uretprobes: Introduce uprobe_consumer->ret_handler()
[deliverable/linux.git] / kernel / events / uprobes.c
CommitLineData
2b144498 1/*
7b2d81d4 2 * User-space Probes (UProbes)
2b144498
SD
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
35aa621b 18 * Copyright (C) IBM Corporation, 2008-2012
2b144498
SD
19 * Authors:
20 * Srikar Dronamraju
21 * Jim Keniston
35aa621b 22 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
2b144498
SD
23 */
24
25#include <linux/kernel.h>
26#include <linux/highmem.h>
27#include <linux/pagemap.h> /* read_mapping_page */
28#include <linux/slab.h>
29#include <linux/sched.h>
e8440c14 30#include <linux/export.h>
2b144498
SD
31#include <linux/rmap.h> /* anon_vma_prepare */
32#include <linux/mmu_notifier.h> /* set_pte_at_notify */
33#include <linux/swap.h> /* try_to_free_swap */
0326f5a9
SD
34#include <linux/ptrace.h> /* user_enable_single_step */
35#include <linux/kdebug.h> /* notifier mechanism */
194f8dcb 36#include "../../mm/internal.h" /* munlock_vma_page */
32cdba1e 37#include <linux/percpu-rwsem.h>
7b2d81d4 38
2b144498
SD
39#include <linux/uprobes.h>
40
d4b3b638
SD
41#define UINSNS_PER_PAGE (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
42#define MAX_UPROBE_XOL_SLOTS UINSNS_PER_PAGE
43
2b144498 44static struct rb_root uprobes_tree = RB_ROOT;
441f1eb7
ON
45/*
46 * allows us to skip the uprobe_mmap if there are no uprobe events active
47 * at this time. Probably a fine grained per inode count is better?
48 */
49#define no_uprobe_events() RB_EMPTY_ROOT(&uprobes_tree)
7b2d81d4 50
2b144498
SD
51static DEFINE_SPINLOCK(uprobes_treelock); /* serialize rbtree access */
52
53#define UPROBES_HASH_SZ 13
2b144498
SD
54/* serialize uprobe->pending_list */
55static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
7b2d81d4 56#define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
2b144498 57
32cdba1e
ON
58static struct percpu_rw_semaphore dup_mmap_sem;
59
cb9a19fe 60/* Have a copy of original instruction */
71434f2f 61#define UPROBE_COPY_INSN 0
cb9a19fe 62/* Can skip singlestep */
bb929284 63#define UPROBE_SKIP_SSTEP 1
cb9a19fe 64
3ff54efd
SD
65struct uprobe {
66 struct rb_node rb_node; /* node in the rb tree */
67 atomic_t ref;
e591c8d7 68 struct rw_semaphore register_rwsem;
3ff54efd
SD
69 struct rw_semaphore consumer_rwsem;
70 struct list_head pending_list;
71 struct uprobe_consumer *consumers;
72 struct inode *inode; /* Also hold a ref to inode */
73 loff_t offset;
71434f2f 74 unsigned long flags;
3ff54efd
SD
75 struct arch_uprobe arch;
76};
77
2b144498
SD
78/*
79 * valid_vma: Verify if the specified vma is an executable vma
80 * Relax restrictions while unregistering: vm_flags might have
81 * changed after breakpoint was inserted.
82 * - is_register: indicates if we are in register context.
83 * - Return 1 if the specified virtual address is in an
84 * executable vma.
85 */
86static bool valid_vma(struct vm_area_struct *vma, bool is_register)
87{
e40cfce6 88 vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_SHARED;
2b144498 89
e40cfce6
ON
90 if (is_register)
91 flags |= VM_WRITE;
2b144498 92
e40cfce6 93 return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
2b144498
SD
94}
95
57683f72 96static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
2b144498 97{
57683f72 98 return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
2b144498
SD
99}
100
cb113b47
ON
101static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
102{
103 return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
104}
105
2b144498
SD
106/**
107 * __replace_page - replace page in vma by new page.
108 * based on replace_page in mm/ksm.c
109 *
110 * @vma: vma that holds the pte pointing to page
c517ee74 111 * @addr: address the old @page is mapped at
2b144498
SD
112 * @page: the cowed page we are replacing by kpage
113 * @kpage: the modified page we replace page by
114 *
115 * Returns 0 on success, -EFAULT on failure.
116 */
c517ee74
ON
117static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
118 struct page *page, struct page *kpage)
2b144498
SD
119{
120 struct mm_struct *mm = vma->vm_mm;
5323ce71
ON
121 spinlock_t *ptl;
122 pte_t *ptep;
9f92448c 123 int err;
6bdb913f
HE
124 /* For mmu_notifiers */
125 const unsigned long mmun_start = addr;
126 const unsigned long mmun_end = addr + PAGE_SIZE;
2b144498 127
194f8dcb 128 /* For try_to_free_swap() and munlock_vma_page() below */
9f92448c
ON
129 lock_page(page);
130
6bdb913f 131 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
9f92448c 132 err = -EAGAIN;
5323ce71 133 ptep = page_check_address(page, mm, addr, &ptl, 0);
2b144498 134 if (!ptep)
9f92448c 135 goto unlock;
2b144498
SD
136
137 get_page(kpage);
138 page_add_new_anon_rmap(kpage, vma, addr);
139
7396fa81
SD
140 if (!PageAnon(page)) {
141 dec_mm_counter(mm, MM_FILEPAGES);
142 inc_mm_counter(mm, MM_ANONPAGES);
143 }
144
2b144498
SD
145 flush_cache_page(vma, addr, pte_pfn(*ptep));
146 ptep_clear_flush(vma, addr, ptep);
147 set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
148
149 page_remove_rmap(page);
150 if (!page_mapped(page))
151 try_to_free_swap(page);
2b144498 152 pte_unmap_unlock(ptep, ptl);
2b144498 153
194f8dcb
ON
154 if (vma->vm_flags & VM_LOCKED)
155 munlock_vma_page(page);
156 put_page(page);
157
9f92448c
ON
158 err = 0;
159 unlock:
6bdb913f 160 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
9f92448c
ON
161 unlock_page(page);
162 return err;
2b144498
SD
163}
164
165/**
5cb4ac3a 166 * is_swbp_insn - check if instruction is breakpoint instruction.
2b144498 167 * @insn: instruction to be checked.
5cb4ac3a 168 * Default implementation of is_swbp_insn
2b144498
SD
169 * Returns true if @insn is a breakpoint instruction.
170 */
5cb4ac3a 171bool __weak is_swbp_insn(uprobe_opcode_t *insn)
2b144498 172{
5cb4ac3a 173 return *insn == UPROBE_SWBP_INSN;
2b144498
SD
174}
175
0908ad6e
AM
176/**
177 * is_trap_insn - check if instruction is breakpoint instruction.
178 * @insn: instruction to be checked.
179 * Default implementation of is_trap_insn
180 * Returns true if @insn is a breakpoint instruction.
181 *
182 * This function is needed for the case where an architecture has multiple
183 * trap instructions (like powerpc).
184 */
185bool __weak is_trap_insn(uprobe_opcode_t *insn)
186{
187 return is_swbp_insn(insn);
188}
189
ab0d805c 190static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len)
cceb55aa
ON
191{
192 void *kaddr = kmap_atomic(page);
ab0d805c 193 memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len);
cceb55aa
ON
194 kunmap_atomic(kaddr);
195}
196
5669ccee
ON
197static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len)
198{
199 void *kaddr = kmap_atomic(page);
200 memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
201 kunmap_atomic(kaddr);
202}
203
ed6f6a50
ON
204static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
205{
206 uprobe_opcode_t old_opcode;
207 bool is_swbp;
208
0908ad6e
AM
209 /*
210 * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
211 * We do not check if it is any other 'trap variant' which could
212 * be conditional trap instruction such as the one powerpc supports.
