uprobes: Fix prepare_uprobe() race with itself
[deliverable/linux.git] / kernel / events / uprobes.c
CommitLineData
2b144498 1/*
7b2d81d4 2 * User-space Probes (UProbes)
2b144498
SD
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
35aa621b 18 * Copyright (C) IBM Corporation, 2008-2012
2b144498
SD
19 * Authors:
20 * Srikar Dronamraju
21 * Jim Keniston
35aa621b 22 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
2b144498
SD
23 */
24
25#include <linux/kernel.h>
26#include <linux/highmem.h>
27#include <linux/pagemap.h> /* read_mapping_page */
28#include <linux/slab.h>
29#include <linux/sched.h>
30#include <linux/rmap.h> /* anon_vma_prepare */
31#include <linux/mmu_notifier.h> /* set_pte_at_notify */
32#include <linux/swap.h> /* try_to_free_swap */
0326f5a9
SD
33#include <linux/ptrace.h> /* user_enable_single_step */
34#include <linux/kdebug.h> /* notifier mechanism */
194f8dcb 35#include "../../mm/internal.h" /* munlock_vma_page */
7b2d81d4 36
2b144498
SD
37#include <linux/uprobes.h>
38
d4b3b638
SD
39#define UINSNS_PER_PAGE (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
40#define MAX_UPROBE_XOL_SLOTS UINSNS_PER_PAGE
41
2b144498 42static struct rb_root uprobes_tree = RB_ROOT;
7b2d81d4 43
2b144498
SD
44static DEFINE_SPINLOCK(uprobes_treelock); /* serialize rbtree access */
45
46#define UPROBES_HASH_SZ 13
7b2d81d4 47
c5784de2
PZ
48/*
49 * We need separate register/unregister and mmap/munmap lock hashes because
50 * of mmap_sem nesting.
51 *
52 * uprobe_register() needs to install probes on (potentially) all processes
53 * and thus needs to acquire multiple mmap_sems (consequtively, not
54 * concurrently), whereas uprobe_mmap() is called while holding mmap_sem
55 * for the particular process doing the mmap.
56 *
57 * uprobe_register()->register_for_each_vma() needs to drop/acquire mmap_sem
58 * because of lock order against i_mmap_mutex. This means there's a hole in
59 * the register vma iteration where a mmap() can happen.
60 *
61 * Thus uprobe_register() can race with uprobe_mmap() and we can try and
62 * install a probe where one is already installed.
63 */
64
2b144498
SD
65/* serialize (un)register */
66static struct mutex uprobes_mutex[UPROBES_HASH_SZ];
7b2d81d4
IM
67
68#define uprobes_hash(v) (&uprobes_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
2b144498
SD
69
70/* serialize uprobe->pending_list */
71static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
7b2d81d4 72#define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
2b144498
SD
73
74/*
7b2d81d4 75 * uprobe_events allows us to skip the uprobe_mmap if there are no uprobe
2b144498
SD
76 * events active at this time. Probably a fine grained per inode count is
77 * better?
78 */
79static atomic_t uprobe_events = ATOMIC_INIT(0);
80
cb9a19fe
ON
81/* Have a copy of original instruction */
82#define UPROBE_COPY_INSN 0x1
83/* Dont run handlers when first register/ last unregister in progress*/
84#define UPROBE_RUN_HANDLER 0x2
85/* Can skip singlestep */
86#define UPROBE_SKIP_SSTEP 0x4
87
3ff54efd
SD
88struct uprobe {
89 struct rb_node rb_node; /* node in the rb tree */
90 atomic_t ref;
91 struct rw_semaphore consumer_rwsem;
4710f05f 92 struct mutex copy_mutex; /* TODO: kill me and UPROBE_COPY_INSN */
3ff54efd
SD
93 struct list_head pending_list;
94 struct uprobe_consumer *consumers;
95 struct inode *inode; /* Also hold a ref to inode */
96 loff_t offset;
97 int flags;
98 struct arch_uprobe arch;
99};
100
2b144498
SD
101/*
102 * valid_vma: Verify if the specified vma is an executable vma
103 * Relax restrictions while unregistering: vm_flags might have
104 * changed after breakpoint was inserted.
105 * - is_register: indicates if we are in register context.
106 * - Return 1 if the specified virtual address is in an
107 * executable vma.
108 */
109static bool valid_vma(struct vm_area_struct *vma, bool is_register)
110{
e40cfce6 111 vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_SHARED;
2b144498 112
e40cfce6
ON
113 if (is_register)
114 flags |= VM_WRITE;
2b144498 115
e40cfce6 116 return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
2b144498
SD
117}
118
57683f72 119static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
2b144498 120{
57683f72 121 return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
2b144498
SD
122}
123
cb113b47
ON
124static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
125{
126 return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
127}
128
2b144498
SD
129/**
130 * __replace_page - replace page in vma by new page.
131 * based on replace_page in mm/ksm.c
132 *
133 * @vma: vma that holds the pte pointing to page
c517ee74 134 * @addr: address the old @page is mapped at
2b144498
SD
135 * @page: the cowed page we are replacing by kpage
136 * @kpage: the modified page we replace page by
137 *
138 * Returns 0 on success, -EFAULT on failure.
139 */
c517ee74
ON
140static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
141 struct page *page, struct page *kpage)
2b144498
SD
142{
143 struct mm_struct *mm = vma->vm_mm;
5323ce71
ON
144 spinlock_t *ptl;
145 pte_t *ptep;
9f92448c 146 int err;
2b144498 147
194f8dcb 148 /* For try_to_free_swap() and munlock_vma_page() below */
9f92448c
ON
149 lock_page(page);
150
151 err = -EAGAIN;
5323ce71 152 ptep = page_check_address(page, mm, addr, &ptl, 0);
2b144498 153 if (!ptep)
9f92448c 154 goto unlock;
2b144498
SD
155
156 get_page(kpage);
157 page_add_new_anon_rmap(kpage, vma, addr);
158
7396fa81
SD
159 if (!PageAnon(page)) {
160 dec_mm_counter(mm, MM_FILEPAGES);
161 inc_mm_counter(mm, MM_ANONPAGES);
162 }
163
2b144498
SD
164 flush_cache_page(vma, addr, pte_pfn(*ptep));
165 ptep_clear_flush(vma, addr, ptep);
166 set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
167
168 page_remove_rmap(page);
169 if (!page_mapped(page))
170 try_to_free_swap(page);
2b144498 171 pte_unmap_unlock(ptep, ptl);
2b144498 172
194f8dcb
ON
173 if (vma->vm_flags & VM_LOCKED)
174 munlock_vma_page(page);
175 put_page(page);
176
9f92448c
ON
177 err = 0;
178 unlock:
179 unlock_page(page);
180 return err;
2b144498
SD
181}
182
183/**
5cb4ac3a 184 * is_swbp_insn - check if instruction is breakpoint instruction.
2b144498 185 * @insn: instruction to be checked.
5cb4ac3a 186 * Default implementation of is_swbp_insn
2b144498
SD
187 * Returns true if @insn is a breakpoint instruction.
