uprobes: Clean up and document write_opcode()->lock_page(old_page)
[deliverable/linux.git] / kernel / events / uprobes.c
CommitLineData
2b144498 1/*
7b2d81d4 2 * User-space Probes (UProbes)
2b144498
SD
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
35aa621b 18 * Copyright (C) IBM Corporation, 2008-2012
2b144498
SD
19 * Authors:
20 * Srikar Dronamraju
21 * Jim Keniston
35aa621b 22 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
2b144498
SD
23 */
24
25#include <linux/kernel.h>
26#include <linux/highmem.h>
27#include <linux/pagemap.h> /* read_mapping_page */
28#include <linux/slab.h>
29#include <linux/sched.h>
30#include <linux/rmap.h> /* anon_vma_prepare */
31#include <linux/mmu_notifier.h> /* set_pte_at_notify */
32#include <linux/swap.h> /* try_to_free_swap */
0326f5a9
SD
33#include <linux/ptrace.h> /* user_enable_single_step */
34#include <linux/kdebug.h> /* notifier mechanism */
7b2d81d4 35
2b144498
SD
36#include <linux/uprobes.h>
37
d4b3b638
SD
38#define UINSNS_PER_PAGE (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
39#define MAX_UPROBE_XOL_SLOTS UINSNS_PER_PAGE
40
2b144498 41static struct rb_root uprobes_tree = RB_ROOT;
7b2d81d4 42
2b144498
SD
43static DEFINE_SPINLOCK(uprobes_treelock); /* serialize rbtree access */
44
45#define UPROBES_HASH_SZ 13
7b2d81d4 46
c5784de2
PZ
47/*
48 * We need separate register/unregister and mmap/munmap lock hashes because
49 * of mmap_sem nesting.
50 *
51 * uprobe_register() needs to install probes on (potentially) all processes
52 * and thus needs to acquire multiple mmap_sems (consequtively, not
53 * concurrently), whereas uprobe_mmap() is called while holding mmap_sem
54 * for the particular process doing the mmap.
55 *
56 * uprobe_register()->register_for_each_vma() needs to drop/acquire mmap_sem
57 * because of lock order against i_mmap_mutex. This means there's a hole in
58 * the register vma iteration where a mmap() can happen.
59 *
60 * Thus uprobe_register() can race with uprobe_mmap() and we can try and
61 * install a probe where one is already installed.
62 */
63
2b144498
SD
64/* serialize (un)register */
65static struct mutex uprobes_mutex[UPROBES_HASH_SZ];
7b2d81d4
IM
66
67#define uprobes_hash(v) (&uprobes_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
2b144498
SD
68
69/* serialize uprobe->pending_list */
70static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
7b2d81d4 71#define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
2b144498
SD
72
73/*
7b2d81d4 74 * uprobe_events allows us to skip the uprobe_mmap if there are no uprobe
2b144498
SD
75 * events active at this time. Probably a fine grained per inode count is
76 * better?
77 */
78static atomic_t uprobe_events = ATOMIC_INIT(0);
79
3ff54efd
SD
80struct uprobe {
81 struct rb_node rb_node; /* node in the rb tree */
82 atomic_t ref;
83 struct rw_semaphore consumer_rwsem;
84 struct list_head pending_list;
85 struct uprobe_consumer *consumers;
86 struct inode *inode; /* Also hold a ref to inode */
87 loff_t offset;
88 int flags;
89 struct arch_uprobe arch;
90};
91
2b144498
SD
92/*
93 * valid_vma: Verify if the specified vma is an executable vma
94 * Relax restrictions while unregistering: vm_flags might have
95 * changed after breakpoint was inserted.
96 * - is_register: indicates if we are in register context.
97 * - Return 1 if the specified virtual address is in an
98 * executable vma.
99 */
100static bool valid_vma(struct vm_area_struct *vma, bool is_register)
101{
102 if (!vma->vm_file)
103 return false;
104
105 if (!is_register)
106 return true;
107
ea131377
ON
108 if ((vma->vm_flags & (VM_HUGETLB|VM_READ|VM_WRITE|VM_EXEC|VM_SHARED))
109 == (VM_READ|VM_EXEC))
2b144498
SD
110 return true;
111
112 return false;
113}
114
115static loff_t vma_address(struct vm_area_struct *vma, loff_t offset)
116{
117 loff_t vaddr;
118
119 vaddr = vma->vm_start + offset;
120 vaddr -= vma->vm_pgoff << PAGE_SHIFT;
7b2d81d4 121
2b144498
SD
122 return vaddr;
123}
124
125/**
126 * __replace_page - replace page in vma by new page.
127 * based on replace_page in mm/ksm.c
128 *
129 * @vma: vma that holds the pte pointing to page
c517ee74 130 * @addr: address the old @page is mapped at
2b144498
SD
131 * @page: the cowed page we are replacing by kpage
132 * @kpage: the modified page we replace page by
133 *
134 * Returns 0 on success, -EFAULT on failure.
135 */
c517ee74
ON
136static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
137 struct page *page, struct page *kpage)
2b144498
SD
138{
139 struct mm_struct *mm = vma->vm_mm;
5323ce71
ON
140 spinlock_t *ptl;
141 pte_t *ptep;
9f92448c 142 int err;
2b144498 143
9f92448c
ON
144 /* freeze PageSwapCache() for try_to_free_swap() below */
145 lock_page(page);
146
147 err = -EAGAIN;
5323ce71 148 ptep = page_check_address(page, mm, addr, &ptl, 0);
2b144498 149 if (!ptep)
9f92448c 150 goto unlock;
2b144498
SD
151
152 get_page(kpage);
153 page_add_new_anon_rmap(kpage, vma, addr);
154
7396fa81
SD
155 if (!PageAnon(page)) {
156 dec_mm_counter(mm, MM_FILEPAGES);
157 inc_mm_counter(mm, MM_ANONPAGES);
158 }
159
2b144498
SD
160 flush_cache_page(vma, addr, pte_pfn(*ptep));
161 ptep_clear_flush(vma, addr, ptep);
162 set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
163
164 page_remove_rmap(page);
165 if (!page_mapped(page))
166 try_to_free_swap(page);
167 put_page(page);
168 pte_unmap_unlock(ptep, ptl);
2b144498 169
9f92448c
ON
170 err = 0;
171 unlock:
172 unlock_page(page);
173 return err;
2b144498
SD
174}
175
176/**
5cb4ac3a 177 * is_swbp_insn - check if instruction is breakpoint instruction.
2b144498 178 * @insn: instruction to be checked.
5cb4ac3a 179 * Default implementation of is_swbp_insn
2b144498
SD
180 * Returns true if @insn is a breakpoint instruction.
181 */
5cb4ac3a 182bool __weak is_swbp_insn(uprobe_opcode_t *insn)
2b144498 183{
5cb4ac3a 184 return *insn == UPROBE_SWBP_INSN;
2b144498
SD
185}
186
187/*
188 * NOTE:
189 * Expect the breakpoint instruction to be the smallest size instruction for
190 * the architecture. If an arch has variable length instruction and the
191 * breakpoint instruction is not of the smallest length instruction
192 * supported by that architecture then we need to modify read_opcode /
193 * write_opcode accordingly. This would never be a problem for archs that
194 * have fixed length instructions.
