futex: add double_unlock_hb()
[deliverable/linux.git] / kernel / futex.c
CommitLineData
1da177e4
LT
1/*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
0771dfef
IM
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
c87e2837
IM
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
34f01cc1
ED
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
1da177e4
LT
22 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
23 * enough at me, Linus for the original (flawed) idea, Matthew
24 * Kirkwood for proof-of-concept implementation.
25 *
26 * "The futexes are also cursed."
27 * "But they come in a choice of three flavours!"
28 *
29 * This program is free software; you can redistribute it and/or modify
30 * it under the terms of the GNU General Public License as published by
31 * the Free Software Foundation; either version 2 of the License, or
32 * (at your option) any later version.
33 *
34 * This program is distributed in the hope that it will be useful,
35 * but WITHOUT ANY WARRANTY; without even the implied warranty of
36 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
37 * GNU General Public License for more details.
38 *
39 * You should have received a copy of the GNU General Public License
40 * along with this program; if not, write to the Free Software
41 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
42 */
43#include <linux/slab.h>
44#include <linux/poll.h>
45#include <linux/fs.h>
46#include <linux/file.h>
47#include <linux/jhash.h>
48#include <linux/init.h>
49#include <linux/futex.h>
50#include <linux/mount.h>
51#include <linux/pagemap.h>
52#include <linux/syscalls.h>
7ed20e1a 53#include <linux/signal.h>
9adef58b 54#include <linux/module.h>
fd5eea42 55#include <linux/magic.h>
b488893a
PE
56#include <linux/pid.h>
57#include <linux/nsproxy.h>
58
4732efbe 59#include <asm/futex.h>
1da177e4 60
c87e2837
IM
61#include "rtmutex_common.h"
62
a0c1e907
TG
63int __read_mostly futex_cmpxchg_enabled;
64
1da177e4
LT
65#define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
66
c87e2837
IM
67/*
68 * Priority Inheritance state:
69 */
70struct futex_pi_state {
71 /*
72 * list of 'owned' pi_state instances - these have to be
73 * cleaned up in do_exit() if the task exits prematurely:
74 */
75 struct list_head list;
76
77 /*
78 * The PI object:
79 */
80 struct rt_mutex pi_mutex;
81
82 struct task_struct *owner;
83 atomic_t refcount;
84
85 union futex_key key;
86};
87
1da177e4
LT
88/*
89 * We use this hashed waitqueue instead of a normal wait_queue_t, so
90 * we can wake only the relevant ones (hashed queues may be shared).
91 *
92 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
ec92d082 93 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
1da177e4 94 * The order of wakup is always to make the first condition true, then
73500ac5 95 * wake up q->waiter, then make the second condition true.
1da177e4
LT
96 */
97struct futex_q {
ec92d082 98 struct plist_node list;
73500ac5
DH
99 /* There can only be a single waiter */
100 wait_queue_head_t waiter;
1da177e4 101
e2970f2f 102 /* Which hash list lock to use: */
1da177e4
LT
103 spinlock_t *lock_ptr;
104
e2970f2f 105 /* Key which the futex is hashed on: */
1da177e4
LT
106 union futex_key key;
107
c87e2837
IM
108 /* Optional priority inheritance state: */
109 struct futex_pi_state *pi_state;
110 struct task_struct *task;
cd689985
TG
111
112 /* Bitset for the optional bitmasked wakeup */
113 u32 bitset;
1da177e4
LT
114};
115
116/*
b2d0994b
DH
117 * Hash buckets are shared by all the futex_keys that hash to the same
118 * location. Each key may have multiple futex_q structures, one for each task
119 * waiting on a futex.
1da177e4
LT
120 */
121struct futex_hash_bucket {
ec92d082
PP
122 spinlock_t lock;
123 struct plist_head chain;
1da177e4
LT
124};
125
126static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
127
1da177e4
LT
128/*
129 * We hash on the keys returned from get_futex_key (see below).
130 */
131static struct futex_hash_bucket *hash_futex(union futex_key *key)
132{
133 u32 hash = jhash2((u32*)&key->both.word,
134 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
135 key->both.offset);
136 return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
137}
138
139/*
140 * Return 1 if two futex_keys are equal, 0 otherwise.
141 */
142static inline int match_futex(union futex_key *key1, union futex_key *key2)
143{
144 return (key1->both.word == key2->both.word
145 && key1->both.ptr == key2->both.ptr
146 && key1->both.offset == key2->both.offset);
147}
148
38d47c1b
PZ
149/*
150 * Take a reference to the resource addressed by a key.
151 * Can be called while holding spinlocks.
152 *
153 */
154static void get_futex_key_refs(union futex_key *key)
155{
156 if (!key->both.ptr)
157 return;
158
159 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
160 case FUT_OFF_INODE:
161 atomic_inc(&key->shared.inode->i_count);
162 break;
163 case FUT_OFF_MMSHARED:
164 atomic_inc(&key->private.mm->mm_count);
165 break;
166 }
167}
168
169/*
170 * Drop a reference to the resource addressed by a key.
171 * The hash bucket spinlock must not be held.
172 */
173static void drop_futex_key_refs(union futex_key *key)
174{
90621c40
DH
175 if (!key->both.ptr) {
176 /* If we're here then we tried to put a key we failed to get */
177 WARN_ON_ONCE(1);
38d47c1b 178 return;
90621c40 179 }
38d47c1b
PZ
180
181 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
182 case FUT_OFF_INODE:
183 iput(key->shared.inode);
184 break;
185 case FUT_OFF_MMSHARED:
186 mmdrop(key->private.mm);
187 break;
188 }
189}
190
34f01cc1
ED
191/**
192 * get_futex_key - Get parameters which are the keys for a futex.
193 * @uaddr: virtual address of the futex
b2d0994b 194 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
34f01cc1
ED
195 * @key: address where result is stored.
196 *
197 * Returns a negative error code or 0
198 * The key words are stored in *key on success.
1da177e4 199 *
f3a43f3f 200 * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
1da177e4
LT
201 * offset_within_page). For private mappings, it's (uaddr, current->mm).
202 * We can usually work out the index without swapping in the page.
203 *
b2d0994b 204 * lock_page() might sleep, the caller should not hold a spinlock.
1da177e4 205 */
c2f9f201 206static int get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key)
1da177e4 207{
e2970f2f 208 unsigned long address = (unsigned long)uaddr;
1da177e4 209 struct mm_struct *mm = current->mm;
1da177e4
LT
210 struct page *page;
211 int err;
212
213 /*
214 * The futex address must be "naturally" aligned.
215 */
e2970f2f 216 key->both.offset = address % PAGE_SIZE;
34f01cc1 217 if (unlikely((address % sizeof(u32)) != 0))
1da177e4 218 return -EINVAL;
e2970f2f 219 address -= key->both.offset;
1da177e4 220
34f01cc1
ED
221 /*
222 * PROCESS_PRIVATE futexes are fast.
223 * As the mm cannot disappear under us and the 'key' only needs
224 * virtual address, we dont even have to find the underlying vma.
225 * Note : We do have to check 'uaddr' is a valid user address,
226 * but access_ok() should be faster than find_vma()
227 */
228 if (!fshared) {
229 if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
230 return -EFAULT;
231 key->private.mm = mm;
232 key->private.address = address;
42569c39 233 get_futex_key_refs(key);
34f01cc1
ED
234 return 0;
235 }
1da177e4 236
38d47c1b 237again:
734b05b1 238 err = get_user_pages_fast(address, 1, 0, &page);
38d47c1b
PZ
239 if (err < 0)
240 return err;
241
242 lock_page(page);
243 if (!page->mapping) {
244 unlock_page(page);
245 put_page(page);
246 goto again;
247 }
1da177e4
LT
248
249 /*
250 * Private mappings are handled in a simple way.
251 *
252 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
253 * it's a read-only handle, it's expected that futexes attach to
38d47c1b 254 * the object not the particular process.
1da177e4 255 */
38d47c1b
PZ
256 if (PageAnon(page)) {
257 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
1da177e4 258 key->private.mm = mm;
e2970f2f 259 key->private.address = address;
38d47c1b
PZ
260 } else {
261 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
262 key->shared.inode = page->mapping->host;
263 key->shared.pgoff = page->index;
1da177e4
LT
264 }
265
38d47c1b 266 get_futex_key_refs(key);
1da177e4 267
38d47c1b
PZ
268 unlock_page(page);
269 put_page(page);
270 return 0;
1da177e4
LT
271}
272
38d47c1b 273static inline
c2f9f201 274void put_futex_key(int fshared, union futex_key *key)
1da177e4 275{
38d47c1b 276 drop_futex_key_refs(key);
1da177e4
LT
277}
278
36cf3b5c
TG
279static u32 cmpxchg_futex_value_locked(u32 __user *uaddr, u32 uval, u32 newval)
280{
281 u32 curval;
282
283 pagefault_disable();
284 curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
285 pagefault_enable();
286
287 return curval;
288}
289
290static int get_futex_value_locked(u32 *dest, u32 __user *from)
1da177e4
LT
291{
292 int ret;
293
a866374a 294 pagefault_disable();
e2970f2f 295 ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
a866374a 296 pagefault_enable();
1da177e4
LT
297
298 return ret ? -EFAULT : 0;
299}
300
c87e2837 301/*
34f01cc1 302 * Fault handling.
