Merge branch 'topic/asoc' into for-linus
[deliverable/linux.git] / kernel / futex.c
CommitLineData
1da177e4
LT
1/*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
0771dfef
IM
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
c87e2837
IM
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
34f01cc1
ED
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
1da177e4
LT
22 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
23 * enough at me, Linus for the original (flawed) idea, Matthew
24 * Kirkwood for proof-of-concept implementation.
25 *
26 * "The futexes are also cursed."
27 * "But they come in a choice of three flavours!"
28 *
29 * This program is free software; you can redistribute it and/or modify
30 * it under the terms of the GNU General Public License as published by
31 * the Free Software Foundation; either version 2 of the License, or
32 * (at your option) any later version.
33 *
34 * This program is distributed in the hope that it will be useful,
35 * but WITHOUT ANY WARRANTY; without even the implied warranty of
36 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
37 * GNU General Public License for more details.
38 *
39 * You should have received a copy of the GNU General Public License
40 * along with this program; if not, write to the Free Software
41 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
42 */
43#include <linux/slab.h>
44#include <linux/poll.h>
45#include <linux/fs.h>
46#include <linux/file.h>
47#include <linux/jhash.h>
48#include <linux/init.h>
49#include <linux/futex.h>
50#include <linux/mount.h>
51#include <linux/pagemap.h>
52#include <linux/syscalls.h>
7ed20e1a 53#include <linux/signal.h>
9adef58b 54#include <linux/module.h>
fd5eea42 55#include <linux/magic.h>
b488893a
PE
56#include <linux/pid.h>
57#include <linux/nsproxy.h>
58
4732efbe 59#include <asm/futex.h>
1da177e4 60
c87e2837
IM
61#include "rtmutex_common.h"
62
a0c1e907
TG
63int __read_mostly futex_cmpxchg_enabled;
64
1da177e4
LT
65#define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
66
c87e2837
IM
67/*
68 * Priority Inheritance state:
69 */
70struct futex_pi_state {
71 /*
72 * list of 'owned' pi_state instances - these have to be
73 * cleaned up in do_exit() if the task exits prematurely:
74 */
75 struct list_head list;
76
77 /*
78 * The PI object:
79 */
80 struct rt_mutex pi_mutex;
81
82 struct task_struct *owner;
83 atomic_t refcount;
84
85 union futex_key key;
86};
87
1da177e4
LT
88/*
89 * We use this hashed waitqueue instead of a normal wait_queue_t, so
90 * we can wake only the relevant ones (hashed queues may be shared).
91 *
92 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
ec92d082 93 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
1da177e4 94 * The order of wakup is always to make the first condition true, then
73500ac5 95 * wake up q->waiter, then make the second condition true.
1da177e4
LT
96 */
97struct futex_q {
ec92d082 98 struct plist_node list;
73500ac5
DH
99 /* There can only be a single waiter */
100 wait_queue_head_t waiter;
1da177e4 101
e2970f2f 102 /* Which hash list lock to use: */
1da177e4
LT
103 spinlock_t *lock_ptr;
104
e2970f2f 105 /* Key which the futex is hashed on: */
1da177e4
LT
106 union futex_key key;
107
c87e2837
IM
108 /* Optional priority inheritance state: */
109 struct futex_pi_state *pi_state;
110 struct task_struct *task;
cd689985
TG
111
112 /* Bitset for the optional bitmasked wakeup */
113 u32 bitset;
1da177e4
LT
114};
115
116/*
117 * Split the global futex_lock into every hash list lock.
118 */
119struct futex_hash_bucket {
ec92d082
PP
120 spinlock_t lock;
121 struct plist_head chain;
1da177e4
LT
122};
123
124static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
125
1da177e4
LT
126/*
127 * We hash on the keys returned from get_futex_key (see below).
128 */
129static struct futex_hash_bucket *hash_futex(union futex_key *key)
130{
131 u32 hash = jhash2((u32*)&key->both.word,
132 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
133 key->both.offset);
134 return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
135}
136
137/*
138 * Return 1 if two futex_keys are equal, 0 otherwise.
139 */
140static inline int match_futex(union futex_key *key1, union futex_key *key2)
141{
142 return (key1->both.word == key2->both.word
143 && key1->both.ptr == key2->both.ptr
144 && key1->both.offset == key2->both.offset);
145}
146
38d47c1b
PZ
147/*
148 * Take a reference to the resource addressed by a key.
149 * Can be called while holding spinlocks.
150 *
151 */
152static void get_futex_key_refs(union futex_key *key)
153{
154 if (!key->both.ptr)
155 return;
156
157 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
158 case FUT_OFF_INODE:
159 atomic_inc(&key->shared.inode->i_count);
160 break;
161 case FUT_OFF_MMSHARED:
162 atomic_inc(&key->private.mm->mm_count);
163 break;
164 }
165}
166
167/*
168 * Drop a reference to the resource addressed by a key.
169 * The hash bucket spinlock must not be held.
170 */
171static void drop_futex_key_refs(union futex_key *key)
172{
173 if (!key->both.ptr)
174 return;
175
176 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
177 case FUT_OFF_INODE:
178 iput(key->shared.inode);
179 break;
180 case FUT_OFF_MMSHARED:
181 mmdrop(key->private.mm);
182 break;
183 }
184}
185
34f01cc1
ED
186/**
187 * get_futex_key - Get parameters which are the keys for a futex.
188 * @uaddr: virtual address of the futex
189 * @shared: NULL for a PROCESS_PRIVATE futex,
190 * &current->mm->mmap_sem for a PROCESS_SHARED futex
191 * @key: address where result is stored.
192 *
193 * Returns a negative error code or 0
194 * The key words are stored in *key on success.
1da177e4 195 *
f3a43f3f 196 * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
1da177e4
LT
197 * offset_within_page). For private mappings, it's (uaddr, current->mm).
198 * We can usually work out the index without swapping in the page.
199 *
34f01cc1
ED
200 * fshared is NULL for PROCESS_PRIVATE futexes
201 * For other futexes, it points to &current->mm->mmap_sem and
202 * caller must have taken the reader lock. but NOT any spinlocks.
1da177e4 203 */
c2f9f201 204static int get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key)
1da177e4 205{
e2970f2f 206 unsigned long address = (unsigned long)uaddr;
1da177e4 207 struct mm_struct *mm = current->mm;
1da177e4
LT
208 struct page *page;
209 int err;
210
211 /*
212 * The futex address must be "naturally" aligned.
213 */
e2970f2f 214 key->both.offset = address % PAGE_SIZE;
34f01cc1 215 if (unlikely((address % sizeof(u32)) != 0))
1da177e4 216 return -EINVAL;
e2970f2f 217 address -= key->both.offset;
1da177e4 218
34f01cc1
ED
219 /*
220 * PROCESS_PRIVATE futexes are fast.
221 * As the mm cannot disappear under us and the 'key' only needs
222 * virtual address, we dont even have to find the underlying vma.
223 * Note : We do have to check 'uaddr' is a valid user address,
224 * but access_ok() should be faster than find_vma()
225 */
226 if (!fshared) {
227 if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
228 return -EFAULT;
229 key->private.mm = mm;
230 key->private.address = address;
42569c39 231 get_futex_key_refs(key);
34f01cc1
ED
232 return 0;
233 }
1da177e4 234
38d47c1b 235again:
734b05b1 236 err = get_user_pages_fast(address, 1, 0, &page);
38d47c1b
PZ
237 if (err < 0)
238 return err;
239
240 lock_page(page);
241 if (!page->mapping) {
242 unlock_page(page);
243 put_page(page);
244 goto again;
245 }
1da177e4
LT
246
247 /*
248 * Private mappings are handled in a simple way.
249 *
250 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
251 * it's a read-only handle, it's expected that futexes attach to
38d47c1b 252 * the object not the particular process.
1da177e4 253 */
38d47c1b
PZ
254 if (PageAnon(page)) {
255 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
1da177e4 256 key->private.mm = mm;
e2970f2f 257 key->private.address = address;
38d47c1b
PZ
258 } else {
259 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
260 key->shared.inode = page->mapping->host;
261 key->shared.pgoff = page->index;
1da177e4
LT
262 }
263
38d47c1b 264 get_futex_key_refs(key);
1da177e4 265
38d47c1b
PZ
266 unlock_page(page);
267 put_page(page);
268 return 0;
1da177e4
LT
269}
270
38d47c1b 271static inline
c2f9f201 272void put_futex_key(int fshared, union futex_key *key)
1da177e4 273{
38d47c1b 274 drop_futex_key_refs(key);
1da177e4
LT
275}
276
36cf3b5c
TG
277static u32 cmpxchg_futex_value_locked(u32 __user *uaddr, u32 uval, u32 newval)
278{
279 u32 curval;
280
281 pagefault_disable();
282 curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
283 pagefault_enable();
284
285 return curval;
286}
287
288static int get_futex_value_locked(u32 *dest, u32 __user *from)
1da177e4
LT
289{
290 int ret;
291
a866374a 292 pagefault_disable();
e2970f2f 293 ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
a866374a 294 pagefault_enable();
1da177e4
LT
295
296 return ret ? -EFAULT : 0;
297}
298
c87e2837 299/*
34f01cc1 300 * Fault handling.
