Merge branch 'for-3.16/drivers' of git://git.kernel.dk/linux-block into next
[deliverable/linux.git] / kernel / futex.c
CommitLineData
1da177e4
LT
1/*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
0771dfef
IM
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
c87e2837
IM
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
34f01cc1
ED
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
52400ba9
DH
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
25 *
1da177e4
LT
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
29 *
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
32 *
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
37 *
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
42 *
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
46 */
47#include <linux/slab.h>
48#include <linux/poll.h>
49#include <linux/fs.h>
50#include <linux/file.h>
51#include <linux/jhash.h>
52#include <linux/init.h>
53#include <linux/futex.h>
54#include <linux/mount.h>
55#include <linux/pagemap.h>
56#include <linux/syscalls.h>
7ed20e1a 57#include <linux/signal.h>
9984de1a 58#include <linux/export.h>
fd5eea42 59#include <linux/magic.h>
b488893a
PE
60#include <linux/pid.h>
61#include <linux/nsproxy.h>
bdbb776f 62#include <linux/ptrace.h>
8bd75c77 63#include <linux/sched/rt.h>
13d60f4b 64#include <linux/hugetlb.h>
88c8004f 65#include <linux/freezer.h>
a52b89eb 66#include <linux/bootmem.h>
b488893a 67
4732efbe 68#include <asm/futex.h>
1da177e4 69
1696a8be 70#include "locking/rtmutex_common.h"
c87e2837 71
99b60ce6 72/*
d7e8af1a
DB
73 * READ this before attempting to hack on futexes!
74 *
75 * Basic futex operation and ordering guarantees
76 * =============================================
99b60ce6
TG
77 *
78 * The waiter reads the futex value in user space and calls
79 * futex_wait(). This function computes the hash bucket and acquires
80 * the hash bucket lock. After that it reads the futex user space value
b0c29f79
DB
81 * again and verifies that the data has not changed. If it has not changed
82 * it enqueues itself into the hash bucket, releases the hash bucket lock
83 * and schedules.
99b60ce6
TG
84 *
85 * The waker side modifies the user space value of the futex and calls
b0c29f79
DB
86 * futex_wake(). This function computes the hash bucket and acquires the
87 * hash bucket lock. Then it looks for waiters on that futex in the hash
88 * bucket and wakes them.
99b60ce6 89 *
b0c29f79
DB
90 * In futex wake up scenarios where no tasks are blocked on a futex, taking
91 * the hb spinlock can be avoided and simply return. In order for this
92 * optimization to work, ordering guarantees must exist so that the waiter
93 * being added to the list is acknowledged when the list is concurrently being
94 * checked by the waker, avoiding scenarios like the following:
99b60ce6
TG
95 *
96 * CPU 0 CPU 1
97 * val = *futex;
98 * sys_futex(WAIT, futex, val);
99 * futex_wait(futex, val);
100 * uval = *futex;
101 * *futex = newval;
102 * sys_futex(WAKE, futex);
103 * futex_wake(futex);
104 * if (queue_empty())
105 * return;
106 * if (uval == val)
107 * lock(hash_bucket(futex));
108 * queue();
109 * unlock(hash_bucket(futex));
110 * schedule();
111 *
112 * This would cause the waiter on CPU 0 to wait forever because it
113 * missed the transition of the user space value from val to newval
114 * and the waker did not find the waiter in the hash bucket queue.
99b60ce6 115 *
b0c29f79
DB
116 * The correct serialization ensures that a waiter either observes
117 * the changed user space value before blocking or is woken by a
118 * concurrent waker:
119 *
120 * CPU 0 CPU 1
99b60ce6
TG
121 * val = *futex;
122 * sys_futex(WAIT, futex, val);
123 * futex_wait(futex, val);
b0c29f79 124 *
d7e8af1a 125 * waiters++; (a)
b0c29f79
DB
126 * mb(); (A) <-- paired with -.
127 * |
128 * lock(hash_bucket(futex)); |
129 * |
130 * uval = *futex; |
131 * | *futex = newval;
132 * | sys_futex(WAKE, futex);
133 * | futex_wake(futex);
134 * |
135 * `-------> mb(); (B)
99b60ce6 136 * if (uval == val)
b0c29f79 137 * queue();
99b60ce6 138 * unlock(hash_bucket(futex));
b0c29f79
DB
139 * schedule(); if (waiters)
140 * lock(hash_bucket(futex));
d7e8af1a
DB
141 * else wake_waiters(futex);
142 * waiters--; (b) unlock(hash_bucket(futex));
b0c29f79 143 *
d7e8af1a
DB
144 * Where (A) orders the waiters increment and the futex value read through
145 * atomic operations (see hb_waiters_inc) and where (B) orders the write
146 * to futex and the waiters read -- this is done by the barriers in
147 * get_futex_key_refs(), through either ihold or atomic_inc, depending on the
148 * futex type.
b0c29f79
DB
149 *
150 * This yields the following case (where X:=waiters, Y:=futex):
151 *
152 * X = Y = 0
153 *
154 * w[X]=1 w[Y]=1
155 * MB MB
156 * r[Y]=y r[X]=x
157 *
158 * Which guarantees that x==0 && y==0 is impossible; which translates back into
159 * the guarantee that we cannot both miss the futex variable change and the
160 * enqueue.
d7e8af1a
DB
161 *
162 * Note that a new waiter is accounted for in (a) even when it is possible that
163 * the wait call can return error, in which case we backtrack from it in (b).
164 * Refer to the comment in queue_lock().
165 *
166 * Similarly, in order to account for waiters being requeued on another
167 * address we always increment the waiters for the destination bucket before
168 * acquiring the lock. It then decrements them again after releasing it -
169 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
170 * will do the additional required waiter count housekeeping. This is done for
171 * double_lock_hb() and double_unlock_hb(), respectively.
99b60ce6
TG
172 */
173
03b8c7b6 174#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
a0c1e907 175int __read_mostly futex_cmpxchg_enabled;
03b8c7b6 176#endif
a0c1e907 177
b41277dc
DH
178/*
179 * Futex flags used to encode options to functions and preserve them across
180 * restarts.
181 */
182#define FLAGS_SHARED 0x01
183#define FLAGS_CLOCKRT 0x02
184#define FLAGS_HAS_TIMEOUT 0x04
185
c87e2837
IM
186/*
187 * Priority Inheritance state:
188 */
189struct futex_pi_state {
190 /*
191 * list of 'owned' pi_state instances - these have to be
192 * cleaned up in do_exit() if the task exits prematurely:
193 */
194 struct list_head list;
195
196 /*
197 * The PI object:
198 */
199 struct rt_mutex pi_mutex;
200
201 struct task_struct *owner;
202 atomic_t refcount;
203
204 union futex_key key;
205};
206
d8d88fbb
DH
207/**
208 * struct futex_q - The hashed futex queue entry, one per waiting task
fb62db2b 209 * @list: priority-sorted list of tasks waiting on this futex
d8d88fbb
DH
210 * @task: the task waiting on the futex
211 * @lock_ptr: the hash bucket lock
212 * @key: the key the futex is hashed on
213 * @pi_state: optional priority inheritance state
214 * @rt_waiter: rt_waiter storage for use with requeue_pi
215 * @requeue_pi_key: the requeue_pi target futex key
216 * @bitset: bitset for the optional bitmasked wakeup
217 *
218 * We use this hashed waitqueue, instead of a normal wait_queue_t, so
1da177e4
LT
219 * we can wake only the relevant ones (hashed queues may be shared).
220 *
221 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
ec92d082 222 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
fb62db2b 223 * The order of wakeup is always to make the first condition true, then
d8d88fbb
DH
224 * the second.
225 *
226 * PI futexes are typically woken before they are removed from the hash list via
227 * the rt_mutex code. See unqueue_me_pi().
1da177e4
LT
228 */
229struct futex_q {
ec92d082 230 struct plist_node list;
1da177e4 231
d8d88fbb 232 struct task_struct *task;
1da177e4 233 spinlock_t *lock_ptr;
1da177e4 234 union futex_key key;
c87e2837 235 struct futex_pi_state *pi_state;
52400ba9 236 struct rt_mutex_waiter *rt_waiter;
84bc4af5 237 union futex_key *requeue_pi_key;
cd689985 238 u32 bitset;
1da177e4
LT
239};
240
5bdb05f9
DH
241static const struct futex_q futex_q_init = {
242 /* list gets initialized in queue_me()*/
243 .key = FUTEX_KEY_INIT,
244 .bitset = FUTEX_BITSET_MATCH_ANY
245};
246
1da177e4 247/*
b2d0994b
DH
248 * Hash buckets are shared by all the futex_keys that hash to the same
249 * location. Each key may have multiple futex_q structures, one for each task
250 * waiting on a futex.
1da177e4
LT
251 */
252struct futex_hash_bucket {
11d4616b 253 atomic_t waiters;
ec92d082
PP
254 spinlock_t lock;
255 struct plist_head chain;
a52b89eb 256} ____cacheline_aligned_in_smp;
1da177e4 257
a52b89eb
DB
258static unsigned long __read_mostly futex_hashsize;
259
260static struct futex_hash_bucket *futex_queues;
1da177e4 261
b0c29f79
DB
262static inline void futex_get_mm(union futex_key *key)
263{
264 atomic_inc(&key->private.mm->mm_count);
265 /*
266 * Ensure futex_get_mm() implies a full barrier such that
267 * get_futex_key() implies a full barrier. This is relied upon
268 * as full barrier (B), see the ordering comment above.
269 */
270 smp_mb__after_atomic_inc();
271}
272
11d4616b
LT
273/*
274 * Reflects a new waiter being added to the waitqueue.
275 */
276static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
b0c29f79
DB
277{
278#ifdef CONFIG_SMP
11d4616b 279 atomic_inc(&hb->waiters);
b0c29f79 280 /*
11d4616b 281 * Full barrier (A), see the ordering comment above.
b0c29f79 282 */
11d4616b
LT
283 smp_mb__after_atomic_inc();
284#endif
285}
286
287/*
288 * Reflects a waiter being removed from the waitqueue by wakeup
289 * paths.
290 */
291static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
292{
293#ifdef CONFIG_SMP
294 atomic_dec(&hb->waiters);
295#endif
296}
b0c29f79 297
11d4616b
LT
298static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
299{
300#ifdef CONFIG_SMP
301 return atomic_read(&hb->waiters);
b0c29f79 302#else
11d4616b 303 return 1;
b0c29f79
DB
304#endif
305}
306
1da177e4
LT
307/*
308 * We hash on the keys returned from get_futex_key (see below).
309 */
310static struct futex_hash_bucket *hash_futex(union futex_key *key)
311{
312 u32 hash = jhash2((u32*)&key->both.word,
313 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
314 key->both.offset);
a52b89eb 315 return &futex_queues[hash & (futex_hashsize - 1)];
1da177e4
LT
316}
317
318/*
319 * Return 1 if two futex_keys are equal, 0 otherwise.
320 */
321static inline int match_futex(union futex_key *key1, union futex_key *key2)
322{
2bc87203
DH
323 return (key1 && key2
324 && key1->both.word == key2->both.word
1da177e4
LT
325 && key1->both.ptr == key2->both.ptr
326 && key1->both.offset == key2->both.offset);
327}
328
38d47c1b
PZ
329/*
330 * Take a reference to the resource addressed by a key.
331 * Can be called while holding spinlocks.
332 *
333 */
334static void get_futex_key_refs(union futex_key *key)
335{
336 if (!key->both.ptr)
337 return;
338
339 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
340 case FUT_OFF_INODE:
b0c29f79 341 ihold(key->shared.inode); /* implies MB (B) */
38d47c1b
PZ
342 break;
343 case FUT_OFF_MMSHARED:
b0c29f79 344 futex_get_mm(key); /* implies MB (B) */
38d47c1b
PZ
345 break;
346 }
347}
348
349/*
350 * Drop a reference to the resource addressed by a key.
351 * The hash bucket spinlock must not be held.
352 */
353static void drop_futex_key_refs(union futex_key *key)
354{
90621c40
DH
355 if (!key->both.ptr) {
356 /* If we're here then we tried to put a key we failed to get */
357 WARN_ON_ONCE(1);
38d47c1b 358 return;
90621c40 359 }
38d47c1b
PZ
360
361 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
362 case FUT_OFF_INODE:
363 iput(key->shared.inode);
364 break;
365 case FUT_OFF_MMSHARED:
366 mmdrop(key->private.mm);
367 break;
368 }
369}
370
34f01cc1 371/**
d96ee56c
DH
372 * get_futex_key() - Get parameters which are the keys for a futex
373 * @uaddr: virtual address of the futex
374 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
375 * @key: address where result is stored.
9ea71503
SB
376 * @rw: mapping needs to be read/write (values: VERIFY_READ,
377 * VERIFY_WRITE)
34f01cc1 378 *
6c23cbbd
RD
379 * Return: a negative error code or 0
380 *
34f01cc1 381 * The key words are stored in *key on success.
1da177e4 382 *
6131ffaa 383 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
1da177e4
LT
384 * offset_within_page). For private mappings, it's (uaddr, current->mm).
385 * We can usually work out the index without swapping in the page.
386 *
b2d0994b 387 * lock_page() might sleep, the caller should not hold a spinlock.
1da177e4 388 */
64d1304a 389static int
9ea71503 390get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
1da177e4 391{
e2970f2f 392 unsigned long address = (unsigned long)uaddr;
1da177e4 393 struct mm_struct *mm = current->mm;
a5b338f2 394 struct page *page, *page_head;
9ea71503 395 int err, ro = 0;
1da177e4
LT
396
397 /*
398 * The futex address must be "naturally" aligned.
399 */
e2970f2f 400 key->both.offset = address % PAGE_SIZE;
34f01cc1 401 if (unlikely((address % sizeof(u32)) != 0))
1da177e4 402 return -EINVAL;
e2970f2f 403 address -= key->both.offset;
1da177e4 404
5cdec2d8
LT
405 if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
406 return -EFAULT;
407
34f01cc1
ED
408 /*
409 * PROCESS_PRIVATE futexes are fast.