c87e2837 303 */
c2f9f201 304static int futex_handle_fault(unsigned long address, int attempt)
c87e2837
IM
305{
306 struct vm_area_struct * vma;
307 struct mm_struct *mm = current->mm;
34f01cc1 308 int ret = -EFAULT;
c87e2837 309
34f01cc1
ED
310 if (attempt > 2)
311 return ret;
c87e2837 312
61270708 313 down_read(&mm->mmap_sem);
34f01cc1
ED
314 vma = find_vma(mm, address);
315 if (vma && address >= vma->vm_start &&
316 (vma->vm_flags & VM_WRITE)) {
83c54070
NP
317 int fault;
318 fault = handle_mm_fault(mm, vma, address, 1);
319 if (unlikely((fault & VM_FAULT_ERROR))) {
320#if 0
321 /* XXX: let's do this when we verify it is OK */
322 if (ret & VM_FAULT_OOM)
323 ret = -ENOMEM;
324#endif
325 } else {
34f01cc1 326 ret = 0;
83c54070
NP
327 if (fault & VM_FAULT_MAJOR)
328 current->maj_flt++;
329 else
330 current->min_flt++;
34f01cc1 331 }
c87e2837 332 }
61270708 333 up_read(&mm->mmap_sem);
34f01cc1 334 return ret;
c87e2837
IM
335}
336
337/*
338 * PI code:
339 */
340static int refill_pi_state_cache(void)
341{
342 struct futex_pi_state *pi_state;
343
344 if (likely(current->pi_state_cache))
345 return 0;
346
4668edc3 347 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
c87e2837
IM
348
349 if (!pi_state)
350 return -ENOMEM;
351
c87e2837
IM
352 INIT_LIST_HEAD(&pi_state->list);
353 /* pi_mutex gets initialized later */
354 pi_state->owner = NULL;
355 atomic_set(&pi_state->refcount, 1);
38d47c1b 356 pi_state->key = FUTEX_KEY_INIT;
c87e2837
IM
357
358 current->pi_state_cache = pi_state;
359
360 return 0;
361}
362
363static struct futex_pi_state * alloc_pi_state(void)
364{
365 struct futex_pi_state *pi_state = current->pi_state_cache;
366
367 WARN_ON(!pi_state);
368 current->pi_state_cache = NULL;
369
370 return pi_state;
371}
372
373static void free_pi_state(struct futex_pi_state *pi_state)
374{
375 if (!atomic_dec_and_test(&pi_state->refcount))
376 return;
377
378 /*
379 * If pi_state->owner is NULL, the owner is most probably dying
380 * and has cleaned up the pi_state already
381 */
382 if (pi_state->owner) {
383 spin_lock_irq(&pi_state->owner->pi_lock);
384 list_del_init(&pi_state->list);
385 spin_unlock_irq(&pi_state->owner->pi_lock);
386
387 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
388 }
389
390 if (current->pi_state_cache)
391 kfree(pi_state);
392 else {
393 /*
394 * pi_state->list is already empty.
395 * clear pi_state->owner.
396 * refcount is at 0 - put it back to 1.
397 */
398 pi_state->owner = NULL;
399 atomic_set(&pi_state->refcount, 1);
400 current->pi_state_cache = pi_state;
401 }
402}
403
404/*
405 * Look up the task based on what TID userspace gave us.
406 * We dont trust it.
407 */
408static struct task_struct * futex_find_get_task(pid_t pid)
409{
410 struct task_struct *p;
c69e8d9c 411 const struct cred *cred = current_cred(), *pcred;
c87e2837 412
d359b549 413 rcu_read_lock();
228ebcbe 414 p = find_task_by_vpid(pid);
c69e8d9c 415 if (!p) {
a06381fe 416 p = ERR_PTR(-ESRCH);
c69e8d9c
DH
417 } else {
418 pcred = __task_cred(p);
419 if (cred->euid != pcred->euid &&
420 cred->euid != pcred->uid)
421 p = ERR_PTR(-ESRCH);
422 else
423 get_task_struct(p);
424 }
a06381fe 425
d359b549 426 rcu_read_unlock();
c87e2837
IM
427
428 return p;
429}
430
431/*
432 * This task is holding PI mutexes at exit time => bad.
433 * Kernel cleans up PI-state, but userspace is likely hosed.
434 * (Robust-futex cleanup is separate and might save the day for userspace.)
435 */
436void exit_pi_state_list(struct task_struct *curr)
437{
c87e2837
IM
438 struct list_head *next, *head = &curr->pi_state_list;
439 struct futex_pi_state *pi_state;
627371d7 440 struct futex_hash_bucket *hb;
38d47c1b 441 union futex_key key = FUTEX_KEY_INIT;
c87e2837 442
a0c1e907
TG
443 if (!futex_cmpxchg_enabled)
444 return;
c87e2837
IM
445 /*
446 * We are a ZOMBIE and nobody can enqueue itself on
447 * pi_state_list anymore, but we have to be careful
627371d7 448 * versus waiters unqueueing themselves:
c87e2837
IM
449 */
450 spin_lock_irq(&curr->pi_lock);
451 while (!list_empty(head)) {
452
453 next = head->next;
454 pi_state = list_entry(next, struct futex_pi_state, list);
455 key = pi_state->key;
627371d7 456 hb = hash_futex(&key);
c87e2837
IM
457 spin_unlock_irq(&curr->pi_lock);
458
c87e2837
IM
459 spin_lock(&hb->lock);
460
461 spin_lock_irq(&curr->pi_lock);
627371d7
IM
462 /*
463 * We dropped the pi-lock, so re-check whether this
464 * task still owns the PI-state:
465 */
c87e2837
IM
466 if (head->next != next) {
467 spin_unlock(&hb->lock);
468 continue;
469 }
470
c87e2837 471 WARN_ON(pi_state->owner != curr);
627371d7
IM
472 WARN_ON(list_empty(&pi_state->list));
473 list_del_init(&pi_state->list);
c87e2837
IM
474 pi_state->owner = NULL;
475 spin_unlock_irq(&curr->pi_lock);
476
477 rt_mutex_unlock(&pi_state->pi_mutex);
478
479 spin_unlock(&hb->lock);
480
481 spin_lock_irq(&curr->pi_lock);
482 }
483 spin_unlock_irq(&curr->pi_lock);
484}
485
486static int
d0aa7a70
PP
487lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
488 union futex_key *key, struct futex_pi_state **ps)
c87e2837
IM
489{
490 struct futex_pi_state *pi_state = NULL;
491 struct futex_q *this, *next;
ec92d082 492 struct plist_head *head;
c87e2837 493 struct task_struct *p;
778e9a9c 494 pid_t pid = uval & FUTEX_TID_MASK;
c87e2837
IM
495
496 head = &hb->chain;
497
ec92d082 498 plist_for_each_entry_safe(this, next, head, list) {
d0aa7a70 499 if (match_futex(&this->key, key)) {
c87e2837
IM
500 /*
501 * Another waiter already exists - bump up
502 * the refcount and return its pi_state:
503 */
504 pi_state = this->pi_state;
06a9ec29
TG
505 /*
506 * Userspace might have messed up non PI and PI futexes
507 */
508 if (unlikely(!pi_state))
509 return -EINVAL;
510
627371d7 511 WARN_ON(!atomic_read(&pi_state->refcount));
778e9a9c
AK
512 WARN_ON(pid && pi_state->owner &&
513 pi_state->owner->pid != pid);
627371d7 514
c87e2837 515 atomic_inc(&pi_state->refcount);
d0aa7a70 516 *ps = pi_state;
c87e2837
IM
517
518 return 0;
519 }
520 }
521
522 /*
e3f2ddea 523 * We are the first waiter - try to look up the real owner and attach
778e9a9c 524 * the new pi_state to it, but bail out when TID = 0
c87e2837 525 */
778e9a9c 526 if (!pid)
e3f2ddea 527 return -ESRCH;
c87e2837 528 p = futex_find_get_task(pid);
778e9a9c
AK
529 if (IS_ERR(p))
530 return PTR_ERR(p);
531
532 /*
533 * We need to look at the task state flags to figure out,
534 * whether the task is exiting. To protect against the do_exit
535 * change of the task flags, we do this protected by
536 * p->pi_lock:
537 */
538 spin_lock_irq(&p->pi_lock);
539 if (unlikely(p->flags & PF_EXITING)) {
540 /*
541 * The task is on the way out. When PF_EXITPIDONE is
542 * set, we know that the task has finished the
543 * cleanup:
544 */
545 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
546
547 spin_unlock_irq(&p->pi_lock);
548 put_task_struct(p);
549 return ret;
550 }
c87e2837
IM
551
552 pi_state = alloc_pi_state();
553
554 /*
555 * Initialize the pi_mutex in locked state and make 'p'
556 * the owner of it:
557 */
558 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
559
560 /* Store the key for possible exit cleanups: */
d0aa7a70 561 pi_state->key = *key;
c87e2837 562
627371d7 563 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
564 list_add(&pi_state->list, &p->pi_state_list);
565 pi_state->owner = p;
566 spin_unlock_irq(&p->pi_lock);
567
568 put_task_struct(p);
569
d0aa7a70 570 *ps = pi_state;
c87e2837
IM
571
572 return 0;
573}
574
1da177e4
LT
575/*
576 * The hash bucket lock must be held when this is called.
577 * Afterwards, the futex_q must not be accessed.
578 */
579static void wake_futex(struct futex_q *q)
580{
ec92d082 581 plist_del(&q->list, &q->list.plist);
1da177e4
LT
582 /*
583 * The lock in wake_up_all() is a crucial memory barrier after the
ec92d082 584 * plist_del() and also before assigning to q->lock_ptr.
1da177e4 585 */
73500ac5 586 wake_up(&q->waiter);
1da177e4
LT
587 /*
588 * The waiting task can free the futex_q as soon as this is written,
589 * without taking any locks. This must come last.
8e31108b 590 *
b2d0994b
DH
591 * A memory barrier is required here to prevent the following store to
592 * lock_ptr from getting ahead of the wakeup. Clearing the lock at the
593 * end of wake_up() does not prevent this store from moving.