195 */
196
197/*
198 * write_opcode - write the opcode at a given virtual address.
e3343e6a 199 * @auprobe: arch breakpointing information.
2b144498 200 * @mm: the probed process address space.
2b144498
SD
201 * @vaddr: the virtual address to store the opcode.
202 * @opcode: opcode to be written at @vaddr.
203 *
204 * Called with mm->mmap_sem held (for read and with a reference to
205 * mm).
206 *
207 * For mm @mm, write the opcode at @vaddr.
208 * Return 0 (success) or a negative errno.
209 */
e3343e6a 210static int write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm,
2b144498
SD
211 unsigned long vaddr, uprobe_opcode_t opcode)
212{
213 struct page *old_page, *new_page;
2b144498
SD
214 void *vaddr_old, *vaddr_new;
215 struct vm_area_struct *vma;
2b144498 216 int ret;
f403072c 217
5323ce71 218retry:
2b144498
SD
219 /* Read the page with vaddr into memory */
220 ret = get_user_pages(NULL, mm, vaddr, 1, 0, 0, &old_page, &vma);
221 if (ret <= 0)
222 return ret;
7b2d81d4 223
2b144498
SD
224 ret = -ENOMEM;
225 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
226 if (!new_page)
9f92448c 227 goto put_old;
2b144498
SD
228
229 __SetPageUptodate(new_page);
230
2b144498
SD
231 /* copy the page now that we've got it stable */
232 vaddr_old = kmap_atomic(old_page);
233 vaddr_new = kmap_atomic(new_page);
234
235 memcpy(vaddr_new, vaddr_old, PAGE_SIZE);
d9c4a30e 236 memcpy(vaddr_new + (vaddr & ~PAGE_MASK), &opcode, UPROBE_SWBP_INSN_SIZE);
2b144498
SD
237
238 kunmap_atomic(vaddr_new);
239 kunmap_atomic(vaddr_old);
240
241 ret = anon_vma_prepare(vma);
242 if (ret)
9f92448c 243 goto put_new;
2b144498 244
c517ee74 245 ret = __replace_page(vma, vaddr, old_page, new_page);
2b144498 246
9f92448c 247put_new:
2b144498 248 page_cache_release(new_page);
9f92448c 249put_old:
7b2d81d4
IM
250 put_page(old_page);
251
5323ce71
ON
252 if (unlikely(ret == -EAGAIN))
253 goto retry;
2b144498
SD
254 return ret;
255}
256
257/**
258 * read_opcode - read the opcode at a given virtual address.
259 * @mm: the probed process address space.
260 * @vaddr: the virtual address to read the opcode.
261 * @opcode: location to store the read opcode.
262 *
263 * Called with mm->mmap_sem held (for read and with a reference to
264 * mm.
265 *
266 * For mm @mm, read the opcode at @vaddr and store it in @opcode.
267 * Return 0 (success) or a negative errno.
268 */
7b2d81d4 269static int read_opcode(struct mm_struct *mm, unsigned long vaddr, uprobe_opcode_t *opcode)
2b144498
SD
270{
271 struct page *page;
272 void *vaddr_new;
273 int ret;
274
a3d7bb47 275 ret = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &page, NULL);
2b144498
SD
276 if (ret <= 0)
277 return ret;
278
279 lock_page(page);
280 vaddr_new = kmap_atomic(page);
281 vaddr &= ~PAGE_MASK;
5cb4ac3a 282 memcpy(opcode, vaddr_new + vaddr, UPROBE_SWBP_INSN_SIZE);
2b144498
SD
283 kunmap_atomic(vaddr_new);
284 unlock_page(page);
7b2d81d4
IM
285
286 put_page(page);
287
2b144498
SD
288 return 0;
289}
290
5cb4ac3a 291static int is_swbp_at_addr(struct mm_struct *mm, unsigned long vaddr)
2b144498
SD
292{
293 uprobe_opcode_t opcode;
7b2d81d4 294 int result;
2b144498 295
c00b2750
ON
296 if (current->mm == mm) {
297 pagefault_disable();
298 result = __copy_from_user_inatomic(&opcode, (void __user*)vaddr,
299 sizeof(opcode));
300 pagefault_enable();
301
302 if (likely(result == 0))
303 goto out;
304 }
305
7b2d81d4 306 result = read_opcode(mm, vaddr, &opcode);
2b144498
SD
307 if (result)
308 return result;
c00b2750 309out:
5cb4ac3a 310 if (is_swbp_insn(&opcode))
2b144498
SD
311 return 1;
312
313 return 0;
314}
315
316/**
5cb4ac3a 317 * set_swbp - store breakpoint at a given address.
e3343e6a 318 * @auprobe: arch specific probepoint information.
2b144498 319 * @mm: the probed process address space.
2b144498
SD
320 * @vaddr: the virtual address to insert the opcode.
321 *
322 * For mm @mm, store the breakpoint instruction at @vaddr.
323 * Return 0 (success) or a negative errno.
324 */
5cb4ac3a 325int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
2b144498 326{
7b2d81d4 327 int result;
c5784de2
PZ
328 /*
329 * See the comment near uprobes_hash().
330 */
5cb4ac3a 331 result = is_swbp_at_addr(mm, vaddr);
2b144498
SD
332 if (result == 1)
333 return -EEXIST;
334
335 if (result)
336 return result;
337
5cb4ac3a 338 return write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN);
2b144498
SD
339}
340
341/**
342 * set_orig_insn - Restore the original instruction.
343 * @mm: the probed process address space.
e3343e6a 344 * @auprobe: arch specific probepoint information.
2b144498
SD
345 * @vaddr: the virtual address to insert the opcode.
346 * @verify: if true, verify existance of breakpoint instruction.
347 *
348 * For mm @mm, restore the original opcode (opcode) at @vaddr.
349 * Return 0 (success) or a negative errno.
