uprobes: Fold xol_alloc_area() into get_xol_area()
[deliverable/linux.git] / kernel / events / uprobes.c
CommitLineData
2b144498 1/*
7b2d81d4 2 * User-space Probes (UProbes)
2b144498
SD
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
35aa621b 18 * Copyright (C) IBM Corporation, 2008-2012
2b144498
SD
19 * Authors:
20 * Srikar Dronamraju
21 * Jim Keniston
35aa621b 22 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
2b144498
SD
23 */
24
25#include <linux/kernel.h>
26#include <linux/highmem.h>
27#include <linux/pagemap.h> /* read_mapping_page */
28#include <linux/slab.h>
29#include <linux/sched.h>
30#include <linux/rmap.h> /* anon_vma_prepare */
31#include <linux/mmu_notifier.h> /* set_pte_at_notify */
32#include <linux/swap.h> /* try_to_free_swap */
0326f5a9
SD
33#include <linux/ptrace.h> /* user_enable_single_step */
34#include <linux/kdebug.h> /* notifier mechanism */
194f8dcb 35#include "../../mm/internal.h" /* munlock_vma_page */
32cdba1e 36#include <linux/percpu-rwsem.h>
7b2d81d4 37
2b144498
SD
38#include <linux/uprobes.h>
39
d4b3b638
SD
40#define UINSNS_PER_PAGE (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
41#define MAX_UPROBE_XOL_SLOTS UINSNS_PER_PAGE
42
2b144498 43static struct rb_root uprobes_tree = RB_ROOT;
441f1eb7
ON
44/*
45 * allows us to skip the uprobe_mmap if there are no uprobe events active
46 * at this time. Probably a fine grained per inode count is better?
47 */
48#define no_uprobe_events() RB_EMPTY_ROOT(&uprobes_tree)
7b2d81d4 49
2b144498
SD
50static DEFINE_SPINLOCK(uprobes_treelock); /* serialize rbtree access */
51
52#define UPROBES_HASH_SZ 13
2b144498
SD
53/* serialize uprobe->pending_list */
54static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
7b2d81d4 55#define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
2b144498 56
32cdba1e
ON
57static struct percpu_rw_semaphore dup_mmap_sem;
58
cb9a19fe 59/* Have a copy of original instruction */
71434f2f 60#define UPROBE_COPY_INSN 0
cb9a19fe 61/* Can skip singlestep */
bb929284 62#define UPROBE_SKIP_SSTEP 1
cb9a19fe 63
3ff54efd
SD
64struct uprobe {
65 struct rb_node rb_node; /* node in the rb tree */
66 atomic_t ref;
e591c8d7 67 struct rw_semaphore register_rwsem;
3ff54efd
SD
68 struct rw_semaphore consumer_rwsem;
69 struct list_head pending_list;
70 struct uprobe_consumer *consumers;
71 struct inode *inode; /* Also hold a ref to inode */
72 loff_t offset;
71434f2f 73 unsigned long flags;
3ff54efd
SD
74 struct arch_uprobe arch;
75};
76
2b144498
SD
77/*
78 * valid_vma: Verify if the specified vma is an executable vma
79 * Relax restrictions while unregistering: vm_flags might have
80 * changed after breakpoint was inserted.
81 * - is_register: indicates if we are in register context.
82 * - Return 1 if the specified virtual address is in an
83 * executable vma.
84 */
85static bool valid_vma(struct vm_area_struct *vma, bool is_register)
86{
e40cfce6 87 vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_SHARED;
2b144498 88
e40cfce6
ON
89 if (is_register)
90 flags |= VM_WRITE;
2b144498 91
e40cfce6 92 return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
2b144498
SD
93}
94
57683f72 95static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
2b144498 96{
57683f72 97 return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
2b144498
SD
98}
99
cb113b47
ON
100static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
101{
102 return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
103}
104
2b144498
SD
105/**
106 * __replace_page - replace page in vma by new page.
107 * based on replace_page in mm/ksm.c
108 *
109 * @vma: vma that holds the pte pointing to page
c517ee74 110 * @addr: address the old @page is mapped at
2b144498
SD
111 * @page: the cowed page we are replacing by kpage
112 * @kpage: the modified page we replace page by
113 *
114 * Returns 0 on success, -EFAULT on failure.
115 */
c517ee74
ON
116static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
117 struct page *page, struct page *kpage)
2b144498
SD
118{
119 struct mm_struct *mm = vma->vm_mm;
5323ce71
ON
120 spinlock_t *ptl;
121 pte_t *ptep;
9f92448c 122 int err;
6bdb913f
HE
123 /* For mmu_notifiers */
124 const unsigned long mmun_start = addr;
125 const unsigned long mmun_end = addr + PAGE_SIZE;
2b144498 126
194f8dcb 127 /* For try_to_free_swap() and munlock_vma_page() below */
9f92448c
ON
128 lock_page(page);
129
6bdb913f 130 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
9f92448c 131 err = -EAGAIN;
5323ce71 132 ptep = page_check_address(page, mm, addr, &ptl, 0);
2b144498 133 if (!ptep)
9f92448c 134 goto unlock;
2b144498
SD
135
136 get_page(kpage);
137 page_add_new_anon_rmap(kpage, vma, addr);
138
7396fa81
SD
139 if (!PageAnon(page)) {
140 dec_mm_counter(mm, MM_FILEPAGES);
141 inc_mm_counter(mm, MM_ANONPAGES);
142 }
143
2b144498
SD
144 flush_cache_page(vma, addr, pte_pfn(*ptep));
145 ptep_clear_flush(vma, addr, ptep);
146 set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
147
148 page_remove_rmap(page);
149 if (!page_mapped(page))
150 try_to_free_swap(page);
2b144498 151 pte_unmap_unlock(ptep, ptl);
2b144498 152
194f8dcb
ON
153 if (vma->vm_flags & VM_LOCKED)
154 munlock_vma_page(page);
155 put_page(page);
156
9f92448c
ON
157 err = 0;
158 unlock:
6bdb913f 159 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
9f92448c
ON
160 unlock_page(page);
161 return err;
2b144498
SD
162}
163
164/**
5cb4ac3a 165 * is_swbp_insn - check if instruction is breakpoint instruction.
2b144498 166 * @insn: instruction to be checked.
5cb4ac3a 167 * Default implementation of is_swbp_insn
2b144498
SD
168 * Returns true if @insn is a breakpoint instruction.
169 */
5cb4ac3a 170bool __weak is_swbp_insn(uprobe_opcode_t *insn)
2b144498 171{
5cb4ac3a 172 return *insn == UPROBE_SWBP_INSN;
2b144498
SD
173}
174
cceb55aa
ON
175static void copy_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *opcode)
176{
177 void *kaddr = kmap_atomic(page);
178 memcpy(opcode, kaddr + (vaddr & ~PAGE_MASK), UPROBE_SWBP_INSN_SIZE);
179 kunmap_atomic(kaddr);
180}
181
ed6f6a50
ON
182static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
183{
184 uprobe_opcode_t old_opcode;
185 bool is_swbp;
186
187 copy_opcode(page, vaddr, &old_opcode);
188 is_swbp = is_swbp_insn(&old_opcode);
189
190 if (is_swbp_insn(new_opcode)) {
191 if (is_swbp) /* register: already installed? */
192 return 0;
193 } else {
194 if (!is_swbp) /* unregister: was it changed by us? */
076a365b 195 return 0;
ed6f6a50
ON
196 }
197
198 return 1;
199}
200
2b144498
SD
201/*
202 * NOTE:
203 * Expect the breakpoint instruction to be the smallest size instruction for
204 * the architecture. If an arch has variable length instruction and the
205 * breakpoint instruction is not of the smallest length instruction
cceb55aa 206 * supported by that architecture then we need to modify is_swbp_at_addr and
2b144498
SD
207 * write_opcode accordingly. This would never be a problem for archs that
208 * have fixed length instructions.