213 *
214 * The logic is that we do not care if the underlying instruction
215 * is a trap variant; uprobes always wins over any other (gdb)
216 * breakpoint.
217 */
ab0d805c 218 copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE);
ed6f6a50
ON
219 is_swbp = is_swbp_insn(&old_opcode);
220
221 if (is_swbp_insn(new_opcode)) {
222 if (is_swbp) /* register: already installed? */
223 return 0;
224 } else {
225 if (!is_swbp) /* unregister: was it changed by us? */
076a365b 226 return 0;
ed6f6a50
ON
227 }
228
229 return 1;
230}
231
2b144498
SD
232/*
233 * NOTE:
234 * Expect the breakpoint instruction to be the smallest size instruction for
235 * the architecture. If an arch has variable length instruction and the
236 * breakpoint instruction is not of the smallest length instruction
0908ad6e 237 * supported by that architecture then we need to modify is_trap_at_addr and
2b144498
SD
238 * write_opcode accordingly. This would never be a problem for archs that
239 * have fixed length instructions.
240 */
241
242/*
243 * write_opcode - write the opcode at a given virtual address.
244 * @mm: the probed process address space.
2b144498
SD
245 * @vaddr: the virtual address to store the opcode.
246 * @opcode: opcode to be written at @vaddr.
247 *
248 * Called with mm->mmap_sem held (for read and with a reference to
249 * mm).
250 *
251 * For mm @mm, write the opcode at @vaddr.
252 * Return 0 (success) or a negative errno.
253 */
cceb55aa
ON
254static int write_opcode(struct mm_struct *mm, unsigned long vaddr,
255 uprobe_opcode_t opcode)
2b144498
SD
256{
257 struct page *old_page, *new_page;
2b144498 258 struct vm_area_struct *vma;
2b144498 259 int ret;
f403072c 260
5323ce71 261retry:
2b144498 262 /* Read the page with vaddr into memory */
75ed82ea 263 ret = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &old_page, &vma);
2b144498
SD
264 if (ret <= 0)
265 return ret;
7b2d81d4 266
ed6f6a50
ON
267 ret = verify_opcode(old_page, vaddr, &opcode);
268 if (ret <= 0)
269 goto put_old;
270
2b144498
SD
271 ret = -ENOMEM;
272 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
273 if (!new_page)
9f92448c 274 goto put_old;
2b144498
SD
275
276 __SetPageUptodate(new_page);
277
3f47107c
ON
278 copy_highpage(new_page, old_page);
279 copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
2b144498
SD
280
281 ret = anon_vma_prepare(vma);
282 if (ret)
9f92448c 283 goto put_new;
2b144498 284
c517ee74 285 ret = __replace_page(vma, vaddr, old_page, new_page);
2b144498 286
9f92448c 287put_new:
2b144498 288 page_cache_release(new_page);
9f92448c 289put_old:
7b2d81d4
IM
290 put_page(old_page);
291
5323ce71
ON
292 if (unlikely(ret == -EAGAIN))
293 goto retry;
2b144498
SD
294 return ret;
295}
296
2b144498 297/**
5cb4ac3a 298 * set_swbp - store breakpoint at a given address.
e3343e6a 299 * @auprobe: arch specific probepoint information.
2b144498 300 * @mm: the probed process address space.
2b144498
SD
301 * @vaddr: the virtual address to insert the opcode.
302 *
303 * For mm @mm, store the breakpoint instruction at @vaddr.
304 * Return 0 (success) or a negative errno.
305 */
5cb4ac3a 306int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
2b144498 307{
cceb55aa 308 return write_opcode(mm, vaddr, UPROBE_SWBP_INSN);
2b144498
SD
309}
310
311/**
312 * set_orig_insn - Restore the original instruction.
313 * @mm: the probed process address space.
e3343e6a 314 * @auprobe: arch specific probepoint information.
2b144498 315 * @vaddr: the virtual address to insert the opcode.
2b144498
SD
316 *
317 * For mm @mm, restore the original opcode (opcode) at @vaddr.
318 * Return 0 (success) or a negative errno.
319 */
7b2d81d4 320int __weak
ded86e7c 321set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
2b144498 322{
cceb55aa 323 return write_opcode(mm, vaddr, *(uprobe_opcode_t *)auprobe->insn);
2b144498
SD
324}
325
326static int match_uprobe(struct uprobe *l, struct uprobe *r)
327{
328 if (l->inode < r->inode)
329 return -1;
7b2d81d4 330
2b144498
SD
331 if (l->inode > r->inode)
332 return 1;
2b144498 333
7b2d81d4
IM
334 if (l->offset < r->offset)
335 return -1;
336
337 if (l->offset > r->offset)
338 return 1;
2b144498
SD
339
340 return 0;
341}
342
343static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
344{
345 struct uprobe u = { .inode = inode, .offset = offset };
346 struct rb_node *n = uprobes_tree.rb_node;
347 struct uprobe *uprobe;
348 int match;
349
350 while (n) {
351 uprobe = rb_entry(n, struct uprobe, rb_node);
352 match = match_uprobe(&u, uprobe);
353 if (!match) {
354 atomic_inc(&uprobe->ref);
355 return uprobe;
356 }
7b2d81d4 357
2b144498
SD
358 if (match < 0)
359 n = n->rb_left;
360 else
361 n = n->rb_right;
362 }
363 return NULL;
364}
365
366/*
367 * Find a uprobe corresponding to a given inode:offset
368 * Acquires uprobes_treelock
369 */
370static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
371{
372 struct uprobe *uprobe;
2b144498 373
6f47caa0 374 spin_lock(&uprobes_treelock);
2b144498 375 uprobe = __find_uprobe(inode, offset);
6f47caa0 376 spin_unlock(&uprobes_treelock);
7b2d81d4 377
2b144498
SD
378 return uprobe;
379}
380
381static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
382{
383 struct rb_node **p = &uprobes_tree.rb_node;
384 struct rb_node *parent = NULL;
385 struct uprobe *u;
386 int match;
387
388 while (*p) {
389 parent = *p;
390 u = rb_entry(parent, struct uprobe, rb_node);
391 match = match_uprobe(uprobe, u);
392 if (!match) {
393 atomic_inc(&u->ref);
394 return u;
395 }
396
397 if (match < 0)
398 p = &parent->rb_left;
399 else
400 p = &parent->rb_right;
401
402 }
7b2d81d4 403
2b144498
SD
404 u = NULL;
405 rb_link_node(&uprobe->rb_node, parent, p);
406 rb_insert_color(&uprobe->rb_node, &uprobes_tree);
407 /* get access + creation ref */
408 atomic_set(&uprobe->ref, 2);
7b2d81d4 409
2b144498
SD
410 return u;
411}
412
413/*
7b2d81d4 414 * Acquire uprobes_treelock.
2b144498
SD
415 * Matching uprobe already exists in rbtree;
416 * increment (access refcount) and return the matching uprobe.
417 *
418 * No matching uprobe; insert the uprobe in rb_tree;
419 * get a double refcount (access + creation) and return NULL.