c87e2837 301 */
c2f9f201 302static int futex_handle_fault(unsigned long address, int attempt)
c87e2837
IM
303{
304 struct vm_area_struct * vma;
305 struct mm_struct *mm = current->mm;
34f01cc1 306 int ret = -EFAULT;
c87e2837 307
34f01cc1
ED
308 if (attempt > 2)
309 return ret;
c87e2837 310
61270708 311 down_read(&mm->mmap_sem);
34f01cc1
ED
312 vma = find_vma(mm, address);
313 if (vma && address >= vma->vm_start &&
314 (vma->vm_flags & VM_WRITE)) {
83c54070
NP
315 int fault;
316 fault = handle_mm_fault(mm, vma, address, 1);
317 if (unlikely((fault & VM_FAULT_ERROR))) {
318#if 0
319 /* XXX: let's do this when we verify it is OK */
320 if (ret & VM_FAULT_OOM)
321 ret = -ENOMEM;
322#endif
323 } else {
34f01cc1 324 ret = 0;
83c54070
NP
325 if (fault & VM_FAULT_MAJOR)
326 current->maj_flt++;
327 else
328 current->min_flt++;
34f01cc1 329 }
c87e2837 330 }
61270708 331 up_read(&mm->mmap_sem);
34f01cc1 332 return ret;
c87e2837
IM
333}
334
335/*
336 * PI code:
337 */
338static int refill_pi_state_cache(void)
339{
340 struct futex_pi_state *pi_state;
341
342 if (likely(current->pi_state_cache))
343 return 0;
344
4668edc3 345 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
c87e2837
IM
346
347 if (!pi_state)
348 return -ENOMEM;
349
c87e2837
IM
350 INIT_LIST_HEAD(&pi_state->list);
351 /* pi_mutex gets initialized later */
352 pi_state->owner = NULL;
353 atomic_set(&pi_state->refcount, 1);
38d47c1b 354 pi_state->key = FUTEX_KEY_INIT;
c87e2837
IM
355
356 current->pi_state_cache = pi_state;
357
358 return 0;
359}
360
361static struct futex_pi_state * alloc_pi_state(void)
362{
363 struct futex_pi_state *pi_state = current->pi_state_cache;
364
365 WARN_ON(!pi_state);
366 current->pi_state_cache = NULL;
367
368 return pi_state;
369}
370
371static void free_pi_state(struct futex_pi_state *pi_state)
372{
373 if (!atomic_dec_and_test(&pi_state->refcount))
374 return;
375
376 /*
377 * If pi_state->owner is NULL, the owner is most probably dying
378 * and has cleaned up the pi_state already
379 */
380 if (pi_state->owner) {
381 spin_lock_irq(&pi_state->owner->pi_lock);
382 list_del_init(&pi_state->list);
383 spin_unlock_irq(&pi_state->owner->pi_lock);
384
385 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
386 }
387
388 if (current->pi_state_cache)
389 kfree(pi_state);
390 else {
391 /*
392 * pi_state->list is already empty.
393 * clear pi_state->owner.
394 * refcount is at 0 - put it back to 1.
395 */
396 pi_state->owner = NULL;
397 atomic_set(&pi_state->refcount, 1);
398 current->pi_state_cache = pi_state;
399 }
400}
401
402/*
403 * Look up the task based on what TID userspace gave us.
404 * We dont trust it.
405 */
406static struct task_struct * futex_find_get_task(pid_t pid)
407{
408 struct task_struct *p;
c69e8d9c 409 const struct cred *cred = current_cred(), *pcred;
c87e2837 410
d359b549 411 rcu_read_lock();
228ebcbe 412 p = find_task_by_vpid(pid);
c69e8d9c 413 if (!p) {
a06381fe 414 p = ERR_PTR(-ESRCH);
c69e8d9c
DH
415 } else {
416 pcred = __task_cred(p);
417 if (cred->euid != pcred->euid &&
418 cred->euid != pcred->uid)
419 p = ERR_PTR(-ESRCH);
420 else
421 get_task_struct(p);
422 }
a06381fe 423
d359b549 424 rcu_read_unlock();
c87e2837
IM
425
426 return p;
427}
428
429/*
430 * This task is holding PI mutexes at exit time => bad.
431 * Kernel cleans up PI-state, but userspace is likely hosed.
432 * (Robust-futex cleanup is separate and might save the day for userspace.)
433 */
434void exit_pi_state_list(struct task_struct *curr)
435{
c87e2837
IM
436 struct list_head *next, *head = &curr->pi_state_list;
437 struct futex_pi_state *pi_state;
627371d7 438 struct futex_hash_bucket *hb;
38d47c1b 439 union futex_key key = FUTEX_KEY_INIT;
c87e2837 440
a0c1e907
TG
441 if (!futex_cmpxchg_enabled)
442 return;
c87e2837
IM
443 /*
444 * We are a ZOMBIE and nobody can enqueue itself on
445 * pi_state_list anymore, but we have to be careful
627371d7 446 * versus waiters unqueueing themselves:
c87e2837
IM
447 */
448 spin_lock_irq(&curr->pi_lock);
449 while (!list_empty(head)) {
450
451 next = head->next;
452 pi_state = list_entry(next, struct futex_pi_state, list);
453 key = pi_state->key;
627371d7 454 hb = hash_futex(&key);
c87e2837
IM
455 spin_unlock_irq(&curr->pi_lock);
456
c87e2837
IM
457 spin_lock(&hb->lock);
458
459 spin_lock_irq(&curr->pi_lock);
627371d7
IM
460 /*
461 * We dropped the pi-lock, so re-check whether this
462 * task still owns the PI-state:
463 */
c87e2837
IM
464 if (head->next != next) {
465 spin_unlock(&hb->lock);
466 continue;
467 }
468
c87e2837 469 WARN_ON(pi_state->owner != curr);
627371d7
IM
470 WARN_ON(list_empty(&pi_state->list));
471 list_del_init(&pi_state->list);
c87e2837
IM
472 pi_state->owner = NULL;
473 spin_unlock_irq(&curr->pi_lock);
474
475 rt_mutex_unlock(&pi_state->pi_mutex);
476
477 spin_unlock(&hb->lock);
478
479 spin_lock_irq(&curr->pi_lock);
480 }
481 spin_unlock_irq(&curr->pi_lock);
482}
483
484static int
d0aa7a70
PP
485lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
486 union futex_key *key, struct futex_pi_state **ps)
c87e2837
IM
487{
488 struct futex_pi_state *pi_state = NULL;
489 struct futex_q *this, *next;
ec92d082 490 struct plist_head *head;
c87e2837 491 struct task_struct *p;
778e9a9c 492 pid_t pid = uval & FUTEX_TID_MASK;
c87e2837
IM
493
494 head = &hb->chain;
495
ec92d082 496 plist_for_each_entry_safe(this, next, head, list) {
d0aa7a70 497 if (match_futex(&this->key, key)) {
c87e2837
IM
498 /*
499 * Another waiter already exists - bump up
500 * the refcount and return its pi_state:
501 */
502 pi_state = this->pi_state;
06a9ec29
TG
503 /*
504 * Userspace might have messed up non PI and PI futexes
505 */
506 if (unlikely(!pi_state))
507 return -EINVAL;
508
627371d7 509 WARN_ON(!atomic_read(&pi_state->refcount));
778e9a9c
AK
510 WARN_ON(pid && pi_state->owner &&
511 pi_state->owner->pid != pid);
627371d7 512
c87e2837 513 atomic_inc(&pi_state->refcount);
d0aa7a70 514 *ps = pi_state;
c87e2837
IM
515
516 return 0;
517 }
518 }
519
520 /*
e3f2ddea 521 * We are the first waiter - try to look up the real owner and attach
778e9a9c 522 * the new pi_state to it, but bail out when TID = 0
c87e2837 523 */
778e9a9c 524 if (!pid)
e3f2ddea 525 return -ESRCH;
c87e2837 526 p = futex_find_get_task(pid);
778e9a9c
AK
527 if (IS_ERR(p))
528 return PTR_ERR(p);
529
530 /*
531 * We need to look at the task state flags to figure out,
532 * whether the task is exiting. To protect against the do_exit
533 * change of the task flags, we do this protected by
534 * p->pi_lock:
535 */
536 spin_lock_irq(&p->pi_lock);
537 if (unlikely(p->flags & PF_EXITING)) {
538 /*
539 * The task is on the way out. When PF_EXITPIDONE is
540 * set, we know that the task has finished the
541 * cleanup:
542 */
543 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
544
545 spin_unlock_irq(&p->pi_lock);
546 put_task_struct(p);
547 return ret;
548 }
c87e2837
IM
549
550 pi_state = alloc_pi_state();
551
552 /*
553 * Initialize the pi_mutex in locked state and make 'p'
554 * the owner of it:
555 */
556 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
557
558 /* Store the key for possible exit cleanups: */
d0aa7a70 559 pi_state->key = *key;
c87e2837 560
627371d7 561 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
562 list_add(&pi_state->list, &p->pi_state_list);
563 pi_state->owner = p;
564 spin_unlock_irq(&p->pi_lock);
565
566 put_task_struct(p);
567
d0aa7a70 568 *ps = pi_state;
c87e2837
IM
569
570 return 0;
571}
572
1da177e4
LT
573/*
574 * The hash bucket lock must be held when this is called.
575 * Afterwards, the futex_q must not be accessed.
576 */
577static void wake_futex(struct futex_q *q)
578{
ec92d082 579 plist_del(&q->list, &q->list.plist);
1da177e4
LT
580 /*
581 * The lock in wake_up_all() is a crucial memory barrier after the
ec92d082 582 * plist_del() and also before assigning to q->lock_ptr.
1da177e4 583 */
73500ac5 584 wake_up(&q->waiter);
1da177e4
LT
585 /*
586 * The waiting task can free the futex_q as soon as this is written,
587 * without taking any locks. This must come last.