350 */
7b2d81d4 351int __weak
e3343e6a 352set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr, bool verify)
2b144498
SD
353{
354 if (verify) {
7b2d81d4 355 int result;
2b144498 356
5cb4ac3a 357 result = is_swbp_at_addr(mm, vaddr);
2b144498
SD
358 if (!result)
359 return -EINVAL;
360
361 if (result != 1)
362 return result;
363 }
e3343e6a 364 return write_opcode(auprobe, mm, vaddr, *(uprobe_opcode_t *)auprobe->insn);
2b144498
SD
365}
366
367static int match_uprobe(struct uprobe *l, struct uprobe *r)
368{
369 if (l->inode < r->inode)
370 return -1;
7b2d81d4 371
2b144498
SD
372 if (l->inode > r->inode)
373 return 1;
2b144498 374
7b2d81d4
IM
375 if (l->offset < r->offset)
376 return -1;
377
378 if (l->offset > r->offset)
379 return 1;
2b144498
SD
380
381 return 0;
382}
383
384static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
385{
386 struct uprobe u = { .inode = inode, .offset = offset };
387 struct rb_node *n = uprobes_tree.rb_node;
388 struct uprobe *uprobe;
389 int match;
390
391 while (n) {
392 uprobe = rb_entry(n, struct uprobe, rb_node);
393 match = match_uprobe(&u, uprobe);
394 if (!match) {
395 atomic_inc(&uprobe->ref);
396 return uprobe;
397 }
7b2d81d4 398
2b144498
SD
399 if (match < 0)
400 n = n->rb_left;
401 else
402 n = n->rb_right;
403 }
404 return NULL;
405}
406
407/*
408 * Find a uprobe corresponding to a given inode:offset
409 * Acquires uprobes_treelock
410 */
411static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
412{
413 struct uprobe *uprobe;
414 unsigned long flags;
415
416 spin_lock_irqsave(&uprobes_treelock, flags);
417 uprobe = __find_uprobe(inode, offset);
418 spin_unlock_irqrestore(&uprobes_treelock, flags);
7b2d81d4 419
2b144498
SD
420 return uprobe;
421}
422
423static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
424{
425 struct rb_node **p = &uprobes_tree.rb_node;
426 struct rb_node *parent = NULL;
427 struct uprobe *u;
428 int match;
429
430 while (*p) {
431 parent = *p;
432 u = rb_entry(parent, struct uprobe, rb_node);
433 match = match_uprobe(uprobe, u);
434 if (!match) {
435 atomic_inc(&u->ref);
436 return u;
437 }
438
439 if (match < 0)
440 p = &parent->rb_left;
441 else
442 p = &parent->rb_right;
443
444 }
7b2d81d4 445
2b144498
SD
446 u = NULL;
447 rb_link_node(&uprobe->rb_node, parent, p);
448 rb_insert_color(&uprobe->rb_node, &uprobes_tree);
449 /* get access + creation ref */
450 atomic_set(&uprobe->ref, 2);
7b2d81d4 451
2b144498
SD
452 return u;
453}
454
455/*
7b2d81d4 456 * Acquire uprobes_treelock.
2b144498
SD
457 * Matching uprobe already exists in rbtree;
458 * increment (access refcount) and return the matching uprobe.
459 *
460 * No matching uprobe; insert the uprobe in rb_tree;
461 * get a double refcount (access + creation) and return NULL.
462 */
463static struct uprobe *insert_uprobe(struct uprobe *uprobe)
464{
465 unsigned long flags;
466 struct uprobe *u;
467
468 spin_lock_irqsave(&uprobes_treelock, flags);
469 u = __insert_uprobe(uprobe);
470 spin_unlock_irqrestore(&uprobes_treelock, flags);
7b2d81d4 471
0326f5a9
SD
472 /* For now assume that the instruction need not be single-stepped */
473 uprobe->flags |= UPROBE_SKIP_SSTEP;
474
2b144498
SD
475 return u;
476}
477
478static void put_uprobe(struct uprobe *uprobe)
479{
480 if (atomic_dec_and_test(&uprobe->ref))
481 kfree(uprobe);
482}
483
484static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
485{
486 struct uprobe *uprobe, *cur_uprobe;
487
488 uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
489 if (!uprobe)
490 return NULL;
491
492 uprobe->inode = igrab(inode);
493 uprobe->offset = offset;
494 init_rwsem(&uprobe->consumer_rwsem);
2b144498
SD
495
496 /* add to uprobes_tree, sorted on inode:offset */
497 cur_uprobe = insert_uprobe(uprobe);
498
499 /* a uprobe exists for this inode:offset combination */
500 if (cur_uprobe) {
501 kfree(uprobe);
502 uprobe = cur_uprobe;
503 iput(inode);
7b2d81d4 504 } else {
2b144498 505 atomic_inc(&uprobe_events);
7b2d81d4
IM
506 }
507
2b144498
SD
508 return uprobe;
509}
510
0326f5a9
SD
511static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
512{
513 struct uprobe_consumer *uc;
514
515 if (!(uprobe->flags & UPROBE_RUN_HANDLER))
516 return;
517
518 down_read(&uprobe->consumer_rwsem);
519 for (uc = uprobe->consumers; uc; uc = uc->next) {
520 if (!uc->filter || uc->filter(uc, current))
521 uc->handler(uc, regs);
522 }
523 up_read(&uprobe->consumer_rwsem);
524}
525
2b144498 526/* Returns the previous consumer */
7b2d81d4 527static struct uprobe_consumer *
e3343e6a 528consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
2b144498
SD
529{
530 down_write(&uprobe->consumer_rwsem);
e3343e6a
SD
531 uc->next = uprobe->consumers;
532 uprobe->consumers = uc;
2b144498 533 up_write(&uprobe->consumer_rwsem);
7b2d81d4 534
e3343e6a 535 return uc->next;
2b144498
SD
536}
537
538/*
e3343e6a
SD
539 * For uprobe @uprobe, delete the consumer @uc.
540 * Return true if the @uc is deleted successfully
2b144498
SD
541 * or return false.
542 */
e3343e6a 543static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
2b144498
SD
544{
545 struct uprobe_consumer **con;
546 bool ret = false;
547
548 down_write(&uprobe->consumer_rwsem);
549 for (con = &uprobe->consumers; *con; con = &(*con)->next) {
e3343e6a
SD
550 if (*con == uc) {
551 *con = uc->next;
2b144498
SD
552 ret = true;
553 break;
554 }
555 }
556 up_write(&uprobe->consumer_rwsem);
7b2d81d4 557
2b144498
SD
558 return ret;
559}
560
e3343e6a 561static int
d436615e 562__copy_insn(struct address_space *mapping, struct file *filp, char *insn,
593609a5 563 unsigned long nbytes, loff_t offset)
2b144498 564{
2b144498
SD
565 struct page *page;
566 void *vaddr;
593609a5
ON
567 unsigned long off;
568 pgoff_t idx;
2b144498
SD
569
570 if (!filp)
571 return -EINVAL;
572
cc359d18
ON
573 if (!mapping->a_ops->readpage)
574 return -EIO;
575
593609a5
ON
576 idx = offset >> PAGE_CACHE_SHIFT;
577 off = offset & ~PAGE_MASK;
2b144498
SD
578
579 /*
580 * Ensure that the page that has the original instruction is
581 * populated and in page-cache.
582 */
583 page = read_mapping_page(mapping, idx, filp);
584 if (IS_ERR(page))
585 return PTR_ERR(page);
586
587 vaddr = kmap_atomic(page);
593609a5 588 memcpy(insn, vaddr + off, nbytes);
2b144498
SD
589 kunmap_atomic(vaddr);
590 page_cache_release(page);
7b2d81d4 591
2b144498
SD
592 return 0;
593}
594
d436615e 595static int copy_insn(struct uprobe *uprobe, struct file *filp)
2b144498
SD
596{
597 struct address_space *mapping;
2b144498 598 unsigned long nbytes;
7b2d81d4 599 int bytes;
2b144498 600
d436615e 601 nbytes = PAGE_SIZE - (uprobe->offset & ~PAGE_MASK);
2b144498
SD
602 mapping = uprobe->inode->i_mapping;
603
604 /* Instruction at end of binary; copy only available bytes */
605 if (uprobe->offset + MAX_UINSN_BYTES > uprobe->inode->i_size)
606 bytes = uprobe->inode->i_size - uprobe->offset;
607 else
608 bytes = MAX_UINSN_BYTES;
609
610 /* Instruction at the page-boundary; copy bytes in second page */
611 if (nbytes < bytes) {
fc36f595
ON
612 int err = __copy_insn(mapping, filp, uprobe->arch.insn + nbytes,
613 bytes - nbytes, uprobe->offset + nbytes);
614 if (err)
615 return err;
2b144498
SD
616 bytes = nbytes;
617 }
d436615e 618 return __copy_insn(mapping, filp, uprobe->arch.insn, bytes, uprobe->offset);
2b144498
SD
619}
620
682968e0
SD
621/*
622 * How mm->uprobes_state.count gets updated
623 * uprobe_mmap() increments the count if
624 * - it successfully adds a breakpoint.
