uprobes: Introduce copy_opcode(), kill read_opcode()
[deliverable/linux.git] / kernel / events / uprobes.c
CommitLineData
2b144498 1/*
7b2d81d4 2 * User-space Probes (UProbes)
2b144498
SD
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
35aa621b 18 * Copyright (C) IBM Corporation, 2008-2012
2b144498
SD
19 * Authors:
20 * Srikar Dronamraju
21 * Jim Keniston
35aa621b 22 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
2b144498
SD
23 */
24
25#include <linux/kernel.h>
26#include <linux/highmem.h>
27#include <linux/pagemap.h> /* read_mapping_page */
28#include <linux/slab.h>
29#include <linux/sched.h>
30#include <linux/rmap.h> /* anon_vma_prepare */
31#include <linux/mmu_notifier.h> /* set_pte_at_notify */
32#include <linux/swap.h> /* try_to_free_swap */
0326f5a9
SD
33#include <linux/ptrace.h> /* user_enable_single_step */
34#include <linux/kdebug.h> /* notifier mechanism */
194f8dcb 35#include "../../mm/internal.h" /* munlock_vma_page */
7b2d81d4 36
2b144498
SD
37#include <linux/uprobes.h>
38
d4b3b638
SD
39#define UINSNS_PER_PAGE (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
40#define MAX_UPROBE_XOL_SLOTS UINSNS_PER_PAGE
41
2b144498 42static struct rb_root uprobes_tree = RB_ROOT;
7b2d81d4 43
2b144498
SD
44static DEFINE_SPINLOCK(uprobes_treelock); /* serialize rbtree access */
45
46#define UPROBES_HASH_SZ 13
7b2d81d4 47
c5784de2
PZ
48/*
49 * We need separate register/unregister and mmap/munmap lock hashes because
50 * of mmap_sem nesting.
51 *
52 * uprobe_register() needs to install probes on (potentially) all processes
53 * and thus needs to acquire multiple mmap_sems (consequtively, not
54 * concurrently), whereas uprobe_mmap() is called while holding mmap_sem
55 * for the particular process doing the mmap.
56 *
57 * uprobe_register()->register_for_each_vma() needs to drop/acquire mmap_sem
58 * because of lock order against i_mmap_mutex. This means there's a hole in
59 * the register vma iteration where a mmap() can happen.
60 *
61 * Thus uprobe_register() can race with uprobe_mmap() and we can try and
62 * install a probe where one is already installed.
63 */
64
2b144498
SD
65/* serialize (un)register */
66static struct mutex uprobes_mutex[UPROBES_HASH_SZ];
7b2d81d4
IM
67
68#define uprobes_hash(v) (&uprobes_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
2b144498
SD
69
70/* serialize uprobe->pending_list */
71static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
7b2d81d4 72#define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
2b144498
SD
73
74/*
7b2d81d4 75 * uprobe_events allows us to skip the uprobe_mmap if there are no uprobe
2b144498
SD
76 * events active at this time. Probably a fine grained per inode count is
77 * better?
78 */
79static atomic_t uprobe_events = ATOMIC_INIT(0);
80
3ff54efd
SD
81struct uprobe {
82 struct rb_node rb_node; /* node in the rb tree */
83 atomic_t ref;
84 struct rw_semaphore consumer_rwsem;
85 struct list_head pending_list;
86 struct uprobe_consumer *consumers;
87 struct inode *inode; /* Also hold a ref to inode */
88 loff_t offset;
89 int flags;
90 struct arch_uprobe arch;
91};
92
2b144498
SD
93/*
94 * valid_vma: Verify if the specified vma is an executable vma
95 * Relax restrictions while unregistering: vm_flags might have
96 * changed after breakpoint was inserted.
97 * - is_register: indicates if we are in register context.
98 * - Return 1 if the specified virtual address is in an
99 * executable vma.
100 */
101static bool valid_vma(struct vm_area_struct *vma, bool is_register)
102{
e40cfce6 103 vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_SHARED;
2b144498 104
e40cfce6
ON
105 if (is_register)
106 flags |= VM_WRITE;
2b144498 107
e40cfce6 108 return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
2b144498
SD
109}
110
57683f72 111static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
2b144498 112{
57683f72 113 return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
2b144498
SD
114}
115
cb113b47
ON
116static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
117{
118 return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
119}
120
2b144498
SD
121/**
122 * __replace_page - replace page in vma by new page.
123 * based on replace_page in mm/ksm.c
124 *
125 * @vma: vma that holds the pte pointing to page
c517ee74 126 * @addr: address the old @page is mapped at
2b144498
SD
127 * @page: the cowed page we are replacing by kpage
128 * @kpage: the modified page we replace page by
129 *
130 * Returns 0 on success, -EFAULT on failure.
131 */
c517ee74
ON
132static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
133 struct page *page, struct page *kpage)
2b144498
SD
134{
135 struct mm_struct *mm = vma->vm_mm;
5323ce71
ON
136 spinlock_t *ptl;
137 pte_t *ptep;
9f92448c 138 int err;
2b144498 139
194f8dcb 140 /* For try_to_free_swap() and munlock_vma_page() below */
9f92448c
ON
141 lock_page(page);
142
143 err = -EAGAIN;
5323ce71 144 ptep = page_check_address(page, mm, addr, &ptl, 0);
2b144498 145 if (!ptep)
9f92448c 146 goto unlock;
2b144498
SD
147
148 get_page(kpage);
149 page_add_new_anon_rmap(kpage, vma, addr);
150
7396fa81
SD
151 if (!PageAnon(page)) {
152 dec_mm_counter(mm, MM_FILEPAGES);
153 inc_mm_counter(mm, MM_ANONPAGES);
154 }
155
2b144498
SD
156 flush_cache_page(vma, addr, pte_pfn(*ptep));
157 ptep_clear_flush(vma, addr, ptep);
158 set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
159
160 page_remove_rmap(page);
161 if (!page_mapped(page))
162 try_to_free_swap(page);
2b144498 163 pte_unmap_unlock(ptep, ptl);
2b144498 164
194f8dcb
ON
165 if (vma->vm_flags & VM_LOCKED)
166 munlock_vma_page(page);
167 put_page(page);
168
9f92448c
ON
169 err = 0;
170 unlock:
171 unlock_page(page);
172 return err;
2b144498
SD
173}
174
175/**
5cb4ac3a 176 * is_swbp_insn - check if instruction is breakpoint instruction.
2b144498 177 * @insn: instruction to be checked.
5cb4ac3a 178 * Default implementation of is_swbp_insn
2b144498
SD
179 * Returns true if @insn is a breakpoint instruction.