8e31108b
AM
588 *
589 * A memory barrier is required here to prevent the following store
590 * to lock_ptr from getting ahead of the wakeup. Clearing the lock
591 * at the end of wake_up_all() does not prevent this store from
592 * moving.
1da177e4 593 */
ccdea2f8 594 smp_wmb();
1da177e4
LT
595 q->lock_ptr = NULL;
596}
597
c87e2837
IM
598static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
599{
600 struct task_struct *new_owner;
601 struct futex_pi_state *pi_state = this->pi_state;
602 u32 curval, newval;
603
604 if (!pi_state)
605 return -EINVAL;
606
21778867 607 spin_lock(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
608 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
609
610 /*
611 * This happens when we have stolen the lock and the original
612 * pending owner did not enqueue itself back on the rt_mutex.
613 * Thats not a tragedy. We know that way, that a lock waiter
614 * is on the fly. We make the futex_q waiter the pending owner.
615 */
616 if (!new_owner)
617 new_owner = this->task;
618
619 /*
620 * We pass it to the next owner. (The WAITERS bit is always
621 * kept enabled while there is PI state around. We must also
622 * preserve the owner died bit.)
623 */
e3f2ddea 624 if (!(uval & FUTEX_OWNER_DIED)) {
778e9a9c
AK
625 int ret = 0;
626
b488893a 627 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
e3f2ddea 628
36cf3b5c 629 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
778e9a9c 630
e3f2ddea 631 if (curval == -EFAULT)
778e9a9c 632 ret = -EFAULT;
cde898fa 633 else if (curval != uval)
778e9a9c
AK
634 ret = -EINVAL;
635 if (ret) {
636 spin_unlock(&pi_state->pi_mutex.wait_lock);
637 return ret;
638 }
e3f2ddea 639 }
c87e2837 640
627371d7
IM
641 spin_lock_irq(&pi_state->owner->pi_lock);
642 WARN_ON(list_empty(&pi_state->list));
643 list_del_init(&pi_state->list);
644 spin_unlock_irq(&pi_state->owner->pi_lock);
645
646 spin_lock_irq(&new_owner->pi_lock);
647 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
648 list_add(&pi_state->list, &new_owner->pi_state_list);
649 pi_state->owner = new_owner;
627371d7
IM
650 spin_unlock_irq(&new_owner->pi_lock);
651
21778867 652 spin_unlock(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
653 rt_mutex_unlock(&pi_state->pi_mutex);
654
655 return 0;
656}
657
658static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
659{
660 u32 oldval;
661
662 /*
663 * There is no waiter, so we unlock the futex. The owner died
664 * bit has not to be preserved here. We are the owner:
665 */
36cf3b5c 666 oldval = cmpxchg_futex_value_locked(uaddr, uval, 0);
c87e2837
IM
667
668 if (oldval == -EFAULT)
669 return oldval;
670 if (oldval != uval)
671 return -EAGAIN;
672
673 return 0;
674}
675
8b8f319f
IM
676/*
677 * Express the locking dependencies for lockdep:
678 */
679static inline void
680double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
681{
682 if (hb1 <= hb2) {
683 spin_lock(&hb1->lock);
684 if (hb1 < hb2)
685 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
686 } else { /* hb1 > hb2 */
687 spin_lock(&hb2->lock);
688 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
689 }
690}
691
1da177e4
LT
692/*
693 * Wake up all waiters hashed on the physical page that is mapped
694 * to this virtual address:
695 */
c2f9f201 696static int futex_wake(u32 __user *uaddr, int fshared, int nr_wake, u32 bitset)
1da177e4 697{
e2970f2f 698 struct futex_hash_bucket *hb;
1da177e4 699 struct futex_q *this, *next;
ec92d082 700 struct plist_head *head;
38d47c1b 701 union futex_key key = FUTEX_KEY_INIT;
1da177e4
LT
702 int ret;
703
cd689985
TG
704 if (!bitset)
705 return -EINVAL;
706
34f01cc1 707 ret = get_futex_key(uaddr, fshared, &key);
1da177e4
LT
708 if (unlikely(ret != 0))
709 goto out;
710
e2970f2f
IM
711 hb = hash_futex(&key);
712 spin_lock(&hb->lock);
713 head = &hb->chain;
1da177e4 714
ec92d082 715 plist_for_each_entry_safe(this, next, head, list) {
1da177e4 716 if (match_futex (&this->key, &key)) {
ed6f7b10
IM
717 if (this->pi_state) {
718 ret = -EINVAL;
719 break;
720 }
cd689985
TG
721
722 /* Check if one of the bits is set in both bitsets */
723 if (!(this->bitset & bitset))
724 continue;
725
1da177e4
LT
726 wake_futex(this);
727 if (++ret >= nr_wake)
728 break;
729 }
730 }
731
e2970f2f 732 spin_unlock(&hb->lock);
1da177e4 733out:
38d47c1b 734 put_futex_key(fshared, &key);
1da177e4
LT
735 return ret;
736}
737
4732efbe
JJ
738/*
739 * Wake up all waiters hashed on the physical page that is mapped
740 * to this virtual address:
741 */
e2970f2f 742static int
c2f9f201 743futex_wake_op(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
e2970f2f 744 int nr_wake, int nr_wake2, int op)
4732efbe 745{
38d47c1b 746 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
e2970f2f 747 struct futex_hash_bucket *hb1, *hb2;
ec92d082 748 struct plist_head *head;
4732efbe
JJ
749 struct futex_q *this, *next;
750 int ret, op_ret, attempt = 0;
751
752retryfull:
34f01cc1 753 ret = get_futex_key(uaddr1, fshared, &key1);
4732efbe
JJ
754 if (unlikely(ret != 0))
755 goto out;
34f01cc1 756 ret = get_futex_key(uaddr2, fshared, &key2);
4732efbe
JJ
757 if (unlikely(ret != 0))
758 goto out;
759
e2970f2f
IM
760 hb1 = hash_futex(&key1);
761 hb2 = hash_futex(&key2);
4732efbe
JJ
762
763retry:
8b8f319f 764 double_lock_hb(hb1, hb2);
4732efbe 765
e2970f2f 766 op_ret = futex_atomic_op_inuser(op, uaddr2);
4732efbe 767 if (unlikely(op_ret < 0)) {
e2970f2f 768 u32 dummy;
4732efbe 769
e2970f2f
IM
770 spin_unlock(&hb1->lock);
771 if (hb1 != hb2)
772 spin_unlock(&hb2->lock);
4732efbe 773
7ee1dd3f 774#ifndef CONFIG_MMU
e2970f2f
IM
775 /*
776 * we don't get EFAULT from MMU faults if we don't have an MMU,
777 * but we might get them from range checking
778 */
7ee1dd3f
DH
779 ret = op_ret;
780 goto out;
781#endif
782
796f8d9b
DG
783 if (unlikely(op_ret != -EFAULT)) {
784 ret = op_ret;
785 goto out;
786 }
787
e2970f2f
IM
788 /*
789 * futex_atomic_op_inuser needs to both read and write
4732efbe
JJ
790 * *(int __user *)uaddr2, but we can't modify it
791 * non-atomically. Therefore, if get_user below is not
792 * enough, we need to handle the fault ourselves, while
e2970f2f
IM
793 * still holding the mmap_sem.
794 */
4732efbe 795 if (attempt++) {
34f01cc1 796 ret = futex_handle_fault((unsigned long)uaddr2,
c2f9f201 797 attempt);
34f01cc1 798 if (ret)
4732efbe 799 goto out;
4732efbe
JJ
800 goto retry;
801 }
802
e2970f2f 803 ret = get_user(dummy, uaddr2);
4732efbe
JJ
804 if (ret)
805 return ret;
806
807 goto retryfull;
808 }
809
e2970f2f 810 head = &hb1->chain;
4732efbe 811
ec92d082 812 plist_for_each_entry_safe(this, next, head, list) {
4732efbe
JJ
813 if (match_futex (&this->key, &key1)) {
814 wake_futex(this);
815 if (++ret >= nr_wake)
816 break;
817 }
818 }
819
820 if (op_ret > 0) {
e2970f2f 821 head = &hb2->chain;
4732efbe
JJ
822
823 op_ret = 0;
ec92d082 824 plist_for_each_entry_safe(this, next, head, list) {
4732efbe
JJ
825 if (match_futex (&this->key, &key2)) {
826 wake_futex(this);
827 if (++op_ret >= nr_wake2)
828 break;
829 }
830 }
831 ret += op_ret;
832 }
833
e2970f2f
IM
834 spin_unlock(&hb1->lock);
835 if (hb1 != hb2)
836 spin_unlock(&hb2->lock);
4732efbe 837out:
38d47c1b
PZ
838 put_futex_key(fshared, &key2);
839 put_futex_key(fshared, &key1);
36cf3b5c 840
4732efbe
JJ
841 return ret;
842}
843
1da177e4
LT
844/*
845 * Requeue all waiters hashed on one physical page to another
846 * physical page.
