uprobes: Introduce MMF_HAS_UPROBES
[deliverable/linux.git] / kernel / events / uprobes.c
CommitLineData
2b144498 1/*
7b2d81d4 2 * User-space Probes (UProbes)
2b144498
SD
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
35aa621b 18 * Copyright (C) IBM Corporation, 2008-2012
2b144498
SD
19 * Authors:
20 * Srikar Dronamraju
21 * Jim Keniston
35aa621b 22 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
2b144498
SD
23 */
24
25#include <linux/kernel.h>
26#include <linux/highmem.h>
27#include <linux/pagemap.h> /* read_mapping_page */
28#include <linux/slab.h>
29#include <linux/sched.h>
30#include <linux/rmap.h> /* anon_vma_prepare */
31#include <linux/mmu_notifier.h> /* set_pte_at_notify */
32#include <linux/swap.h> /* try_to_free_swap */
0326f5a9
SD
33#include <linux/ptrace.h> /* user_enable_single_step */
34#include <linux/kdebug.h> /* notifier mechanism */
194f8dcb 35#include "../../mm/internal.h" /* munlock_vma_page */
7b2d81d4 36
2b144498
SD
37#include <linux/uprobes.h>
38
d4b3b638
SD
39#define UINSNS_PER_PAGE (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
40#define MAX_UPROBE_XOL_SLOTS UINSNS_PER_PAGE
41
2b144498 42static struct rb_root uprobes_tree = RB_ROOT;
7b2d81d4 43
2b144498
SD
44static DEFINE_SPINLOCK(uprobes_treelock); /* serialize rbtree access */
45
46#define UPROBES_HASH_SZ 13
7b2d81d4 47
c5784de2
PZ
48/*
49 * We need separate register/unregister and mmap/munmap lock hashes because
50 * of mmap_sem nesting.
51 *
52 * uprobe_register() needs to install probes on (potentially) all processes
53 * and thus needs to acquire multiple mmap_sems (consequtively, not
54 * concurrently), whereas uprobe_mmap() is called while holding mmap_sem
55 * for the particular process doing the mmap.
56 *
57 * uprobe_register()->register_for_each_vma() needs to drop/acquire mmap_sem
58 * because of lock order against i_mmap_mutex. This means there's a hole in
59 * the register vma iteration where a mmap() can happen.
60 *
61 * Thus uprobe_register() can race with uprobe_mmap() and we can try and
62 * install a probe where one is already installed.
63 */
64
2b144498
SD
65/* serialize (un)register */
66static struct mutex uprobes_mutex[UPROBES_HASH_SZ];
7b2d81d4
IM
67
68#define uprobes_hash(v) (&uprobes_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
2b144498
SD
69
70/* serialize uprobe->pending_list */
71static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
7b2d81d4 72#define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
2b144498
SD
73
74/*
7b2d81d4 75 * uprobe_events allows us to skip the uprobe_mmap if there are no uprobe
2b144498
SD
76 * events active at this time. Probably a fine grained per inode count is
77 * better?
78 */
79static atomic_t uprobe_events = ATOMIC_INIT(0);
80
3ff54efd
SD
81struct uprobe {
82 struct rb_node rb_node; /* node in the rb tree */
83 atomic_t ref;
84 struct rw_semaphore consumer_rwsem;
85 struct list_head pending_list;
86 struct uprobe_consumer *consumers;
87 struct inode *inode; /* Also hold a ref to inode */
88 loff_t offset;
89 int flags;
90 struct arch_uprobe arch;
91};
92
2b144498
SD
93/*
94 * valid_vma: Verify if the specified vma is an executable vma
95 * Relax restrictions while unregistering: vm_flags might have
96 * changed after breakpoint was inserted.
97 * - is_register: indicates if we are in register context.
98 * - Return 1 if the specified virtual address is in an
99 * executable vma.
100 */
101static bool valid_vma(struct vm_area_struct *vma, bool is_register)
102{
103 if (!vma->vm_file)
104 return false;
105
106 if (!is_register)
107 return true;
108
ea131377
ON
109 if ((vma->vm_flags & (VM_HUGETLB|VM_READ|VM_WRITE|VM_EXEC|VM_SHARED))
110 == (VM_READ|VM_EXEC))
2b144498
SD
111 return true;
112
113 return false;
114}
115
57683f72 116static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
2b144498 117{
57683f72 118 return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
2b144498
SD
119}
120
cb113b47
ON
121static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
122{
123 return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
124}
125
2b144498
SD
126/**
127 * __replace_page - replace page in vma by new page.
128 * based on replace_page in mm/ksm.c
129 *
130 * @vma: vma that holds the pte pointing to page
c517ee74 131 * @addr: address the old @page is mapped at
2b144498
SD
132 * @page: the cowed page we are replacing by kpage
133 * @kpage: the modified page we replace page by
134 *
135 * Returns 0 on success, -EFAULT on failure.
136 */
c517ee74
ON
137static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
138 struct page *page, struct page *kpage)
2b144498
SD
139{
140 struct mm_struct *mm = vma->vm_mm;
5323ce71
ON
141 spinlock_t *ptl;
142 pte_t *ptep;
9f92448c 143 int err;
2b144498 144
194f8dcb 145 /* For try_to_free_swap() and munlock_vma_page() below */
9f92448c
ON
146 lock_page(page);
147
148 err = -EAGAIN;
5323ce71 149 ptep = page_check_address(page, mm, addr, &ptl, 0);
2b144498 150 if (!ptep)
9f92448c 151 goto unlock;
2b144498
SD
152
153 get_page(kpage);
154 page_add_new_anon_rmap(kpage, vma, addr);
155
7396fa81
SD
156 if (!PageAnon(page)) {
157 dec_mm_counter(mm, MM_FILEPAGES);
158 inc_mm_counter(mm, MM_ANONPAGES);
159 }
160
2b144498
SD
161 flush_cache_page(vma, addr, pte_pfn(*ptep));
162 ptep_clear_flush(vma, addr, ptep);
163 set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
164
165 page_remove_rmap(page);
166 if (!page_mapped(page))
167 try_to_free_swap(page);
2b144498 168 pte_unmap_unlock(ptep, ptl);
2b144498 169
194f8dcb
ON
170 if (vma->vm_flags & VM_LOCKED)
171 munlock_vma_page(page);
172 put_page(page);
173
9f92448c
ON
174 err = 0;
175 unlock:
176 unlock_page(page);
177 return err;
2b144498
SD
178}
179
180/**
5cb4ac3a 181 * is_swbp_insn - check if instruction is breakpoint instruction.
2b144498 182 * @insn: instruction to be checked.
5cb4ac3a 183 * Default implementation of is_swbp_insn
2b144498
SD
184 * Returns true if @insn is a breakpoint instruction.