180 */
5cb4ac3a 181bool __weak is_swbp_insn(uprobe_opcode_t *insn)
2b144498 182{
5cb4ac3a 183 return *insn == UPROBE_SWBP_INSN;
2b144498
SD
184}
185
cceb55aa
ON
186static void copy_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *opcode)
187{
188 void *kaddr = kmap_atomic(page);
189 memcpy(opcode, kaddr + (vaddr & ~PAGE_MASK), UPROBE_SWBP_INSN_SIZE);
190 kunmap_atomic(kaddr);
191}
192
2b144498
SD
193/*
194 * NOTE:
195 * Expect the breakpoint instruction to be the smallest size instruction for
196 * the architecture. If an arch has variable length instruction and the
197 * breakpoint instruction is not of the smallest length instruction
cceb55aa 198 * supported by that architecture then we need to modify is_swbp_at_addr and
2b144498
SD
199 * write_opcode accordingly. This would never be a problem for archs that
200 * have fixed length instructions.
201 */
202
203/*
204 * write_opcode - write the opcode at a given virtual address.
205 * @mm: the probed process address space.
2b144498
SD
206 * @vaddr: the virtual address to store the opcode.
207 * @opcode: opcode to be written at @vaddr.
208 *
209 * Called with mm->mmap_sem held (for read and with a reference to
210 * mm).
211 *
212 * For mm @mm, write the opcode at @vaddr.
213 * Return 0 (success) or a negative errno.
214 */
cceb55aa
ON
215static int write_opcode(struct mm_struct *mm, unsigned long vaddr,
216 uprobe_opcode_t opcode)
2b144498
SD
217{
218 struct page *old_page, *new_page;
2b144498
SD
219 void *vaddr_old, *vaddr_new;
220 struct vm_area_struct *vma;
2b144498 221 int ret;
f403072c 222
5323ce71 223retry:
2b144498 224 /* Read the page with vaddr into memory */
75ed82ea 225 ret = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &old_page, &vma);
2b144498
SD
226 if (ret <= 0)
227 return ret;
7b2d81d4 228
2b144498
SD
229 ret = -ENOMEM;
230 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
231 if (!new_page)
9f92448c 232 goto put_old;
2b144498
SD
233
234 __SetPageUptodate(new_page);
235
2b144498
SD
236 /* copy the page now that we've got it stable */
237 vaddr_old = kmap_atomic(old_page);
238 vaddr_new = kmap_atomic(new_page);
239
240 memcpy(vaddr_new, vaddr_old, PAGE_SIZE);
d9c4a30e 241 memcpy(vaddr_new + (vaddr & ~PAGE_MASK), &opcode, UPROBE_SWBP_INSN_SIZE);
2b144498
SD
242
243 kunmap_atomic(vaddr_new);
244 kunmap_atomic(vaddr_old);
245
246 ret = anon_vma_prepare(vma);
247 if (ret)
9f92448c 248 goto put_new;
2b144498 249
c517ee74 250 ret = __replace_page(vma, vaddr, old_page, new_page);
2b144498 251
9f92448c 252put_new:
2b144498 253 page_cache_release(new_page);
9f92448c 254put_old:
7b2d81d4
IM
255 put_page(old_page);
256
5323ce71
ON
257 if (unlikely(ret == -EAGAIN))
258 goto retry;
2b144498
SD
259 return ret;
260}
261
5cb4ac3a 262static int is_swbp_at_addr(struct mm_struct *mm, unsigned long vaddr)
2b144498 263{
cceb55aa 264 struct page *page;
2b144498 265 uprobe_opcode_t opcode;
7b2d81d4 266 int result;
2b144498 267
c00b2750
ON
268 if (current->mm == mm) {
269 pagefault_disable();
270 result = __copy_from_user_inatomic(&opcode, (void __user*)vaddr,
271 sizeof(opcode));
272 pagefault_enable();
273
274 if (likely(result == 0))
275 goto out;
276 }
277
cceb55aa
ON
278 result = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &page, NULL);
279 if (result < 0)
2b144498 280 return result;
2b144498 281
cceb55aa
ON
282 copy_opcode(page, vaddr, &opcode);
283 put_page(page);
284 out:
285 return is_swbp_insn(&opcode);
2b144498
SD
286}
287
288/**
5cb4ac3a 289 * set_swbp - store breakpoint at a given address.
e3343e6a 290 * @auprobe: arch specific probepoint information.
2b144498 291 * @mm: the probed process address space.
2b144498
SD
292 * @vaddr: the virtual address to insert the opcode.
293 *
294 * For mm @mm, store the breakpoint instruction at @vaddr.
295 * Return 0 (success) or a negative errno.
296 */
5cb4ac3a 297int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
2b144498 298{
cceb55aa 299 return write_opcode(mm, vaddr, UPROBE_SWBP_INSN);
2b144498
SD
300}
301
302/**
303 * set_orig_insn - Restore the original instruction.
304 * @mm: the probed process address space.
e3343e6a 305 * @auprobe: arch specific probepoint information.
2b144498 306 * @vaddr: the virtual address to insert the opcode.
2b144498
SD
307 *
308 * For mm @mm, restore the original opcode (opcode) at @vaddr.
309 * Return 0 (success) or a negative errno.
310 */
7b2d81d4 311int __weak
ded86e7c 312set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
2b144498 313{
ded86e7c
ON
314 int result;
315
316 result = is_swbp_at_addr(mm, vaddr);
317 if (!result)
318 return -EINVAL;
2b144498 319
ded86e7c
ON
320 if (result != 1)
321 return result;
2b144498 322
cceb55aa 323 return write_opcode(mm, vaddr, *(uprobe_opcode_t *)auprobe->insn);
2b144498
SD
324}
325
326static int match_uprobe(struct uprobe *l, struct uprobe *r)
327{
328 if (l->inode < r->inode)
329 return -1;
7b2d81d4 330
2b144498
SD
331 if (l->inode > r->inode)
332 return 1;
2b144498 333
7b2d81d4
IM
334 if (l->offset < r->offset)
335 return -1;
336
337 if (l->offset > r->offset)
338 return 1;
2b144498
SD
339
340 return 0;
341}
342
343static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
344{
345 struct uprobe u = { .inode = inode, .offset = offset };
346 struct rb_node *n = uprobes_tree.rb_node;
347 struct uprobe *uprobe;
348 int match;
349
350 while (n) {
351 uprobe = rb_entry(n, struct uprobe, rb_node);
352 match = match_uprobe(&u, uprobe);
353 if (!match) {
354 atomic_inc(&uprobe->ref);
355 return uprobe;
356 }
7b2d81d4 357
2b144498
SD
358 if (match < 0)
359 n = n->rb_left;
360 else
361 n = n->rb_right;
362 }
363 return NULL;
364}
365
366/*
367 * Find a uprobe corresponding to a given inode:offset
368 * Acquires uprobes_treelock
369 */
370static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
371{
372 struct uprobe *uprobe;
2b144498 373
6f47caa0 374 spin_lock(&uprobes_treelock);
2b144498 375 uprobe = __find_uprobe(inode, offset);
6f47caa0 376 spin_unlock(&uprobes_treelock);
7b2d81d4 377
2b144498
SD
378 return uprobe;
379}
380
381static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
382{
383 struct rb_node **p = &uprobes_tree.rb_node;
384 struct rb_node *parent = NULL;
385 struct uprobe *u;
386 int match;
387
388 while (*p) {
389 parent = *p;
390 u = rb_entry(parent, struct uprobe, rb_node);
391 match = match_uprobe(uprobe, u);
392 if (!match) {
393 atomic_inc(&u->ref);
394 return u;
395 }
396
397 if (match < 0)
398 p = &parent->rb_left;
399 else
400 p = &parent->rb_right;
401
402 }
7b2d81d4 403
2b144498
SD
404 u = NULL;
405 rb_link_node(&uprobe->rb_node, parent, p);
406 rb_insert_color(&uprobe->rb_node, &uprobes_tree);
407 /* get access + creation ref */
408 atomic_set(&uprobe->ref, 2);
7b2d81d4 409
2b144498
SD
410 return u;
411}
412
413/*
7b2d81d4 414 * Acquire uprobes_treelock.