420 */
421static struct uprobe *insert_uprobe(struct uprobe *uprobe)
422{
2b144498
SD
423 struct uprobe *u;
424
6f47caa0 425 spin_lock(&uprobes_treelock);
2b144498 426 u = __insert_uprobe(uprobe);
6f47caa0 427 spin_unlock(&uprobes_treelock);
7b2d81d4 428
2b144498
SD
429 return u;
430}
431
432static void put_uprobe(struct uprobe *uprobe)
433{
434 if (atomic_dec_and_test(&uprobe->ref))
435 kfree(uprobe);
436}
437
438static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
439{
440 struct uprobe *uprobe, *cur_uprobe;
441
442 uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
443 if (!uprobe)
444 return NULL;
445
446 uprobe->inode = igrab(inode);
447 uprobe->offset = offset;
e591c8d7 448 init_rwsem(&uprobe->register_rwsem);
2b144498 449 init_rwsem(&uprobe->consumer_rwsem);
bbc33d05
ON
450 /* For now assume that the instruction need not be single-stepped */
451 __set_bit(UPROBE_SKIP_SSTEP, &uprobe->flags);
2b144498
SD
452
453 /* add to uprobes_tree, sorted on inode:offset */
454 cur_uprobe = insert_uprobe(uprobe);
455
456 /* a uprobe exists for this inode:offset combination */
457 if (cur_uprobe) {
458 kfree(uprobe);
459 uprobe = cur_uprobe;
460 iput(inode);
7b2d81d4
IM
461 }
462
2b144498
SD
463 return uprobe;
464}
465
9a98e03c 466static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
2b144498
SD
467{
468 down_write(&uprobe->consumer_rwsem);
e3343e6a
SD
469 uc->next = uprobe->consumers;
470 uprobe->consumers = uc;
2b144498 471 up_write(&uprobe->consumer_rwsem);
2b144498
SD
472}
473
474/*
e3343e6a
SD
475 * For uprobe @uprobe, delete the consumer @uc.
476 * Return true if the @uc is deleted successfully
2b144498
SD
477 * or return false.
478 */
e3343e6a 479static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
2b144498
SD
480{
481 struct uprobe_consumer **con;
482 bool ret = false;
483
484 down_write(&uprobe->consumer_rwsem);
485 for (con = &uprobe->consumers; *con; con = &(*con)->next) {
e3343e6a
SD
486 if (*con == uc) {
487 *con = uc->next;
2b144498
SD
488 ret = true;
489 break;
490 }
491 }
492 up_write(&uprobe->consumer_rwsem);
7b2d81d4 493
2b144498
SD
494 return ret;
495}
496
e3343e6a 497static int
d436615e 498__copy_insn(struct address_space *mapping, struct file *filp, char *insn,
593609a5 499 unsigned long nbytes, loff_t offset)
2b144498 500{
2b144498 501 struct page *page;
2b144498 502
cc359d18
ON
503 if (!mapping->a_ops->readpage)
504 return -EIO;
2b144498
SD
505 /*
506 * Ensure that the page that has the original instruction is
507 * populated and in page-cache.
508 */
2edb7b55 509 page = read_mapping_page(mapping, offset >> PAGE_CACHE_SHIFT, filp);
2b144498
SD
510 if (IS_ERR(page))
511 return PTR_ERR(page);
512
2edb7b55 513 copy_from_page(page, offset, insn, nbytes);
2b144498 514 page_cache_release(page);
7b2d81d4 515
2b144498
SD
516 return 0;
517}
518
d436615e 519static int copy_insn(struct uprobe *uprobe, struct file *filp)
2b144498
SD
520{
521 struct address_space *mapping;
2b144498 522 unsigned long nbytes;
7b2d81d4 523 int bytes;
2b144498 524
d436615e 525 nbytes = PAGE_SIZE - (uprobe->offset & ~PAGE_MASK);
2b144498
SD
526 mapping = uprobe->inode->i_mapping;
527
528 /* Instruction at end of binary; copy only available bytes */
529 if (uprobe->offset + MAX_UINSN_BYTES > uprobe->inode->i_size)
530 bytes = uprobe->inode->i_size - uprobe->offset;
531 else
532 bytes = MAX_UINSN_BYTES;
533
534 /* Instruction at the page-boundary; copy bytes in second page */
535 if (nbytes < bytes) {
fc36f595
ON
536 int err = __copy_insn(mapping, filp, uprobe->arch.insn + nbytes,
537 bytes - nbytes, uprobe->offset + nbytes);
538 if (err)
539 return err;
2b144498
SD
540 bytes = nbytes;
541 }
d436615e 542 return __copy_insn(mapping, filp, uprobe->arch.insn, bytes, uprobe->offset);
2b144498
SD
543}
544
cb9a19fe
ON
545static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
546 struct mm_struct *mm, unsigned long vaddr)
547{
548 int ret = 0;
549
71434f2f 550 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
cb9a19fe
ON
551 return ret;
552
d4d3ccc6
ON
553 /* TODO: move this into _register, until then we abuse this sem. */
554 down_write(&uprobe->consumer_rwsem);
71434f2f 555 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
4710f05f
ON
556 goto out;
557
cb9a19fe
ON
558 ret = copy_insn(uprobe, file);
559 if (ret)
560 goto out;
561
562 ret = -ENOTSUPP;
0908ad6e 563 if (is_trap_insn((uprobe_opcode_t *)uprobe->arch.insn))
cb9a19fe
ON
564 goto out;
565
566 ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
567 if (ret)
568 goto out;
569
570 /* write_opcode() assumes we don't cross page boundary */
571 BUG_ON((uprobe->offset & ~PAGE_MASK) +
572 UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
573
574 smp_wmb(); /* pairs with rmb() in find_active_uprobe() */
71434f2f 575 set_bit(UPROBE_COPY_INSN, &uprobe->flags);
cb9a19fe
ON
576
577 out:
d4d3ccc6 578 up_write(&uprobe->consumer_rwsem);
4710f05f 579
cb9a19fe
ON
580 return ret;
581}
582
8a7f2fa0
ON
583static inline bool consumer_filter(struct uprobe_consumer *uc,
584 enum uprobe_filter_ctx ctx, struct mm_struct *mm)
806a98bd 585{
8a7f2fa0 586 return !uc->filter || uc->filter(uc, ctx, mm);
806a98bd
ON
587}
588
8a7f2fa0
ON
589static bool filter_chain(struct uprobe *uprobe,
590 enum uprobe_filter_ctx ctx, struct mm_struct *mm)
63633cbf 591{
1ff6fee5
ON
592 struct uprobe_consumer *uc;
593 bool ret = false;
594
595 down_read(&uprobe->consumer_rwsem);
596 for (uc = uprobe->consumers; uc; uc = uc->next) {
8a7f2fa0 597 ret = consumer_filter(uc, ctx, mm);
1ff6fee5
ON
598 if (ret)
599 break;
600 }
601 up_read(&uprobe->consumer_rwsem);
602
603 return ret;
63633cbf
ON
604}
605
e3343e6a
SD
606static int
607install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
816c03fb 608 struct vm_area_struct *vma, unsigned long vaddr)
2b144498 609{
f8ac4ec9 610 bool first_uprobe;
2b144498
SD
611 int ret;
612
cb9a19fe
ON
613 ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
614 if (ret)
615 return ret;
682968e0 616
f8ac4ec9
ON
617 /*
618 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
619 * the task can hit this breakpoint right after __replace_page().
620 */
621 first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
622 if (first_uprobe)
623 set_bit(MMF_HAS_UPROBES, &mm->flags);
624
816c03fb 625 ret = set_swbp(&uprobe->arch, mm, vaddr);
9f68f672
ON
626 if (!ret)
627 clear_bit(MMF_RECALC_UPROBES, &mm->flags);
628 else if (first_uprobe)
f8ac4ec9 629 clear_bit(MMF_HAS_UPROBES, &mm->flags);
2b144498
SD
630
631 return ret;
632}
633
076a365b 634static int
816c03fb 635remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
2b144498 636{
9f68f672 637 set_bit(MMF_RECALC_UPROBES, &mm->flags);
076a365b 638 return set_orig_insn(&uprobe->arch, mm, vaddr);
2b144498
SD
639}
640
06b7bcd8
ON
641static inline bool uprobe_is_active(struct uprobe *uprobe)
642{
643 return !RB_EMPTY_NODE(&uprobe->rb_node);
644}
0326f5a9 645/*
778b032d
ON
646 * There could be threads that have already hit the breakpoint. They
647 * will recheck the current insn and restart if find_uprobe() fails.