410 * As the mm cannot disappear under us and the 'key' only needs
411 * virtual address, we dont even have to find the underlying vma.
412 * Note : We do have to check 'uaddr' is a valid user address,
413 * but access_ok() should be faster than find_vma()
414 */
415 if (!fshared) {
34f01cc1
ED
416 key->private.mm = mm;
417 key->private.address = address;
b0c29f79 418 get_futex_key_refs(key); /* implies MB (B) */
34f01cc1
ED
419 return 0;
420 }
1da177e4 421
38d47c1b 422again:
7485d0d3 423 err = get_user_pages_fast(address, 1, 1, &page);
9ea71503
SB
424 /*
425 * If write access is not required (eg. FUTEX_WAIT), try
426 * and get read-only access.
427 */
428 if (err == -EFAULT && rw == VERIFY_READ) {
429 err = get_user_pages_fast(address, 1, 0, &page);
430 ro = 1;
431 }
38d47c1b
PZ
432 if (err < 0)
433 return err;
9ea71503
SB
434 else
435 err = 0;
38d47c1b 436
a5b338f2
AA
437#ifdef CONFIG_TRANSPARENT_HUGEPAGE
438 page_head = page;
439 if (unlikely(PageTail(page))) {
38d47c1b 440 put_page(page);
a5b338f2
AA
441 /* serialize against __split_huge_page_splitting() */
442 local_irq_disable();
f12d5bfc 443 if (likely(__get_user_pages_fast(address, 1, !ro, &page) == 1)) {
a5b338f2
AA
444 page_head = compound_head(page);
445 /*
446 * page_head is valid pointer but we must pin
447 * it before taking the PG_lock and/or
448 * PG_compound_lock. The moment we re-enable
449 * irqs __split_huge_page_splitting() can
450 * return and the head page can be freed from
451 * under us. We can't take the PG_lock and/or
452 * PG_compound_lock on a page that could be
453 * freed from under us.
454 */
455 if (page != page_head) {
456 get_page(page_head);
457 put_page(page);
458 }
459 local_irq_enable();
460 } else {
461 local_irq_enable();
462 goto again;
463 }
464 }
465#else
466 page_head = compound_head(page);
467 if (page != page_head) {
468 get_page(page_head);
469 put_page(page);
470 }
471#endif
472
473 lock_page(page_head);
e6780f72
HD
474
475 /*
476 * If page_head->mapping is NULL, then it cannot be a PageAnon
477 * page; but it might be the ZERO_PAGE or in the gate area or
478 * in a special mapping (all cases which we are happy to fail);
479 * or it may have been a good file page when get_user_pages_fast
480 * found it, but truncated or holepunched or subjected to
481 * invalidate_complete_page2 before we got the page lock (also
482 * cases which we are happy to fail). And we hold a reference,
483 * so refcount care in invalidate_complete_page's remove_mapping
484 * prevents drop_caches from setting mapping to NULL beneath us.
485 *
486 * The case we do have to guard against is when memory pressure made
487 * shmem_writepage move it from filecache to swapcache beneath us:
488 * an unlikely race, but we do need to retry for page_head->mapping.
489 */
a5b338f2 490 if (!page_head->mapping) {
e6780f72 491 int shmem_swizzled = PageSwapCache(page_head);
a5b338f2
AA
492 unlock_page(page_head);
493 put_page(page_head);
e6780f72
HD
494 if (shmem_swizzled)
495 goto again;
496 return -EFAULT;
38d47c1b 497 }
1da177e4
LT
498
499 /*
500 * Private mappings are handled in a simple way.
501 *
502 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
503 * it's a read-only handle, it's expected that futexes attach to
38d47c1b 504 * the object not the particular process.
1da177e4 505 */
a5b338f2 506 if (PageAnon(page_head)) {
9ea71503
SB
507 /*
508 * A RO anonymous page will never change and thus doesn't make
509 * sense for futex operations.
510 */
511 if (ro) {
512 err = -EFAULT;
513 goto out;
514 }
515
38d47c1b 516 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
1da177e4 517 key->private.mm = mm;
e2970f2f 518 key->private.address = address;
38d47c1b
PZ
519 } else {
520 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
a5b338f2 521 key->shared.inode = page_head->mapping->host;
13d60f4b 522 key->shared.pgoff = basepage_index(page);
1da177e4
LT
523 }
524
b0c29f79 525 get_futex_key_refs(key); /* implies MB (B) */
1da177e4 526
9ea71503 527out:
a5b338f2
AA
528 unlock_page(page_head);
529 put_page(page_head);
9ea71503 530 return err;
1da177e4
LT
531}
532
ae791a2d 533static inline void put_futex_key(union futex_key *key)
1da177e4 534{
38d47c1b 535 drop_futex_key_refs(key);
1da177e4
LT
536}
537
d96ee56c
DH
538/**
539 * fault_in_user_writeable() - Fault in user address and verify RW access
d0725992
TG
540 * @uaddr: pointer to faulting user space address
541 *
542 * Slow path to fixup the fault we just took in the atomic write
543 * access to @uaddr.
544 *
fb62db2b 545 * We have no generic implementation of a non-destructive write to the
d0725992
TG
546 * user address. We know that we faulted in the atomic pagefault
547 * disabled section so we can as well avoid the #PF overhead by
548 * calling get_user_pages() right away.
549 */
550static int fault_in_user_writeable(u32 __user *uaddr)
551{
722d0172
AK
552 struct mm_struct *mm = current->mm;
553 int ret;
554
555 down_read(&mm->mmap_sem);
2efaca92
BH
556 ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
557 FAULT_FLAG_WRITE);
722d0172
AK
558 up_read(&mm->mmap_sem);
559
d0725992
TG
560 return ret < 0 ? ret : 0;
561}
562
4b1c486b
DH
563/**
564 * futex_top_waiter() - Return the highest priority waiter on a futex
d96ee56c
DH
565 * @hb: the hash bucket the futex_q's reside in
566 * @key: the futex key (to distinguish it from other futex futex_q's)
4b1c486b
DH
567 *
568 * Must be called with the hb lock held.
569 */
570static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
571 union futex_key *key)
572{
573 struct futex_q *this;
574
575 plist_for_each_entry(this, &hb->chain, list) {
576 if (match_futex(&this->key, key))
577 return this;
578 }
579 return NULL;
580}
581
37a9d912
ML
582static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
583 u32 uval, u32 newval)
36cf3b5c 584{
37a9d912 585 int ret;
36cf3b5c
TG
586
587 pagefault_disable();
37a9d912 588 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
36cf3b5c
TG
589 pagefault_enable();
590
37a9d912 591 return ret;
36cf3b5c
TG
592}
593
594static int get_futex_value_locked(u32 *dest, u32 __user *from)
1da177e4
LT
595{
596 int ret;
597
a866374a 598 pagefault_disable();
e2970f2f 599 ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
a866374a 600 pagefault_enable();
1da177e4
LT
601
602 return ret ? -EFAULT : 0;
603}
604
c87e2837
IM
605
606/*
607 * PI code:
608 */
609static int refill_pi_state_cache(void)
610{
611 struct futex_pi_state *pi_state;
612
613 if (likely(current->pi_state_cache))
614 return 0;
615
4668edc3 616 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
c87e2837
IM
617
618 if (!pi_state)
619 return -ENOMEM;
620
c87e2837
IM
621 INIT_LIST_HEAD(&pi_state->list);
622 /* pi_mutex gets initialized later */
623 pi_state->owner = NULL;
624 atomic_set(&pi_state->refcount, 1);
38d47c1b 625 pi_state->key = FUTEX_KEY_INIT;
c87e2837
IM
626
627 current->pi_state_cache = pi_state;
628
629 return 0;
630}
631
632static struct futex_pi_state * alloc_pi_state(void)
633{
634 struct futex_pi_state *pi_state = current->pi_state_cache;
635
636 WARN_ON(!pi_state);
637 current->pi_state_cache = NULL;
638
639 return pi_state;
640}
641
642static void free_pi_state(struct futex_pi_state *pi_state)
643{
644 if (!atomic_dec_and_test(&pi_state->refcount))
645 return;
646
647 /*
648 * If pi_state->owner is NULL, the owner is most probably dying
649 * and has cleaned up the pi_state already
650 */
651 if (pi_state->owner) {
1d615482 652 raw_spin_lock_irq(&pi_state->owner->pi_lock);
c87e2837 653 list_del_init(&pi_state->list);
1d615482 654 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
c87e2837
IM
655
656 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
657 }
658
659 if (current->pi_state_cache)
660 kfree(pi_state);
661 else {
662 /*
663 * pi_state->list is already empty.
664 * clear pi_state->owner.
665 * refcount is at 0 - put it back to 1.
666 */
667 pi_state->owner = NULL;
668 atomic_set(&pi_state->refcount, 1);
669 current->pi_state_cache = pi_state;
670 }
671}
672
673/*
674 * Look up the task based on what TID userspace gave us.
675 * We dont trust it.
676 */
677static struct task_struct * futex_find_get_task(pid_t pid)
678{
679 struct task_struct *p;
680
d359b549 681 rcu_read_lock();
228ebcbe 682 p = find_task_by_vpid(pid);
7a0ea09a
MH
683 if (p)
684 get_task_struct(p);
a06381fe 685
d359b549 686 rcu_read_unlock();
c87e2837
IM
687
688 return p;
689}
690
691/*
692 * This task is holding PI mutexes at exit time => bad.
693 * Kernel cleans up PI-state, but userspace is likely hosed.
694 * (Robust-futex cleanup is separate and might save the day for userspace.)
695 */
696void exit_pi_state_list(struct task_struct *curr)
697{
c87e2837
IM
698 struct list_head *next, *head = &curr->pi_state_list;
699 struct futex_pi_state *pi_state;
627371d7 700 struct futex_hash_bucket *hb;
38d47c1b 701 union futex_key key = FUTEX_KEY_INIT;
c87e2837 702
a0c1e907
TG
703 if (!futex_cmpxchg_enabled)
704 return;
c87e2837
IM
705 /*
706 * We are a ZOMBIE and nobody can enqueue itself on
707 * pi_state_list anymore, but we have to be careful
627371d7 708 * versus waiters unqueueing themselves:
c87e2837 709 */
1d615482 710 raw_spin_lock_irq(&curr->pi_lock);
c87e2837
IM
711 while (!list_empty(head)) {
712
713 next = head->next;
714 pi_state = list_entry(next, struct futex_pi_state, list);
715 key = pi_state->key;
627371d7 716 hb = hash_futex(&key);
1d615482 717 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837 718
c87e2837
IM
719 spin_lock(&hb->lock);
720
1d615482 721 raw_spin_lock_irq(&curr->pi_lock);
627371d7
IM
722 /*
723 * We dropped the pi-lock, so re-check whether this
724 * task still owns the PI-state:
725 */
c87e2837
IM
726 if (head->next != next) {
727 spin_unlock(&hb->lock);
728 continue;
729 }
730
c87e2837 731 WARN_ON(pi_state->owner != curr);
627371d7
IM
732 WARN_ON(list_empty(&pi_state->list));
733 list_del_init(&pi_state->list);
c87e2837 734 pi_state->owner = NULL;
1d615482 735 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837
IM
736
737 rt_mutex_unlock(&pi_state->pi_mutex);
738
739 spin_unlock(&hb->lock);
740
1d615482 741 raw_spin_lock_irq(&curr->pi_lock);
c87e2837 742 }
1d615482 743 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837
IM
744}
745
746static int
d0aa7a70 747lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
866293ee
TG
748 union futex_key *key, struct futex_pi_state **ps,
749 struct task_struct *task)
c87e2837
IM
750{
751 struct futex_pi_state *pi_state = NULL;
752 struct futex_q *this, *next;
c87e2837 753 struct task_struct *p;
778e9a9c 754 pid_t pid = uval & FUTEX_TID_MASK;
c87e2837 755
0d00c7b2 756 plist_for_each_entry_safe(this, next, &hb->chain, list) {
d0aa7a70 757 if (match_futex(&this->key, key)) {
c87e2837
IM
758 /*
759 * Another waiter already exists - bump up
760 * the refcount and return its pi_state:
761 */
762 pi_state = this->pi_state;
06a9ec29 763 /*
fb62db2b 764 * Userspace might have messed up non-PI and PI futexes
06a9ec29
TG
765 */
766 if (unlikely(!pi_state))
767 return -EINVAL;
768
627371d7 769 WARN_ON(!atomic_read(&pi_state->refcount));
59647b6a
TG
770
771 /*
772 * When pi_state->owner is NULL then the owner died
773 * and another waiter is on the fly. pi_state->owner
774 * is fixed up by the task which acquires
775 * pi_state->rt_mutex.
776 *
777 * We do not check for pid == 0 which can happen when
778 * the owner died and robust_list_exit() cleared the
779 * TID.
780 */
781 if (pid && pi_state->owner) {
782 /*
783 * Bail out if user space manipulated the
784 * futex value.
785 */
786 if (pid != task_pid_vnr(pi_state->owner))
787 return -EINVAL;
788 }
627371d7 789
866293ee
TG
790 /*
791 * Protect against a corrupted uval. If uval
792 * is 0x80000000 then pid is 0 and the waiter
793 * bit is set. So the deadlock check in the
794 * calling code has failed and we did not fall
795 * into the check above due to !pid.