847 */
c2f9f201 848static int futex_requeue(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
e2970f2f 849 int nr_wake, int nr_requeue, u32 *cmpval)
1da177e4 850{
38d47c1b 851 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
e2970f2f 852 struct futex_hash_bucket *hb1, *hb2;
ec92d082 853 struct plist_head *head1;
1da177e4
LT
854 struct futex_q *this, *next;
855 int ret, drop_count = 0;
856
857 retry:
34f01cc1 858 ret = get_futex_key(uaddr1, fshared, &key1);
1da177e4
LT
859 if (unlikely(ret != 0))
860 goto out;
34f01cc1 861 ret = get_futex_key(uaddr2, fshared, &key2);
1da177e4
LT
862 if (unlikely(ret != 0))
863 goto out;
864
e2970f2f
IM
865 hb1 = hash_futex(&key1);
866 hb2 = hash_futex(&key2);
1da177e4 867
8b8f319f 868 double_lock_hb(hb1, hb2);
1da177e4 869
e2970f2f
IM
870 if (likely(cmpval != NULL)) {
871 u32 curval;
1da177e4 872
e2970f2f 873 ret = get_futex_value_locked(&curval, uaddr1);
1da177e4
LT
874
875 if (unlikely(ret)) {
e2970f2f
IM
876 spin_unlock(&hb1->lock);
877 if (hb1 != hb2)
878 spin_unlock(&hb2->lock);
1da177e4 879
e2970f2f 880 ret = get_user(curval, uaddr1);
1da177e4
LT
881
882 if (!ret)
883 goto retry;
884
885 return ret;
886 }
e2970f2f 887 if (curval != *cmpval) {
1da177e4
LT
888 ret = -EAGAIN;
889 goto out_unlock;
890 }
891 }
892
e2970f2f 893 head1 = &hb1->chain;
ec92d082 894 plist_for_each_entry_safe(this, next, head1, list) {
1da177e4
LT
895 if (!match_futex (&this->key, &key1))
896 continue;
897 if (++ret <= nr_wake) {
898 wake_futex(this);
899 } else {
59e0e0ac
SD
900 /*
901 * If key1 and key2 hash to the same bucket, no need to
902 * requeue.
903 */
904 if (likely(head1 != &hb2->chain)) {
ec92d082
PP
905 plist_del(&this->list, &hb1->chain);
906 plist_add(&this->list, &hb2->chain);
59e0e0ac 907 this->lock_ptr = &hb2->lock;
ec92d082
PP
908#ifdef CONFIG_DEBUG_PI_LIST
909 this->list.plist.lock = &hb2->lock;
910#endif
778e9a9c 911 }
1da177e4 912 this->key = key2;
9adef58b 913 get_futex_key_refs(&key2);
1da177e4
LT
914 drop_count++;
915
916 if (ret - nr_wake >= nr_requeue)
917 break;
1da177e4
LT
918 }
919 }
920
921out_unlock:
e2970f2f
IM
922 spin_unlock(&hb1->lock);
923 if (hb1 != hb2)
924 spin_unlock(&hb2->lock);
1da177e4 925
9adef58b 926 /* drop_futex_key_refs() must be called outside the spinlocks. */
1da177e4 927 while (--drop_count >= 0)
9adef58b 928 drop_futex_key_refs(&key1);
1da177e4
LT
929
930out:
38d47c1b
PZ
931 put_futex_key(fshared, &key2);
932 put_futex_key(fshared, &key1);
1da177e4
LT
933 return ret;
934}
935
936/* The key must be already stored in q->key. */
82af7aca 937static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1da177e4 938{
e2970f2f 939 struct futex_hash_bucket *hb;
1da177e4 940
73500ac5 941 init_waitqueue_head(&q->waiter);
1da177e4 942
9adef58b 943 get_futex_key_refs(&q->key);
e2970f2f
IM
944 hb = hash_futex(&q->key);
945 q->lock_ptr = &hb->lock;
1da177e4 946
e2970f2f
IM
947 spin_lock(&hb->lock);
948 return hb;
1da177e4
LT
949}
950
82af7aca 951static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1da177e4 952{
ec92d082
PP
953 int prio;
954
955 /*
956 * The priority used to register this element is
957 * - either the real thread-priority for the real-time threads
958 * (i.e. threads with a priority lower than MAX_RT_PRIO)
959 * - or MAX_RT_PRIO for non-RT threads.
960 * Thus, all RT-threads are woken first in priority order, and
961 * the others are woken last, in FIFO order.
962 */
963 prio = min(current->normal_prio, MAX_RT_PRIO);
964
965 plist_node_init(&q->list, prio);
966#ifdef CONFIG_DEBUG_PI_LIST
967 q->list.plist.lock = &hb->lock;
968#endif
969 plist_add(&q->list, &hb->chain);
c87e2837 970 q->task = current;
e2970f2f 971 spin_unlock(&hb->lock);
1da177e4
LT
972}
973
974static inline void
e2970f2f 975queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
1da177e4 976{
e2970f2f 977 spin_unlock(&hb->lock);
9adef58b 978 drop_futex_key_refs(&q->key);
1da177e4
LT
979}
980
981/*
982 * queue_me and unqueue_me must be called as a pair, each
983 * exactly once. They are called with the hashed spinlock held.
984 */
985
1da177e4
LT
986/* Return 1 if we were still queued (ie. 0 means we were woken) */
987static int unqueue_me(struct futex_q *q)
988{
1da177e4 989 spinlock_t *lock_ptr;
e2970f2f 990 int ret = 0;
1da177e4
LT
991
992 /* In the common case we don't take the spinlock, which is nice. */
993 retry:
994 lock_ptr = q->lock_ptr;
e91467ec 995 barrier();
c80544dc 996 if (lock_ptr != NULL) {
1da177e4
LT
997 spin_lock(lock_ptr);
998 /*
999 * q->lock_ptr can change between reading it and
1000 * spin_lock(), causing us to take the wrong lock. This
1001 * corrects the race condition.
1002 *
1003 * Reasoning goes like this: if we have the wrong lock,
1004 * q->lock_ptr must have changed (maybe several times)
1005 * between reading it and the spin_lock(). It can
1006 * change again after the spin_lock() but only if it was
1007 * already changed before the spin_lock(). It cannot,
1008 * however, change back to the original value. Therefore
1009 * we can detect whether we acquired the correct lock.
1010 */
1011 if (unlikely(lock_ptr != q->lock_ptr)) {
1012 spin_unlock(lock_ptr);
1013 goto retry;
1014 }
ec92d082
PP
1015 WARN_ON(plist_node_empty(&q->list));
1016 plist_del(&q->list, &q->list.plist);
c87e2837
IM
1017
1018 BUG_ON(q->pi_state);
1019
1da177e4
LT
1020 spin_unlock(lock_ptr);
1021 ret = 1;
1022 }
1023
9adef58b 1024 drop_futex_key_refs(&q->key);
1da177e4
LT
1025 return ret;
1026}
1027
c87e2837
IM
1028/*
1029 * PI futexes can not be requeued and must remove themself from the
d0aa7a70
PP
1030 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1031 * and dropped here.
c87e2837 1032 */
d0aa7a70 1033static void unqueue_me_pi(struct futex_q *q)
c87e2837 1034{
ec92d082
PP
1035 WARN_ON(plist_node_empty(&q->list));
1036 plist_del(&q->list, &q->list.plist);
c87e2837
IM
1037
1038 BUG_ON(!q->pi_state);
1039 free_pi_state(q->pi_state);
1040 q->pi_state = NULL;
1041
d0aa7a70 1042 spin_unlock(q->lock_ptr);
c87e2837 1043
9adef58b 1044 drop_futex_key_refs(&q->key);
c87e2837
IM
1045}
1046
d0aa7a70 1047/*
cdf71a10 1048 * Fixup the pi_state owner with the new owner.
d0aa7a70 1049 *
778e9a9c
AK
1050 * Must be called with hash bucket lock held and mm->sem held for non
1051 * private futexes.
d0aa7a70 1052 */
778e9a9c 1053static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
c2f9f201 1054 struct task_struct *newowner, int fshared)
d0aa7a70 1055{
cdf71a10 1056 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
d0aa7a70 1057 struct futex_pi_state *pi_state = q->pi_state;
1b7558e4 1058 struct task_struct *oldowner = pi_state->owner;
d0aa7a70 1059 u32 uval, curval, newval;
1b7558e4 1060 int ret, attempt = 0;
d0aa7a70
PP
1061
1062 /* Owner died? */
1b7558e4
TG
1063 if (!pi_state->owner)
1064 newtid |= FUTEX_OWNER_DIED;
1065
1066 /*
1067 * We are here either because we stole the rtmutex from the
1068 * pending owner or we are the pending owner which failed to
1069 * get the rtmutex. We have to replace the pending owner TID
1070 * in the user space variable. This must be atomic as we have
1071 * to preserve the owner died bit here.
1072 *
1073 * Note: We write the user space value _before_ changing the
1074 * pi_state because we can fault here. Imagine swapped out
1075 * pages or a fork, which was running right before we acquired
1076 * mmap_sem, that marked all the anonymous memory readonly for
1077 * cow.
1078 *
1079 * Modifying pi_state _before_ the user space value would
1080 * leave the pi_state in an inconsistent state when we fault
1081 * here, because we need to drop the hash bucket lock to
1082 * handle the fault. This might be observed in the PID check
1083 * in lookup_pi_state.
1084 */
1085retry:
1086 if (get_futex_value_locked(&uval, uaddr))
1087 goto handle_fault;
1088
1089 while (1) {
1090 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1091
1092 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
1093
1094 if (curval == -EFAULT)
1095 goto handle_fault;
1096 if (curval == uval)
1097 break;
1098 uval = curval;
1099 }
1100
1101 /*
1102 * We fixed up user space. Now we need to fix the pi_state
1103 * itself.