185 */
5cb4ac3a 186bool __weak is_swbp_insn(uprobe_opcode_t *insn)
2b144498 187{
5cb4ac3a 188 return *insn == UPROBE_SWBP_INSN;
2b144498
SD
189}
190
191/*
192 * NOTE:
193 * Expect the breakpoint instruction to be the smallest size instruction for
194 * the architecture. If an arch has variable length instruction and the
195 * breakpoint instruction is not of the smallest length instruction
196 * supported by that architecture then we need to modify read_opcode /
197 * write_opcode accordingly. This would never be a problem for archs that
198 * have fixed length instructions.
199 */
200
201/*
202 * write_opcode - write the opcode at a given virtual address.
e3343e6a 203 * @auprobe: arch breakpointing information.
2b144498 204 * @mm: the probed process address space.
2b144498
SD
205 * @vaddr: the virtual address to store the opcode.
206 * @opcode: opcode to be written at @vaddr.
207 *
208 * Called with mm->mmap_sem held (for read and with a reference to
209 * mm).
210 *
211 * For mm @mm, write the opcode at @vaddr.
212 * Return 0 (success) or a negative errno.
213 */
e3343e6a 214static int write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm,
2b144498
SD
215 unsigned long vaddr, uprobe_opcode_t opcode)
216{
217 struct page *old_page, *new_page;
2b144498
SD
218 void *vaddr_old, *vaddr_new;
219 struct vm_area_struct *vma;
2b144498 220 int ret;
f403072c 221
5323ce71 222retry:
2b144498
SD
223 /* Read the page with vaddr into memory */
224 ret = get_user_pages(NULL, mm, vaddr, 1, 0, 0, &old_page, &vma);
225 if (ret <= 0)
226 return ret;
7b2d81d4 227
2b144498
SD
228 ret = -ENOMEM;
229 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
230 if (!new_page)
9f92448c 231 goto put_old;
2b144498
SD
232
233 __SetPageUptodate(new_page);
234
2b144498
SD
235 /* copy the page now that we've got it stable */
236 vaddr_old = kmap_atomic(old_page);
237 vaddr_new = kmap_atomic(new_page);
238
239 memcpy(vaddr_new, vaddr_old, PAGE_SIZE);
d9c4a30e 240 memcpy(vaddr_new + (vaddr & ~PAGE_MASK), &opcode, UPROBE_SWBP_INSN_SIZE);
2b144498
SD
241
242 kunmap_atomic(vaddr_new);
243 kunmap_atomic(vaddr_old);
244
245 ret = anon_vma_prepare(vma);
246 if (ret)
9f92448c 247 goto put_new;
2b144498 248
c517ee74 249 ret = __replace_page(vma, vaddr, old_page, new_page);
2b144498 250
9f92448c 251put_new:
2b144498 252 page_cache_release(new_page);
9f92448c 253put_old:
7b2d81d4
IM
254 put_page(old_page);
255
5323ce71
ON
256 if (unlikely(ret == -EAGAIN))
257 goto retry;
2b144498
SD
258 return ret;
259}
260
261/**
262 * read_opcode - read the opcode at a given virtual address.
263 * @mm: the probed process address space.
264 * @vaddr: the virtual address to read the opcode.
265 * @opcode: location to store the read opcode.
266 *
267 * Called with mm->mmap_sem held (for read and with a reference to
268 * mm.
269 *
270 * For mm @mm, read the opcode at @vaddr and store it in @opcode.
271 * Return 0 (success) or a negative errno.
272 */
7b2d81d4 273static int read_opcode(struct mm_struct *mm, unsigned long vaddr, uprobe_opcode_t *opcode)
2b144498
SD
274{
275 struct page *page;
276 void *vaddr_new;
277 int ret;
278
a3d7bb47 279 ret = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &page, NULL);
2b144498
SD
280 if (ret <= 0)
281 return ret;
282
2b144498
SD
283 vaddr_new = kmap_atomic(page);
284 vaddr &= ~PAGE_MASK;
5cb4ac3a 285 memcpy(opcode, vaddr_new + vaddr, UPROBE_SWBP_INSN_SIZE);
2b144498 286 kunmap_atomic(vaddr_new);
7b2d81d4
IM
287
288 put_page(page);
289
2b144498
SD
290 return 0;
291}
292
5cb4ac3a 293static int is_swbp_at_addr(struct mm_struct *mm, unsigned long vaddr)
2b144498
SD
294{
295 uprobe_opcode_t opcode;
7b2d81d4 296 int result;
2b144498 297
c00b2750
ON
298 if (current->mm == mm) {
299 pagefault_disable();
300 result = __copy_from_user_inatomic(&opcode, (void __user*)vaddr,
301 sizeof(opcode));
302 pagefault_enable();
303
304 if (likely(result == 0))
305 goto out;
306 }
307
7b2d81d4 308 result = read_opcode(mm, vaddr, &opcode);
2b144498
SD
309 if (result)
310 return result;
c00b2750 311out:
5cb4ac3a 312 if (is_swbp_insn(&opcode))
2b144498
SD
313 return 1;
314
315 return 0;
316}
317
318/**
5cb4ac3a 319 * set_swbp - store breakpoint at a given address.
e3343e6a 320 * @auprobe: arch specific probepoint information.
2b144498 321 * @mm: the probed process address space.
2b144498
SD
322 * @vaddr: the virtual address to insert the opcode.
323 *
324 * For mm @mm, store the breakpoint instruction at @vaddr.
325 * Return 0 (success) or a negative errno.
326 */
5cb4ac3a 327int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
2b144498 328{
7b2d81d4 329 int result;
c5784de2
PZ
330 /*
331 * See the comment near uprobes_hash().
332 */
5cb4ac3a 333 result = is_swbp_at_addr(mm, vaddr);
2b144498 334 if (result == 1)
78f74116 335 return 0;
2b144498
SD
336
337 if (result)
338 return result;
339
5cb4ac3a 340 return write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN);
2b144498
SD
341}
342
343/**
344 * set_orig_insn - Restore the original instruction.
345 * @mm: the probed process address space.
e3343e6a 346 * @auprobe: arch specific probepoint information.
2b144498
SD
347 * @vaddr: the virtual address to insert the opcode.
348 * @verify: if true, verify existance of breakpoint instruction.
349 *
350 * For mm @mm, restore the original opcode (opcode) at @vaddr.
351 * Return 0 (success) or a negative errno.