796 */
797 if (task && pi_state->owner == task)
798 return -EDEADLK;
799
c87e2837 800 atomic_inc(&pi_state->refcount);
d0aa7a70 801 *ps = pi_state;
c87e2837
IM
802
803 return 0;
804 }
805 }
806
807 /*
e3f2ddea 808 * We are the first waiter - try to look up the real owner and attach
778e9a9c 809 * the new pi_state to it, but bail out when TID = 0
c87e2837 810 */
778e9a9c 811 if (!pid)
e3f2ddea 812 return -ESRCH;
c87e2837 813 p = futex_find_get_task(pid);
7a0ea09a
MH
814 if (!p)
815 return -ESRCH;
778e9a9c 816
f0d71b3d
TG
817 if (!p->mm) {
818 put_task_struct(p);
819 return -EPERM;
820 }
821
778e9a9c
AK
822 /*
823 * We need to look at the task state flags to figure out,
824 * whether the task is exiting. To protect against the do_exit
825 * change of the task flags, we do this protected by
826 * p->pi_lock:
827 */
1d615482 828 raw_spin_lock_irq(&p->pi_lock);
778e9a9c
AK
829 if (unlikely(p->flags & PF_EXITING)) {
830 /*
831 * The task is on the way out. When PF_EXITPIDONE is
832 * set, we know that the task has finished the
833 * cleanup:
834 */
835 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
836
1d615482 837 raw_spin_unlock_irq(&p->pi_lock);
778e9a9c
AK
838 put_task_struct(p);
839 return ret;
840 }
c87e2837
IM
841
842 pi_state = alloc_pi_state();
843
844 /*
845 * Initialize the pi_mutex in locked state and make 'p'
846 * the owner of it:
847 */
848 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
849
850 /* Store the key for possible exit cleanups: */
d0aa7a70 851 pi_state->key = *key;
c87e2837 852
627371d7 853 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
854 list_add(&pi_state->list, &p->pi_state_list);
855 pi_state->owner = p;
1d615482 856 raw_spin_unlock_irq(&p->pi_lock);
c87e2837
IM
857
858 put_task_struct(p);
859
d0aa7a70 860 *ps = pi_state;
c87e2837
IM
861
862 return 0;
863}
864
1a52084d 865/**
d96ee56c 866 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
bab5bc9e
DH
867 * @uaddr: the pi futex user address
868 * @hb: the pi futex hash bucket
869 * @key: the futex key associated with uaddr and hb
870 * @ps: the pi_state pointer where we store the result of the
871 * lookup
872 * @task: the task to perform the atomic lock work for. This will
873 * be "current" except in the case of requeue pi.
874 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1a52084d 875 *
6c23cbbd
RD
876 * Return:
877 * 0 - ready to wait;
878 * 1 - acquired the lock;
1a52084d
DH
879 * <0 - error
880 *
881 * The hb->lock and futex_key refs shall be held by the caller.
882 */
883static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
884 union futex_key *key,
885 struct futex_pi_state **ps,
bab5bc9e 886 struct task_struct *task, int set_waiters)
1a52084d 887{
59fa6245 888 int lock_taken, ret, force_take = 0;
c0c9ed15 889 u32 uval, newval, curval, vpid = task_pid_vnr(task);
1a52084d
DH
890
891retry:
892 ret = lock_taken = 0;
893
894 /*
895 * To avoid races, we attempt to take the lock here again
896 * (by doing a 0 -> TID atomic cmpxchg), while holding all
897 * the locks. It will most likely not succeed.
898 */
c0c9ed15 899 newval = vpid;
bab5bc9e
DH
900 if (set_waiters)
901 newval |= FUTEX_WAITERS;
1a52084d 902
37a9d912 903 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, 0, newval)))
1a52084d
DH
904 return -EFAULT;
905
906 /*
907 * Detect deadlocks.
908 */
c0c9ed15 909 if ((unlikely((curval & FUTEX_TID_MASK) == vpid)))
1a52084d
DH
910 return -EDEADLK;
911
912 /*
913 * Surprise - we got the lock. Just return to userspace:
914 */
915 if (unlikely(!curval))
916 return 1;
917
918 uval = curval;
919
920 /*
921 * Set the FUTEX_WAITERS flag, so the owner will know it has someone
922 * to wake at the next unlock.
923 */
924 newval = curval | FUTEX_WAITERS;
925
926 /*
59fa6245 927 * Should we force take the futex? See below.
1a52084d 928 */
59fa6245
TG
929 if (unlikely(force_take)) {
930 /*
931 * Keep the OWNER_DIED and the WAITERS bit and set the
932 * new TID value.
933 */
c0c9ed15 934 newval = (curval & ~FUTEX_TID_MASK) | vpid;
59fa6245 935 force_take = 0;
1a52084d
DH
936 lock_taken = 1;
937 }
938
37a9d912 939 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
1a52084d
DH
940 return -EFAULT;
941 if (unlikely(curval != uval))
942 goto retry;
943
944 /*
59fa6245 945 * We took the lock due to forced take over.
1a52084d
DH
946 */
947 if (unlikely(lock_taken))
948 return 1;
949
950 /*
951 * We dont have the lock. Look up the PI state (or create it if
952 * we are the first waiter):
953 */
866293ee 954 ret = lookup_pi_state(uval, hb, key, ps, task);
1a52084d
DH
955
956 if (unlikely(ret)) {
957 switch (ret) {
958 case -ESRCH:
959 /*
59fa6245
TG
960 * We failed to find an owner for this
961 * futex. So we have no pi_state to block
962 * on. This can happen in two cases:
963 *
964 * 1) The owner died
965 * 2) A stale FUTEX_WAITERS bit
966 *
967 * Re-read the futex value.
1a52084d
DH
968 */
969 if (get_futex_value_locked(&curval, uaddr))
970 return -EFAULT;
971
972 /*
59fa6245
TG
973 * If the owner died or we have a stale
974 * WAITERS bit the owner TID in the user space
975 * futex is 0.
1a52084d 976 */
59fa6245
TG
977 if (!(curval & FUTEX_TID_MASK)) {
978 force_take = 1;
1a52084d
DH
979 goto retry;
980 }
981 default:
982 break;
983 }
984 }
985
986 return ret;
987}
988
2e12978a
LJ
989/**
990 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
991 * @q: The futex_q to unqueue
992 *
993 * The q->lock_ptr must not be NULL and must be held by the caller.
994 */
995static void __unqueue_futex(struct futex_q *q)
996{
997 struct futex_hash_bucket *hb;
998
29096202
SR
999 if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
1000 || WARN_ON(plist_node_empty(&q->list)))
2e12978a
LJ
1001 return;
1002
1003 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1004 plist_del(&q->list, &hb->chain);
11d4616b 1005 hb_waiters_dec(hb);
2e12978a
LJ
1006}
1007
1da177e4
LT
1008/*
1009 * The hash bucket lock must be held when this is called.
1010 * Afterwards, the futex_q must not be accessed.
1011 */
1012static void wake_futex(struct futex_q *q)
1013{
f1a11e05
TG
1014 struct task_struct *p = q->task;
1015
aa10990e
DH
1016 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1017 return;
1018
1da177e4 1019 /*
f1a11e05 1020 * We set q->lock_ptr = NULL _before_ we wake up the task. If
fb62db2b
RD
1021 * a non-futex wake up happens on another CPU then the task
1022 * might exit and p would dereference a non-existing task
f1a11e05
TG
1023 * struct. Prevent this by holding a reference on p across the
1024 * wake up.
1da177e4 1025 */
f1a11e05
TG
1026 get_task_struct(p);
1027
2e12978a 1028 __unqueue_futex(q);
1da177e4 1029 /*
f1a11e05
TG
1030 * The waiting task can free the futex_q as soon as
1031 * q->lock_ptr = NULL is written, without taking any locks. A
1032 * memory barrier is required here to prevent the following
1033 * store to lock_ptr from getting ahead of the plist_del.
1da177e4 1034 */
ccdea2f8 1035 smp_wmb();
1da177e4 1036 q->lock_ptr = NULL;
f1a11e05
TG
1037
1038 wake_up_state(p, TASK_NORMAL);
1039 put_task_struct(p);
1da177e4
LT
1040}
1041
c87e2837
IM
1042static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
1043{
1044 struct task_struct *new_owner;
1045 struct futex_pi_state *pi_state = this->pi_state;
7cfdaf38 1046 u32 uninitialized_var(curval), newval;
c87e2837
IM
1047
1048 if (!pi_state)
1049 return -EINVAL;
1050
51246bfd
TG
1051 /*
1052 * If current does not own the pi_state then the futex is
1053 * inconsistent and user space fiddled with the futex value.
1054 */
1055 if (pi_state->owner != current)
1056 return -EINVAL;
1057
d209d74d 1058 raw_spin_lock(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
1059 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1060
1061 /*
f123c98e
SR
1062 * It is possible that the next waiter (the one that brought
1063 * this owner to the kernel) timed out and is no longer
1064 * waiting on the lock.
c87e2837
IM
1065 */
1066 if (!new_owner)
1067 new_owner = this->task;
1068
1069 /*
1070 * We pass it to the next owner. (The WAITERS bit is always
1071 * kept enabled while there is PI state around. We must also
1072 * preserve the owner died bit.)
1073 */
e3f2ddea 1074 if (!(uval & FUTEX_OWNER_DIED)) {
778e9a9c
AK
1075 int ret = 0;
1076
b488893a 1077 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
e3f2ddea 1078
37a9d912 1079 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
778e9a9c 1080 ret = -EFAULT;
cde898fa 1081 else if (curval != uval)
778e9a9c
AK
1082 ret = -EINVAL;
1083 if (ret) {
d209d74d 1084 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
778e9a9c
AK
1085 return ret;
1086 }
e3f2ddea 1087 }
c87e2837 1088
1d615482 1089 raw_spin_lock_irq(&pi_state->owner->pi_lock);
627371d7
IM
1090 WARN_ON(list_empty(&pi_state->list));
1091 list_del_init(&pi_state->list);
1d615482 1092 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
627371d7 1093
1d615482 1094 raw_spin_lock_irq(&new_owner->pi_lock);
627371d7 1095 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
1096 list_add(&pi_state->list, &new_owner->pi_state_list);
1097 pi_state->owner = new_owner;
1d615482 1098 raw_spin_unlock_irq(&new_owner->pi_lock);
627371d7 1099
d209d74d 1100 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
1101 rt_mutex_unlock(&pi_state->pi_mutex);
1102
1103 return 0;
1104}
1105
1106static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
1107{
7cfdaf38 1108 u32 uninitialized_var(oldval);
c87e2837
IM
1109
1110 /*
1111 * There is no waiter, so we unlock the futex. The owner died
1112 * bit has not to be preserved here. We are the owner:
1113 */
37a9d912
ML
1114 if (cmpxchg_futex_value_locked(&oldval, uaddr, uval, 0))
1115 return -EFAULT;
c87e2837
IM
1116 if (oldval != uval)
1117 return -EAGAIN;
1118
1119 return 0;
1120}
1121
8b8f319f
IM
1122/*
1123 * Express the locking dependencies for lockdep:
1124 */
1125static inline void
1126double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1127{
1128 if (hb1 <= hb2) {
1129 spin_lock(&hb1->lock);
1130 if (hb1 < hb2)
1131 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1132 } else { /* hb1 > hb2 */
1133 spin_lock(&hb2->lock);
1134 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1135 }
1136}
1137
5eb3dc62
DH
1138static inline void
1139double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1140{
f061d351 1141 spin_unlock(&hb1->lock);
88f502fe
IM
1142 if (hb1 != hb2)
1143 spin_unlock(&hb2->lock);
5eb3dc62
DH
1144}
1145
1da177e4 1146/*
b2d0994b 1147 * Wake up waiters matching bitset queued on this futex (uaddr).