1104 */
d0aa7a70
PP
1105 if (pi_state->owner != NULL) {
1106 spin_lock_irq(&pi_state->owner->pi_lock);
1107 WARN_ON(list_empty(&pi_state->list));
1108 list_del_init(&pi_state->list);
1109 spin_unlock_irq(&pi_state->owner->pi_lock);
1b7558e4 1110 }
d0aa7a70 1111
cdf71a10 1112 pi_state->owner = newowner;
d0aa7a70 1113
cdf71a10 1114 spin_lock_irq(&newowner->pi_lock);
d0aa7a70 1115 WARN_ON(!list_empty(&pi_state->list));
cdf71a10
TG
1116 list_add(&pi_state->list, &newowner->pi_state_list);
1117 spin_unlock_irq(&newowner->pi_lock);
1b7558e4 1118 return 0;
d0aa7a70 1119
d0aa7a70 1120 /*
1b7558e4
TG
1121 * To handle the page fault we need to drop the hash bucket
1122 * lock here. That gives the other task (either the pending
1123 * owner itself or the task which stole the rtmutex) the
1124 * chance to try the fixup of the pi_state. So once we are
1125 * back from handling the fault we need to check the pi_state
1126 * after reacquiring the hash bucket lock and before trying to
1127 * do another fixup. When the fixup has been done already we
1128 * simply return.
d0aa7a70 1129 */
1b7558e4
TG
1130handle_fault:
1131 spin_unlock(q->lock_ptr);
778e9a9c 1132
c2f9f201 1133 ret = futex_handle_fault((unsigned long)uaddr, attempt++);
778e9a9c 1134
1b7558e4 1135 spin_lock(q->lock_ptr);
778e9a9c 1136
1b7558e4
TG
1137 /*
1138 * Check if someone else fixed it for us:
1139 */
1140 if (pi_state->owner != oldowner)
1141 return 0;
1142
1143 if (ret)
1144 return ret;
1145
1146 goto retry;
d0aa7a70
PP
1147}
1148
34f01cc1
ED
1149/*
1150 * In case we must use restart_block to restart a futex_wait,
ce6bd420 1151 * we encode in the 'flags' shared capability
34f01cc1 1152 */
1acdac10
TG
1153#define FLAGS_SHARED 0x01
1154#define FLAGS_CLOCKRT 0x02
34f01cc1 1155
72c1bbf3 1156static long futex_wait_restart(struct restart_block *restart);
36cf3b5c 1157
c2f9f201 1158static int futex_wait(u32 __user *uaddr, int fshared,
1acdac10 1159 u32 val, ktime_t *abs_time, u32 bitset, int clockrt)
1da177e4 1160{
c87e2837
IM
1161 struct task_struct *curr = current;
1162 DECLARE_WAITQUEUE(wait, curr);
e2970f2f 1163 struct futex_hash_bucket *hb;
1da177e4 1164 struct futex_q q;
e2970f2f
IM
1165 u32 uval;
1166 int ret;
bd197234 1167 struct hrtimer_sleeper t;
c19384b5 1168 int rem = 0;
1da177e4 1169
cd689985
TG
1170 if (!bitset)
1171 return -EINVAL;
1172
c87e2837 1173 q.pi_state = NULL;
cd689985 1174 q.bitset = bitset;
1da177e4 1175 retry:
38d47c1b 1176 q.key = FUTEX_KEY_INIT;
34f01cc1 1177 ret = get_futex_key(uaddr, fshared, &q.key);
1da177e4
LT
1178 if (unlikely(ret != 0))
1179 goto out_release_sem;
1180
82af7aca 1181 hb = queue_lock(&q);
1da177e4
LT
1182
1183 /*
1184 * Access the page AFTER the futex is queued.
1185 * Order is important:
1186 *
1187 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1188 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
1189 *
1190 * The basic logical guarantee of a futex is that it blocks ONLY
1191 * if cond(var) is known to be true at the time of blocking, for
1192 * any cond. If we queued after testing *uaddr, that would open
1193 * a race condition where we could block indefinitely with
1194 * cond(var) false, which would violate the guarantee.
1195 *
1196 * A consequence is that futex_wait() can return zero and absorb
1197 * a wakeup when *uaddr != val on entry to the syscall. This is
1198 * rare, but normal.
1199 *
34f01cc1
ED
1200 * for shared futexes, we hold the mmap semaphore, so the mapping
1201 * cannot have changed since we looked it up in get_futex_key.
1da177e4 1202 */
e2970f2f 1203 ret = get_futex_value_locked(&uval, uaddr);
1da177e4
LT
1204
1205 if (unlikely(ret)) {
e2970f2f 1206 queue_unlock(&q, hb);
1da177e4 1207
e2970f2f 1208 ret = get_user(uval, uaddr);
1da177e4
LT
1209
1210 if (!ret)
1211 goto retry;
1212 return ret;
1213 }
c87e2837
IM
1214 ret = -EWOULDBLOCK;
1215 if (uval != val)
1216 goto out_unlock_release_sem;
1da177e4
LT
1217
1218 /* Only actually queue if *uaddr contained val. */
82af7aca 1219 queue_me(&q, hb);
1da177e4 1220
1da177e4
LT
1221 /*
1222 * There might have been scheduling since the queue_me(), as we
1223 * cannot hold a spinlock across the get_user() in case it
1224 * faults, and we cannot just set TASK_INTERRUPTIBLE state when
1225 * queueing ourselves into the futex hash. This code thus has to
1226 * rely on the futex_wake() code removing us from hash when it
1227 * wakes us up.
1228 */
1229
1230 /* add_wait_queue is the barrier after __set_current_state. */
1231 __set_current_state(TASK_INTERRUPTIBLE);
73500ac5 1232 add_wait_queue(&q.waiter, &wait);
1da177e4 1233 /*
ec92d082 1234 * !plist_node_empty() is safe here without any lock.
1da177e4
LT
1235 * q.lock_ptr != 0 is not safe, because of ordering against wakeup.
1236 */
ec92d082 1237 if (likely(!plist_node_empty(&q.list))) {
c19384b5
PP
1238 if (!abs_time)
1239 schedule();
1240 else {
ae4b748e
AV
1241 unsigned long slack;
1242 slack = current->timer_slack_ns;
1243 if (rt_task(current))
1244 slack = 0;
1acdac10
TG
1245 hrtimer_init_on_stack(&t.timer,
1246 clockrt ? CLOCK_REALTIME :
1247 CLOCK_MONOTONIC,
1248 HRTIMER_MODE_ABS);
c19384b5 1249 hrtimer_init_sleeper(&t, current);
ae4b748e 1250 hrtimer_set_expires_range_ns(&t.timer, *abs_time, slack);
c19384b5 1251
cc584b21 1252 hrtimer_start_expires(&t.timer, HRTIMER_MODE_ABS);
3588a085
PZ
1253 if (!hrtimer_active(&t.timer))
1254 t.task = NULL;
c19384b5
PP
1255
1256 /*
1257 * the timer could have already expired, in which
1258 * case current would be flagged for rescheduling.
1259 * Don't bother calling schedule.
1260 */
1261 if (likely(t.task))
1262 schedule();
1263
1264 hrtimer_cancel(&t.timer);
72c1bbf3 1265
c19384b5
PP
1266 /* Flag if a timeout occured */
1267 rem = (t.task == NULL);
237fc6e7
TG
1268
1269 destroy_hrtimer_on_stack(&t.timer);
c19384b5 1270 }
72c1bbf3 1271 }
1da177e4
LT
1272 __set_current_state(TASK_RUNNING);
1273
1274 /*
1275 * NOTE: we don't remove ourselves from the waitqueue because
1276 * we are the only user of it.
1277 */
1278
1279 /* If we were woken (and unqueued), we succeeded, whatever. */
1280 if (!unqueue_me(&q))
1281 return 0;
c19384b5 1282 if (rem)
1da177e4 1283 return -ETIMEDOUT;
72c1bbf3 1284
e2970f2f
IM
1285 /*
1286 * We expect signal_pending(current), but another thread may
1287 * have handled it for us already.
1288 */
c19384b5 1289 if (!abs_time)
72c1bbf3
NP
1290 return -ERESTARTSYS;
1291 else {
1292 struct restart_block *restart;
1293 restart = &current_thread_info()->restart_block;
1294 restart->fn = futex_wait_restart;
ce6bd420
SR
1295 restart->futex.uaddr = (u32 *)uaddr;
1296 restart->futex.val = val;
1297 restart->futex.time = abs_time->tv64;
cd689985 1298 restart->futex.bitset = bitset;
ce6bd420
SR
1299 restart->futex.flags = 0;
1300
34f01cc1 1301 if (fshared)
ce6bd420 1302 restart->futex.flags |= FLAGS_SHARED;
1acdac10
TG
1303 if (clockrt)
1304 restart->futex.flags |= FLAGS_CLOCKRT;
72c1bbf3
NP
1305 return -ERESTART_RESTARTBLOCK;
1306 }
1da177e4 1307
c87e2837
IM
1308 out_unlock_release_sem:
1309 queue_unlock(&q, hb);
1310
1da177e4 1311 out_release_sem:
38d47c1b 1312 put_futex_key(fshared, &q.key);
c87e2837
IM
1313 return ret;
1314}
1315
72c1bbf3
NP
1316
1317static long futex_wait_restart(struct restart_block *restart)
1318{
ce6bd420 1319 u32 __user *uaddr = (u32 __user *)restart->futex.uaddr;
c2f9f201 1320 int fshared = 0;
ce6bd420 1321 ktime_t t;
72c1bbf3 1322
ce6bd420 1323 t.tv64 = restart->futex.time;
72c1bbf3 1324 restart->fn = do_no_restart_syscall;
ce6bd420 1325 if (restart->futex.flags & FLAGS_SHARED)
c2f9f201 1326 fshared = 1;
cd689985 1327 return (long)futex_wait(uaddr, fshared, restart->futex.val, &t,
1acdac10
TG
1328 restart->futex.bitset,
1329 restart->futex.flags & FLAGS_CLOCKRT);
72c1bbf3
NP
1330}
1331
1332
c87e2837
IM
1333/*
1334 * Userspace tried a 0 -> TID atomic transition of the futex value
1335 * and failed. The kernel side here does the whole locking operation:
1336 * if there are waiters then it will block, it does PI, etc. (Due to
1337 * races the kernel might see a 0 value of the futex too.)