209 */
210
211/*
212 * write_opcode - write the opcode at a given virtual address.
213 * @mm: the probed process address space.
2b144498
SD
214 * @vaddr: the virtual address to store the opcode.
215 * @opcode: opcode to be written at @vaddr.
216 *
217 * Called with mm->mmap_sem held (for read and with a reference to
218 * mm).
219 *
220 * For mm @mm, write the opcode at @vaddr.
221 * Return 0 (success) or a negative errno.
222 */
cceb55aa
ON
223static int write_opcode(struct mm_struct *mm, unsigned long vaddr,
224 uprobe_opcode_t opcode)
2b144498
SD
225{
226 struct page *old_page, *new_page;
2b144498
SD
227 void *vaddr_old, *vaddr_new;
228 struct vm_area_struct *vma;
2b144498 229 int ret;
f403072c 230
5323ce71 231retry:
2b144498 232 /* Read the page with vaddr into memory */
75ed82ea 233 ret = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &old_page, &vma);
2b144498
SD
234 if (ret <= 0)
235 return ret;
7b2d81d4 236
ed6f6a50
ON
237 ret = verify_opcode(old_page, vaddr, &opcode);
238 if (ret <= 0)
239 goto put_old;
240
2b144498
SD
241 ret = -ENOMEM;
242 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
243 if (!new_page)
9f92448c 244 goto put_old;
2b144498
SD
245
246 __SetPageUptodate(new_page);
247
2b144498
SD
248 /* copy the page now that we've got it stable */
249 vaddr_old = kmap_atomic(old_page);
250 vaddr_new = kmap_atomic(new_page);
251
252 memcpy(vaddr_new, vaddr_old, PAGE_SIZE);
d9c4a30e 253 memcpy(vaddr_new + (vaddr & ~PAGE_MASK), &opcode, UPROBE_SWBP_INSN_SIZE);
2b144498
SD
254
255 kunmap_atomic(vaddr_new);
256 kunmap_atomic(vaddr_old);
257
258 ret = anon_vma_prepare(vma);
259 if (ret)
9f92448c 260 goto put_new;
2b144498 261
c517ee74 262 ret = __replace_page(vma, vaddr, old_page, new_page);
2b144498 263
9f92448c 264put_new:
2b144498 265 page_cache_release(new_page);
9f92448c 266put_old:
7b2d81d4
IM
267 put_page(old_page);
268
5323ce71
ON
269 if (unlikely(ret == -EAGAIN))
270 goto retry;
2b144498
SD
271 return ret;
272}
273
2b144498 274/**
5cb4ac3a 275 * set_swbp - store breakpoint at a given address.
e3343e6a 276 * @auprobe: arch specific probepoint information.
2b144498 277 * @mm: the probed process address space.
2b144498
SD
278 * @vaddr: the virtual address to insert the opcode.
279 *
280 * For mm @mm, store the breakpoint instruction at @vaddr.
281 * Return 0 (success) or a negative errno.
282 */
5cb4ac3a 283int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
2b144498 284{
cceb55aa 285 return write_opcode(mm, vaddr, UPROBE_SWBP_INSN);
2b144498
SD
286}
287
288/**
289 * set_orig_insn - Restore the original instruction.
290 * @mm: the probed process address space.
e3343e6a 291 * @auprobe: arch specific probepoint information.
2b144498 292 * @vaddr: the virtual address to insert the opcode.
2b144498
SD
293 *
294 * For mm @mm, restore the original opcode (opcode) at @vaddr.
295 * Return 0 (success) or a negative errno.
296 */
7b2d81d4 297int __weak
ded86e7c 298set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
2b144498 299{
cceb55aa 300 return write_opcode(mm, vaddr, *(uprobe_opcode_t *)auprobe->insn);
2b144498
SD
301}
302
303static int match_uprobe(struct uprobe *l, struct uprobe *r)
304{
305 if (l->inode < r->inode)
306 return -1;
7b2d81d4 307
2b144498
SD
308 if (l->inode > r->inode)
309 return 1;
2b144498 310
7b2d81d4
IM
311 if (l->offset < r->offset)
312 return -1;
313
314 if (l->offset > r->offset)
315 return 1;
2b144498
SD
316
317 return 0;
318}
319
320static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
321{
322 struct uprobe u = { .inode = inode, .offset = offset };
323 struct rb_node *n = uprobes_tree.rb_node;
324 struct uprobe *uprobe;
325 int match;
326
327 while (n) {
328 uprobe = rb_entry(n, struct uprobe, rb_node);
329 match = match_uprobe(&u, uprobe);
330 if (!match) {
331 atomic_inc(&uprobe->ref);
332 return uprobe;
333 }
7b2d81d4 334
2b144498
SD
335 if (match < 0)
336 n = n->rb_left;
337 else
338 n = n->rb_right;
339 }
340 return NULL;
341}
342
343/*
344 * Find a uprobe corresponding to a given inode:offset
345 * Acquires uprobes_treelock
346 */
347static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
348{
349 struct uprobe *uprobe;
2b144498 350
6f47caa0 351 spin_lock(&uprobes_treelock);
2b144498 352 uprobe = __find_uprobe(inode, offset);
6f47caa0 353 spin_unlock(&uprobes_treelock);
7b2d81d4 354
2b144498
SD
355 return uprobe;
356}
357
358static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
359{
360 struct rb_node **p = &uprobes_tree.rb_node;
361 struct rb_node *parent = NULL;
362 struct uprobe *u;
363 int match;
364
365 while (*p) {
366 parent = *p;
367 u = rb_entry(parent, struct uprobe, rb_node);
368 match = match_uprobe(uprobe, u);
369 if (!match) {
370 atomic_inc(&u->ref);
371 return u;
372 }
373
374 if (match < 0)
375 p = &parent->rb_left;
376 else
377 p = &parent->rb_right;
378
379 }
7b2d81d4 380
2b144498
SD
381 u = NULL;
382 rb_link_node(&uprobe->rb_node, parent, p);
383 rb_insert_color(&uprobe->rb_node, &uprobes_tree);
384 /* get access + creation ref */
385 atomic_set(&uprobe->ref, 2);
7b2d81d4 386
2b144498
SD
387 return u;
388}
389
390/*
7b2d81d4 391 * Acquire uprobes_treelock.
2b144498
SD
392 * Matching uprobe already exists in rbtree;
393 * increment (access refcount) and return the matching uprobe.
394 *
395 * No matching uprobe; insert the uprobe in rb_tree;
396 * get a double refcount (access + creation) and return NULL.