625 * - it cannot add a breakpoint, but sees that there is a underlying
626 * breakpoint (via a is_swbp_at_addr()).
627 *
628 * uprobe_munmap() decrements the count if
629 * - it sees a underlying breakpoint, (via is_swbp_at_addr)
630 * (Subsequent uprobe_unregister wouldnt find the breakpoint
631 * unless a uprobe_mmap kicks in, since the old vma would be
632 * dropped just after uprobe_munmap.)
633 *
634 * uprobe_register increments the count if:
635 * - it successfully adds a breakpoint.
636 *
637 * uprobe_unregister decrements the count if:
638 * - it sees a underlying breakpoint and removes successfully.
639 * (via is_swbp_at_addr)
640 * (Subsequent uprobe_munmap wouldnt find the breakpoint
641 * since there is no underlying breakpoint after the
642 * breakpoint removal.)
643 */
e3343e6a
SD
644static int
645install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
816c03fb 646 struct vm_area_struct *vma, unsigned long vaddr)
2b144498 647{
2b144498
SD
648 int ret;
649
650 /*
651 * If probe is being deleted, unregister thread could be done with
652 * the vma-rmap-walk through. Adding a probe now can be fatal since
653 * nobody will be able to cleanup. Also we could be from fork or
654 * mremap path, where the probe might have already been inserted.
655 * Hence behave as if probe already existed.
656 */
657 if (!uprobe->consumers)
658 return -EEXIST;
659
900771a4 660 if (!(uprobe->flags & UPROBE_COPY_INSN)) {
d436615e 661 ret = copy_insn(uprobe, vma->vm_file);
2b144498
SD
662 if (ret)
663 return ret;
664
5cb4ac3a 665 if (is_swbp_insn((uprobe_opcode_t *)uprobe->arch.insn))
c1914a09 666 return -ENOTSUPP;
2b144498 667
816c03fb 668 ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
2b144498
SD
669 if (ret)
670 return ret;
671
d9c4a30e
ON
672 /* write_opcode() assumes we don't cross page boundary */
673 BUG_ON((uprobe->offset & ~PAGE_MASK) +
674 UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
675
900771a4 676 uprobe->flags |= UPROBE_COPY_INSN;
2b144498 677 }
682968e0
SD
678
679 /*
680 * Ideally, should be updating the probe count after the breakpoint
681 * has been successfully inserted. However a thread could hit the
682 * breakpoint we just inserted even before the probe count is
683 * incremented. If this is the first breakpoint placed, breakpoint
684 * notifier might ignore uprobes and pass the trap to the thread.
685 * Hence increment before and decrement on failure.
686 */
687 atomic_inc(&mm->uprobes_state.count);
816c03fb 688 ret = set_swbp(&uprobe->arch, mm, vaddr);
682968e0
SD
689 if (ret)
690 atomic_dec(&mm->uprobes_state.count);
2b144498
SD
691
692 return ret;
693}
694
e3343e6a 695static void
816c03fb 696remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
2b144498 697{
816c03fb 698 if (!set_orig_insn(&uprobe->arch, mm, vaddr, true))
682968e0 699 atomic_dec(&mm->uprobes_state.count);
2b144498
SD
700}
701
0326f5a9 702/*
778b032d
ON
703 * There could be threads that have already hit the breakpoint. They
704 * will recheck the current insn and restart if find_uprobe() fails.
705 * See find_active_uprobe().
0326f5a9 706 */
2b144498
SD
707static void delete_uprobe(struct uprobe *uprobe)
708{
709 unsigned long flags;
710
711 spin_lock_irqsave(&uprobes_treelock, flags);
712 rb_erase(&uprobe->rb_node, &uprobes_tree);
713 spin_unlock_irqrestore(&uprobes_treelock, flags);
714 iput(uprobe->inode);
715 put_uprobe(uprobe);
716 atomic_dec(&uprobe_events);
717}
718
26872090
ON
719struct map_info {
720 struct map_info *next;
721 struct mm_struct *mm;
816c03fb 722 unsigned long vaddr;
26872090
ON
723};
724
725static inline struct map_info *free_map_info(struct map_info *info)
2b144498 726{
26872090
ON
727 struct map_info *next = info->next;
728 kfree(info);
729 return next;
730}
731
732static struct map_info *
733build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
734{
735 unsigned long pgoff = offset >> PAGE_SHIFT;
2b144498
SD
736 struct prio_tree_iter iter;
737 struct vm_area_struct *vma;
26872090
ON
738 struct map_info *curr = NULL;
739 struct map_info *prev = NULL;
740 struct map_info *info;
741 int more = 0;
2b144498 742
26872090
ON
743 again:
744 mutex_lock(&mapping->i_mmap_mutex);
2b144498
SD
745 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
746 if (!valid_vma(vma, is_register))
747 continue;
748
7a5bfb66
ON
749 if (!prev && !more) {
750 /*
751 * Needs GFP_NOWAIT to avoid i_mmap_mutex recursion through
752 * reclaim. This is optimistic, no harm done if it fails.
753 */
754 prev = kmalloc(sizeof(struct map_info),
755 GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
756 if (prev)
757 prev->next = NULL;
758 }
26872090
ON
759 if (!prev) {
760 more++;
761 continue;
2b144498 762 }
2b144498 763
26872090
ON
764 if (!atomic_inc_not_zero(&vma->vm_mm->mm_users))
765 continue;
7b2d81d4 766
26872090
ON
767 info = prev;
768 prev = prev->next;
769 info->next = curr;
770 curr = info;
2b144498 771
26872090
ON
772 info->mm = vma->vm_mm;
773 info->vaddr = vma_address(vma, offset);
774 }
2b144498
SD
775 mutex_unlock(&mapping->i_mmap_mutex);
776
26872090
ON
777 if (!more)
778 goto out;
779
780 prev = curr;
781 while (curr) {
782 mmput(curr->mm);
783 curr = curr->next;
784 }
7b2d81d4 785
26872090
ON
786 do {
787 info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
788 if (!info) {
789 curr = ERR_PTR(-ENOMEM);
790 goto out;
791 }
792 info->next = prev;
793 prev = info;
794 } while (--more);
795
796 goto again;
797 out:
798 while (prev)
799 prev = free_map_info(prev);
800 return curr;
2b144498
SD
801}
802
803static int register_for_each_vma(struct uprobe *uprobe, bool is_register)
804{
26872090
ON
805 struct map_info *info;
806 int err = 0;
2b144498 807
26872090
ON
808 info = build_map_info(uprobe->inode->i_mapping,
809 uprobe->offset, is_register);
810 if (IS_ERR(info))
811 return PTR_ERR(info);
7b2d81d4 812
26872090
ON
813 while (info) {
814 struct mm_struct *mm = info->mm;
815 struct vm_area_struct *vma;
7b2d81d4 816
26872090
ON
817 if (err)
818 goto free;
7b2d81d4 819
77fc4af1 820 down_write(&mm->mmap_sem);
26872090
ON
821 vma = find_vma(mm, (unsigned long)info->vaddr);
822 if (!vma || !valid_vma(vma, is_register))
823 goto unlock;
824
2b144498 825 if (vma->vm_file->f_mapping->host != uprobe->inode ||
816c03fb 826 vma_address(vma, uprobe->offset) != info->vaddr)
26872090 827 goto unlock;
2b144498 828
2b144498 829 if (is_register) {
26872090 830 err = install_breakpoint(uprobe, mm, vma, info->vaddr);
c5784de2
PZ
831 /*
832 * We can race against uprobe_mmap(), see the
833 * comment near uprobe_hash().