648 * See find_active_uprobe().
0326f5a9 649 */
2b144498
SD
650static void delete_uprobe(struct uprobe *uprobe)
651{
06b7bcd8
ON
652 if (WARN_ON(!uprobe_is_active(uprobe)))
653 return;
654
6f47caa0 655 spin_lock(&uprobes_treelock);
2b144498 656 rb_erase(&uprobe->rb_node, &uprobes_tree);
6f47caa0 657 spin_unlock(&uprobes_treelock);
06b7bcd8 658 RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */
2b144498
SD
659 iput(uprobe->inode);
660 put_uprobe(uprobe);
2b144498
SD
661}
662
26872090
ON
663struct map_info {
664 struct map_info *next;
665 struct mm_struct *mm;
816c03fb 666 unsigned long vaddr;
26872090
ON
667};
668
669static inline struct map_info *free_map_info(struct map_info *info)
2b144498 670{
26872090
ON
671 struct map_info *next = info->next;
672 kfree(info);
673 return next;
674}
675
676static struct map_info *
677build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
678{
679 unsigned long pgoff = offset >> PAGE_SHIFT;
2b144498 680 struct vm_area_struct *vma;
26872090
ON
681 struct map_info *curr = NULL;
682 struct map_info *prev = NULL;
683 struct map_info *info;
684 int more = 0;
2b144498 685
26872090
ON
686 again:
687 mutex_lock(&mapping->i_mmap_mutex);
6b2dbba8 688 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
2b144498
SD
689 if (!valid_vma(vma, is_register))
690 continue;
691
7a5bfb66
ON
692 if (!prev && !more) {
693 /*
694 * Needs GFP_NOWAIT to avoid i_mmap_mutex recursion through
695 * reclaim. This is optimistic, no harm done if it fails.
696 */
697 prev = kmalloc(sizeof(struct map_info),
698 GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
699 if (prev)
700 prev->next = NULL;
701 }
26872090
ON
702 if (!prev) {
703 more++;
704 continue;
2b144498 705 }
2b144498 706
26872090
ON
707 if (!atomic_inc_not_zero(&vma->vm_mm->mm_users))
708 continue;
7b2d81d4 709
26872090
ON
710 info = prev;
711 prev = prev->next;
712 info->next = curr;
713 curr = info;
2b144498 714
26872090 715 info->mm = vma->vm_mm;
57683f72 716 info->vaddr = offset_to_vaddr(vma, offset);
26872090 717 }
2b144498
SD
718 mutex_unlock(&mapping->i_mmap_mutex);
719
26872090
ON
720 if (!more)
721 goto out;
722
723 prev = curr;
724 while (curr) {
725 mmput(curr->mm);
726 curr = curr->next;
727 }
7b2d81d4 728
26872090
ON
729 do {
730 info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
731 if (!info) {
732 curr = ERR_PTR(-ENOMEM);
733 goto out;
734 }
735 info->next = prev;
736 prev = info;
737 } while (--more);
738
739 goto again;
740 out:
741 while (prev)
742 prev = free_map_info(prev);
743 return curr;
2b144498
SD
744}
745
bdf8647c
ON
746static int
747register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
2b144498 748{
bdf8647c 749 bool is_register = !!new;
26872090
ON
750 struct map_info *info;
751 int err = 0;
2b144498 752
32cdba1e 753 percpu_down_write(&dup_mmap_sem);
26872090
ON
754 info = build_map_info(uprobe->inode->i_mapping,
755 uprobe->offset, is_register);
32cdba1e
ON
756 if (IS_ERR(info)) {
757 err = PTR_ERR(info);
758 goto out;
759 }
7b2d81d4 760
26872090
ON
761 while (info) {
762 struct mm_struct *mm = info->mm;
763 struct vm_area_struct *vma;
7b2d81d4 764
076a365b 765 if (err && is_register)
26872090 766 goto free;
7b2d81d4 767
77fc4af1 768 down_write(&mm->mmap_sem);
f4d6dfe5
ON
769 vma = find_vma(mm, info->vaddr);
770 if (!vma || !valid_vma(vma, is_register) ||
f281769e 771 file_inode(vma->vm_file) != uprobe->inode)
26872090
ON
772 goto unlock;
773
f4d6dfe5
ON
774 if (vma->vm_start > info->vaddr ||
775 vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
26872090 776 goto unlock;
2b144498 777
806a98bd
ON
778 if (is_register) {
779 /* consult only the "caller", new consumer. */
bdf8647c 780 if (consumer_filter(new,
8a7f2fa0 781 UPROBE_FILTER_REGISTER, mm))
806a98bd
ON
782 err = install_breakpoint(uprobe, mm, vma, info->vaddr);
783 } else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) {
8a7f2fa0
ON
784 if (!filter_chain(uprobe,
785 UPROBE_FILTER_UNREGISTER, mm))
806a98bd
ON
786 err |= remove_breakpoint(uprobe, mm, info->vaddr);
787 }
78f74116 788
26872090
ON
789 unlock:
790 up_write(&mm->mmap_sem);
791 free:
792 mmput(mm);
793 info = free_map_info(info);
2b144498 794 }
32cdba1e
ON
795 out:
796 percpu_up_write(&dup_mmap_sem);
26872090 797 return err;
2b144498
SD
798}
799
9a98e03c 800static int __uprobe_register(struct uprobe *uprobe, struct uprobe_consumer *uc)
2b144498 801{
9a98e03c 802 consumer_add(uprobe, uc);
bdf8647c 803 return register_for_each_vma(uprobe, uc);
2b144498
SD
804}
805
04aab9b2 806static void __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc)
2b144498 807{
04aab9b2
ON
808 int err;
809
810 if (!consumer_del(uprobe, uc)) /* WARN? */
811 return;
2b144498 812
bdf8647c 813 err = register_for_each_vma(uprobe, NULL);
bb929284
ON
814 /* TODO : cant unregister? schedule a worker thread */
815 if (!uprobe->consumers && !err)
816 delete_uprobe(uprobe);
2b144498
SD
817}
818
819/*
7b2d81d4 820 * uprobe_register - register a probe
2b144498
SD
821 * @inode: the file in which the probe has to be placed.
822 * @offset: offset from the start of the file.
e3343e6a 823 * @uc: information on howto handle the probe..
2b144498 824 *
7b2d81d4 825 * Apart from the access refcount, uprobe_register() takes a creation
2b144498
SD
826 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
827 * inserted into the rbtree (i.e first consumer for a @inode:@offset
7b2d81d4 828 * tuple). Creation refcount stops uprobe_unregister from freeing the
2b144498 829 * @uprobe even before the register operation is complete. Creation
e3343e6a 830 * refcount is released when the last @uc for the @uprobe
2b144498
SD
831 * unregisters.