1338 */
c2f9f201 1339static int futex_lock_pi(u32 __user *uaddr, int fshared,
34f01cc1 1340 int detect, ktime_t *time, int trylock)
c87e2837 1341{
c5780e97 1342 struct hrtimer_sleeper timeout, *to = NULL;
c87e2837
IM
1343 struct task_struct *curr = current;
1344 struct futex_hash_bucket *hb;
1345 u32 uval, newval, curval;
1346 struct futex_q q;
778e9a9c 1347 int ret, lock_taken, ownerdied = 0, attempt = 0;
c87e2837
IM
1348
1349 if (refill_pi_state_cache())
1350 return -ENOMEM;
1351
c19384b5 1352 if (time) {
c5780e97 1353 to = &timeout;
237fc6e7
TG
1354 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
1355 HRTIMER_MODE_ABS);
c5780e97 1356 hrtimer_init_sleeper(to, current);
cc584b21 1357 hrtimer_set_expires(&to->timer, *time);
c5780e97
TG
1358 }
1359
c87e2837
IM
1360 q.pi_state = NULL;
1361 retry:
38d47c1b 1362 q.key = FUTEX_KEY_INIT;
34f01cc1 1363 ret = get_futex_key(uaddr, fshared, &q.key);
c87e2837
IM
1364 if (unlikely(ret != 0))
1365 goto out_release_sem;
1366
778e9a9c 1367 retry_unlocked:
82af7aca 1368 hb = queue_lock(&q);
c87e2837
IM
1369
1370 retry_locked:
778e9a9c 1371 ret = lock_taken = 0;
d0aa7a70 1372
c87e2837
IM
1373 /*
1374 * To avoid races, we attempt to take the lock here again
1375 * (by doing a 0 -> TID atomic cmpxchg), while holding all
1376 * the locks. It will most likely not succeed.
1377 */
b488893a 1378 newval = task_pid_vnr(current);
c87e2837 1379
36cf3b5c 1380 curval = cmpxchg_futex_value_locked(uaddr, 0, newval);
c87e2837
IM
1381
1382 if (unlikely(curval == -EFAULT))
1383 goto uaddr_faulted;
1384
778e9a9c
AK
1385 /*
1386 * Detect deadlocks. In case of REQUEUE_PI this is a valid
1387 * situation and we return success to user space.
1388 */
b488893a 1389 if (unlikely((curval & FUTEX_TID_MASK) == task_pid_vnr(current))) {
bd197234 1390 ret = -EDEADLK;
c87e2837
IM
1391 goto out_unlock_release_sem;
1392 }
1393
1394 /*
778e9a9c 1395 * Surprise - we got the lock. Just return to userspace:
c87e2837
IM
1396 */
1397 if (unlikely(!curval))
1398 goto out_unlock_release_sem;
1399
1400 uval = curval;
778e9a9c 1401
d0aa7a70 1402 /*
778e9a9c
AK
1403 * Set the WAITERS flag, so the owner will know it has someone
1404 * to wake at next unlock
d0aa7a70 1405 */
778e9a9c
AK
1406 newval = curval | FUTEX_WAITERS;
1407
1408 /*
1409 * There are two cases, where a futex might have no owner (the
bd197234
TG
1410 * owner TID is 0): OWNER_DIED. We take over the futex in this
1411 * case. We also do an unconditional take over, when the owner
1412 * of the futex died.
778e9a9c
AK
1413 *
1414 * This is safe as we are protected by the hash bucket lock !
1415 */
1416 if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) {
bd197234 1417 /* Keep the OWNER_DIED bit */
b488893a 1418 newval = (curval & ~FUTEX_TID_MASK) | task_pid_vnr(current);
778e9a9c
AK
1419 ownerdied = 0;
1420 lock_taken = 1;
1421 }
c87e2837 1422
36cf3b5c 1423 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
c87e2837
IM
1424
1425 if (unlikely(curval == -EFAULT))
1426 goto uaddr_faulted;
1427 if (unlikely(curval != uval))
1428 goto retry_locked;
1429
778e9a9c 1430 /*
bd197234 1431 * We took the lock due to owner died take over.
778e9a9c 1432 */
bd197234 1433 if (unlikely(lock_taken))
d0aa7a70 1434 goto out_unlock_release_sem;
d0aa7a70 1435
c87e2837
IM
1436 /*
1437 * We dont have the lock. Look up the PI state (or create it if
1438 * we are the first waiter):
1439 */
d0aa7a70 1440 ret = lookup_pi_state(uval, hb, &q.key, &q.pi_state);
c87e2837
IM
1441
1442 if (unlikely(ret)) {
778e9a9c 1443 switch (ret) {
c87e2837 1444
778e9a9c
AK
1445 case -EAGAIN:
1446 /*
1447 * Task is exiting and we just wait for the
1448 * exit to complete.
1449 */
1450 queue_unlock(&q, hb);
778e9a9c
AK
1451 cond_resched();
1452 goto retry;
c87e2837 1453
778e9a9c
AK
1454 case -ESRCH:
1455 /*
1456 * No owner found for this futex. Check if the
1457 * OWNER_DIED bit is set to figure out whether
1458 * this is a robust futex or not.
1459 */
1460 if (get_futex_value_locked(&curval, uaddr))
c87e2837 1461 goto uaddr_faulted;
778e9a9c
AK
1462
1463 /*
1464 * We simply start over in case of a robust
1465 * futex. The code above will take the futex
1466 * and return happy.
1467 */
1468 if (curval & FUTEX_OWNER_DIED) {
1469 ownerdied = 1;
c87e2837 1470 goto retry_locked;
778e9a9c
AK
1471 }
1472 default:
1473 goto out_unlock_release_sem;
c87e2837 1474 }
c87e2837
IM
1475 }
1476
1477 /*
1478 * Only actually queue now that the atomic ops are done:
1479 */
82af7aca 1480 queue_me(&q, hb);
c87e2837 1481
c87e2837
IM
1482 WARN_ON(!q.pi_state);
1483 /*
1484 * Block on the PI mutex:
1485 */
1486 if (!trylock)
1487 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
1488 else {
1489 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
1490 /* Fixup the trylock return value: */
1491 ret = ret ? 0 : -EWOULDBLOCK;
1492 }
1493
a99e4e41 1494 spin_lock(q.lock_ptr);
c87e2837 1495
778e9a9c
AK
1496 if (!ret) {
1497 /*
1498 * Got the lock. We might not be the anticipated owner
1499 * if we did a lock-steal - fix up the PI-state in
1500 * that case:
1501 */
1502 if (q.pi_state->owner != curr)
1b7558e4 1503 ret = fixup_pi_state_owner(uaddr, &q, curr, fshared);
778e9a9c 1504 } else {
c87e2837
IM
1505 /*
1506 * Catch the rare case, where the lock was released
778e9a9c
AK
1507 * when we were on the way back before we locked the
1508 * hash bucket.
c87e2837 1509 */
cdf71a10
TG
1510 if (q.pi_state->owner == curr) {
1511 /*
1512 * Try to get the rt_mutex now. This might
1513 * fail as some other task acquired the
1514 * rt_mutex after we removed ourself from the
1515 * rt_mutex waiters list.
1516 */
1517 if (rt_mutex_trylock(&q.pi_state->pi_mutex))
1518 ret = 0;
1519 else {
1520 /*
1521 * pi_state is incorrect, some other
1522 * task did a lock steal and we
1523 * returned due to timeout or signal
1524 * without taking the rt_mutex. Too
1525 * late. We can access the
1526 * rt_mutex_owner without locking, as
1527 * the other task is now blocked on
1528 * the hash bucket lock. Fix the state
1529 * up.