1da177e4 1148 */
b41277dc
DH
1149static int
1150futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1da177e4 1151{
e2970f2f 1152 struct futex_hash_bucket *hb;
1da177e4 1153 struct futex_q *this, *next;
38d47c1b 1154 union futex_key key = FUTEX_KEY_INIT;
1da177e4
LT
1155 int ret;
1156
cd689985
TG
1157 if (!bitset)
1158 return -EINVAL;
1159
9ea71503 1160 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1da177e4
LT
1161 if (unlikely(ret != 0))
1162 goto out;
1163
e2970f2f 1164 hb = hash_futex(&key);
b0c29f79
DB
1165
1166 /* Make sure we really have tasks to wakeup */
1167 if (!hb_waiters_pending(hb))
1168 goto out_put_key;
1169
e2970f2f 1170 spin_lock(&hb->lock);
1da177e4 1171
0d00c7b2 1172 plist_for_each_entry_safe(this, next, &hb->chain, list) {
1da177e4 1173 if (match_futex (&this->key, &key)) {
52400ba9 1174 if (this->pi_state || this->rt_waiter) {
ed6f7b10
IM
1175 ret = -EINVAL;
1176 break;
1177 }
cd689985
TG
1178
1179 /* Check if one of the bits is set in both bitsets */
1180 if (!(this->bitset & bitset))
1181 continue;
1182
1da177e4
LT
1183 wake_futex(this);
1184 if (++ret >= nr_wake)
1185 break;
1186 }
1187 }
1188
e2970f2f 1189 spin_unlock(&hb->lock);
b0c29f79 1190out_put_key:
ae791a2d 1191 put_futex_key(&key);
42d35d48 1192out:
1da177e4
LT
1193 return ret;
1194}
1195
4732efbe
JJ
1196/*
1197 * Wake up all waiters hashed on the physical page that is mapped
1198 * to this virtual address:
1199 */
e2970f2f 1200static int
b41277dc 1201futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
e2970f2f 1202 int nr_wake, int nr_wake2, int op)
4732efbe 1203{
38d47c1b 1204 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
e2970f2f 1205 struct futex_hash_bucket *hb1, *hb2;
4732efbe 1206 struct futex_q *this, *next;
e4dc5b7a 1207 int ret, op_ret;
4732efbe 1208
e4dc5b7a 1209retry:
9ea71503 1210 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
4732efbe
JJ
1211 if (unlikely(ret != 0))
1212 goto out;
9ea71503 1213 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
4732efbe 1214 if (unlikely(ret != 0))
42d35d48 1215 goto out_put_key1;
4732efbe 1216
e2970f2f
IM
1217 hb1 = hash_futex(&key1);
1218 hb2 = hash_futex(&key2);
4732efbe 1219
e4dc5b7a 1220retry_private:
eaaea803 1221 double_lock_hb(hb1, hb2);
e2970f2f 1222 op_ret = futex_atomic_op_inuser(op, uaddr2);
4732efbe 1223 if (unlikely(op_ret < 0)) {
4732efbe 1224
5eb3dc62 1225 double_unlock_hb(hb1, hb2);
4732efbe 1226
7ee1dd3f 1227#ifndef CONFIG_MMU
e2970f2f
IM
1228 /*
1229 * we don't get EFAULT from MMU faults if we don't have an MMU,
1230 * but we might get them from range checking
1231 */
7ee1dd3f 1232 ret = op_ret;
42d35d48 1233 goto out_put_keys;
7ee1dd3f
DH
1234#endif
1235
796f8d9b
DG
1236 if (unlikely(op_ret != -EFAULT)) {
1237 ret = op_ret;
42d35d48 1238 goto out_put_keys;
796f8d9b
DG
1239 }
1240
d0725992 1241 ret = fault_in_user_writeable(uaddr2);
4732efbe 1242 if (ret)
de87fcc1 1243 goto out_put_keys;
4732efbe 1244
b41277dc 1245 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
1246 goto retry_private;
1247
ae791a2d
TG
1248 put_futex_key(&key2);
1249 put_futex_key(&key1);
e4dc5b7a 1250 goto retry;
4732efbe
JJ
1251 }
1252
0d00c7b2 1253 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
4732efbe 1254 if (match_futex (&this->key, &key1)) {
aa10990e
DH
1255 if (this->pi_state || this->rt_waiter) {
1256 ret = -EINVAL;
1257 goto out_unlock;
1258 }
4732efbe
JJ
1259 wake_futex(this);
1260 if (++ret >= nr_wake)
1261 break;
1262 }
1263 }
1264
1265 if (op_ret > 0) {
4732efbe 1266 op_ret = 0;
0d00c7b2 1267 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
4732efbe 1268 if (match_futex (&this->key, &key2)) {
aa10990e
DH
1269 if (this->pi_state || this->rt_waiter) {
1270 ret = -EINVAL;
1271 goto out_unlock;
1272 }
4732efbe
JJ
1273 wake_futex(this);
1274 if (++op_ret >= nr_wake2)
1275 break;
1276 }
1277 }
1278 ret += op_ret;
1279 }
1280
aa10990e 1281out_unlock:
5eb3dc62 1282 double_unlock_hb(hb1, hb2);
42d35d48 1283out_put_keys:
ae791a2d 1284 put_futex_key(&key2);
42d35d48 1285out_put_key1:
ae791a2d 1286 put_futex_key(&key1);
42d35d48 1287out:
4732efbe
JJ
1288 return ret;
1289}
1290
9121e478
DH
1291/**
1292 * requeue_futex() - Requeue a futex_q from one hb to another
1293 * @q: the futex_q to requeue
1294 * @hb1: the source hash_bucket
1295 * @hb2: the target hash_bucket
1296 * @key2: the new key for the requeued futex_q
1297 */
1298static inline
1299void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1300 struct futex_hash_bucket *hb2, union futex_key *key2)
1301{
1302
1303 /*
1304 * If key1 and key2 hash to the same bucket, no need to
1305 * requeue.
1306 */
1307 if (likely(&hb1->chain != &hb2->chain)) {
1308 plist_del(&q->list, &hb1->chain);
11d4616b 1309 hb_waiters_dec(hb1);
9121e478 1310 plist_add(&q->list, &hb2->chain);
11d4616b 1311 hb_waiters_inc(hb2);
9121e478 1312 q->lock_ptr = &hb2->lock;
9121e478
DH
1313 }
1314 get_futex_key_refs(key2);
1315 q->key = *key2;
1316}
1317
52400ba9
DH
1318/**
1319 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
d96ee56c
DH
1320 * @q: the futex_q
1321 * @key: the key of the requeue target futex
1322 * @hb: the hash_bucket of the requeue target futex
52400ba9
DH
1323 *
1324 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1325 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1326 * to the requeue target futex so the waiter can detect the wakeup on the right
1327 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
beda2c7e
DH
1328 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1329 * to protect access to the pi_state to fixup the owner later. Must be called
1330 * with both q->lock_ptr and hb->lock held.
52400ba9
DH
1331 */
1332static inline
beda2c7e
DH
1333void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1334 struct futex_hash_bucket *hb)
52400ba9 1335{
52400ba9
DH
1336 get_futex_key_refs(key);
1337 q->key = *key;
1338
2e12978a 1339 __unqueue_futex(q);
52400ba9
DH
1340
1341 WARN_ON(!q->rt_waiter);
1342 q->rt_waiter = NULL;
1343
beda2c7e 1344 q->lock_ptr = &hb->lock;
beda2c7e 1345
f1a11e05 1346 wake_up_state(q->task, TASK_NORMAL);
52400ba9
DH
1347}
1348
1349/**
1350 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
bab5bc9e
DH
1351 * @pifutex: the user address of the to futex
1352 * @hb1: the from futex hash bucket, must be locked by the caller
1353 * @hb2: the to futex hash bucket, must be locked by the caller
1354 * @key1: the from futex key
1355 * @key2: the to futex key
1356 * @ps: address to store the pi_state pointer
1357 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
52400ba9
DH
1358 *
1359 * Try and get the lock on behalf of the top waiter if we can do it atomically.
bab5bc9e
DH
1360 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1361 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1362 * hb1 and hb2 must be held by the caller.
52400ba9 1363 *
6c23cbbd
RD
1364 * Return:
1365 * 0 - failed to acquire the lock atomically;
866293ee 1366 * >0 - acquired the lock, return value is vpid of the top_waiter
52400ba9
DH
1367 * <0 - error
1368 */
1369static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1370 struct futex_hash_bucket *hb1,
1371 struct futex_hash_bucket *hb2,
1372 union futex_key *key1, union futex_key *key2,
bab5bc9e 1373 struct futex_pi_state **ps, int set_waiters)
52400ba9 1374{
bab5bc9e 1375 struct futex_q *top_waiter = NULL;
52400ba9 1376 u32 curval;
866293ee 1377 int ret, vpid;
52400ba9
DH
1378
1379 if (get_futex_value_locked(&curval, pifutex))
1380 return -EFAULT;
1381
bab5bc9e
DH
1382 /*
1383 * Find the top_waiter and determine if there are additional waiters.
1384 * If the caller intends to requeue more than 1 waiter to pifutex,
1385 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1386 * as we have means to handle the possible fault. If not, don't set
1387 * the bit unecessarily as it will force the subsequent unlock to enter
1388 * the kernel.
1389 */
52400ba9
DH
1390 top_waiter = futex_top_waiter(hb1, key1);
1391
1392 /* There are no waiters, nothing for us to do. */
1393 if (!top_waiter)
1394 return 0;
1395
84bc4af5
DH
1396 /* Ensure we requeue to the expected futex. */
1397 if (!match_futex(top_waiter->requeue_pi_key, key2))
1398 return -EINVAL;
1399
52400ba9 1400 /*
bab5bc9e
DH
1401 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1402 * the contended case or if set_waiters is 1. The pi_state is returned
1403 * in ps in contended cases.
52400ba9 1404 */
866293ee 1405 vpid = task_pid_vnr(top_waiter->task);
bab5bc9e
DH
1406 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1407 set_waiters);
866293ee 1408 if (ret == 1) {
beda2c7e 1409 requeue_pi_wake_futex(top_waiter, key2, hb2);
866293ee
TG
1410 return vpid;
1411 }
52400ba9
DH
1412 return ret;
1413}
1414
1415/**
1416 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
fb62db2b 1417 * @uaddr1: source futex user address
b41277dc 1418 * @flags: futex flags (FLAGS_SHARED, etc.)
fb62db2b
RD
1419 * @uaddr2: target futex user address
1420 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1421 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1422 * @cmpval: @uaddr1 expected value (or %NULL)
1423 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
b41277dc 1424 * pi futex (pi to pi requeue is not supported)
52400ba9
DH
1425 *
1426 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1427 * uaddr2 atomically on behalf of the top waiter.
1428 *
6c23cbbd
RD
1429 * Return:
1430 * >=0 - on success, the number of tasks requeued or woken;
52400ba9 1431 * <0 - on error
1da177e4 1432 */
b41277dc
DH
1433static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1434 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1435 u32 *cmpval, int requeue_pi)
1da177e4 1436{
38d47c1b 1437 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
52400ba9
DH
1438 int drop_count = 0, task_count = 0, ret;
1439 struct futex_pi_state *pi_state = NULL;
e2970f2f 1440 struct futex_hash_bucket *hb1, *hb2;
1da177e4 1441 struct futex_q *this, *next;
52400ba9
DH
1442
1443 if (requeue_pi) {
1444 /*
1445 * requeue_pi requires a pi_state, try to allocate it now
1446 * without any locks in case it fails.
1447 */
1448 if (refill_pi_state_cache())
1449 return -ENOMEM;
1450 /*
1451 * requeue_pi must wake as many tasks as it can, up to nr_wake
1452 * + nr_requeue, since it acquires the rt_mutex prior to
1453 * returning to userspace, so as to not leave the rt_mutex with
1454 * waiters and no owner. However, second and third wake-ups
1455 * cannot be predicted as they involve race conditions with the
1456 * first wake and a fault while looking up the pi_state. Both
1457 * pthread_cond_signal() and pthread_cond_broadcast() should
1458 * use nr_wake=1.
1459 */
1460 if (nr_wake != 1)
1461 return -EINVAL;
1462 }
1da177e4 1463
42d35d48 1464retry:
52400ba9
DH
1465 if (pi_state != NULL) {
1466 /*
1467 * We will have to lookup the pi_state again, so free this one
1468 * to keep the accounting correct.
1469 */
1470 free_pi_state(pi_state);
1471 pi_state = NULL;
1472 }
1473
9ea71503 1474 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1da177e4
LT
1475 if (unlikely(ret != 0))
1476 goto out;
9ea71503
SB
1477 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1478 requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1da177e4 1479 if (unlikely(ret != 0))
42d35d48 1480 goto out_put_key1;
1da177e4 1481
e2970f2f
IM
1482 hb1 = hash_futex(&key1);
1483 hb2 = hash_futex(&key2);
1da177e4 1484
e4dc5b7a 1485retry_private:
69cd9eba 1486 hb_waiters_inc(hb2);
8b8f319f 1487 double_lock_hb(hb1, hb2);
1da177e4 1488
e2970f2f
IM
1489 if (likely(cmpval != NULL)) {
1490 u32 curval;
1da177e4 1491
e2970f2f 1492 ret = get_futex_value_locked(&curval, uaddr1);
1da177e4
LT
1493
1494 if (unlikely(ret)) {
5eb3dc62 1495 double_unlock_hb(hb1, hb2);
69cd9eba 1496 hb_waiters_dec(hb2);
1da177e4 1497
e2970f2f 1498 ret = get_user(curval, uaddr1);
e4dc5b7a
DH
1499 if (ret)
1500 goto out_put_keys;
1da177e4 1501
b41277dc 1502 if (!(flags & FLAGS_SHARED))
e4dc5b7a 1503 goto retry_private;
1da177e4 1504
ae791a2d
TG
1505 put_futex_key(&key2);
1506 put_futex_key(&key1);
e4dc5b7a 1507 goto retry;
1da177e4 1508 }
e2970f2f 1509 if (curval != *cmpval) {
1da177e4
LT
1510 ret = -EAGAIN;
1511 goto out_unlock;
1512 }
1513 }
1514
52400ba9 1515 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
bab5bc9e
DH
1516 /*
1517 * Attempt to acquire uaddr2 and wake the top waiter. If we
1518 * intend to requeue waiters, force setting the FUTEX_WAITERS
1519 * bit. We force this here where we are able to easily handle
1520 * faults rather in the requeue loop below.
1521 */
52400ba9 1522 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
bab5bc9e 1523 &key2, &pi_state, nr_requeue);
52400ba9
DH
1524
1525 /*
1526 * At this point the top_waiter has either taken uaddr2 or is
1527 * waiting on it. If the former, then the pi_state will not
1528 * exist yet, look it up one more time to ensure we have a
866293ee
TG
1529 * reference to it. If the lock was taken, ret contains the
1530 * vpid of the top waiter task.
52400ba9 1531 */
866293ee 1532 if (ret > 0) {
52400ba9 1533 WARN_ON(pi_state);
89061d3d 1534 drop_count++;
52400ba9 1535 task_count++;
866293ee
TG
1536 /*
1537 * If we acquired the lock, then the user
1538 * space value of uaddr2 should be vpid. It
1539 * cannot be changed by the top waiter as it
1540 * is blocked on hb2 lock if it tries to do
1541 * so. If something fiddled with it behind our
1542 * back the pi state lookup might unearth
1543 * it. So we rather use the known value than
1544 * rereading and handing potential crap to
1545 * lookup_pi_state.
1546 */
1547 ret = lookup_pi_state(ret, hb2, &key2, &pi_state, NULL);
52400ba9
DH
1548 }
1549
1550 switch (ret) {
1551 case 0:
1552 break;
1553 case -EFAULT:
1554 double_unlock_hb(hb1, hb2);
69cd9eba 1555 hb_waiters_dec(hb2);
ae791a2d
TG
1556 put_futex_key(&key2);
1557 put_futex_key(&key1);
d0725992 1558 ret = fault_in_user_writeable(uaddr2);
52400ba9
DH
1559 if (!ret)
1560 goto retry;
1561 goto out;
1562 case -EAGAIN:
1563 /* The owner was exiting, try again. */
1564 double_unlock_hb(hb1, hb2);
69cd9eba 1565 hb_waiters_dec(hb2);
ae791a2d
TG
1566 put_futex_key(&key2);
1567 put_futex_key(&key1);
52400ba9
DH
1568 cond_resched();
1569 goto retry;
1570 default:
1571 goto out_unlock;
1572 }
1573 }
1574
0d00c7b2 1575 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
52400ba9
DH
1576 if (task_count - nr_wake >= nr_requeue)
1577 break;
1578
1579 if (!match_futex(&this->key, &key1))
1da177e4 1580 continue;
52400ba9 1581
392741e0
DH
1582 /*
1583 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1584 * be paired with each other and no other futex ops.
aa10990e
DH
1585 *
1586 * We should never be requeueing a futex_q with a pi_state,
1587 * which is awaiting a futex_unlock_pi().