1da177e4 594 */
ccdea2f8 595 smp_wmb();
1da177e4
LT
596 q->lock_ptr = NULL;
597}
598
c87e2837
IM
599static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
600{
601 struct task_struct *new_owner;
602 struct futex_pi_state *pi_state = this->pi_state;
603 u32 curval, newval;
604
605 if (!pi_state)
606 return -EINVAL;
607
21778867 608 spin_lock(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
609 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
610
611 /*
612 * This happens when we have stolen the lock and the original
613 * pending owner did not enqueue itself back on the rt_mutex.
614 * Thats not a tragedy. We know that way, that a lock waiter
615 * is on the fly. We make the futex_q waiter the pending owner.
616 */
617 if (!new_owner)
618 new_owner = this->task;
619
620 /*
621 * We pass it to the next owner. (The WAITERS bit is always
622 * kept enabled while there is PI state around. We must also
623 * preserve the owner died bit.)
624 */
e3f2ddea 625 if (!(uval & FUTEX_OWNER_DIED)) {
778e9a9c
AK
626 int ret = 0;
627
b488893a 628 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
e3f2ddea 629
36cf3b5c 630 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
778e9a9c 631
e3f2ddea 632 if (curval == -EFAULT)
778e9a9c 633 ret = -EFAULT;
cde898fa 634 else if (curval != uval)
778e9a9c
AK
635 ret = -EINVAL;
636 if (ret) {
637 spin_unlock(&pi_state->pi_mutex.wait_lock);
638 return ret;
639 }
e3f2ddea 640 }
c87e2837 641
627371d7
IM
642 spin_lock_irq(&pi_state->owner->pi_lock);
643 WARN_ON(list_empty(&pi_state->list));
644 list_del_init(&pi_state->list);
645 spin_unlock_irq(&pi_state->owner->pi_lock);
646
647 spin_lock_irq(&new_owner->pi_lock);
648 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
649 list_add(&pi_state->list, &new_owner->pi_state_list);
650 pi_state->owner = new_owner;
627371d7
IM
651 spin_unlock_irq(&new_owner->pi_lock);
652
21778867 653 spin_unlock(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
654 rt_mutex_unlock(&pi_state->pi_mutex);
655
656 return 0;
657}
658
659static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
660{
661 u32 oldval;
662
663 /*
664 * There is no waiter, so we unlock the futex. The owner died
665 * bit has not to be preserved here. We are the owner:
666 */
36cf3b5c 667 oldval = cmpxchg_futex_value_locked(uaddr, uval, 0);
c87e2837
IM
668
669 if (oldval == -EFAULT)
670 return oldval;
671 if (oldval != uval)
672 return -EAGAIN;
673
674 return 0;
675}
676
8b8f319f
IM
677/*
678 * Express the locking dependencies for lockdep:
679 */
680static inline void
681double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
682{
683 if (hb1 <= hb2) {
684 spin_lock(&hb1->lock);
685 if (hb1 < hb2)
686 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
687 } else { /* hb1 > hb2 */
688 spin_lock(&hb2->lock);
689 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
690 }
691}
692
5eb3dc62
DH
693static inline void
694double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
695{
696 if (hb1 <= hb2) {
697 spin_unlock(&hb2->lock);
698 if (hb1 < hb2)
699 spin_unlock(&hb1->lock);
700 } else { /* hb1 > hb2 */
701 spin_unlock(&hb1->lock);
702 spin_unlock(&hb2->lock);
703 }
704}
705
1da177e4 706/*
b2d0994b 707 * Wake up waiters matching bitset queued on this futex (uaddr).
1da177e4 708 */
c2f9f201 709static int futex_wake(u32 __user *uaddr, int fshared, int nr_wake, u32 bitset)
1da177e4 710{
e2970f2f 711 struct futex_hash_bucket *hb;
1da177e4 712 struct futex_q *this, *next;
ec92d082 713 struct plist_head *head;
38d47c1b 714 union futex_key key = FUTEX_KEY_INIT;
1da177e4
LT
715 int ret;
716
cd689985
TG
717 if (!bitset)
718 return -EINVAL;
719
34f01cc1 720 ret = get_futex_key(uaddr, fshared, &key);
1da177e4
LT
721 if (unlikely(ret != 0))
722 goto out;
723
e2970f2f
IM
724 hb = hash_futex(&key);
725 spin_lock(&hb->lock);
726 head = &hb->chain;
1da177e4 727
ec92d082 728 plist_for_each_entry_safe(this, next, head, list) {
1da177e4 729 if (match_futex (&this->key, &key)) {
ed6f7b10
IM
730 if (this->pi_state) {
731 ret = -EINVAL;
732 break;
733 }
cd689985
TG
734
735 /* Check if one of the bits is set in both bitsets */
736 if (!(this->bitset & bitset))
737 continue;
738
1da177e4
LT
739 wake_futex(this);
740 if (++ret >= nr_wake)
741 break;
742 }
743 }
744
e2970f2f 745 spin_unlock(&hb->lock);
38d47c1b 746 put_futex_key(fshared, &key);
42d35d48 747out:
1da177e4
LT
748 return ret;
749}
750
4732efbe
JJ
751/*
752 * Wake up all waiters hashed on the physical page that is mapped
753 * to this virtual address:
754 */
e2970f2f 755static int
c2f9f201 756futex_wake_op(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
e2970f2f 757 int nr_wake, int nr_wake2, int op)
4732efbe 758{
38d47c1b 759 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
e2970f2f 760 struct futex_hash_bucket *hb1, *hb2;
ec92d082 761 struct plist_head *head;
4732efbe
JJ
762 struct futex_q *this, *next;
763 int ret, op_ret, attempt = 0;
764
765retryfull:
34f01cc1 766 ret = get_futex_key(uaddr1, fshared, &key1);
4732efbe
JJ
767 if (unlikely(ret != 0))
768 goto out;
34f01cc1 769 ret = get_futex_key(uaddr2, fshared, &key2);
4732efbe 770 if (unlikely(ret != 0))
42d35d48 771 goto out_put_key1;
4732efbe 772
e2970f2f
IM
773 hb1 = hash_futex(&key1);
774 hb2 = hash_futex(&key2);
4732efbe
JJ
775
776retry:
8b8f319f 777 double_lock_hb(hb1, hb2);
4732efbe 778
e2970f2f 779 op_ret = futex_atomic_op_inuser(op, uaddr2);
4732efbe 780 if (unlikely(op_ret < 0)) {
e2970f2f 781 u32 dummy;
4732efbe 782
5eb3dc62 783 double_unlock_hb(hb1, hb2);
4732efbe 784
7ee1dd3f 785#ifndef CONFIG_MMU
e2970f2f
IM
786 /*
787 * we don't get EFAULT from MMU faults if we don't have an MMU,
788 * but we might get them from range checking
789 */
7ee1dd3f 790 ret = op_ret;
42d35d48 791 goto out_put_keys;
7ee1dd3f
DH
792#endif
793
796f8d9b
DG
794 if (unlikely(op_ret != -EFAULT)) {
795 ret = op_ret;
42d35d48 796 goto out_put_keys;
796f8d9b
DG
797 }
798
e2970f2f
IM
799 /*
800 * futex_atomic_op_inuser needs to both read and write
4732efbe
JJ
801 * *(int __user *)uaddr2, but we can't modify it
802 * non-atomically. Therefore, if get_user below is not
803 * enough, we need to handle the fault ourselves, while
e2970f2f
IM
804 * still holding the mmap_sem.
805 */
4732efbe 806 if (attempt++) {
34f01cc1 807 ret = futex_handle_fault((unsigned long)uaddr2,
c2f9f201 808 attempt);
34f01cc1 809 if (ret)
42d35d48 810 goto out_put_keys;
4732efbe
JJ
811 goto retry;
812 }
813
e2970f2f 814 ret = get_user(dummy, uaddr2);
4732efbe 815 if (ret)
de87fcc1 816 goto out_put_keys;
4732efbe 817
de87fcc1
DH
818 put_futex_key(fshared, &key2);
819 put_futex_key(fshared, &key1);
4732efbe
JJ
820 goto retryfull;
821 }
822
e2970f2f 823 head = &hb1->chain;
4732efbe 824
ec92d082 825 plist_for_each_entry_safe(this, next, head, list) {
4732efbe
JJ
826 if (match_futex (&this->key, &key1)) {
827 wake_futex(this);
828 if (++ret >= nr_wake)
829 break;
830 }
831 }
832
833 if (op_ret > 0) {
e2970f2f 834 head = &hb2->chain;
4732efbe
JJ
835
836 op_ret = 0;
ec92d082 837 plist_for_each_entry_safe(this, next, head, list) {
4732efbe
JJ
838 if (match_futex (&this->key, &key2)) {
839 wake_futex(this);
840 if (++op_ret >= nr_wake2)
841 break;
842 }
843 }
844 ret += op_ret;
845 }
846
5eb3dc62 847 double_unlock_hb(hb1, hb2);
42d35d48 848out_put_keys:
38d47c1b 849 put_futex_key(fshared, &key2);
42d35d48 850out_put_key1:
38d47c1b 851 put_futex_key(fshared, &key1);
42d35d48 852out:
4732efbe
JJ
853 return ret;
854}
855
1da177e4
LT
856/*
857 * Requeue all waiters hashed on one physical page to another
858 * physical page.