352 */
7b2d81d4 353int __weak
e3343e6a 354set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr, bool verify)
2b144498
SD
355{
356 if (verify) {
7b2d81d4 357 int result;
2b144498 358
5cb4ac3a 359 result = is_swbp_at_addr(mm, vaddr);
2b144498
SD
360 if (!result)
361 return -EINVAL;
362
363 if (result != 1)
364 return result;
365 }
e3343e6a 366 return write_opcode(auprobe, mm, vaddr, *(uprobe_opcode_t *)auprobe->insn);
2b144498
SD
367}
368
369static int match_uprobe(struct uprobe *l, struct uprobe *r)
370{
371 if (l->inode < r->inode)
372 return -1;
7b2d81d4 373
2b144498
SD
374 if (l->inode > r->inode)
375 return 1;
2b144498 376
7b2d81d4
IM
377 if (l->offset < r->offset)
378 return -1;
379
380 if (l->offset > r->offset)
381 return 1;
2b144498
SD
382
383 return 0;
384}
385
386static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
387{
388 struct uprobe u = { .inode = inode, .offset = offset };
389 struct rb_node *n = uprobes_tree.rb_node;
390 struct uprobe *uprobe;
391 int match;
392
393 while (n) {
394 uprobe = rb_entry(n, struct uprobe, rb_node);
395 match = match_uprobe(&u, uprobe);
396 if (!match) {
397 atomic_inc(&uprobe->ref);
398 return uprobe;
399 }
7b2d81d4 400
2b144498
SD
401 if (match < 0)
402 n = n->rb_left;
403 else
404 n = n->rb_right;
405 }
406 return NULL;
407}
408
409/*
410 * Find a uprobe corresponding to a given inode:offset
411 * Acquires uprobes_treelock
412 */
413static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
414{
415 struct uprobe *uprobe;
416 unsigned long flags;
417
418 spin_lock_irqsave(&uprobes_treelock, flags);
419 uprobe = __find_uprobe(inode, offset);
420 spin_unlock_irqrestore(&uprobes_treelock, flags);
7b2d81d4 421
2b144498
SD
422 return uprobe;
423}
424
425static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
426{
427 struct rb_node **p = &uprobes_tree.rb_node;
428 struct rb_node *parent = NULL;
429 struct uprobe *u;
430 int match;
431
432 while (*p) {
433 parent = *p;
434 u = rb_entry(parent, struct uprobe, rb_node);
435 match = match_uprobe(uprobe, u);
436 if (!match) {
437 atomic_inc(&u->ref);
438 return u;
439 }
440
441 if (match < 0)
442 p = &parent->rb_left;
443 else
444 p = &parent->rb_right;
445
446 }
7b2d81d4 447
2b144498
SD
448 u = NULL;
449 rb_link_node(&uprobe->rb_node, parent, p);
450 rb_insert_color(&uprobe->rb_node, &uprobes_tree);
451 /* get access + creation ref */
452 atomic_set(&uprobe->ref, 2);
7b2d81d4 453
2b144498
SD
454 return u;
455}
456
457/*
7b2d81d4 458 * Acquire uprobes_treelock.
2b144498
SD
459 * Matching uprobe already exists in rbtree;
460 * increment (access refcount) and return the matching uprobe.
461 *
462 * No matching uprobe; insert the uprobe in rb_tree;
463 * get a double refcount (access + creation) and return NULL.
464 */
465static struct uprobe *insert_uprobe(struct uprobe *uprobe)
466{
467 unsigned long flags;
468 struct uprobe *u;
469
470 spin_lock_irqsave(&uprobes_treelock, flags);
471 u = __insert_uprobe(uprobe);
472 spin_unlock_irqrestore(&uprobes_treelock, flags);
7b2d81d4 473
0326f5a9
SD
474 /* For now assume that the instruction need not be single-stepped */
475 uprobe->flags |= UPROBE_SKIP_SSTEP;
476
2b144498
SD
477 return u;
478}
479
480static void put_uprobe(struct uprobe *uprobe)
481{
482 if (atomic_dec_and_test(&uprobe->ref))
483 kfree(uprobe);
484}
485
486static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
487{
488 struct uprobe *uprobe, *cur_uprobe;
489
490 uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
491 if (!uprobe)
492 return NULL;
493
494 uprobe->inode = igrab(inode);
495 uprobe->offset = offset;
496 init_rwsem(&uprobe->consumer_rwsem);
2b144498
SD
497
498 /* add to uprobes_tree, sorted on inode:offset */
499 cur_uprobe = insert_uprobe(uprobe);
500
501 /* a uprobe exists for this inode:offset combination */
502 if (cur_uprobe) {
503 kfree(uprobe);
504 uprobe = cur_uprobe;
505 iput(inode);
7b2d81d4 506 } else {
2b144498 507 atomic_inc(&uprobe_events);
7b2d81d4
IM
508 }
509
2b144498
SD
510 return uprobe;
511}
512
0326f5a9
SD
513static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
514{
515 struct uprobe_consumer *uc;
516
517 if (!(uprobe->flags & UPROBE_RUN_HANDLER))
518 return;
519
520 down_read(&uprobe->consumer_rwsem);
521 for (uc = uprobe->consumers; uc; uc = uc->next) {
522 if (!uc->filter || uc->filter(uc, current))
523 uc->handler(uc, regs);
524 }
525 up_read(&uprobe->consumer_rwsem);
526}
527
2b144498 528/* Returns the previous consumer */
7b2d81d4 529static struct uprobe_consumer *
e3343e6a 530consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
2b144498
SD
531{
532 down_write(&uprobe->consumer_rwsem);
e3343e6a
SD
533 uc->next = uprobe->consumers;
534 uprobe->consumers = uc;
2b144498 535 up_write(&uprobe->consumer_rwsem);
7b2d81d4 536
e3343e6a 537 return uc->next;
2b144498
SD
538}
539
540/*
e3343e6a
SD
541 * For uprobe @uprobe, delete the consumer @uc.
542 * Return true if the @uc is deleted successfully
2b144498
SD
543 * or return false.
544 */
e3343e6a 545static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
2b144498
SD
546{
547 struct uprobe_consumer **con;
548 bool ret = false;
549
550 down_write(&uprobe->consumer_rwsem);
551 for (con = &uprobe->consumers; *con; con = &(*con)->next) {
e3343e6a
SD
552 if (*con == uc) {
553 *con = uc->next;
2b144498
SD
554 ret = true;
555 break;
556 }
557 }
558 up_write(&uprobe->consumer_rwsem);
7b2d81d4 559
2b144498
SD
560 return ret;
561}
562
e3343e6a 563static int
d436615e 564__copy_insn(struct address_space *mapping, struct file *filp, char *insn,
593609a5 565 unsigned long nbytes, loff_t offset)
2b144498 566{
2b144498
SD
567 struct page *page;
568 void *vaddr;
593609a5
ON
569 unsigned long off;
570 pgoff_t idx;
2b144498
SD
571
572 if (!filp)
573 return -EINVAL;
574
cc359d18
ON
575 if (!mapping->a_ops->readpage)
576 return -EIO;
577
593609a5
ON
578 idx = offset >> PAGE_CACHE_SHIFT;
579 off = offset & ~PAGE_MASK;
2b144498
SD
580
581 /*
582 * Ensure that the page that has the original instruction is
583 * populated and in page-cache.