2b144498
SD
415 * Matching uprobe already exists in rbtree;
416 * increment (access refcount) and return the matching uprobe.
417 *
418 * No matching uprobe; insert the uprobe in rb_tree;
419 * get a double refcount (access + creation) and return NULL.
420 */
421static struct uprobe *insert_uprobe(struct uprobe *uprobe)
422{
2b144498
SD
423 struct uprobe *u;
424
6f47caa0 425 spin_lock(&uprobes_treelock);
2b144498 426 u = __insert_uprobe(uprobe);
6f47caa0 427 spin_unlock(&uprobes_treelock);
7b2d81d4 428
0326f5a9
SD
429 /* For now assume that the instruction need not be single-stepped */
430 uprobe->flags |= UPROBE_SKIP_SSTEP;
431
2b144498
SD
432 return u;
433}
434
435static void put_uprobe(struct uprobe *uprobe)
436{
437 if (atomic_dec_and_test(&uprobe->ref))
438 kfree(uprobe);
439}
440
441static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
442{
443 struct uprobe *uprobe, *cur_uprobe;
444
445 uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
446 if (!uprobe)
447 return NULL;
448
449 uprobe->inode = igrab(inode);
450 uprobe->offset = offset;
451 init_rwsem(&uprobe->consumer_rwsem);
2b144498
SD
452
453 /* add to uprobes_tree, sorted on inode:offset */
454 cur_uprobe = insert_uprobe(uprobe);
455
456 /* a uprobe exists for this inode:offset combination */
457 if (cur_uprobe) {
458 kfree(uprobe);
459 uprobe = cur_uprobe;
460 iput(inode);
7b2d81d4 461 } else {
2b144498 462 atomic_inc(&uprobe_events);
7b2d81d4
IM
463 }
464
2b144498
SD
465 return uprobe;
466}
467
0326f5a9
SD
468static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
469{
470 struct uprobe_consumer *uc;
471
472 if (!(uprobe->flags & UPROBE_RUN_HANDLER))
473 return;
474
475 down_read(&uprobe->consumer_rwsem);
476 for (uc = uprobe->consumers; uc; uc = uc->next) {
477 if (!uc->filter || uc->filter(uc, current))
478 uc->handler(uc, regs);
479 }
480 up_read(&uprobe->consumer_rwsem);
481}
482
2b144498 483/* Returns the previous consumer */
7b2d81d4 484static struct uprobe_consumer *
e3343e6a 485consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
2b144498
SD
486{
487 down_write(&uprobe->consumer_rwsem);
e3343e6a
SD
488 uc->next = uprobe->consumers;
489 uprobe->consumers = uc;
2b144498 490 up_write(&uprobe->consumer_rwsem);
7b2d81d4 491
e3343e6a 492 return uc->next;
2b144498
SD
493}
494
495/*
e3343e6a
SD
496 * For uprobe @uprobe, delete the consumer @uc.
497 * Return true if the @uc is deleted successfully
2b144498
SD
498 * or return false.
499 */
e3343e6a 500static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
2b144498
SD
501{
502 struct uprobe_consumer **con;
503 bool ret = false;
504
505 down_write(&uprobe->consumer_rwsem);
506 for (con = &uprobe->consumers; *con; con = &(*con)->next) {
e3343e6a
SD
507 if (*con == uc) {
508 *con = uc->next;
2b144498
SD
509 ret = true;
510 break;
511 }
512 }
513 up_write(&uprobe->consumer_rwsem);
7b2d81d4 514
2b144498
SD
515 return ret;
516}
517
e3343e6a 518static int
d436615e 519__copy_insn(struct address_space *mapping, struct file *filp, char *insn,
593609a5 520 unsigned long nbytes, loff_t offset)
2b144498 521{
2b144498
SD
522 struct page *page;
523 void *vaddr;
593609a5
ON
524 unsigned long off;
525 pgoff_t idx;
2b144498
SD
526
527 if (!filp)
528 return -EINVAL;
529
cc359d18
ON
530 if (!mapping->a_ops->readpage)
531 return -EIO;
532
593609a5
ON
533 idx = offset >> PAGE_CACHE_SHIFT;
534 off = offset & ~PAGE_MASK;
2b144498
SD
535
536 /*
537 * Ensure that the page that has the original instruction is
538 * populated and in page-cache.
539 */
540 page = read_mapping_page(mapping, idx, filp);
541 if (IS_ERR(page))
542 return PTR_ERR(page);
543
544 vaddr = kmap_atomic(page);
593609a5 545 memcpy(insn, vaddr + off, nbytes);
2b144498
SD
546 kunmap_atomic(vaddr);
547 page_cache_release(page);
7b2d81d4 548
2b144498
SD
549 return 0;
550}
551
d436615e 552static int copy_insn(struct uprobe *uprobe, struct file *filp)
2b144498
SD
553{
554 struct address_space *mapping;
2b144498 555 unsigned long nbytes;
7b2d81d4 556 int bytes;
2b144498 557
d436615e 558 nbytes = PAGE_SIZE - (uprobe->offset & ~PAGE_MASK);
2b144498
SD
559 mapping = uprobe->inode->i_mapping;
560
561 /* Instruction at end of binary; copy only available bytes */
562 if (uprobe->offset + MAX_UINSN_BYTES > uprobe->inode->i_size)
563 bytes = uprobe->inode->i_size - uprobe->offset;
564 else
565 bytes = MAX_UINSN_BYTES;
566
567 /* Instruction at the page-boundary; copy bytes in second page */
568 if (nbytes < bytes) {
fc36f595
ON
569 int err = __copy_insn(mapping, filp, uprobe->arch.insn + nbytes,
570 bytes - nbytes, uprobe->offset + nbytes);
571 if (err)
572 return err;
2b144498
SD
573 bytes = nbytes;
574 }
d436615e 575 return __copy_insn(mapping, filp, uprobe->arch.insn, bytes, uprobe->offset);
2b144498
SD
576}
577
682968e0
SD
578/*
579 * How mm->uprobes_state.count gets updated
580 * uprobe_mmap() increments the count if
581 * - it successfully adds a breakpoint.
