Merge branch 'i2c/for-current' of git://git.kernel.org/pub/scm/linux/kernel/git/wsa...
[deliverable/linux.git] / kernel / futex.c
CommitLineData
1da177e4
LT
1/*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
0771dfef
IM
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
c87e2837
IM
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
34f01cc1
ED
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
52400ba9
DH
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
25 *
1da177e4
LT
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
29 *
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
32 *
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
37 *
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
42 *
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
46 */
47#include <linux/slab.h>
48#include <linux/poll.h>
49#include <linux/fs.h>
50#include <linux/file.h>
51#include <linux/jhash.h>
52#include <linux/init.h>
53#include <linux/futex.h>
54#include <linux/mount.h>
55#include <linux/pagemap.h>
56#include <linux/syscalls.h>
7ed20e1a 57#include <linux/signal.h>
9984de1a 58#include <linux/export.h>
fd5eea42 59#include <linux/magic.h>
b488893a
PE
60#include <linux/pid.h>
61#include <linux/nsproxy.h>
bdbb776f 62#include <linux/ptrace.h>
8bd75c77 63#include <linux/sched/rt.h>
13d60f4b 64#include <linux/hugetlb.h>
88c8004f 65#include <linux/freezer.h>
a52b89eb 66#include <linux/bootmem.h>
b488893a 67
4732efbe 68#include <asm/futex.h>
1da177e4 69
1696a8be 70#include "locking/rtmutex_common.h"
c87e2837 71
99b60ce6
TG
72/*
73 * Basic futex operation and ordering guarantees:
74 *
75 * The waiter reads the futex value in user space and calls
76 * futex_wait(). This function computes the hash bucket and acquires
77 * the hash bucket lock. After that it reads the futex user space value
b0c29f79
DB
78 * again and verifies that the data has not changed. If it has not changed
79 * it enqueues itself into the hash bucket, releases the hash bucket lock
80 * and schedules.
99b60ce6
TG
81 *
82 * The waker side modifies the user space value of the futex and calls
b0c29f79
DB
83 * futex_wake(). This function computes the hash bucket and acquires the
84 * hash bucket lock. Then it looks for waiters on that futex in the hash
85 * bucket and wakes them.
99b60ce6 86 *
b0c29f79
DB
87 * In futex wake up scenarios where no tasks are blocked on a futex, taking
88 * the hb spinlock can be avoided and simply return. In order for this
89 * optimization to work, ordering guarantees must exist so that the waiter
90 * being added to the list is acknowledged when the list is concurrently being
91 * checked by the waker, avoiding scenarios like the following:
99b60ce6
TG
92 *
93 * CPU 0 CPU 1
94 * val = *futex;
95 * sys_futex(WAIT, futex, val);
96 * futex_wait(futex, val);
97 * uval = *futex;
98 * *futex = newval;
99 * sys_futex(WAKE, futex);
100 * futex_wake(futex);
101 * if (queue_empty())
102 * return;
103 * if (uval == val)
104 * lock(hash_bucket(futex));
105 * queue();
106 * unlock(hash_bucket(futex));
107 * schedule();
108 *
109 * This would cause the waiter on CPU 0 to wait forever because it
110 * missed the transition of the user space value from val to newval
111 * and the waker did not find the waiter in the hash bucket queue.
99b60ce6 112 *
b0c29f79
DB
113 * The correct serialization ensures that a waiter either observes
114 * the changed user space value before blocking or is woken by a
115 * concurrent waker:
116 *
117 * CPU 0 CPU 1
99b60ce6
TG
118 * val = *futex;
119 * sys_futex(WAIT, futex, val);
120 * futex_wait(futex, val);
b0c29f79
DB
121 *
122 * waiters++;
123 * mb(); (A) <-- paired with -.
124 * |
125 * lock(hash_bucket(futex)); |
126 * |
127 * uval = *futex; |
128 * | *futex = newval;
129 * | sys_futex(WAKE, futex);
130 * | futex_wake(futex);
131 * |
132 * `-------> mb(); (B)
99b60ce6 133 * if (uval == val)
b0c29f79 134 * queue();
99b60ce6 135 * unlock(hash_bucket(futex));
b0c29f79
DB
136 * schedule(); if (waiters)
137 * lock(hash_bucket(futex));
138 * wake_waiters(futex);
139 * unlock(hash_bucket(futex));
140 *
141 * Where (A) orders the waiters increment and the futex value read -- this
142 * is guaranteed by the head counter in the hb spinlock; and where (B)
143 * orders the write to futex and the waiters read -- this is done by the
144 * barriers in get_futex_key_refs(), through either ihold or atomic_inc,
145 * depending on the futex type.
146 *
147 * This yields the following case (where X:=waiters, Y:=futex):
148 *
149 * X = Y = 0
150 *
151 * w[X]=1 w[Y]=1
152 * MB MB
153 * r[Y]=y r[X]=x
154 *
155 * Which guarantees that x==0 && y==0 is impossible; which translates back into
156 * the guarantee that we cannot both miss the futex variable change and the
157 * enqueue.
99b60ce6
TG
158 */
159
a0c1e907
TG
160int __read_mostly futex_cmpxchg_enabled;
161
b41277dc
DH
162/*
163 * Futex flags used to encode options to functions and preserve them across
164 * restarts.
165 */
166#define FLAGS_SHARED 0x01
167#define FLAGS_CLOCKRT 0x02
168#define FLAGS_HAS_TIMEOUT 0x04
169
c87e2837
IM
170/*
171 * Priority Inheritance state:
172 */
173struct futex_pi_state {
174 /*
175 * list of 'owned' pi_state instances - these have to be
176 * cleaned up in do_exit() if the task exits prematurely:
177 */
178 struct list_head list;
179
180 /*
181 * The PI object:
182 */
183 struct rt_mutex pi_mutex;
184
185 struct task_struct *owner;
186 atomic_t refcount;
187
188 union futex_key key;
189};
190
d8d88fbb
DH
191/**
192 * struct futex_q - The hashed futex queue entry, one per waiting task
fb62db2b 193 * @list: priority-sorted list of tasks waiting on this futex
d8d88fbb
DH
194 * @task: the task waiting on the futex
195 * @lock_ptr: the hash bucket lock
196 * @key: the key the futex is hashed on
197 * @pi_state: optional priority inheritance state
198 * @rt_waiter: rt_waiter storage for use with requeue_pi
199 * @requeue_pi_key: the requeue_pi target futex key
200 * @bitset: bitset for the optional bitmasked wakeup
201 *
202 * We use this hashed waitqueue, instead of a normal wait_queue_t, so
1da177e4
LT
203 * we can wake only the relevant ones (hashed queues may be shared).
204 *
205 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
ec92d082 206 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
fb62db2b 207 * The order of wakeup is always to make the first condition true, then
d8d88fbb
DH
208 * the second.
209 *
210 * PI futexes are typically woken before they are removed from the hash list via
211 * the rt_mutex code. See unqueue_me_pi().
1da177e4
LT
212 */
213struct futex_q {
ec92d082 214 struct plist_node list;
1da177e4 215
d8d88fbb 216 struct task_struct *task;
1da177e4 217 spinlock_t *lock_ptr;
1da177e4 218 union futex_key key;
c87e2837 219 struct futex_pi_state *pi_state;
52400ba9 220 struct rt_mutex_waiter *rt_waiter;
84bc4af5 221 union futex_key *requeue_pi_key;
cd689985 222 u32 bitset;
1da177e4
LT
223};
224
5bdb05f9
DH
225static const struct futex_q futex_q_init = {
226 /* list gets initialized in queue_me()*/
227 .key = FUTEX_KEY_INIT,
228 .bitset = FUTEX_BITSET_MATCH_ANY
229};
230
1da177e4 231/*
b2d0994b
DH
232 * Hash buckets are shared by all the futex_keys that hash to the same
233 * location. Each key may have multiple futex_q structures, one for each task
234 * waiting on a futex.
1da177e4
LT
235 */
236struct futex_hash_bucket {
11d4616b 237 atomic_t waiters;
ec92d082
PP
238 spinlock_t lock;
239 struct plist_head chain;
a52b89eb 240} ____cacheline_aligned_in_smp;
1da177e4 241
a52b89eb
DB
242static unsigned long __read_mostly futex_hashsize;
243
244static struct futex_hash_bucket *futex_queues;
1da177e4 245
b0c29f79
DB
246static inline void futex_get_mm(union futex_key *key)
247{
248 atomic_inc(&key->private.mm->mm_count);
249 /*
250 * Ensure futex_get_mm() implies a full barrier such that
251 * get_futex_key() implies a full barrier. This is relied upon
252 * as full barrier (B), see the ordering comment above.
253 */
254 smp_mb__after_atomic_inc();
255}
256
11d4616b
LT
257/*
258 * Reflects a new waiter being added to the waitqueue.
259 */
260static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
b0c29f79
DB
261{
262#ifdef CONFIG_SMP
11d4616b 263 atomic_inc(&hb->waiters);
b0c29f79 264 /*
11d4616b 265 * Full barrier (A), see the ordering comment above.
b0c29f79 266 */
11d4616b
LT
267 smp_mb__after_atomic_inc();
268#endif
269}
270
271/*
272 * Reflects a waiter being removed from the waitqueue by wakeup
273 * paths.
274 */
275static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
276{
277#ifdef CONFIG_SMP
278 atomic_dec(&hb->waiters);
279#endif
280}
b0c29f79 281
11d4616b
LT
282static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
283{
284#ifdef CONFIG_SMP
285 return atomic_read(&hb->waiters);
b0c29f79 286#else
11d4616b 287 return 1;
b0c29f79
DB
288#endif
289}
290
1da177e4
LT
291/*
292 * We hash on the keys returned from get_futex_key (see below).
293 */
294static struct futex_hash_bucket *hash_futex(union futex_key *key)
295{
296 u32 hash = jhash2((u32*)&key->both.word,
297 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
298 key->both.offset);
a52b89eb 299 return &futex_queues[hash & (futex_hashsize - 1)];
1da177e4
LT
300}
301
302/*
303 * Return 1 if two futex_keys are equal, 0 otherwise.
304 */
305static inline int match_futex(union futex_key *key1, union futex_key *key2)
306{
2bc87203
DH
307 return (key1 && key2
308 && key1->both.word == key2->both.word
1da177e4
LT
309 && key1->both.ptr == key2->both.ptr
310 && key1->both.offset == key2->both.offset);
311}
312
38d47c1b
PZ
313/*
314 * Take a reference to the resource addressed by a key.
315 * Can be called while holding spinlocks.
316 *
317 */
318static void get_futex_key_refs(union futex_key *key)
319{
320 if (!key->both.ptr)
321 return;
322
323 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
324 case FUT_OFF_INODE:
b0c29f79 325 ihold(key->shared.inode); /* implies MB (B) */
38d47c1b
PZ
326 break;
327 case FUT_OFF_MMSHARED:
b0c29f79 328 futex_get_mm(key); /* implies MB (B) */
38d47c1b
PZ
329 break;
330 }
331}
332
333/*
334 * Drop a reference to the resource addressed by a key.
335 * The hash bucket spinlock must not be held.
336 */
337static void drop_futex_key_refs(union futex_key *key)
338{
90621c40
DH
339 if (!key->both.ptr) {
340 /* If we're here then we tried to put a key we failed to get */
341 WARN_ON_ONCE(1);
38d47c1b 342 return;
90621c40 343 }
38d47c1b
PZ
344
345 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
346 case FUT_OFF_INODE:
347 iput(key->shared.inode);
348 break;
349 case FUT_OFF_MMSHARED:
350 mmdrop(key->private.mm);
351 break;
352 }
353}
354
34f01cc1 355/**
d96ee56c
DH
356 * get_futex_key() - Get parameters which are the keys for a futex
357 * @uaddr: virtual address of the futex
358 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
359 * @key: address where result is stored.
9ea71503
SB
360 * @rw: mapping needs to be read/write (values: VERIFY_READ,
361 * VERIFY_WRITE)
34f01cc1 362 *
6c23cbbd
RD
363 * Return: a negative error code or 0
364 *
34f01cc1 365 * The key words are stored in *key on success.
1da177e4 366 *
6131ffaa 367 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
1da177e4
LT
368 * offset_within_page). For private mappings, it's (uaddr, current->mm).
369 * We can usually work out the index without swapping in the page.
370 *
b2d0994b 371 * lock_page() might sleep, the caller should not hold a spinlock.
1da177e4 372 */
64d1304a 373static int
9ea71503 374get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
1da177e4 375{
e2970f2f 376 unsigned long address = (unsigned long)uaddr;
1da177e4 377 struct mm_struct *mm = current->mm;
a5b338f2 378 struct page *page, *page_head;
9ea71503 379 int err, ro = 0;
1da177e4
LT
380
381 /*
382 * The futex address must be "naturally" aligned.
383 */
e2970f2f 384 key->both.offset = address % PAGE_SIZE;
34f01cc1 385 if (unlikely((address % sizeof(u32)) != 0))
1da177e4 386 return -EINVAL;
e2970f2f 387 address -= key->both.offset;
1da177e4 388
5cdec2d8
LT
389 if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
390 return -EFAULT;
391
34f01cc1
ED
392 /*
393 * PROCESS_PRIVATE futexes are fast.
394 * As the mm cannot disappear under us and the 'key' only needs
395 * virtual address, we dont even have to find the underlying vma.