188 */
5cb4ac3a 189bool __weak is_swbp_insn(uprobe_opcode_t *insn)
2b144498 190{
5cb4ac3a 191 return *insn == UPROBE_SWBP_INSN;
2b144498
SD
192}
193
cceb55aa
ON
194static void copy_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *opcode)
195{
196 void *kaddr = kmap_atomic(page);
197 memcpy(opcode, kaddr + (vaddr & ~PAGE_MASK), UPROBE_SWBP_INSN_SIZE);
198 kunmap_atomic(kaddr);
199}
200
ed6f6a50
ON
201static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
202{
203 uprobe_opcode_t old_opcode;
204 bool is_swbp;
205
206 copy_opcode(page, vaddr, &old_opcode);
207 is_swbp = is_swbp_insn(&old_opcode);
208
209 if (is_swbp_insn(new_opcode)) {
210 if (is_swbp) /* register: already installed? */
211 return 0;
212 } else {
213 if (!is_swbp) /* unregister: was it changed by us? */
076a365b 214 return 0;
ed6f6a50
ON
215 }
216
217 return 1;
218}
219
2b144498
SD
220/*
221 * NOTE:
222 * Expect the breakpoint instruction to be the smallest size instruction for
223 * the architecture. If an arch has variable length instruction and the
224 * breakpoint instruction is not of the smallest length instruction
cceb55aa 225 * supported by that architecture then we need to modify is_swbp_at_addr and
2b144498
SD
226 * write_opcode accordingly. This would never be a problem for archs that
227 * have fixed length instructions.
228 */
229
230/*
231 * write_opcode - write the opcode at a given virtual address.
232 * @mm: the probed process address space.
2b144498
SD
233 * @vaddr: the virtual address to store the opcode.
234 * @opcode: opcode to be written at @vaddr.
235 *
236 * Called with mm->mmap_sem held (for read and with a reference to
237 * mm).
238 *
239 * For mm @mm, write the opcode at @vaddr.
240 * Return 0 (success) or a negative errno.
241 */
cceb55aa
ON
242static int write_opcode(struct mm_struct *mm, unsigned long vaddr,
243 uprobe_opcode_t opcode)
2b144498
SD
244{
245 struct page *old_page, *new_page;
2b144498
SD
246 void *vaddr_old, *vaddr_new;
247 struct vm_area_struct *vma;
2b144498 248 int ret;
f403072c 249
5323ce71 250retry:
2b144498 251 /* Read the page with vaddr into memory */
75ed82ea 252 ret = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &old_page, &vma);
2b144498
SD
253 if (ret <= 0)
254 return ret;
7b2d81d4 255
ed6f6a50
ON
256 ret = verify_opcode(old_page, vaddr, &opcode);
257 if (ret <= 0)
258 goto put_old;
259
2b144498
SD
260 ret = -ENOMEM;
261 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
262 if (!new_page)
9f92448c 263 goto put_old;
2b144498
SD
264
265 __SetPageUptodate(new_page);
266
2b144498
SD
267 /* copy the page now that we've got it stable */
268 vaddr_old = kmap_atomic(old_page);
269 vaddr_new = kmap_atomic(new_page);
270
271 memcpy(vaddr_new, vaddr_old, PAGE_SIZE);
d9c4a30e 272 memcpy(vaddr_new + (vaddr & ~PAGE_MASK), &opcode, UPROBE_SWBP_INSN_SIZE);
2b144498
SD
273
274 kunmap_atomic(vaddr_new);
275 kunmap_atomic(vaddr_old);
276
277 ret = anon_vma_prepare(vma);
278 if (ret)
9f92448c 279 goto put_new;
2b144498 280
c517ee74 281 ret = __replace_page(vma, vaddr, old_page, new_page);
2b144498 282
9f92448c 283put_new:
2b144498 284 page_cache_release(new_page);
9f92448c 285put_old:
7b2d81d4
IM
286 put_page(old_page);
287
5323ce71
ON
288 if (unlikely(ret == -EAGAIN))
289 goto retry;
2b144498
SD
290 return ret;
291}
292
2b144498 293/**
5cb4ac3a 294 * set_swbp - store breakpoint at a given address.
e3343e6a 295 * @auprobe: arch specific probepoint information.
2b144498 296 * @mm: the probed process address space.
2b144498
SD
297 * @vaddr: the virtual address to insert the opcode.
298 *
299 * For mm @mm, store the breakpoint instruction at @vaddr.
300 * Return 0 (success) or a negative errno.
301 */
5cb4ac3a 302int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
2b144498 303{
cceb55aa 304 return write_opcode(mm, vaddr, UPROBE_SWBP_INSN);
2b144498
SD
305}
306
307/**
308 * set_orig_insn - Restore the original instruction.
309 * @mm: the probed process address space.
e3343e6a 310 * @auprobe: arch specific probepoint information.
2b144498 311 * @vaddr: the virtual address to insert the opcode.
2b144498
SD
312 *
313 * For mm @mm, restore the original opcode (opcode) at @vaddr.
314 * Return 0 (success) or a negative errno.
315 */
7b2d81d4 316int __weak
ded86e7c 317set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
2b144498 318{
cceb55aa 319 return write_opcode(mm, vaddr, *(uprobe_opcode_t *)auprobe->insn);
2b144498
SD
320}
321
322static int match_uprobe(struct uprobe *l, struct uprobe *r)
323{
324 if (l->inode < r->inode)
325 return -1;
7b2d81d4 326
2b144498
SD
327 if (l->inode > r->inode)
328 return 1;
2b144498 329
7b2d81d4
IM
330 if (l->offset < r->offset)
331 return -1;
332
333 if (l->offset > r->offset)
334 return 1;
2b144498
SD
335
336 return 0;
337}
338
339static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
340{
341 struct uprobe u = { .inode = inode, .offset = offset };
342 struct rb_node *n = uprobes_tree.rb_node;
343 struct uprobe *uprobe;
344 int match;
345
346 while (n) {
347 uprobe = rb_entry(n, struct uprobe, rb_node);
348 match = match_uprobe(&u, uprobe);
349 if (!match) {
350 atomic_inc(&uprobe->ref);
351 return uprobe;
352 }
7b2d81d4 353
2b144498
SD
354 if (match < 0)
355 n = n->rb_left;
356 else
357 n = n->rb_right;
358 }
359 return NULL;
360}
361
362/*
363 * Find a uprobe corresponding to a given inode:offset
364 * Acquires uprobes_treelock
365 */
366static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
367{
368 struct uprobe *uprobe;
2b144498 369
6f47caa0 370 spin_lock(&uprobes_treelock);
2b144498 371 uprobe = __find_uprobe(inode, offset);
6f47caa0 372 spin_unlock(&uprobes_treelock);
7b2d81d4 373
2b144498
SD
374 return uprobe;
375}
376
377static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
378{
379 struct rb_node **p = &uprobes_tree.rb_node;
380 struct rb_node *parent = NULL;
381 struct uprobe *u;
382 int match;
383
384 while (*p) {
385 parent = *p;
386 u = rb_entry(parent, struct uprobe, rb_node);
387 match = match_uprobe(uprobe, u);
388 if (!match) {
389 atomic_inc(&u->ref);
390 return u;
391 }
392
393 if (match < 0)
394 p = &parent->rb_left;
395 else
396 p = &parent->rb_right;
397
398 }
7b2d81d4 399
2b144498
SD
400 u = NULL;
401 rb_link_node(&uprobe->rb_node, parent, p);
402 rb_insert_color(&uprobe->rb_node, &uprobes_tree);
403 /* get access + creation ref */
404 atomic_set(&uprobe->ref, 2);
7b2d81d4 405
2b144498
SD
406 return u;
407}
408
409/*
7b2d81d4 410 * Acquire uprobes_treelock.