1530 */
1531 struct task_struct *owner;
1532 int res;
1533
1534 owner = rt_mutex_owner(&q.pi_state->pi_mutex);
1b7558e4
TG
1535 res = fixup_pi_state_owner(uaddr, &q, owner,
1536 fshared);
cdf71a10 1537
cdf71a10
TG
1538 /* propagate -EFAULT, if the fixup failed */
1539 if (res)
1540 ret = res;
1541 }
778e9a9c
AK
1542 } else {
1543 /*
1544 * Paranoia check. If we did not take the lock
1545 * in the trylock above, then we should not be
1546 * the owner of the rtmutex, neither the real
1547 * nor the pending one:
1548 */
1549 if (rt_mutex_owner(&q.pi_state->pi_mutex) == curr)
1550 printk(KERN_ERR "futex_lock_pi: ret = %d "
1551 "pi-mutex: %p pi-state %p\n", ret,
1552 q.pi_state->pi_mutex.owner,
1553 q.pi_state->owner);
c87e2837 1554 }
c87e2837
IM
1555 }
1556
778e9a9c
AK
1557 /* Unqueue and drop the lock */
1558 unqueue_me_pi(&q);
c87e2837 1559
237fc6e7
TG
1560 if (to)
1561 destroy_hrtimer_on_stack(&to->timer);
c5780e97 1562 return ret != -EINTR ? ret : -ERESTARTNOINTR;
c87e2837
IM
1563
1564 out_unlock_release_sem:
1565 queue_unlock(&q, hb);
1566
1567 out_release_sem:
38d47c1b 1568 put_futex_key(fshared, &q.key);
237fc6e7
TG
1569 if (to)
1570 destroy_hrtimer_on_stack(&to->timer);
c87e2837
IM
1571 return ret;
1572
1573 uaddr_faulted:
1574 /*
b5686363
DH
1575 * We have to r/w *(int __user *)uaddr, and we have to modify it
1576 * atomically. Therefore, if we continue to fault after get_user()
1577 * below, we need to handle the fault ourselves, while still holding
1578 * the mmap_sem. This can occur if the uaddr is under contention as
1579 * we have to drop the mmap_sem in order to call get_user().
c87e2837 1580 */
778e9a9c
AK
1581 queue_unlock(&q, hb);
1582
c87e2837 1583 if (attempt++) {
c2f9f201 1584 ret = futex_handle_fault((unsigned long)uaddr, attempt);
34f01cc1 1585 if (ret)
778e9a9c
AK
1586 goto out_release_sem;
1587 goto retry_unlocked;
c87e2837
IM
1588 }
1589
c87e2837 1590 ret = get_user(uval, uaddr);
b5686363 1591 if (!ret)
c87e2837
IM
1592 goto retry;
1593
237fc6e7
TG
1594 if (to)
1595 destroy_hrtimer_on_stack(&to->timer);
c87e2837
IM
1596 return ret;
1597}
1598
c87e2837
IM
1599/*
1600 * Userspace attempted a TID -> 0 atomic transition, and failed.
1601 * This is the in-kernel slowpath: we look up the PI state (if any),
1602 * and do the rt-mutex unlock.
1603 */
c2f9f201 1604static int futex_unlock_pi(u32 __user *uaddr, int fshared)
c87e2837
IM
1605{
1606 struct futex_hash_bucket *hb;
1607 struct futex_q *this, *next;
1608 u32 uval;
ec92d082 1609 struct plist_head *head;
38d47c1b 1610 union futex_key key = FUTEX_KEY_INIT;
c87e2837
IM
1611 int ret, attempt = 0;
1612
1613retry:
1614 if (get_user(uval, uaddr))
1615 return -EFAULT;
1616 /*
1617 * We release only a lock we actually own:
1618 */
b488893a 1619 if ((uval & FUTEX_TID_MASK) != task_pid_vnr(current))
c87e2837 1620 return -EPERM;
c87e2837 1621
34f01cc1 1622 ret = get_futex_key(uaddr, fshared, &key);
c87e2837
IM
1623 if (unlikely(ret != 0))
1624 goto out;
1625
1626 hb = hash_futex(&key);
778e9a9c 1627retry_unlocked:
c87e2837
IM
1628 spin_lock(&hb->lock);
1629
c87e2837
IM
1630 /*
1631 * To avoid races, try to do the TID -> 0 atomic transition
1632 * again. If it succeeds then we can return without waking
1633 * anyone else up:
1634 */
36cf3b5c 1635 if (!(uval & FUTEX_OWNER_DIED))
b488893a 1636 uval = cmpxchg_futex_value_locked(uaddr, task_pid_vnr(current), 0);
36cf3b5c 1637
c87e2837
IM
1638
1639 if (unlikely(uval == -EFAULT))
1640 goto pi_faulted;
1641 /*
1642 * Rare case: we managed to release the lock atomically,
1643 * no need to wake anyone else up:
1644 */
b488893a 1645 if (unlikely(uval == task_pid_vnr(current)))
c87e2837
IM
1646 goto out_unlock;
1647
1648 /*
1649 * Ok, other tasks may need to be woken up - check waiters
1650 * and do the wakeup if necessary:
1651 */
1652 head = &hb->chain;
1653
ec92d082 1654 plist_for_each_entry_safe(this, next, head, list) {
c87e2837
IM
1655 if (!match_futex (&this->key, &key))
1656 continue;
1657 ret = wake_futex_pi(uaddr, uval, this);
1658 /*
1659 * The atomic access to the futex value
1660 * generated a pagefault, so retry the
1661 * user-access and the wakeup:
1662 */
1663 if (ret == -EFAULT)
1664 goto pi_faulted;
1665 goto out_unlock;
1666 }
1667 /*
1668 * No waiters - kernel unlocks the futex:
1669 */
e3f2ddea
IM
1670 if (!(uval & FUTEX_OWNER_DIED)) {
1671 ret = unlock_futex_pi(uaddr, uval);
1672 if (ret == -EFAULT)
1673 goto pi_faulted;
1674 }
c87e2837
IM
1675
1676out_unlock:
1677 spin_unlock(&hb->lock);
1678out:
38d47c1b 1679 put_futex_key(fshared, &key);
c87e2837
IM
1680
1681 return ret;
1682
1683pi_faulted:
1684 /*
b5686363
DH
1685 * We have to r/w *(int __user *)uaddr, and we have to modify it
1686 * atomically. Therefore, if we continue to fault after get_user()
1687 * below, we need to handle the fault ourselves, while still holding
1688 * the mmap_sem. This can occur if the uaddr is under contention as
1689 * we have to drop the mmap_sem in order to call get_user().
c87e2837 1690 */
778e9a9c
AK
1691 spin_unlock(&hb->lock);
1692
c87e2837 1693 if (attempt++) {
c2f9f201 1694 ret = futex_handle_fault((unsigned long)uaddr, attempt);
34f01cc1 1695 if (ret)
778e9a9c 1696 goto out;
187226f5 1697 uval = 0;
778e9a9c 1698 goto retry_unlocked;
c87e2837
IM
1699 }
1700
c87e2837 1701 ret = get_user(uval, uaddr);
b5686363 1702 if (!ret)
c87e2837
IM
1703 goto retry;
1704
1da177e4
LT
1705 return ret;
1706}
1707
0771dfef
IM
1708/*
1709 * Support for robust futexes: the kernel cleans up held futexes at
1710 * thread exit time.
1711 *
1712 * Implementation: user-space maintains a per-thread list of locks it
1713 * is holding. Upon do_exit(), the kernel carefully walks this list,
1714 * and marks all locks that are owned by this thread with the
c87e2837 1715 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
0771dfef
IM
1716 * always manipulated with the lock held, so the list is private and
1717 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
1718 * field, to allow the kernel to clean up if the thread dies after
1719 * acquiring the lock, but just before it could have added itself to
1720 * the list. There can only be one such pending lock.
1721 */
1722
1723/**
1724 * sys_set_robust_list - set the robust-futex list head of a task
1725 * @head: pointer to the list-head
1726 * @len: length of the list-head, as userspace expects
1727 */
1728asmlinkage long
1729sys_set_robust_list(struct robust_list_head __user *head,
1730 size_t len)
1731{
a0c1e907
TG
1732 if (!futex_cmpxchg_enabled)
1733 return -ENOSYS;
0771dfef
IM
1734 /*
1735 * The kernel knows only one size for now:
1736 */
1737 if (unlikely(len != sizeof(*head)))
1738 return -EINVAL;
1739
1740 current->robust_list = head;
1741
1742 return 0;
1743}
1744
1745/**
1746 * sys_get_robust_list - get the robust-futex list head of a task
1747 * @pid: pid of the process [zero for current task]
1748 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
1749 * @len_ptr: pointer to a length field, the kernel fills in the header size
1750 */
1751asmlinkage long
ba46df98 1752sys_get_robust_list(int pid, struct robust_list_head __user * __user *head_ptr,
0771dfef
IM
1753 size_t __user *len_ptr)
1754{
ba46df98 1755 struct robust_list_head __user *head;
0771dfef 1756 unsigned long ret;
c69e8d9c 1757 const struct cred *cred = current_cred(), *pcred;
0771dfef 1758
a0c1e907
TG
1759 if (!futex_cmpxchg_enabled)
1760 return -ENOSYS;
1761
0771dfef
IM
1762 if (!pid)
1763 head = current->robust_list;
1764 else {
1765 struct task_struct *p;
1766
1767 ret = -ESRCH;
aaa2a97e 1768 rcu_read_lock();
228ebcbe 1769 p = find_task_by_vpid(pid);
0771dfef
IM
1770 if (!p)
1771 goto err_unlock;
1772 ret = -EPERM;
c69e8d9c
DH
1773 pcred = __task_cred(p);
1774 if (cred->euid != pcred->euid &&
1775 cred->euid != pcred->uid &&
76aac0e9 1776 !capable(CAP_SYS_PTRACE))
0771dfef
IM
1777 goto err_unlock;
1778 head = p->robust_list;
aaa2a97e 1779 rcu_read_unlock();
0771dfef
IM
1780 }
1781
1782 if (put_user(sizeof(*head), len_ptr))
1783 return -EFAULT;
1784 return put_user(head, head_ptr);
1785
1786err_unlock:
aaa2a97e 1787 rcu_read_unlock();
0771dfef
IM
1788
1789 return ret;
1790}
1791
1792/*
1793 * Process a futex-list entry, check whether it's owned by the
1794 * dying task, and do notification if so:
1795 */
e3f2ddea 1796int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
0771dfef 1797{
e3f2ddea 1798 u32 uval, nval, mval;
0771dfef 1799
8f17d3a5
IM
1800retry:
1801 if (get_user(uval, uaddr))
0771dfef
IM
1802 return -1;
1803
b488893a 1804 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
0771dfef
IM
1805 /*
1806 * Ok, this dying thread is truly holding a futex
1807 * of interest. Set the OWNER_DIED bit atomically
1808 * via cmpxchg, and if the value had FUTEX_WAITERS
1809 * set, wake up a waiter (if any). (We have to do a
1810 * futex_wake() even if OWNER_DIED is already set -
1811 * to handle the rare but possible case of recursive
1812 * thread-death.) The rest of the cleanup is done in
1813 * userspace.