834 */
26872090
ON
835 if (err == -EEXIST)
836 err = 0;
837 } else {
838 remove_breakpoint(uprobe, mm, info->vaddr);
2b144498 839 }
26872090
ON
840 unlock:
841 up_write(&mm->mmap_sem);
842 free:
843 mmput(mm);
844 info = free_map_info(info);
2b144498 845 }
7b2d81d4 846
26872090 847 return err;
2b144498
SD
848}
849
7b2d81d4 850static int __uprobe_register(struct uprobe *uprobe)
2b144498
SD
851{
852 return register_for_each_vma(uprobe, true);
853}
854
7b2d81d4 855static void __uprobe_unregister(struct uprobe *uprobe)
2b144498
SD
856{
857 if (!register_for_each_vma(uprobe, false))
858 delete_uprobe(uprobe);
859
860 /* TODO : cant unregister? schedule a worker thread */
861}
862
863/*
7b2d81d4 864 * uprobe_register - register a probe
2b144498
SD
865 * @inode: the file in which the probe has to be placed.
866 * @offset: offset from the start of the file.
e3343e6a 867 * @uc: information on howto handle the probe..
2b144498 868 *
7b2d81d4 869 * Apart from the access refcount, uprobe_register() takes a creation
2b144498
SD
870 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
871 * inserted into the rbtree (i.e first consumer for a @inode:@offset
7b2d81d4 872 * tuple). Creation refcount stops uprobe_unregister from freeing the
2b144498 873 * @uprobe even before the register operation is complete. Creation
e3343e6a 874 * refcount is released when the last @uc for the @uprobe
2b144498
SD
875 * unregisters.
876 *
877 * Return errno if it cannot successully install probes
878 * else return 0 (success)
879 */
e3343e6a 880int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
2b144498
SD
881{
882 struct uprobe *uprobe;
7b2d81d4 883 int ret;
2b144498 884
e3343e6a 885 if (!inode || !uc || uc->next)
7b2d81d4 886 return -EINVAL;
2b144498
SD
887
888 if (offset > i_size_read(inode))
7b2d81d4 889 return -EINVAL;
2b144498
SD
890
891 ret = 0;
892 mutex_lock(uprobes_hash(inode));
893 uprobe = alloc_uprobe(inode, offset);
7b2d81d4 894
e3343e6a 895 if (uprobe && !consumer_add(uprobe, uc)) {
7b2d81d4 896 ret = __uprobe_register(uprobe);
2b144498
SD
897 if (ret) {
898 uprobe->consumers = NULL;
7b2d81d4
IM
899 __uprobe_unregister(uprobe);
900 } else {
900771a4 901 uprobe->flags |= UPROBE_RUN_HANDLER;
7b2d81d4 902 }
2b144498
SD
903 }
904
905 mutex_unlock(uprobes_hash(inode));
906 put_uprobe(uprobe);
907
908 return ret;
909}
910
911/*
7b2d81d4 912 * uprobe_unregister - unregister a already registered probe.
2b144498
SD
913 * @inode: the file in which the probe has to be removed.
914 * @offset: offset from the start of the file.
e3343e6a 915 * @uc: identify which probe if multiple probes are colocated.
2b144498 916 */
e3343e6a 917void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
2b144498 918{
7b2d81d4 919 struct uprobe *uprobe;
2b144498 920
e3343e6a 921 if (!inode || !uc)
2b144498
SD
922 return;
923
924 uprobe = find_uprobe(inode, offset);
925 if (!uprobe)
926 return;
927
928 mutex_lock(uprobes_hash(inode));
2b144498 929
e3343e6a 930 if (consumer_del(uprobe, uc)) {
7b2d81d4
IM
931 if (!uprobe->consumers) {
932 __uprobe_unregister(uprobe);
900771a4 933 uprobe->flags &= ~UPROBE_RUN_HANDLER;
7b2d81d4 934 }
2b144498
SD
935 }
936
2b144498
SD
937 mutex_unlock(uprobes_hash(inode));
938 if (uprobe)
939 put_uprobe(uprobe);
940}
941
942/*
943 * Of all the nodes that correspond to the given inode, return the node
944 * with the least offset.
945 */
946static struct rb_node *find_least_offset_node(struct inode *inode)
947{
948 struct uprobe u = { .inode = inode, .offset = 0};
949 struct rb_node *n = uprobes_tree.rb_node;
950 struct rb_node *close_node = NULL;
951 struct uprobe *uprobe;
952 int match;
953
954 while (n) {
955 uprobe = rb_entry(n, struct uprobe, rb_node);
956 match = match_uprobe(&u, uprobe);
7b2d81d4 957
2b144498
SD
958 if (uprobe->inode == inode)
959 close_node = n;
960
961 if (!match)
962 return close_node;
963
964 if (match < 0)
965 n = n->rb_left;
966 else
967 n = n->rb_right;
968 }
7b2d81d4 969
2b144498
SD
970 return close_node;
971}
972
973/*
974 * For a given inode, build a list of probes that need to be inserted.
975 */
976static void build_probe_list(struct inode *inode, struct list_head *head)
977{
978 struct uprobe *uprobe;
2b144498 979 unsigned long flags;
7b2d81d4 980 struct rb_node *n;
2b144498
SD
981
982 spin_lock_irqsave(&uprobes_treelock, flags);
7b2d81d4 983
2b144498 984 n = find_least_offset_node(inode);
7b2d81d4 985
2b144498
SD
986 for (; n; n = rb_next(n)) {
987 uprobe = rb_entry(n, struct uprobe, rb_node);
988 if (uprobe->inode != inode)
989 break;
990
991 list_add(&uprobe->pending_list, head);
992 atomic_inc(&uprobe->ref);
993 }
7b2d81d4 994
2b144498
SD
995 spin_unlock_irqrestore(&uprobes_treelock, flags);
996}
997
998/*
999 * Called from mmap_region.
1000 * called with mm->mmap_sem acquired.
1001 *
1002 * Return -ve no if we fail to insert probes and we cannot
1003 * bail-out.