832 *
833 * Return errno if it cannot successully install probes
834 * else return 0 (success)
835 */
e3343e6a 836int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
2b144498
SD
837{
838 struct uprobe *uprobe;
7b2d81d4 839 int ret;
2b144498 840
ea024870
AA
841 /* Uprobe must have at least one set consumer */
842 if (!uc->handler && !uc->ret_handler)
843 return -EINVAL;
844
845 /* TODO: Implement return probes */
846 if (uc->ret_handler)
847 return -ENOSYS;
848
f0744af7 849 /* Racy, just to catch the obvious mistakes */
2b144498 850 if (offset > i_size_read(inode))
7b2d81d4 851 return -EINVAL;
2b144498 852
66d06dff 853 retry:
2b144498 854 uprobe = alloc_uprobe(inode, offset);
66d06dff
ON
855 if (!uprobe)
856 return -ENOMEM;
857 /*
858 * We can race with uprobe_unregister()->delete_uprobe().
859 * Check uprobe_is_active() and retry if it is false.
860 */
861 down_write(&uprobe->register_rwsem);
862 ret = -EAGAIN;
863 if (likely(uprobe_is_active(uprobe))) {
9a98e03c
ON
864 ret = __uprobe_register(uprobe, uc);
865 if (ret)
04aab9b2 866 __uprobe_unregister(uprobe, uc);
2b144498 867 }
66d06dff
ON
868 up_write(&uprobe->register_rwsem);
869 put_uprobe(uprobe);
2b144498 870
66d06dff
ON
871 if (unlikely(ret == -EAGAIN))
872 goto retry;
2b144498
SD
873 return ret;
874}
e8440c14 875EXPORT_SYMBOL_GPL(uprobe_register);
2b144498 876
bdf8647c
ON
877/*
878 * uprobe_apply - unregister a already registered probe.
879 * @inode: the file in which the probe has to be removed.
880 * @offset: offset from the start of the file.
881 * @uc: consumer which wants to add more or remove some breakpoints
882 * @add: add or remove the breakpoints
883 */
884int uprobe_apply(struct inode *inode, loff_t offset,
885 struct uprobe_consumer *uc, bool add)
886{
887 struct uprobe *uprobe;
888 struct uprobe_consumer *con;
889 int ret = -ENOENT;
890
891 uprobe = find_uprobe(inode, offset);
892 if (!uprobe)
893 return ret;
894
895 down_write(&uprobe->register_rwsem);
896 for (con = uprobe->consumers; con && con != uc ; con = con->next)
897 ;
898 if (con)
899 ret = register_for_each_vma(uprobe, add ? uc : NULL);
900 up_write(&uprobe->register_rwsem);
901 put_uprobe(uprobe);
902
903 return ret;
904}
905
2b144498 906/*
7b2d81d4 907 * uprobe_unregister - unregister a already registered probe.
2b144498
SD
908 * @inode: the file in which the probe has to be removed.
909 * @offset: offset from the start of the file.
e3343e6a 910 * @uc: identify which probe if multiple probes are colocated.
2b144498 911 */
e3343e6a 912void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
2b144498 913{
7b2d81d4 914 struct uprobe *uprobe;
2b144498 915
2b144498
SD
916 uprobe = find_uprobe(inode, offset);
917 if (!uprobe)
918 return;
919
e591c8d7 920 down_write(&uprobe->register_rwsem);
04aab9b2 921 __uprobe_unregister(uprobe, uc);
e591c8d7 922 up_write(&uprobe->register_rwsem);
c91368c4 923 put_uprobe(uprobe);
2b144498 924}
e8440c14 925EXPORT_SYMBOL_GPL(uprobe_unregister);
2b144498 926
da1816b1
ON
927static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
928{
929 struct vm_area_struct *vma;
930 int err = 0;
931
932 down_read(&mm->mmap_sem);
933 for (vma = mm->mmap; vma; vma = vma->vm_next) {
934 unsigned long vaddr;
935 loff_t offset;
936
937 if (!valid_vma(vma, false) ||
f281769e 938 file_inode(vma->vm_file) != uprobe->inode)
da1816b1
ON
939 continue;
940
941 offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
942 if (uprobe->offset < offset ||
943 uprobe->offset >= offset + vma->vm_end - vma->vm_start)
944 continue;
945
946 vaddr = offset_to_vaddr(vma, uprobe->offset);
947 err |= remove_breakpoint(uprobe, mm, vaddr);
948 }
949 up_read(&mm->mmap_sem);
950
951 return err;
952}
953
891c3970
ON
954static struct rb_node *
955find_node_in_range(struct inode *inode, loff_t min, loff_t max)
2b144498 956{
2b144498 957 struct rb_node *n = uprobes_tree.rb_node;
2b144498
SD
958
959 while (n) {
891c3970 960 struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
2b144498 961
891c3970 962 if (inode < u->inode) {
2b144498 963 n = n->rb_left;
891c3970 964 } else if (inode > u->inode) {
2b144498 965 n = n->rb_right;
891c3970
ON
966 } else {
967 if (max < u->offset)
968 n = n->rb_left;
969 else if (min > u->offset)
970 n = n->rb_right;
971 else
972 break;
973 }
2b144498 974 }
7b2d81d4 975
891c3970 976 return n;
2b144498
SD
977}
978
979/*
891c3970 980 * For a given range in vma, build a list of probes that need to be inserted.
2b144498 981 */
891c3970
ON
982static void build_probe_list(struct inode *inode,
983 struct vm_area_struct *vma,
984 unsigned long start, unsigned long end,
985 struct list_head *head)
2b144498 986{
891c3970 987 loff_t min, max;
891c3970
ON
988 struct rb_node *n, *t;
989 struct uprobe *u;
7b2d81d4 990
891c3970 991 INIT_LIST_HEAD(head);
cb113b47 992 min = vaddr_to_offset(vma, start);
891c3970 993 max = min + (end - start) - 1;
2b144498 994
6f47caa0 995 spin_lock(&uprobes_treelock);
891c3970
ON
996 n = find_node_in_range(inode, min, max);
997 if (n) {
998 for (t = n; t; t = rb_prev(t)) {
999 u = rb_entry(t, struct uprobe, rb_node);
1000 if (u->inode != inode || u->offset < min)
1001 break;
1002 list_add(&u->pending_list, head);
1003 atomic_inc(&u->ref);
1004 }
1005 for (t = n; (t = rb_next(t)); ) {
1006 u = rb_entry(t, struct uprobe, rb_node);
1007 if (u->inode != inode || u->offset > max)
1008 break;
1009 list_add(&u->pending_list, head);
1010 atomic_inc(&u->ref);
1011 }
2b144498 1012 }
6f47caa0 1013 spin_unlock(&uprobes_treelock);
2b144498
SD
1014}
1015
1016/*
5e5be71a 1017 * Called from mmap_region/vma_adjust with mm->mmap_sem acquired.
2b144498 1018 *
5e5be71a
ON
1019 * Currently we ignore all errors and always return 0, the callers
1020 * can't handle the failure anyway.
2b144498 1021 */
7b2d81d4 1022int uprobe_mmap(struct vm_area_struct *vma)
2b144498
SD
1023{
1024 struct list_head tmp_list;
665605a2 1025 struct uprobe *uprobe, *u;
2b144498 1026 struct inode *inode;
2b144498 1027
441f1eb7 1028 if (no_uprobe_events() || !valid_vma(vma, true))
7b2d81d4 1029 return 0;
2b144498 1030
f281769e 1031 inode = file_inode(vma->vm_file);
2b144498 1032 if (!inode)
7b2d81d4 1033 return 0;
2b144498 1034
2b144498 1035 mutex_lock(uprobes_mmap_hash(inode));
891c3970 1036 build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
806a98bd
ON
1037 /*
1038 * We can race with uprobe_unregister(), this uprobe can be already
1039 * removed. But in this case filter_chain() must return false, all
1040 * consumers have gone away.