392741e0
DH
1588 */
1589 if ((requeue_pi && !this->rt_waiter) ||
aa10990e
DH
1590 (!requeue_pi && this->rt_waiter) ||
1591 this->pi_state) {
392741e0
DH
1592 ret = -EINVAL;
1593 break;
1594 }
52400ba9
DH
1595
1596 /*
1597 * Wake nr_wake waiters. For requeue_pi, if we acquired the
1598 * lock, we already woke the top_waiter. If not, it will be
1599 * woken by futex_unlock_pi().
1600 */
1601 if (++task_count <= nr_wake && !requeue_pi) {
1da177e4 1602 wake_futex(this);
52400ba9
DH
1603 continue;
1604 }
1da177e4 1605
84bc4af5
DH
1606 /* Ensure we requeue to the expected futex for requeue_pi. */
1607 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1608 ret = -EINVAL;
1609 break;
1610 }
1611
52400ba9
DH
1612 /*
1613 * Requeue nr_requeue waiters and possibly one more in the case
1614 * of requeue_pi if we couldn't acquire the lock atomically.
1615 */
1616 if (requeue_pi) {
1617 /* Prepare the waiter to take the rt_mutex. */
1618 atomic_inc(&pi_state->refcount);
1619 this->pi_state = pi_state;
1620 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1621 this->rt_waiter,
1622 this->task, 1);
1623 if (ret == 1) {
1624 /* We got the lock. */
beda2c7e 1625 requeue_pi_wake_futex(this, &key2, hb2);
89061d3d 1626 drop_count++;
52400ba9
DH
1627 continue;
1628 } else if (ret) {
1629 /* -EDEADLK */
1630 this->pi_state = NULL;
1631 free_pi_state(pi_state);
1632 goto out_unlock;
1633 }
1da177e4 1634 }
52400ba9
DH
1635 requeue_futex(this, hb1, hb2, &key2);
1636 drop_count++;
1da177e4
LT
1637 }
1638
1639out_unlock:
5eb3dc62 1640 double_unlock_hb(hb1, hb2);
69cd9eba 1641 hb_waiters_dec(hb2);
1da177e4 1642
cd84a42f
DH
1643 /*
1644 * drop_futex_key_refs() must be called outside the spinlocks. During
1645 * the requeue we moved futex_q's from the hash bucket at key1 to the
1646 * one at key2 and updated their key pointer. We no longer need to
1647 * hold the references to key1.
1648 */
1da177e4 1649 while (--drop_count >= 0)
9adef58b 1650 drop_futex_key_refs(&key1);
1da177e4 1651
42d35d48 1652out_put_keys:
ae791a2d 1653 put_futex_key(&key2);
42d35d48 1654out_put_key1:
ae791a2d 1655 put_futex_key(&key1);
42d35d48 1656out:
52400ba9
DH
1657 if (pi_state != NULL)
1658 free_pi_state(pi_state);
1659 return ret ? ret : task_count;
1da177e4
LT
1660}
1661
1662/* The key must be already stored in q->key. */
82af7aca 1663static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
15e408cd 1664 __acquires(&hb->lock)
1da177e4 1665{
e2970f2f 1666 struct futex_hash_bucket *hb;
1da177e4 1667
e2970f2f 1668 hb = hash_futex(&q->key);
11d4616b
LT
1669
1670 /*
1671 * Increment the counter before taking the lock so that
1672 * a potential waker won't miss a to-be-slept task that is
1673 * waiting for the spinlock. This is safe as all queue_lock()
1674 * users end up calling queue_me(). Similarly, for housekeeping,
1675 * decrement the counter at queue_unlock() when some error has
1676 * occurred and we don't end up adding the task to the list.
1677 */
1678 hb_waiters_inc(hb);
1679
e2970f2f 1680 q->lock_ptr = &hb->lock;
1da177e4 1681
b0c29f79 1682 spin_lock(&hb->lock); /* implies MB (A) */
e2970f2f 1683 return hb;
1da177e4
LT
1684}
1685
d40d65c8 1686static inline void
0d00c7b2 1687queue_unlock(struct futex_hash_bucket *hb)
15e408cd 1688 __releases(&hb->lock)
d40d65c8
DH
1689{
1690 spin_unlock(&hb->lock);
11d4616b 1691 hb_waiters_dec(hb);
d40d65c8
DH
1692}
1693
1694/**
1695 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1696 * @q: The futex_q to enqueue
1697 * @hb: The destination hash bucket
1698 *
1699 * The hb->lock must be held by the caller, and is released here. A call to
1700 * queue_me() is typically paired with exactly one call to unqueue_me(). The
1701 * exceptions involve the PI related operations, which may use unqueue_me_pi()
1702 * or nothing if the unqueue is done as part of the wake process and the unqueue
1703 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1704 * an example).
1705 */
82af7aca 1706static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
15e408cd 1707 __releases(&hb->lock)
1da177e4 1708{
ec92d082
PP
1709 int prio;
1710
1711 /*
1712 * The priority used to register this element is
1713 * - either the real thread-priority for the real-time threads
1714 * (i.e. threads with a priority lower than MAX_RT_PRIO)
1715 * - or MAX_RT_PRIO for non-RT threads.
1716 * Thus, all RT-threads are woken first in priority order, and
1717 * the others are woken last, in FIFO order.
1718 */
1719 prio = min(current->normal_prio, MAX_RT_PRIO);
1720
1721 plist_node_init(&q->list, prio);
ec92d082 1722 plist_add(&q->list, &hb->chain);
c87e2837 1723 q->task = current;
e2970f2f 1724 spin_unlock(&hb->lock);
1da177e4
LT
1725}
1726
d40d65c8
DH
1727/**
1728 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1729 * @q: The futex_q to unqueue
1730 *
1731 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
1732 * be paired with exactly one earlier call to queue_me().
1733 *
6c23cbbd
RD
1734 * Return:
1735 * 1 - if the futex_q was still queued (and we removed unqueued it);
d40d65c8 1736 * 0 - if the futex_q was already removed by the waking thread
1da177e4 1737 */
1da177e4
LT
1738static int unqueue_me(struct futex_q *q)
1739{
1da177e4 1740 spinlock_t *lock_ptr;
e2970f2f 1741 int ret = 0;
1da177e4
LT
1742
1743 /* In the common case we don't take the spinlock, which is nice. */
42d35d48 1744retry:
1da177e4 1745 lock_ptr = q->lock_ptr;
e91467ec 1746 barrier();
c80544dc 1747 if (lock_ptr != NULL) {
1da177e4
LT
1748 spin_lock(lock_ptr);
1749 /*
1750 * q->lock_ptr can change between reading it and
1751 * spin_lock(), causing us to take the wrong lock. This
1752 * corrects the race condition.
1753 *
1754 * Reasoning goes like this: if we have the wrong lock,
1755 * q->lock_ptr must have changed (maybe several times)
1756 * between reading it and the spin_lock(). It can
1757 * change again after the spin_lock() but only if it was
1758 * already changed before the spin_lock(). It cannot,
1759 * however, change back to the original value. Therefore
1760 * we can detect whether we acquired the correct lock.
1761 */
1762 if (unlikely(lock_ptr != q->lock_ptr)) {
1763 spin_unlock(lock_ptr);
1764 goto retry;
1765 }
2e12978a 1766 __unqueue_futex(q);
c87e2837
IM
1767
1768 BUG_ON(q->pi_state);
1769
1da177e4
LT
1770 spin_unlock(lock_ptr);
1771 ret = 1;
1772 }
1773
9adef58b 1774 drop_futex_key_refs(&q->key);
1da177e4
LT
1775 return ret;
1776}
1777
c87e2837
IM
1778/*
1779 * PI futexes can not be requeued and must remove themself from the
d0aa7a70
PP
1780 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1781 * and dropped here.
c87e2837 1782 */
d0aa7a70 1783static void unqueue_me_pi(struct futex_q *q)
15e408cd 1784 __releases(q->lock_ptr)
c87e2837 1785{
2e12978a 1786 __unqueue_futex(q);
c87e2837
IM
1787
1788 BUG_ON(!q->pi_state);
1789 free_pi_state(q->pi_state);
1790 q->pi_state = NULL;
1791
d0aa7a70 1792 spin_unlock(q->lock_ptr);
c87e2837
IM
1793}
1794
d0aa7a70 1795/*
cdf71a10 1796 * Fixup the pi_state owner with the new owner.
d0aa7a70 1797 *
778e9a9c
AK
1798 * Must be called with hash bucket lock held and mm->sem held for non
1799 * private futexes.
d0aa7a70 1800 */
778e9a9c 1801static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
ae791a2d 1802 struct task_struct *newowner)
d0aa7a70 1803{
cdf71a10 1804 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
d0aa7a70 1805 struct futex_pi_state *pi_state = q->pi_state;
1b7558e4 1806 struct task_struct *oldowner = pi_state->owner;
7cfdaf38 1807 u32 uval, uninitialized_var(curval), newval;
e4dc5b7a 1808 int ret;
d0aa7a70
PP
1809
1810 /* Owner died? */
1b7558e4
TG
1811 if (!pi_state->owner)
1812 newtid |= FUTEX_OWNER_DIED;
1813
1814 /*
1815 * We are here either because we stole the rtmutex from the
8161239a
LJ
1816 * previous highest priority waiter or we are the highest priority
1817 * waiter but failed to get the rtmutex the first time.
1818 * We have to replace the newowner TID in the user space variable.
1819 * This must be atomic as we have to preserve the owner died bit here.
1b7558e4 1820 *
b2d0994b
DH
1821 * Note: We write the user space value _before_ changing the pi_state
1822 * because we can fault here. Imagine swapped out pages or a fork
1823 * that marked all the anonymous memory readonly for cow.
1b7558e4
TG
1824 *
1825 * Modifying pi_state _before_ the user space value would
1826 * leave the pi_state in an inconsistent state when we fault
1827 * here, because we need to drop the hash bucket lock to
1828 * handle the fault. This might be observed in the PID check
1829 * in lookup_pi_state.
1830 */
1831retry:
1832 if (get_futex_value_locked(&uval, uaddr))
1833 goto handle_fault;
1834
1835 while (1) {
1836 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1837
37a9d912 1838 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1b7558e4
TG
1839 goto handle_fault;
1840 if (curval == uval)
1841 break;
1842 uval = curval;
1843 }
1844
1845 /*
1846 * We fixed up user space. Now we need to fix the pi_state
1847 * itself.
1848 */
d0aa7a70 1849 if (pi_state->owner != NULL) {
1d615482 1850 raw_spin_lock_irq(&pi_state->owner->pi_lock);
d0aa7a70
PP
1851 WARN_ON(list_empty(&pi_state->list));
1852 list_del_init(&pi_state->list);
1d615482 1853 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1b7558e4 1854 }
d0aa7a70 1855
cdf71a10 1856 pi_state->owner = newowner;
d0aa7a70 1857
1d615482 1858 raw_spin_lock_irq(&newowner->pi_lock);
d0aa7a70 1859 WARN_ON(!list_empty(&pi_state->list));
cdf71a10 1860 list_add(&pi_state->list, &newowner->pi_state_list);
1d615482 1861 raw_spin_unlock_irq(&newowner->pi_lock);
1b7558e4 1862 return 0;
d0aa7a70 1863
d0aa7a70 1864 /*
1b7558e4 1865 * To handle the page fault we need to drop the hash bucket
8161239a
LJ
1866 * lock here. That gives the other task (either the highest priority
1867 * waiter itself or the task which stole the rtmutex) the
1b7558e4
TG
1868 * chance to try the fixup of the pi_state. So once we are
1869 * back from handling the fault we need to check the pi_state
1870 * after reacquiring the hash bucket lock and before trying to
1871 * do another fixup. When the fixup has been done already we
1872 * simply return.
d0aa7a70 1873 */
1b7558e4
TG
1874handle_fault:
1875 spin_unlock(q->lock_ptr);
778e9a9c 1876
d0725992 1877 ret = fault_in_user_writeable(uaddr);
778e9a9c 1878
1b7558e4 1879 spin_lock(q->lock_ptr);
778e9a9c 1880
1b7558e4
TG
1881 /*
1882 * Check if someone else fixed it for us:
1883 */
1884 if (pi_state->owner != oldowner)
1885 return 0;
1886
1887 if (ret)
1888 return ret;
1889
1890 goto retry;
d0aa7a70
PP
1891}
1892
72c1bbf3 1893static long futex_wait_restart(struct restart_block *restart);
36cf3b5c 1894
dd973998
DH
1895/**
1896 * fixup_owner() - Post lock pi_state and corner case management
1897 * @uaddr: user address of the futex
dd973998
DH
1898 * @q: futex_q (contains pi_state and access to the rt_mutex)
1899 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
1900 *
1901 * After attempting to lock an rt_mutex, this function is called to cleanup
1902 * the pi_state owner as well as handle race conditions that may allow us to
1903 * acquire the lock. Must be called with the hb lock held.
