO without a warn
10371 * so we could possibly deal with this.
10372 *
10373 * This is safe against new events arriving because
10374 * sys_perf_event_open() serializes against hotplug using
10375 * get_online_cpus().
10376 */
cdd6c482 10377 perf_event_exit_cpu(cpu);
0793a61d 10378 break;
0793a61d
TG
10379 default:
10380 break;
10381 }
10382
10383 return NOTIFY_OK;
10384}
10385
cdd6c482 10386void __init perf_event_init(void)
0793a61d 10387{
3c502e7a
JW
10388 int ret;
10389
2e80a82a
PZ
10390 idr_init(&pmu_idr);
10391
220b140b 10392 perf_event_init_all_cpus();
b0a873eb 10393 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
10394 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
10395 perf_pmu_register(&perf_cpu_clock, NULL, -1);
10396 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb
PZ
10397 perf_tp_register();
10398 perf_cpu_notifier(perf_cpu_notify);
c277443c 10399 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
10400
10401 ret = init_hw_breakpoint();
10402 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520 10403
b01c3a00
JO
10404 /*
10405 * Build time assertion that we keep the data_head at the intended
10406 * location. IOW, validation we got the __reserved[] size right.
10407 */
10408 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
10409 != 1024);
0793a61d 10410}
abe43400 10411
fd979c01
CS
10412ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
10413 char *page)
10414{
10415 struct perf_pmu_events_attr *pmu_attr =
10416 container_of(attr, struct perf_pmu_events_attr, attr);
10417
10418 if (pmu_attr->event_str)
10419 return sprintf(page, "%s\n", pmu_attr->event_str);
10420
10421 return 0;
10422}
675965b0 10423EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
fd979c01 10424
abe43400
PZ
10425static int __init perf_event_sysfs_init(void)
10426{
10427 struct pmu *pmu;
10428 int ret;
10429
10430 mutex_lock(&pmus_lock);
10431
10432 ret = bus_register(&pmu_bus);
10433 if (ret)
10434 goto unlock;
10435
10436 list_for_each_entry(pmu, &pmus, entry) {
10437 if (!pmu->name || pmu->type < 0)
10438 continue;
10439
10440 ret = pmu_dev_alloc(pmu);
10441 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
10442 }
10443 pmu_bus_running = 1;
10444 ret = 0;
10445
10446unlock:
10447 mutex_unlock(&pmus_lock);
10448
10449 return ret;
10450}
10451device_initcall(perf_event_sysfs_init);
e5d1367f
SE
10452
10453#ifdef CONFIG_CGROUP_PERF
eb95419b
TH
10454static struct cgroup_subsys_state *
10455perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
e5d1367f
SE
10456{
10457 struct perf_cgroup *jc;
e5d1367f 10458
1b15d055 10459 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
10460 if (!jc)
10461 return ERR_PTR(-ENOMEM);
10462
e5d1367f
SE
10463 jc->info = alloc_percpu(struct perf_cgroup_info);
10464 if (!jc->info) {
10465 kfree(jc);
10466 return ERR_PTR(-ENOMEM);
10467 }
10468
e5d1367f
SE
10469 return &jc->css;
10470}
10471
eb95419b 10472static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
e5d1367f 10473{
eb95419b
TH
10474 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
10475
e5d1367f
SE
10476 free_percpu(jc->info);
10477 kfree(jc);
10478}
10479
10480static int __perf_cgroup_move(void *info)
10481{
10482 struct task_struct *task = info;
ddaaf4e2 10483 rcu_read_lock();
e5d1367f 10484 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
ddaaf4e2 10485 rcu_read_unlock();
e5d1367f
SE
10486 return 0;
10487}
10488
1f7dd3e5 10489static void perf_cgroup_attach(struct cgroup_taskset *tset)
e5d1367f 10490{
bb9d97b6 10491 struct task_struct *task;
1f7dd3e5 10492 struct cgroup_subsys_state *css;
bb9d97b6 10493
1f7dd3e5 10494 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 10495 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
10496}
10497
073219e9 10498struct cgroup_subsys perf_event_cgrp_subsys = {
92fb9748
TH
10499 .css_alloc = perf_cgroup_css_alloc,
10500 .css_free = perf_cgroup_css_free,
bb9d97b6 10501 .attach = perf_cgroup_attach,
e5d1367f
SE
10502};
10503#endif /* CONFIG_CGROUP_PERF */
This page took 1.521185 seconds and 5 git commands to generate.