7b2d81d4
IM
1004 * Return 0 otherwise. i.e:
1005 *
2b144498
SD
1006 * - successful insertion of probes
1007 * - (or) no possible probes to be inserted.
1008 * - (or) insertion of probes failed but we can bail-out.
1009 */
7b2d81d4 1010int uprobe_mmap(struct vm_area_struct *vma)
2b144498
SD
1011{
1012 struct list_head tmp_list;
449d0d7c 1013 struct uprobe *uprobe;
2b144498 1014 struct inode *inode;
682968e0 1015 int ret, count;
2b144498
SD
1016
1017 if (!atomic_read(&uprobe_events) || !valid_vma(vma, true))
7b2d81d4 1018 return 0;
2b144498
SD
1019
1020 inode = vma->vm_file->f_mapping->host;
1021 if (!inode)
7b2d81d4 1022 return 0;
2b144498
SD
1023
1024 INIT_LIST_HEAD(&tmp_list);
1025 mutex_lock(uprobes_mmap_hash(inode));
1026 build_probe_list(inode, &tmp_list);
7b2d81d4
IM
1027
1028 ret = 0;
682968e0 1029 count = 0;
7b2d81d4 1030
449d0d7c 1031 list_for_each_entry(uprobe, &tmp_list, pending_list) {
2b144498 1032 if (!ret) {
816c03fb 1033 loff_t vaddr = vma_address(vma, uprobe->offset);
682968e0
SD
1034
1035 if (vaddr < vma->vm_start || vaddr >= vma->vm_end) {
1036 put_uprobe(uprobe);
1037 continue;
2b144498 1038 }
682968e0
SD
1039
1040 ret = install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
c5784de2
PZ
1041 /*
1042 * We can race against uprobe_register(), see the
1043 * comment near uprobe_hash().
1044 */
682968e0
SD
1045 if (ret == -EEXIST) {
1046 ret = 0;
1047
1048 if (!is_swbp_at_addr(vma->vm_mm, vaddr))
1049 continue;
1050
1051 /*
1052 * Unable to insert a breakpoint, but
1053 * breakpoint lies underneath. Increment the
1054 * probe count.
1055 */
1056 atomic_inc(&vma->vm_mm->uprobes_state.count);
1057 }
1058
1059 if (!ret)
1060 count++;
2b144498
SD
1061 }
1062 put_uprobe(uprobe);
1063 }
1064
1065 mutex_unlock(uprobes_mmap_hash(inode));
1066
682968e0
SD
1067 if (ret)
1068 atomic_sub(count, &vma->vm_mm->uprobes_state.count);
1069
2b144498
SD
1070 return ret;
1071}
1072
682968e0
SD
1073/*
1074 * Called in context of a munmap of a vma.
1075 */
cbc91f71 1076void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
682968e0
SD
1077{
1078 struct list_head tmp_list;
449d0d7c 1079 struct uprobe *uprobe;
682968e0
SD
1080 struct inode *inode;
1081
1082 if (!atomic_read(&uprobe_events) || !valid_vma(vma, false))
1083 return;
1084
1085 if (!atomic_read(&vma->vm_mm->uprobes_state.count))
1086 return;
1087
1088 inode = vma->vm_file->f_mapping->host;
1089 if (!inode)
1090 return;
1091
1092 INIT_LIST_HEAD(&tmp_list);
1093 mutex_lock(uprobes_mmap_hash(inode));
1094 build_probe_list(inode, &tmp_list);
1095
449d0d7c 1096 list_for_each_entry(uprobe, &tmp_list, pending_list) {
816c03fb 1097 loff_t vaddr = vma_address(vma, uprobe->offset);
682968e0 1098
cbc91f71 1099 if (vaddr >= start && vaddr < end) {
682968e0
SD
1100 /*
1101 * An unregister could have removed the probe before
1102 * unmap. So check before we decrement the count.
1103 */
1104 if (is_swbp_at_addr(vma->vm_mm, vaddr) == 1)
1105 atomic_dec(&vma->vm_mm->uprobes_state.count);
1106 }
1107 put_uprobe(uprobe);
1108 }
1109 mutex_unlock(uprobes_mmap_hash(inode));
1110}
1111
d4b3b638
SD
1112/* Slot allocation for XOL */
1113static int xol_add_vma(struct xol_area *area)
1114{
1115 struct mm_struct *mm;
1116 int ret;
1117
1118 area->page = alloc_page(GFP_HIGHUSER);
1119 if (!area->page)
1120 return -ENOMEM;
1121
1122 ret = -EALREADY;
1123 mm = current->mm;
1124
1125 down_write(&mm->mmap_sem);
1126 if (mm->uprobes_state.xol_area)
1127 goto fail;
1128
1129 ret = -ENOMEM;
1130
1131 /* Try to map as high as possible, this is only a hint. */
1132 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE, PAGE_SIZE, 0, 0);
1133 if (area->vaddr & ~PAGE_MASK) {
1134 ret = area->vaddr;
1135 goto fail;
1136 }
1137
1138 ret = install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1139 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, &area->page);
1140 if (ret)
1141 goto fail;
1142
1143 smp_wmb(); /* pairs with get_xol_area() */
1144 mm->uprobes_state.xol_area = area;
1145 ret = 0;
1146
1147fail:
1148 up_write(&mm->mmap_sem);
1149 if (ret)
1150 __free_page(area->page);
1151
1152 return ret;
1153}
1154
1155static struct xol_area *get_xol_area(struct mm_struct *mm)
1156{
1157 struct xol_area *area;
1158
1159 area = mm->uprobes_state.xol_area;
1160 smp_read_barrier_depends(); /* pairs with wmb in xol_add_vma() */
1161
1162 return area;
1163}
1164
1165/*
1166 * xol_alloc_area - Allocate process's xol_area.
1167 * This area will be used for storing instructions for execution out of
1168 * line.
1169 *
1170 * Returns the allocated area or NULL.
1171 */
1172static struct xol_area *xol_alloc_area(void)
1173{
1174 struct xol_area *area;
1175
1176 area = kzalloc(sizeof(*area), GFP_KERNEL);
1177 if (unlikely(!area))
1178 return NULL;
1179
1180 area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL);
1181
1182 if (!area->bitmap)
1183 goto fail;
1184
1185 init_waitqueue_head(&area->wq);
1186 if (!xol_add_vma(area))
1187 return area;
1188
1189fail:
1190 kfree(area->bitmap);
1191 kfree(area);
1192
1193 return get_xol_area(current->mm);
1194}
1195
1196/*
1197 * uprobe_clear_state - Free the area allocated for slots.
1198 */
1199void uprobe_clear_state(struct mm_struct *mm)
1200{
1201 struct xol_area *area = mm->uprobes_state.xol_area;
1202
1203 if (!area)
1204 return;
1205
1206 put_page(area->page);
1207 kfree(area->bitmap);
1208 kfree(area);
1209}
1210
1211/*
1212 * uprobe_reset_state - Free the area allocated for slots.
1213 */
1214void uprobe_reset_state(struct mm_struct *mm)
1215{
1216 mm->uprobes_state.xol_area = NULL;
682968e0 1217 atomic_set(&mm->uprobes_state.count, 0);
d4b3b638
SD
1218}
1219
1220/*
1221 * - search for a free slot.