859 */
c2f9f201 860static int futex_requeue(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
e2970f2f 861 int nr_wake, int nr_requeue, u32 *cmpval)
1da177e4 862{
38d47c1b 863 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
e2970f2f 864 struct futex_hash_bucket *hb1, *hb2;
ec92d082 865 struct plist_head *head1;
1da177e4
LT
866 struct futex_q *this, *next;
867 int ret, drop_count = 0;
868
42d35d48 869retry:
34f01cc1 870 ret = get_futex_key(uaddr1, fshared, &key1);
1da177e4
LT
871 if (unlikely(ret != 0))
872 goto out;
34f01cc1 873 ret = get_futex_key(uaddr2, fshared, &key2);
1da177e4 874 if (unlikely(ret != 0))
42d35d48 875 goto out_put_key1;
1da177e4 876
e2970f2f
IM
877 hb1 = hash_futex(&key1);
878 hb2 = hash_futex(&key2);
1da177e4 879
8b8f319f 880 double_lock_hb(hb1, hb2);
1da177e4 881
e2970f2f
IM
882 if (likely(cmpval != NULL)) {
883 u32 curval;
1da177e4 884
e2970f2f 885 ret = get_futex_value_locked(&curval, uaddr1);
1da177e4
LT
886
887 if (unlikely(ret)) {
5eb3dc62 888 double_unlock_hb(hb1, hb2);
1da177e4 889
de87fcc1
DH
890 put_futex_key(fshared, &key2);
891 put_futex_key(fshared, &key1);
892
e2970f2f 893 ret = get_user(curval, uaddr1);
1da177e4
LT
894
895 if (!ret)
896 goto retry;
897
42d35d48 898 goto out_put_keys;
1da177e4 899 }
e2970f2f 900 if (curval != *cmpval) {
1da177e4
LT
901 ret = -EAGAIN;
902 goto out_unlock;
903 }
904 }
905
e2970f2f 906 head1 = &hb1->chain;
ec92d082 907 plist_for_each_entry_safe(this, next, head1, list) {
1da177e4
LT
908 if (!match_futex (&this->key, &key1))
909 continue;
910 if (++ret <= nr_wake) {
911 wake_futex(this);
912 } else {
59e0e0ac
SD
913 /*
914 * If key1 and key2 hash to the same bucket, no need to
915 * requeue.
916 */
917 if (likely(head1 != &hb2->chain)) {
ec92d082
PP
918 plist_del(&this->list, &hb1->chain);
919 plist_add(&this->list, &hb2->chain);
59e0e0ac 920 this->lock_ptr = &hb2->lock;
ec92d082
PP
921#ifdef CONFIG_DEBUG_PI_LIST
922 this->list.plist.lock = &hb2->lock;
923#endif
778e9a9c 924 }
1da177e4 925 this->key = key2;
9adef58b 926 get_futex_key_refs(&key2);
1da177e4
LT
927 drop_count++;
928
929 if (ret - nr_wake >= nr_requeue)
930 break;
1da177e4
LT
931 }
932 }
933
934out_unlock:
5eb3dc62 935 double_unlock_hb(hb1, hb2);
1da177e4 936
9adef58b 937 /* drop_futex_key_refs() must be called outside the spinlocks. */
1da177e4 938 while (--drop_count >= 0)
9adef58b 939 drop_futex_key_refs(&key1);
1da177e4 940
42d35d48 941out_put_keys:
38d47c1b 942 put_futex_key(fshared, &key2);
42d35d48 943out_put_key1:
38d47c1b 944 put_futex_key(fshared, &key1);
42d35d48 945out:
1da177e4
LT
946 return ret;
947}
948
949/* The key must be already stored in q->key. */
82af7aca 950static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1da177e4 951{
e2970f2f 952 struct futex_hash_bucket *hb;
1da177e4 953
73500ac5 954 init_waitqueue_head(&q->waiter);
1da177e4 955
9adef58b 956 get_futex_key_refs(&q->key);
e2970f2f
IM
957 hb = hash_futex(&q->key);
958 q->lock_ptr = &hb->lock;
1da177e4 959
e2970f2f
IM
960 spin_lock(&hb->lock);
961 return hb;
1da177e4
LT
962}
963
82af7aca 964static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1da177e4 965{
ec92d082
PP
966 int prio;
967
968 /*
969 * The priority used to register this element is
970 * - either the real thread-priority for the real-time threads
971 * (i.e. threads with a priority lower than MAX_RT_PRIO)
972 * - or MAX_RT_PRIO for non-RT threads.
973 * Thus, all RT-threads are woken first in priority order, and
974 * the others are woken last, in FIFO order.
975 */
976 prio = min(current->normal_prio, MAX_RT_PRIO);
977
978 plist_node_init(&q->list, prio);
979#ifdef CONFIG_DEBUG_PI_LIST
980 q->list.plist.lock = &hb->lock;
981#endif
982 plist_add(&q->list, &hb->chain);
c87e2837 983 q->task = current;
e2970f2f 984 spin_unlock(&hb->lock);
1da177e4
LT
985}
986
987static inline void
e2970f2f 988queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
1da177e4 989{
e2970f2f 990 spin_unlock(&hb->lock);
9adef58b 991 drop_futex_key_refs(&q->key);
1da177e4
LT
992}
993
994/*
995 * queue_me and unqueue_me must be called as a pair, each
996 * exactly once. They are called with the hashed spinlock held.
997 */
998
1da177e4
LT
999/* Return 1 if we were still queued (ie. 0 means we were woken) */
1000static int unqueue_me(struct futex_q *q)
1001{
1da177e4 1002 spinlock_t *lock_ptr;
e2970f2f 1003 int ret = 0;
1da177e4
LT
1004
1005 /* In the common case we don't take the spinlock, which is nice. */
42d35d48 1006retry:
1da177e4 1007 lock_ptr = q->lock_ptr;
e91467ec 1008 barrier();
c80544dc 1009 if (lock_ptr != NULL) {
1da177e4
LT
1010 spin_lock(lock_ptr);
1011 /*
1012 * q->lock_ptr can change between reading it and
1013 * spin_lock(), causing us to take the wrong lock. This
1014 * corrects the race condition.
1015 *
1016 * Reasoning goes like this: if we have the wrong lock,
1017 * q->lock_ptr must have changed (maybe several times)
1018 * between reading it and the spin_lock(). It can
1019 * change again after the spin_lock() but only if it was
1020 * already changed before the spin_lock(). It cannot,
1021 * however, change back to the original value. Therefore
1022 * we can detect whether we acquired the correct lock.
1023 */
1024 if (unlikely(lock_ptr != q->lock_ptr)) {
1025 spin_unlock(lock_ptr);
1026 goto retry;
1027 }
ec92d082
PP
1028 WARN_ON(plist_node_empty(&q->list));
1029 plist_del(&q->list, &q->list.plist);
c87e2837
IM
1030
1031 BUG_ON(q->pi_state);
1032
1da177e4
LT
1033 spin_unlock(lock_ptr);
1034 ret = 1;
1035 }
1036
9adef58b 1037 drop_futex_key_refs(&q->key);
1da177e4
LT
1038 return ret;
1039}
1040
c87e2837
IM
1041/*
1042 * PI futexes can not be requeued and must remove themself from the
d0aa7a70
PP
1043 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1044 * and dropped here.
c87e2837 1045 */
d0aa7a70 1046static void unqueue_me_pi(struct futex_q *q)
c87e2837 1047{
ec92d082
PP
1048 WARN_ON(plist_node_empty(&q->list));
1049 plist_del(&q->list, &q->list.plist);
c87e2837
IM
1050
1051 BUG_ON(!q->pi_state);
1052 free_pi_state(q->pi_state);
1053 q->pi_state = NULL;
1054
d0aa7a70 1055 spin_unlock(q->lock_ptr);
c87e2837 1056
9adef58b 1057 drop_futex_key_refs(&q->key);
c87e2837
IM
1058}
1059
d0aa7a70 1060/*
cdf71a10 1061 * Fixup the pi_state owner with the new owner.
d0aa7a70 1062 *
778e9a9c
AK
1063 * Must be called with hash bucket lock held and mm->sem held for non
1064 * private futexes.
d0aa7a70 1065 */
778e9a9c 1066static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
c2f9f201 1067 struct task_struct *newowner, int fshared)
d0aa7a70 1068{
cdf71a10 1069 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
d0aa7a70 1070 struct futex_pi_state *pi_state = q->pi_state;
1b7558e4 1071 struct task_struct *oldowner = pi_state->owner;
d0aa7a70 1072 u32 uval, curval, newval;
1b7558e4 1073 int ret, attempt = 0;
d0aa7a70
PP
1074
1075 /* Owner died? */
1b7558e4
TG
1076 if (!pi_state->owner)
1077 newtid |= FUTEX_OWNER_DIED;
1078
1079 /*
1080 * We are here either because we stole the rtmutex from the
1081 * pending owner or we are the pending owner which failed to
1082 * get the rtmutex. We have to replace the pending owner TID
1083 * in the user space variable. This must be atomic as we have
1084 * to preserve the owner died bit here.
1085 *
b2d0994b
DH
1086 * Note: We write the user space value _before_ changing the pi_state
1087 * because we can fault here. Imagine swapped out pages or a fork
1088 * that marked all the anonymous memory readonly for cow.
1b7558e4
TG
1089 *
1090 * Modifying pi_state _before_ the user space value would
1091 * leave the pi_state in an inconsistent state when we fault
1092 * here, because we need to drop the hash bucket lock to
1093 * handle the fault. This might be observed in the PID check
1094 * in lookup_pi_state.
1095 */
1096retry:
1097 if (get_futex_value_locked(&uval, uaddr))
1098 goto handle_fault;
1099
1100 while (1) {
1101 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1102
1103 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
1104
1105 if (curval == -EFAULT)
1106 goto handle_fault;
1107 if (curval == uval)
1108 break;
1109 uval = curval;
1110 }
1111
1112 /*
1113 * We fixed up user space. Now we need to fix the pi_state
1114 * itself.