397 */
398static struct uprobe *insert_uprobe(struct uprobe *uprobe)
399{
2b144498
SD
400 struct uprobe *u;
401
6f47caa0 402 spin_lock(&uprobes_treelock);
2b144498 403 u = __insert_uprobe(uprobe);
6f47caa0 404 spin_unlock(&uprobes_treelock);
7b2d81d4 405
2b144498
SD
406 return u;
407}
408
409static void put_uprobe(struct uprobe *uprobe)
410{
411 if (atomic_dec_and_test(&uprobe->ref))
412 kfree(uprobe);
413}
414
415static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
416{
417 struct uprobe *uprobe, *cur_uprobe;
418
419 uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
420 if (!uprobe)
421 return NULL;
422
423 uprobe->inode = igrab(inode);
424 uprobe->offset = offset;
e591c8d7 425 init_rwsem(&uprobe->register_rwsem);
2b144498 426 init_rwsem(&uprobe->consumer_rwsem);
bbc33d05
ON
427 /* For now assume that the instruction need not be single-stepped */
428 __set_bit(UPROBE_SKIP_SSTEP, &uprobe->flags);
2b144498
SD
429
430 /* add to uprobes_tree, sorted on inode:offset */
431 cur_uprobe = insert_uprobe(uprobe);
432
433 /* a uprobe exists for this inode:offset combination */
434 if (cur_uprobe) {
435 kfree(uprobe);
436 uprobe = cur_uprobe;
437 iput(inode);
7b2d81d4
IM
438 }
439
2b144498
SD
440 return uprobe;
441}
442
9a98e03c 443static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
2b144498
SD
444{
445 down_write(&uprobe->consumer_rwsem);
e3343e6a
SD
446 uc->next = uprobe->consumers;
447 uprobe->consumers = uc;
2b144498 448 up_write(&uprobe->consumer_rwsem);
2b144498
SD
449}
450
451/*
e3343e6a
SD
452 * For uprobe @uprobe, delete the consumer @uc.
453 * Return true if the @uc is deleted successfully
2b144498
SD
454 * or return false.
455 */
e3343e6a 456static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
2b144498
SD
457{
458 struct uprobe_consumer **con;
459 bool ret = false;
460
461 down_write(&uprobe->consumer_rwsem);
462 for (con = &uprobe->consumers; *con; con = &(*con)->next) {
e3343e6a
SD
463 if (*con == uc) {
464 *con = uc->next;
2b144498
SD
465 ret = true;
466 break;
467 }
468 }
469 up_write(&uprobe->consumer_rwsem);
7b2d81d4 470
2b144498
SD
471 return ret;
472}
473
e3343e6a 474static int
d436615e 475__copy_insn(struct address_space *mapping, struct file *filp, char *insn,
593609a5 476 unsigned long nbytes, loff_t offset)
2b144498 477{
2b144498
SD
478 struct page *page;
479 void *vaddr;
593609a5
ON
480 unsigned long off;
481 pgoff_t idx;
2b144498
SD
482
483 if (!filp)
484 return -EINVAL;
485
cc359d18
ON
486 if (!mapping->a_ops->readpage)
487 return -EIO;
488
593609a5
ON
489 idx = offset >> PAGE_CACHE_SHIFT;
490 off = offset & ~PAGE_MASK;
2b144498
SD
491
492 /*
493 * Ensure that the page that has the original instruction is
494 * populated and in page-cache.
495 */
496 page = read_mapping_page(mapping, idx, filp);
497 if (IS_ERR(page))
498 return PTR_ERR(page);
499
500 vaddr = kmap_atomic(page);
593609a5 501 memcpy(insn, vaddr + off, nbytes);
2b144498
SD
502 kunmap_atomic(vaddr);
503 page_cache_release(page);
7b2d81d4 504
2b144498
SD
505 return 0;
506}
507
d436615e 508static int copy_insn(struct uprobe *uprobe, struct file *filp)
2b144498
SD
509{
510 struct address_space *mapping;
2b144498 511 unsigned long nbytes;
7b2d81d4 512 int bytes;
2b144498 513
d436615e 514 nbytes = PAGE_SIZE - (uprobe->offset & ~PAGE_MASK);
2b144498
SD
515 mapping = uprobe->inode->i_mapping;
516
517 /* Instruction at end of binary; copy only available bytes */
518 if (uprobe->offset + MAX_UINSN_BYTES > uprobe->inode->i_size)
519 bytes = uprobe->inode->i_size - uprobe->offset;
520 else
521 bytes = MAX_UINSN_BYTES;
522
523 /* Instruction at the page-boundary; copy bytes in second page */
524 if (nbytes < bytes) {
fc36f595
ON
525 int err = __copy_insn(mapping, filp, uprobe->arch.insn + nbytes,
526 bytes - nbytes, uprobe->offset + nbytes);
527 if (err)
528 return err;
2b144498
SD
529 bytes = nbytes;
530 }
d436615e 531 return __copy_insn(mapping, filp, uprobe->arch.insn, bytes, uprobe->offset);
2b144498
SD
532}
533
cb9a19fe
ON
534static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
535 struct mm_struct *mm, unsigned long vaddr)
536{
537 int ret = 0;
538
71434f2f 539 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
cb9a19fe
ON
540 return ret;
541
d4d3ccc6
ON
542 /* TODO: move this into _register, until then we abuse this sem. */
543 down_write(&uprobe->consumer_rwsem);
71434f2f 544 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
4710f05f
ON
545 goto out;
546
cb9a19fe
ON
547 ret = copy_insn(uprobe, file);
548 if (ret)
549 goto out;
550
551 ret = -ENOTSUPP;
552 if (is_swbp_insn((uprobe_opcode_t *)uprobe->arch.insn))
553 goto out;
554
555 ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
556 if (ret)
557 goto out;
558
559 /* write_opcode() assumes we don't cross page boundary */
560 BUG_ON((uprobe->offset & ~PAGE_MASK) +
561 UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
562
563 smp_wmb(); /* pairs with rmb() in find_active_uprobe() */
71434f2f 564 set_bit(UPROBE_COPY_INSN, &uprobe->flags);
cb9a19fe
ON
565
566 out:
d4d3ccc6 567 up_write(&uprobe->consumer_rwsem);
4710f05f 568
cb9a19fe
ON
569 return ret;
570}
571
8a7f2fa0
ON
572static inline bool consumer_filter(struct uprobe_consumer *uc,
573 enum uprobe_filter_ctx ctx, struct mm_struct *mm)
806a98bd 574{
8a7f2fa0 575 return !uc->filter || uc->filter(uc, ctx, mm);
806a98bd
ON
576}
577
8a7f2fa0
ON
578static bool filter_chain(struct uprobe *uprobe,
579 enum uprobe_filter_ctx ctx, struct mm_struct *mm)
63633cbf 580{
1ff6fee5
ON
581 struct uprobe_consumer *uc;
582 bool ret = false;
583
584 down_read(&uprobe->consumer_rwsem);
585 for (uc = uprobe->consumers; uc; uc = uc->next) {
8a7f2fa0 586 ret = consumer_filter(uc, ctx, mm);
1ff6fee5
ON
587 if (ret)
588 break;
589 }
590 up_read(&uprobe->consumer_rwsem);
591
592 return ret;
63633cbf
ON
593}
594
e3343e6a
SD
595static int
596install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
816c03fb 597 struct vm_area_struct *vma, unsigned long vaddr)
2b144498 598{
f8ac4ec9 599 bool first_uprobe;
2b144498
SD
600 int ret;
601
cb9a19fe
ON
602 ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
603 if (ret)
604 return ret;
682968e0 605
f8ac4ec9
ON
606 /*
607 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
608 * the task can hit this breakpoint right after __replace_page().