1904 *
6c23cbbd
RD
1905 * Return:
1906 * 1 - success, lock taken;
1907 * 0 - success, lock not taken;
dd973998
DH
1908 * <0 - on error (-EFAULT)
1909 */
ae791a2d 1910static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
dd973998
DH
1911{
1912 struct task_struct *owner;
1913 int ret = 0;
1914
1915 if (locked) {
1916 /*
1917 * Got the lock. We might not be the anticipated owner if we
1918 * did a lock-steal - fix up the PI-state in that case:
1919 */
1920 if (q->pi_state->owner != current)
ae791a2d 1921 ret = fixup_pi_state_owner(uaddr, q, current);
dd973998
DH
1922 goto out;
1923 }
1924
1925 /*
1926 * Catch the rare case, where the lock was released when we were on the
1927 * way back before we locked the hash bucket.
1928 */
1929 if (q->pi_state->owner == current) {
1930 /*
1931 * Try to get the rt_mutex now. This might fail as some other
1932 * task acquired the rt_mutex after we removed ourself from the
1933 * rt_mutex waiters list.
1934 */
1935 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
1936 locked = 1;
1937 goto out;
1938 }
1939
1940 /*
1941 * pi_state is incorrect, some other task did a lock steal and
1942 * we returned due to timeout or signal without taking the
8161239a 1943 * rt_mutex. Too late.
dd973998 1944 */
8161239a 1945 raw_spin_lock(&q->pi_state->pi_mutex.wait_lock);
dd973998 1946 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
8161239a
LJ
1947 if (!owner)
1948 owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
1949 raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock);
ae791a2d 1950 ret = fixup_pi_state_owner(uaddr, q, owner);
dd973998
DH
1951 goto out;
1952 }
1953
1954 /*
1955 * Paranoia check. If we did not take the lock, then we should not be
8161239a 1956 * the owner of the rt_mutex.
dd973998
DH
1957 */
1958 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
1959 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
1960 "pi-state %p\n", ret,
1961 q->pi_state->pi_mutex.owner,
1962 q->pi_state->owner);
1963
1964out:
1965 return ret ? ret : locked;
1966}
1967
ca5f9524
DH
1968/**
1969 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
1970 * @hb: the futex hash bucket, must be locked by the caller
1971 * @q: the futex_q to queue up on
1972 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
ca5f9524
DH
1973 */
1974static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
f1a11e05 1975 struct hrtimer_sleeper *timeout)
ca5f9524 1976{
9beba3c5
DH
1977 /*
1978 * The task state is guaranteed to be set before another task can
1979 * wake it. set_current_state() is implemented using set_mb() and
1980 * queue_me() calls spin_unlock() upon completion, both serializing
1981 * access to the hash list and forcing another memory barrier.
1982 */
f1a11e05 1983 set_current_state(TASK_INTERRUPTIBLE);
0729e196 1984 queue_me(q, hb);
ca5f9524
DH
1985
1986 /* Arm the timer */
1987 if (timeout) {
1988 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1989 if (!hrtimer_active(&timeout->timer))
1990 timeout->task = NULL;
1991 }
1992
1993 /*
0729e196
DH
1994 * If we have been removed from the hash list, then another task
1995 * has tried to wake us, and we can skip the call to schedule().
ca5f9524
DH
1996 */
1997 if (likely(!plist_node_empty(&q->list))) {
1998 /*
1999 * If the timer has already expired, current will already be
2000 * flagged for rescheduling. Only call schedule if there
2001 * is no timeout, or if it has yet to expire.
2002 */
2003 if (!timeout || timeout->task)
88c8004f 2004 freezable_schedule();
ca5f9524
DH
2005 }
2006 __set_current_state(TASK_RUNNING);
2007}
2008
f801073f
DH
2009/**
2010 * futex_wait_setup() - Prepare to wait on a futex
2011 * @uaddr: the futex userspace address
2012 * @val: the expected value
b41277dc 2013 * @flags: futex flags (FLAGS_SHARED, etc.)
f801073f
DH
2014 * @q: the associated futex_q
2015 * @hb: storage for hash_bucket pointer to be returned to caller
2016 *
2017 * Setup the futex_q and locate the hash_bucket. Get the futex value and
2018 * compare it with the expected value. Handle atomic faults internally.
2019 * Return with the hb lock held and a q.key reference on success, and unlocked
2020 * with no q.key reference on failure.
2021 *
6c23cbbd
RD
2022 * Return:
2023 * 0 - uaddr contains val and hb has been locked;
ca4a04cf 2024 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
f801073f 2025 */
b41277dc 2026static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
f801073f 2027 struct futex_q *q, struct futex_hash_bucket **hb)
1da177e4 2028{
e2970f2f
IM
2029 u32 uval;
2030 int ret;
1da177e4 2031
1da177e4 2032 /*
b2d0994b 2033 * Access the page AFTER the hash-bucket is locked.
1da177e4
LT
2034 * Order is important:
2035 *
2036 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2037 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
2038 *
2039 * The basic logical guarantee of a futex is that it blocks ONLY
2040 * if cond(var) is known to be true at the time of blocking, for
8fe8f545
ML
2041 * any cond. If we locked the hash-bucket after testing *uaddr, that
2042 * would open a race condition where we could block indefinitely with
1da177e4
LT
2043 * cond(var) false, which would violate the guarantee.
2044 *
8fe8f545
ML
2045 * On the other hand, we insert q and release the hash-bucket only
2046 * after testing *uaddr. This guarantees that futex_wait() will NOT
2047 * absorb a wakeup if *uaddr does not match the desired values
2048 * while the syscall executes.
1da177e4 2049 */
f801073f 2050retry:
9ea71503 2051 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
f801073f 2052 if (unlikely(ret != 0))
a5a2a0c7 2053 return ret;
f801073f
DH
2054
2055retry_private:
2056 *hb = queue_lock(q);
2057
e2970f2f 2058 ret = get_futex_value_locked(&uval, uaddr);
1da177e4 2059
f801073f 2060 if (ret) {
0d00c7b2 2061 queue_unlock(*hb);
1da177e4 2062
e2970f2f 2063 ret = get_user(uval, uaddr);
e4dc5b7a 2064 if (ret)
f801073f 2065 goto out;
1da177e4 2066
b41277dc 2067 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
2068 goto retry_private;
2069
ae791a2d 2070 put_futex_key(&q->key);
e4dc5b7a 2071 goto retry;
1da177e4 2072 }
ca5f9524 2073
f801073f 2074 if (uval != val) {
0d00c7b2 2075 queue_unlock(*hb);
f801073f 2076 ret = -EWOULDBLOCK;
2fff78c7 2077 }
1da177e4 2078
f801073f
DH
2079out:
2080 if (ret)
ae791a2d 2081 put_futex_key(&q->key);
f801073f
DH
2082 return ret;
2083}
2084
b41277dc
DH
2085static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2086 ktime_t *abs_time, u32 bitset)
f801073f
DH
2087{
2088 struct hrtimer_sleeper timeout, *to = NULL;
f801073f
DH
2089 struct restart_block *restart;
2090 struct futex_hash_bucket *hb;
5bdb05f9 2091 struct futex_q q = futex_q_init;
f801073f
DH
2092 int ret;
2093
2094 if (!bitset)
2095 return -EINVAL;
f801073f
DH
2096 q.bitset = bitset;
2097
2098 if (abs_time) {
2099 to = &timeout;
2100
b41277dc
DH
2101 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2102 CLOCK_REALTIME : CLOCK_MONOTONIC,
2103 HRTIMER_MODE_ABS);
f801073f
DH
2104 hrtimer_init_sleeper(to, current);
2105 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2106 current->timer_slack_ns);
2107 }
2108
d58e6576 2109retry:
7ada876a
DH
2110 /*
2111 * Prepare to wait on uaddr. On success, holds hb lock and increments
2112 * q.key refs.
2113 */
b41277dc 2114 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
f801073f
DH
2115 if (ret)
2116 goto out;
2117
ca5f9524 2118 /* queue_me and wait for wakeup, timeout, or a signal. */
f1a11e05 2119 futex_wait_queue_me(hb, &q, to);
1da177e4
LT
2120
2121 /* If we were woken (and unqueued), we succeeded, whatever. */
2fff78c7 2122 ret = 0;
7ada876a 2123 /* unqueue_me() drops q.key ref */
1da177e4 2124 if (!unqueue_me(&q))
7ada876a 2125 goto out;
2fff78c7 2126 ret = -ETIMEDOUT;
ca5f9524 2127 if (to && !to->task)
7ada876a 2128 goto out;
72c1bbf3 2129
e2970f2f 2130 /*
d58e6576
TG
2131 * We expect signal_pending(current), but we might be the
2132 * victim of a spurious wakeup as well.
e2970f2f 2133 */
7ada876a 2134 if (!signal_pending(current))
d58e6576 2135 goto retry;
d58e6576 2136
2fff78c7 2137 ret = -ERESTARTSYS;
c19384b5 2138 if (!abs_time)
7ada876a 2139 goto out;
1da177e4 2140
2fff78c7
PZ
2141 restart = &current_thread_info()->restart_block;
2142 restart->fn = futex_wait_restart;
a3c74c52 2143 restart->futex.uaddr = uaddr;
2fff78c7
PZ
2144 restart->futex.val = val;
2145 restart->futex.time = abs_time->tv64;
2146 restart->futex.bitset = bitset;
0cd9c649 2147 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
42d35d48 2148
2fff78c7
PZ
2149 ret = -ERESTART_RESTARTBLOCK;
2150
42d35d48 2151out:
ca5f9524
DH
2152 if (to) {
2153 hrtimer_cancel(&to->timer);
2154 destroy_hrtimer_on_stack(&to->timer);
2155 }
c87e2837
IM
2156 return ret;
2157}
2158
72c1bbf3
NP
2159
2160static long futex_wait_restart(struct restart_block *restart)
2161{
a3c74c52 2162 u32 __user *uaddr = restart->futex.uaddr;
a72188d8 2163 ktime_t t, *tp = NULL;
72c1bbf3 2164
a72188d8
DH
2165 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2166 t.tv64 = restart->futex.time;
2167 tp = &t;
2168 }
72c1bbf3 2169 restart->fn = do_no_restart_syscall;
b41277dc
DH
2170
2171 return (long)futex_wait(uaddr, restart->futex.flags,
2172 restart->futex.val, tp, restart->futex.bitset);
72c1bbf3
NP
2173}
2174
2175
c87e2837
IM
2176/*
2177 * Userspace tried a 0 -> TID atomic transition of the futex value
2178 * and failed. The kernel side here does the whole locking operation:
2179 * if there are waiters then it will block, it does PI, etc. (Due to
2180 * races the kernel might see a 0 value of the futex too.)
2181 */
b41277dc
DH
2182static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, int detect,
2183 ktime_t *time, int trylock)
c87e2837 2184{
c5780e97 2185 struct hrtimer_sleeper timeout, *to = NULL;
c87e2837 2186 struct futex_hash_bucket *hb;
5bdb05f9 2187 struct futex_q q = futex_q_init;
dd973998 2188 int res, ret;
c87e2837
IM
2189
2190 if (refill_pi_state_cache())
2191 return -ENOMEM;
2192
c19384b5 2193 if (time) {
c5780e97 2194 to = &timeout;
237fc6e7
TG
2195 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2196 HRTIMER_MODE_ABS);
c5780e97 2197 hrtimer_init_sleeper(to, current);
cc584b21 2198 hrtimer_set_expires(&to->timer, *time);
c5780e97
TG
2199 }
2200
42d35d48 2201retry:
9ea71503 2202 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
c87e2837 2203 if (unlikely(ret != 0))
42d35d48 2204 goto out;
c87e2837 2205
e4dc5b7a 2206retry_private:
82af7aca 2207 hb = queue_lock(&q);
c87e2837 2208
bab5bc9e 2209 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
c87e2837 2210 if (unlikely(ret)) {
778e9a9c 2211 switch (ret) {
1a52084d
DH
2212 case 1:
2213 /* We got the lock. */
2214 ret = 0;
2215 goto out_unlock_put_key;
2216 case -EFAULT:
2217 goto uaddr_faulted;
778e9a9c
AK
2218 case -EAGAIN:
2219 /*
2220 * Task is exiting and we just wait for the
2221 * exit to complete.
2222 */
0d00c7b2 2223 queue_unlock(hb);
ae791a2d 2224 put_futex_key(&q.key);
778e9a9c
AK
2225 cond_resched();
2226 goto retry;
778e9a9c 2227 default:
42d35d48 2228 goto out_unlock_put_key;
c87e2837 2229 }
c87e2837
IM
2230 }
2231
2232 /*
2233 * Only actually queue now that the atomic ops are done:
2234 */
82af7aca 2235 queue_me(&q, hb);
c87e2837 2236
c87e2837
IM
2237 WARN_ON(!q.pi_state);
2238 /*
2239 * Block on the PI mutex:
2240 */
2241 if (!trylock)
2242 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
2243 else {
2244 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
2245 /* Fixup the trylock return value: */
2246 ret = ret ? 0 : -EWOULDBLOCK;
2247 }
2248
a99e4e41 2249 spin_lock(q.lock_ptr);
dd973998
DH
2250 /*
2251 * Fixup the pi_state owner and possibly acquire the lock if we
2252 * haven't already.
2253 */
ae791a2d 2254 res = fixup_owner(uaddr, &q, !ret);
dd973998
DH
2255 /*
2256 * If fixup_owner() returned an error, proprogate that. If it acquired
2257 * the lock, clear our -ETIMEDOUT or -EINTR.