2b144498
SD
411 * Matching uprobe already exists in rbtree;
412 * increment (access refcount) and return the matching uprobe.
413 *
414 * No matching uprobe; insert the uprobe in rb_tree;
415 * get a double refcount (access + creation) and return NULL.
416 */
417static struct uprobe *insert_uprobe(struct uprobe *uprobe)
418{
2b144498
SD
419 struct uprobe *u;
420
6f47caa0 421 spin_lock(&uprobes_treelock);
2b144498 422 u = __insert_uprobe(uprobe);
6f47caa0 423 spin_unlock(&uprobes_treelock);
7b2d81d4 424
0326f5a9
SD
425 /* For now assume that the instruction need not be single-stepped */
426 uprobe->flags |= UPROBE_SKIP_SSTEP;
427
2b144498
SD
428 return u;
429}
430
431static void put_uprobe(struct uprobe *uprobe)
432{
433 if (atomic_dec_and_test(&uprobe->ref))
434 kfree(uprobe);
435}
436
437static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
438{
439 struct uprobe *uprobe, *cur_uprobe;
440
441 uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
442 if (!uprobe)
443 return NULL;
444
445 uprobe->inode = igrab(inode);
446 uprobe->offset = offset;
447 init_rwsem(&uprobe->consumer_rwsem);
4710f05f 448 mutex_init(&uprobe->copy_mutex);
2b144498
SD
449
450 /* add to uprobes_tree, sorted on inode:offset */
451 cur_uprobe = insert_uprobe(uprobe);
452
453 /* a uprobe exists for this inode:offset combination */
454 if (cur_uprobe) {
455 kfree(uprobe);
456 uprobe = cur_uprobe;
457 iput(inode);
7b2d81d4 458 } else {
2b144498 459 atomic_inc(&uprobe_events);
7b2d81d4
IM
460 }
461
2b144498
SD
462 return uprobe;
463}
464
0326f5a9
SD
465static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
466{
467 struct uprobe_consumer *uc;
468
469 if (!(uprobe->flags & UPROBE_RUN_HANDLER))
470 return;
471
472 down_read(&uprobe->consumer_rwsem);
473 for (uc = uprobe->consumers; uc; uc = uc->next) {
474 if (!uc->filter || uc->filter(uc, current))
475 uc->handler(uc, regs);
476 }
477 up_read(&uprobe->consumer_rwsem);
478}
479
2b144498 480/* Returns the previous consumer */
7b2d81d4 481static struct uprobe_consumer *
e3343e6a 482consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
2b144498
SD
483{
484 down_write(&uprobe->consumer_rwsem);
e3343e6a
SD
485 uc->next = uprobe->consumers;
486 uprobe->consumers = uc;
2b144498 487 up_write(&uprobe->consumer_rwsem);
7b2d81d4 488
e3343e6a 489 return uc->next;
2b144498
SD
490}
491
492/*
e3343e6a
SD
493 * For uprobe @uprobe, delete the consumer @uc.
494 * Return true if the @uc is deleted successfully
2b144498
SD
495 * or return false.
496 */
e3343e6a 497static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
2b144498
SD
498{
499 struct uprobe_consumer **con;
500 bool ret = false;
501
502 down_write(&uprobe->consumer_rwsem);
503 for (con = &uprobe->consumers; *con; con = &(*con)->next) {
e3343e6a
SD
504 if (*con == uc) {
505 *con = uc->next;
2b144498
SD
506 ret = true;
507 break;
508 }
509 }
510 up_write(&uprobe->consumer_rwsem);
7b2d81d4 511
2b144498
SD
512 return ret;
513}
514
e3343e6a 515static int
d436615e 516__copy_insn(struct address_space *mapping, struct file *filp, char *insn,
593609a5 517 unsigned long nbytes, loff_t offset)
2b144498 518{
2b144498
SD
519 struct page *page;
520 void *vaddr;
593609a5
ON
521 unsigned long off;
522 pgoff_t idx;
2b144498
SD
523
524 if (!filp)
525 return -EINVAL;
526
cc359d18
ON
527 if (!mapping->a_ops->readpage)
528 return -EIO;
529
593609a5
ON
530 idx = offset >> PAGE_CACHE_SHIFT;
531 off = offset & ~PAGE_MASK;
2b144498
SD
532
533 /*
534 * Ensure that the page that has the original instruction is
535 * populated and in page-cache.
536 */
537 page = read_mapping_page(mapping, idx, filp);
538 if (IS_ERR(page))
539 return PTR_ERR(page);
540
541 vaddr = kmap_atomic(page);
593609a5 542 memcpy(insn, vaddr + off, nbytes);
2b144498
SD
543 kunmap_atomic(vaddr);
544 page_cache_release(page);
7b2d81d4 545
2b144498
SD
546 return 0;
547}
548
d436615e 549static int copy_insn(struct uprobe *uprobe, struct file *filp)
2b144498
SD
550{
551 struct address_space *mapping;
2b144498 552 unsigned long nbytes;
7b2d81d4 553 int bytes;
2b144498 554
d436615e 555 nbytes = PAGE_SIZE - (uprobe->offset & ~PAGE_MASK);
2b144498
SD
556 mapping = uprobe->inode->i_mapping;
557
558 /* Instruction at end of binary; copy only available bytes */
559 if (uprobe->offset + MAX_UINSN_BYTES > uprobe->inode->i_size)
560 bytes = uprobe->inode->i_size - uprobe->offset;
561 else
562 bytes = MAX_UINSN_BYTES;
563
564 /* Instruction at the page-boundary; copy bytes in second page */
565 if (nbytes < bytes) {
fc36f595
ON
566 int err = __copy_insn(mapping, filp, uprobe->arch.insn + nbytes,
567 bytes - nbytes, uprobe->offset + nbytes);
568 if (err)
569 return err;
2b144498
SD
570 bytes = nbytes;
571 }
d436615e 572 return __copy_insn(mapping, filp, uprobe->arch.insn, bytes, uprobe->offset);
2b144498
SD
573}
574
cb9a19fe
ON
575static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
576 struct mm_struct *mm, unsigned long vaddr)
577{
578 int ret = 0;
579
580 if (uprobe->flags & UPROBE_COPY_INSN)
581 return ret;
582
4710f05f
ON
583 mutex_lock(&uprobe->copy_mutex);
584 if (uprobe->flags & UPROBE_COPY_INSN)
585 goto out;
586
cb9a19fe
ON
587 ret = copy_insn(uprobe, file);
588 if (ret)
589 goto out;
590
591 ret = -ENOTSUPP;
592 if (is_swbp_insn((uprobe_opcode_t *)uprobe->arch.insn))
593 goto out;
594
595 ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
596 if (ret)
597 goto out;
598
599 /* write_opcode() assumes we don't cross page boundary */
600 BUG_ON((uprobe->offset & ~PAGE_MASK) +
601 UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
602
603 smp_wmb(); /* pairs with rmb() in find_active_uprobe() */
604 uprobe->flags |= UPROBE_COPY_INSN;
605
606 out:
4710f05f
ON
607 mutex_unlock(&uprobe->copy_mutex);
608
cb9a19fe
ON
609 return ret;
610}
611
e3343e6a
SD
612static int
613install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
816c03fb 614 struct vm_area_struct *vma, unsigned long vaddr)
2b144498 615{
f8ac4ec9 616 bool first_uprobe;
2b144498
SD
617 int ret;
618
619 /*
620 * If probe is being deleted, unregister thread could be done with
621 * the vma-rmap-walk through. Adding a probe now can be fatal since
622 * nobody will be able to cleanup. Also we could be from fork or
623 * mremap path, where the probe might have already been inserted.