609 */
610 first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
611 if (first_uprobe)
612 set_bit(MMF_HAS_UPROBES, &mm->flags);
613
816c03fb 614 ret = set_swbp(&uprobe->arch, mm, vaddr);
9f68f672
ON
615 if (!ret)
616 clear_bit(MMF_RECALC_UPROBES, &mm->flags);
617 else if (first_uprobe)
f8ac4ec9 618 clear_bit(MMF_HAS_UPROBES, &mm->flags);
2b144498
SD
619
620 return ret;
621}
622
076a365b 623static int
816c03fb 624remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
2b144498 625{
9f68f672 626 set_bit(MMF_RECALC_UPROBES, &mm->flags);
076a365b 627 return set_orig_insn(&uprobe->arch, mm, vaddr);
2b144498
SD
628}
629
06b7bcd8
ON
630static inline bool uprobe_is_active(struct uprobe *uprobe)
631{
632 return !RB_EMPTY_NODE(&uprobe->rb_node);
633}
0326f5a9 634/*
778b032d
ON
635 * There could be threads that have already hit the breakpoint. They
636 * will recheck the current insn and restart if find_uprobe() fails.
637 * See find_active_uprobe().
0326f5a9 638 */
2b144498
SD
639static void delete_uprobe(struct uprobe *uprobe)
640{
06b7bcd8
ON
641 if (WARN_ON(!uprobe_is_active(uprobe)))
642 return;
643
6f47caa0 644 spin_lock(&uprobes_treelock);
2b144498 645 rb_erase(&uprobe->rb_node, &uprobes_tree);
6f47caa0 646 spin_unlock(&uprobes_treelock);
06b7bcd8 647 RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */
2b144498
SD
648 iput(uprobe->inode);
649 put_uprobe(uprobe);
2b144498
SD
650}
651
26872090
ON
652struct map_info {
653 struct map_info *next;
654 struct mm_struct *mm;
816c03fb 655 unsigned long vaddr;
26872090
ON
656};
657
658static inline struct map_info *free_map_info(struct map_info *info)
2b144498 659{
26872090
ON
660 struct map_info *next = info->next;
661 kfree(info);
662 return next;
663}
664
665static struct map_info *
666build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
667{
668 unsigned long pgoff = offset >> PAGE_SHIFT;
2b144498 669 struct vm_area_struct *vma;
26872090
ON
670 struct map_info *curr = NULL;
671 struct map_info *prev = NULL;
672 struct map_info *info;
673 int more = 0;
2b144498 674
26872090
ON
675 again:
676 mutex_lock(&mapping->i_mmap_mutex);
6b2dbba8 677 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
2b144498
SD
678 if (!valid_vma(vma, is_register))
679 continue;
680
7a5bfb66
ON
681 if (!prev && !more) {
682 /*
683 * Needs GFP_NOWAIT to avoid i_mmap_mutex recursion through
684 * reclaim. This is optimistic, no harm done if it fails.
685 */
686 prev = kmalloc(sizeof(struct map_info),
687 GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
688 if (prev)
689 prev->next = NULL;
690 }
26872090
ON
691 if (!prev) {
692 more++;
693 continue;
2b144498 694 }
2b144498 695
26872090
ON
696 if (!atomic_inc_not_zero(&vma->vm_mm->mm_users))
697 continue;
7b2d81d4 698
26872090
ON
699 info = prev;
700 prev = prev->next;
701 info->next = curr;
702 curr = info;
2b144498 703
26872090 704 info->mm = vma->vm_mm;
57683f72 705 info->vaddr = offset_to_vaddr(vma, offset);
26872090 706 }
2b144498
SD
707 mutex_unlock(&mapping->i_mmap_mutex);
708
26872090
ON
709 if (!more)
710 goto out;
711
712 prev = curr;
713 while (curr) {
714 mmput(curr->mm);
715 curr = curr->next;
716 }
7b2d81d4 717
26872090
ON
718 do {
719 info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
720 if (!info) {
721 curr = ERR_PTR(-ENOMEM);
722 goto out;
723 }
724 info->next = prev;
725 prev = info;
726 } while (--more);
727
728 goto again;
729 out:
730 while (prev)
731 prev = free_map_info(prev);
732 return curr;
2b144498
SD
733}
734
735static int register_for_each_vma(struct uprobe *uprobe, bool is_register)
736{
26872090
ON
737 struct map_info *info;
738 int err = 0;
2b144498 739
32cdba1e 740 percpu_down_write(&dup_mmap_sem);
26872090
ON
741 info = build_map_info(uprobe->inode->i_mapping,
742 uprobe->offset, is_register);
32cdba1e
ON
743 if (IS_ERR(info)) {
744 err = PTR_ERR(info);
745 goto out;
746 }
7b2d81d4 747
26872090
ON
748 while (info) {
749 struct mm_struct *mm = info->mm;
750 struct vm_area_struct *vma;
7b2d81d4 751
076a365b 752 if (err && is_register)
26872090 753 goto free;
7b2d81d4 754
77fc4af1 755 down_write(&mm->mmap_sem);
f4d6dfe5
ON
756 vma = find_vma(mm, info->vaddr);
757 if (!vma || !valid_vma(vma, is_register) ||
758 vma->vm_file->f_mapping->host != uprobe->inode)
26872090
ON
759 goto unlock;
760
f4d6dfe5
ON
761 if (vma->vm_start > info->vaddr ||
762 vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
26872090 763 goto unlock;
2b144498 764
806a98bd
ON
765 if (is_register) {
766 /* consult only the "caller", new consumer. */
8a7f2fa0
ON
767 if (consumer_filter(uprobe->consumers,
768 UPROBE_FILTER_REGISTER, mm))
806a98bd
ON
769 err = install_breakpoint(uprobe, mm, vma, info->vaddr);
770 } else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) {
8a7f2fa0
ON
771 if (!filter_chain(uprobe,
772 UPROBE_FILTER_UNREGISTER, mm))
806a98bd
ON
773 err |= remove_breakpoint(uprobe, mm, info->vaddr);
774 }
78f74116 775
26872090
ON
776 unlock:
777 up_write(&mm->mmap_sem);
778 free:
779 mmput(mm);
780 info = free_map_info(info);
2b144498 781 }
32cdba1e
ON
782 out:
783 percpu_up_write(&dup_mmap_sem);
26872090 784 return err;
2b144498
SD
785}
786
9a98e03c 787static int __uprobe_register(struct uprobe *uprobe, struct uprobe_consumer *uc)
2b144498 788{
9a98e03c 789 consumer_add(uprobe, uc);
bb929284 790 return register_for_each_vma(uprobe, true);
2b144498
SD
791}
792
04aab9b2 793static void __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc)
2b144498 794{
04aab9b2
ON
795 int err;
796
797 if (!consumer_del(uprobe, uc)) /* WARN? */
798 return;
2b144498 799
04aab9b2 800 err = register_for_each_vma(uprobe, false);
bb929284
ON
801 /* TODO : cant unregister? schedule a worker thread */
802 if (!uprobe->consumers && !err)
803 delete_uprobe(uprobe);
2b144498
SD
804}
805
806/*
7b2d81d4 807 * uprobe_register - register a probe
2b144498
SD
808 * @inode: the file in which the probe has to be placed.
809 * @offset: offset from the start of the file.
e3343e6a 810 * @uc: information on howto handle the probe..