2258 */
2259 if (res)
2260 ret = (res < 0) ? res : 0;
c87e2837 2261
e8f6386c 2262 /*
dd973998
DH
2263 * If fixup_owner() faulted and was unable to handle the fault, unlock
2264 * it and return the fault to userspace.
e8f6386c
DH
2265 */
2266 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2267 rt_mutex_unlock(&q.pi_state->pi_mutex);
2268
778e9a9c
AK
2269 /* Unqueue and drop the lock */
2270 unqueue_me_pi(&q);
c87e2837 2271
5ecb01cf 2272 goto out_put_key;
c87e2837 2273
42d35d48 2274out_unlock_put_key:
0d00c7b2 2275 queue_unlock(hb);
c87e2837 2276
42d35d48 2277out_put_key:
ae791a2d 2278 put_futex_key(&q.key);
42d35d48 2279out:
237fc6e7
TG
2280 if (to)
2281 destroy_hrtimer_on_stack(&to->timer);
dd973998 2282 return ret != -EINTR ? ret : -ERESTARTNOINTR;
c87e2837 2283
42d35d48 2284uaddr_faulted:
0d00c7b2 2285 queue_unlock(hb);
778e9a9c 2286
d0725992 2287 ret = fault_in_user_writeable(uaddr);
e4dc5b7a
DH
2288 if (ret)
2289 goto out_put_key;
c87e2837 2290
b41277dc 2291 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
2292 goto retry_private;
2293
ae791a2d 2294 put_futex_key(&q.key);
e4dc5b7a 2295 goto retry;
c87e2837
IM
2296}
2297
c87e2837
IM
2298/*
2299 * Userspace attempted a TID -> 0 atomic transition, and failed.
2300 * This is the in-kernel slowpath: we look up the PI state (if any),
2301 * and do the rt-mutex unlock.
2302 */
b41277dc 2303static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
c87e2837
IM
2304{
2305 struct futex_hash_bucket *hb;
2306 struct futex_q *this, *next;
38d47c1b 2307 union futex_key key = FUTEX_KEY_INIT;
c0c9ed15 2308 u32 uval, vpid = task_pid_vnr(current);
e4dc5b7a 2309 int ret;
c87e2837
IM
2310
2311retry:
2312 if (get_user(uval, uaddr))
2313 return -EFAULT;
2314 /*
2315 * We release only a lock we actually own:
2316 */
c0c9ed15 2317 if ((uval & FUTEX_TID_MASK) != vpid)
c87e2837 2318 return -EPERM;
c87e2837 2319
9ea71503 2320 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
c87e2837
IM
2321 if (unlikely(ret != 0))
2322 goto out;
2323
2324 hb = hash_futex(&key);
2325 spin_lock(&hb->lock);
2326
c87e2837
IM
2327 /*
2328 * To avoid races, try to do the TID -> 0 atomic transition
2329 * again. If it succeeds then we can return without waking
2330 * anyone else up:
2331 */
37a9d912
ML
2332 if (!(uval & FUTEX_OWNER_DIED) &&
2333 cmpxchg_futex_value_locked(&uval, uaddr, vpid, 0))
c87e2837
IM
2334 goto pi_faulted;
2335 /*
2336 * Rare case: we managed to release the lock atomically,
2337 * no need to wake anyone else up:
2338 */
c0c9ed15 2339 if (unlikely(uval == vpid))
c87e2837
IM
2340 goto out_unlock;
2341
2342 /*
2343 * Ok, other tasks may need to be woken up - check waiters
2344 * and do the wakeup if necessary:
2345 */
0d00c7b2 2346 plist_for_each_entry_safe(this, next, &hb->chain, list) {
c87e2837
IM
2347 if (!match_futex (&this->key, &key))
2348 continue;
2349 ret = wake_futex_pi(uaddr, uval, this);
2350 /*
2351 * The atomic access to the futex value
2352 * generated a pagefault, so retry the
2353 * user-access and the wakeup:
2354 */
2355 if (ret == -EFAULT)
2356 goto pi_faulted;
2357 goto out_unlock;
2358 }
2359 /*
2360 * No waiters - kernel unlocks the futex:
2361 */
e3f2ddea
IM
2362 if (!(uval & FUTEX_OWNER_DIED)) {
2363 ret = unlock_futex_pi(uaddr, uval);
2364 if (ret == -EFAULT)
2365 goto pi_faulted;
2366 }
c87e2837
IM
2367
2368out_unlock:
2369 spin_unlock(&hb->lock);
ae791a2d 2370 put_futex_key(&key);
c87e2837 2371
42d35d48 2372out:
c87e2837
IM
2373 return ret;
2374
2375pi_faulted:
778e9a9c 2376 spin_unlock(&hb->lock);
ae791a2d 2377 put_futex_key(&key);
c87e2837 2378
d0725992 2379 ret = fault_in_user_writeable(uaddr);
b5686363 2380 if (!ret)
c87e2837
IM
2381 goto retry;
2382
1da177e4
LT
2383 return ret;
2384}
2385
52400ba9
DH
2386/**
2387 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2388 * @hb: the hash_bucket futex_q was original enqueued on
2389 * @q: the futex_q woken while waiting to be requeued
2390 * @key2: the futex_key of the requeue target futex
2391 * @timeout: the timeout associated with the wait (NULL if none)
2392 *
2393 * Detect if the task was woken on the initial futex as opposed to the requeue
2394 * target futex. If so, determine if it was a timeout or a signal that caused
2395 * the wakeup and return the appropriate error code to the caller. Must be
2396 * called with the hb lock held.
2397 *
6c23cbbd
RD
2398 * Return:
2399 * 0 = no early wakeup detected;
2400 * <0 = -ETIMEDOUT or -ERESTARTNOINTR
52400ba9
DH
2401 */
2402static inline
2403int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2404 struct futex_q *q, union futex_key *key2,
2405 struct hrtimer_sleeper *timeout)
2406{
2407 int ret = 0;
2408
2409 /*
2410 * With the hb lock held, we avoid races while we process the wakeup.
2411 * We only need to hold hb (and not hb2) to ensure atomicity as the
2412 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2413 * It can't be requeued from uaddr2 to something else since we don't
2414 * support a PI aware source futex for requeue.
2415 */
2416 if (!match_futex(&q->key, key2)) {
2417 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2418 /*
2419 * We were woken prior to requeue by a timeout or a signal.
2420 * Unqueue the futex_q and determine which it was.
2421 */
2e12978a 2422 plist_del(&q->list, &hb->chain);
11d4616b 2423 hb_waiters_dec(hb);
52400ba9 2424
d58e6576 2425 /* Handle spurious wakeups gracefully */
11df6ddd 2426 ret = -EWOULDBLOCK;
52400ba9
DH
2427 if (timeout && !timeout->task)
2428 ret = -ETIMEDOUT;
d58e6576 2429 else if (signal_pending(current))
1c840c14 2430 ret = -ERESTARTNOINTR;
52400ba9
DH
2431 }
2432 return ret;
2433}
2434
2435/**
2436 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
56ec1607 2437 * @uaddr: the futex we initially wait on (non-pi)
b41277dc 2438 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
52400ba9
DH
2439 * the same type, no requeueing from private to shared, etc.
2440 * @val: the expected value of uaddr
2441 * @abs_time: absolute timeout
56ec1607 2442 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
52400ba9
DH
2443 * @uaddr2: the pi futex we will take prior to returning to user-space
2444 *
2445 * The caller will wait on uaddr and will be requeued by futex_requeue() to
6f7b0a2a
DH
2446 * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
2447 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2448 * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
2449 * without one, the pi logic would not know which task to boost/deboost, if
2450 * there was a need to.
52400ba9
DH
2451 *
2452 * We call schedule in futex_wait_queue_me() when we enqueue and return there
6c23cbbd 2453 * via the following--
52400ba9 2454 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
cc6db4e6
DH
2455 * 2) wakeup on uaddr2 after a requeue
2456 * 3) signal
2457 * 4) timeout
52400ba9 2458 *
cc6db4e6 2459 * If 3, cleanup and return -ERESTARTNOINTR.
52400ba9
DH
2460 *
2461 * If 2, we may then block on trying to take the rt_mutex and return via:
2462 * 5) successful lock
2463 * 6) signal
2464 * 7) timeout
2465 * 8) other lock acquisition failure
2466 *
cc6db4e6 2467 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
52400ba9
DH
2468 *
2469 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2470 *
6c23cbbd
RD
2471 * Return:
2472 * 0 - On success;
52400ba9
DH
2473 * <0 - On error
2474 */
b41277dc 2475static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
52400ba9 2476 u32 val, ktime_t *abs_time, u32 bitset,
b41277dc 2477 u32 __user *uaddr2)
52400ba9
DH
2478{
2479 struct hrtimer_sleeper timeout, *to = NULL;
2480 struct rt_mutex_waiter rt_waiter;
2481 struct rt_mutex *pi_mutex = NULL;
52400ba9 2482 struct futex_hash_bucket *hb;
5bdb05f9
DH
2483 union futex_key key2 = FUTEX_KEY_INIT;
2484 struct futex_q q = futex_q_init;
52400ba9 2485 int res, ret;
52400ba9 2486
6f7b0a2a
DH
2487 if (uaddr == uaddr2)
2488 return -EINVAL;
2489
52400ba9
DH
2490 if (!bitset)
2491 return -EINVAL;
2492
2493 if (abs_time) {
2494 to = &timeout;
b41277dc
DH
2495 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2496 CLOCK_REALTIME : CLOCK_MONOTONIC,
2497 HRTIMER_MODE_ABS);
52400ba9
DH
2498 hrtimer_init_sleeper(to, current);
2499 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2500 current->timer_slack_ns);
2501 }
2502
2503 /*
2504 * The waiter is allocated on our stack, manipulated by the requeue
2505 * code while we sleep on uaddr.
2506 */
2507 debug_rt_mutex_init_waiter(&rt_waiter);
fb00aca4
PZ
2508 RB_CLEAR_NODE(&rt_waiter.pi_tree_entry);
2509 RB_CLEAR_NODE(&rt_waiter.tree_entry);
52400ba9
DH
2510 rt_waiter.task = NULL;
2511
9ea71503 2512 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
52400ba9
DH
2513 if (unlikely(ret != 0))
2514 goto out;
2515
84bc4af5
DH
2516 q.bitset = bitset;
2517 q.rt_waiter = &rt_waiter;
2518 q.requeue_pi_key = &key2;
2519
7ada876a
DH
2520 /*
2521 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2522 * count.
2523 */
b41277dc 2524 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
c8b15a70
TG
2525 if (ret)
2526 goto out_key2;
52400ba9
DH
2527
2528 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
f1a11e05 2529 futex_wait_queue_me(hb, &q, to);
52400ba9
DH
2530
2531 spin_lock(&hb->lock);
2532 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2533 spin_unlock(&hb->lock);
2534 if (ret)
2535 goto out_put_keys;
2536
2537 /*
2538 * In order for us to be here, we know our q.key == key2, and since
2539 * we took the hb->lock above, we also know that futex_requeue() has
2540 * completed and we no longer have to concern ourselves with a wakeup
7ada876a
DH
2541 * race with the atomic proxy lock acquisition by the requeue code. The
2542 * futex_requeue dropped our key1 reference and incremented our key2
2543 * reference count.
52400ba9
DH
2544 */
2545
2546 /* Check if the requeue code acquired the second futex for us. */
2547 if (!q.rt_waiter) {
2548 /*
2549 * Got the lock. We might not be the anticipated owner if we
2550 * did a lock-steal - fix up the PI-state in that case.
2551 */
2552 if (q.pi_state && (q.pi_state->owner != current)) {
2553 spin_lock(q.lock_ptr);
ae791a2d 2554 ret = fixup_pi_state_owner(uaddr2, &q, current);
52400ba9
DH
2555 spin_unlock(q.lock_ptr);
2556 }
2557 } else {
2558 /*
2559 * We have been woken up by futex_unlock_pi(), a timeout, or a
2560 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
2561 * the pi_state.
2562 */
f27071cb 2563 WARN_ON(!q.pi_state);
52400ba9
DH
2564 pi_mutex = &q.pi_state->pi_mutex;
2565 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
2566 debug_rt_mutex_free_waiter(&rt_waiter);
2567
2568 spin_lock(q.lock_ptr);
2569 /*
2570 * Fixup the pi_state owner and possibly acquire the lock if we
2571 * haven't already.
2572 */
ae791a2d 2573 res = fixup_owner(uaddr2, &q, !ret);
52400ba9
DH
2574 /*
2575 * If fixup_owner() returned an error, proprogate that. If it
56ec1607 2576 * acquired the lock, clear -ETIMEDOUT or -EINTR.
52400ba9
DH
2577 */
2578 if (res)
2579 ret = (res < 0) ? res : 0;
2580
2581 /* Unqueue and drop the lock. */
2582 unqueue_me_pi(&q);
2583 }
2584
2585 /*
2586 * If fixup_pi_state_owner() faulted and was unable to handle the
2587 * fault, unlock the rt_mutex and return the fault to userspace.
2588 */
2589 if (ret == -EFAULT) {
b6070a8d 2590 if (pi_mutex && rt_mutex_owner(pi_mutex) == current)
52400ba9
DH
2591 rt_mutex_unlock(pi_mutex);
2592 } else if (ret == -EINTR) {
52400ba9 2593 /*
cc6db4e6
DH
2594 * We've already been requeued, but cannot restart by calling
2595 * futex_lock_pi() directly. We could restart this syscall, but
2596 * it would detect that the user space "val" changed and return
2597 * -EWOULDBLOCK. Save the overhead of the restart and return
2598 * -EWOULDBLOCK directly.
52400ba9 2599 */
2070887f 2600 ret = -EWOULDBLOCK;
52400ba9
DH
2601 }
2602
2603out_put_keys:
ae791a2d 2604 put_futex_key(&q.key);
c8b15a70 2605out_key2:
ae791a2d 2606 put_futex_key(&key2);
52400ba9
DH
2607
2608out:
2609 if (to) {
2610 hrtimer_cancel(&to->timer);
2611 destroy_hrtimer_on_stack(&to->timer);
2612 }
2613 return ret;
2614}
2615
0771dfef
IM
2616/*
2617 * Support for robust futexes: the kernel cleans up held futexes at
2618 * thread exit time.