1115 */
d0aa7a70
PP
1116 if (pi_state->owner != NULL) {
1117 spin_lock_irq(&pi_state->owner->pi_lock);
1118 WARN_ON(list_empty(&pi_state->list));
1119 list_del_init(&pi_state->list);
1120 spin_unlock_irq(&pi_state->owner->pi_lock);
1b7558e4 1121 }
d0aa7a70 1122
cdf71a10 1123 pi_state->owner = newowner;
d0aa7a70 1124
cdf71a10 1125 spin_lock_irq(&newowner->pi_lock);
d0aa7a70 1126 WARN_ON(!list_empty(&pi_state->list));
cdf71a10
TG
1127 list_add(&pi_state->list, &newowner->pi_state_list);
1128 spin_unlock_irq(&newowner->pi_lock);
1b7558e4 1129 return 0;
d0aa7a70 1130
d0aa7a70 1131 /*
1b7558e4
TG
1132 * To handle the page fault we need to drop the hash bucket
1133 * lock here. That gives the other task (either the pending
1134 * owner itself or the task which stole the rtmutex) the
1135 * chance to try the fixup of the pi_state. So once we are
1136 * back from handling the fault we need to check the pi_state
1137 * after reacquiring the hash bucket lock and before trying to
1138 * do another fixup. When the fixup has been done already we
1139 * simply return.
d0aa7a70 1140 */
1b7558e4
TG
1141handle_fault:
1142 spin_unlock(q->lock_ptr);
778e9a9c 1143
c2f9f201 1144 ret = futex_handle_fault((unsigned long)uaddr, attempt++);
778e9a9c 1145
1b7558e4 1146 spin_lock(q->lock_ptr);
778e9a9c 1147
1b7558e4
TG
1148 /*
1149 * Check if someone else fixed it for us:
1150 */
1151 if (pi_state->owner != oldowner)
1152 return 0;
1153
1154 if (ret)
1155 return ret;
1156
1157 goto retry;
d0aa7a70
PP
1158}
1159
34f01cc1
ED
1160/*
1161 * In case we must use restart_block to restart a futex_wait,
ce6bd420 1162 * we encode in the 'flags' shared capability
34f01cc1 1163 */
1acdac10
TG
1164#define FLAGS_SHARED 0x01
1165#define FLAGS_CLOCKRT 0x02
34f01cc1 1166
72c1bbf3 1167static long futex_wait_restart(struct restart_block *restart);
36cf3b5c 1168
c2f9f201 1169static int futex_wait(u32 __user *uaddr, int fshared,
1acdac10 1170 u32 val, ktime_t *abs_time, u32 bitset, int clockrt)
1da177e4 1171{
c87e2837 1172 struct task_struct *curr = current;
2fff78c7 1173 struct restart_block *restart;
c87e2837 1174 DECLARE_WAITQUEUE(wait, curr);
e2970f2f 1175 struct futex_hash_bucket *hb;
1da177e4 1176 struct futex_q q;
e2970f2f
IM
1177 u32 uval;
1178 int ret;
bd197234 1179 struct hrtimer_sleeper t;
c19384b5 1180 int rem = 0;
1da177e4 1181
cd689985
TG
1182 if (!bitset)
1183 return -EINVAL;
1184
c87e2837 1185 q.pi_state = NULL;
cd689985 1186 q.bitset = bitset;
42d35d48 1187retry:
38d47c1b 1188 q.key = FUTEX_KEY_INIT;
34f01cc1 1189 ret = get_futex_key(uaddr, fshared, &q.key);
1da177e4 1190 if (unlikely(ret != 0))
42d35d48 1191 goto out;
1da177e4 1192
82af7aca 1193 hb = queue_lock(&q);
1da177e4
LT
1194
1195 /*
b2d0994b 1196 * Access the page AFTER the hash-bucket is locked.
1da177e4
LT
1197 * Order is important:
1198 *
1199 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1200 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
1201 *
1202 * The basic logical guarantee of a futex is that it blocks ONLY
1203 * if cond(var) is known to be true at the time of blocking, for
1204 * any cond. If we queued after testing *uaddr, that would open
1205 * a race condition where we could block indefinitely with
1206 * cond(var) false, which would violate the guarantee.
1207 *
1208 * A consequence is that futex_wait() can return zero and absorb
1209 * a wakeup when *uaddr != val on entry to the syscall. This is
1210 * rare, but normal.
1211 *
b2d0994b 1212 * For shared futexes, we hold the mmap semaphore, so the mapping
34f01cc1 1213 * cannot have changed since we looked it up in get_futex_key.
1da177e4 1214 */
e2970f2f 1215 ret = get_futex_value_locked(&uval, uaddr);
1da177e4
LT
1216
1217 if (unlikely(ret)) {
e2970f2f 1218 queue_unlock(&q, hb);
42d35d48 1219 put_futex_key(fshared, &q.key);
1da177e4 1220
e2970f2f 1221 ret = get_user(uval, uaddr);
1da177e4
LT
1222
1223 if (!ret)
1224 goto retry;
2fff78c7 1225 goto out;
1da177e4 1226 }
c87e2837 1227 ret = -EWOULDBLOCK;
2fff78c7
PZ
1228 if (unlikely(uval != val)) {
1229 queue_unlock(&q, hb);
1230 goto out_put_key;
1231 }
1da177e4
LT
1232
1233 /* Only actually queue if *uaddr contained val. */
82af7aca 1234 queue_me(&q, hb);
1da177e4 1235
1da177e4
LT
1236 /*
1237 * There might have been scheduling since the queue_me(), as we
1238 * cannot hold a spinlock across the get_user() in case it
1239 * faults, and we cannot just set TASK_INTERRUPTIBLE state when
1240 * queueing ourselves into the futex hash. This code thus has to
1241 * rely on the futex_wake() code removing us from hash when it
1242 * wakes us up.
1243 */
1244
1245 /* add_wait_queue is the barrier after __set_current_state. */
1246 __set_current_state(TASK_INTERRUPTIBLE);
73500ac5 1247 add_wait_queue(&q.waiter, &wait);
1da177e4 1248 /*
ec92d082 1249 * !plist_node_empty() is safe here without any lock.
1da177e4
LT
1250 * q.lock_ptr != 0 is not safe, because of ordering against wakeup.
1251 */
ec92d082 1252 if (likely(!plist_node_empty(&q.list))) {
c19384b5
PP
1253 if (!abs_time)
1254 schedule();
1255 else {
ae4b748e
AV
1256 unsigned long slack;
1257 slack = current->timer_slack_ns;
1258 if (rt_task(current))
1259 slack = 0;
1acdac10
TG
1260 hrtimer_init_on_stack(&t.timer,
1261 clockrt ? CLOCK_REALTIME :
1262 CLOCK_MONOTONIC,
1263 HRTIMER_MODE_ABS);
c19384b5 1264 hrtimer_init_sleeper(&t, current);
ae4b748e 1265 hrtimer_set_expires_range_ns(&t.timer, *abs_time, slack);
c19384b5 1266
cc584b21 1267 hrtimer_start_expires(&t.timer, HRTIMER_MODE_ABS);
3588a085
PZ
1268 if (!hrtimer_active(&t.timer))
1269 t.task = NULL;
c19384b5
PP
1270
1271 /*
1272 * the timer could have already expired, in which
1273 * case current would be flagged for rescheduling.
1274 * Don't bother calling schedule.
1275 */
1276 if (likely(t.task))
1277 schedule();
1278
1279 hrtimer_cancel(&t.timer);
72c1bbf3 1280
c19384b5
PP
1281 /* Flag if a timeout occured */
1282 rem = (t.task == NULL);
237fc6e7
TG
1283
1284 destroy_hrtimer_on_stack(&t.timer);
c19384b5 1285 }
72c1bbf3 1286 }
1da177e4
LT
1287 __set_current_state(TASK_RUNNING);
1288
1289 /*
1290 * NOTE: we don't remove ourselves from the waitqueue because
1291 * we are the only user of it.
1292 */
1293
1294 /* If we were woken (and unqueued), we succeeded, whatever. */
2fff78c7 1295 ret = 0;
1da177e4 1296 if (!unqueue_me(&q))
2fff78c7
PZ
1297 goto out_put_key;
1298 ret = -ETIMEDOUT;
c19384b5 1299 if (rem)
2fff78c7 1300 goto out_put_key;
72c1bbf3 1301
e2970f2f
IM
1302 /*
1303 * We expect signal_pending(current), but another thread may
1304 * have handled it for us already.
1305 */
2fff78c7 1306 ret = -ERESTARTSYS;
c19384b5 1307 if (!abs_time)
2fff78c7 1308 goto out_put_key;
1da177e4 1309
2fff78c7
PZ
1310 restart = &current_thread_info()->restart_block;
1311 restart->fn = futex_wait_restart;
1312 restart->futex.uaddr = (u32 *)uaddr;
1313 restart->futex.val = val;
1314 restart->futex.time = abs_time->tv64;
1315 restart->futex.bitset = bitset;
1316 restart->futex.flags = 0;
1317
1318 if (fshared)
1319 restart->futex.flags |= FLAGS_SHARED;
1320 if (clockrt)
1321 restart->futex.flags |= FLAGS_CLOCKRT;
42d35d48 1322
2fff78c7
PZ
1323 ret = -ERESTART_RESTARTBLOCK;
1324
1325out_put_key:
1326 put_futex_key(fshared, &q.key);
42d35d48 1327out:
c87e2837
IM
1328 return ret;
1329}
1330
72c1bbf3
NP
1331
1332static long futex_wait_restart(struct restart_block *restart)
1333{
ce6bd420 1334 u32 __user *uaddr = (u32 __user *)restart->futex.uaddr;
c2f9f201 1335 int fshared = 0;
ce6bd420 1336 ktime_t t;
72c1bbf3 1337
ce6bd420 1338 t.tv64 = restart->futex.time;
72c1bbf3 1339 restart->fn = do_no_restart_syscall;
ce6bd420 1340 if (restart->futex.flags & FLAGS_SHARED)
c2f9f201 1341 fshared = 1;
cd689985 1342 return (long)futex_wait(uaddr, fshared, restart->futex.val, &t,
1acdac10
TG
1343 restart->futex.bitset,
1344 restart->futex.flags & FLAGS_CLOCKRT);
72c1bbf3
NP
1345}
1346
1347
c87e2837
IM
1348/*
1349 * Userspace tried a 0 -> TID atomic transition of the futex value
1350 * and failed. The kernel side here does the whole locking operation:
1351 * if there are waiters then it will block, it does PI, etc. (Due to
1352 * races the kernel might see a 0 value of the futex too.)