2b144498 811 *
7b2d81d4 812 * Apart from the access refcount, uprobe_register() takes a creation
2b144498
SD
813 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
814 * inserted into the rbtree (i.e first consumer for a @inode:@offset
7b2d81d4 815 * tuple). Creation refcount stops uprobe_unregister from freeing the
2b144498 816 * @uprobe even before the register operation is complete. Creation
e3343e6a 817 * refcount is released when the last @uc for the @uprobe
2b144498
SD
818 * unregisters.
819 *
820 * Return errno if it cannot successully install probes
821 * else return 0 (success)
822 */
e3343e6a 823int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
2b144498
SD
824{
825 struct uprobe *uprobe;
7b2d81d4 826 int ret;
2b144498 827
f0744af7 828 /* Racy, just to catch the obvious mistakes */
2b144498 829 if (offset > i_size_read(inode))
7b2d81d4 830 return -EINVAL;
2b144498 831
66d06dff 832 retry:
2b144498 833 uprobe = alloc_uprobe(inode, offset);
66d06dff
ON
834 if (!uprobe)
835 return -ENOMEM;
836 /*
837 * We can race with uprobe_unregister()->delete_uprobe().
838 * Check uprobe_is_active() and retry if it is false.
839 */
840 down_write(&uprobe->register_rwsem);
841 ret = -EAGAIN;
842 if (likely(uprobe_is_active(uprobe))) {
9a98e03c
ON
843 ret = __uprobe_register(uprobe, uc);
844 if (ret)
04aab9b2 845 __uprobe_unregister(uprobe, uc);
2b144498 846 }
66d06dff
ON
847 up_write(&uprobe->register_rwsem);
848 put_uprobe(uprobe);
2b144498 849
66d06dff
ON
850 if (unlikely(ret == -EAGAIN))
851 goto retry;
2b144498
SD
852 return ret;
853}
854
855/*
7b2d81d4 856 * uprobe_unregister - unregister a already registered probe.
2b144498
SD
857 * @inode: the file in which the probe has to be removed.
858 * @offset: offset from the start of the file.
e3343e6a 859 * @uc: identify which probe if multiple probes are colocated.
2b144498 860 */
e3343e6a 861void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
2b144498 862{
7b2d81d4 863 struct uprobe *uprobe;
2b144498 864
2b144498
SD
865 uprobe = find_uprobe(inode, offset);
866 if (!uprobe)
867 return;
868
e591c8d7 869 down_write(&uprobe->register_rwsem);
04aab9b2 870 __uprobe_unregister(uprobe, uc);
e591c8d7 871 up_write(&uprobe->register_rwsem);
c91368c4 872 put_uprobe(uprobe);
2b144498
SD
873}
874
da1816b1
ON
875static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
876{
877 struct vm_area_struct *vma;
878 int err = 0;
879
880 down_read(&mm->mmap_sem);
881 for (vma = mm->mmap; vma; vma = vma->vm_next) {
882 unsigned long vaddr;
883 loff_t offset;
884
885 if (!valid_vma(vma, false) ||
886 vma->vm_file->f_mapping->host != uprobe->inode)
887 continue;
888
889 offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
890 if (uprobe->offset < offset ||
891 uprobe->offset >= offset + vma->vm_end - vma->vm_start)
892 continue;
893
894 vaddr = offset_to_vaddr(vma, uprobe->offset);
895 err |= remove_breakpoint(uprobe, mm, vaddr);
896 }
897 up_read(&mm->mmap_sem);
898
899 return err;
900}
901
891c3970
ON
902static struct rb_node *
903find_node_in_range(struct inode *inode, loff_t min, loff_t max)
2b144498 904{
2b144498 905 struct rb_node *n = uprobes_tree.rb_node;
2b144498
SD
906
907 while (n) {
891c3970 908 struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
2b144498 909
891c3970 910 if (inode < u->inode) {
2b144498 911 n = n->rb_left;
891c3970 912 } else if (inode > u->inode) {
2b144498 913 n = n->rb_right;
891c3970
ON
914 } else {
915 if (max < u->offset)
916 n = n->rb_left;
917 else if (min > u->offset)
918 n = n->rb_right;
919 else
920 break;
921 }
2b144498 922 }
7b2d81d4 923
891c3970 924 return n;
2b144498
SD
925}
926
927/*
891c3970 928 * For a given range in vma, build a list of probes that need to be inserted.
2b144498 929 */
891c3970
ON
930static void build_probe_list(struct inode *inode,
931 struct vm_area_struct *vma,
932 unsigned long start, unsigned long end,
933 struct list_head *head)
2b144498 934{
891c3970 935 loff_t min, max;
891c3970
ON
936 struct rb_node *n, *t;
937 struct uprobe *u;
7b2d81d4 938
891c3970 939 INIT_LIST_HEAD(head);
cb113b47 940 min = vaddr_to_offset(vma, start);
891c3970 941 max = min + (end - start) - 1;
2b144498 942
6f47caa0 943 spin_lock(&uprobes_treelock);
891c3970
ON
944 n = find_node_in_range(inode, min, max);
945 if (n) {
946 for (t = n; t; t = rb_prev(t)) {
947 u = rb_entry(t, struct uprobe, rb_node);
948 if (u->inode != inode || u->offset < min)
949 break;
950 list_add(&u->pending_list, head);
951 atomic_inc(&u->ref);
952 }
953 for (t = n; (t = rb_next(t)); ) {
954 u = rb_entry(t, struct uprobe, rb_node);
955 if (u->inode != inode || u->offset > max)
956 break;
957 list_add(&u->pending_list, head);
958 atomic_inc(&u->ref);
959 }
2b144498 960 }
6f47caa0 961 spin_unlock(&uprobes_treelock);
2b144498
SD
962}
963
964/*
5e5be71a 965 * Called from mmap_region/vma_adjust with mm->mmap_sem acquired.
2b144498 966 *
5e5be71a
ON
967 * Currently we ignore all errors and always return 0, the callers
968 * can't handle the failure anyway.
2b144498 969 */
7b2d81d4 970int uprobe_mmap(struct vm_area_struct *vma)
2b144498
SD
971{
972 struct list_head tmp_list;
665605a2 973 struct uprobe *uprobe, *u;
2b144498 974 struct inode *inode;
2b144498 975
441f1eb7 976 if (no_uprobe_events() || !valid_vma(vma, true))
7b2d81d4 977 return 0;
2b144498
SD
978
979 inode = vma->vm_file->f_mapping->host;
980 if (!inode)
7b2d81d4 981 return 0;
2b144498 982
2b144498 983 mutex_lock(uprobes_mmap_hash(inode));
891c3970 984 build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
806a98bd
ON
985 /*
986 * We can race with uprobe_unregister(), this uprobe can be already
987 * removed. But in this case filter_chain() must return false, all
988 * consumers have gone away.
989 */
665605a2 990 list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
806a98bd 991 if (!fatal_signal_pending(current) &&
8a7f2fa0 992 filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) {
57683f72 993 unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
5e5be71a 994 install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
2b144498
SD
995 }
996 put_uprobe(uprobe);
997 }
2b144498
SD
998 mutex_unlock(uprobes_mmap_hash(inode));
999
5e5be71a 1000 return 0;
2b144498
SD
1001}
1002
9f68f672
ON
1003static bool
1004vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1005{
1006 loff_t min, max;
1007 struct inode *inode;
1008 struct rb_node *n;
1009
1010 inode = vma->vm_file->f_mapping->host;
1011
1012 min = vaddr_to_offset(vma, start);
1013 max = min + (end - start) - 1;
1014
1015 spin_lock(&uprobes_treelock);
1016 n = find_node_in_range(inode, min, max);
1017 spin_unlock(&uprobes_treelock);
1018
1019 return !!n;
1020}
1021
682968e0
SD
1022/*
1023 * Called in context of a munmap of a vma.