1814 */
e3f2ddea
IM
1815 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
1816 nval = futex_atomic_cmpxchg_inatomic(uaddr, uval, mval);
1817
c87e2837
IM
1818 if (nval == -EFAULT)
1819 return -1;
1820
1821 if (nval != uval)
8f17d3a5 1822 goto retry;
0771dfef 1823
e3f2ddea
IM
1824 /*
1825 * Wake robust non-PI futexes here. The wakeup of
1826 * PI futexes happens in exit_pi_state():
1827 */
36cf3b5c 1828 if (!pi && (uval & FUTEX_WAITERS))
c2f9f201 1829 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
0771dfef
IM
1830 }
1831 return 0;
1832}
1833
e3f2ddea
IM
1834/*
1835 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
1836 */
1837static inline int fetch_robust_entry(struct robust_list __user **entry,
ba46df98
AV
1838 struct robust_list __user * __user *head,
1839 int *pi)
e3f2ddea
IM
1840{
1841 unsigned long uentry;
1842
ba46df98 1843 if (get_user(uentry, (unsigned long __user *)head))
e3f2ddea
IM
1844 return -EFAULT;
1845
ba46df98 1846 *entry = (void __user *)(uentry & ~1UL);
e3f2ddea
IM
1847 *pi = uentry & 1;
1848
1849 return 0;
1850}
1851
0771dfef
IM
1852/*
1853 * Walk curr->robust_list (very carefully, it's a userspace list!)
1854 * and mark any locks found there dead, and notify any waiters.
1855 *
1856 * We silently return on any sign of list-walking problem.
1857 */
1858void exit_robust_list(struct task_struct *curr)
1859{
1860 struct robust_list_head __user *head = curr->robust_list;
9f96cb1e
MS
1861 struct robust_list __user *entry, *next_entry, *pending;
1862 unsigned int limit = ROBUST_LIST_LIMIT, pi, next_pi, pip;
0771dfef 1863 unsigned long futex_offset;
9f96cb1e 1864 int rc;
0771dfef 1865
a0c1e907
TG
1866 if (!futex_cmpxchg_enabled)
1867 return;
1868
0771dfef
IM
1869 /*
1870 * Fetch the list head (which was registered earlier, via
1871 * sys_set_robust_list()):
1872 */
e3f2ddea 1873 if (fetch_robust_entry(&entry, &head->list.next, &pi))
0771dfef
IM
1874 return;
1875 /*
1876 * Fetch the relative futex offset:
1877 */
1878 if (get_user(futex_offset, &head->futex_offset))
1879 return;
1880 /*
1881 * Fetch any possibly pending lock-add first, and handle it
1882 * if it exists:
1883 */
e3f2ddea 1884 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
0771dfef 1885 return;
e3f2ddea 1886
9f96cb1e 1887 next_entry = NULL; /* avoid warning with gcc */
0771dfef 1888 while (entry != &head->list) {
9f96cb1e
MS
1889 /*
1890 * Fetch the next entry in the list before calling
1891 * handle_futex_death:
1892 */
1893 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
0771dfef
IM
1894 /*
1895 * A pending lock might already be on the list, so
c87e2837 1896 * don't process it twice:
0771dfef
IM
1897 */
1898 if (entry != pending)
ba46df98 1899 if (handle_futex_death((void __user *)entry + futex_offset,
e3f2ddea 1900 curr, pi))
0771dfef 1901 return;
9f96cb1e 1902 if (rc)
0771dfef 1903 return;
9f96cb1e
MS
1904 entry = next_entry;
1905 pi = next_pi;
0771dfef
IM
1906 /*
1907 * Avoid excessively long or circular lists:
1908 */
1909 if (!--limit)
1910 break;
1911
1912 cond_resched();
1913 }
9f96cb1e
MS
1914
1915 if (pending)
1916 handle_futex_death((void __user *)pending + futex_offset,
1917 curr, pip);
0771dfef
IM
1918}
1919
c19384b5 1920long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
e2970f2f 1921 u32 __user *uaddr2, u32 val2, u32 val3)
1da177e4 1922{
1acdac10 1923 int clockrt, ret = -ENOSYS;
34f01cc1 1924 int cmd = op & FUTEX_CMD_MASK;
c2f9f201 1925 int fshared = 0;
34f01cc1
ED
1926
1927 if (!(op & FUTEX_PRIVATE_FLAG))
c2f9f201 1928 fshared = 1;
1da177e4 1929
1acdac10
TG
1930 clockrt = op & FUTEX_CLOCK_REALTIME;
1931 if (clockrt && cmd != FUTEX_WAIT_BITSET)
1932 return -ENOSYS;
1da177e4 1933
34f01cc1 1934 switch (cmd) {
1da177e4 1935 case FUTEX_WAIT:
cd689985
TG
1936 val3 = FUTEX_BITSET_MATCH_ANY;
1937 case FUTEX_WAIT_BITSET:
1acdac10 1938 ret = futex_wait(uaddr, fshared, val, timeout, val3, clockrt);
1da177e4
LT
1939 break;
1940 case FUTEX_WAKE:
cd689985
TG
1941 val3 = FUTEX_BITSET_MATCH_ANY;
1942 case FUTEX_WAKE_BITSET:
1943 ret = futex_wake(uaddr, fshared, val, val3);
1da177e4 1944 break;
1da177e4 1945 case FUTEX_REQUEUE:
34f01cc1 1946 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, NULL);
1da177e4
LT
1947 break;
1948 case FUTEX_CMP_REQUEUE:
34f01cc1 1949 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3);
1da177e4 1950 break;
4732efbe 1951 case FUTEX_WAKE_OP:
34f01cc1 1952 ret = futex_wake_op(uaddr, fshared, uaddr2, val, val2, val3);
4732efbe 1953 break;
c87e2837 1954 case FUTEX_LOCK_PI:
a0c1e907
TG
1955 if (futex_cmpxchg_enabled)
1956 ret = futex_lock_pi(uaddr, fshared, val, timeout, 0);
c87e2837
IM
1957 break;
1958 case FUTEX_UNLOCK_PI:
a0c1e907
TG
1959 if (futex_cmpxchg_enabled)
1960 ret = futex_unlock_pi(uaddr, fshared);
c87e2837
IM
1961 break;
1962 case FUTEX_TRYLOCK_PI:
a0c1e907
TG
1963 if (futex_cmpxchg_enabled)
1964 ret = futex_lock_pi(uaddr, fshared, 0, timeout, 1);
c87e2837 1965 break;
1da177e4
LT
1966 default:
1967 ret = -ENOSYS;
1968 }
1969 return ret;
1970}
1971
1972
e2970f2f 1973asmlinkage long sys_futex(u32 __user *uaddr, int op, u32 val,
1da177e4 1974 struct timespec __user *utime, u32 __user *uaddr2,
e2970f2f 1975 u32 val3)
1da177e4 1976{
c19384b5
PP
1977 struct timespec ts;
1978 ktime_t t, *tp = NULL;
e2970f2f 1979 u32 val2 = 0;
34f01cc1 1980 int cmd = op & FUTEX_CMD_MASK;
1da177e4 1981
cd689985
TG
1982 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
1983 cmd == FUTEX_WAIT_BITSET)) {
c19384b5 1984 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
1da177e4 1985 return -EFAULT;
c19384b5 1986 if (!timespec_valid(&ts))
9741ef96 1987 return -EINVAL;
c19384b5
PP
1988
1989 t = timespec_to_ktime(ts);
34f01cc1 1990 if (cmd == FUTEX_WAIT)
5a7780e7 1991 t = ktime_add_safe(ktime_get(), t);
c19384b5 1992 tp = &t;
1da177e4
LT
1993 }
1994 /*
34f01cc1 1995 * requeue parameter in 'utime' if cmd == FUTEX_REQUEUE.
f54f0986 1996 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
1da177e4 1997 */
f54f0986
AS
1998 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
1999 cmd == FUTEX_WAKE_OP)
e2970f2f 2000 val2 = (u32) (unsigned long) utime;
1da177e4 2001
c19384b5 2002 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
1da177e4
LT
2003}
2004
f6d107fb 2005static int __init futex_init(void)
1da177e4 2006{
a0c1e907 2007 u32 curval;
3e4ab747 2008 int i;
95362fa9 2009
a0c1e907
TG
2010 /*
2011 * This will fail and we want it. Some arch implementations do
2012 * runtime detection of the futex_atomic_cmpxchg_inatomic()
2013 * functionality. We want to know that before we call in any
2014 * of the complex code paths. Also we want to prevent
2015 * registration of robust lists in that case. NULL is
2016 * guaranteed to fault and we get -EFAULT on functional
2017 * implementation, the non functional ones will return
2018 * -ENOSYS.
2019 */
2020 curval = cmpxchg_futex_value_locked(NULL, 0, 0);
2021 if (curval == -EFAULT)
2022 futex_cmpxchg_enabled = 1;
2023
3e4ab747
TG
2024 for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
2025 plist_head_init(&futex_queues[i].chain, &futex_queues[i].lock);
2026 spin_lock_init(&futex_queues[i].lock);
2027 }
2028
1da177e4
LT
2029 return 0;
2030}
f6d107fb 2031__initcall(futex_init);
This page took 0.574372 seconds and 5 git commands to generate.