582 * - it cannot add a breakpoint, but sees that there is a underlying
583 * breakpoint (via a is_swbp_at_addr()).
584 *
585 * uprobe_munmap() decrements the count if
586 * - it sees a underlying breakpoint, (via is_swbp_at_addr)
587 * (Subsequent uprobe_unregister wouldnt find the breakpoint
588 * unless a uprobe_mmap kicks in, since the old vma would be
589 * dropped just after uprobe_munmap.)
590 *
591 * uprobe_register increments the count if:
592 * - it successfully adds a breakpoint.
593 *
594 * uprobe_unregister decrements the count if:
595 * - it sees a underlying breakpoint and removes successfully.
596 * (via is_swbp_at_addr)
597 * (Subsequent uprobe_munmap wouldnt find the breakpoint
598 * since there is no underlying breakpoint after the
599 * breakpoint removal.)
600 */
e3343e6a
SD
601static int
602install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
816c03fb 603 struct vm_area_struct *vma, unsigned long vaddr)
2b144498 604{
f8ac4ec9 605 bool first_uprobe;
2b144498
SD
606 int ret;
607
608 /*
609 * If probe is being deleted, unregister thread could be done with
610 * the vma-rmap-walk through. Adding a probe now can be fatal since
611 * nobody will be able to cleanup. Also we could be from fork or
612 * mremap path, where the probe might have already been inserted.
613 * Hence behave as if probe already existed.
614 */
615 if (!uprobe->consumers)
78f74116 616 return 0;
2b144498 617
900771a4 618 if (!(uprobe->flags & UPROBE_COPY_INSN)) {
d436615e 619 ret = copy_insn(uprobe, vma->vm_file);
2b144498
SD
620 if (ret)
621 return ret;
622
5cb4ac3a 623 if (is_swbp_insn((uprobe_opcode_t *)uprobe->arch.insn))
c1914a09 624 return -ENOTSUPP;
2b144498 625
816c03fb 626 ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
2b144498
SD
627 if (ret)
628 return ret;
629
d9c4a30e
ON
630 /* write_opcode() assumes we don't cross page boundary */
631 BUG_ON((uprobe->offset & ~PAGE_MASK) +
632 UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
633
900771a4 634 uprobe->flags |= UPROBE_COPY_INSN;
2b144498 635 }
682968e0 636
f8ac4ec9
ON
637 /*
638 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
639 * the task can hit this breakpoint right after __replace_page().
640 */
641 first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
642 if (first_uprobe)
643 set_bit(MMF_HAS_UPROBES, &mm->flags);
644
816c03fb 645 ret = set_swbp(&uprobe->arch, mm, vaddr);
9f68f672
ON
646 if (!ret)
647 clear_bit(MMF_RECALC_UPROBES, &mm->flags);
648 else if (first_uprobe)
f8ac4ec9 649 clear_bit(MMF_HAS_UPROBES, &mm->flags);
2b144498
SD
650
651 return ret;
652}
653
e3343e6a 654static void
816c03fb 655remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
2b144498 656{
9f68f672
ON
657 /* can happen if uprobe_register() fails */
658 if (!test_bit(MMF_HAS_UPROBES, &mm->flags))
659 return;
660
661 set_bit(MMF_RECALC_UPROBES, &mm->flags);
ded86e7c 662 set_orig_insn(&uprobe->arch, mm, vaddr);
2b144498
SD
663}
664
0326f5a9 665/*
778b032d
ON
666 * There could be threads that have already hit the breakpoint. They
667 * will recheck the current insn and restart if find_uprobe() fails.
668 * See find_active_uprobe().
0326f5a9 669 */
2b144498
SD
670static void delete_uprobe(struct uprobe *uprobe)
671{
6f47caa0 672 spin_lock(&uprobes_treelock);
2b144498 673 rb_erase(&uprobe->rb_node, &uprobes_tree);
6f47caa0 674 spin_unlock(&uprobes_treelock);
2b144498
SD
675 iput(uprobe->inode);
676 put_uprobe(uprobe);
677 atomic_dec(&uprobe_events);
678}
679
26872090
ON
680struct map_info {
681 struct map_info *next;
682 struct mm_struct *mm;
816c03fb 683 unsigned long vaddr;
26872090
ON
684};
685
686static inline struct map_info *free_map_info(struct map_info *info)
2b144498 687{
26872090
ON
688 struct map_info *next = info->next;
689 kfree(info);
690 return next;
691}
692
693static struct map_info *
694build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
695{
696 unsigned long pgoff = offset >> PAGE_SHIFT;
2b144498
SD
697 struct prio_tree_iter iter;
698 struct vm_area_struct *vma;
26872090
ON
699 struct map_info *curr = NULL;
700 struct map_info *prev = NULL;
701 struct map_info *info;
702 int more = 0;
2b144498 703
26872090
ON
704 again:
705 mutex_lock(&mapping->i_mmap_mutex);
2b144498
SD
706 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
707 if (!valid_vma(vma, is_register))
708 continue;
709
7a5bfb66
ON
710 if (!prev && !more) {
711 /*
712 * Needs GFP_NOWAIT to avoid i_mmap_mutex recursion through
713 * reclaim. This is optimistic, no harm done if it fails.
714 */
715 prev = kmalloc(sizeof(struct map_info),
716 GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
717 if (prev)
718 prev->next = NULL;
719 }
26872090
ON
720 if (!prev) {
721 more++;
722 continue;
2b144498 723 }
2b144498 724
26872090
ON
725 if (!atomic_inc_not_zero(&vma->vm_mm->mm_users))
726 continue;
7b2d81d4 727
26872090
ON
728 info = prev;
729 prev = prev->next;
730 info->next = curr;
731 curr = info;
2b144498 732
26872090 733 info->mm = vma->vm_mm;
57683f72 734 info->vaddr = offset_to_vaddr(vma, offset);
26872090 735 }
2b144498
SD
736 mutex_unlock(&mapping->i_mmap_mutex);
737
26872090
ON
738 if (!more)
739 goto out;
740
741 prev = curr;
742 while (curr) {
743 mmput(curr->mm);
744 curr = curr->next;
745 }
7b2d81d4 746
26872090
ON
747 do {
748 info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
749 if (!info) {
750 curr = ERR_PTR(-ENOMEM);
751 goto out;
752 }
753 info->next = prev;
754 prev = info;
755 } while (--more);
756
757 goto again;
758 out:
759 while (prev)
760 prev = free_map_info(prev);
761 return curr;
2b144498
SD
762}
763
764static int register_for_each_vma(struct uprobe *uprobe, bool is_register)
765{
26872090
ON
766 struct map_info *info;
767 int err = 0;
2b144498 768
26872090
ON
769 info = build_map_info(uprobe->inode->i_mapping,
770 uprobe->offset, is_register);
771 if (IS_ERR(info))
772 return PTR_ERR(info);
7b2d81d4 773
26872090
ON
774 while (info) {
775 struct mm_struct *mm = info->mm;
776 struct vm_area_struct *vma;
7b2d81d4 777
26872090
ON
778 if (err)
779 goto free;
7b2d81d4 780
77fc4af1 781 down_write(&mm->mmap_sem);
f4d6dfe5
ON
782 vma = find_vma(mm, info->vaddr);
783 if (!vma || !valid_vma(vma, is_register) ||
784 vma->vm_file->f_mapping->host != uprobe->inode)
26872090
ON
785 goto unlock;
786
f4d6dfe5
ON
787 if (vma->vm_start > info->vaddr ||
788 vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
26872090 789 goto unlock;
2b144498 790
78f74116 791 if (is_register)
26872090 792 err = install_breakpoint(uprobe, mm, vma, info->vaddr);
78f74116 793 else
26872090 794 remove_breakpoint(uprobe, mm, info->vaddr);
78f74116 795
26872090
ON
796 unlock:
797 up_write(&mm->mmap_sem);
798 free:
799 mmput(mm);
800 info = free_map_info(info);
2b144498 801 }
7b2d81d4 802
26872090 803 return err;
2b144498
SD
804}
805
7b2d81d4 806static int __uprobe_register(struct uprobe *uprobe)
2b144498
SD
807{
808 return register_for_each_vma(uprobe, true);
809}
810
7b2d81d4 811static void __uprobe_unregister(struct uprobe *uprobe)
2b144498
SD
812{
813 if (!register_for_each_vma(uprobe, false))
814 delete_uprobe(uprobe);
815
816 /* TODO : cant unregister? schedule a worker thread */
817}
818
819/*
7b2d81d4 820 * uprobe_register - register a probe
2b144498
SD
821 * @inode: the file in which the probe has to be placed.