396 * Note : We do have to check 'uaddr' is a valid user address,
397 * but access_ok() should be faster than find_vma()
398 */
399 if (!fshared) {
34f01cc1
ED
400 key->private.mm = mm;
401 key->private.address = address;
b0c29f79 402 get_futex_key_refs(key); /* implies MB (B) */
34f01cc1
ED
403 return 0;
404 }
1da177e4 405
38d47c1b 406again:
7485d0d3 407 err = get_user_pages_fast(address, 1, 1, &page);
9ea71503
SB
408 /*
409 * If write access is not required (eg. FUTEX_WAIT), try
410 * and get read-only access.
411 */
412 if (err == -EFAULT && rw == VERIFY_READ) {
413 err = get_user_pages_fast(address, 1, 0, &page);
414 ro = 1;
415 }
38d47c1b
PZ
416 if (err < 0)
417 return err;
9ea71503
SB
418 else
419 err = 0;
38d47c1b 420
a5b338f2
AA
421#ifdef CONFIG_TRANSPARENT_HUGEPAGE
422 page_head = page;
423 if (unlikely(PageTail(page))) {
38d47c1b 424 put_page(page);
a5b338f2
AA
425 /* serialize against __split_huge_page_splitting() */
426 local_irq_disable();
f12d5bfc 427 if (likely(__get_user_pages_fast(address, 1, !ro, &page) == 1)) {
a5b338f2
AA
428 page_head = compound_head(page);
429 /*
430 * page_head is valid pointer but we must pin
431 * it before taking the PG_lock and/or
432 * PG_compound_lock. The moment we re-enable
433 * irqs __split_huge_page_splitting() can
434 * return and the head page can be freed from
435 * under us. We can't take the PG_lock and/or
436 * PG_compound_lock on a page that could be
437 * freed from under us.
438 */
439 if (page != page_head) {
440 get_page(page_head);
441 put_page(page);
442 }
443 local_irq_enable();
444 } else {
445 local_irq_enable();
446 goto again;
447 }
448 }
449#else
450 page_head = compound_head(page);
451 if (page != page_head) {
452 get_page(page_head);
453 put_page(page);
454 }
455#endif
456
457 lock_page(page_head);
e6780f72
HD
458
459 /*
460 * If page_head->mapping is NULL, then it cannot be a PageAnon
461 * page; but it might be the ZERO_PAGE or in the gate area or
462 * in a special mapping (all cases which we are happy to fail);
463 * or it may have been a good file page when get_user_pages_fast
464 * found it, but truncated or holepunched or subjected to
465 * invalidate_complete_page2 before we got the page lock (also
466 * cases which we are happy to fail). And we hold a reference,
467 * so refcount care in invalidate_complete_page's remove_mapping
468 * prevents drop_caches from setting mapping to NULL beneath us.
469 *
470 * The case we do have to guard against is when memory pressure made
471 * shmem_writepage move it from filecache to swapcache beneath us:
472 * an unlikely race, but we do need to retry for page_head->mapping.
473 */
a5b338f2 474 if (!page_head->mapping) {
e6780f72 475 int shmem_swizzled = PageSwapCache(page_head);
a5b338f2
AA
476 unlock_page(page_head);
477 put_page(page_head);
e6780f72
HD
478 if (shmem_swizzled)
479 goto again;
480 return -EFAULT;
38d47c1b 481 }
1da177e4
LT
482
483 /*
484 * Private mappings are handled in a simple way.
485 *
486 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
487 * it's a read-only handle, it's expected that futexes attach to
38d47c1b 488 * the object not the particular process.
1da177e4 489 */
a5b338f2 490 if (PageAnon(page_head)) {
9ea71503
SB
491 /*
492 * A RO anonymous page will never change and thus doesn't make
493 * sense for futex operations.
494 */
495 if (ro) {
496 err = -EFAULT;
497 goto out;
498 }
499
38d47c1b 500 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
1da177e4 501 key->private.mm = mm;
e2970f2f 502 key->private.address = address;
38d47c1b
PZ
503 } else {
504 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
a5b338f2 505 key->shared.inode = page_head->mapping->host;
13d60f4b 506 key->shared.pgoff = basepage_index(page);
1da177e4
LT
507 }
508
b0c29f79 509 get_futex_key_refs(key); /* implies MB (B) */
1da177e4 510
9ea71503 511out:
a5b338f2
AA
512 unlock_page(page_head);
513 put_page(page_head);
9ea71503 514 return err;
1da177e4
LT
515}
516
ae791a2d 517static inline void put_futex_key(union futex_key *key)
1da177e4 518{
38d47c1b 519 drop_futex_key_refs(key);
1da177e4
LT
520}
521
d96ee56c
DH
522/**
523 * fault_in_user_writeable() - Fault in user address and verify RW access
d0725992
TG
524 * @uaddr: pointer to faulting user space address
525 *
526 * Slow path to fixup the fault we just took in the atomic write
527 * access to @uaddr.
528 *
fb62db2b 529 * We have no generic implementation of a non-destructive write to the
d0725992
TG
530 * user address. We know that we faulted in the atomic pagefault
531 * disabled section so we can as well avoid the #PF overhead by
532 * calling get_user_pages() right away.
533 */
534static int fault_in_user_writeable(u32 __user *uaddr)
535{
722d0172
AK
536 struct mm_struct *mm = current->mm;
537 int ret;
538
539 down_read(&mm->mmap_sem);
2efaca92
BH
540 ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
541 FAULT_FLAG_WRITE);
722d0172
AK
542 up_read(&mm->mmap_sem);
543
d0725992
TG
544 return ret < 0 ? ret : 0;
545}
546
4b1c486b
DH
547/**
548 * futex_top_waiter() - Return the highest priority waiter on a futex
d96ee56c
DH
549 * @hb: the hash bucket the futex_q's reside in
550 * @key: the futex key (to distinguish it from other futex futex_q's)
4b1c486b
DH
551 *
552 * Must be called with the hb lock held.
553 */
554static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
555 union futex_key *key)
556{
557 struct futex_q *this;
558
559 plist_for_each_entry(this, &hb->chain, list) {
560 if (match_futex(&this->key, key))
561 return this;
562 }
563 return NULL;
564}
565
37a9d912
ML
566static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
567 u32 uval, u32 newval)
36cf3b5c 568{
37a9d912 569 int ret;
36cf3b5c
TG
570
571 pagefault_disable();
37a9d912 572 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
36cf3b5c
TG
573 pagefault_enable();
574
37a9d912 575 return ret;
36cf3b5c
TG
576}
577
578static int get_futex_value_locked(u32 *dest, u32 __user *from)
1da177e4
LT
579{
580 int ret;
581
a866374a 582 pagefault_disable();
e2970f2f 583 ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
a866374a 584 pagefault_enable();
1da177e4
LT
585
586 return ret ? -EFAULT : 0;
587}
588
c87e2837
IM
589
590/*
591 * PI code:
592 */
593static int refill_pi_state_cache(void)
594{
595 struct futex_pi_state *pi_state;
596
597 if (likely(current->pi_state_cache))
598 return 0;
599
4668edc3 600 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
c87e2837
IM
601
602 if (!pi_state)
603 return -ENOMEM;
604
c87e2837
IM
605 INIT_LIST_HEAD(&pi_state->list);
606 /* pi_mutex gets initialized later */
607 pi_state->owner = NULL;
608 atomic_set(&pi_state->refcount, 1);
38d47c1b 609 pi_state->key = FUTEX_KEY_INIT;
c87e2837
IM
610
611 current->pi_state_cache = pi_state;
612
613 return 0;
614}
615
616static struct futex_pi_state * alloc_pi_state(void)
617{
618 struct futex_pi_state *pi_state = current->pi_state_cache;
619
620 WARN_ON(!pi_state);
621 current->pi_state_cache = NULL;
622
623 return pi_state;
624}
625
626static void free_pi_state(struct futex_pi_state *pi_state)
627{
628 if (!atomic_dec_and_test(&pi_state->refcount))
629 return;
630
631 /*
632 * If pi_state->owner is NULL, the owner is most probably dying
633 * and has cleaned up the pi_state already
634 */
635 if (pi_state->owner) {
1d615482 636 raw_spin_lock_irq(&pi_state->owner->pi_lock);
c87e2837 637 list_del_init(&pi_state->list);
1d615482 638 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
c87e2837
IM
639
640 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
641 }
642
643 if (current->pi_state_cache)
644 kfree(pi_state);
645 else {
646 /*
647 * pi_state->list is already empty.
648 * clear pi_state->owner.
649 * refcount is at 0 - put it back to 1.
650 */
651 pi_state->owner = NULL;
652 atomic_set(&pi_state->refcount, 1);
653 current->pi_state_cache = pi_state;
654 }
655}
656
657/*
658 * Look up the task based on what TID userspace gave us.
659 * We dont trust it.
660 */
661static struct task_struct * futex_find_get_task(pid_t pid)
662{
663 struct task_struct *p;
664
d359b549 665 rcu_read_lock();
228ebcbe 666 p = find_task_by_vpid(pid);
7a0ea09a
MH
667 if (p)
668 get_task_struct(p);
a06381fe 669
d359b549 670 rcu_read_unlock();
c87e2837
IM
671
672 return p;
673}
674
675/*
676 * This task is holding PI mutexes at exit time => bad.
677 * Kernel cleans up PI-state, but userspace is likely hosed.
678 * (Robust-futex cleanup is separate and might save the day for userspace.)
679 */
680void exit_pi_state_list(struct task_struct *curr)
681{
c87e2837
IM
682 struct list_head *next, *head = &curr->pi_state_list;
683 struct futex_pi_state *pi_state;
627371d7 684 struct futex_hash_bucket *hb;
38d47c1b 685 union futex_key key = FUTEX_KEY_INIT;
c87e2837 686
a0c1e907
TG
687 if (!futex_cmpxchg_enabled)
688 return;
c87e2837
IM
689 /*
690 * We are a ZOMBIE and nobody can enqueue itself on
691 * pi_state_list anymore, but we have to be careful
627371d7 692 * versus waiters unqueueing themselves:
c87e2837 693 */
1d615482 694 raw_spin_lock_irq(&curr->pi_lock);
c87e2837
IM
695 while (!list_empty(head)) {
696
697 next = head->next;
698 pi_state = list_entry(next, struct futex_pi_state, list);
699 key = pi_state->key;
627371d7 700 hb = hash_futex(&key);
1d615482 701 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837 702
c87e2837
IM
703 spin_lock(&hb->lock);
704
1d615482 705 raw_spin_lock_irq(&curr->pi_lock);
627371d7
IM
706 /*
707 * We dropped the pi-lock, so re-check whether this
708 * task still owns the PI-state:
709 */
c87e2837
IM
710 if (head->next != next) {
711 spin_unlock(&hb->lock);
712 continue;
713 }
714
c87e2837 715 WARN_ON(pi_state->owner != curr);
627371d7
IM
716 WARN_ON(list_empty(&pi_state->list));
717 list_del_init(&pi_state->list);
c87e2837 718 pi_state->owner = NULL;
1d615482 719 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837
IM
720
721 rt_mutex_unlock(&pi_state->pi_mutex);
722
723 spin_unlock(&hb->lock);
724
1d615482 725 raw_spin_lock_irq(&curr->pi_lock);
c87e2837 726 }
1d615482 727 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837
IM
728}
729
730static int
d0aa7a70
PP
731lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
732 union futex_key *key, struct futex_pi_state **ps)
c87e2837
IM
733{
734 struct futex_pi_state *pi_state = NULL;
735 struct futex_q *this, *next;
c87e2837 736 struct task_struct *p;
778e9a9c 737 pid_t pid = uval & FUTEX_TID_MASK;
c87e2837 738
0d00c7b2 739 plist_for_each_entry_safe(this, next, &hb->chain, list) {
d0aa7a70 740 if (match_futex(&this->key, key)) {
c87e2837
IM
741 /*
742 * Another waiter already exists - bump up
743 * the refcount and return its pi_state:
744 */
745 pi_state = this->pi_state;
06a9ec29 746 /*
fb62db2b 747 * Userspace might have messed up non-PI and PI futexes
06a9ec29
TG
748 */
749 if (unlikely(!pi_state))
750 return -EINVAL;
751
627371d7 752 WARN_ON(!atomic_read(&pi_state->refcount));
59647b6a
TG
753
754 /*
755 * When pi_state->owner is NULL then the owner died
756 * and another waiter is on the fly. pi_state->owner
757 * is fixed up by the task which acquires
758 * pi_state->rt_mutex.
759 *
760 * We do not check for pid == 0 which can happen when
761 * the owner died and robust_list_exit() cleared the
762 * TID.
763 */
764 if (pid && pi_state->owner) {
765 /*
766 * Bail out if user space manipulated the
767 * futex value.