624 * Hence behave as if probe already existed.
625 */
626 if (!uprobe->consumers)
78f74116 627 return 0;
2b144498 628
cb9a19fe
ON
629 ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
630 if (ret)
631 return ret;
682968e0 632
f8ac4ec9
ON
633 /*
634 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
635 * the task can hit this breakpoint right after __replace_page().
636 */
637 first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
638 if (first_uprobe)
639 set_bit(MMF_HAS_UPROBES, &mm->flags);
640
816c03fb 641 ret = set_swbp(&uprobe->arch, mm, vaddr);
9f68f672
ON
642 if (!ret)
643 clear_bit(MMF_RECALC_UPROBES, &mm->flags);
644 else if (first_uprobe)
f8ac4ec9 645 clear_bit(MMF_HAS_UPROBES, &mm->flags);
2b144498
SD
646
647 return ret;
648}
649
076a365b 650static int
816c03fb 651remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
2b144498 652{
9f68f672
ON
653 /* can happen if uprobe_register() fails */
654 if (!test_bit(MMF_HAS_UPROBES, &mm->flags))
076a365b 655 return 0;
9f68f672
ON
656
657 set_bit(MMF_RECALC_UPROBES, &mm->flags);
076a365b 658 return set_orig_insn(&uprobe->arch, mm, vaddr);
2b144498
SD
659}
660
0326f5a9 661/*
778b032d
ON
662 * There could be threads that have already hit the breakpoint. They
663 * will recheck the current insn and restart if find_uprobe() fails.
664 * See find_active_uprobe().
0326f5a9 665 */
2b144498
SD
666static void delete_uprobe(struct uprobe *uprobe)
667{
6f47caa0 668 spin_lock(&uprobes_treelock);
2b144498 669 rb_erase(&uprobe->rb_node, &uprobes_tree);
6f47caa0 670 spin_unlock(&uprobes_treelock);
2b144498
SD
671 iput(uprobe->inode);
672 put_uprobe(uprobe);
673 atomic_dec(&uprobe_events);
674}
675
26872090
ON
676struct map_info {
677 struct map_info *next;
678 struct mm_struct *mm;
816c03fb 679 unsigned long vaddr;
26872090
ON
680};
681
682static inline struct map_info *free_map_info(struct map_info *info)
2b144498 683{
26872090
ON
684 struct map_info *next = info->next;
685 kfree(info);
686 return next;
687}
688
689static struct map_info *
690build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
691{
692 unsigned long pgoff = offset >> PAGE_SHIFT;
2b144498
SD
693 struct prio_tree_iter iter;
694 struct vm_area_struct *vma;
26872090
ON
695 struct map_info *curr = NULL;
696 struct map_info *prev = NULL;
697 struct map_info *info;
698 int more = 0;
2b144498 699
26872090
ON
700 again:
701 mutex_lock(&mapping->i_mmap_mutex);
2b144498
SD
702 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
703 if (!valid_vma(vma, is_register))
704 continue;
705
7a5bfb66
ON
706 if (!prev && !more) {
707 /*
708 * Needs GFP_NOWAIT to avoid i_mmap_mutex recursion through
709 * reclaim. This is optimistic, no harm done if it fails.
710 */
711 prev = kmalloc(sizeof(struct map_info),
712 GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
713 if (prev)
714 prev->next = NULL;
715 }
26872090
ON
716 if (!prev) {
717 more++;
718 continue;
2b144498 719 }
2b144498 720
26872090
ON
721 if (!atomic_inc_not_zero(&vma->vm_mm->mm_users))
722 continue;
7b2d81d4 723
26872090
ON
724 info = prev;
725 prev = prev->next;
726 info->next = curr;
727 curr = info;
2b144498 728
26872090 729 info->mm = vma->vm_mm;
57683f72 730 info->vaddr = offset_to_vaddr(vma, offset);
26872090 731 }
2b144498
SD
732 mutex_unlock(&mapping->i_mmap_mutex);
733
26872090
ON
734 if (!more)
735 goto out;
736
737 prev = curr;
738 while (curr) {
739 mmput(curr->mm);
740 curr = curr->next;
741 }
7b2d81d4 742
26872090
ON
743 do {
744 info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
745 if (!info) {
746 curr = ERR_PTR(-ENOMEM);
747 goto out;
748 }
749 info->next = prev;
750 prev = info;
751 } while (--more);
752
753 goto again;
754 out:
755 while (prev)
756 prev = free_map_info(prev);
757 return curr;
2b144498
SD
758}
759
760static int register_for_each_vma(struct uprobe *uprobe, bool is_register)
761{
26872090
ON
762 struct map_info *info;
763 int err = 0;
2b144498 764
26872090
ON
765 info = build_map_info(uprobe->inode->i_mapping,
766 uprobe->offset, is_register);
767 if (IS_ERR(info))
768 return PTR_ERR(info);
7b2d81d4 769
26872090
ON
770 while (info) {
771 struct mm_struct *mm = info->mm;
772 struct vm_area_struct *vma;
7b2d81d4 773
076a365b 774 if (err && is_register)
26872090 775 goto free;
7b2d81d4 776
77fc4af1 777 down_write(&mm->mmap_sem);
f4d6dfe5
ON
778 vma = find_vma(mm, info->vaddr);
779 if (!vma || !valid_vma(vma, is_register) ||
780 vma->vm_file->f_mapping->host != uprobe->inode)
26872090
ON
781 goto unlock;
782
f4d6dfe5
ON
783 if (vma->vm_start > info->vaddr ||
784 vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
26872090 785 goto unlock;
2b144498 786
78f74116 787 if (is_register)
26872090 788 err = install_breakpoint(uprobe, mm, vma, info->vaddr);
78f74116 789 else
076a365b 790 err |= remove_breakpoint(uprobe, mm, info->vaddr);
78f74116 791
26872090
ON
792 unlock:
793 up_write(&mm->mmap_sem);
794 free:
795 mmput(mm);
796 info = free_map_info(info);
2b144498 797 }
7b2d81d4 798
26872090 799 return err;
2b144498
SD
800}
801
7b2d81d4 802static int __uprobe_register(struct uprobe *uprobe)
2b144498
SD
803{
804 return register_for_each_vma(uprobe, true);
805}
806
7b2d81d4 807static void __uprobe_unregister(struct uprobe *uprobe)
2b144498
SD
808{
809 if (!register_for_each_vma(uprobe, false))
810 delete_uprobe(uprobe);
811
812 /* TODO : cant unregister? schedule a worker thread */
813}
814
815/*
7b2d81d4 816 * uprobe_register - register a probe
2b144498
SD
817 * @inode: the file in which the probe has to be placed.