822 * @offset: offset from the start of the file.
e3343e6a 823 * @uc: information on howto handle the probe..
2b144498 824 *
7b2d81d4 825 * Apart from the access refcount, uprobe_register() takes a creation
2b144498
SD
826 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
827 * inserted into the rbtree (i.e first consumer for a @inode:@offset
7b2d81d4 828 * tuple). Creation refcount stops uprobe_unregister from freeing the
2b144498 829 * @uprobe even before the register operation is complete. Creation
e3343e6a 830 * refcount is released when the last @uc for the @uprobe
2b144498
SD
831 * unregisters.
832 *
833 * Return errno if it cannot successully install probes
834 * else return 0 (success)
835 */
e3343e6a 836int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
2b144498
SD
837{
838 struct uprobe *uprobe;
7b2d81d4 839 int ret;
2b144498 840
e3343e6a 841 if (!inode || !uc || uc->next)
7b2d81d4 842 return -EINVAL;
2b144498
SD
843
844 if (offset > i_size_read(inode))
7b2d81d4 845 return -EINVAL;
2b144498
SD
846
847 ret = 0;
848 mutex_lock(uprobes_hash(inode));
849 uprobe = alloc_uprobe(inode, offset);
7b2d81d4 850
e3343e6a 851 if (uprobe && !consumer_add(uprobe, uc)) {
7b2d81d4 852 ret = __uprobe_register(uprobe);
2b144498
SD
853 if (ret) {
854 uprobe->consumers = NULL;
7b2d81d4
IM
855 __uprobe_unregister(uprobe);
856 } else {
900771a4 857 uprobe->flags |= UPROBE_RUN_HANDLER;
7b2d81d4 858 }
2b144498
SD
859 }
860
861 mutex_unlock(uprobes_hash(inode));
6d1d8dfa
SAS
862 if (uprobe)
863 put_uprobe(uprobe);
2b144498
SD
864
865 return ret;
866}
867
868/*
7b2d81d4 869 * uprobe_unregister - unregister a already registered probe.
2b144498
SD
870 * @inode: the file in which the probe has to be removed.
871 * @offset: offset from the start of the file.
e3343e6a 872 * @uc: identify which probe if multiple probes are colocated.
2b144498 873 */
e3343e6a 874void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
2b144498 875{
7b2d81d4 876 struct uprobe *uprobe;
2b144498 877
e3343e6a 878 if (!inode || !uc)
2b144498
SD
879 return;
880
881 uprobe = find_uprobe(inode, offset);
882 if (!uprobe)
883 return;
884
885 mutex_lock(uprobes_hash(inode));
2b144498 886
e3343e6a 887 if (consumer_del(uprobe, uc)) {
7b2d81d4
IM
888 if (!uprobe->consumers) {
889 __uprobe_unregister(uprobe);
900771a4 890 uprobe->flags &= ~UPROBE_RUN_HANDLER;
7b2d81d4 891 }
2b144498
SD
892 }
893
2b144498
SD
894 mutex_unlock(uprobes_hash(inode));
895 if (uprobe)
896 put_uprobe(uprobe);
897}
898
891c3970
ON
899static struct rb_node *
900find_node_in_range(struct inode *inode, loff_t min, loff_t max)
2b144498 901{
2b144498 902 struct rb_node *n = uprobes_tree.rb_node;
2b144498
SD
903
904 while (n) {
891c3970 905 struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
2b144498 906
891c3970 907 if (inode < u->inode) {
2b144498 908 n = n->rb_left;
891c3970 909 } else if (inode > u->inode) {
2b144498 910 n = n->rb_right;
891c3970
ON
911 } else {
912 if (max < u->offset)
913 n = n->rb_left;
914 else if (min > u->offset)
915 n = n->rb_right;
916 else
917 break;
918 }
2b144498 919 }
7b2d81d4 920
891c3970 921 return n;
2b144498
SD
922}
923
924/*
891c3970 925 * For a given range in vma, build a list of probes that need to be inserted.
2b144498 926 */
891c3970
ON
927static void build_probe_list(struct inode *inode,
928 struct vm_area_struct *vma,
929 unsigned long start, unsigned long end,
930 struct list_head *head)
2b144498 931{
891c3970 932 loff_t min, max;
891c3970
ON
933 struct rb_node *n, *t;
934 struct uprobe *u;
7b2d81d4 935
891c3970 936 INIT_LIST_HEAD(head);
cb113b47 937 min = vaddr_to_offset(vma, start);
891c3970 938 max = min + (end - start) - 1;
2b144498 939
6f47caa0 940 spin_lock(&uprobes_treelock);
891c3970
ON
941 n = find_node_in_range(inode, min, max);
942 if (n) {
943 for (t = n; t; t = rb_prev(t)) {
944 u = rb_entry(t, struct uprobe, rb_node);
945 if (u->inode != inode || u->offset < min)
946 break;
947 list_add(&u->pending_list, head);
948 atomic_inc(&u->ref);
949 }
950 for (t = n; (t = rb_next(t)); ) {
951 u = rb_entry(t, struct uprobe, rb_node);
952 if (u->inode != inode || u->offset > max)
953 break;
954 list_add(&u->pending_list, head);
955 atomic_inc(&u->ref);
956 }
2b144498 957 }
6f47caa0 958 spin_unlock(&uprobes_treelock);
2b144498
SD
959}
960
961/*
5e5be71a 962 * Called from mmap_region/vma_adjust with mm->mmap_sem acquired.