768 */
769 if (pid != task_pid_vnr(pi_state->owner))
770 return -EINVAL;
771 }
627371d7 772
c87e2837 773 atomic_inc(&pi_state->refcount);
d0aa7a70 774 *ps = pi_state;
c87e2837
IM
775
776 return 0;
777 }
778 }
779
780 /*
e3f2ddea 781 * We are the first waiter - try to look up the real owner and attach
778e9a9c 782 * the new pi_state to it, but bail out when TID = 0
c87e2837 783 */
778e9a9c 784 if (!pid)
e3f2ddea 785 return -ESRCH;
c87e2837 786 p = futex_find_get_task(pid);
7a0ea09a
MH
787 if (!p)
788 return -ESRCH;
778e9a9c
AK
789
790 /*
791 * We need to look at the task state flags to figure out,
792 * whether the task is exiting. To protect against the do_exit
793 * change of the task flags, we do this protected by
794 * p->pi_lock:
795 */
1d615482 796 raw_spin_lock_irq(&p->pi_lock);
778e9a9c
AK
797 if (unlikely(p->flags & PF_EXITING)) {
798 /*
799 * The task is on the way out. When PF_EXITPIDONE is
800 * set, we know that the task has finished the
801 * cleanup:
802 */
803 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
804
1d615482 805 raw_spin_unlock_irq(&p->pi_lock);
778e9a9c
AK
806 put_task_struct(p);
807 return ret;
808 }
c87e2837
IM
809
810 pi_state = alloc_pi_state();
811
812 /*
813 * Initialize the pi_mutex in locked state and make 'p'
814 * the owner of it:
815 */
816 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
817
818 /* Store the key for possible exit cleanups: */
d0aa7a70 819 pi_state->key = *key;
c87e2837 820
627371d7 821 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
822 list_add(&pi_state->list, &p->pi_state_list);
823 pi_state->owner = p;
1d615482 824 raw_spin_unlock_irq(&p->pi_lock);
c87e2837
IM
825
826 put_task_struct(p);
827
d0aa7a70 828 *ps = pi_state;
c87e2837
IM
829
830 return 0;
831}
832
1a52084d 833/**
d96ee56c 834 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
bab5bc9e
DH
835 * @uaddr: the pi futex user address
836 * @hb: the pi futex hash bucket
837 * @key: the futex key associated with uaddr and hb
838 * @ps: the pi_state pointer where we store the result of the
839 * lookup
840 * @task: the task to perform the atomic lock work for. This will
841 * be "current" except in the case of requeue pi.
842 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1a52084d 843 *
6c23cbbd
RD
844 * Return:
845 * 0 - ready to wait;
846 * 1 - acquired the lock;
1a52084d
DH
847 * <0 - error
848 *
849 * The hb->lock and futex_key refs shall be held by the caller.
850 */
851static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
852 union futex_key *key,
853 struct futex_pi_state **ps,
bab5bc9e 854 struct task_struct *task, int set_waiters)
1a52084d 855{
59fa6245 856 int lock_taken, ret, force_take = 0;
c0c9ed15 857 u32 uval, newval, curval, vpid = task_pid_vnr(task);
1a52084d
DH
858
859retry:
860 ret = lock_taken = 0;
861
862 /*
863 * To avoid races, we attempt to take the lock here again
864 * (by doing a 0 -> TID atomic cmpxchg), while holding all
865 * the locks. It will most likely not succeed.
866 */
c0c9ed15 867 newval = vpid;
bab5bc9e
DH
868 if (set_waiters)
869 newval |= FUTEX_WAITERS;
1a52084d 870
37a9d912 871 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, 0, newval)))
1a52084d
DH
872 return -EFAULT;
873
874 /*
875 * Detect deadlocks.
876 */
c0c9ed15 877 if ((unlikely((curval & FUTEX_TID_MASK) == vpid)))
1a52084d
DH
878 return -EDEADLK;
879
880 /*
881 * Surprise - we got the lock. Just return to userspace:
882 */
883 if (unlikely(!curval))
884 return 1;
885
886 uval = curval;
887
888 /*
889 * Set the FUTEX_WAITERS flag, so the owner will know it has someone
890 * to wake at the next unlock.
891 */
892 newval = curval | FUTEX_WAITERS;
893
894 /*
59fa6245 895 * Should we force take the futex? See below.
1a52084d 896 */
59fa6245
TG
897 if (unlikely(force_take)) {
898 /*
899 * Keep the OWNER_DIED and the WAITERS bit and set the
900 * new TID value.
901 */
c0c9ed15 902 newval = (curval & ~FUTEX_TID_MASK) | vpid;
59fa6245 903 force_take = 0;
1a52084d
DH
904 lock_taken = 1;
905 }
906
37a9d912 907 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
1a52084d
DH
908 return -EFAULT;
909 if (unlikely(curval != uval))
910 goto retry;
911
912 /*
59fa6245 913 * We took the lock due to forced take over.
1a52084d
DH
914 */
915 if (unlikely(lock_taken))
916 return 1;
917
918 /*
919 * We dont have the lock. Look up the PI state (or create it if
920 * we are the first waiter):
921 */
922 ret = lookup_pi_state(uval, hb, key, ps);
923
924 if (unlikely(ret)) {
925 switch (ret) {
926 case -ESRCH:
927 /*
59fa6245
TG
928 * We failed to find an owner for this
929 * futex. So we have no pi_state to block
930 * on. This can happen in two cases:
931 *
932 * 1) The owner died
933 * 2) A stale FUTEX_WAITERS bit
934 *
935 * Re-read the futex value.
1a52084d
DH
936 */
937 if (get_futex_value_locked(&curval, uaddr))
938 return -EFAULT;
939
940 /*
59fa6245
TG
941 * If the owner died or we have a stale
942 * WAITERS bit the owner TID in the user space
943 * futex is 0.
1a52084d 944 */
59fa6245
TG
945 if (!(curval & FUTEX_TID_MASK)) {
946 force_take = 1;
1a52084d
DH
947 goto retry;
948 }
949 default:
950 break;
951 }
952 }
953
954 return ret;
955}
956
2e12978a
LJ
957/**
958 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
959 * @q: The futex_q to unqueue
960 *
961 * The q->lock_ptr must not be NULL and must be held by the caller.
962 */
963static void __unqueue_futex(struct futex_q *q)
964{
965 struct futex_hash_bucket *hb;
966
29096202
SR
967 if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
968 || WARN_ON(plist_node_empty(&q->list)))
2e12978a
LJ
969 return;
970
971 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
972 plist_del(&q->list, &hb->chain);
11d4616b 973 hb_waiters_dec(hb);
2e12978a
LJ
974}
975
1da177e4
LT
976/*
977 * The hash bucket lock must be held when this is called.
978 * Afterwards, the futex_q must not be accessed.
979 */
980static void wake_futex(struct futex_q *q)
981{
f1a11e05
TG
982 struct task_struct *p = q->task;
983
aa10990e
DH
984 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
985 return;
986
1da177e4 987 /*
f1a11e05 988 * We set q->lock_ptr = NULL _before_ we wake up the task. If
fb62db2b
RD
989 * a non-futex wake up happens on another CPU then the task
990 * might exit and p would dereference a non-existing task
f1a11e05
TG
991 * struct. Prevent this by holding a reference on p across the
992 * wake up.
1da177e4 993 */
f1a11e05
TG
994 get_task_struct(p);
995
2e12978a 996 __unqueue_futex(q);
1da177e4 997 /*
f1a11e05
TG
998 * The waiting task can free the futex_q as soon as
999 * q->lock_ptr = NULL is written, without taking any locks. A
1000 * memory barrier is required here to prevent the following
1001 * store to lock_ptr from getting ahead of the plist_del.
1da177e4 1002 */
ccdea2f8 1003 smp_wmb();
1da177e4 1004 q->lock_ptr = NULL;
f1a11e05
TG
1005
1006 wake_up_state(p, TASK_NORMAL);
1007 put_task_struct(p);
1da177e4
LT
1008}
1009
c87e2837
IM
1010static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
1011{
1012 struct task_struct *new_owner;
1013 struct futex_pi_state *pi_state = this->pi_state;
7cfdaf38 1014 u32 uninitialized_var(curval), newval;
c87e2837
IM
1015
1016 if (!pi_state)
1017 return -EINVAL;
1018
51246bfd
TG
1019 /*
1020 * If current does not own the pi_state then the futex is
1021 * inconsistent and user space fiddled with the futex value.
1022 */
1023 if (pi_state->owner != current)
1024 return -EINVAL;
1025
d209d74d 1026 raw_spin_lock(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
1027 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1028
1029 /*
f123c98e
SR
1030 * It is possible that the next waiter (the one that brought
1031 * this owner to the kernel) timed out and is no longer
1032 * waiting on the lock.
c87e2837
IM
1033 */
1034 if (!new_owner)
1035 new_owner = this->task;
1036
1037 /*
1038 * We pass it to the next owner. (The WAITERS bit is always
1039 * kept enabled while there is PI state around. We must also
1040 * preserve the owner died bit.)
1041 */
e3f2ddea 1042 if (!(uval & FUTEX_OWNER_DIED)) {
778e9a9c
AK
1043 int ret = 0;
1044
b488893a 1045 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
e3f2ddea 1046
37a9d912 1047 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
778e9a9c 1048 ret = -EFAULT;
cde898fa 1049 else if (curval != uval)
778e9a9c
AK
1050 ret = -EINVAL;
1051 if (ret) {
d209d74d 1052 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
778e9a9c
AK
1053 return ret;
1054 }
e3f2ddea 1055 }
c87e2837 1056
1d615482 1057 raw_spin_lock_irq(&pi_state->owner->pi_lock);
627371d7
IM
1058 WARN_ON(list_empty(&pi_state->list));
1059 list_del_init(&pi_state->list);
1d615482 1060 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
627371d7 1061
1d615482 1062 raw_spin_lock_irq(&new_owner->pi_lock);
627371d7 1063 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
1064 list_add(&pi_state->list, &new_owner->pi_state_list);
1065 pi_state->owner = new_owner;
1d615482 1066 raw_spin_unlock_irq(&new_owner->pi_lock);
627371d7 1067
d209d74d 1068 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
1069 rt_mutex_unlock(&pi_state->pi_mutex);
1070
1071 return 0;
1072}
1073
1074static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
1075{
7cfdaf38 1076 u32 uninitialized_var(oldval);
c87e2837
IM
1077
1078 /*
1079 * There is no waiter, so we unlock the futex. The owner died
1080 * bit has not to be preserved here. We are the owner:
1081 */
37a9d912
ML
1082 if (cmpxchg_futex_value_locked(&oldval, uaddr, uval, 0))
1083 return -EFAULT;
c87e2837
IM
1084 if (oldval != uval)
1085 return -EAGAIN;
1086
1087 return 0;
1088}
1089
8b8f319f
IM
1090/*
1091 * Express the locking dependencies for lockdep:
1092 */
1093static inline void
1094double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1095{
1096 if (hb1 <= hb2) {
1097 spin_lock(&hb1->lock);
1098 if (hb1 < hb2)
1099 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1100 } else { /* hb1 > hb2 */
1101 spin_lock(&hb2->lock);
1102 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1103 }
1104}
1105
5eb3dc62
DH
1106static inline void
1107double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1108{
f061d351 1109 spin_unlock(&hb1->lock);
88f502fe
IM
1110 if (hb1 != hb2)
1111 spin_unlock(&hb2->lock);
5eb3dc62
DH
1112}
1113
1da177e4 1114/*
b2d0994b 1115 * Wake up waiters matching bitset queued on this futex (uaddr).
1da177e4 1116 */
b41277dc
DH
1117static int
1118futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1da177e4 1119{
e2970f2f 1120 struct futex_hash_bucket *hb;
1da177e4 1121 struct futex_q *this, *next;
38d47c1b 1122 union futex_key key = FUTEX_KEY_INIT;
1da177e4
LT
1123 int ret;
1124
cd689985
TG
1125 if (!bitset)
1126 return -EINVAL;
1127
9ea71503 1128 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1da177e4
LT
1129 if (unlikely(ret != 0))
1130 goto out;
1131
e2970f2f 1132 hb = hash_futex(&key);
b0c29f79
DB
1133
1134 /* Make sure we really have tasks to wakeup */
1135 if (!hb_waiters_pending(hb))
1136 goto out_put_key;
1137
e2970f2f 1138 spin_lock(&hb->lock);
1da177e4 1139
0d00c7b2 1140 plist_for_each_entry_safe(this, next, &hb->chain, list) {
1da177e4 1141 if (match_futex (&this->key, &key)) {
52400ba9 1142 if (this->pi_state || this->rt_waiter) {
ed6f7b10
IM
1143 ret = -EINVAL;
1144 break;
1145 }
cd689985
TG
1146
1147 /* Check if one of the bits is set in both bitsets */
1148 if (!(this->bitset & bitset))
1149 continue;
1150
1da177e4
LT
1151 wake_futex(this);
1152 if (++ret >= nr_wake)
1153 break;
1154 }
1155 }
1156
e2970f2f 1157 spin_unlock(&hb->lock);
b0c29f79 1158out_put_key:
ae791a2d 1159 put_futex_key(&key);
42d35d48 1160out:
1da177e4
LT
1161 return ret;
1162}
1163
4732efbe
JJ
1164/*
1165 * Wake up all waiters hashed on the physical page that is mapped
1166 * to this virtual address:
1167 */
e2970f2f 1168static int
b41277dc 1169futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
e2970f2f 1170 int nr_wake, int nr_wake2, int op)
4732efbe 1171{
38d47c1b 1172 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
e2970f2f 1173 struct futex_hash_bucket *hb1, *hb2;
4732efbe 1174 struct futex_q *this, *next;
e4dc5b7a 1175 int ret, op_ret;
4732efbe 1176
e4dc5b7a 1177retry:
9ea71503 1178 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
4732efbe
JJ
1179 if (unlikely(ret != 0))
1180 goto out;
9ea71503 1181 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
4732efbe 1182 if (unlikely(ret != 0))
42d35d48 1183 goto out_put_key1;
4732efbe 1184
e2970f2f
IM
1185 hb1 = hash_futex(&key1);
1186 hb2 = hash_futex(&key2);
4732efbe 1187
e4dc5b7a 1188retry_private:
eaaea803 1189 double_lock_hb(hb1, hb2);
e2970f2f 1190 op_ret = futex_atomic_op_inuser(op, uaddr2);
4732efbe 1191 if (unlikely(op_ret < 0)) {
4732efbe 1192
5eb3dc62 1193 double_unlock_hb(hb1, hb2);
4732efbe 1194
7ee1dd3f 1195#ifndef CONFIG_MMU
e2970f2f
IM
1196 /*
1197 * we don't get EFAULT from MMU faults if we don't have an MMU,
1198 * but we might get them from range checking
1199 */
7ee1dd3f 1200 ret = op_ret;
42d35d48 1201 goto out_put_keys;
7ee1dd3f
DH
1202#endif
1203
796f8d9b
DG
1204 if (unlikely(op_ret != -EFAULT)) {
1205 ret = op_ret;
42d35d48 1206 goto out_put_keys;
796f8d9b
DG
1207 }
1208
d0725992 1209 ret = fault_in_user_writeable(uaddr2);
4732efbe 1210 if (ret)
de87fcc1 1211 goto out_put_keys;
4732efbe 1212
b41277dc 1213 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
1214 goto retry_private;
1215
ae791a2d
TG
1216 put_futex_key(&key2);
1217 put_futex_key(&key1);
e4dc5b7a 1218 goto retry;
4732efbe
JJ
1219 }
1220
0d00c7b2 1221 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
4732efbe 1222 if (match_futex (&this->key, &key1)) {
aa10990e
DH
1223 if (this->pi_state || this->rt_waiter) {
1224 ret = -EINVAL;
1225 goto out_unlock;
1226 }
4732efbe
JJ
1227 wake_futex(this);
1228 if (++ret >= nr_wake)
1229 break;
1230 }
1231 }
1232
1233 if (op_ret > 0) {
4732efbe 1234 op_ret = 0;
0d00c7b2 1235 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
4732efbe 1236 if (match_futex (&this->key, &key2)) {
aa10990e
DH
1237 if (this->pi_state || this->rt_waiter) {
1238 ret = -EINVAL;
1239 goto out_unlock;
1240 }
4732efbe
JJ
1241 wake_futex(this);
1242 if (++op_ret >= nr_wake2)
1243 break;
1244 }
1245 }
1246 ret += op_ret;
1247 }
1248
aa10990e 1249out_unlock:
5eb3dc62 1250 double_unlock_hb(hb1, hb2);
42d35d48 1251out_put_keys:
ae791a2d 1252 put_futex_key(&key2);
42d35d48 1253out_put_key1:
ae791a2d 1254 put_futex_key(&key1);
42d35d48 1255out:
4732efbe
JJ
1256 return ret;
1257}
1258
9121e478
DH
1259/**
1260 * requeue_futex() - Requeue a futex_q from one hb to another
1261 * @q: the futex_q to requeue
1262 * @hb1: the source hash_bucket
1263 * @hb2: the target hash_bucket
1264 * @key2: the new key for the requeued futex_q
1265 */
1266static inline
1267void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1268 struct futex_hash_bucket *hb2, union futex_key *key2)
1269{
1270
1271 /*
1272 * If key1 and key2 hash to the same bucket, no need to
1273 * requeue.