1222 */
1223static unsigned long xol_take_insn_slot(struct xol_area *area)
1224{
1225 unsigned long slot_addr;
1226 int slot_nr;
1227
1228 do {
1229 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1230 if (slot_nr < UINSNS_PER_PAGE) {
1231 if (!test_and_set_bit(slot_nr, area->bitmap))
1232 break;
1233
1234 slot_nr = UINSNS_PER_PAGE;
1235 continue;
1236 }
1237 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1238 } while (slot_nr >= UINSNS_PER_PAGE);
1239
1240 slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1241 atomic_inc(&area->slot_count);
1242
1243 return slot_addr;
1244}
1245
1246/*
1247 * xol_get_insn_slot - If was not allocated a slot, then
1248 * allocate a slot.
1249 * Returns the allocated slot address or 0.
1250 */
1251static unsigned long xol_get_insn_slot(struct uprobe *uprobe, unsigned long slot_addr)
1252{
1253 struct xol_area *area;
1254 unsigned long offset;
1255 void *vaddr;
1256
1257 area = get_xol_area(current->mm);
1258 if (!area) {
1259 area = xol_alloc_area();
1260 if (!area)
1261 return 0;
1262 }
1263 current->utask->xol_vaddr = xol_take_insn_slot(area);
1264
1265 /*
1266 * Initialize the slot if xol_vaddr points to valid
1267 * instruction slot.
1268 */
1269 if (unlikely(!current->utask->xol_vaddr))
1270 return 0;
1271
1272 current->utask->vaddr = slot_addr;
1273 offset = current->utask->xol_vaddr & ~PAGE_MASK;
1274 vaddr = kmap_atomic(area->page);
1275 memcpy(vaddr + offset, uprobe->arch.insn, MAX_UINSN_BYTES);
1276 kunmap_atomic(vaddr);
1277
1278 return current->utask->xol_vaddr;
1279}
1280
1281/*
1282 * xol_free_insn_slot - If slot was earlier allocated by
1283 * @xol_get_insn_slot(), make the slot available for
1284 * subsequent requests.
1285 */
1286static void xol_free_insn_slot(struct task_struct *tsk)
1287{
1288 struct xol_area *area;
1289 unsigned long vma_end;
1290 unsigned long slot_addr;
1291
1292 if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1293 return;
1294
1295 slot_addr = tsk->utask->xol_vaddr;
1296
1297 if (unlikely(!slot_addr || IS_ERR_VALUE(slot_addr)))
1298 return;
1299
1300 area = tsk->mm->uprobes_state.xol_area;
1301 vma_end = area->vaddr + PAGE_SIZE;
1302 if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1303 unsigned long offset;
1304 int slot_nr;
1305
1306 offset = slot_addr - area->vaddr;
1307 slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1308 if (slot_nr >= UINSNS_PER_PAGE)
1309 return;
1310
1311 clear_bit(slot_nr, area->bitmap);
1312 atomic_dec(&area->slot_count);
1313 if (waitqueue_active(&area->wq))
1314 wake_up(&area->wq);
1315
1316 tsk->utask->xol_vaddr = 0;
1317 }
1318}
1319
0326f5a9
SD
1320/**
1321 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1322 * @regs: Reflects the saved state of the task after it has hit a breakpoint
1323 * instruction.
1324 * Return the address of the breakpoint instruction.
1325 */
1326unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1327{
1328 return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1329}
1330
1331/*
1332 * Called with no locks held.
1333 * Called in context of a exiting or a exec-ing thread.
1334 */
1335void uprobe_free_utask(struct task_struct *t)
1336{
1337 struct uprobe_task *utask = t->utask;
1338
0326f5a9
SD
1339 if (!utask)
1340 return;
1341
1342 if (utask->active_uprobe)
1343 put_uprobe(utask->active_uprobe);
1344
d4b3b638 1345 xol_free_insn_slot(t);
0326f5a9
SD
1346 kfree(utask);
1347 t->utask = NULL;
1348}
1349
1350/*
1351 * Called in context of a new clone/fork from copy_process.
1352 */
1353void uprobe_copy_process(struct task_struct *t)
1354{
1355 t->utask = NULL;
0326f5a9
SD
1356}
1357
1358/*
1359 * Allocate a uprobe_task object for the task.
1360 * Called when the thread hits a breakpoint for the first time.
1361 *
1362 * Returns:
1363 * - pointer to new uprobe_task on success
1364 * - NULL otherwise
1365 */
1366static struct uprobe_task *add_utask(void)
1367{
1368 struct uprobe_task *utask;
1369
1370 utask = kzalloc(sizeof *utask, GFP_KERNEL);
1371 if (unlikely(!utask))
1372 return NULL;
1373
0326f5a9
SD
1374 current->utask = utask;
1375 return utask;
1376}
1377
1378/* Prepare to single-step probed instruction out of line. */
1379static int
1380pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long vaddr)
1381{
d4b3b638
SD
1382 if (xol_get_insn_slot(uprobe, vaddr) && !arch_uprobe_pre_xol(&uprobe->arch, regs))
1383 return 0;
1384
0326f5a9
SD
1385 return -EFAULT;
1386}
1387
1388/*
1389 * If we are singlestepping, then ensure this thread is not connected to
1390 * non-fatal signals until completion of singlestep. When xol insn itself
1391 * triggers the signal, restart the original insn even if the task is
1392 * already SIGKILL'ed (since coredump should report the correct ip). This
1393 * is even more important if the task has a handler for SIGSEGV/etc, The
1394 * _same_ instruction should be repeated again after return from the signal
1395 * handler, and SSTEP can never finish in this case.
1396 */
1397bool uprobe_deny_signal(void)
1398{
1399 struct task_struct *t = current;
1400 struct uprobe_task *utask = t->utask;
1401
1402 if (likely(!utask || !utask->active_uprobe))
1403 return false;
1404
1405 WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1406
1407 if (signal_pending(t)) {
1408 spin_lock_irq(&t->sighand->siglock);
1409 clear_tsk_thread_flag(t, TIF_SIGPENDING);
1410 spin_unlock_irq(&t->sighand->siglock);
1411
1412 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1413 utask->state = UTASK_SSTEP_TRAPPED;
1414 set_tsk_thread_flag(t, TIF_UPROBE);
1415 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1416 }
1417 }
1418
1419 return true;
1420}
1421
1422/*
1423 * Avoid singlestepping the original instruction if the original instruction
1424 * is a NOP or can be emulated.