2b144498 963 *
5e5be71a
ON
964 * Currently we ignore all errors and always return 0, the callers
965 * can't handle the failure anyway.
2b144498 966 */
7b2d81d4 967int uprobe_mmap(struct vm_area_struct *vma)
2b144498
SD
968{
969 struct list_head tmp_list;
665605a2 970 struct uprobe *uprobe, *u;
2b144498 971 struct inode *inode;
2b144498
SD
972
973 if (!atomic_read(&uprobe_events) || !valid_vma(vma, true))
7b2d81d4 974 return 0;
2b144498
SD
975
976 inode = vma->vm_file->f_mapping->host;
977 if (!inode)
7b2d81d4 978 return 0;
2b144498 979
2b144498 980 mutex_lock(uprobes_mmap_hash(inode));
891c3970 981 build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
7b2d81d4 982
665605a2 983 list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
5e5be71a 984 if (!fatal_signal_pending(current)) {
57683f72 985 unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
5e5be71a 986 install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
2b144498
SD
987 }
988 put_uprobe(uprobe);
989 }
2b144498
SD
990 mutex_unlock(uprobes_mmap_hash(inode));
991
5e5be71a 992 return 0;
2b144498
SD
993}
994
9f68f672
ON
995static bool
996vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
997{
998 loff_t min, max;
999 struct inode *inode;
1000 struct rb_node *n;
1001
1002 inode = vma->vm_file->f_mapping->host;
1003
1004 min = vaddr_to_offset(vma, start);
1005 max = min + (end - start) - 1;
1006
1007 spin_lock(&uprobes_treelock);
1008 n = find_node_in_range(inode, min, max);
1009 spin_unlock(&uprobes_treelock);
1010
1011 return !!n;
1012}
1013
682968e0
SD
1014/*
1015 * Called in context of a munmap of a vma.
1016 */
cbc91f71 1017void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
682968e0 1018{
682968e0
SD
1019 if (!atomic_read(&uprobe_events) || !valid_vma(vma, false))
1020 return;
1021
2fd611a9
ON
1022 if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1023 return;
1024
9f68f672
ON
1025 if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1026 test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
f8ac4ec9
ON
1027 return;
1028
9f68f672
ON
1029 if (vma_has_uprobes(vma, start, end))
1030 set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
682968e0
SD
1031}
1032
d4b3b638
SD
1033/* Slot allocation for XOL */
1034static int xol_add_vma(struct xol_area *area)
1035{
1036 struct mm_struct *mm;
1037 int ret;
1038
1039 area->page = alloc_page(GFP_HIGHUSER);
1040 if (!area->page)
1041 return -ENOMEM;
1042
1043 ret = -EALREADY;
1044 mm = current->mm;
1045
1046 down_write(&mm->mmap_sem);
1047 if (mm->uprobes_state.xol_area)
1048 goto fail;
1049
1050 ret = -ENOMEM;
1051
1052 /* Try to map as high as possible, this is only a hint. */
1053 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE, PAGE_SIZE, 0, 0);
1054 if (area->vaddr & ~PAGE_MASK) {
1055 ret = area->vaddr;
1056 goto fail;
1057 }
1058
1059 ret = install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1060 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, &area->page);
1061 if (ret)
1062 goto fail;
1063
1064 smp_wmb(); /* pairs with get_xol_area() */
1065 mm->uprobes_state.xol_area = area;
1066 ret = 0;
1067
1068fail:
1069 up_write(&mm->mmap_sem);
1070 if (ret)
1071 __free_page(area->page);
1072
1073 return ret;
1074}
1075
1076static struct xol_area *get_xol_area(struct mm_struct *mm)
1077{
1078 struct xol_area *area;
1079
1080 area = mm->uprobes_state.xol_area;
1081 smp_read_barrier_depends(); /* pairs with wmb in xol_add_vma() */
1082
1083 return area;
1084}
1085
1086/*
1087 * xol_alloc_area - Allocate process's xol_area.
1088 * This area will be used for storing instructions for execution out of
1089 * line.
1090 *
1091 * Returns the allocated area or NULL.
1092 */
1093static struct xol_area *xol_alloc_area(void)
1094{
1095 struct xol_area *area;
1096
1097 area = kzalloc(sizeof(*area), GFP_KERNEL);
1098 if (unlikely(!area))
1099 return NULL;
1100
1101 area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL);
1102
1103 if (!area->bitmap)
1104 goto fail;
1105
1106 init_waitqueue_head(&area->wq);
1107 if (!xol_add_vma(area))
1108 return area;
1109
1110fail:
1111 kfree(area->bitmap);
1112 kfree(area);
1113
1114 return get_xol_area(current->mm);
1115}
1116
1117/*
1118 * uprobe_clear_state - Free the area allocated for slots.
1119 */
1120void uprobe_clear_state(struct mm_struct *mm)
1121{
1122 struct xol_area *area = mm->uprobes_state.xol_area;
1123
1124 if (!area)
1125 return;
1126
1127 put_page(area->page);
1128 kfree(area->bitmap);
1129 kfree(area);
1130}
1131
f8ac4ec9
ON
1132void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1133{
61559a81
ON
1134 newmm->uprobes_state.xol_area = NULL;
1135
9f68f672 1136 if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
f8ac4ec9 1137 set_bit(MMF_HAS_UPROBES, &newmm->flags);
9f68f672
ON
1138 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1139 set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1140 }
f8ac4ec9
ON
1141}
1142
d4b3b638
SD
1143/*
1144 * - search for a free slot.
1145 */
1146static unsigned long xol_take_insn_slot(struct xol_area *area)
1147{
1148 unsigned long slot_addr;
1149 int slot_nr;
1150
1151 do {
1152 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1153 if (slot_nr < UINSNS_PER_PAGE) {
1154 if (!test_and_set_bit(slot_nr, area->bitmap))
1155 break;
1156
1157 slot_nr = UINSNS_PER_PAGE;
1158 continue;
1159 }
1160 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1161 } while (slot_nr >= UINSNS_PER_PAGE);
1162
1163 slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1164 atomic_inc(&area->slot_count);
1165
1166 return slot_addr;
1167}
1168
1169/*
1170 * xol_get_insn_slot - If was not allocated a slot, then
1171 * allocate a slot.
1172 * Returns the allocated slot address or 0.
1173 */
1174static unsigned long xol_get_insn_slot(struct uprobe *uprobe, unsigned long slot_addr)
1175{
1176 struct xol_area *area;
1177 unsigned long offset;
1178 void *vaddr;
1179
1180 area = get_xol_area(current->mm);
1181 if (!area) {
1182 area = xol_alloc_area();
1183 if (!area)
1184 return 0;
1185 }
1186 current->utask->xol_vaddr = xol_take_insn_slot(area);
1187
1188 /*
1189 * Initialize the slot if xol_vaddr points to valid
1190 * instruction slot.