1274 */
1275 if (likely(&hb1->chain != &hb2->chain)) {
1276 plist_del(&q->list, &hb1->chain);
11d4616b 1277 hb_waiters_dec(hb1);
9121e478 1278 plist_add(&q->list, &hb2->chain);
11d4616b 1279 hb_waiters_inc(hb2);
9121e478 1280 q->lock_ptr = &hb2->lock;
9121e478
DH
1281 }
1282 get_futex_key_refs(key2);
1283 q->key = *key2;
1284}
1285
52400ba9
DH
1286/**
1287 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
d96ee56c
DH
1288 * @q: the futex_q
1289 * @key: the key of the requeue target futex
1290 * @hb: the hash_bucket of the requeue target futex
52400ba9
DH
1291 *
1292 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1293 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1294 * to the requeue target futex so the waiter can detect the wakeup on the right
1295 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
beda2c7e
DH
1296 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1297 * to protect access to the pi_state to fixup the owner later. Must be called
1298 * with both q->lock_ptr and hb->lock held.
52400ba9
DH
1299 */
1300static inline
beda2c7e
DH
1301void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1302 struct futex_hash_bucket *hb)
52400ba9 1303{
52400ba9
DH
1304 get_futex_key_refs(key);
1305 q->key = *key;
1306
2e12978a 1307 __unqueue_futex(q);
52400ba9
DH
1308
1309 WARN_ON(!q->rt_waiter);
1310 q->rt_waiter = NULL;
1311
beda2c7e 1312 q->lock_ptr = &hb->lock;
beda2c7e 1313
f1a11e05 1314 wake_up_state(q->task, TASK_NORMAL);
52400ba9
DH
1315}
1316
1317/**
1318 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
bab5bc9e
DH
1319 * @pifutex: the user address of the to futex
1320 * @hb1: the from futex hash bucket, must be locked by the caller
1321 * @hb2: the to futex hash bucket, must be locked by the caller
1322 * @key1: the from futex key
1323 * @key2: the to futex key
1324 * @ps: address to store the pi_state pointer
1325 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
52400ba9
DH
1326 *
1327 * Try and get the lock on behalf of the top waiter if we can do it atomically.
bab5bc9e
DH
1328 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1329 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1330 * hb1 and hb2 must be held by the caller.
52400ba9 1331 *
6c23cbbd
RD
1332 * Return:
1333 * 0 - failed to acquire the lock atomically;
1334 * 1 - acquired the lock;
52400ba9
DH
1335 * <0 - error
1336 */
1337static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1338 struct futex_hash_bucket *hb1,
1339 struct futex_hash_bucket *hb2,
1340 union futex_key *key1, union futex_key *key2,
bab5bc9e 1341 struct futex_pi_state **ps, int set_waiters)
52400ba9 1342{
bab5bc9e 1343 struct futex_q *top_waiter = NULL;
52400ba9
DH
1344 u32 curval;
1345 int ret;
1346
1347 if (get_futex_value_locked(&curval, pifutex))
1348 return -EFAULT;
1349
bab5bc9e
DH
1350 /*
1351 * Find the top_waiter and determine if there are additional waiters.
1352 * If the caller intends to requeue more than 1 waiter to pifutex,
1353 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1354 * as we have means to handle the possible fault. If not, don't set
1355 * the bit unecessarily as it will force the subsequent unlock to enter
1356 * the kernel.
1357 */
52400ba9
DH
1358 top_waiter = futex_top_waiter(hb1, key1);
1359
1360 /* There are no waiters, nothing for us to do. */
1361 if (!top_waiter)
1362 return 0;
1363
84bc4af5
DH
1364 /* Ensure we requeue to the expected futex. */
1365 if (!match_futex(top_waiter->requeue_pi_key, key2))
1366 return -EINVAL;
1367
52400ba9 1368 /*
bab5bc9e
DH
1369 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1370 * the contended case or if set_waiters is 1. The pi_state is returned
1371 * in ps in contended cases.
52400ba9 1372 */
bab5bc9e
DH
1373 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1374 set_waiters);
52400ba9 1375 if (ret == 1)
beda2c7e 1376 requeue_pi_wake_futex(top_waiter, key2, hb2);
52400ba9
DH
1377
1378 return ret;
1379}
1380
1381/**
1382 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
fb62db2b 1383 * @uaddr1: source futex user address
b41277dc 1384 * @flags: futex flags (FLAGS_SHARED, etc.)
fb62db2b
RD
1385 * @uaddr2: target futex user address
1386 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1387 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1388 * @cmpval: @uaddr1 expected value (or %NULL)
1389 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
b41277dc 1390 * pi futex (pi to pi requeue is not supported)
52400ba9
DH
1391 *
1392 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1393 * uaddr2 atomically on behalf of the top waiter.
1394 *
6c23cbbd
RD
1395 * Return:
1396 * >=0 - on success, the number of tasks requeued or woken;
52400ba9 1397 * <0 - on error
1da177e4 1398 */
b41277dc
DH
1399static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1400 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1401 u32 *cmpval, int requeue_pi)
1da177e4 1402{
38d47c1b 1403 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
52400ba9
DH
1404 int drop_count = 0, task_count = 0, ret;
1405 struct futex_pi_state *pi_state = NULL;
e2970f2f 1406 struct futex_hash_bucket *hb1, *hb2;
1da177e4 1407 struct futex_q *this, *next;
52400ba9
DH
1408 u32 curval2;
1409
1410 if (requeue_pi) {
1411 /*
1412 * requeue_pi requires a pi_state, try to allocate it now
1413 * without any locks in case it fails.
1414 */
1415 if (refill_pi_state_cache())
1416 return -ENOMEM;
1417 /*
1418 * requeue_pi must wake as many tasks as it can, up to nr_wake
1419 * + nr_requeue, since it acquires the rt_mutex prior to
1420 * returning to userspace, so as to not leave the rt_mutex with
1421 * waiters and no owner. However, second and third wake-ups
1422 * cannot be predicted as they involve race conditions with the
1423 * first wake and a fault while looking up the pi_state. Both
1424 * pthread_cond_signal() and pthread_cond_broadcast() should
1425 * use nr_wake=1.
1426 */
1427 if (nr_wake != 1)
1428 return -EINVAL;
1429 }
1da177e4 1430
42d35d48 1431retry:
52400ba9
DH
1432 if (pi_state != NULL) {
1433 /*
1434 * We will have to lookup the pi_state again, so free this one
1435 * to keep the accounting correct.
1436 */
1437 free_pi_state(pi_state);
1438 pi_state = NULL;
1439 }
1440
9ea71503 1441 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1da177e4
LT
1442 if (unlikely(ret != 0))
1443 goto out;
9ea71503
SB
1444 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1445 requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1da177e4 1446 if (unlikely(ret != 0))
42d35d48 1447 goto out_put_key1;
1da177e4 1448
e2970f2f
IM
1449 hb1 = hash_futex(&key1);
1450 hb2 = hash_futex(&key2);
1da177e4 1451
e4dc5b7a 1452retry_private:
8b8f319f 1453 double_lock_hb(hb1, hb2);
1da177e4 1454
e2970f2f
IM
1455 if (likely(cmpval != NULL)) {
1456 u32 curval;
1da177e4 1457
e2970f2f 1458 ret = get_futex_value_locked(&curval, uaddr1);
1da177e4
LT
1459
1460 if (unlikely(ret)) {
5eb3dc62 1461 double_unlock_hb(hb1, hb2);
1da177e4 1462
e2970f2f 1463 ret = get_user(curval, uaddr1);
e4dc5b7a
DH
1464 if (ret)
1465 goto out_put_keys;
1da177e4 1466
b41277dc 1467 if (!(flags & FLAGS_SHARED))
e4dc5b7a 1468 goto retry_private;
1da177e4 1469
ae791a2d
TG
1470 put_futex_key(&key2);
1471 put_futex_key(&key1);
e4dc5b7a 1472 goto retry;
1da177e4 1473 }
e2970f2f 1474 if (curval != *cmpval) {
1da177e4
LT
1475 ret = -EAGAIN;
1476 goto out_unlock;
1477 }
1478 }
1479
52400ba9 1480 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
bab5bc9e
DH
1481 /*
1482 * Attempt to acquire uaddr2 and wake the top waiter. If we
1483 * intend to requeue waiters, force setting the FUTEX_WAITERS
1484 * bit. We force this here where we are able to easily handle
1485 * faults rather in the requeue loop below.
1486 */
52400ba9 1487 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
bab5bc9e 1488 &key2, &pi_state, nr_requeue);
52400ba9
DH
1489
1490 /*
1491 * At this point the top_waiter has either taken uaddr2 or is
1492 * waiting on it. If the former, then the pi_state will not
1493 * exist yet, look it up one more time to ensure we have a
1494 * reference to it.
1495 */
1496 if (ret == 1) {
1497 WARN_ON(pi_state);
89061d3d 1498 drop_count++;
52400ba9
DH
1499 task_count++;
1500 ret = get_futex_value_locked(&curval2, uaddr2);
1501 if (!ret)
1502 ret = lookup_pi_state(curval2, hb2, &key2,
1503 &pi_state);
1504 }
1505
1506 switch (ret) {
1507 case 0:
1508 break;
1509 case -EFAULT:
1510 double_unlock_hb(hb1, hb2);
ae791a2d
TG
1511 put_futex_key(&key2);
1512 put_futex_key(&key1);
d0725992 1513 ret = fault_in_user_writeable(uaddr2);
52400ba9
DH
1514 if (!ret)
1515 goto retry;
1516 goto out;
1517 case -EAGAIN:
1518 /* The owner was exiting, try again. */
1519 double_unlock_hb(hb1, hb2);
ae791a2d
TG
1520 put_futex_key(&key2);
1521 put_futex_key(&key1);
52400ba9
DH
1522 cond_resched();
1523 goto retry;
1524 default:
1525 goto out_unlock;
1526 }
1527 }
1528
0d00c7b2 1529 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
52400ba9
DH
1530 if (task_count - nr_wake >= nr_requeue)
1531 break;
1532
1533 if (!match_futex(&this->key, &key1))
1da177e4 1534 continue;
52400ba9 1535
392741e0
DH
1536 /*
1537 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1538 * be paired with each other and no other futex ops.
aa10990e
DH
1539 *
1540 * We should never be requeueing a futex_q with a pi_state,
1541 * which is awaiting a futex_unlock_pi().
392741e0
DH
1542 */
1543 if ((requeue_pi && !this->rt_waiter) ||
aa10990e
DH
1544 (!requeue_pi && this->rt_waiter) ||
1545 this->pi_state) {
392741e0
DH
1546 ret = -EINVAL;
1547 break;
1548 }
52400ba9
DH
1549
1550 /*
1551 * Wake nr_wake waiters. For requeue_pi, if we acquired the
1552 * lock, we already woke the top_waiter. If not, it will be
1553 * woken by futex_unlock_pi().