1425 */
1426static bool can_skip_sstep(struct uprobe *uprobe, struct pt_regs *regs)
1427{
1428 if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
1429 return true;
1430
1431 uprobe->flags &= ~UPROBE_SKIP_SSTEP;
1432 return false;
1433}
1434
d790d346 1435static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
0326f5a9 1436{
3a9ea052
ON
1437 struct mm_struct *mm = current->mm;
1438 struct uprobe *uprobe = NULL;
0326f5a9 1439 struct vm_area_struct *vma;
0326f5a9 1440
0326f5a9
SD
1441 down_read(&mm->mmap_sem);
1442 vma = find_vma(mm, bp_vaddr);
3a9ea052
ON
1443 if (vma && vma->vm_start <= bp_vaddr) {
1444 if (valid_vma(vma, false)) {
1445 struct inode *inode;
1446 loff_t offset;
0326f5a9 1447
3a9ea052
ON
1448 inode = vma->vm_file->f_mapping->host;
1449 offset = bp_vaddr - vma->vm_start;
1450 offset += (vma->vm_pgoff << PAGE_SHIFT);
1451 uprobe = find_uprobe(inode, offset);
1452 }
d790d346
ON
1453
1454 if (!uprobe)
1455 *is_swbp = is_swbp_at_addr(mm, bp_vaddr);
1456 } else {
1457 *is_swbp = -EFAULT;
0326f5a9 1458 }
0326f5a9
SD
1459 up_read(&mm->mmap_sem);
1460
3a9ea052
ON
1461 return uprobe;
1462}
1463
1464/*
1465 * Run handler and ask thread to singlestep.
1466 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
1467 */
1468static void handle_swbp(struct pt_regs *regs)
1469{
1470 struct uprobe_task *utask;
1471 struct uprobe *uprobe;
1472 unsigned long bp_vaddr;
56bb4cf6 1473 int uninitialized_var(is_swbp);
3a9ea052
ON
1474
1475 bp_vaddr = uprobe_get_swbp_addr(regs);
d790d346 1476 uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
3a9ea052 1477
0326f5a9 1478 if (!uprobe) {
56bb4cf6
ON
1479 if (is_swbp > 0) {
1480 /* No matching uprobe; signal SIGTRAP. */
1481 send_sig(SIGTRAP, current, 0);
1482 } else {
1483 /*
1484 * Either we raced with uprobe_unregister() or we can't
1485 * access this memory. The latter is only possible if
1486 * another thread plays with our ->mm. In both cases
1487 * we can simply restart. If this vma was unmapped we
1488 * can pretend this insn was not executed yet and get
1489 * the (correct) SIGSEGV after restart.
1490 */
1491 instruction_pointer_set(regs, bp_vaddr);
1492 }
0326f5a9
SD
1493 return;
1494 }
1495
1496 utask = current->utask;
1497 if (!utask) {
1498 utask = add_utask();
1499 /* Cannot allocate; re-execute the instruction. */
1500 if (!utask)
1501 goto cleanup_ret;
1502 }
1503 utask->active_uprobe = uprobe;
1504 handler_chain(uprobe, regs);
1505 if (uprobe->flags & UPROBE_SKIP_SSTEP && can_skip_sstep(uprobe, regs))
1506 goto cleanup_ret;
1507
1508 utask->state = UTASK_SSTEP;
1509 if (!pre_ssout(uprobe, regs, bp_vaddr)) {
1510 user_enable_single_step(current);
1511 return;
1512 }
1513
1514cleanup_ret:
1515 if (utask) {
1516 utask->active_uprobe = NULL;
1517 utask->state = UTASK_RUNNING;
1518 }
1519 if (uprobe) {
1520 if (!(uprobe->flags & UPROBE_SKIP_SSTEP))
1521
1522 /*
1523 * cannot singlestep; cannot skip instruction;
1524 * re-execute the instruction.
1525 */
1526 instruction_pointer_set(regs, bp_vaddr);
1527
1528 put_uprobe(uprobe);
1529 }
1530}
1531
1532/*
1533 * Perform required fix-ups and disable singlestep.
1534 * Allow pending signals to take effect.
1535 */
1536static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
1537{
1538 struct uprobe *uprobe;
1539
1540 uprobe = utask->active_uprobe;
1541 if (utask->state == UTASK_SSTEP_ACK)
1542 arch_uprobe_post_xol(&uprobe->arch, regs);
1543 else if (utask->state == UTASK_SSTEP_TRAPPED)
1544 arch_uprobe_abort_xol(&uprobe->arch, regs);
1545 else
1546 WARN_ON_ONCE(1);
1547
1548 put_uprobe(uprobe);
1549 utask->active_uprobe = NULL;
1550 utask->state = UTASK_RUNNING;
1551 user_disable_single_step(current);
d4b3b638 1552 xol_free_insn_slot(current);
0326f5a9
SD
1553
1554 spin_lock_irq(&current->sighand->siglock);
1555 recalc_sigpending(); /* see uprobe_deny_signal() */
1556 spin_unlock_irq(&current->sighand->siglock);
1557}
1558
1559/*
1560 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag. (and on
1561 * subsequent probe hits on the thread sets the state to UTASK_BP_HIT) and
1562 * allows the thread to return from interrupt.
1563 *
1564 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag and
1565 * also sets the state to UTASK_SSTEP_ACK and allows the thread to return from
1566 * interrupt.
1567 *
1568 * While returning to userspace, thread notices the TIF_UPROBE flag and calls
1569 * uprobe_notify_resume().
1570 */
1571void uprobe_notify_resume(struct pt_regs *regs)
1572{
1573 struct uprobe_task *utask;
1574
1575 utask = current->utask;
1576 if (!utask || utask->state == UTASK_BP_HIT)
1577 handle_swbp(regs);
1578 else
1579 handle_singlestep(utask, regs);
1580}
1581
1582/*
1583 * uprobe_pre_sstep_notifier gets called from interrupt context as part of
1584 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
1585 */
1586int uprobe_pre_sstep_notifier(struct pt_regs *regs)
1587{
1588 struct uprobe_task *utask;
1589
682968e0
SD
1590 if (!current->mm || !atomic_read(&current->mm->uprobes_state.count))
1591 /* task is currently not uprobed */
0326f5a9
SD
1592 return 0;
1593
1594 utask = current->utask;
1595 if (utask)
1596 utask->state = UTASK_BP_HIT;
1597
1598 set_thread_flag(TIF_UPROBE);
0326f5a9
SD
1599
1600 return 1;
1601}
1602
1603/*
1604 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
1605 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
1606 */
1607int uprobe_post_sstep_notifier(struct pt_regs *regs)
1608{
1609 struct uprobe_task *utask = current->utask;
1610
1611 if (!current->mm || !utask || !utask->active_uprobe)
1612 /* task is currently not uprobed */
1613 return 0;
1614
1615 utask->state = UTASK_SSTEP_ACK;
1616 set_thread_flag(TIF_UPROBE);
1617 return 1;
1618}
1619
1620static struct notifier_block uprobe_exception_nb = {
1621 .notifier_call = arch_uprobe_exception_notify,
1622 .priority = INT_MAX-1, /* notified after kprobes, kgdb */
1623};
1624
2b144498
SD
1625static int __init init_uprobes(void)
1626{
1627 int i;
1628
1629 for (i = 0; i < UPROBES_HASH_SZ; i++) {
1630 mutex_init(&uprobes_mutex[i]);
1631 mutex_init(&uprobes_mmap_mutex[i]);
1632 }
0326f5a9
SD
1633
1634 return register_die_notifier(&uprobe_exception_nb);
2b144498 1635}
0326f5a9 1636module_init(init_uprobes);
2b144498
SD
1637
1638static void __exit exit_uprobes(void)
1639{
1640}
2b144498 1641module_exit(exit_uprobes);
This page took 0.108156 seconds and 5 git commands to generate.