1024 */
cbc91f71 1025void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
682968e0 1026{
441f1eb7 1027 if (no_uprobe_events() || !valid_vma(vma, false))
682968e0
SD
1028 return;
1029
2fd611a9
ON
1030 if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1031 return;
1032
9f68f672
ON
1033 if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1034 test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
f8ac4ec9
ON
1035 return;
1036
9f68f672
ON
1037 if (vma_has_uprobes(vma, start, end))
1038 set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
682968e0
SD
1039}
1040
d4b3b638
SD
1041/* Slot allocation for XOL */
1042static int xol_add_vma(struct xol_area *area)
1043{
c8a82538
ON
1044 struct mm_struct *mm = current->mm;
1045 int ret = -EALREADY;
d4b3b638
SD
1046
1047 down_write(&mm->mmap_sem);
1048 if (mm->uprobes_state.xol_area)
1049 goto fail;
1050
1051 ret = -ENOMEM;
d4b3b638
SD
1052 /* Try to map as high as possible, this is only a hint. */
1053 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE, PAGE_SIZE, 0, 0);
1054 if (area->vaddr & ~PAGE_MASK) {
1055 ret = area->vaddr;
1056 goto fail;
1057 }
1058
1059 ret = install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1060 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, &area->page);
1061 if (ret)
1062 goto fail;
1063
1064 smp_wmb(); /* pairs with get_xol_area() */
1065 mm->uprobes_state.xol_area = area;
1066 ret = 0;
c8a82538 1067 fail:
d4b3b638 1068 up_write(&mm->mmap_sem);
d4b3b638
SD
1069
1070 return ret;
1071}
1072
d4b3b638 1073/*
9b545df8
ON
1074 * get_xol_area - Allocate process's xol_area if necessary.
1075 * This area will be used for storing instructions for execution out of line.
d4b3b638
SD
1076 *
1077 * Returns the allocated area or NULL.
1078 */
9b545df8 1079static struct xol_area *get_xol_area(void)
d4b3b638 1080{
9b545df8 1081 struct mm_struct *mm = current->mm;
d4b3b638
SD
1082 struct xol_area *area;
1083
9b545df8
ON
1084 area = mm->uprobes_state.xol_area;
1085 if (area)
1086 goto ret;
1087
d4b3b638
SD
1088 area = kzalloc(sizeof(*area), GFP_KERNEL);
1089 if (unlikely(!area))
c8a82538 1090 goto out;
d4b3b638
SD
1091
1092 area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL);
d4b3b638 1093 if (!area->bitmap)
c8a82538
ON
1094 goto free_area;
1095
1096 area->page = alloc_page(GFP_HIGHUSER);
1097 if (!area->page)
1098 goto free_bitmap;
d4b3b638
SD
1099
1100 init_waitqueue_head(&area->wq);
1101 if (!xol_add_vma(area))
1102 return area;
1103
c8a82538
ON
1104 __free_page(area->page);
1105 free_bitmap:
d4b3b638 1106 kfree(area->bitmap);
c8a82538 1107 free_area:
d4b3b638 1108 kfree(area);
c8a82538 1109 out:
9b545df8
ON
1110 area = mm->uprobes_state.xol_area;
1111 ret:
1112 smp_read_barrier_depends(); /* pairs with wmb in xol_add_vma() */
1113 return area;
d4b3b638
SD
1114}
1115
1116/*
1117 * uprobe_clear_state - Free the area allocated for slots.
1118 */
1119void uprobe_clear_state(struct mm_struct *mm)
1120{
1121 struct xol_area *area = mm->uprobes_state.xol_area;
1122
1123 if (!area)
1124 return;
1125
1126 put_page(area->page);
1127 kfree(area->bitmap);
1128 kfree(area);
1129}
1130
32cdba1e
ON
1131void uprobe_start_dup_mmap(void)
1132{
1133 percpu_down_read(&dup_mmap_sem);
1134}
1135
1136void uprobe_end_dup_mmap(void)
1137{
1138 percpu_up_read(&dup_mmap_sem);
1139}
1140
f8ac4ec9
ON
1141void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1142{
61559a81
ON
1143 newmm->uprobes_state.xol_area = NULL;
1144
9f68f672 1145 if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
f8ac4ec9 1146 set_bit(MMF_HAS_UPROBES, &newmm->flags);
9f68f672
ON
1147 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1148 set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1149 }
f8ac4ec9
ON
1150}
1151
d4b3b638
SD
1152/*
1153 * - search for a free slot.
1154 */
1155static unsigned long xol_take_insn_slot(struct xol_area *area)
1156{
1157 unsigned long slot_addr;
1158 int slot_nr;
1159
1160 do {
1161 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1162 if (slot_nr < UINSNS_PER_PAGE) {
1163 if (!test_and_set_bit(slot_nr, area->bitmap))
1164 break;
1165
1166 slot_nr = UINSNS_PER_PAGE;
1167 continue;
1168 }
1169 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1170 } while (slot_nr >= UINSNS_PER_PAGE);
1171
1172 slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1173 atomic_inc(&area->slot_count);
1174
1175 return slot_addr;
1176}
1177
1178/*
1179 * xol_get_insn_slot - If was not allocated a slot, then
1180 * allocate a slot.
1181 * Returns the allocated slot address or 0.
1182 */
1183static unsigned long xol_get_insn_slot(struct uprobe *uprobe, unsigned long slot_addr)
1184{
1185 struct xol_area *area;
1186 unsigned long offset;
1187 void *vaddr;
1188
9b545df8
ON
1189 area = get_xol_area();
1190 if (!area)
1191 return 0;
d4b3b638 1192
9b545df8 1193 current->utask->xol_vaddr = xol_take_insn_slot(area);
d4b3b638
SD
1194 /*
1195 * Initialize the slot if xol_vaddr points to valid
1196 * instruction slot.
1197 */
1198 if (unlikely(!current->utask->xol_vaddr))
1199 return 0;
1200
1201 current->utask->vaddr = slot_addr;
1202 offset = current->utask->xol_vaddr & ~PAGE_MASK;
1203 vaddr = kmap_atomic(area->page);
1204 memcpy(vaddr + offset, uprobe->arch.insn, MAX_UINSN_BYTES);
1205 kunmap_atomic(vaddr);
65b6ecc0
RV
1206 /*
1207 * We probably need flush_icache_user_range() but it needs vma.
1208 * This should work on supported architectures too.
1209 */
1210 flush_dcache_page(area->page);
d4b3b638
SD
1211
1212 return current->utask->xol_vaddr;
1213}
1214
1215/*
1216 * xol_free_insn_slot - If slot was earlier allocated by
1217 * @xol_get_insn_slot(), make the slot available for
1218 * subsequent requests.