1554 */
1555 if (++task_count <= nr_wake && !requeue_pi) {
1da177e4 1556 wake_futex(this);
52400ba9
DH
1557 continue;
1558 }
1da177e4 1559
84bc4af5
DH
1560 /* Ensure we requeue to the expected futex for requeue_pi. */
1561 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1562 ret = -EINVAL;
1563 break;
1564 }
1565
52400ba9
DH
1566 /*
1567 * Requeue nr_requeue waiters and possibly one more in the case
1568 * of requeue_pi if we couldn't acquire the lock atomically.
1569 */
1570 if (requeue_pi) {
1571 /* Prepare the waiter to take the rt_mutex. */
1572 atomic_inc(&pi_state->refcount);
1573 this->pi_state = pi_state;
1574 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1575 this->rt_waiter,
1576 this->task, 1);
1577 if (ret == 1) {
1578 /* We got the lock. */
beda2c7e 1579 requeue_pi_wake_futex(this, &key2, hb2);
89061d3d 1580 drop_count++;
52400ba9
DH
1581 continue;
1582 } else if (ret) {
1583 /* -EDEADLK */
1584 this->pi_state = NULL;
1585 free_pi_state(pi_state);
1586 goto out_unlock;
1587 }
1da177e4 1588 }
52400ba9
DH
1589 requeue_futex(this, hb1, hb2, &key2);
1590 drop_count++;
1da177e4
LT
1591 }
1592
1593out_unlock:
5eb3dc62 1594 double_unlock_hb(hb1, hb2);
1da177e4 1595
cd84a42f
DH
1596 /*
1597 * drop_futex_key_refs() must be called outside the spinlocks. During
1598 * the requeue we moved futex_q's from the hash bucket at key1 to the
1599 * one at key2 and updated their key pointer. We no longer need to
1600 * hold the references to key1.
1601 */
1da177e4 1602 while (--drop_count >= 0)
9adef58b 1603 drop_futex_key_refs(&key1);
1da177e4 1604
42d35d48 1605out_put_keys:
ae791a2d 1606 put_futex_key(&key2);
42d35d48 1607out_put_key1:
ae791a2d 1608 put_futex_key(&key1);
42d35d48 1609out:
52400ba9
DH
1610 if (pi_state != NULL)
1611 free_pi_state(pi_state);
1612 return ret ? ret : task_count;
1da177e4
LT
1613}
1614
1615/* The key must be already stored in q->key. */
82af7aca 1616static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
15e408cd 1617 __acquires(&hb->lock)
1da177e4 1618{
e2970f2f 1619 struct futex_hash_bucket *hb;
1da177e4 1620
e2970f2f 1621 hb = hash_futex(&q->key);
11d4616b
LT
1622
1623 /*
1624 * Increment the counter before taking the lock so that
1625 * a potential waker won't miss a to-be-slept task that is
1626 * waiting for the spinlock. This is safe as all queue_lock()
1627 * users end up calling queue_me(). Similarly, for housekeeping,
1628 * decrement the counter at queue_unlock() when some error has
1629 * occurred and we don't end up adding the task to the list.
1630 */
1631 hb_waiters_inc(hb);
1632
e2970f2f 1633 q->lock_ptr = &hb->lock;
1da177e4 1634
b0c29f79 1635 spin_lock(&hb->lock); /* implies MB (A) */
e2970f2f 1636 return hb;
1da177e4
LT
1637}
1638
d40d65c8 1639static inline void
0d00c7b2 1640queue_unlock(struct futex_hash_bucket *hb)
15e408cd 1641 __releases(&hb->lock)
d40d65c8
DH
1642{
1643 spin_unlock(&hb->lock);
11d4616b 1644 hb_waiters_dec(hb);
d40d65c8
DH
1645}
1646
1647/**
1648 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1649 * @q: The futex_q to enqueue
1650 * @hb: The destination hash bucket
1651 *
1652 * The hb->lock must be held by the caller, and is released here. A call to
1653 * queue_me() is typically paired with exactly one call to unqueue_me(). The
1654 * exceptions involve the PI related operations, which may use unqueue_me_pi()
1655 * or nothing if the unqueue is done as part of the wake process and the unqueue
1656 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1657 * an example).
1658 */
82af7aca 1659static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
15e408cd 1660 __releases(&hb->lock)
1da177e4 1661{
ec92d082
PP
1662 int prio;
1663
1664 /*
1665 * The priority used to register this element is
1666 * - either the real thread-priority for the real-time threads
1667 * (i.e. threads with a priority lower than MAX_RT_PRIO)
1668 * - or MAX_RT_PRIO for non-RT threads.
1669 * Thus, all RT-threads are woken first in priority order, and
1670 * the others are woken last, in FIFO order.
1671 */
1672 prio = min(current->normal_prio, MAX_RT_PRIO);
1673
1674 plist_node_init(&q->list, prio);
ec92d082 1675 plist_add(&q->list, &hb->chain);
c87e2837 1676 q->task = current;
e2970f2f 1677 spin_unlock(&hb->lock);
1da177e4
LT
1678}
1679
d40d65c8
DH
1680/**
1681 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1682 * @q: The futex_q to unqueue
1683 *
1684 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
1685 * be paired with exactly one earlier call to queue_me().
1686 *
6c23cbbd
RD
1687 * Return:
1688 * 1 - if the futex_q was still queued (and we removed unqueued it);
d40d65c8 1689 * 0 - if the futex_q was already removed by the waking thread
1da177e4 1690 */
1da177e4
LT
1691static int unqueue_me(struct futex_q *q)
1692{
1da177e4 1693 spinlock_t *lock_ptr;
e2970f2f 1694 int ret = 0;
1da177e4
LT
1695
1696 /* In the common case we don't take the spinlock, which is nice. */
42d35d48 1697retry:
1da177e4 1698 lock_ptr = q->lock_ptr;
e91467ec 1699 barrier();
c80544dc 1700 if (lock_ptr != NULL) {
1da177e4
LT
1701 spin_lock(lock_ptr);
1702 /*
1703 * q->lock_ptr can change between reading it and
1704 * spin_lock(), causing us to take the wrong lock. This
1705 * corrects the race condition.
1706 *
1707 * Reasoning goes like this: if we have the wrong lock,
1708 * q->lock_ptr must have changed (maybe several times)
1709 * between reading it and the spin_lock(). It can
1710 * change again after the spin_lock() but only if it was
1711 * already changed before the spin_lock(). It cannot,
1712 * however, change back to the original value. Therefore
1713 * we can detect whether we acquired the correct lock.
1714 */
1715 if (unlikely(lock_ptr != q->lock_ptr)) {
1716 spin_unlock(lock_ptr);
1717 goto retry;
1718 }
2e12978a 1719 __unqueue_futex(q);
c87e2837
IM
1720
1721 BUG_ON(q->pi_state);
1722
1da177e4
LT
1723 spin_unlock(lock_ptr);
1724 ret = 1;
1725 }
1726
9adef58b 1727 drop_futex_key_refs(&q->key);
1da177e4
LT
1728 return ret;
1729}
1730
c87e2837
IM
1731/*
1732 * PI futexes can not be requeued and must remove themself from the
d0aa7a70
PP
1733 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1734 * and dropped here.
c87e2837 1735 */
d0aa7a70 1736static void unqueue_me_pi(struct futex_q *q)
15e408cd 1737 __releases(q->lock_ptr)
c87e2837 1738{
2e12978a 1739 __unqueue_futex(q);
c87e2837
IM
1740
1741 BUG_ON(!q->pi_state);
1742 free_pi_state(q->pi_state);
1743 q->pi_state = NULL;
1744
d0aa7a70 1745 spin_unlock(q->lock_ptr);
c87e2837
IM
1746}
1747
d0aa7a70 1748/*
cdf71a10 1749 * Fixup the pi_state owner with the new owner.
d0aa7a70 1750 *
778e9a9c
AK
1751 * Must be called with hash bucket lock held and mm->sem held for non
1752 * private futexes.
d0aa7a70 1753 */
778e9a9c 1754static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
ae791a2d 1755 struct task_struct *newowner)
d0aa7a70 1756{
cdf71a10 1757 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
d0aa7a70 1758 struct futex_pi_state *pi_state = q->pi_state;
1b7558e4 1759 struct task_struct *oldowner = pi_state->owner;
7cfdaf38 1760 u32 uval, uninitialized_var(curval), newval;
e4dc5b7a 1761 int ret;
d0aa7a70
PP
1762
1763 /* Owner died? */
1b7558e4
TG
1764 if (!pi_state->owner)
1765 newtid |= FUTEX_OWNER_DIED;
1766
1767 /*
1768 * We are here either because we stole the rtmutex from the
8161239a
LJ
1769 * previous highest priority waiter or we are the highest priority
1770 * waiter but failed to get the rtmutex the first time.
1771 * We have to replace the newowner TID in the user space variable.
1772 * This must be atomic as we have to preserve the owner died bit here.
1b7558e4 1773 *
b2d0994b
DH
1774 * Note: We write the user space value _before_ changing the pi_state
1775 * because we can fault here. Imagine swapped out pages or a fork
1776 * that marked all the anonymous memory readonly for cow.
1b7558e4
TG
1777 *
1778 * Modifying pi_state _before_ the user space value would
1779 * leave the pi_state in an inconsistent state when we fault
1780 * here, because we need to drop the hash bucket lock to
1781 * handle the fault. This might be observed in the PID check
1782 * in lookup_pi_state.
1783 */
1784retry:
1785 if (get_futex_value_locked(&uval, uaddr))
1786 goto handle_fault;
1787
1788 while (1) {
1789 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1790
37a9d912 1791 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1b7558e4
TG
1792 goto handle_fault;
1793 if (curval == uval)
1794 break;
1795 uval = curval;
1796 }
1797
1798 /*
1799 * We fixed up user space. Now we need to fix the pi_state
1800 * itself.
1801 */
d0aa7a70 1802 if (pi_state->owner != NULL) {
1d615482 1803 raw_spin_lock_irq(&pi_state->owner->pi_lock);
d0aa7a70
PP
1804 WARN_ON(list_empty(&pi_state->list));
1805 list_del_init(&pi_state->list);
1d615482 1806 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1b7558e4 1807 }
d0aa7a70 1808
cdf71a10 1809 pi_state->owner = newowner;
d0aa7a70 1810
1d615482 1811 raw_spin_lock_irq(&newowner->pi_lock);
d0aa7a70 1812 WARN_ON(!list_empty(&pi_state->list));
cdf71a10 1813 list_add(&pi_state->list, &newowner->pi_state_list);
1d615482 1814 raw_spin_unlock_irq(&newowner->pi_lock);
1b7558e4 1815 return 0;
d0aa7a70 1816
d0aa7a70 1817 /*
1b7558e4 1818 * To handle the page fault we need to drop the hash bucket
8161239a
LJ
1819 * lock here. That gives the other task (either the highest priority
1820 * waiter itself or the task which stole the rtmutex) the
1b7558e4
TG
1821 * chance to try the fixup of the pi_state. So once we are
1822 * back from handling the fault we need to check the pi_state
1823 * after reacquiring the hash bucket lock and before trying to
1824 * do another fixup. When the fixup has been done already we
1825 * simply return.
d0aa7a70 1826 */
1b7558e4
TG
1827handle_fault:
1828 spin_unlock(q->lock_ptr);
778e9a9c 1829
d0725992 1830 ret = fault_in_user_writeable(uaddr);
778e9a9c 1831
1b7558e4 1832 spin_lock(q->lock_ptr);
778e9a9c 1833
1b7558e4
TG
1834 /*
1835 * Check if someone else fixed it for us:
1836 */
1837 if (pi_state->owner != oldowner)
1838 return 0;
1839
1840 if (ret)
1841 return ret;
1842
1843 goto retry;
d0aa7a70
PP
1844}
1845
72c1bbf3 1846static long futex_wait_restart(struct restart_block *restart);
36cf3b5c 1847
dd973998
DH
1848/**
1849 * fixup_owner() - Post lock pi_state and corner case management
1850 * @uaddr: user address of the futex
dd973998
DH
1851 * @q: futex_q (contains pi_state and access to the rt_mutex)
1852 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
1853 *
1854 * After attempting to lock an rt_mutex, this function is called to cleanup
1855 * the pi_state owner as well as handle race conditions that may allow us to
1856 * acquire the lock. Must be called with the hb lock held.
1857 *
6c23cbbd
RD
1858 * Return:
1859 * 1 - success, lock taken;
1860 * 0 - success, lock not taken;
dd973998
DH
1861 * <0 - on error (-EFAULT)
1862 */
ae791a2d 1863static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
dd973998
DH
1864{
1865 struct task_struct *owner;
1866 int ret = 0;
1867
1868 if (locked) {
1869 /*
1870 * Got the lock. We might not be the anticipated owner if we
1871 * did a lock-steal - fix up the PI-state in that case:
1872 */
1873 if (q->pi_state->owner != current)
ae791a2d 1874 ret = fixup_pi_state_owner(uaddr, q, current);
dd973998
DH
1875 goto out;
1876 }
1877
1878 /*
1879 * Catch the rare case, where the lock was released when we were on the
1880 * way back before we locked the hash bucket.
1881 */
1882 if (q->pi_state->owner == current) {
1883 /*
1884 * Try to get the rt_mutex now. This might fail as some other
1885 * task acquired the rt_mutex after we removed ourself from the
1886 * rt_mutex waiters list.