818 * @offset: offset from the start of the file.
e3343e6a 819 * @uc: information on howto handle the probe..
2b144498 820 *
7b2d81d4 821 * Apart from the access refcount, uprobe_register() takes a creation
2b144498
SD
822 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
823 * inserted into the rbtree (i.e first consumer for a @inode:@offset
7b2d81d4 824 * tuple). Creation refcount stops uprobe_unregister from freeing the
2b144498 825 * @uprobe even before the register operation is complete. Creation
e3343e6a 826 * refcount is released when the last @uc for the @uprobe
2b144498
SD
827 * unregisters.
828 *
829 * Return errno if it cannot successully install probes
830 * else return 0 (success)
831 */
e3343e6a 832int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
2b144498
SD
833{
834 struct uprobe *uprobe;
7b2d81d4 835 int ret;
2b144498 836
e3343e6a 837 if (!inode || !uc || uc->next)
7b2d81d4 838 return -EINVAL;
2b144498
SD
839
840 if (offset > i_size_read(inode))
7b2d81d4 841 return -EINVAL;
2b144498
SD
842
843 ret = 0;
844 mutex_lock(uprobes_hash(inode));
845 uprobe = alloc_uprobe(inode, offset);
7b2d81d4 846
a5f658b7
ON
847 if (!uprobe) {
848 ret = -ENOMEM;
849 } else if (!consumer_add(uprobe, uc)) {
7b2d81d4 850 ret = __uprobe_register(uprobe);
2b144498
SD
851 if (ret) {
852 uprobe->consumers = NULL;
7b2d81d4
IM
853 __uprobe_unregister(uprobe);
854 } else {
900771a4 855 uprobe->flags |= UPROBE_RUN_HANDLER;
7b2d81d4 856 }
2b144498
SD
857 }
858
859 mutex_unlock(uprobes_hash(inode));
6d1d8dfa
SAS
860 if (uprobe)
861 put_uprobe(uprobe);
2b144498
SD
862
863 return ret;
864}
865
866/*
7b2d81d4 867 * uprobe_unregister - unregister a already registered probe.
2b144498
SD
868 * @inode: the file in which the probe has to be removed.
869 * @offset: offset from the start of the file.
e3343e6a 870 * @uc: identify which probe if multiple probes are colocated.
2b144498 871 */
e3343e6a 872void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
2b144498 873{
7b2d81d4 874 struct uprobe *uprobe;
2b144498 875
e3343e6a 876 if (!inode || !uc)
2b144498
SD
877 return;
878
879 uprobe = find_uprobe(inode, offset);
880 if (!uprobe)
881 return;
882
883 mutex_lock(uprobes_hash(inode));
2b144498 884
e3343e6a 885 if (consumer_del(uprobe, uc)) {
7b2d81d4
IM
886 if (!uprobe->consumers) {
887 __uprobe_unregister(uprobe);
900771a4 888 uprobe->flags &= ~UPROBE_RUN_HANDLER;
7b2d81d4 889 }
2b144498
SD
890 }
891
2b144498
SD
892 mutex_unlock(uprobes_hash(inode));
893 if (uprobe)
894 put_uprobe(uprobe);
895}
896
891c3970
ON
897static struct rb_node *
898find_node_in_range(struct inode *inode, loff_t min, loff_t max)
2b144498 899{
2b144498 900 struct rb_node *n = uprobes_tree.rb_node;
2b144498
SD
901
902 while (n) {
891c3970 903 struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
2b144498 904
891c3970 905 if (inode < u->inode) {
2b144498 906 n = n->rb_left;
891c3970 907 } else if (inode > u->inode) {
2b144498 908 n = n->rb_right;
891c3970
ON
909 } else {
910 if (max < u->offset)
911 n = n->rb_left;
912 else if (min > u->offset)
913 n = n->rb_right;
914 else
915 break;
916 }
2b144498 917 }
7b2d81d4 918
891c3970 919 return n;
2b144498
SD
920}
921
922/*
891c3970 923 * For a given range in vma, build a list of probes that need to be inserted.
2b144498 924 */
891c3970
ON
925static void build_probe_list(struct inode *inode,
926 struct vm_area_struct *vma,
927 unsigned long start, unsigned long end,
928 struct list_head *head)
2b144498 929{
891c3970 930 loff_t min, max;
891c3970
ON
931 struct rb_node *n, *t;
932 struct uprobe *u;
7b2d81d4 933
891c3970 934 INIT_LIST_HEAD(head);
cb113b47 935 min = vaddr_to_offset(vma, start);
891c3970 936 max = min + (end - start) - 1;
2b144498 937
6f47caa0 938 spin_lock(&uprobes_treelock);
891c3970
ON
939 n = find_node_in_range(inode, min, max);
940 if (n) {
941 for (t = n; t; t = rb_prev(t)) {
942 u = rb_entry(t, struct uprobe, rb_node);
943 if (u->inode != inode || u->offset < min)
944 break;
945 list_add(&u->pending_list, head);
946 atomic_inc(&u->ref);
947 }
948 for (t = n; (t = rb_next(t)); ) {
949 u = rb_entry(t, struct uprobe, rb_node);
950 if (u->inode != inode || u->offset > max)
951 break;
952 list_add(&u->pending_list, head);
953 atomic_inc(&u->ref);
954 }
2b144498 955 }
6f47caa0 956 spin_unlock(&uprobes_treelock);
2b144498
SD
957}
958
959/*
5e5be71a 960 * Called from mmap_region/vma_adjust with mm->mmap_sem acquired.
2b144498 961 *
5e5be71a
ON
962 * Currently we ignore all errors and always return 0, the callers
963 * can't handle the failure anyway.