1041 */
665605a2 1042 list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
806a98bd 1043 if (!fatal_signal_pending(current) &&
8a7f2fa0 1044 filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) {
57683f72 1045 unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
5e5be71a 1046 install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
2b144498
SD
1047 }
1048 put_uprobe(uprobe);
1049 }
2b144498
SD
1050 mutex_unlock(uprobes_mmap_hash(inode));
1051
5e5be71a 1052 return 0;
2b144498
SD
1053}
1054
9f68f672
ON
1055static bool
1056vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1057{
1058 loff_t min, max;
1059 struct inode *inode;
1060 struct rb_node *n;
1061
f281769e 1062 inode = file_inode(vma->vm_file);
9f68f672
ON
1063
1064 min = vaddr_to_offset(vma, start);
1065 max = min + (end - start) - 1;
1066
1067 spin_lock(&uprobes_treelock);
1068 n = find_node_in_range(inode, min, max);
1069 spin_unlock(&uprobes_treelock);
1070
1071 return !!n;
1072}
1073
682968e0
SD
1074/*
1075 * Called in context of a munmap of a vma.
1076 */
cbc91f71 1077void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
682968e0 1078{
441f1eb7 1079 if (no_uprobe_events() || !valid_vma(vma, false))
682968e0
SD
1080 return;
1081
2fd611a9
ON
1082 if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1083 return;
1084
9f68f672
ON
1085 if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1086 test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
f8ac4ec9
ON
1087 return;
1088
9f68f672
ON
1089 if (vma_has_uprobes(vma, start, end))
1090 set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
682968e0
SD
1091}
1092
d4b3b638
SD
1093/* Slot allocation for XOL */
1094static int xol_add_vma(struct xol_area *area)
1095{
c8a82538
ON
1096 struct mm_struct *mm = current->mm;
1097 int ret = -EALREADY;
d4b3b638
SD
1098
1099 down_write(&mm->mmap_sem);
1100 if (mm->uprobes_state.xol_area)
1101 goto fail;
1102
1103 ret = -ENOMEM;
d4b3b638
SD
1104 /* Try to map as high as possible, this is only a hint. */
1105 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE, PAGE_SIZE, 0, 0);
1106 if (area->vaddr & ~PAGE_MASK) {
1107 ret = area->vaddr;
1108 goto fail;
1109 }
1110
1111 ret = install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1112 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, &area->page);
1113 if (ret)
1114 goto fail;
1115
1116 smp_wmb(); /* pairs with get_xol_area() */
1117 mm->uprobes_state.xol_area = area;
1118 ret = 0;
c8a82538 1119 fail:
d4b3b638 1120 up_write(&mm->mmap_sem);
d4b3b638
SD
1121
1122 return ret;
1123}
1124
d4b3b638 1125/*
9b545df8
ON
1126 * get_xol_area - Allocate process's xol_area if necessary.
1127 * This area will be used for storing instructions for execution out of line.
d4b3b638
SD
1128 *
1129 * Returns the allocated area or NULL.
1130 */
9b545df8 1131static struct xol_area *get_xol_area(void)
d4b3b638 1132{
9b545df8 1133 struct mm_struct *mm = current->mm;
d4b3b638
SD
1134 struct xol_area *area;
1135
9b545df8
ON
1136 area = mm->uprobes_state.xol_area;
1137 if (area)
1138 goto ret;
1139
d4b3b638
SD
1140 area = kzalloc(sizeof(*area), GFP_KERNEL);
1141 if (unlikely(!area))
c8a82538 1142 goto out;
d4b3b638
SD
1143
1144 area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL);
d4b3b638 1145 if (!area->bitmap)
c8a82538
ON
1146 goto free_area;
1147
1148 area->page = alloc_page(GFP_HIGHUSER);
1149 if (!area->page)
1150 goto free_bitmap;
d4b3b638
SD
1151
1152 init_waitqueue_head(&area->wq);
1153 if (!xol_add_vma(area))
1154 return area;
1155
c8a82538
ON
1156 __free_page(area->page);
1157 free_bitmap:
d4b3b638 1158 kfree(area->bitmap);
c8a82538 1159 free_area:
d4b3b638 1160 kfree(area);
c8a82538 1161 out:
9b545df8
ON
1162 area = mm->uprobes_state.xol_area;
1163 ret:
1164 smp_read_barrier_depends(); /* pairs with wmb in xol_add_vma() */
1165 return area;
d4b3b638
SD
1166}
1167
1168/*
1169 * uprobe_clear_state - Free the area allocated for slots.
1170 */
1171void uprobe_clear_state(struct mm_struct *mm)
1172{
1173 struct xol_area *area = mm->uprobes_state.xol_area;
1174
1175 if (!area)
1176 return;
1177
1178 put_page(area->page);
1179 kfree(area->bitmap);
1180 kfree(area);
1181}
1182
32cdba1e
ON
1183void uprobe_start_dup_mmap(void)
1184{
1185 percpu_down_read(&dup_mmap_sem);
1186}
1187
1188void uprobe_end_dup_mmap(void)
1189{
1190 percpu_up_read(&dup_mmap_sem);
1191}
1192
f8ac4ec9
ON
1193void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1194{
61559a81
ON
1195 newmm->uprobes_state.xol_area = NULL;
1196
9f68f672 1197 if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
f8ac4ec9 1198 set_bit(MMF_HAS_UPROBES, &newmm->flags);
9f68f672
ON
1199 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1200 set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1201 }
f8ac4ec9
ON
1202}
1203
d4b3b638
SD
1204/*
1205 * - search for a free slot.
1206 */
1207static unsigned long xol_take_insn_slot(struct xol_area *area)
1208{
1209 unsigned long slot_addr;
1210 int slot_nr;
1211
1212 do {
1213 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1214 if (slot_nr < UINSNS_PER_PAGE) {
1215 if (!test_and_set_bit(slot_nr, area->bitmap))
1216 break;
1217
1218 slot_nr = UINSNS_PER_PAGE;
1219 continue;
1220 }
1221 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1222 } while (slot_nr >= UINSNS_PER_PAGE);
1223
1224 slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1225 atomic_inc(&area->slot_count);
1226
1227 return slot_addr;
1228}
1229
1230/*
a6cb3f6d 1231 * xol_get_insn_slot - allocate a slot for xol.
d4b3b638
SD
1232 * Returns the allocated slot address or 0.
1233 */
a6cb3f6d 1234static unsigned long xol_get_insn_slot(struct uprobe *uprobe)
d4b3b638
SD
1235{
1236 struct xol_area *area;
a6cb3f6d 1237 unsigned long xol_vaddr;
d4b3b638 1238
9b545df8
ON
1239 area = get_xol_area();
1240 if (!area)
1241 return 0;
d4b3b638 1242
a6cb3f6d
ON
1243 xol_vaddr = xol_take_insn_slot(area);
1244 if (unlikely(!xol_vaddr))
d4b3b638
SD
1245 return 0;
1246
a6cb3f6d 1247 /* Initialize the slot */
5669ccee 1248 copy_to_page(area->page, xol_vaddr, uprobe->arch.insn, MAX_UINSN_BYTES);
65b6ecc0
RV
1249 /*
1250 * We probably need flush_icache_user_range() but it needs vma.
1251 * This should work on supported architectures too.
1252 */
1253 flush_dcache_page(area->page);
d4b3b638 1254
a6cb3f6d 1255 return xol_vaddr;
d4b3b638
SD
1256}
1257
1258/*
1259 * xol_free_insn_slot - If slot was earlier allocated by
1260 * @xol_get_insn_slot(), make the slot available for
1261 * subsequent requests.