584 */
585 page = read_mapping_page(mapping, idx, filp);
586 if (IS_ERR(page))
587 return PTR_ERR(page);
588
589 vaddr = kmap_atomic(page);
593609a5 590 memcpy(insn, vaddr + off, nbytes);
2b144498
SD
591 kunmap_atomic(vaddr);
592 page_cache_release(page);
7b2d81d4 593
2b144498
SD
594 return 0;
595}
596
d436615e 597static int copy_insn(struct uprobe *uprobe, struct file *filp)
2b144498
SD
598{
599 struct address_space *mapping;
2b144498 600 unsigned long nbytes;
7b2d81d4 601 int bytes;
2b144498 602
d436615e 603 nbytes = PAGE_SIZE - (uprobe->offset & ~PAGE_MASK);
2b144498
SD
604 mapping = uprobe->inode->i_mapping;
605
606 /* Instruction at end of binary; copy only available bytes */
607 if (uprobe->offset + MAX_UINSN_BYTES > uprobe->inode->i_size)
608 bytes = uprobe->inode->i_size - uprobe->offset;
609 else
610 bytes = MAX_UINSN_BYTES;
611
612 /* Instruction at the page-boundary; copy bytes in second page */
613 if (nbytes < bytes) {
fc36f595
ON
614 int err = __copy_insn(mapping, filp, uprobe->arch.insn + nbytes,
615 bytes - nbytes, uprobe->offset + nbytes);
616 if (err)
617 return err;
2b144498
SD
618 bytes = nbytes;
619 }
d436615e 620 return __copy_insn(mapping, filp, uprobe->arch.insn, bytes, uprobe->offset);
2b144498
SD
621}
622
682968e0
SD
623/*
624 * How mm->uprobes_state.count gets updated
625 * uprobe_mmap() increments the count if
626 * - it successfully adds a breakpoint.
627 * - it cannot add a breakpoint, but sees that there is a underlying
628 * breakpoint (via a is_swbp_at_addr()).
629 *
630 * uprobe_munmap() decrements the count if
631 * - it sees a underlying breakpoint, (via is_swbp_at_addr)
632 * (Subsequent uprobe_unregister wouldnt find the breakpoint
633 * unless a uprobe_mmap kicks in, since the old vma would be
634 * dropped just after uprobe_munmap.)
635 *
636 * uprobe_register increments the count if:
637 * - it successfully adds a breakpoint.
638 *
639 * uprobe_unregister decrements the count if:
640 * - it sees a underlying breakpoint and removes successfully.
641 * (via is_swbp_at_addr)
642 * (Subsequent uprobe_munmap wouldnt find the breakpoint
643 * since there is no underlying breakpoint after the
644 * breakpoint removal.)
645 */
e3343e6a
SD
646static int
647install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
816c03fb 648 struct vm_area_struct *vma, unsigned long vaddr)
2b144498 649{
f8ac4ec9 650 bool first_uprobe;
2b144498
SD
651 int ret;
652
653 /*
654 * If probe is being deleted, unregister thread could be done with
655 * the vma-rmap-walk through. Adding a probe now can be fatal since
656 * nobody will be able to cleanup. Also we could be from fork or
657 * mremap path, where the probe might have already been inserted.
658 * Hence behave as if probe already existed.
659 */
660 if (!uprobe->consumers)
78f74116 661 return 0;
2b144498 662
900771a4 663 if (!(uprobe->flags & UPROBE_COPY_INSN)) {
d436615e 664 ret = copy_insn(uprobe, vma->vm_file);
2b144498
SD
665 if (ret)
666 return ret;
667
5cb4ac3a 668 if (is_swbp_insn((uprobe_opcode_t *)uprobe->arch.insn))
c1914a09 669 return -ENOTSUPP;
2b144498 670
816c03fb 671 ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
2b144498
SD
672 if (ret)
673 return ret;
674
d9c4a30e
ON
675 /* write_opcode() assumes we don't cross page boundary */
676 BUG_ON((uprobe->offset & ~PAGE_MASK) +
677 UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
678
900771a4 679 uprobe->flags |= UPROBE_COPY_INSN;
2b144498 680 }
682968e0 681
f8ac4ec9
ON
682 /*
683 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
684 * the task can hit this breakpoint right after __replace_page().
685 */
686 first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
687 if (first_uprobe)
688 set_bit(MMF_HAS_UPROBES, &mm->flags);
689
816c03fb 690 ret = set_swbp(&uprobe->arch, mm, vaddr);
f8ac4ec9
ON
691 if (ret && first_uprobe)
692 clear_bit(MMF_HAS_UPROBES, &mm->flags);
2b144498
SD
693
694 return ret;
695}
696
e3343e6a 697static void
816c03fb 698remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
2b144498 699{
647c42df 700 set_orig_insn(&uprobe->arch, mm, vaddr, true);
2b144498
SD
701}
702
0326f5a9 703/*
778b032d
ON
704 * There could be threads that have already hit the breakpoint. They
705 * will recheck the current insn and restart if find_uprobe() fails.
706 * See find_active_uprobe().
0326f5a9 707 */
2b144498
SD
708static void delete_uprobe(struct uprobe *uprobe)
709{
710 unsigned long flags;
711
712 spin_lock_irqsave(&uprobes_treelock, flags);
713 rb_erase(&uprobe->rb_node, &uprobes_tree);
714 spin_unlock_irqrestore(&uprobes_treelock, flags);
715 iput(uprobe->inode);
716 put_uprobe(uprobe);
717 atomic_dec(&uprobe_events);
718}
719
26872090
ON
720struct map_info {
721 struct map_info *next;
722 struct mm_struct *mm;
816c03fb 723 unsigned long vaddr;
26872090
ON
724};
725
726static inline struct map_info *free_map_info(struct map_info *info)
2b144498 727{
26872090
ON
728 struct map_info *next = info->next;
729 kfree(info);
730 return next;
731}
732
733static struct map_info *
734build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
735{
736 unsigned long pgoff = offset >> PAGE_SHIFT;
2b144498
SD
737 struct prio_tree_iter iter;
738 struct vm_area_struct *vma;
26872090
ON
739 struct map_info *curr = NULL;
740 struct map_info *prev = NULL;
741 struct map_info *info;
742 int more = 0;
2b144498 743
26872090
ON
744 again:
745 mutex_lock(&mapping->i_mmap_mutex);
2b144498
SD
746 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
747 if (!valid_vma(vma, is_register))
748 continue;
749
7a5bfb66
ON
750 if (!prev && !more) {
751 /*
752 * Needs GFP_NOWAIT to avoid i_mmap_mutex recursion through
753 * reclaim. This is optimistic, no harm done if it fails.