1887 */
1888 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
1889 locked = 1;
1890 goto out;
1891 }
1892
1893 /*
1894 * pi_state is incorrect, some other task did a lock steal and
1895 * we returned due to timeout or signal without taking the
8161239a 1896 * rt_mutex. Too late.
dd973998 1897 */
8161239a 1898 raw_spin_lock(&q->pi_state->pi_mutex.wait_lock);
dd973998 1899 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
8161239a
LJ
1900 if (!owner)
1901 owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
1902 raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock);
ae791a2d 1903 ret = fixup_pi_state_owner(uaddr, q, owner);
dd973998
DH
1904 goto out;
1905 }
1906
1907 /*
1908 * Paranoia check. If we did not take the lock, then we should not be
8161239a 1909 * the owner of the rt_mutex.
dd973998
DH
1910 */
1911 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
1912 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
1913 "pi-state %p\n", ret,
1914 q->pi_state->pi_mutex.owner,
1915 q->pi_state->owner);
1916
1917out:
1918 return ret ? ret : locked;
1919}
1920
ca5f9524
DH
1921/**
1922 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
1923 * @hb: the futex hash bucket, must be locked by the caller
1924 * @q: the futex_q to queue up on
1925 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
ca5f9524
DH
1926 */
1927static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
f1a11e05 1928 struct hrtimer_sleeper *timeout)
ca5f9524 1929{
9beba3c5
DH
1930 /*
1931 * The task state is guaranteed to be set before another task can
1932 * wake it. set_current_state() is implemented using set_mb() and
1933 * queue_me() calls spin_unlock() upon completion, both serializing
1934 * access to the hash list and forcing another memory barrier.
1935 */
f1a11e05 1936 set_current_state(TASK_INTERRUPTIBLE);
0729e196 1937 queue_me(q, hb);
ca5f9524
DH
1938
1939 /* Arm the timer */
1940 if (timeout) {
1941 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1942 if (!hrtimer_active(&timeout->timer))
1943 timeout->task = NULL;
1944 }
1945
1946 /*
0729e196
DH
1947 * If we have been removed from the hash list, then another task
1948 * has tried to wake us, and we can skip the call to schedule().
ca5f9524
DH
1949 */
1950 if (likely(!plist_node_empty(&q->list))) {
1951 /*
1952 * If the timer has already expired, current will already be
1953 * flagged for rescheduling. Only call schedule if there
1954 * is no timeout, or if it has yet to expire.
1955 */
1956 if (!timeout || timeout->task)
88c8004f 1957 freezable_schedule();
ca5f9524
DH
1958 }
1959 __set_current_state(TASK_RUNNING);
1960}
1961
f801073f
DH
1962/**
1963 * futex_wait_setup() - Prepare to wait on a futex
1964 * @uaddr: the futex userspace address
1965 * @val: the expected value
b41277dc 1966 * @flags: futex flags (FLAGS_SHARED, etc.)
f801073f
DH
1967 * @q: the associated futex_q
1968 * @hb: storage for hash_bucket pointer to be returned to caller
1969 *
1970 * Setup the futex_q and locate the hash_bucket. Get the futex value and
1971 * compare it with the expected value. Handle atomic faults internally.
1972 * Return with the hb lock held and a q.key reference on success, and unlocked
1973 * with no q.key reference on failure.
1974 *
6c23cbbd
RD
1975 * Return:
1976 * 0 - uaddr contains val and hb has been locked;
ca4a04cf 1977 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
f801073f 1978 */
b41277dc 1979static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
f801073f 1980 struct futex_q *q, struct futex_hash_bucket **hb)
1da177e4 1981{
e2970f2f
IM
1982 u32 uval;
1983 int ret;
1da177e4 1984
1da177e4 1985 /*
b2d0994b 1986 * Access the page AFTER the hash-bucket is locked.
1da177e4
LT
1987 * Order is important:
1988 *
1989 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1990 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
1991 *
1992 * The basic logical guarantee of a futex is that it blocks ONLY
1993 * if cond(var) is known to be true at the time of blocking, for
8fe8f545
ML
1994 * any cond. If we locked the hash-bucket after testing *uaddr, that
1995 * would open a race condition where we could block indefinitely with
1da177e4
LT
1996 * cond(var) false, which would violate the guarantee.
1997 *
8fe8f545
ML
1998 * On the other hand, we insert q and release the hash-bucket only
1999 * after testing *uaddr. This guarantees that futex_wait() will NOT
2000 * absorb a wakeup if *uaddr does not match the desired values
2001 * while the syscall executes.
1da177e4 2002 */
f801073f 2003retry:
9ea71503 2004 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
f801073f 2005 if (unlikely(ret != 0))
a5a2a0c7 2006 return ret;
f801073f
DH
2007
2008retry_private:
2009 *hb = queue_lock(q);
2010
e2970f2f 2011 ret = get_futex_value_locked(&uval, uaddr);
1da177e4 2012
f801073f 2013 if (ret) {
0d00c7b2 2014 queue_unlock(*hb);
1da177e4 2015
e2970f2f 2016 ret = get_user(uval, uaddr);
e4dc5b7a 2017 if (ret)
f801073f 2018 goto out;
1da177e4 2019
b41277dc 2020 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
2021 goto retry_private;
2022
ae791a2d 2023 put_futex_key(&q->key);
e4dc5b7a 2024 goto retry;
1da177e4 2025 }
ca5f9524 2026
f801073f 2027 if (uval != val) {
0d00c7b2 2028 queue_unlock(*hb);
f801073f 2029 ret = -EWOULDBLOCK;
2fff78c7 2030 }
1da177e4 2031
f801073f
DH
2032out:
2033 if (ret)
ae791a2d 2034 put_futex_key(&q->key);
f801073f
DH
2035 return ret;
2036}
2037
b41277dc
DH
2038static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2039 ktime_t *abs_time, u32 bitset)
f801073f
DH
2040{
2041 struct hrtimer_sleeper timeout, *to = NULL;
f801073f
DH
2042 struct restart_block *restart;
2043 struct futex_hash_bucket *hb;
5bdb05f9 2044 struct futex_q q = futex_q_init;
f801073f
DH
2045 int ret;
2046
2047 if (!bitset)
2048 return -EINVAL;
f801073f
DH
2049 q.bitset = bitset;
2050
2051 if (abs_time) {
2052 to = &timeout;
2053
b41277dc
DH
2054 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2055 CLOCK_REALTIME : CLOCK_MONOTONIC,
2056 HRTIMER_MODE_ABS);
f801073f
DH
2057 hrtimer_init_sleeper(to, current);
2058 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2059 current->timer_slack_ns);
2060 }
2061
d58e6576 2062retry:
7ada876a
DH
2063 /*
2064 * Prepare to wait on uaddr. On success, holds hb lock and increments
2065 * q.key refs.
2066 */
b41277dc 2067 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
f801073f
DH
2068 if (ret)
2069 goto out;
2070
ca5f9524 2071 /* queue_me and wait for wakeup, timeout, or a signal. */
f1a11e05 2072 futex_wait_queue_me(hb, &q, to);
1da177e4
LT
2073
2074 /* If we were woken (and unqueued), we succeeded, whatever. */
2fff78c7 2075 ret = 0;
7ada876a 2076 /* unqueue_me() drops q.key ref */
1da177e4 2077 if (!unqueue_me(&q))
7ada876a 2078 goto out;
2fff78c7 2079 ret = -ETIMEDOUT;
ca5f9524 2080 if (to && !to->task)
7ada876a 2081 goto out;
72c1bbf3 2082
e2970f2f 2083 /*
d58e6576
TG
2084 * We expect signal_pending(current), but we might be the
2085 * victim of a spurious wakeup as well.
e2970f2f 2086 */
7ada876a 2087 if (!signal_pending(current))
d58e6576 2088 goto retry;
d58e6576 2089
2fff78c7 2090 ret = -ERESTARTSYS;
c19384b5 2091 if (!abs_time)
7ada876a 2092 goto out;
1da177e4 2093
2fff78c7
PZ
2094 restart = &current_thread_info()->restart_block;
2095 restart->fn = futex_wait_restart;
a3c74c52 2096 restart->futex.uaddr = uaddr;
2fff78c7
PZ
2097 restart->futex.val = val;
2098 restart->futex.time = abs_time->tv64;
2099 restart->futex.bitset = bitset;
0cd9c649 2100 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
42d35d48 2101
2fff78c7
PZ
2102 ret = -ERESTART_RESTARTBLOCK;
2103
42d35d48 2104out:
ca5f9524
DH
2105 if (to) {
2106 hrtimer_cancel(&to->timer);
2107 destroy_hrtimer_on_stack(&to->timer);
2108 }
c87e2837
IM
2109 return ret;
2110}
2111
72c1bbf3
NP
2112
2113static long futex_wait_restart(struct restart_block *restart)
2114{
a3c74c52 2115 u32 __user *uaddr = restart->futex.uaddr;
a72188d8 2116 ktime_t t, *tp = NULL;
72c1bbf3 2117
a72188d8
DH
2118 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2119 t.tv64 = restart->futex.time;
2120 tp = &t;
2121 }
72c1bbf3 2122 restart->fn = do_no_restart_syscall;
b41277dc
DH
2123
2124 return (long)futex_wait(uaddr, restart->futex.flags,
2125 restart->futex.val, tp, restart->futex.bitset);
72c1bbf3
NP
2126}
2127
2128
c87e2837
IM
2129/*
2130 * Userspace tried a 0 -> TID atomic transition of the futex value
2131 * and failed. The kernel side here does the whole locking operation:
2132 * if there are waiters then it will block, it does PI, etc. (Due to
2133 * races the kernel might see a 0 value of the futex too.)
2134 */
b41277dc
DH
2135static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, int detect,
2136 ktime_t *time, int trylock)
c87e2837 2137{
c5780e97 2138 struct hrtimer_sleeper timeout, *to = NULL;
c87e2837 2139 struct futex_hash_bucket *hb;
5bdb05f9 2140 struct futex_q q = futex_q_init;
dd973998 2141 int res, ret;
c87e2837
IM
2142
2143 if (refill_pi_state_cache())
2144 return -ENOMEM;
2145
c19384b5 2146 if (time) {
c5780e97 2147 to = &timeout;
237fc6e7
TG
2148 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2149 HRTIMER_MODE_ABS);
c5780e97 2150 hrtimer_init_sleeper(to, current);
cc584b21 2151 hrtimer_set_expires(&to->timer, *time);
c5780e97
TG
2152 }
2153
42d35d48 2154retry:
9ea71503 2155 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
c87e2837 2156 if (unlikely(ret != 0))
42d35d48 2157 goto out;
c87e2837 2158
e4dc5b7a 2159retry_private:
82af7aca 2160 hb = queue_lock(&q);
c87e2837 2161
bab5bc9e 2162 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
c87e2837 2163 if (unlikely(ret)) {
778e9a9c 2164 switch (ret) {
1a52084d
DH
2165 case 1:
2166 /* We got the lock. */
2167 ret = 0;
2168 goto out_unlock_put_key;
2169 case -EFAULT:
2170 goto uaddr_faulted;
778e9a9c
AK
2171 case -EAGAIN:
2172 /*
2173 * Task is exiting and we just wait for the
2174 * exit to complete.
2175 */
0d00c7b2 2176 queue_unlock(hb);
ae791a2d 2177 put_futex_key(&q.key);
778e9a9c
AK
2178 cond_resched();
2179 goto retry;
778e9a9c 2180 default:
42d35d48 2181 goto out_unlock_put_key;
c87e2837 2182 }
c87e2837
IM
2183 }
2184
2185 /*
2186 * Only actually queue now that the atomic ops are done:
2187 */
82af7aca 2188 queue_me(&q, hb);
c87e2837 2189
c87e2837
IM
2190 WARN_ON(!q.pi_state);
2191 /*
2192 * Block on the PI mutex:
2193 */
2194 if (!trylock)
2195 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
2196 else {
2197 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
2198 /* Fixup the trylock return value: */
2199 ret = ret ? 0 : -EWOULDBLOCK;
2200 }
2201
a99e4e41 2202 spin_lock(q.lock_ptr);
dd973998
DH
2203 /*
2204 * Fixup the pi_state owner and possibly acquire the lock if we
2205 * haven't already.
2206 */
ae791a2d 2207 res = fixup_owner(uaddr, &q, !ret);
dd973998
DH
2208 /*
2209 * If fixup_owner() returned an error, proprogate that. If it acquired
2210 * the lock, clear our -ETIMEDOUT or -EINTR.
2211 */
2212 if (res)
2213 ret = (res < 0) ? res : 0;
c87e2837 2214
e8f6386c 2215 /*
dd973998
DH
2216 * If fixup_owner() faulted and was unable to handle the fault, unlock
2217 * it and return the fault to userspace.
e8f6386c
DH
2218 */
2219 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2220 rt_mutex_unlock(&q.pi_state->pi_mutex);
2221
778e9a9c
AK
2222 /* Unqueue and drop the lock */
2223 unqueue_me_pi(&q);
c87e2837 2224
5ecb01cf 2225 goto out_put_key;
c87e2837 2226
42d35d48 2227out_unlock_put_key:
0d00c7b2 2228 queue_unlock(hb);
c87e2837 2229
42d35d48 2230out_put_key:
ae791a2d 2231 put_futex_key(&q.key);
42d35d48 2232out:
237fc6e7
TG
2233 if (to)
2234 destroy_hrtimer_on_stack(&to->timer);
dd973998 2235 return ret != -EINTR ? ret : -ERESTARTNOINTR;
c87e2837 2236
42d35d48 2237uaddr_faulted:
0d00c7b2 2238 queue_unlock(hb);
778e9a9c 2239
d0725992 2240 ret = fault_in_user_writeable(uaddr);
e4dc5b7a
DH
2241 if (ret)
2242 goto out_put_key;
c87e2837 2243
b41277dc 2244 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
2245 goto retry_private;
2246
ae791a2d 2247 put_futex_key(&q.key);
e4dc5b7a 2248 goto retry;
c87e2837
IM
2249}
2250
c87e2837
IM
2251/*
2252 * Userspace attempted a TID -> 0 atomic transition, and failed.