1262 */
1263static void xol_free_insn_slot(struct task_struct *tsk)
1264{
1265 struct xol_area *area;
1266 unsigned long vma_end;
1267 unsigned long slot_addr;
1268
1269 if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1270 return;
1271
1272 slot_addr = tsk->utask->xol_vaddr;
af4355e9 1273 if (unlikely(!slot_addr))
d4b3b638
SD
1274 return;
1275
1276 area = tsk->mm->uprobes_state.xol_area;
1277 vma_end = area->vaddr + PAGE_SIZE;
1278 if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1279 unsigned long offset;
1280 int slot_nr;
1281
1282 offset = slot_addr - area->vaddr;
1283 slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1284 if (slot_nr >= UINSNS_PER_PAGE)
1285 return;
1286
1287 clear_bit(slot_nr, area->bitmap);
1288 atomic_dec(&area->slot_count);
1289 if (waitqueue_active(&area->wq))
1290 wake_up(&area->wq);
1291
1292 tsk->utask->xol_vaddr = 0;
1293 }
1294}
1295
0326f5a9
SD
1296/**
1297 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1298 * @regs: Reflects the saved state of the task after it has hit a breakpoint
1299 * instruction.
1300 * Return the address of the breakpoint instruction.
1301 */
1302unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1303{
1304 return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1305}
1306
1307/*
1308 * Called with no locks held.
1309 * Called in context of a exiting or a exec-ing thread.
1310 */
1311void uprobe_free_utask(struct task_struct *t)
1312{
1313 struct uprobe_task *utask = t->utask;
1314
0326f5a9
SD
1315 if (!utask)
1316 return;
1317
1318 if (utask->active_uprobe)
1319 put_uprobe(utask->active_uprobe);
1320
d4b3b638 1321 xol_free_insn_slot(t);
0326f5a9
SD
1322 kfree(utask);
1323 t->utask = NULL;
1324}
1325
1326/*
1327 * Called in context of a new clone/fork from copy_process.
1328 */
1329void uprobe_copy_process(struct task_struct *t)
1330{
1331 t->utask = NULL;
0326f5a9
SD
1332}
1333
1334/*
5a2df662
ON
1335 * Allocate a uprobe_task object for the task if if necessary.
1336 * Called when the thread hits a breakpoint.
0326f5a9
SD
1337 *
1338 * Returns:
1339 * - pointer to new uprobe_task on success
1340 * - NULL otherwise
1341 */
5a2df662 1342static struct uprobe_task *get_utask(void)
0326f5a9 1343{
5a2df662
ON
1344 if (!current->utask)
1345 current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1346 return current->utask;
0326f5a9
SD
1347}
1348
1349/* Prepare to single-step probed instruction out of line. */
1350static int
a6cb3f6d 1351pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
0326f5a9 1352{
a6cb3f6d
ON
1353 struct uprobe_task *utask;
1354 unsigned long xol_vaddr;
aba51024 1355 int err;
a6cb3f6d 1356
608e7427
ON
1357 utask = get_utask();
1358 if (!utask)
1359 return -ENOMEM;
a6cb3f6d
ON
1360
1361 xol_vaddr = xol_get_insn_slot(uprobe);
1362 if (!xol_vaddr)
1363 return -ENOMEM;
1364
1365 utask->xol_vaddr = xol_vaddr;
1366 utask->vaddr = bp_vaddr;
d4b3b638 1367
aba51024
ON
1368 err = arch_uprobe_pre_xol(&uprobe->arch, regs);
1369 if (unlikely(err)) {
1370 xol_free_insn_slot(current);
1371 return err;
1372 }
1373
608e7427
ON
1374 utask->active_uprobe = uprobe;
1375 utask->state = UTASK_SSTEP;
aba51024 1376 return 0;
0326f5a9
SD
1377}
1378
1379/*
1380 * If we are singlestepping, then ensure this thread is not connected to
1381 * non-fatal signals until completion of singlestep. When xol insn itself
1382 * triggers the signal, restart the original insn even if the task is
1383 * already SIGKILL'ed (since coredump should report the correct ip). This
1384 * is even more important if the task has a handler for SIGSEGV/etc, The
1385 * _same_ instruction should be repeated again after return from the signal
1386 * handler, and SSTEP can never finish in this case.
1387 */
1388bool uprobe_deny_signal(void)
1389{
1390 struct task_struct *t = current;
1391 struct uprobe_task *utask = t->utask;
1392
1393 if (likely(!utask || !utask->active_uprobe))
1394 return false;
1395
1396 WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1397
1398 if (signal_pending(t)) {
1399 spin_lock_irq(&t->sighand->siglock);
1400 clear_tsk_thread_flag(t, TIF_SIGPENDING);
1401 spin_unlock_irq(&t->sighand->siglock);
1402
1403 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1404 utask->state = UTASK_SSTEP_TRAPPED;
1405 set_tsk_thread_flag(t, TIF_UPROBE);
1406 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1407 }
1408 }
1409
1410 return true;
1411}
1412
1413/*
1414 * Avoid singlestepping the original instruction if the original instruction
1415 * is a NOP or can be emulated.
1416 */
1417static bool can_skip_sstep(struct uprobe *uprobe, struct pt_regs *regs)
1418{
71434f2f 1419 if (test_bit(UPROBE_SKIP_SSTEP, &uprobe->flags)) {
0578a970
ON
1420 if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
1421 return true;
71434f2f 1422 clear_bit(UPROBE_SKIP_SSTEP, &uprobe->flags);
0578a970 1423 }
0326f5a9
SD
1424 return false;
1425}
1426
499a4f3e
ON
1427static void mmf_recalc_uprobes(struct mm_struct *mm)
1428{
1429 struct vm_area_struct *vma;
1430
1431 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1432 if (!valid_vma(vma, false))
1433 continue;
1434 /*
1435 * This is not strictly accurate, we can race with
1436 * uprobe_unregister() and see the already removed
1437 * uprobe if delete_uprobe() was not yet called.
63633cbf 1438 * Or this uprobe can be filtered out.
499a4f3e
ON
1439 */
1440 if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
1441 return;
1442 }
1443
1444 clear_bit(MMF_HAS_UPROBES, &mm->flags);
1445}
1446
0908ad6e 1447static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr)
ec75fba9
ON
1448{
1449 struct page *page;
1450 uprobe_opcode_t opcode;
1451 int result;
1452
1453 pagefault_disable();
1454 result = __copy_from_user_inatomic(&opcode, (void __user*)vaddr,
1455 sizeof(opcode));
1456 pagefault_enable();
1457
1458 if (likely(result == 0))
1459 goto out;
1460
1461 result = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &page, NULL);
1462 if (result < 0)
1463 return result;
1464
ab0d805c 1465 copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
ec75fba9
ON
1466 put_page(page);
1467 out:
0908ad6e
AM
1468 /* This needs to return true for any variant of the trap insn */
1469 return is_trap_insn(&opcode);
ec75fba9
ON
1470}
1471
d790d346 1472static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
0326f5a9 1473{
3a9ea052
ON
1474 struct mm_struct *mm = current->mm;
1475 struct uprobe *uprobe = NULL;
0326f5a9 1476 struct vm_area_struct *vma;
0326f5a9 1477
0326f5a9
SD
1478 down_read(&mm->mmap_sem);
1479 vma = find_vma(mm, bp_vaddr);
3a9ea052
ON
1480 if (vma && vma->vm_start <= bp_vaddr) {
1481 if (valid_vma(vma, false)) {
f281769e 1482 struct inode *inode = file_inode(vma->vm_file);
cb113b47 1483 loff_t offset = vaddr_to_offset(vma, bp_vaddr);
0326f5a9 1484
3a9ea052
ON
1485 uprobe = find_uprobe(inode, offset);
1486 }
d790d346
ON
1487
1488 if (!uprobe)
0908ad6e 1489 *is_swbp = is_trap_at_addr(mm, bp_vaddr);
d790d346
ON
1490 } else {
1491 *is_swbp = -EFAULT;
0326f5a9 1492 }
499a4f3e
ON
1493
1494 if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
1495 mmf_recalc_uprobes(mm);
0326f5a9
SD
1496 up_read(&mm->mmap_sem);
1497
3a9ea052
ON
1498 return uprobe;
1499}
1500
da1816b1
ON
1501static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
1502{
1503 struct uprobe_consumer *uc;
1504 int remove = UPROBE_HANDLER_REMOVE;
1505
1506 down_read(&uprobe->register_rwsem);
1507 for (uc = uprobe->consumers; uc; uc = uc->next) {
ea024870 1508 int rc = 0;
da1816b1 1509
ea024870
AA
1510 if (uc->handler) {
1511 rc = uc->handler(uc, regs);
1512 WARN(rc & ~UPROBE_HANDLER_MASK,
1513 "bad rc=0x%x from %pf()\n", rc, uc->handler);
1514 }
da1816b1
ON
1515 remove &= rc;
1516 }
1517
1518 if (remove && uprobe->consumers) {
1519 WARN_ON(!uprobe_is_active(uprobe));
1520 unapply_uprobe(uprobe, current->mm);
1521 }
1522 up_read(&uprobe->register_rwsem);
1523}
1524
3a9ea052
ON
1525/*
1526 * Run handler and ask thread to singlestep.