1353 */
c2f9f201 1354static int futex_lock_pi(u32 __user *uaddr, int fshared,
34f01cc1 1355 int detect, ktime_t *time, int trylock)
c87e2837 1356{
c5780e97 1357 struct hrtimer_sleeper timeout, *to = NULL;
c87e2837
IM
1358 struct task_struct *curr = current;
1359 struct futex_hash_bucket *hb;
1360 u32 uval, newval, curval;
1361 struct futex_q q;
778e9a9c 1362 int ret, lock_taken, ownerdied = 0, attempt = 0;
c87e2837
IM
1363
1364 if (refill_pi_state_cache())
1365 return -ENOMEM;
1366
c19384b5 1367 if (time) {
c5780e97 1368 to = &timeout;
237fc6e7
TG
1369 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
1370 HRTIMER_MODE_ABS);
c5780e97 1371 hrtimer_init_sleeper(to, current);
cc584b21 1372 hrtimer_set_expires(&to->timer, *time);
c5780e97
TG
1373 }
1374
c87e2837 1375 q.pi_state = NULL;
42d35d48 1376retry:
38d47c1b 1377 q.key = FUTEX_KEY_INIT;
34f01cc1 1378 ret = get_futex_key(uaddr, fshared, &q.key);
c87e2837 1379 if (unlikely(ret != 0))
42d35d48 1380 goto out;
c87e2837 1381
42d35d48 1382retry_unlocked:
82af7aca 1383 hb = queue_lock(&q);
c87e2837 1384
42d35d48 1385retry_locked:
778e9a9c 1386 ret = lock_taken = 0;
d0aa7a70 1387
c87e2837
IM
1388 /*
1389 * To avoid races, we attempt to take the lock here again
1390 * (by doing a 0 -> TID atomic cmpxchg), while holding all
1391 * the locks. It will most likely not succeed.
1392 */
b488893a 1393 newval = task_pid_vnr(current);
c87e2837 1394
36cf3b5c 1395 curval = cmpxchg_futex_value_locked(uaddr, 0, newval);
c87e2837
IM
1396
1397 if (unlikely(curval == -EFAULT))
1398 goto uaddr_faulted;
1399
778e9a9c
AK
1400 /*
1401 * Detect deadlocks. In case of REQUEUE_PI this is a valid
1402 * situation and we return success to user space.
1403 */
b488893a 1404 if (unlikely((curval & FUTEX_TID_MASK) == task_pid_vnr(current))) {
bd197234 1405 ret = -EDEADLK;
42d35d48 1406 goto out_unlock_put_key;
c87e2837
IM
1407 }
1408
1409 /*
778e9a9c 1410 * Surprise - we got the lock. Just return to userspace:
c87e2837
IM
1411 */
1412 if (unlikely(!curval))
42d35d48 1413 goto out_unlock_put_key;
c87e2837
IM
1414
1415 uval = curval;
778e9a9c 1416
d0aa7a70 1417 /*
778e9a9c
AK
1418 * Set the WAITERS flag, so the owner will know it has someone
1419 * to wake at next unlock
d0aa7a70 1420 */
778e9a9c
AK
1421 newval = curval | FUTEX_WAITERS;
1422
1423 /*
1424 * There are two cases, where a futex might have no owner (the
bd197234
TG
1425 * owner TID is 0): OWNER_DIED. We take over the futex in this
1426 * case. We also do an unconditional take over, when the owner
1427 * of the futex died.
778e9a9c
AK
1428 *
1429 * This is safe as we are protected by the hash bucket lock !
1430 */
1431 if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) {
bd197234 1432 /* Keep the OWNER_DIED bit */
b488893a 1433 newval = (curval & ~FUTEX_TID_MASK) | task_pid_vnr(current);
778e9a9c
AK
1434 ownerdied = 0;
1435 lock_taken = 1;
1436 }
c87e2837 1437
36cf3b5c 1438 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
c87e2837
IM
1439
1440 if (unlikely(curval == -EFAULT))
1441 goto uaddr_faulted;
1442 if (unlikely(curval != uval))
1443 goto retry_locked;
1444
778e9a9c 1445 /*
bd197234 1446 * We took the lock due to owner died take over.
778e9a9c 1447 */
bd197234 1448 if (unlikely(lock_taken))
42d35d48 1449 goto out_unlock_put_key;
d0aa7a70 1450
c87e2837
IM
1451 /*
1452 * We dont have the lock. Look up the PI state (or create it if
1453 * we are the first waiter):
1454 */
d0aa7a70 1455 ret = lookup_pi_state(uval, hb, &q.key, &q.pi_state);
c87e2837
IM
1456
1457 if (unlikely(ret)) {
778e9a9c 1458 switch (ret) {
c87e2837 1459
778e9a9c
AK
1460 case -EAGAIN:
1461 /*
1462 * Task is exiting and we just wait for the
1463 * exit to complete.
1464 */
1465 queue_unlock(&q, hb);
de87fcc1 1466 put_futex_key(fshared, &q.key);
778e9a9c
AK
1467 cond_resched();
1468 goto retry;
c87e2837 1469
778e9a9c
AK
1470 case -ESRCH:
1471 /*
1472 * No owner found for this futex. Check if the
1473 * OWNER_DIED bit is set to figure out whether
1474 * this is a robust futex or not.
1475 */
1476 if (get_futex_value_locked(&curval, uaddr))
c87e2837 1477 goto uaddr_faulted;
778e9a9c
AK
1478
1479 /*
1480 * We simply start over in case of a robust
1481 * futex. The code above will take the futex
1482 * and return happy.
1483 */
1484 if (curval & FUTEX_OWNER_DIED) {
1485 ownerdied = 1;
c87e2837 1486 goto retry_locked;
778e9a9c
AK
1487 }
1488 default:
42d35d48 1489 goto out_unlock_put_key;
c87e2837 1490 }
c87e2837
IM
1491 }
1492
1493 /*
1494 * Only actually queue now that the atomic ops are done:
1495 */
82af7aca 1496 queue_me(&q, hb);
c87e2837 1497
c87e2837
IM
1498 WARN_ON(!q.pi_state);
1499 /*
1500 * Block on the PI mutex:
1501 */
1502 if (!trylock)
1503 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
1504 else {
1505 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
1506 /* Fixup the trylock return value: */
1507 ret = ret ? 0 : -EWOULDBLOCK;
1508 }
1509
a99e4e41 1510 spin_lock(q.lock_ptr);
c87e2837 1511
778e9a9c
AK
1512 if (!ret) {
1513 /*
1514 * Got the lock. We might not be the anticipated owner
1515 * if we did a lock-steal - fix up the PI-state in
1516 * that case:
1517 */
1518 if (q.pi_state->owner != curr)
1b7558e4 1519 ret = fixup_pi_state_owner(uaddr, &q, curr, fshared);
778e9a9c 1520 } else {
c87e2837
IM
1521 /*
1522 * Catch the rare case, where the lock was released
778e9a9c
AK
1523 * when we were on the way back before we locked the
1524 * hash bucket.
c87e2837 1525 */
cdf71a10
TG
1526 if (q.pi_state->owner == curr) {
1527 /*
1528 * Try to get the rt_mutex now. This might
1529 * fail as some other task acquired the
1530 * rt_mutex after we removed ourself from the
1531 * rt_mutex waiters list.
1532 */
1533 if (rt_mutex_trylock(&q.pi_state->pi_mutex))
1534 ret = 0;
1535 else {
1536 /*
1537 * pi_state is incorrect, some other
1538 * task did a lock steal and we
1539 * returned due to timeout or signal
1540 * without taking the rt_mutex. Too
1541 * late. We can access the
1542 * rt_mutex_owner without locking, as
1543 * the other task is now blocked on
1544 * the hash bucket lock. Fix the state
1545 * up.