2b144498 964 */
7b2d81d4 965int uprobe_mmap(struct vm_area_struct *vma)
2b144498
SD
966{
967 struct list_head tmp_list;
665605a2 968 struct uprobe *uprobe, *u;
2b144498 969 struct inode *inode;
2b144498
SD
970
971 if (!atomic_read(&uprobe_events) || !valid_vma(vma, true))
7b2d81d4 972 return 0;
2b144498
SD
973
974 inode = vma->vm_file->f_mapping->host;
975 if (!inode)
7b2d81d4 976 return 0;
2b144498 977
2b144498 978 mutex_lock(uprobes_mmap_hash(inode));
891c3970 979 build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
7b2d81d4 980
665605a2 981 list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
5e5be71a 982 if (!fatal_signal_pending(current)) {
57683f72 983 unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
5e5be71a 984 install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
2b144498
SD
985 }
986 put_uprobe(uprobe);
987 }
2b144498
SD
988 mutex_unlock(uprobes_mmap_hash(inode));
989
5e5be71a 990 return 0;
2b144498
SD
991}
992
9f68f672
ON
993static bool
994vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
995{
996 loff_t min, max;
997 struct inode *inode;
998 struct rb_node *n;
999
1000 inode = vma->vm_file->f_mapping->host;
1001
1002 min = vaddr_to_offset(vma, start);
1003 max = min + (end - start) - 1;
1004
1005 spin_lock(&uprobes_treelock);
1006 n = find_node_in_range(inode, min, max);
1007 spin_unlock(&uprobes_treelock);
1008
1009 return !!n;
1010}
1011
682968e0
SD
1012/*
1013 * Called in context of a munmap of a vma.
1014 */
cbc91f71 1015void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
682968e0 1016{
682968e0
SD
1017 if (!atomic_read(&uprobe_events) || !valid_vma(vma, false))
1018 return;
1019
2fd611a9
ON
1020 if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1021 return;
1022
9f68f672
ON
1023 if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1024 test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
f8ac4ec9
ON
1025 return;
1026
9f68f672
ON
1027 if (vma_has_uprobes(vma, start, end))
1028 set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
682968e0
SD
1029}
1030
d4b3b638
SD
1031/* Slot allocation for XOL */
1032static int xol_add_vma(struct xol_area *area)
1033{
1034 struct mm_struct *mm;
1035 int ret;
1036
1037 area->page = alloc_page(GFP_HIGHUSER);
1038 if (!area->page)
1039 return -ENOMEM;
1040
1041 ret = -EALREADY;
1042 mm = current->mm;
1043
1044 down_write(&mm->mmap_sem);
1045 if (mm->uprobes_state.xol_area)
1046 goto fail;
1047
1048 ret = -ENOMEM;
1049
1050 /* Try to map as high as possible, this is only a hint. */
1051 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE, PAGE_SIZE, 0, 0);
1052 if (area->vaddr & ~PAGE_MASK) {
1053 ret = area->vaddr;
1054 goto fail;
1055 }
1056
1057 ret = install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1058 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, &area->page);
1059 if (ret)
1060 goto fail;
1061
1062 smp_wmb(); /* pairs with get_xol_area() */
1063 mm->uprobes_state.xol_area = area;
1064 ret = 0;
1065
1066fail:
1067 up_write(&mm->mmap_sem);
1068 if (ret)
1069 __free_page(area->page);
1070
1071 return ret;
1072}
1073
1074static struct xol_area *get_xol_area(struct mm_struct *mm)
1075{
1076 struct xol_area *area;
1077
1078 area = mm->uprobes_state.xol_area;
1079 smp_read_barrier_depends(); /* pairs with wmb in xol_add_vma() */
1080
1081 return area;
1082}
1083
1084/*
1085 * xol_alloc_area - Allocate process's xol_area.
1086 * This area will be used for storing instructions for execution out of
1087 * line.
1088 *
1089 * Returns the allocated area or NULL.
1090 */
1091static struct xol_area *xol_alloc_area(void)
1092{
1093 struct xol_area *area;
1094
1095 area = kzalloc(sizeof(*area), GFP_KERNEL);
1096 if (unlikely(!area))
1097 return NULL;
1098
1099 area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL);
1100
1101 if (!area->bitmap)
1102 goto fail;
1103
1104 init_waitqueue_head(&area->wq);
1105 if (!xol_add_vma(area))
1106 return area;
1107
1108fail:
1109 kfree(area->bitmap);
1110 kfree(area);
1111
1112 return get_xol_area(current->mm);
1113}
1114
1115/*
1116 * uprobe_clear_state - Free the area allocated for slots.
1117 */
1118void uprobe_clear_state(struct mm_struct *mm)
1119{
1120 struct xol_area *area = mm->uprobes_state.xol_area;
1121
1122 if (!area)
1123 return;
1124
1125 put_page(area->page);
1126 kfree(area->bitmap);
1127 kfree(area);
1128}
1129
f8ac4ec9
ON
1130void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1131{
61559a81
ON
1132 newmm->uprobes_state.xol_area = NULL;
1133
9f68f672 1134 if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
f8ac4ec9 1135 set_bit(MMF_HAS_UPROBES, &newmm->flags);
9f68f672
ON
1136 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1137 set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1138 }
f8ac4ec9
ON
1139}
1140
d4b3b638
SD
1141/*
1142 * - search for a free slot.
1143 */
1144static unsigned long xol_take_insn_slot(struct xol_area *area)
1145{
1146 unsigned long slot_addr;
1147 int slot_nr;
1148
1149 do {
1150 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1151 if (slot_nr < UINSNS_PER_PAGE) {
1152 if (!test_and_set_bit(slot_nr, area->bitmap))
1153 break;
1154
1155 slot_nr = UINSNS_PER_PAGE;
1156 continue;
1157 }
1158 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1159 } while (slot_nr >= UINSNS_PER_PAGE);
1160
1161 slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1162 atomic_inc(&area->slot_count);
1163
1164 return slot_addr;
1165}
1166
1167/*
1168 * xol_get_insn_slot - If was not allocated a slot, then
1169 * allocate a slot.
1170 * Returns the allocated slot address or 0.
1171 */
1172static unsigned long xol_get_insn_slot(struct uprobe *uprobe, unsigned long slot_addr)
1173{
1174 struct xol_area *area;
1175 unsigned long offset;
1176 void *vaddr;
1177
1178 area = get_xol_area(current->mm);
1179 if (!area) {
1180 area = xol_alloc_area();
1181 if (!area)
1182 return 0;
1183 }
1184 current->utask->xol_vaddr = xol_take_insn_slot(area);
1185
1186 /*
1187 * Initialize the slot if xol_vaddr points to valid
1188 * instruction slot.
1189 */
1190 if (unlikely(!current->utask->xol_vaddr))
1191 return 0;
1192
1193 current->utask->vaddr = slot_addr;
1194 offset = current->utask->xol_vaddr & ~PAGE_MASK;
1195 vaddr = kmap_atomic(area->page);
1196 memcpy(vaddr + offset, uprobe->arch.insn, MAX_UINSN_BYTES);
1197 kunmap_atomic(vaddr);
1198
1199 return current->utask->xol_vaddr;
1200}
1201
1202/*
1203 * xol_free_insn_slot - If slot was earlier allocated by
1204 * @xol_get_insn_slot(), make the slot available for
1205 * subsequent requests.