1191 */
1192 if (unlikely(!current->utask->xol_vaddr))
1193 return 0;
1194
1195 current->utask->vaddr = slot_addr;
1196 offset = current->utask->xol_vaddr & ~PAGE_MASK;
1197 vaddr = kmap_atomic(area->page);
1198 memcpy(vaddr + offset, uprobe->arch.insn, MAX_UINSN_BYTES);
1199 kunmap_atomic(vaddr);
1200
1201 return current->utask->xol_vaddr;
1202}
1203
1204/*
1205 * xol_free_insn_slot - If slot was earlier allocated by
1206 * @xol_get_insn_slot(), make the slot available for
1207 * subsequent requests.
1208 */
1209static void xol_free_insn_slot(struct task_struct *tsk)
1210{
1211 struct xol_area *area;
1212 unsigned long vma_end;
1213 unsigned long slot_addr;
1214
1215 if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1216 return;
1217
1218 slot_addr = tsk->utask->xol_vaddr;
1219
1220 if (unlikely(!slot_addr || IS_ERR_VALUE(slot_addr)))
1221 return;
1222
1223 area = tsk->mm->uprobes_state.xol_area;
1224 vma_end = area->vaddr + PAGE_SIZE;
1225 if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1226 unsigned long offset;
1227 int slot_nr;
1228
1229 offset = slot_addr - area->vaddr;
1230 slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1231 if (slot_nr >= UINSNS_PER_PAGE)
1232 return;
1233
1234 clear_bit(slot_nr, area->bitmap);
1235 atomic_dec(&area->slot_count);
1236 if (waitqueue_active(&area->wq))
1237 wake_up(&area->wq);
1238
1239 tsk->utask->xol_vaddr = 0;
1240 }
1241}
1242
0326f5a9
SD
1243/**
1244 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1245 * @regs: Reflects the saved state of the task after it has hit a breakpoint
1246 * instruction.
1247 * Return the address of the breakpoint instruction.
1248 */
1249unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1250{
1251 return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1252}
1253
1254/*
1255 * Called with no locks held.
1256 * Called in context of a exiting or a exec-ing thread.
1257 */
1258void uprobe_free_utask(struct task_struct *t)
1259{
1260 struct uprobe_task *utask = t->utask;
1261
0326f5a9
SD
1262 if (!utask)
1263 return;
1264
1265 if (utask->active_uprobe)
1266 put_uprobe(utask->active_uprobe);
1267
d4b3b638 1268 xol_free_insn_slot(t);
0326f5a9
SD
1269 kfree(utask);
1270 t->utask = NULL;
1271}
1272
1273/*
1274 * Called in context of a new clone/fork from copy_process.
1275 */
1276void uprobe_copy_process(struct task_struct *t)
1277{
1278 t->utask = NULL;
0326f5a9
SD
1279}
1280
1281/*
1282 * Allocate a uprobe_task object for the task.
1283 * Called when the thread hits a breakpoint for the first time.
1284 *
1285 * Returns:
1286 * - pointer to new uprobe_task on success
1287 * - NULL otherwise
1288 */
1289static struct uprobe_task *add_utask(void)
1290{
1291 struct uprobe_task *utask;
1292
1293 utask = kzalloc(sizeof *utask, GFP_KERNEL);
1294 if (unlikely(!utask))
1295 return NULL;
1296
0326f5a9
SD
1297 current->utask = utask;
1298 return utask;
1299}
1300
1301/* Prepare to single-step probed instruction out of line. */
1302static int
1303pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long vaddr)
1304{
d4b3b638
SD
1305 if (xol_get_insn_slot(uprobe, vaddr) && !arch_uprobe_pre_xol(&uprobe->arch, regs))
1306 return 0;
1307
0326f5a9
SD
1308 return -EFAULT;
1309}
1310
1311/*
1312 * If we are singlestepping, then ensure this thread is not connected to
1313 * non-fatal signals until completion of singlestep. When xol insn itself
1314 * triggers the signal, restart the original insn even if the task is
1315 * already SIGKILL'ed (since coredump should report the correct ip). This
1316 * is even more important if the task has a handler for SIGSEGV/etc, The
1317 * _same_ instruction should be repeated again after return from the signal
1318 * handler, and SSTEP can never finish in this case.
1319 */
1320bool uprobe_deny_signal(void)
1321{
1322 struct task_struct *t = current;
1323 struct uprobe_task *utask = t->utask;
1324
1325 if (likely(!utask || !utask->active_uprobe))
1326 return false;
1327
1328 WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1329
1330 if (signal_pending(t)) {
1331 spin_lock_irq(&t->sighand->siglock);
1332 clear_tsk_thread_flag(t, TIF_SIGPENDING);
1333 spin_unlock_irq(&t->sighand->siglock);
1334
1335 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1336 utask->state = UTASK_SSTEP_TRAPPED;
1337 set_tsk_thread_flag(t, TIF_UPROBE);
1338 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1339 }
1340 }
1341
1342 return true;
1343}
1344
1345/*
1346 * Avoid singlestepping the original instruction if the original instruction
1347 * is a NOP or can be emulated.
1348 */
1349static bool can_skip_sstep(struct uprobe *uprobe, struct pt_regs *regs)
1350{
0578a970
ON
1351 if (uprobe->flags & UPROBE_SKIP_SSTEP) {
1352 if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
1353 return true;
1354 uprobe->flags &= ~UPROBE_SKIP_SSTEP;
1355 }
0326f5a9
SD
1356 return false;
1357}
1358
499a4f3e
ON
1359static void mmf_recalc_uprobes(struct mm_struct *mm)
1360{
1361 struct vm_area_struct *vma;
1362
1363 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1364 if (!valid_vma(vma, false))
1365 continue;
1366 /*
1367 * This is not strictly accurate, we can race with
1368 * uprobe_unregister() and see the already removed
1369 * uprobe if delete_uprobe() was not yet called.
1370 */
1371 if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
1372 return;
1373 }
1374
1375 clear_bit(MMF_HAS_UPROBES, &mm->flags);
1376}
1377
d790d346 1378static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
0326f5a9 1379{
3a9ea052
ON
1380 struct mm_struct *mm = current->mm;
1381 struct uprobe *uprobe = NULL;
0326f5a9 1382 struct vm_area_struct *vma;
0326f5a9 1383
0326f5a9
SD
1384 down_read(&mm->mmap_sem);
1385 vma = find_vma(mm, bp_vaddr);
3a9ea052
ON
1386 if (vma && vma->vm_start <= bp_vaddr) {
1387 if (valid_vma(vma, false)) {
cb113b47
ON
1388 struct inode *inode = vma->vm_file->f_mapping->host;
1389 loff_t offset = vaddr_to_offset(vma, bp_vaddr);
0326f5a9 1390
3a9ea052
ON
1391 uprobe = find_uprobe(inode, offset);
1392 }
d790d346
ON
1393
1394 if (!uprobe)
1395 *is_swbp = is_swbp_at_addr(mm, bp_vaddr);
1396 } else {
1397 *is_swbp = -EFAULT;
0326f5a9 1398 }
499a4f3e
ON
1399
1400 if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
1401 mmf_recalc_uprobes(mm);
0326f5a9
SD
1402 up_read(&mm->mmap_sem);
1403
3a9ea052
ON
1404 return uprobe;
1405}
1406
9d778782
SAS
1407void __weak arch_uprobe_enable_step(struct arch_uprobe *arch)
1408{
1409 user_enable_single_step(current);
1410}
1411
1412void __weak arch_uprobe_disable_step(struct arch_uprobe *arch)
1413{
1414 user_disable_single_step(current);
1415}
1416
3a9ea052
ON
1417/*
1418 * Run handler and ask thread to singlestep.