1527 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
1528 */
1529static void handle_swbp(struct pt_regs *regs)
1530{
3a9ea052
ON
1531 struct uprobe *uprobe;
1532 unsigned long bp_vaddr;
56bb4cf6 1533 int uninitialized_var(is_swbp);
3a9ea052
ON
1534
1535 bp_vaddr = uprobe_get_swbp_addr(regs);
d790d346 1536 uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
3a9ea052 1537
0326f5a9 1538 if (!uprobe) {
56bb4cf6
ON
1539 if (is_swbp > 0) {
1540 /* No matching uprobe; signal SIGTRAP. */
1541 send_sig(SIGTRAP, current, 0);
1542 } else {
1543 /*
1544 * Either we raced with uprobe_unregister() or we can't
1545 * access this memory. The latter is only possible if
1546 * another thread plays with our ->mm. In both cases
1547 * we can simply restart. If this vma was unmapped we
1548 * can pretend this insn was not executed yet and get
1549 * the (correct) SIGSEGV after restart.
1550 */
1551 instruction_pointer_set(regs, bp_vaddr);
1552 }
0326f5a9
SD
1553 return;
1554 }
74e59dfc
ON
1555
1556 /* change it in advance for ->handler() and restart */
1557 instruction_pointer_set(regs, bp_vaddr);
1558
142b18dd
ON
1559 /*
1560 * TODO: move copy_insn/etc into _register and remove this hack.
1561 * After we hit the bp, _unregister + _register can install the
1562 * new and not-yet-analyzed uprobe at the same address, restart.
1563 */
1564 smp_rmb(); /* pairs with wmb() in install_breakpoint() */
71434f2f 1565 if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
74e59dfc 1566 goto out;
0326f5a9 1567
0326f5a9 1568 handler_chain(uprobe, regs);
0578a970
ON
1569 if (can_skip_sstep(uprobe, regs))
1570 goto out;
0326f5a9 1571
608e7427 1572 if (!pre_ssout(uprobe, regs, bp_vaddr))
0326f5a9 1573 return;
0326f5a9 1574
74e59dfc 1575 /* can_skip_sstep() succeeded, or restart if can't singlestep */
0578a970 1576out:
8bd87445 1577 put_uprobe(uprobe);
0326f5a9
SD
1578}
1579
1580/*
1581 * Perform required fix-ups and disable singlestep.
1582 * Allow pending signals to take effect.
1583 */
1584static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
1585{
1586 struct uprobe *uprobe;
1587
1588 uprobe = utask->active_uprobe;
1589 if (utask->state == UTASK_SSTEP_ACK)
1590 arch_uprobe_post_xol(&uprobe->arch, regs);
1591 else if (utask->state == UTASK_SSTEP_TRAPPED)
1592 arch_uprobe_abort_xol(&uprobe->arch, regs);
1593 else
1594 WARN_ON_ONCE(1);
1595
1596 put_uprobe(uprobe);
1597 utask->active_uprobe = NULL;
1598 utask->state = UTASK_RUNNING;
d4b3b638 1599 xol_free_insn_slot(current);
0326f5a9
SD
1600
1601 spin_lock_irq(&current->sighand->siglock);
1602 recalc_sigpending(); /* see uprobe_deny_signal() */
1603 spin_unlock_irq(&current->sighand->siglock);
1604}
1605
1606/*
1b08e907
ON
1607 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
1608 * allows the thread to return from interrupt. After that handle_swbp()
1609 * sets utask->active_uprobe.
0326f5a9 1610 *
1b08e907
ON
1611 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
1612 * and allows the thread to return from interrupt.
0326f5a9
SD
1613 *
1614 * While returning to userspace, thread notices the TIF_UPROBE flag and calls
1615 * uprobe_notify_resume().
1616 */
1617void uprobe_notify_resume(struct pt_regs *regs)
1618{
1619 struct uprobe_task *utask;
1620
db023ea5
ON
1621 clear_thread_flag(TIF_UPROBE);
1622
0326f5a9 1623 utask = current->utask;
1b08e907 1624 if (utask && utask->active_uprobe)
0326f5a9 1625 handle_singlestep(utask, regs);
1b08e907
ON
1626 else
1627 handle_swbp(regs);
0326f5a9
SD
1628}
1629
1630/*
1631 * uprobe_pre_sstep_notifier gets called from interrupt context as part of
1632 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
1633 */
1634int uprobe_pre_sstep_notifier(struct pt_regs *regs)
1635{
f8ac4ec9 1636 if (!current->mm || !test_bit(MMF_HAS_UPROBES, &current->mm->flags))
0326f5a9
SD
1637 return 0;
1638
0326f5a9 1639 set_thread_flag(TIF_UPROBE);
0326f5a9
SD
1640 return 1;
1641}
1642
1643/*
1644 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
1645 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
1646 */
1647int uprobe_post_sstep_notifier(struct pt_regs *regs)
1648{
1649 struct uprobe_task *utask = current->utask;
1650
1651 if (!current->mm || !utask || !utask->active_uprobe)
1652 /* task is currently not uprobed */
1653 return 0;
1654
1655 utask->state = UTASK_SSTEP_ACK;
1656 set_thread_flag(TIF_UPROBE);
1657 return 1;
1658}
1659
1660static struct notifier_block uprobe_exception_nb = {
1661 .notifier_call = arch_uprobe_exception_notify,
1662 .priority = INT_MAX-1, /* notified after kprobes, kgdb */
1663};
1664
2b144498
SD
1665static int __init init_uprobes(void)
1666{
1667 int i;
1668
66d06dff 1669 for (i = 0; i < UPROBES_HASH_SZ; i++)
2b144498 1670 mutex_init(&uprobes_mmap_mutex[i]);
0326f5a9 1671
32cdba1e
ON
1672 if (percpu_init_rwsem(&dup_mmap_sem))
1673 return -ENOMEM;
1674
0326f5a9 1675 return register_die_notifier(&uprobe_exception_nb);
2b144498 1676}
0326f5a9 1677module_init(init_uprobes);
2b144498
SD
1678
1679static void __exit exit_uprobes(void)
1680{
1681}
2b144498 1682module_exit(exit_uprobes);
This page took 0.149647 seconds and 5 git commands to generate.