2619 *
2620 * Implementation: user-space maintains a per-thread list of locks it
2621 * is holding. Upon do_exit(), the kernel carefully walks this list,
2622 * and marks all locks that are owned by this thread with the
c87e2837 2623 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
0771dfef
IM
2624 * always manipulated with the lock held, so the list is private and
2625 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2626 * field, to allow the kernel to clean up if the thread dies after
2627 * acquiring the lock, but just before it could have added itself to
2628 * the list. There can only be one such pending lock.
2629 */
2630
2631/**
d96ee56c
DH
2632 * sys_set_robust_list() - Set the robust-futex list head of a task
2633 * @head: pointer to the list-head
2634 * @len: length of the list-head, as userspace expects
0771dfef 2635 */
836f92ad
HC
2636SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2637 size_t, len)
0771dfef 2638{
a0c1e907
TG
2639 if (!futex_cmpxchg_enabled)
2640 return -ENOSYS;
0771dfef
IM
2641 /*
2642 * The kernel knows only one size for now:
2643 */
2644 if (unlikely(len != sizeof(*head)))
2645 return -EINVAL;
2646
2647 current->robust_list = head;
2648
2649 return 0;
2650}
2651
2652/**
d96ee56c
DH
2653 * sys_get_robust_list() - Get the robust-futex list head of a task
2654 * @pid: pid of the process [zero for current task]
2655 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
2656 * @len_ptr: pointer to a length field, the kernel fills in the header size
0771dfef 2657 */
836f92ad
HC
2658SYSCALL_DEFINE3(get_robust_list, int, pid,
2659 struct robust_list_head __user * __user *, head_ptr,
2660 size_t __user *, len_ptr)
0771dfef 2661{
ba46df98 2662 struct robust_list_head __user *head;
0771dfef 2663 unsigned long ret;
bdbb776f 2664 struct task_struct *p;
0771dfef 2665
a0c1e907
TG
2666 if (!futex_cmpxchg_enabled)
2667 return -ENOSYS;
2668
bdbb776f
KC
2669 rcu_read_lock();
2670
2671 ret = -ESRCH;
0771dfef 2672 if (!pid)
bdbb776f 2673 p = current;
0771dfef 2674 else {
228ebcbe 2675 p = find_task_by_vpid(pid);
0771dfef
IM
2676 if (!p)
2677 goto err_unlock;
0771dfef
IM
2678 }
2679
bdbb776f
KC
2680 ret = -EPERM;
2681 if (!ptrace_may_access(p, PTRACE_MODE_READ))
2682 goto err_unlock;
2683
2684 head = p->robust_list;
2685 rcu_read_unlock();
2686
0771dfef
IM
2687 if (put_user(sizeof(*head), len_ptr))
2688 return -EFAULT;
2689 return put_user(head, head_ptr);
2690
2691err_unlock:
aaa2a97e 2692 rcu_read_unlock();
0771dfef
IM
2693
2694 return ret;
2695}
2696
2697/*
2698 * Process a futex-list entry, check whether it's owned by the
2699 * dying task, and do notification if so:
2700 */
e3f2ddea 2701int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
0771dfef 2702{
7cfdaf38 2703 u32 uval, uninitialized_var(nval), mval;
0771dfef 2704
8f17d3a5
IM
2705retry:
2706 if (get_user(uval, uaddr))
0771dfef
IM
2707 return -1;
2708
b488893a 2709 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
0771dfef
IM
2710 /*
2711 * Ok, this dying thread is truly holding a futex
2712 * of interest. Set the OWNER_DIED bit atomically
2713 * via cmpxchg, and if the value had FUTEX_WAITERS
2714 * set, wake up a waiter (if any). (We have to do a
2715 * futex_wake() even if OWNER_DIED is already set -
2716 * to handle the rare but possible case of recursive
2717 * thread-death.) The rest of the cleanup is done in
2718 * userspace.
2719 */
e3f2ddea 2720 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
6e0aa9f8
TG
2721 /*
2722 * We are not holding a lock here, but we want to have
2723 * the pagefault_disable/enable() protection because
2724 * we want to handle the fault gracefully. If the
2725 * access fails we try to fault in the futex with R/W
2726 * verification via get_user_pages. get_user() above
2727 * does not guarantee R/W access. If that fails we
2728 * give up and leave the futex locked.
2729 */
2730 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
2731 if (fault_in_user_writeable(uaddr))
2732 return -1;
2733 goto retry;
2734 }
c87e2837 2735 if (nval != uval)
8f17d3a5 2736 goto retry;
0771dfef 2737
e3f2ddea
IM
2738 /*
2739 * Wake robust non-PI futexes here. The wakeup of
2740 * PI futexes happens in exit_pi_state():
2741 */
36cf3b5c 2742 if (!pi && (uval & FUTEX_WAITERS))
c2f9f201 2743 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
0771dfef
IM
2744 }
2745 return 0;
2746}
2747
e3f2ddea
IM
2748/*
2749 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2750 */
2751static inline int fetch_robust_entry(struct robust_list __user **entry,
ba46df98 2752 struct robust_list __user * __user *head,
1dcc41bb 2753 unsigned int *pi)
e3f2ddea
IM
2754{
2755 unsigned long uentry;
2756
ba46df98 2757 if (get_user(uentry, (unsigned long __user *)head))
e3f2ddea
IM
2758 return -EFAULT;
2759
ba46df98 2760 *entry = (void __user *)(uentry & ~1UL);
e3f2ddea
IM
2761 *pi = uentry & 1;
2762
2763 return 0;
2764}
2765
0771dfef
IM
2766/*
2767 * Walk curr->robust_list (very carefully, it's a userspace list!)
2768 * and mark any locks found there dead, and notify any waiters.
2769 *
2770 * We silently return on any sign of list-walking problem.
2771 */
2772void exit_robust_list(struct task_struct *curr)
2773{
2774 struct robust_list_head __user *head = curr->robust_list;
9f96cb1e 2775 struct robust_list __user *entry, *next_entry, *pending;
4c115e95
DH
2776 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
2777 unsigned int uninitialized_var(next_pi);
0771dfef 2778 unsigned long futex_offset;
9f96cb1e 2779 int rc;
0771dfef 2780
a0c1e907
TG
2781 if (!futex_cmpxchg_enabled)
2782 return;
2783
0771dfef
IM
2784 /*
2785 * Fetch the list head (which was registered earlier, via
2786 * sys_set_robust_list()):
2787 */
e3f2ddea 2788 if (fetch_robust_entry(&entry, &head->list.next, &pi))
0771dfef
IM
2789 return;
2790 /*
2791 * Fetch the relative futex offset:
2792 */
2793 if (get_user(futex_offset, &head->futex_offset))
2794 return;
2795 /*
2796 * Fetch any possibly pending lock-add first, and handle it
2797 * if it exists:
2798 */
e3f2ddea 2799 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
0771dfef 2800 return;
e3f2ddea 2801
9f96cb1e 2802 next_entry = NULL; /* avoid warning with gcc */
0771dfef 2803 while (entry != &head->list) {
9f96cb1e
MS
2804 /*
2805 * Fetch the next entry in the list before calling
2806 * handle_futex_death:
2807 */
2808 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
0771dfef
IM
2809 /*
2810 * A pending lock might already be on the list, so
c87e2837 2811 * don't process it twice:
0771dfef
IM
2812 */
2813 if (entry != pending)
ba46df98 2814 if (handle_futex_death((void __user *)entry + futex_offset,
e3f2ddea 2815 curr, pi))
0771dfef 2816 return;
9f96cb1e 2817 if (rc)
0771dfef 2818 return;
9f96cb1e
MS
2819 entry = next_entry;
2820 pi = next_pi;
0771dfef
IM
2821 /*
2822 * Avoid excessively long or circular lists:
2823 */
2824 if (!--limit)
2825 break;
2826
2827 cond_resched();
2828 }
9f96cb1e
MS
2829
2830 if (pending)
2831 handle_futex_death((void __user *)pending + futex_offset,
2832 curr, pip);
0771dfef
IM
2833}
2834
c19384b5 2835long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
e2970f2f 2836 u32 __user *uaddr2, u32 val2, u32 val3)
1da177e4 2837{
81b40539 2838 int cmd = op & FUTEX_CMD_MASK;
b41277dc 2839 unsigned int flags = 0;
34f01cc1
ED
2840
2841 if (!(op & FUTEX_PRIVATE_FLAG))
b41277dc 2842 flags |= FLAGS_SHARED;
1da177e4 2843
b41277dc
DH
2844 if (op & FUTEX_CLOCK_REALTIME) {
2845 flags |= FLAGS_CLOCKRT;
2846 if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
2847 return -ENOSYS;
2848 }
1da177e4 2849
59263b51
TG
2850 switch (cmd) {
2851 case FUTEX_LOCK_PI:
2852 case FUTEX_UNLOCK_PI:
2853 case FUTEX_TRYLOCK_PI:
2854 case FUTEX_WAIT_REQUEUE_PI:
2855 case FUTEX_CMP_REQUEUE_PI:
2856 if (!futex_cmpxchg_enabled)
2857 return -ENOSYS;
2858 }
2859
34f01cc1 2860 switch (cmd) {
1da177e4 2861 case FUTEX_WAIT:
cd689985
TG
2862 val3 = FUTEX_BITSET_MATCH_ANY;
2863 case FUTEX_WAIT_BITSET:
81b40539 2864 return futex_wait(uaddr, flags, val, timeout, val3);
1da177e4 2865 case FUTEX_WAKE:
cd689985
TG
2866 val3 = FUTEX_BITSET_MATCH_ANY;
2867 case FUTEX_WAKE_BITSET:
81b40539 2868 return futex_wake(uaddr, flags, val, val3);
1da177e4 2869 case FUTEX_REQUEUE:
81b40539 2870 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
1da177e4 2871 case FUTEX_CMP_REQUEUE:
81b40539 2872 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
4732efbe 2873 case FUTEX_WAKE_OP:
81b40539 2874 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
c87e2837 2875 case FUTEX_LOCK_PI:
81b40539 2876 return futex_lock_pi(uaddr, flags, val, timeout, 0);
c87e2837 2877 case FUTEX_UNLOCK_PI:
81b40539 2878 return futex_unlock_pi(uaddr, flags);
c87e2837 2879 case FUTEX_TRYLOCK_PI:
81b40539 2880 return futex_lock_pi(uaddr, flags, 0, timeout, 1);
52400ba9
DH
2881 case FUTEX_WAIT_REQUEUE_PI:
2882 val3 = FUTEX_BITSET_MATCH_ANY;
81b40539
TG
2883 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
2884 uaddr2);
52400ba9 2885 case FUTEX_CMP_REQUEUE_PI:
81b40539 2886 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
1da177e4 2887 }
81b40539 2888 return -ENOSYS;
1da177e4
LT
2889}
2890
2891
17da2bd9
HC
2892SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2893 struct timespec __user *, utime, u32 __user *, uaddr2,
2894 u32, val3)
1da177e4 2895{
c19384b5
PP
2896 struct timespec ts;
2897 ktime_t t, *tp = NULL;
e2970f2f 2898 u32 val2 = 0;
34f01cc1 2899 int cmd = op & FUTEX_CMD_MASK;
1da177e4 2900
cd689985 2901 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
52400ba9
DH
2902 cmd == FUTEX_WAIT_BITSET ||
2903 cmd == FUTEX_WAIT_REQUEUE_PI)) {
c19384b5 2904 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
1da177e4 2905 return -EFAULT;
c19384b5 2906 if (!timespec_valid(&ts))
9741ef96 2907 return -EINVAL;
c19384b5
PP
2908
2909 t = timespec_to_ktime(ts);
34f01cc1 2910 if (cmd == FUTEX_WAIT)
5a7780e7 2911 t = ktime_add_safe(ktime_get(), t);
c19384b5 2912 tp = &t;
1da177e4
LT
2913 }
2914 /*
52400ba9 2915 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
f54f0986 2916 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
1da177e4 2917 */
f54f0986 2918 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
ba9c22f2 2919 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
e2970f2f 2920 val2 = (u32) (unsigned long) utime;
1da177e4 2921
c19384b5 2922 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
1da177e4
LT
2923}
2924
03b8c7b6 2925static void __init futex_detect_cmpxchg(void)
1da177e4 2926{
03b8c7b6 2927#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
a0c1e907 2928 u32 curval;
03b8c7b6
HC
2929
2930 /*
2931 * This will fail and we want it. Some arch implementations do
2932 * runtime detection of the futex_atomic_cmpxchg_inatomic()
2933 * functionality. We want to know that before we call in any
2934 * of the complex code paths. Also we want to prevent
2935 * registration of robust lists in that case. NULL is
2936 * guaranteed to fault and we get -EFAULT on functional
2937 * implementation, the non-functional ones will return
2938 * -ENOSYS.
2939 */
2940 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
2941 futex_cmpxchg_enabled = 1;
2942#endif
2943}
2944
2945static int __init futex_init(void)
2946{
63b1a816 2947 unsigned int futex_shift;
a52b89eb
DB
2948 unsigned long i;
2949
2950#if CONFIG_BASE_SMALL
2951 futex_hashsize = 16;
2952#else
2953 futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
2954#endif
2955
2956 futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
2957 futex_hashsize, 0,
2958 futex_hashsize < 256 ? HASH_SMALL : 0,
63b1a816
HC
2959 &futex_shift, NULL,
2960 futex_hashsize, futex_hashsize);
2961 futex_hashsize = 1UL << futex_shift;
03b8c7b6
HC
2962
2963 futex_detect_cmpxchg();
a0c1e907 2964
a52b89eb 2965 for (i = 0; i < futex_hashsize; i++) {
11d4616b 2966 atomic_set(&futex_queues[i].waiters, 0);
732375c6 2967 plist_head_init(&futex_queues[i].chain);
3e4ab747
TG
2968 spin_lock_init(&futex_queues[i].lock);
2969 }
2970
1da177e4
LT
2971 return 0;
2972}
f6d107fb 2973__initcall(futex_init);
This page took 0.84161 seconds and 5 git commands to generate.