1206 */
1207static void xol_free_insn_slot(struct task_struct *tsk)
1208{
1209 struct xol_area *area;
1210 unsigned long vma_end;
1211 unsigned long slot_addr;
1212
1213 if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1214 return;
1215
1216 slot_addr = tsk->utask->xol_vaddr;
1217
1218 if (unlikely(!slot_addr || IS_ERR_VALUE(slot_addr)))
1219 return;
1220
1221 area = tsk->mm->uprobes_state.xol_area;
1222 vma_end = area->vaddr + PAGE_SIZE;
1223 if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1224 unsigned long offset;
1225 int slot_nr;
1226
1227 offset = slot_addr - area->vaddr;
1228 slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1229 if (slot_nr >= UINSNS_PER_PAGE)
1230 return;
1231
1232 clear_bit(slot_nr, area->bitmap);
1233 atomic_dec(&area->slot_count);
1234 if (waitqueue_active(&area->wq))
1235 wake_up(&area->wq);
1236
1237 tsk->utask->xol_vaddr = 0;
1238 }
1239}
1240
0326f5a9
SD
1241/**
1242 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1243 * @regs: Reflects the saved state of the task after it has hit a breakpoint
1244 * instruction.
1245 * Return the address of the breakpoint instruction.
1246 */
1247unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1248{
1249 return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1250}
1251
1252/*
1253 * Called with no locks held.
1254 * Called in context of a exiting or a exec-ing thread.
1255 */
1256void uprobe_free_utask(struct task_struct *t)
1257{
1258 struct uprobe_task *utask = t->utask;
1259
0326f5a9
SD
1260 if (!utask)
1261 return;
1262
1263 if (utask->active_uprobe)
1264 put_uprobe(utask->active_uprobe);
1265
d4b3b638 1266 xol_free_insn_slot(t);
0326f5a9
SD
1267 kfree(utask);
1268 t->utask = NULL;
1269}
1270
1271/*
1272 * Called in context of a new clone/fork from copy_process.
1273 */
1274void uprobe_copy_process(struct task_struct *t)
1275{
1276 t->utask = NULL;
0326f5a9
SD
1277}
1278
1279/*
1280 * Allocate a uprobe_task object for the task.
1281 * Called when the thread hits a breakpoint for the first time.
1282 *
1283 * Returns:
1284 * - pointer to new uprobe_task on success
1285 * - NULL otherwise
1286 */
1287static struct uprobe_task *add_utask(void)
1288{
1289 struct uprobe_task *utask;
1290
1291 utask = kzalloc(sizeof *utask, GFP_KERNEL);
1292 if (unlikely(!utask))
1293 return NULL;
1294
0326f5a9
SD
1295 current->utask = utask;
1296 return utask;
1297}
1298
1299/* Prepare to single-step probed instruction out of line. */
1300static int
1301pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long vaddr)
1302{
d4b3b638
SD
1303 if (xol_get_insn_slot(uprobe, vaddr) && !arch_uprobe_pre_xol(&uprobe->arch, regs))
1304 return 0;
1305
0326f5a9
SD
1306 return -EFAULT;
1307}
1308
1309/*
1310 * If we are singlestepping, then ensure this thread is not connected to
1311 * non-fatal signals until completion of singlestep. When xol insn itself
1312 * triggers the signal, restart the original insn even if the task is
1313 * already SIGKILL'ed (since coredump should report the correct ip). This
1314 * is even more important if the task has a handler for SIGSEGV/etc, The
1315 * _same_ instruction should be repeated again after return from the signal
1316 * handler, and SSTEP can never finish in this case.
1317 */
1318bool uprobe_deny_signal(void)
1319{
1320 struct task_struct *t = current;
1321 struct uprobe_task *utask = t->utask;
1322
1323 if (likely(!utask || !utask->active_uprobe))
1324 return false;
1325
1326 WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1327
1328 if (signal_pending(t)) {
1329 spin_lock_irq(&t->sighand->siglock);
1330 clear_tsk_thread_flag(t, TIF_SIGPENDING);
1331 spin_unlock_irq(&t->sighand->siglock);
1332
1333 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1334 utask->state = UTASK_SSTEP_TRAPPED;
1335 set_tsk_thread_flag(t, TIF_UPROBE);
1336 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1337 }
1338 }
1339
1340 return true;
1341}
1342
1343/*
1344 * Avoid singlestepping the original instruction if the original instruction
1345 * is a NOP or can be emulated.
1346 */
1347static bool can_skip_sstep(struct uprobe *uprobe, struct pt_regs *regs)
1348{
0578a970
ON
1349 if (uprobe->flags & UPROBE_SKIP_SSTEP) {
1350 if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
1351 return true;
1352 uprobe->flags &= ~UPROBE_SKIP_SSTEP;
1353 }
0326f5a9
SD
1354 return false;
1355}
1356
499a4f3e
ON
1357static void mmf_recalc_uprobes(struct mm_struct *mm)
1358{
1359 struct vm_area_struct *vma;
1360
1361 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1362 if (!valid_vma(vma, false))
1363 continue;
1364 /*
1365 * This is not strictly accurate, we can race with
1366 * uprobe_unregister() and see the already removed
1367 * uprobe if delete_uprobe() was not yet called.
1368 */
1369 if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
1370 return;
1371 }
1372
1373 clear_bit(MMF_HAS_UPROBES, &mm->flags);
1374}
1375
ec75fba9
ON
1376static int is_swbp_at_addr(struct mm_struct *mm, unsigned long vaddr)
1377{
1378 struct page *page;
1379 uprobe_opcode_t opcode;
1380 int result;
1381
1382 pagefault_disable();
1383 result = __copy_from_user_inatomic(&opcode, (void __user*)vaddr,
1384 sizeof(opcode));
1385 pagefault_enable();
1386
1387 if (likely(result == 0))
1388 goto out;
1389
1390 result = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &page, NULL);
1391 if (result < 0)
1392 return result;
1393
1394 copy_opcode(page, vaddr, &opcode);
1395 put_page(page);
1396 out:
1397 return is_swbp_insn(&opcode);
1398}
1399
d790d346 1400static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
0326f5a9 1401{
3a9ea052
ON
1402 struct mm_struct *mm = current->mm;
1403 struct uprobe *uprobe = NULL;
0326f5a9 1404 struct vm_area_struct *vma;
0326f5a9 1405
0326f5a9
SD
1406 down_read(&mm->mmap_sem);
1407 vma = find_vma(mm, bp_vaddr);
3a9ea052
ON
1408 if (vma && vma->vm_start <= bp_vaddr) {
1409 if (valid_vma(vma, false)) {
cb113b47
ON
1410 struct inode *inode = vma->vm_file->f_mapping->host;
1411 loff_t offset = vaddr_to_offset(vma, bp_vaddr);
0326f5a9 1412
3a9ea052
ON
1413 uprobe = find_uprobe(inode, offset);
1414 }
d790d346
ON
1415
1416 if (!uprobe)
1417 *is_swbp = is_swbp_at_addr(mm, bp_vaddr);
1418 } else {
1419 *is_swbp = -EFAULT;
0326f5a9 1420 }
499a4f3e
ON
1421
1422 if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
1423 mmf_recalc_uprobes(mm);
0326f5a9
SD
1424 up_read(&mm->mmap_sem);
1425
3a9ea052
ON
1426 return uprobe;
1427}
1428
9d778782
SAS
1429void __weak arch_uprobe_enable_step(struct arch_uprobe *arch)
1430{
1431 user_enable_single_step(current);
1432}
1433
1434void __weak arch_uprobe_disable_step(struct arch_uprobe *arch)
1435{
1436 user_disable_single_step(current);
1437}
1438
3a9ea052
ON
1439/*
1440 * Run handler and ask thread to singlestep.