754 */
755 prev = kmalloc(sizeof(struct map_info),
756 GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
757 if (prev)
758 prev->next = NULL;
759 }
26872090
ON
760 if (!prev) {
761 more++;
762 continue;
2b144498 763 }
2b144498 764
26872090
ON
765 if (!atomic_inc_not_zero(&vma->vm_mm->mm_users))
766 continue;
7b2d81d4 767
26872090
ON
768 info = prev;
769 prev = prev->next;
770 info->next = curr;
771 curr = info;
2b144498 772
26872090 773 info->mm = vma->vm_mm;
57683f72 774 info->vaddr = offset_to_vaddr(vma, offset);
26872090 775 }
2b144498
SD
776 mutex_unlock(&mapping->i_mmap_mutex);
777
26872090
ON
778 if (!more)
779 goto out;
780
781 prev = curr;
782 while (curr) {
783 mmput(curr->mm);
784 curr = curr->next;
785 }
7b2d81d4 786
26872090
ON
787 do {
788 info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
789 if (!info) {
790 curr = ERR_PTR(-ENOMEM);
791 goto out;
792 }
793 info->next = prev;
794 prev = info;
795 } while (--more);
796
797 goto again;
798 out:
799 while (prev)
800 prev = free_map_info(prev);
801 return curr;
2b144498
SD
802}
803
804static int register_for_each_vma(struct uprobe *uprobe, bool is_register)
805{
26872090
ON
806 struct map_info *info;
807 int err = 0;
2b144498 808
26872090
ON
809 info = build_map_info(uprobe->inode->i_mapping,
810 uprobe->offset, is_register);
811 if (IS_ERR(info))
812 return PTR_ERR(info);
7b2d81d4 813
26872090
ON
814 while (info) {
815 struct mm_struct *mm = info->mm;
816 struct vm_area_struct *vma;
7b2d81d4 817
26872090
ON
818 if (err)
819 goto free;
7b2d81d4 820
77fc4af1 821 down_write(&mm->mmap_sem);
f4d6dfe5
ON
822 vma = find_vma(mm, info->vaddr);
823 if (!vma || !valid_vma(vma, is_register) ||
824 vma->vm_file->f_mapping->host != uprobe->inode)
26872090
ON
825 goto unlock;
826
f4d6dfe5
ON
827 if (vma->vm_start > info->vaddr ||
828 vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
26872090 829 goto unlock;
2b144498 830
78f74116 831 if (is_register)
26872090 832 err = install_breakpoint(uprobe, mm, vma, info->vaddr);
78f74116 833 else
26872090 834 remove_breakpoint(uprobe, mm, info->vaddr);
78f74116 835
26872090
ON
836 unlock:
837 up_write(&mm->mmap_sem);
838 free:
839 mmput(mm);
840 info = free_map_info(info);
2b144498 841 }
7b2d81d4 842
26872090 843 return err;
2b144498
SD
844}
845
7b2d81d4 846static int __uprobe_register(struct uprobe *uprobe)
2b144498
SD
847{
848 return register_for_each_vma(uprobe, true);
849}
850
7b2d81d4 851static void __uprobe_unregister(struct uprobe *uprobe)
2b144498
SD
852{
853 if (!register_for_each_vma(uprobe, false))
854 delete_uprobe(uprobe);
855
856 /* TODO : cant unregister? schedule a worker thread */
857}
858
859/*
7b2d81d4 860 * uprobe_register - register a probe
2b144498
SD
861 * @inode: the file in which the probe has to be placed.
862 * @offset: offset from the start of the file.
e3343e6a 863 * @uc: information on howto handle the probe..
2b144498 864 *
7b2d81d4 865 * Apart from the access refcount, uprobe_register() takes a creation
2b144498
SD
866 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
867 * inserted into the rbtree (i.e first consumer for a @inode:@offset
7b2d81d4 868 * tuple). Creation refcount stops uprobe_unregister from freeing the
2b144498 869 * @uprobe even before the register operation is complete. Creation
e3343e6a 870 * refcount is released when the last @uc for the @uprobe
2b144498
SD
871 * unregisters.
872 *
873 * Return errno if it cannot successully install probes
874 * else return 0 (success)
875 */
e3343e6a 876int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
2b144498
SD
877{
878 struct uprobe *uprobe;
7b2d81d4 879 int ret;
2b144498 880
e3343e6a 881 if (!inode || !uc || uc->next)
7b2d81d4 882 return -EINVAL;
2b144498
SD
883
884 if (offset > i_size_read(inode))
7b2d81d4 885 return -EINVAL;
2b144498
SD
886
887 ret = 0;
888 mutex_lock(uprobes_hash(inode));
889 uprobe = alloc_uprobe(inode, offset);
7b2d81d4 890
e3343e6a 891 if (uprobe && !consumer_add(uprobe, uc)) {
7b2d81d4 892 ret = __uprobe_register(uprobe);
2b144498
SD
893 if (ret) {
894 uprobe->consumers = NULL;
7b2d81d4
IM
895 __uprobe_unregister(uprobe);
896 } else {
900771a4 897 uprobe->flags |= UPROBE_RUN_HANDLER;
7b2d81d4 898 }
2b144498
SD
899 }
900
901 mutex_unlock(uprobes_hash(inode));
902 put_uprobe(uprobe);
903
904 return ret;
905}
906
907/*
7b2d81d4 908 * uprobe_unregister - unregister a already registered probe.
2b144498
SD
909 * @inode: the file in which the probe has to be removed.
910 * @offset: offset from the start of the file.
e3343e6a 911 * @uc: identify which probe if multiple probes are colocated.
2b144498 912 */
e3343e6a 913void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
2b144498 914{
7b2d81d4 915 struct uprobe *uprobe;
2b144498 916
e3343e6a 917 if (!inode || !uc)
2b144498
SD
918 return;
919
920 uprobe = find_uprobe(inode, offset);
921 if (!uprobe)
922 return;
923
924 mutex_lock(uprobes_hash(inode));
2b144498 925
e3343e6a 926 if (consumer_del(uprobe, uc)) {
7b2d81d4
IM
927 if (!uprobe->consumers) {
928 __uprobe_unregister(uprobe);
900771a4 929 uprobe->flags &= ~UPROBE_RUN_HANDLER;
7b2d81d4 930 }
2b144498
SD
931 }
932
2b144498
SD
933 mutex_unlock(uprobes_hash(inode));
934 if (uprobe)
935 put_uprobe(uprobe);
936}
937
891c3970
ON
938static struct rb_node *
939find_node_in_range(struct inode *inode, loff_t min, loff_t max)
2b144498 940{
2b144498 941 struct rb_node *n = uprobes_tree.rb_node;
2b144498
SD
942
943 while (n) {
891c3970 944 struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
2b144498 945
891c3970 946 if (inode < u->inode) {
2b144498 947 n = n->rb_left;
891c3970 948 } else if (inode > u->inode) {
2b144498 949 n = n->rb_right;
891c3970
ON
950 } else {
951 if (max < u->offset)
952 n = n->rb_left;
953 else if (min > u->offset)
954 n = n->rb_right;
955 else
956 break;
957 }
2b144498 958 }
7b2d81d4 959
891c3970 960 return n;
2b144498
SD
961}
962
963/*
891c3970 964 * For a given range in vma, build a list of probes that need to be inserted.