1419 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
1420 */
1421static void handle_swbp(struct pt_regs *regs)
1422{
1423 struct uprobe_task *utask;
1424 struct uprobe *uprobe;
1425 unsigned long bp_vaddr;
56bb4cf6 1426 int uninitialized_var(is_swbp);
3a9ea052
ON
1427
1428 bp_vaddr = uprobe_get_swbp_addr(regs);
d790d346 1429 uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
3a9ea052 1430
0326f5a9 1431 if (!uprobe) {
56bb4cf6
ON
1432 if (is_swbp > 0) {
1433 /* No matching uprobe; signal SIGTRAP. */
1434 send_sig(SIGTRAP, current, 0);
1435 } else {
1436 /*
1437 * Either we raced with uprobe_unregister() or we can't
1438 * access this memory. The latter is only possible if
1439 * another thread plays with our ->mm. In both cases
1440 * we can simply restart. If this vma was unmapped we
1441 * can pretend this insn was not executed yet and get
1442 * the (correct) SIGSEGV after restart.
1443 */
1444 instruction_pointer_set(regs, bp_vaddr);
1445 }
0326f5a9
SD
1446 return;
1447 }
1448
1b08e907 1449 utask = current->utask;
0326f5a9
SD
1450 if (!utask) {
1451 utask = add_utask();
1452 /* Cannot allocate; re-execute the instruction. */
1453 if (!utask)
0578a970 1454 goto restart;
0326f5a9 1455 }
746a9e6b 1456
0326f5a9 1457 handler_chain(uprobe, regs);
0578a970
ON
1458 if (can_skip_sstep(uprobe, regs))
1459 goto out;
0326f5a9 1460
0326f5a9 1461 if (!pre_ssout(uprobe, regs, bp_vaddr)) {
9d778782 1462 arch_uprobe_enable_step(&uprobe->arch);
746a9e6b
ON
1463 utask->active_uprobe = uprobe;
1464 utask->state = UTASK_SSTEP;
0326f5a9
SD
1465 return;
1466 }
1467
0578a970
ON
1468restart:
1469 /*
1470 * cannot singlestep; cannot skip instruction;
1471 * re-execute the instruction.
1472 */
1473 instruction_pointer_set(regs, bp_vaddr);
1474out:
8bd87445 1475 put_uprobe(uprobe);
0326f5a9
SD
1476}
1477
1478/*
1479 * Perform required fix-ups and disable singlestep.
1480 * Allow pending signals to take effect.
1481 */
1482static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
1483{
1484 struct uprobe *uprobe;
1485
1486 uprobe = utask->active_uprobe;
1487 if (utask->state == UTASK_SSTEP_ACK)
1488 arch_uprobe_post_xol(&uprobe->arch, regs);
1489 else if (utask->state == UTASK_SSTEP_TRAPPED)
1490 arch_uprobe_abort_xol(&uprobe->arch, regs);
1491 else
1492 WARN_ON_ONCE(1);
1493
9d778782 1494 arch_uprobe_disable_step(&uprobe->arch);
0326f5a9
SD
1495 put_uprobe(uprobe);
1496 utask->active_uprobe = NULL;
1497 utask->state = UTASK_RUNNING;
d4b3b638 1498 xol_free_insn_slot(current);
0326f5a9
SD
1499
1500 spin_lock_irq(&current->sighand->siglock);
1501 recalc_sigpending(); /* see uprobe_deny_signal() */
1502 spin_unlock_irq(&current->sighand->siglock);
1503}
1504
1505/*
1b08e907
ON
1506 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
1507 * allows the thread to return from interrupt. After that handle_swbp()
1508 * sets utask->active_uprobe.
0326f5a9 1509 *
1b08e907
ON
1510 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
1511 * and allows the thread to return from interrupt.
0326f5a9
SD
1512 *
1513 * While returning to userspace, thread notices the TIF_UPROBE flag and calls
1514 * uprobe_notify_resume().
1515 */
1516void uprobe_notify_resume(struct pt_regs *regs)
1517{
1518 struct uprobe_task *utask;
1519
db023ea5
ON
1520 clear_thread_flag(TIF_UPROBE);
1521
0326f5a9 1522 utask = current->utask;
1b08e907 1523 if (utask && utask->active_uprobe)
0326f5a9 1524 handle_singlestep(utask, regs);
1b08e907
ON
1525 else
1526 handle_swbp(regs);
0326f5a9
SD
1527}
1528
1529/*
1530 * uprobe_pre_sstep_notifier gets called from interrupt context as part of
1531 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
1532 */
1533int uprobe_pre_sstep_notifier(struct pt_regs *regs)
1534{
f8ac4ec9 1535 if (!current->mm || !test_bit(MMF_HAS_UPROBES, &current->mm->flags))
0326f5a9
SD
1536 return 0;
1537
0326f5a9 1538 set_thread_flag(TIF_UPROBE);
0326f5a9
SD
1539 return 1;
1540}
1541
1542/*
1543 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
1544 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
1545 */
1546int uprobe_post_sstep_notifier(struct pt_regs *regs)
1547{
1548 struct uprobe_task *utask = current->utask;
1549
1550 if (!current->mm || !utask || !utask->active_uprobe)
1551 /* task is currently not uprobed */
1552 return 0;
1553
1554 utask->state = UTASK_SSTEP_ACK;
1555 set_thread_flag(TIF_UPROBE);
1556 return 1;
1557}
1558
1559static struct notifier_block uprobe_exception_nb = {
1560 .notifier_call = arch_uprobe_exception_notify,
1561 .priority = INT_MAX-1, /* notified after kprobes, kgdb */
1562};
1563
2b144498
SD
1564static int __init init_uprobes(void)
1565{
1566 int i;
1567
1568 for (i = 0; i < UPROBES_HASH_SZ; i++) {
1569 mutex_init(&uprobes_mutex[i]);
1570 mutex_init(&uprobes_mmap_mutex[i]);
1571 }
0326f5a9
SD
1572
1573 return register_die_notifier(&uprobe_exception_nb);
2b144498 1574}
0326f5a9 1575module_init(init_uprobes);
2b144498
SD
1576
1577static void __exit exit_uprobes(void)
1578{
1579}
2b144498 1580module_exit(exit_uprobes);
This page took 0.154129 seconds and 5 git commands to generate.