2253 * This is the in-kernel slowpath: we look up the PI state (if any),
2254 * and do the rt-mutex unlock.
2255 */
b41277dc 2256static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
c87e2837
IM
2257{
2258 struct futex_hash_bucket *hb;
2259 struct futex_q *this, *next;
38d47c1b 2260 union futex_key key = FUTEX_KEY_INIT;
c0c9ed15 2261 u32 uval, vpid = task_pid_vnr(current);
e4dc5b7a 2262 int ret;
c87e2837
IM
2263
2264retry:
2265 if (get_user(uval, uaddr))
2266 return -EFAULT;
2267 /*
2268 * We release only a lock we actually own:
2269 */
c0c9ed15 2270 if ((uval & FUTEX_TID_MASK) != vpid)
c87e2837 2271 return -EPERM;
c87e2837 2272
9ea71503 2273 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
c87e2837
IM
2274 if (unlikely(ret != 0))
2275 goto out;
2276
2277 hb = hash_futex(&key);
2278 spin_lock(&hb->lock);
2279
c87e2837
IM
2280 /*
2281 * To avoid races, try to do the TID -> 0 atomic transition
2282 * again. If it succeeds then we can return without waking
2283 * anyone else up:
2284 */
37a9d912
ML
2285 if (!(uval & FUTEX_OWNER_DIED) &&
2286 cmpxchg_futex_value_locked(&uval, uaddr, vpid, 0))
c87e2837
IM
2287 goto pi_faulted;
2288 /*
2289 * Rare case: we managed to release the lock atomically,
2290 * no need to wake anyone else up:
2291 */
c0c9ed15 2292 if (unlikely(uval == vpid))
c87e2837
IM
2293 goto out_unlock;
2294
2295 /*
2296 * Ok, other tasks may need to be woken up - check waiters
2297 * and do the wakeup if necessary:
2298 */
0d00c7b2 2299 plist_for_each_entry_safe(this, next, &hb->chain, list) {
c87e2837
IM
2300 if (!match_futex (&this->key, &key))
2301 continue;
2302 ret = wake_futex_pi(uaddr, uval, this);
2303 /*
2304 * The atomic access to the futex value
2305 * generated a pagefault, so retry the
2306 * user-access and the wakeup:
2307 */
2308 if (ret == -EFAULT)
2309 goto pi_faulted;
2310 goto out_unlock;
2311 }
2312 /*
2313 * No waiters - kernel unlocks the futex:
2314 */
e3f2ddea
IM
2315 if (!(uval & FUTEX_OWNER_DIED)) {
2316 ret = unlock_futex_pi(uaddr, uval);
2317 if (ret == -EFAULT)
2318 goto pi_faulted;
2319 }
c87e2837
IM
2320
2321out_unlock:
2322 spin_unlock(&hb->lock);
ae791a2d 2323 put_futex_key(&key);
c87e2837 2324
42d35d48 2325out:
c87e2837
IM
2326 return ret;
2327
2328pi_faulted:
778e9a9c 2329 spin_unlock(&hb->lock);
ae791a2d 2330 put_futex_key(&key);
c87e2837 2331
d0725992 2332 ret = fault_in_user_writeable(uaddr);
b5686363 2333 if (!ret)
c87e2837
IM
2334 goto retry;
2335
1da177e4
LT
2336 return ret;
2337}
2338
52400ba9
DH
2339/**
2340 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2341 * @hb: the hash_bucket futex_q was original enqueued on
2342 * @q: the futex_q woken while waiting to be requeued
2343 * @key2: the futex_key of the requeue target futex
2344 * @timeout: the timeout associated with the wait (NULL if none)
2345 *
2346 * Detect if the task was woken on the initial futex as opposed to the requeue
2347 * target futex. If so, determine if it was a timeout or a signal that caused
2348 * the wakeup and return the appropriate error code to the caller. Must be
2349 * called with the hb lock held.
2350 *
6c23cbbd
RD
2351 * Return:
2352 * 0 = no early wakeup detected;
2353 * <0 = -ETIMEDOUT or -ERESTARTNOINTR
52400ba9
DH
2354 */
2355static inline
2356int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2357 struct futex_q *q, union futex_key *key2,
2358 struct hrtimer_sleeper *timeout)
2359{
2360 int ret = 0;
2361
2362 /*
2363 * With the hb lock held, we avoid races while we process the wakeup.
2364 * We only need to hold hb (and not hb2) to ensure atomicity as the
2365 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2366 * It can't be requeued from uaddr2 to something else since we don't
2367 * support a PI aware source futex for requeue.
2368 */
2369 if (!match_futex(&q->key, key2)) {
2370 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2371 /*
2372 * We were woken prior to requeue by a timeout or a signal.
2373 * Unqueue the futex_q and determine which it was.
2374 */
2e12978a 2375 plist_del(&q->list, &hb->chain);
11d4616b 2376 hb_waiters_dec(hb);
52400ba9 2377
d58e6576 2378 /* Handle spurious wakeups gracefully */
11df6ddd 2379 ret = -EWOULDBLOCK;
52400ba9
DH
2380 if (timeout && !timeout->task)
2381 ret = -ETIMEDOUT;
d58e6576 2382 else if (signal_pending(current))
1c840c14 2383 ret = -ERESTARTNOINTR;
52400ba9
DH
2384 }
2385 return ret;
2386}
2387
2388/**
2389 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
56ec1607 2390 * @uaddr: the futex we initially wait on (non-pi)
b41277dc 2391 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
52400ba9
DH
2392 * the same type, no requeueing from private to shared, etc.
2393 * @val: the expected value of uaddr
2394 * @abs_time: absolute timeout
56ec1607 2395 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
52400ba9
DH
2396 * @uaddr2: the pi futex we will take prior to returning to user-space
2397 *
2398 * The caller will wait on uaddr and will be requeued by futex_requeue() to
6f7b0a2a
DH
2399 * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
2400 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2401 * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
2402 * without one, the pi logic would not know which task to boost/deboost, if
2403 * there was a need to.
52400ba9
DH
2404 *
2405 * We call schedule in futex_wait_queue_me() when we enqueue and return there
6c23cbbd 2406 * via the following--
52400ba9 2407 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
cc6db4e6
DH
2408 * 2) wakeup on uaddr2 after a requeue
2409 * 3) signal
2410 * 4) timeout
52400ba9 2411 *
cc6db4e6 2412 * If 3, cleanup and return -ERESTARTNOINTR.
52400ba9
DH
2413 *
2414 * If 2, we may then block on trying to take the rt_mutex and return via:
2415 * 5) successful lock
2416 * 6) signal
2417 * 7) timeout
2418 * 8) other lock acquisition failure
2419 *
cc6db4e6 2420 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
52400ba9
DH
2421 *
2422 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2423 *
6c23cbbd
RD
2424 * Return:
2425 * 0 - On success;
52400ba9
DH
2426 * <0 - On error
2427 */
b41277dc 2428static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
52400ba9 2429 u32 val, ktime_t *abs_time, u32 bitset,
b41277dc 2430 u32 __user *uaddr2)
52400ba9
DH
2431{
2432 struct hrtimer_sleeper timeout, *to = NULL;
2433 struct rt_mutex_waiter rt_waiter;
2434 struct rt_mutex *pi_mutex = NULL;
52400ba9 2435 struct futex_hash_bucket *hb;
5bdb05f9
DH
2436 union futex_key key2 = FUTEX_KEY_INIT;
2437 struct futex_q q = futex_q_init;
52400ba9 2438 int res, ret;
52400ba9 2439
6f7b0a2a
DH
2440 if (uaddr == uaddr2)
2441 return -EINVAL;
2442
52400ba9
DH
2443 if (!bitset)
2444 return -EINVAL;
2445
2446 if (abs_time) {
2447 to = &timeout;
b41277dc
DH
2448 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2449 CLOCK_REALTIME : CLOCK_MONOTONIC,
2450 HRTIMER_MODE_ABS);
52400ba9
DH
2451 hrtimer_init_sleeper(to, current);
2452 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2453 current->timer_slack_ns);
2454 }
2455
2456 /*
2457 * The waiter is allocated on our stack, manipulated by the requeue
2458 * code while we sleep on uaddr.
2459 */
2460 debug_rt_mutex_init_waiter(&rt_waiter);
fb00aca4
PZ
2461 RB_CLEAR_NODE(&rt_waiter.pi_tree_entry);
2462 RB_CLEAR_NODE(&rt_waiter.tree_entry);
52400ba9
DH
2463 rt_waiter.task = NULL;
2464
9ea71503 2465 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
52400ba9
DH
2466 if (unlikely(ret != 0))
2467 goto out;
2468
84bc4af5
DH
2469 q.bitset = bitset;
2470 q.rt_waiter = &rt_waiter;
2471 q.requeue_pi_key = &key2;
2472
7ada876a
DH
2473 /*
2474 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2475 * count.
2476 */
b41277dc 2477 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
c8b15a70
TG
2478 if (ret)
2479 goto out_key2;
52400ba9
DH
2480
2481 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
f1a11e05 2482 futex_wait_queue_me(hb, &q, to);
52400ba9
DH
2483
2484 spin_lock(&hb->lock);
2485 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2486 spin_unlock(&hb->lock);
2487 if (ret)
2488 goto out_put_keys;
2489
2490 /*
2491 * In order for us to be here, we know our q.key == key2, and since
2492 * we took the hb->lock above, we also know that futex_requeue() has
2493 * completed and we no longer have to concern ourselves with a wakeup
7ada876a
DH
2494 * race with the atomic proxy lock acquisition by the requeue code. The
2495 * futex_requeue dropped our key1 reference and incremented our key2
2496 * reference count.
52400ba9
DH
2497 */
2498
2499 /* Check if the requeue code acquired the second futex for us. */
2500 if (!q.rt_waiter) {
2501 /*
2502 * Got the lock. We might not be the anticipated owner if we
2503 * did a lock-steal - fix up the PI-state in that case.
2504 */
2505 if (q.pi_state && (q.pi_state->owner != current)) {
2506 spin_lock(q.lock_ptr);
ae791a2d 2507 ret = fixup_pi_state_owner(uaddr2, &q, current);
52400ba9
DH
2508 spin_unlock(q.lock_ptr);
2509 }
2510 } else {
2511 /*
2512 * We have been woken up by futex_unlock_pi(), a timeout, or a
2513 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
2514 * the pi_state.
2515 */
f27071cb 2516 WARN_ON(!q.pi_state);
52400ba9
DH
2517 pi_mutex = &q.pi_state->pi_mutex;
2518 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
2519 debug_rt_mutex_free_waiter(&rt_waiter);
2520
2521 spin_lock(q.lock_ptr);
2522 /*
2523 * Fixup the pi_state owner and possibly acquire the lock if we
2524 * haven't already.
2525 */
ae791a2d 2526 res = fixup_owner(uaddr2, &q, !ret);
52400ba9
DH
2527 /*
2528 * If fixup_owner() returned an error, proprogate that. If it
56ec1607 2529 * acquired the lock, clear -ETIMEDOUT or -EINTR.
52400ba9
DH
2530 */
2531 if (res)
2532 ret = (res < 0) ? res : 0;
2533
2534 /* Unqueue and drop the lock. */
2535 unqueue_me_pi(&q);
2536 }
2537
2538 /*
2539 * If fixup_pi_state_owner() faulted and was unable to handle the
2540 * fault, unlock the rt_mutex and return the fault to userspace.
2541 */
2542 if (ret == -EFAULT) {
b6070a8d 2543 if (pi_mutex && rt_mutex_owner(pi_mutex) == current)
52400ba9
DH
2544 rt_mutex_unlock(pi_mutex);
2545 } else if (ret == -EINTR) {
52400ba9 2546 /*
cc6db4e6
DH
2547 * We've already been requeued, but cannot restart by calling
2548 * futex_lock_pi() directly. We could restart this syscall, but
2549 * it would detect that the user space "val" changed and return
2550 * -EWOULDBLOCK. Save the overhead of the restart and return
2551 * -EWOULDBLOCK directly.
52400ba9 2552 */
2070887f 2553 ret = -EWOULDBLOCK;
52400ba9
DH
2554 }
2555
2556out_put_keys:
ae791a2d 2557 put_futex_key(&q.key);
c8b15a70 2558out_key2:
ae791a2d 2559 put_futex_key(&key2);
52400ba9
DH
2560
2561out:
2562 if (to) {
2563 hrtimer_cancel(&to->timer);
2564 destroy_hrtimer_on_stack(&to->timer);
2565 }
2566 return ret;
2567}
2568
0771dfef
IM
2569/*
2570 * Support for robust futexes: the kernel cleans up held futexes at
2571 * thread exit time.
2572 *
2573 * Implementation: user-space maintains a per-thread list of locks it
2574 * is holding. Upon do_exit(), the kernel carefully walks this list,
2575 * and marks all locks that are owned by this thread with the
c87e2837 2576 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
0771dfef
IM
2577 * always manipulated with the lock held, so the list is private and
2578 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2579 * field, to allow the kernel to clean up if the thread dies after
2580 * acquiring the lock, but just before it could have added itself to
2581 * the list. There can only be one such pending lock.