2b144498 965 */
891c3970
ON
966static void build_probe_list(struct inode *inode,
967 struct vm_area_struct *vma,
968 unsigned long start, unsigned long end,
969 struct list_head *head)
2b144498 970{
891c3970 971 loff_t min, max;
2b144498 972 unsigned long flags;
891c3970
ON
973 struct rb_node *n, *t;
974 struct uprobe *u;
7b2d81d4 975
891c3970 976 INIT_LIST_HEAD(head);
cb113b47 977 min = vaddr_to_offset(vma, start);
891c3970 978 max = min + (end - start) - 1;
2b144498 979
891c3970
ON
980 spin_lock_irqsave(&uprobes_treelock, flags);
981 n = find_node_in_range(inode, min, max);
982 if (n) {
983 for (t = n; t; t = rb_prev(t)) {
984 u = rb_entry(t, struct uprobe, rb_node);
985 if (u->inode != inode || u->offset < min)
986 break;
987 list_add(&u->pending_list, head);
988 atomic_inc(&u->ref);
989 }
990 for (t = n; (t = rb_next(t)); ) {
991 u = rb_entry(t, struct uprobe, rb_node);
992 if (u->inode != inode || u->offset > max)
993 break;
994 list_add(&u->pending_list, head);
995 atomic_inc(&u->ref);
996 }
2b144498
SD
997 }
998 spin_unlock_irqrestore(&uprobes_treelock, flags);
999}
1000
1001/*
5e5be71a 1002 * Called from mmap_region/vma_adjust with mm->mmap_sem acquired.
2b144498 1003 *
5e5be71a
ON
1004 * Currently we ignore all errors and always return 0, the callers
1005 * can't handle the failure anyway.
2b144498 1006 */
7b2d81d4 1007int uprobe_mmap(struct vm_area_struct *vma)
2b144498
SD
1008{
1009 struct list_head tmp_list;
665605a2 1010 struct uprobe *uprobe, *u;
2b144498 1011 struct inode *inode;
2b144498
SD
1012
1013 if (!atomic_read(&uprobe_events) || !valid_vma(vma, true))
7b2d81d4 1014 return 0;
2b144498
SD
1015
1016 inode = vma->vm_file->f_mapping->host;
1017 if (!inode)
7b2d81d4 1018 return 0;
2b144498 1019
2b144498 1020 mutex_lock(uprobes_mmap_hash(inode));
891c3970 1021 build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
7b2d81d4 1022
665605a2 1023 list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
5e5be71a 1024 if (!fatal_signal_pending(current)) {
57683f72 1025 unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
5e5be71a 1026 install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
2b144498
SD
1027 }
1028 put_uprobe(uprobe);
1029 }
2b144498
SD
1030 mutex_unlock(uprobes_mmap_hash(inode));
1031
5e5be71a 1032 return 0;
2b144498
SD
1033}
1034
682968e0
SD
1035/*
1036 * Called in context of a munmap of a vma.
1037 */
cbc91f71 1038void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
682968e0 1039{
682968e0
SD
1040 if (!atomic_read(&uprobe_events) || !valid_vma(vma, false))
1041 return;
1042
2fd611a9
ON
1043 if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1044 return;
1045
f8ac4ec9
ON
1046 if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags))
1047 return;
1048
f1a45d02 1049 /* TODO: unmapping uprobe(s) will need more work */
682968e0
SD
1050}
1051
d4b3b638
SD
1052/* Slot allocation for XOL */
1053static int xol_add_vma(struct xol_area *area)
1054{
1055 struct mm_struct *mm;
1056 int ret;
1057
1058 area->page = alloc_page(GFP_HIGHUSER);
1059 if (!area->page)
1060 return -ENOMEM;
1061
1062 ret = -EALREADY;
1063 mm = current->mm;
1064
1065 down_write(&mm->mmap_sem);
1066 if (mm->uprobes_state.xol_area)
1067 goto fail;
1068
1069 ret = -ENOMEM;
1070
1071 /* Try to map as high as possible, this is only a hint. */
1072 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE, PAGE_SIZE, 0, 0);
1073 if (area->vaddr & ~PAGE_MASK) {
1074 ret = area->vaddr;
1075 goto fail;
1076 }
1077
1078 ret = install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1079 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, &area->page);
1080 if (ret)
1081 goto fail;
1082
1083 smp_wmb(); /* pairs with get_xol_area() */
1084 mm->uprobes_state.xol_area = area;
1085 ret = 0;
1086
1087fail:
1088 up_write(&mm->mmap_sem);
1089 if (ret)
1090 __free_page(area->page);
1091
1092 return ret;
1093}
1094
1095static struct xol_area *get_xol_area(struct mm_struct *mm)
1096{
1097 struct xol_area *area;
1098
1099 area = mm->uprobes_state.xol_area;
1100 smp_read_barrier_depends(); /* pairs with wmb in xol_add_vma() */
1101
1102 return area;
1103}
1104
1105/*
1106 * xol_alloc_area - Allocate process's xol_area.
1107 * This area will be used for storing instructions for execution out of
1108 * line.
1109 *
1110 * Returns the allocated area or NULL.
1111 */
1112static struct xol_area *xol_alloc_area(void)
1113{
1114 struct xol_area *area;
1115
1116 area = kzalloc(sizeof(*area), GFP_KERNEL);
1117 if (unlikely(!area))
1118 return NULL;
1119
1120 area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL);
1121
1122 if (!area->bitmap)
1123 goto fail;
1124
1125 init_waitqueue_head(&area->wq);
1126 if (!xol_add_vma(area))
1127 return area;
1128
1129fail:
1130 kfree(area->bitmap);
1131 kfree(area);
1132
1133 return get_xol_area(current->mm);
1134}
1135
1136/*
1137 * uprobe_clear_state - Free the area allocated for slots.
1138 */
1139void uprobe_clear_state(struct mm_struct *mm)
1140{
1141 struct xol_area *area = mm->uprobes_state.xol_area;
1142
1143 if (!area)
1144 return;
1145
1146 put_page(area->page);
1147 kfree(area->bitmap);
1148 kfree(area);
1149}
1150
1151/*
1152 * uprobe_reset_state - Free the area allocated for slots.
1153 */
1154void uprobe_reset_state(struct mm_struct *mm)
1155{
1156 mm->uprobes_state.xol_area = NULL;
1157}
1158
f8ac4ec9
ON
1159void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1160{
1161 if (test_bit(MMF_HAS_UPROBES, &oldmm->flags))
1162 set_bit(MMF_HAS_UPROBES, &newmm->flags);
1163}
1164
d4b3b638
SD
1165/*
1166 * - search for a free slot.
1167 */
1168static unsigned long xol_take_insn_slot(struct xol_area *area)
1169{
1170 unsigned long slot_addr;
1171 int slot_nr;
1172
1173 do {
1174 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1175 if (slot_nr < UINSNS_PER_PAGE) {
1176 if (!test_and_set_bit(slot_nr, area->bitmap))
1177 break;
1178
1179 slot_nr = UINSNS_PER_PAGE;
1180 continue;
1181 }
1182 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1183 } while (slot_nr >= UINSNS_PER_PAGE);
1184
1185 slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1186 atomic_inc(&area->slot_count);
1187
1188 return slot_addr;
1189}
1190
1191/*
1192 * xol_get_insn_slot - If was not allocated a slot, then
1193 * allocate a slot.