1546 */
1547 struct task_struct *owner;
1548 int res;
1549
1550 owner = rt_mutex_owner(&q.pi_state->pi_mutex);
1b7558e4
TG
1551 res = fixup_pi_state_owner(uaddr, &q, owner,
1552 fshared);
cdf71a10 1553
cdf71a10
TG
1554 /* propagate -EFAULT, if the fixup failed */
1555 if (res)
1556 ret = res;
1557 }
778e9a9c
AK
1558 } else {
1559 /*
1560 * Paranoia check. If we did not take the lock
1561 * in the trylock above, then we should not be
1562 * the owner of the rtmutex, neither the real
1563 * nor the pending one:
1564 */
1565 if (rt_mutex_owner(&q.pi_state->pi_mutex) == curr)
1566 printk(KERN_ERR "futex_lock_pi: ret = %d "
1567 "pi-mutex: %p pi-state %p\n", ret,
1568 q.pi_state->pi_mutex.owner,
1569 q.pi_state->owner);
c87e2837 1570 }
c87e2837
IM
1571 }
1572
778e9a9c
AK
1573 /* Unqueue and drop the lock */
1574 unqueue_me_pi(&q);
c87e2837 1575
237fc6e7
TG
1576 if (to)
1577 destroy_hrtimer_on_stack(&to->timer);
c5780e97 1578 return ret != -EINTR ? ret : -ERESTARTNOINTR;
c87e2837 1579
42d35d48 1580out_unlock_put_key:
c87e2837
IM
1581 queue_unlock(&q, hb);
1582
42d35d48 1583out_put_key:
38d47c1b 1584 put_futex_key(fshared, &q.key);
42d35d48 1585out:
237fc6e7
TG
1586 if (to)
1587 destroy_hrtimer_on_stack(&to->timer);
c87e2837
IM
1588 return ret;
1589
42d35d48 1590uaddr_faulted:
c87e2837 1591 /*
b5686363
DH
1592 * We have to r/w *(int __user *)uaddr, and we have to modify it
1593 * atomically. Therefore, if we continue to fault after get_user()
1594 * below, we need to handle the fault ourselves, while still holding
1595 * the mmap_sem. This can occur if the uaddr is under contention as
1596 * we have to drop the mmap_sem in order to call get_user().
c87e2837 1597 */
778e9a9c
AK
1598 queue_unlock(&q, hb);
1599
c87e2837 1600 if (attempt++) {
c2f9f201 1601 ret = futex_handle_fault((unsigned long)uaddr, attempt);
34f01cc1 1602 if (ret)
42d35d48 1603 goto out_put_key;
778e9a9c 1604 goto retry_unlocked;
c87e2837
IM
1605 }
1606
c87e2837 1607 ret = get_user(uval, uaddr);
b5686363 1608 if (!ret)
de87fcc1 1609 goto retry_unlocked;
c87e2837 1610
de87fcc1 1611 goto out_put_key;
c87e2837
IM
1612}
1613
de87fcc1 1614
c87e2837
IM
1615/*
1616 * Userspace attempted a TID -> 0 atomic transition, and failed.
1617 * This is the in-kernel slowpath: we look up the PI state (if any),
1618 * and do the rt-mutex unlock.
1619 */
c2f9f201 1620static int futex_unlock_pi(u32 __user *uaddr, int fshared)
c87e2837
IM
1621{
1622 struct futex_hash_bucket *hb;
1623 struct futex_q *this, *next;
1624 u32 uval;
ec92d082 1625 struct plist_head *head;
38d47c1b 1626 union futex_key key = FUTEX_KEY_INIT;
c87e2837
IM
1627 int ret, attempt = 0;
1628
1629retry:
1630 if (get_user(uval, uaddr))
1631 return -EFAULT;
1632 /*
1633 * We release only a lock we actually own:
1634 */
b488893a 1635 if ((uval & FUTEX_TID_MASK) != task_pid_vnr(current))
c87e2837 1636 return -EPERM;
c87e2837 1637
34f01cc1 1638 ret = get_futex_key(uaddr, fshared, &key);
c87e2837
IM
1639 if (unlikely(ret != 0))
1640 goto out;
1641
1642 hb = hash_futex(&key);
778e9a9c 1643retry_unlocked:
c87e2837
IM
1644 spin_lock(&hb->lock);
1645
c87e2837
IM
1646 /*
1647 * To avoid races, try to do the TID -> 0 atomic transition
1648 * again. If it succeeds then we can return without waking
1649 * anyone else up:
1650 */
36cf3b5c 1651 if (!(uval & FUTEX_OWNER_DIED))
b488893a 1652 uval = cmpxchg_futex_value_locked(uaddr, task_pid_vnr(current), 0);
36cf3b5c 1653
c87e2837
IM
1654
1655 if (unlikely(uval == -EFAULT))
1656 goto pi_faulted;
1657 /*
1658 * Rare case: we managed to release the lock atomically,
1659 * no need to wake anyone else up:
1660 */
b488893a 1661 if (unlikely(uval == task_pid_vnr(current)))
c87e2837
IM
1662 goto out_unlock;
1663
1664 /*
1665 * Ok, other tasks may need to be woken up - check waiters
1666 * and do the wakeup if necessary:
1667 */
1668 head = &hb->chain;
1669
ec92d082 1670 plist_for_each_entry_safe(this, next, head, list) {
c87e2837
IM
1671 if (!match_futex (&this->key, &key))
1672 continue;
1673 ret = wake_futex_pi(uaddr, uval, this);
1674 /*
1675 * The atomic access to the futex value
1676 * generated a pagefault, so retry the
1677 * user-access and the wakeup:
1678 */
1679 if (ret == -EFAULT)
1680 goto pi_faulted;
1681 goto out_unlock;
1682 }
1683 /*
1684 * No waiters - kernel unlocks the futex:
1685 */
e3f2ddea
IM
1686 if (!(uval & FUTEX_OWNER_DIED)) {
1687 ret = unlock_futex_pi(uaddr, uval);
1688 if (ret == -EFAULT)
1689 goto pi_faulted;
1690 }
c87e2837
IM
1691
1692out_unlock:
1693 spin_unlock(&hb->lock);
38d47c1b 1694 put_futex_key(fshared, &key);
c87e2837 1695
42d35d48 1696out:
c87e2837
IM
1697 return ret;
1698
1699pi_faulted:
1700 /*
b5686363
DH
1701 * We have to r/w *(int __user *)uaddr, and we have to modify it
1702 * atomically. Therefore, if we continue to fault after get_user()
1703 * below, we need to handle the fault ourselves, while still holding
1704 * the mmap_sem. This can occur if the uaddr is under contention as
1705 * we have to drop the mmap_sem in order to call get_user().
c87e2837 1706 */
778e9a9c
AK
1707 spin_unlock(&hb->lock);
1708
c87e2837 1709 if (attempt++) {
c2f9f201 1710 ret = futex_handle_fault((unsigned long)uaddr, attempt);
34f01cc1 1711 if (ret)
778e9a9c 1712 goto out;
187226f5 1713 uval = 0;
778e9a9c 1714 goto retry_unlocked;
c87e2837
IM
1715 }
1716
c87e2837 1717 ret = get_user(uval, uaddr);
de87fcc1 1718 put_futex_key(fshared, &key);
b5686363 1719 if (!ret)
c87e2837
IM
1720 goto retry;
1721
1da177e4
LT
1722 return ret;
1723}
1724
0771dfef
IM
1725/*
1726 * Support for robust futexes: the kernel cleans up held futexes at
1727 * thread exit time.
1728 *
1729 * Implementation: user-space maintains a per-thread list of locks it
1730 * is holding. Upon do_exit(), the kernel carefully walks this list,
1731 * and marks all locks that are owned by this thread with the
c87e2837 1732 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
0771dfef
IM
1733 * always manipulated with the lock held, so the list is private and
1734 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
1735 * field, to allow the kernel to clean up if the thread dies after
1736 * acquiring the lock, but just before it could have added itself to
1737 * the list. There can only be one such pending lock.
1738 */
1739
1740/**
1741 * sys_set_robust_list - set the robust-futex list head of a task
1742 * @head: pointer to the list-head
1743 * @len: length of the list-head, as userspace expects
1744 */
836f92ad
HC
1745SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
1746 size_t, len)
0771dfef 1747{
a0c1e907
TG
1748 if (!futex_cmpxchg_enabled)
1749 return -ENOSYS;
0771dfef
IM
1750 /*
1751 * The kernel knows only one size for now:
1752 */
1753 if (unlikely(len != sizeof(*head)))
1754 return -EINVAL;
1755
1756 current->robust_list = head;
1757
1758 return 0;
1759}
1760
1761/**
1762 * sys_get_robust_list - get the robust-futex list head of a task
1763 * @pid: pid of the process [zero for current task]
1764 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
1765 * @len_ptr: pointer to a length field, the kernel fills in the header size
1766 */
836f92ad
HC
1767SYSCALL_DEFINE3(get_robust_list, int, pid,
1768 struct robust_list_head __user * __user *, head_ptr,
1769 size_t __user *, len_ptr)
0771dfef 1770{
ba46df98 1771 struct robust_list_head __user *head;
0771dfef 1772 unsigned long ret;
c69e8d9c 1773 const struct cred *cred = current_cred(), *pcred;
0771dfef 1774
a0c1e907
TG
1775 if (!futex_cmpxchg_enabled)
1776 return -ENOSYS;
1777
0771dfef
IM
1778 if (!pid)
1779 head = current->robust_list;
1780 else {
1781 struct task_struct *p;
1782
1783 ret = -ESRCH;
aaa2a97e 1784 rcu_read_lock();
228ebcbe 1785 p = find_task_by_vpid(pid);
0771dfef
IM
1786 if (!p)
1787 goto err_unlock;
1788 ret = -EPERM;
c69e8d9c
DH
1789 pcred = __task_cred(p);
1790 if (cred->euid != pcred->euid &&
1791 cred->euid != pcred->uid &&
76aac0e9 1792 !capable(CAP_SYS_PTRACE))
0771dfef
IM
1793 goto err_unlock;
1794 head = p->robust_list;
aaa2a97e 1795 rcu_read_unlock();
0771dfef
IM
1796 }
1797
1798 if (put_user(sizeof(*head), len_ptr))
1799 return -EFAULT;
1800 return put_user(head, head_ptr);
1801
1802err_unlock:
aaa2a97e 1803 rcu_read_unlock();
0771dfef
IM
1804
1805 return ret;
1806}
1807
1808/*
1809 * Process a futex-list entry, check whether it's owned by the
1810 * dying task, and do notification if so:
1811 */
e3f2ddea 1812int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
0771dfef 1813{
e3f2ddea 1814 u32 uval, nval, mval;
0771dfef 1815
8f17d3a5
IM
1816retry:
1817 if (get_user(uval, uaddr))
0771dfef
IM
1818 return -1;
1819
b488893a 1820 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
0771dfef
IM
1821 /*
1822 * Ok, this dying thread is truly holding a futex
1823 * of interest. Set the OWNER_DIED bit atomically
1824 * via cmpxchg, and if the value had FUTEX_WAITERS
1825 * set, wake up a waiter (if any). (We have to do a
1826 * futex_wake() even if OWNER_DIED is already set -
1827 * to handle the rare but possible case of recursive
1828 * thread-death.) The rest of the cleanup is done in
1829 * userspace.