1219 */
1220static void xol_free_insn_slot(struct task_struct *tsk)
1221{
1222 struct xol_area *area;
1223 unsigned long vma_end;
1224 unsigned long slot_addr;
1225
1226 if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1227 return;
1228
1229 slot_addr = tsk->utask->xol_vaddr;
1230
1231 if (unlikely(!slot_addr || IS_ERR_VALUE(slot_addr)))
1232 return;
1233
1234 area = tsk->mm->uprobes_state.xol_area;
1235 vma_end = area->vaddr + PAGE_SIZE;
1236 if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1237 unsigned long offset;
1238 int slot_nr;
1239
1240 offset = slot_addr - area->vaddr;
1241 slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1242 if (slot_nr >= UINSNS_PER_PAGE)
1243 return;
1244
1245 clear_bit(slot_nr, area->bitmap);
1246 atomic_dec(&area->slot_count);
1247 if (waitqueue_active(&area->wq))
1248 wake_up(&area->wq);
1249
1250 tsk->utask->xol_vaddr = 0;
1251 }
1252}
1253
0326f5a9
SD
1254/**
1255 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1256 * @regs: Reflects the saved state of the task after it has hit a breakpoint
1257 * instruction.
1258 * Return the address of the breakpoint instruction.
1259 */
1260unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1261{
1262 return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1263}
1264
1265/*
1266 * Called with no locks held.
1267 * Called in context of a exiting or a exec-ing thread.
1268 */
1269void uprobe_free_utask(struct task_struct *t)
1270{
1271 struct uprobe_task *utask = t->utask;
1272
0326f5a9
SD
1273 if (!utask)
1274 return;
1275
1276 if (utask->active_uprobe)
1277 put_uprobe(utask->active_uprobe);
1278
d4b3b638 1279 xol_free_insn_slot(t);
0326f5a9
SD
1280 kfree(utask);
1281 t->utask = NULL;
1282}
1283
1284/*
1285 * Called in context of a new clone/fork from copy_process.
1286 */
1287void uprobe_copy_process(struct task_struct *t)
1288{
1289 t->utask = NULL;
0326f5a9
SD
1290}
1291
1292/*
1293 * Allocate a uprobe_task object for the task.
1294 * Called when the thread hits a breakpoint for the first time.
1295 *
1296 * Returns:
1297 * - pointer to new uprobe_task on success
1298 * - NULL otherwise
1299 */
1300static struct uprobe_task *add_utask(void)
1301{
1302 struct uprobe_task *utask;
1303
1304 utask = kzalloc(sizeof *utask, GFP_KERNEL);
1305 if (unlikely(!utask))
1306 return NULL;
1307
0326f5a9
SD
1308 current->utask = utask;
1309 return utask;
1310}
1311
1312/* Prepare to single-step probed instruction out of line. */
1313static int
1314pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long vaddr)
1315{
d4b3b638
SD
1316 if (xol_get_insn_slot(uprobe, vaddr) && !arch_uprobe_pre_xol(&uprobe->arch, regs))
1317 return 0;
1318
0326f5a9
SD
1319 return -EFAULT;
1320}
1321
1322/*
1323 * If we are singlestepping, then ensure this thread is not connected to
1324 * non-fatal signals until completion of singlestep. When xol insn itself
1325 * triggers the signal, restart the original insn even if the task is
1326 * already SIGKILL'ed (since coredump should report the correct ip). This
1327 * is even more important if the task has a handler for SIGSEGV/etc, The
1328 * _same_ instruction should be repeated again after return from the signal
1329 * handler, and SSTEP can never finish in this case.
1330 */
1331bool uprobe_deny_signal(void)
1332{
1333 struct task_struct *t = current;
1334 struct uprobe_task *utask = t->utask;
1335
1336 if (likely(!utask || !utask->active_uprobe))
1337 return false;
1338
1339 WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1340
1341 if (signal_pending(t)) {
1342 spin_lock_irq(&t->sighand->siglock);
1343 clear_tsk_thread_flag(t, TIF_SIGPENDING);
1344 spin_unlock_irq(&t->sighand->siglock);
1345
1346 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1347 utask->state = UTASK_SSTEP_TRAPPED;
1348 set_tsk_thread_flag(t, TIF_UPROBE);
1349 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1350 }
1351 }
1352
1353 return true;
1354}
1355
1356/*
1357 * Avoid singlestepping the original instruction if the original instruction
1358 * is a NOP or can be emulated.
1359 */
1360static bool can_skip_sstep(struct uprobe *uprobe, struct pt_regs *regs)
1361{
71434f2f 1362 if (test_bit(UPROBE_SKIP_SSTEP, &uprobe->flags)) {
0578a970
ON
1363 if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
1364 return true;
71434f2f 1365 clear_bit(UPROBE_SKIP_SSTEP, &uprobe->flags);
0578a970 1366 }
0326f5a9
SD
1367 return false;
1368}
1369
499a4f3e
ON
1370static void mmf_recalc_uprobes(struct mm_struct *mm)
1371{
1372 struct vm_area_struct *vma;
1373
1374 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1375 if (!valid_vma(vma, false))
1376 continue;
1377 /*
1378 * This is not strictly accurate, we can race with
1379 * uprobe_unregister() and see the already removed
1380 * uprobe if delete_uprobe() was not yet called.
63633cbf 1381 * Or this uprobe can be filtered out.
499a4f3e
ON
1382 */
1383 if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
1384 return;
1385 }
1386
1387 clear_bit(MMF_HAS_UPROBES, &mm->flags);
1388}
1389
ec75fba9
ON
1390static int is_swbp_at_addr(struct mm_struct *mm, unsigned long vaddr)
1391{
1392 struct page *page;
1393 uprobe_opcode_t opcode;
1394 int result;
1395
1396 pagefault_disable();
1397 result = __copy_from_user_inatomic(&opcode, (void __user*)vaddr,
1398 sizeof(opcode));
1399 pagefault_enable();
1400
1401 if (likely(result == 0))
1402 goto out;
1403
1404 result = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &page, NULL);
1405 if (result < 0)
1406 return result;
1407
1408 copy_opcode(page, vaddr, &opcode);
1409 put_page(page);
1410 out:
1411 return is_swbp_insn(&opcode);
1412}
1413
d790d346 1414static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
0326f5a9 1415{
3a9ea052
ON
1416 struct mm_struct *mm = current->mm;
1417 struct uprobe *uprobe = NULL;
0326f5a9 1418 struct vm_area_struct *vma;
0326f5a9 1419
0326f5a9
SD
1420 down_read(&mm->mmap_sem);
1421 vma = find_vma(mm, bp_vaddr);
3a9ea052
ON
1422 if (vma && vma->vm_start <= bp_vaddr) {
1423 if (valid_vma(vma, false)) {
cb113b47
ON
1424 struct inode *inode = vma->vm_file->f_mapping->host;
1425 loff_t offset = vaddr_to_offset(vma, bp_vaddr);
0326f5a9 1426
3a9ea052
ON
1427 uprobe = find_uprobe(inode, offset);
1428 }
d790d346
ON
1429
1430 if (!uprobe)
1431 *is_swbp = is_swbp_at_addr(mm, bp_vaddr);
1432 } else {
1433 *is_swbp = -EFAULT;
0326f5a9 1434 }
499a4f3e
ON
1435
1436 if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
1437 mmf_recalc_uprobes(mm);
0326f5a9
SD
1438 up_read(&mm->mmap_sem);
1439
3a9ea052
ON
1440 return uprobe;
1441}
1442
da1816b1
ON
1443static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
1444{
1445 struct uprobe_consumer *uc;
1446 int remove = UPROBE_HANDLER_REMOVE;
1447
1448 down_read(&uprobe->register_rwsem);
1449 for (uc = uprobe->consumers; uc; uc = uc->next) {
1450 int rc = uc->handler(uc, regs);
1451
1452 WARN(rc & ~UPROBE_HANDLER_MASK,
1453 "bad rc=0x%x from %pf()\n", rc, uc->handler);
1454 remove &= rc;
1455 }
1456
1457 if (remove && uprobe->consumers) {
1458 WARN_ON(!uprobe_is_active(uprobe));
1459 unapply_uprobe(uprobe, current->mm);
1460 }
1461 up_read(&uprobe->register_rwsem);
1462}
1463
3a9ea052
ON
1464/*
1465 * Run handler and ask thread to singlestep.