1194 * Returns the allocated slot address or 0.
1195 */
1196static unsigned long xol_get_insn_slot(struct uprobe *uprobe, unsigned long slot_addr)
1197{
1198 struct xol_area *area;
1199 unsigned long offset;
1200 void *vaddr;
1201
1202 area = get_xol_area(current->mm);
1203 if (!area) {
1204 area = xol_alloc_area();
1205 if (!area)
1206 return 0;
1207 }
1208 current->utask->xol_vaddr = xol_take_insn_slot(area);
1209
1210 /*
1211 * Initialize the slot if xol_vaddr points to valid
1212 * instruction slot.
1213 */
1214 if (unlikely(!current->utask->xol_vaddr))
1215 return 0;
1216
1217 current->utask->vaddr = slot_addr;
1218 offset = current->utask->xol_vaddr & ~PAGE_MASK;
1219 vaddr = kmap_atomic(area->page);
1220 memcpy(vaddr + offset, uprobe->arch.insn, MAX_UINSN_BYTES);
1221 kunmap_atomic(vaddr);
1222
1223 return current->utask->xol_vaddr;
1224}
1225
1226/*
1227 * xol_free_insn_slot - If slot was earlier allocated by
1228 * @xol_get_insn_slot(), make the slot available for
1229 * subsequent requests.
1230 */
1231static void xol_free_insn_slot(struct task_struct *tsk)
1232{
1233 struct xol_area *area;
1234 unsigned long vma_end;
1235 unsigned long slot_addr;
1236
1237 if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1238 return;
1239
1240 slot_addr = tsk->utask->xol_vaddr;
1241
1242 if (unlikely(!slot_addr || IS_ERR_VALUE(slot_addr)))
1243 return;
1244
1245 area = tsk->mm->uprobes_state.xol_area;
1246 vma_end = area->vaddr + PAGE_SIZE;
1247 if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1248 unsigned long offset;
1249 int slot_nr;
1250
1251 offset = slot_addr - area->vaddr;
1252 slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1253 if (slot_nr >= UINSNS_PER_PAGE)
1254 return;
1255
1256 clear_bit(slot_nr, area->bitmap);
1257 atomic_dec(&area->slot_count);
1258 if (waitqueue_active(&area->wq))
1259 wake_up(&area->wq);
1260
1261 tsk->utask->xol_vaddr = 0;
1262 }
1263}
1264
0326f5a9
SD
1265/**
1266 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1267 * @regs: Reflects the saved state of the task after it has hit a breakpoint
1268 * instruction.
1269 * Return the address of the breakpoint instruction.
1270 */
1271unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1272{
1273 return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1274}
1275
1276/*
1277 * Called with no locks held.
1278 * Called in context of a exiting or a exec-ing thread.
1279 */
1280void uprobe_free_utask(struct task_struct *t)
1281{
1282 struct uprobe_task *utask = t->utask;
1283
0326f5a9
SD
1284 if (!utask)
1285 return;
1286
1287 if (utask->active_uprobe)
1288 put_uprobe(utask->active_uprobe);
1289
d4b3b638 1290 xol_free_insn_slot(t);
0326f5a9
SD
1291 kfree(utask);
1292 t->utask = NULL;
1293}
1294
1295/*
1296 * Called in context of a new clone/fork from copy_process.
1297 */
1298void uprobe_copy_process(struct task_struct *t)
1299{
1300 t->utask = NULL;
0326f5a9
SD
1301}
1302
1303/*
1304 * Allocate a uprobe_task object for the task.
1305 * Called when the thread hits a breakpoint for the first time.
1306 *
1307 * Returns:
1308 * - pointer to new uprobe_task on success
1309 * - NULL otherwise
1310 */
1311static struct uprobe_task *add_utask(void)
1312{
1313 struct uprobe_task *utask;
1314
1315 utask = kzalloc(sizeof *utask, GFP_KERNEL);
1316 if (unlikely(!utask))
1317 return NULL;
1318
0326f5a9
SD
1319 current->utask = utask;
1320 return utask;
1321}
1322
1323/* Prepare to single-step probed instruction out of line. */
1324static int
1325pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long vaddr)
1326{
d4b3b638
SD
1327 if (xol_get_insn_slot(uprobe, vaddr) && !arch_uprobe_pre_xol(&uprobe->arch, regs))
1328 return 0;
1329
0326f5a9
SD
1330 return -EFAULT;
1331}
1332
1333/*
1334 * If we are singlestepping, then ensure this thread is not connected to
1335 * non-fatal signals until completion of singlestep. When xol insn itself
1336 * triggers the signal, restart the original insn even if the task is
1337 * already SIGKILL'ed (since coredump should report the correct ip). This
1338 * is even more important if the task has a handler for SIGSEGV/etc, The
1339 * _same_ instruction should be repeated again after return from the signal
1340 * handler, and SSTEP can never finish in this case.
1341 */
1342bool uprobe_deny_signal(void)
1343{
1344 struct task_struct *t = current;
1345 struct uprobe_task *utask = t->utask;
1346
1347 if (likely(!utask || !utask->active_uprobe))
1348 return false;
1349
1350 WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1351
1352 if (signal_pending(t)) {
1353 spin_lock_irq(&t->sighand->siglock);
1354 clear_tsk_thread_flag(t, TIF_SIGPENDING);
1355 spin_unlock_irq(&t->sighand->siglock);
1356
1357 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1358 utask->state = UTASK_SSTEP_TRAPPED;
1359 set_tsk_thread_flag(t, TIF_UPROBE);
1360 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1361 }
1362 }
1363
1364 return true;
1365}
1366
1367/*
1368 * Avoid singlestepping the original instruction if the original instruction
1369 * is a NOP or can be emulated.
1370 */
1371static bool can_skip_sstep(struct uprobe *uprobe, struct pt_regs *regs)
1372{
1373 if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
1374 return true;
1375
1376 uprobe->flags &= ~UPROBE_SKIP_SSTEP;
1377 return false;
1378}
1379
d790d346 1380static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
0326f5a9 1381{
3a9ea052
ON
1382 struct mm_struct *mm = current->mm;
1383 struct uprobe *uprobe = NULL;
0326f5a9 1384 struct vm_area_struct *vma;
0326f5a9 1385
0326f5a9
SD
1386 down_read(&mm->mmap_sem);
1387 vma = find_vma(mm, bp_vaddr);
3a9ea052
ON
1388 if (vma && vma->vm_start <= bp_vaddr) {
1389 if (valid_vma(vma, false)) {
cb113b47
ON
1390 struct inode *inode = vma->vm_file->f_mapping->host;
1391 loff_t offset = vaddr_to_offset(vma, bp_vaddr);
0326f5a9 1392
3a9ea052
ON
1393 uprobe = find_uprobe(inode, offset);
1394 }
d790d346
ON
1395
1396 if (!uprobe)
1397 *is_swbp = is_swbp_at_addr(mm, bp_vaddr);
1398 } else {
1399 *is_swbp = -EFAULT;
0326f5a9 1400 }
0326f5a9
SD
1401 up_read(&mm->mmap_sem);
1402
3a9ea052
ON
1403 return uprobe;
1404}
1405
1406/*
1407 * Run handler and ask thread to singlestep.