1830 */
e3f2ddea
IM
1831 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
1832 nval = futex_atomic_cmpxchg_inatomic(uaddr, uval, mval);
1833
c87e2837
IM
1834 if (nval == -EFAULT)
1835 return -1;
1836
1837 if (nval != uval)
8f17d3a5 1838 goto retry;
0771dfef 1839
e3f2ddea
IM
1840 /*
1841 * Wake robust non-PI futexes here. The wakeup of
1842 * PI futexes happens in exit_pi_state():
1843 */
36cf3b5c 1844 if (!pi && (uval & FUTEX_WAITERS))
c2f9f201 1845 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
0771dfef
IM
1846 }
1847 return 0;
1848}
1849
e3f2ddea
IM
1850/*
1851 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
1852 */
1853static inline int fetch_robust_entry(struct robust_list __user **entry,
ba46df98
AV
1854 struct robust_list __user * __user *head,
1855 int *pi)
e3f2ddea
IM
1856{
1857 unsigned long uentry;
1858
ba46df98 1859 if (get_user(uentry, (unsigned long __user *)head))
e3f2ddea
IM
1860 return -EFAULT;
1861
ba46df98 1862 *entry = (void __user *)(uentry & ~1UL);
e3f2ddea
IM
1863 *pi = uentry & 1;
1864
1865 return 0;
1866}
1867
0771dfef
IM
1868/*
1869 * Walk curr->robust_list (very carefully, it's a userspace list!)
1870 * and mark any locks found there dead, and notify any waiters.
1871 *
1872 * We silently return on any sign of list-walking problem.
1873 */
1874void exit_robust_list(struct task_struct *curr)
1875{
1876 struct robust_list_head __user *head = curr->robust_list;
9f96cb1e
MS
1877 struct robust_list __user *entry, *next_entry, *pending;
1878 unsigned int limit = ROBUST_LIST_LIMIT, pi, next_pi, pip;
0771dfef 1879 unsigned long futex_offset;
9f96cb1e 1880 int rc;
0771dfef 1881
a0c1e907
TG
1882 if (!futex_cmpxchg_enabled)
1883 return;
1884
0771dfef
IM
1885 /*
1886 * Fetch the list head (which was registered earlier, via
1887 * sys_set_robust_list()):
1888 */
e3f2ddea 1889 if (fetch_robust_entry(&entry, &head->list.next, &pi))
0771dfef
IM
1890 return;
1891 /*
1892 * Fetch the relative futex offset:
1893 */
1894 if (get_user(futex_offset, &head->futex_offset))
1895 return;
1896 /*
1897 * Fetch any possibly pending lock-add first, and handle it
1898 * if it exists:
1899 */
e3f2ddea 1900 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
0771dfef 1901 return;
e3f2ddea 1902
9f96cb1e 1903 next_entry = NULL; /* avoid warning with gcc */
0771dfef 1904 while (entry != &head->list) {
9f96cb1e
MS
1905 /*
1906 * Fetch the next entry in the list before calling
1907 * handle_futex_death:
1908 */
1909 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
0771dfef
IM
1910 /*
1911 * A pending lock might already be on the list, so
c87e2837 1912 * don't process it twice:
0771dfef
IM
1913 */
1914 if (entry != pending)
ba46df98 1915 if (handle_futex_death((void __user *)entry + futex_offset,
e3f2ddea 1916 curr, pi))
0771dfef 1917 return;
9f96cb1e 1918 if (rc)
0771dfef 1919 return;
9f96cb1e
MS
1920 entry = next_entry;
1921 pi = next_pi;
0771dfef
IM
1922 /*
1923 * Avoid excessively long or circular lists:
1924 */
1925 if (!--limit)
1926 break;
1927
1928 cond_resched();
1929 }
9f96cb1e
MS
1930
1931 if (pending)
1932 handle_futex_death((void __user *)pending + futex_offset,
1933 curr, pip);
0771dfef
IM
1934}
1935
c19384b5 1936long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
e2970f2f 1937 u32 __user *uaddr2, u32 val2, u32 val3)
1da177e4 1938{
1acdac10 1939 int clockrt, ret = -ENOSYS;
34f01cc1 1940 int cmd = op & FUTEX_CMD_MASK;
c2f9f201 1941 int fshared = 0;
34f01cc1
ED
1942
1943 if (!(op & FUTEX_PRIVATE_FLAG))
c2f9f201 1944 fshared = 1;
1da177e4 1945
1acdac10
TG
1946 clockrt = op & FUTEX_CLOCK_REALTIME;
1947 if (clockrt && cmd != FUTEX_WAIT_BITSET)
1948 return -ENOSYS;
1da177e4 1949
34f01cc1 1950 switch (cmd) {
1da177e4 1951 case FUTEX_WAIT:
cd689985
TG
1952 val3 = FUTEX_BITSET_MATCH_ANY;
1953 case FUTEX_WAIT_BITSET:
1acdac10 1954 ret = futex_wait(uaddr, fshared, val, timeout, val3, clockrt);
1da177e4
LT
1955 break;
1956 case FUTEX_WAKE:
cd689985
TG
1957 val3 = FUTEX_BITSET_MATCH_ANY;
1958 case FUTEX_WAKE_BITSET:
1959 ret = futex_wake(uaddr, fshared, val, val3);
1da177e4 1960 break;
1da177e4 1961 case FUTEX_REQUEUE:
34f01cc1 1962 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, NULL);
1da177e4
LT
1963 break;
1964 case FUTEX_CMP_REQUEUE:
34f01cc1 1965 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3);
1da177e4 1966 break;
4732efbe 1967 case FUTEX_WAKE_OP:
34f01cc1 1968 ret = futex_wake_op(uaddr, fshared, uaddr2, val, val2, val3);
4732efbe 1969 break;
c87e2837 1970 case FUTEX_LOCK_PI:
a0c1e907
TG
1971 if (futex_cmpxchg_enabled)
1972 ret = futex_lock_pi(uaddr, fshared, val, timeout, 0);
c87e2837
IM
1973 break;
1974 case FUTEX_UNLOCK_PI:
a0c1e907
TG
1975 if (futex_cmpxchg_enabled)
1976 ret = futex_unlock_pi(uaddr, fshared);
c87e2837
IM
1977 break;
1978 case FUTEX_TRYLOCK_PI:
a0c1e907
TG
1979 if (futex_cmpxchg_enabled)
1980 ret = futex_lock_pi(uaddr, fshared, 0, timeout, 1);
c87e2837 1981 break;
1da177e4
LT
1982 default:
1983 ret = -ENOSYS;
1984 }
1985 return ret;
1986}
1987
1988
17da2bd9
HC
1989SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
1990 struct timespec __user *, utime, u32 __user *, uaddr2,
1991 u32, val3)
1da177e4 1992{
c19384b5
PP
1993 struct timespec ts;
1994 ktime_t t, *tp = NULL;
e2970f2f 1995 u32 val2 = 0;
34f01cc1 1996 int cmd = op & FUTEX_CMD_MASK;
1da177e4 1997
cd689985
TG
1998 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
1999 cmd == FUTEX_WAIT_BITSET)) {
c19384b5 2000 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
1da177e4 2001 return -EFAULT;
c19384b5 2002 if (!timespec_valid(&ts))
9741ef96 2003 return -EINVAL;
c19384b5
PP
2004
2005 t = timespec_to_ktime(ts);
34f01cc1 2006 if (cmd == FUTEX_WAIT)
5a7780e7 2007 t = ktime_add_safe(ktime_get(), t);
c19384b5 2008 tp = &t;
1da177e4
LT
2009 }
2010 /*
34f01cc1 2011 * requeue parameter in 'utime' if cmd == FUTEX_REQUEUE.
f54f0986 2012 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
1da177e4 2013 */
f54f0986
AS
2014 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
2015 cmd == FUTEX_WAKE_OP)
e2970f2f 2016 val2 = (u32) (unsigned long) utime;
1da177e4 2017
c19384b5 2018 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
1da177e4
LT
2019}
2020
f6d107fb 2021static int __init futex_init(void)
1da177e4 2022{
a0c1e907 2023 u32 curval;
3e4ab747 2024 int i;
95362fa9 2025
a0c1e907
TG
2026 /*
2027 * This will fail and we want it. Some arch implementations do
2028 * runtime detection of the futex_atomic_cmpxchg_inatomic()
2029 * functionality. We want to know that before we call in any
2030 * of the complex code paths. Also we want to prevent
2031 * registration of robust lists in that case. NULL is
2032 * guaranteed to fault and we get -EFAULT on functional
2033 * implementation, the non functional ones will return
2034 * -ENOSYS.
2035 */
2036 curval = cmpxchg_futex_value_locked(NULL, 0, 0);
2037 if (curval == -EFAULT)
2038 futex_cmpxchg_enabled = 1;
2039
3e4ab747
TG
2040 for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
2041 plist_head_init(&futex_queues[i].chain, &futex_queues[i].lock);
2042 spin_lock_init(&futex_queues[i].lock);
2043 }
2044
1da177e4
LT
2045 return 0;
2046}
f6d107fb 2047__initcall(futex_init);
This page took 0.499861 seconds and 5 git commands to generate.