1466 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
1467 */
1468static void handle_swbp(struct pt_regs *regs)
1469{
1470 struct uprobe_task *utask;
1471 struct uprobe *uprobe;
1472 unsigned long bp_vaddr;
56bb4cf6 1473 int uninitialized_var(is_swbp);
3a9ea052
ON
1474
1475 bp_vaddr = uprobe_get_swbp_addr(regs);
d790d346 1476 uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
3a9ea052 1477
0326f5a9 1478 if (!uprobe) {
56bb4cf6
ON
1479 if (is_swbp > 0) {
1480 /* No matching uprobe; signal SIGTRAP. */
1481 send_sig(SIGTRAP, current, 0);
1482 } else {
1483 /*
1484 * Either we raced with uprobe_unregister() or we can't
1485 * access this memory. The latter is only possible if
1486 * another thread plays with our ->mm. In both cases
1487 * we can simply restart. If this vma was unmapped we
1488 * can pretend this insn was not executed yet and get
1489 * the (correct) SIGSEGV after restart.
1490 */
1491 instruction_pointer_set(regs, bp_vaddr);
1492 }
0326f5a9
SD
1493 return;
1494 }
74e59dfc
ON
1495
1496 /* change it in advance for ->handler() and restart */
1497 instruction_pointer_set(regs, bp_vaddr);
1498
142b18dd
ON
1499 /*
1500 * TODO: move copy_insn/etc into _register and remove this hack.
1501 * After we hit the bp, _unregister + _register can install the
1502 * new and not-yet-analyzed uprobe at the same address, restart.
1503 */
1504 smp_rmb(); /* pairs with wmb() in install_breakpoint() */
71434f2f 1505 if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
74e59dfc 1506 goto out;
0326f5a9
SD
1507
1508 utask = current->utask;
1509 if (!utask) {
1510 utask = add_utask();
1511 /* Cannot allocate; re-execute the instruction. */
1512 if (!utask)
74e59dfc 1513 goto out;
0326f5a9 1514 }
746a9e6b 1515
0326f5a9 1516 handler_chain(uprobe, regs);
0578a970
ON
1517 if (can_skip_sstep(uprobe, regs))
1518 goto out;
0326f5a9 1519
0326f5a9 1520 if (!pre_ssout(uprobe, regs, bp_vaddr)) {
746a9e6b
ON
1521 utask->active_uprobe = uprobe;
1522 utask->state = UTASK_SSTEP;
0326f5a9
SD
1523 return;
1524 }
1525
74e59dfc 1526 /* can_skip_sstep() succeeded, or restart if can't singlestep */
0578a970 1527out:
8bd87445 1528 put_uprobe(uprobe);
0326f5a9
SD
1529}
1530
1531/*
1532 * Perform required fix-ups and disable singlestep.
1533 * Allow pending signals to take effect.
1534 */
1535static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
1536{
1537 struct uprobe *uprobe;
1538
1539 uprobe = utask->active_uprobe;
1540 if (utask->state == UTASK_SSTEP_ACK)
1541 arch_uprobe_post_xol(&uprobe->arch, regs);
1542 else if (utask->state == UTASK_SSTEP_TRAPPED)
1543 arch_uprobe_abort_xol(&uprobe->arch, regs);
1544 else
1545 WARN_ON_ONCE(1);
1546
1547 put_uprobe(uprobe);
1548 utask->active_uprobe = NULL;
1549 utask->state = UTASK_RUNNING;
d4b3b638 1550 xol_free_insn_slot(current);
0326f5a9
SD
1551
1552 spin_lock_irq(&current->sighand->siglock);
1553 recalc_sigpending(); /* see uprobe_deny_signal() */
1554 spin_unlock_irq(&current->sighand->siglock);
1555}
1556
1557/*
1b08e907
ON
1558 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
1559 * allows the thread to return from interrupt. After that handle_swbp()
1560 * sets utask->active_uprobe.
0326f5a9 1561 *
1b08e907
ON
1562 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
1563 * and allows the thread to return from interrupt.
0326f5a9
SD
1564 *
1565 * While returning to userspace, thread notices the TIF_UPROBE flag and calls
1566 * uprobe_notify_resume().
1567 */
1568void uprobe_notify_resume(struct pt_regs *regs)
1569{
1570 struct uprobe_task *utask;
1571
db023ea5
ON
1572 clear_thread_flag(TIF_UPROBE);
1573
0326f5a9 1574 utask = current->utask;
1b08e907 1575 if (utask && utask->active_uprobe)
0326f5a9 1576 handle_singlestep(utask, regs);
1b08e907
ON
1577 else
1578 handle_swbp(regs);
0326f5a9
SD
1579}
1580
1581/*
1582 * uprobe_pre_sstep_notifier gets called from interrupt context as part of
1583 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
1584 */
1585int uprobe_pre_sstep_notifier(struct pt_regs *regs)
1586{
f8ac4ec9 1587 if (!current->mm || !test_bit(MMF_HAS_UPROBES, &current->mm->flags))
0326f5a9
SD
1588 return 0;
1589
0326f5a9 1590 set_thread_flag(TIF_UPROBE);
0326f5a9
SD
1591 return 1;
1592}
1593
1594/*
1595 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
1596 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
1597 */
1598int uprobe_post_sstep_notifier(struct pt_regs *regs)
1599{
1600 struct uprobe_task *utask = current->utask;
1601
1602 if (!current->mm || !utask || !utask->active_uprobe)
1603 /* task is currently not uprobed */
1604 return 0;
1605
1606 utask->state = UTASK_SSTEP_ACK;
1607 set_thread_flag(TIF_UPROBE);
1608 return 1;
1609}
1610
1611static struct notifier_block uprobe_exception_nb = {
1612 .notifier_call = arch_uprobe_exception_notify,
1613 .priority = INT_MAX-1, /* notified after kprobes, kgdb */
1614};
1615
2b144498
SD
1616static int __init init_uprobes(void)
1617{
1618 int i;
1619
66d06dff 1620 for (i = 0; i < UPROBES_HASH_SZ; i++)
2b144498 1621 mutex_init(&uprobes_mmap_mutex[i]);
0326f5a9 1622
32cdba1e
ON
1623 if (percpu_init_rwsem(&dup_mmap_sem))
1624 return -ENOMEM;
1625
0326f5a9 1626 return register_die_notifier(&uprobe_exception_nb);
2b144498 1627}
0326f5a9 1628module_init(init_uprobes);
2b144498
SD
1629
1630static void __exit exit_uprobes(void)
1631{
1632}
2b144498 1633module_exit(exit_uprobes);
This page took 0.158326 seconds and 5 git commands to generate.