1408 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
1409 */
1410static void handle_swbp(struct pt_regs *regs)
1411{
1412 struct uprobe_task *utask;
1413 struct uprobe *uprobe;
1414 unsigned long bp_vaddr;
56bb4cf6 1415 int uninitialized_var(is_swbp);
3a9ea052
ON
1416
1417 bp_vaddr = uprobe_get_swbp_addr(regs);
d790d346 1418 uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
3a9ea052 1419
0326f5a9 1420 if (!uprobe) {
56bb4cf6
ON
1421 if (is_swbp > 0) {
1422 /* No matching uprobe; signal SIGTRAP. */
1423 send_sig(SIGTRAP, current, 0);
1424 } else {
1425 /*
1426 * Either we raced with uprobe_unregister() or we can't
1427 * access this memory. The latter is only possible if
1428 * another thread plays with our ->mm. In both cases
1429 * we can simply restart. If this vma was unmapped we
1430 * can pretend this insn was not executed yet and get
1431 * the (correct) SIGSEGV after restart.
1432 */
1433 instruction_pointer_set(regs, bp_vaddr);
1434 }
0326f5a9
SD
1435 return;
1436 }
1437
1438 utask = current->utask;
1439 if (!utask) {
1440 utask = add_utask();
1441 /* Cannot allocate; re-execute the instruction. */
1442 if (!utask)
1443 goto cleanup_ret;
1444 }
1445 utask->active_uprobe = uprobe;
1446 handler_chain(uprobe, regs);
1447 if (uprobe->flags & UPROBE_SKIP_SSTEP && can_skip_sstep(uprobe, regs))
1448 goto cleanup_ret;
1449
1450 utask->state = UTASK_SSTEP;
1451 if (!pre_ssout(uprobe, regs, bp_vaddr)) {
1452 user_enable_single_step(current);
1453 return;
1454 }
1455
1456cleanup_ret:
1457 if (utask) {
1458 utask->active_uprobe = NULL;
1459 utask->state = UTASK_RUNNING;
1460 }
8bd87445 1461 if (!(uprobe->flags & UPROBE_SKIP_SSTEP))
0326f5a9 1462
8bd87445
SAS
1463 /*
1464 * cannot singlestep; cannot skip instruction;
1465 * re-execute the instruction.
1466 */
1467 instruction_pointer_set(regs, bp_vaddr);
0326f5a9 1468
8bd87445 1469 put_uprobe(uprobe);
0326f5a9
SD
1470}
1471
1472/*
1473 * Perform required fix-ups and disable singlestep.
1474 * Allow pending signals to take effect.
1475 */
1476static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
1477{
1478 struct uprobe *uprobe;
1479
1480 uprobe = utask->active_uprobe;
1481 if (utask->state == UTASK_SSTEP_ACK)
1482 arch_uprobe_post_xol(&uprobe->arch, regs);
1483 else if (utask->state == UTASK_SSTEP_TRAPPED)
1484 arch_uprobe_abort_xol(&uprobe->arch, regs);
1485 else
1486 WARN_ON_ONCE(1);
1487
1488 put_uprobe(uprobe);
1489 utask->active_uprobe = NULL;
1490 utask->state = UTASK_RUNNING;
1491 user_disable_single_step(current);
d4b3b638 1492 xol_free_insn_slot(current);
0326f5a9
SD
1493
1494 spin_lock_irq(&current->sighand->siglock);
1495 recalc_sigpending(); /* see uprobe_deny_signal() */
1496 spin_unlock_irq(&current->sighand->siglock);
1497}
1498
1499/*
1500 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag. (and on
1501 * subsequent probe hits on the thread sets the state to UTASK_BP_HIT) and
1502 * allows the thread to return from interrupt.
1503 *
1504 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag and
1505 * also sets the state to UTASK_SSTEP_ACK and allows the thread to return from
1506 * interrupt.
1507 *
1508 * While returning to userspace, thread notices the TIF_UPROBE flag and calls
1509 * uprobe_notify_resume().
1510 */
1511void uprobe_notify_resume(struct pt_regs *regs)
1512{
1513 struct uprobe_task *utask;
1514
1515 utask = current->utask;
1516 if (!utask || utask->state == UTASK_BP_HIT)
1517 handle_swbp(regs);
1518 else
1519 handle_singlestep(utask, regs);
1520}
1521
1522/*
1523 * uprobe_pre_sstep_notifier gets called from interrupt context as part of
1524 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
1525 */
1526int uprobe_pre_sstep_notifier(struct pt_regs *regs)
1527{
1528 struct uprobe_task *utask;
1529
f8ac4ec9 1530 if (!current->mm || !test_bit(MMF_HAS_UPROBES, &current->mm->flags))
0326f5a9
SD
1531 return 0;
1532
1533 utask = current->utask;
1534 if (utask)
1535 utask->state = UTASK_BP_HIT;
1536
1537 set_thread_flag(TIF_UPROBE);
0326f5a9
SD
1538
1539 return 1;
1540}
1541
1542/*
1543 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
1544 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
1545 */
1546int uprobe_post_sstep_notifier(struct pt_regs *regs)
1547{
1548 struct uprobe_task *utask = current->utask;
1549
1550 if (!current->mm || !utask || !utask->active_uprobe)
1551 /* task is currently not uprobed */
1552 return 0;
1553
1554 utask->state = UTASK_SSTEP_ACK;
1555 set_thread_flag(TIF_UPROBE);
1556 return 1;
1557}
1558
1559static struct notifier_block uprobe_exception_nb = {
1560 .notifier_call = arch_uprobe_exception_notify,
1561 .priority = INT_MAX-1, /* notified after kprobes, kgdb */
1562};
1563
2b144498
SD
1564static int __init init_uprobes(void)
1565{
1566 int i;
1567
1568 for (i = 0; i < UPROBES_HASH_SZ; i++) {
1569 mutex_init(&uprobes_mutex[i]);
1570 mutex_init(&uprobes_mmap_mutex[i]);
1571 }
0326f5a9
SD
1572
1573 return register_die_notifier(&uprobe_exception_nb);
2b144498 1574}
0326f5a9 1575module_init(init_uprobes);
2b144498
SD
1576
1577static void __exit exit_uprobes(void)
1578{
1579}
2b144498 1580module_exit(exit_uprobes);
This page took 0.165737 seconds and 5 git commands to generate.