2582 */
2583
2584/**
d96ee56c
DH
2585 * sys_set_robust_list() - Set the robust-futex list head of a task
2586 * @head: pointer to the list-head
2587 * @len: length of the list-head, as userspace expects
0771dfef 2588 */
836f92ad
HC
2589SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2590 size_t, len)
0771dfef 2591{
a0c1e907
TG
2592 if (!futex_cmpxchg_enabled)
2593 return -ENOSYS;
0771dfef
IM
2594 /*
2595 * The kernel knows only one size for now:
2596 */
2597 if (unlikely(len != sizeof(*head)))
2598 return -EINVAL;
2599
2600 current->robust_list = head;
2601
2602 return 0;
2603}
2604
2605/**
d96ee56c
DH
2606 * sys_get_robust_list() - Get the robust-futex list head of a task
2607 * @pid: pid of the process [zero for current task]
2608 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
2609 * @len_ptr: pointer to a length field, the kernel fills in the header size
0771dfef 2610 */
836f92ad
HC
2611SYSCALL_DEFINE3(get_robust_list, int, pid,
2612 struct robust_list_head __user * __user *, head_ptr,
2613 size_t __user *, len_ptr)
0771dfef 2614{
ba46df98 2615 struct robust_list_head __user *head;
0771dfef 2616 unsigned long ret;
bdbb776f 2617 struct task_struct *p;
0771dfef 2618
a0c1e907
TG
2619 if (!futex_cmpxchg_enabled)
2620 return -ENOSYS;
2621
bdbb776f
KC
2622 rcu_read_lock();
2623
2624 ret = -ESRCH;
0771dfef 2625 if (!pid)
bdbb776f 2626 p = current;
0771dfef 2627 else {
228ebcbe 2628 p = find_task_by_vpid(pid);
0771dfef
IM
2629 if (!p)
2630 goto err_unlock;
0771dfef
IM
2631 }
2632
bdbb776f
KC
2633 ret = -EPERM;
2634 if (!ptrace_may_access(p, PTRACE_MODE_READ))
2635 goto err_unlock;
2636
2637 head = p->robust_list;
2638 rcu_read_unlock();
2639
0771dfef
IM
2640 if (put_user(sizeof(*head), len_ptr))
2641 return -EFAULT;
2642 return put_user(head, head_ptr);
2643
2644err_unlock:
aaa2a97e 2645 rcu_read_unlock();
0771dfef
IM
2646
2647 return ret;
2648}
2649
2650/*
2651 * Process a futex-list entry, check whether it's owned by the
2652 * dying task, and do notification if so:
2653 */
e3f2ddea 2654int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
0771dfef 2655{
7cfdaf38 2656 u32 uval, uninitialized_var(nval), mval;
0771dfef 2657
8f17d3a5
IM
2658retry:
2659 if (get_user(uval, uaddr))
0771dfef
IM
2660 return -1;
2661
b488893a 2662 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
0771dfef
IM
2663 /*
2664 * Ok, this dying thread is truly holding a futex
2665 * of interest. Set the OWNER_DIED bit atomically
2666 * via cmpxchg, and if the value had FUTEX_WAITERS
2667 * set, wake up a waiter (if any). (We have to do a
2668 * futex_wake() even if OWNER_DIED is already set -
2669 * to handle the rare but possible case of recursive
2670 * thread-death.) The rest of the cleanup is done in
2671 * userspace.
2672 */
e3f2ddea 2673 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
6e0aa9f8
TG
2674 /*
2675 * We are not holding a lock here, but we want to have
2676 * the pagefault_disable/enable() protection because
2677 * we want to handle the fault gracefully. If the
2678 * access fails we try to fault in the futex with R/W
2679 * verification via get_user_pages. get_user() above
2680 * does not guarantee R/W access. If that fails we
2681 * give up and leave the futex locked.
2682 */
2683 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
2684 if (fault_in_user_writeable(uaddr))
2685 return -1;
2686 goto retry;
2687 }
c87e2837 2688 if (nval != uval)
8f17d3a5 2689 goto retry;
0771dfef 2690
e3f2ddea
IM
2691 /*
2692 * Wake robust non-PI futexes here. The wakeup of
2693 * PI futexes happens in exit_pi_state():
2694 */
36cf3b5c 2695 if (!pi && (uval & FUTEX_WAITERS))
c2f9f201 2696 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
0771dfef
IM
2697 }
2698 return 0;
2699}
2700
e3f2ddea
IM
2701/*
2702 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2703 */
2704static inline int fetch_robust_entry(struct robust_list __user **entry,
ba46df98 2705 struct robust_list __user * __user *head,
1dcc41bb 2706 unsigned int *pi)
e3f2ddea
IM
2707{
2708 unsigned long uentry;
2709
ba46df98 2710 if (get_user(uentry, (unsigned long __user *)head))
e3f2ddea
IM
2711 return -EFAULT;
2712
ba46df98 2713 *entry = (void __user *)(uentry & ~1UL);
e3f2ddea
IM
2714 *pi = uentry & 1;
2715
2716 return 0;
2717}
2718
0771dfef
IM
2719/*
2720 * Walk curr->robust_list (very carefully, it's a userspace list!)
2721 * and mark any locks found there dead, and notify any waiters.
2722 *
2723 * We silently return on any sign of list-walking problem.
2724 */
2725void exit_robust_list(struct task_struct *curr)
2726{
2727 struct robust_list_head __user *head = curr->robust_list;
9f96cb1e 2728 struct robust_list __user *entry, *next_entry, *pending;
4c115e95
DH
2729 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
2730 unsigned int uninitialized_var(next_pi);
0771dfef 2731 unsigned long futex_offset;
9f96cb1e 2732 int rc;
0771dfef 2733
a0c1e907
TG
2734 if (!futex_cmpxchg_enabled)
2735 return;
2736
0771dfef
IM
2737 /*
2738 * Fetch the list head (which was registered earlier, via
2739 * sys_set_robust_list()):
2740 */
e3f2ddea 2741 if (fetch_robust_entry(&entry, &head->list.next, &pi))
0771dfef
IM
2742 return;
2743 /*
2744 * Fetch the relative futex offset:
2745 */
2746 if (get_user(futex_offset, &head->futex_offset))
2747 return;
2748 /*
2749 * Fetch any possibly pending lock-add first, and handle it
2750 * if it exists:
2751 */
e3f2ddea 2752 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
0771dfef 2753 return;
e3f2ddea 2754
9f96cb1e 2755 next_entry = NULL; /* avoid warning with gcc */
0771dfef 2756 while (entry != &head->list) {
9f96cb1e
MS
2757 /*
2758 * Fetch the next entry in the list before calling
2759 * handle_futex_death:
2760 */
2761 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
0771dfef
IM
2762 /*
2763 * A pending lock might already be on the list, so
c87e2837 2764 * don't process it twice:
0771dfef
IM
2765 */
2766 if (entry != pending)
ba46df98 2767 if (handle_futex_death((void __user *)entry + futex_offset,
e3f2ddea 2768 curr, pi))
0771dfef 2769 return;
9f96cb1e 2770 if (rc)
0771dfef 2771 return;
9f96cb1e
MS
2772 entry = next_entry;
2773 pi = next_pi;
0771dfef
IM
2774 /*
2775 * Avoid excessively long or circular lists:
2776 */
2777 if (!--limit)
2778 break;
2779
2780 cond_resched();
2781 }
9f96cb1e
MS
2782
2783 if (pending)
2784 handle_futex_death((void __user *)pending + futex_offset,
2785 curr, pip);
0771dfef
IM
2786}
2787
c19384b5 2788long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
e2970f2f 2789 u32 __user *uaddr2, u32 val2, u32 val3)
1da177e4 2790{
81b40539 2791 int cmd = op & FUTEX_CMD_MASK;
b41277dc 2792 unsigned int flags = 0;
34f01cc1
ED
2793
2794 if (!(op & FUTEX_PRIVATE_FLAG))
b41277dc 2795 flags |= FLAGS_SHARED;
1da177e4 2796
b41277dc
DH
2797 if (op & FUTEX_CLOCK_REALTIME) {
2798 flags |= FLAGS_CLOCKRT;
2799 if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
2800 return -ENOSYS;
2801 }
1da177e4 2802
59263b51
TG
2803 switch (cmd) {
2804 case FUTEX_LOCK_PI:
2805 case FUTEX_UNLOCK_PI:
2806 case FUTEX_TRYLOCK_PI:
2807 case FUTEX_WAIT_REQUEUE_PI:
2808 case FUTEX_CMP_REQUEUE_PI:
2809 if (!futex_cmpxchg_enabled)
2810 return -ENOSYS;
2811 }
2812
34f01cc1 2813 switch (cmd) {
1da177e4 2814 case FUTEX_WAIT:
cd689985
TG
2815 val3 = FUTEX_BITSET_MATCH_ANY;
2816 case FUTEX_WAIT_BITSET:
81b40539 2817 return futex_wait(uaddr, flags, val, timeout, val3);
1da177e4 2818 case FUTEX_WAKE:
cd689985
TG
2819 val3 = FUTEX_BITSET_MATCH_ANY;
2820 case FUTEX_WAKE_BITSET:
81b40539 2821 return futex_wake(uaddr, flags, val, val3);
1da177e4 2822 case FUTEX_REQUEUE:
81b40539 2823 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
1da177e4 2824 case FUTEX_CMP_REQUEUE:
81b40539 2825 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
4732efbe 2826 case FUTEX_WAKE_OP:
81b40539 2827 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
c87e2837 2828 case FUTEX_LOCK_PI:
81b40539 2829 return futex_lock_pi(uaddr, flags, val, timeout, 0);
c87e2837 2830 case FUTEX_UNLOCK_PI:
81b40539 2831 return futex_unlock_pi(uaddr, flags);
c87e2837 2832 case FUTEX_TRYLOCK_PI:
81b40539 2833 return futex_lock_pi(uaddr, flags, 0, timeout, 1);
52400ba9
DH
2834 case FUTEX_WAIT_REQUEUE_PI:
2835 val3 = FUTEX_BITSET_MATCH_ANY;
81b40539
TG
2836 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
2837 uaddr2);
52400ba9 2838 case FUTEX_CMP_REQUEUE_PI:
81b40539 2839 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
1da177e4 2840 }
81b40539 2841 return -ENOSYS;
1da177e4
LT
2842}
2843
2844
17da2bd9
HC
2845SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2846 struct timespec __user *, utime, u32 __user *, uaddr2,
2847 u32, val3)
1da177e4 2848{
c19384b5
PP
2849 struct timespec ts;
2850 ktime_t t, *tp = NULL;
e2970f2f 2851 u32 val2 = 0;
34f01cc1 2852 int cmd = op & FUTEX_CMD_MASK;
1da177e4 2853
cd689985 2854 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
52400ba9
DH
2855 cmd == FUTEX_WAIT_BITSET ||
2856 cmd == FUTEX_WAIT_REQUEUE_PI)) {
c19384b5 2857 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
1da177e4 2858 return -EFAULT;
c19384b5 2859 if (!timespec_valid(&ts))
9741ef96 2860 return -EINVAL;
c19384b5
PP
2861
2862 t = timespec_to_ktime(ts);
34f01cc1 2863 if (cmd == FUTEX_WAIT)
5a7780e7 2864 t = ktime_add_safe(ktime_get(), t);
c19384b5 2865 tp = &t;
1da177e4
LT
2866 }
2867 /*
52400ba9 2868 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
f54f0986 2869 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
1da177e4 2870 */
f54f0986 2871 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
ba9c22f2 2872 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
e2970f2f 2873 val2 = (u32) (unsigned long) utime;
1da177e4 2874
c19384b5 2875 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
1da177e4
LT
2876}
2877
f6d107fb 2878static int __init futex_init(void)
1da177e4 2879{
a0c1e907 2880 u32 curval;
63b1a816 2881 unsigned int futex_shift;
a52b89eb
DB
2882 unsigned long i;
2883
2884#if CONFIG_BASE_SMALL
2885 futex_hashsize = 16;
2886#else
2887 futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
2888#endif
2889
2890 futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
2891 futex_hashsize, 0,
2892 futex_hashsize < 256 ? HASH_SMALL : 0,
63b1a816
HC
2893 &futex_shift, NULL,
2894 futex_hashsize, futex_hashsize);
2895 futex_hashsize = 1UL << futex_shift;
a0c1e907
TG
2896 /*
2897 * This will fail and we want it. Some arch implementations do
2898 * runtime detection of the futex_atomic_cmpxchg_inatomic()
2899 * functionality. We want to know that before we call in any
2900 * of the complex code paths. Also we want to prevent
2901 * registration of robust lists in that case. NULL is
2902 * guaranteed to fault and we get -EFAULT on functional
fb62db2b 2903 * implementation, the non-functional ones will return
a0c1e907
TG
2904 * -ENOSYS.
2905 */
37a9d912 2906 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
a0c1e907
TG
2907 futex_cmpxchg_enabled = 1;
2908
a52b89eb 2909 for (i = 0; i < futex_hashsize; i++) {
11d4616b 2910 atomic_set(&futex_queues[i].waiters, 0);
732375c6 2911 plist_head_init(&futex_queues[i].chain);
3e4ab747
TG
2912 spin_lock_init(&futex_queues[i].lock);
2913 }
2914
1da177e4
LT
2915 return 0;
2916}
f6d107fb 2917__initcall(futex_init);
This page took 1.39411 seconds and 5 git commands to generate.