1441 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
1442 */
1443static void handle_swbp(struct pt_regs *regs)
1444{
1445 struct uprobe_task *utask;
1446 struct uprobe *uprobe;
1447 unsigned long bp_vaddr;
56bb4cf6 1448 int uninitialized_var(is_swbp);
3a9ea052
ON
1449
1450 bp_vaddr = uprobe_get_swbp_addr(regs);
d790d346 1451 uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
3a9ea052 1452
0326f5a9 1453 if (!uprobe) {
56bb4cf6
ON
1454 if (is_swbp > 0) {
1455 /* No matching uprobe; signal SIGTRAP. */
1456 send_sig(SIGTRAP, current, 0);
1457 } else {
1458 /*
1459 * Either we raced with uprobe_unregister() or we can't
1460 * access this memory. The latter is only possible if
1461 * another thread plays with our ->mm. In both cases
1462 * we can simply restart. If this vma was unmapped we
1463 * can pretend this insn was not executed yet and get
1464 * the (correct) SIGSEGV after restart.
1465 */
1466 instruction_pointer_set(regs, bp_vaddr);
1467 }
0326f5a9
SD
1468 return;
1469 }
142b18dd
ON
1470 /*
1471 * TODO: move copy_insn/etc into _register and remove this hack.
1472 * After we hit the bp, _unregister + _register can install the
1473 * new and not-yet-analyzed uprobe at the same address, restart.
1474 */
1475 smp_rmb(); /* pairs with wmb() in install_breakpoint() */
1476 if (unlikely(!(uprobe->flags & UPROBE_COPY_INSN)))
1477 goto restart;
0326f5a9 1478
1b08e907 1479 utask = current->utask;
0326f5a9
SD
1480 if (!utask) {
1481 utask = add_utask();
1482 /* Cannot allocate; re-execute the instruction. */
1483 if (!utask)
0578a970 1484 goto restart;
0326f5a9 1485 }
746a9e6b 1486
0326f5a9 1487 handler_chain(uprobe, regs);
0578a970
ON
1488 if (can_skip_sstep(uprobe, regs))
1489 goto out;
0326f5a9 1490
0326f5a9 1491 if (!pre_ssout(uprobe, regs, bp_vaddr)) {
9d778782 1492 arch_uprobe_enable_step(&uprobe->arch);
746a9e6b
ON
1493 utask->active_uprobe = uprobe;
1494 utask->state = UTASK_SSTEP;
0326f5a9
SD
1495 return;
1496 }
1497
0578a970
ON
1498restart:
1499 /*
1500 * cannot singlestep; cannot skip instruction;
1501 * re-execute the instruction.
1502 */
1503 instruction_pointer_set(regs, bp_vaddr);
1504out:
8bd87445 1505 put_uprobe(uprobe);
0326f5a9
SD
1506}
1507
1508/*
1509 * Perform required fix-ups and disable singlestep.
1510 * Allow pending signals to take effect.
1511 */
1512static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
1513{
1514 struct uprobe *uprobe;
1515
1516 uprobe = utask->active_uprobe;
1517 if (utask->state == UTASK_SSTEP_ACK)
1518 arch_uprobe_post_xol(&uprobe->arch, regs);
1519 else if (utask->state == UTASK_SSTEP_TRAPPED)
1520 arch_uprobe_abort_xol(&uprobe->arch, regs);
1521 else
1522 WARN_ON_ONCE(1);
1523
9d778782 1524 arch_uprobe_disable_step(&uprobe->arch);
0326f5a9
SD
1525 put_uprobe(uprobe);
1526 utask->active_uprobe = NULL;
1527 utask->state = UTASK_RUNNING;
d4b3b638 1528 xol_free_insn_slot(current);
0326f5a9
SD
1529
1530 spin_lock_irq(&current->sighand->siglock);
1531 recalc_sigpending(); /* see uprobe_deny_signal() */
1532 spin_unlock_irq(&current->sighand->siglock);
1533}
1534
1535/*
1b08e907
ON
1536 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
1537 * allows the thread to return from interrupt. After that handle_swbp()
1538 * sets utask->active_uprobe.
0326f5a9 1539 *
1b08e907
ON
1540 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
1541 * and allows the thread to return from interrupt.
0326f5a9
SD
1542 *
1543 * While returning to userspace, thread notices the TIF_UPROBE flag and calls
1544 * uprobe_notify_resume().
1545 */
1546void uprobe_notify_resume(struct pt_regs *regs)
1547{
1548 struct uprobe_task *utask;
1549
db023ea5
ON
1550 clear_thread_flag(TIF_UPROBE);
1551
0326f5a9 1552 utask = current->utask;
1b08e907 1553 if (utask && utask->active_uprobe)
0326f5a9 1554 handle_singlestep(utask, regs);
1b08e907
ON
1555 else
1556 handle_swbp(regs);
0326f5a9
SD
1557}
1558
1559/*
1560 * uprobe_pre_sstep_notifier gets called from interrupt context as part of
1561 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
1562 */
1563int uprobe_pre_sstep_notifier(struct pt_regs *regs)
1564{
f8ac4ec9 1565 if (!current->mm || !test_bit(MMF_HAS_UPROBES, &current->mm->flags))
0326f5a9
SD
1566 return 0;
1567
0326f5a9 1568 set_thread_flag(TIF_UPROBE);
0326f5a9
SD
1569 return 1;
1570}
1571
1572/*
1573 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
1574 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
1575 */
1576int uprobe_post_sstep_notifier(struct pt_regs *regs)
1577{
1578 struct uprobe_task *utask = current->utask;
1579
1580 if (!current->mm || !utask || !utask->active_uprobe)
1581 /* task is currently not uprobed */
1582 return 0;
1583
1584 utask->state = UTASK_SSTEP_ACK;
1585 set_thread_flag(TIF_UPROBE);
1586 return 1;
1587}
1588
1589static struct notifier_block uprobe_exception_nb = {
1590 .notifier_call = arch_uprobe_exception_notify,
1591 .priority = INT_MAX-1, /* notified after kprobes, kgdb */
1592};
1593
2b144498
SD
1594static int __init init_uprobes(void)
1595{
1596 int i;
1597
1598 for (i = 0; i < UPROBES_HASH_SZ; i++) {
1599 mutex_init(&uprobes_mutex[i]);
1600 mutex_init(&uprobes_mmap_mutex[i]);
1601 }
0326f5a9
SD
1602
1603 return register_die_notifier(&uprobe_exception_nb);
2b144498 1604}
0326f5a9 1605module_init(init_uprobes);
2b144498
SD
1606
1607static void __exit exit_uprobes(void)
1608{
1609}
2b144498 1610module_exit(exit_uprobes);
This page took 0.116919 seconds and 5 git commands to generate.