hrtimer: Prevent all reprogramming if hang detected
[deliverable/linux.git] / kernel / hrtimer.c
CommitLineData
c0a31329
TG
1/*
2 * linux/kernel/hrtimer.c
3 *
3c8aa39d 4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
79bf2bb3 5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
54cdfdb4 6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
c0a31329
TG
7 *
8 * High-resolution kernel timers
9 *
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
13 *
14 * These timers are currently used for:
15 * - itimers
16 * - POSIX timers
17 * - nanosleep
18 * - precise in-kernel timing
19 *
20 * Started by: Thomas Gleixner and Ingo Molnar
21 *
22 * Credits:
23 * based on kernel/timer.c
24 *
66188fae
TG
25 * Help, testing, suggestions, bugfixes, improvements were
26 * provided by:
27 *
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29 * et. al.
30 *
c0a31329
TG
31 * For licencing details see kernel-base/COPYING
32 */
33
34#include <linux/cpu.h>
9984de1a 35#include <linux/export.h>
c0a31329
TG
36#include <linux/percpu.h>
37#include <linux/hrtimer.h>
38#include <linux/notifier.h>
39#include <linux/syscalls.h>
54cdfdb4 40#include <linux/kallsyms.h>
c0a31329 41#include <linux/interrupt.h>
79bf2bb3 42#include <linux/tick.h>
54cdfdb4
TG
43#include <linux/seq_file.h>
44#include <linux/err.h>
237fc6e7 45#include <linux/debugobjects.h>
eea08f32 46#include <linux/sched.h>
cf4aebc2 47#include <linux/sched/sysctl.h>
8bd75c77 48#include <linux/sched/rt.h>
aab03e05 49#include <linux/sched/deadline.h>
eea08f32 50#include <linux/timer.h>
b0f8c44f 51#include <linux/freezer.h>
c0a31329
TG
52
53#include <asm/uaccess.h>
54
c6a2a177
XG
55#include <trace/events/timer.h>
56
c0a31329
TG
57/*
58 * The timer bases:
7978672c 59 *
e06383db
JS
60 * There are more clockids then hrtimer bases. Thus, we index
61 * into the timer bases by the hrtimer_base_type enum. When trying
62 * to reach a base using a clockid, hrtimer_clockid_to_base()
63 * is used to convert from clockid to the proper hrtimer_base_type.
c0a31329 64 */
54cdfdb4 65DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
c0a31329 66{
3c8aa39d 67
84cc8fd2 68 .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
3c8aa39d 69 .clock_base =
c0a31329 70 {
3c8aa39d 71 {
ab8177bc
TG
72 .index = HRTIMER_BASE_MONOTONIC,
73 .clockid = CLOCK_MONOTONIC,
3c8aa39d 74 .get_time = &ktime_get,
54cdfdb4 75 .resolution = KTIME_LOW_RES,
3c8aa39d 76 },
68fa61c0
TG
77 {
78 .index = HRTIMER_BASE_REALTIME,
79 .clockid = CLOCK_REALTIME,
80 .get_time = &ktime_get_real,
81 .resolution = KTIME_LOW_RES,
82 },
70a08cca 83 {
ab8177bc
TG
84 .index = HRTIMER_BASE_BOOTTIME,
85 .clockid = CLOCK_BOOTTIME,
70a08cca
JS
86 .get_time = &ktime_get_boottime,
87 .resolution = KTIME_LOW_RES,
88 },
90adda98
JS
89 {
90 .index = HRTIMER_BASE_TAI,
91 .clockid = CLOCK_TAI,
92 .get_time = &ktime_get_clocktai,
93 .resolution = KTIME_LOW_RES,
94 },
3c8aa39d 95 }
c0a31329
TG
96};
97
942c3c5c 98static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
ce31332d
TG
99 [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME,
100 [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC,
101 [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME,
90adda98 102 [CLOCK_TAI] = HRTIMER_BASE_TAI,
ce31332d 103};
e06383db
JS
104
105static inline int hrtimer_clockid_to_base(clockid_t clock_id)
106{
107 return hrtimer_clock_to_base_table[clock_id];
108}
109
110
92127c7a
TG
111/*
112 * Get the coarse grained time at the softirq based on xtime and
113 * wall_to_monotonic.
114 */
3c8aa39d 115static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
92127c7a 116{
70a08cca 117 ktime_t xtim, mono, boot;
314ac371 118 struct timespec xts, tom, slp;
90adda98 119 s32 tai_offset;
92127c7a 120
314ac371 121 get_xtime_and_monotonic_and_sleep_offset(&xts, &tom, &slp);
90adda98 122 tai_offset = timekeeping_get_tai_offset();
92127c7a 123
f4304ab2 124 xtim = timespec_to_ktime(xts);
70a08cca
JS
125 mono = ktime_add(xtim, timespec_to_ktime(tom));
126 boot = ktime_add(mono, timespec_to_ktime(slp));
e06383db 127 base->clock_base[HRTIMER_BASE_REALTIME].softirq_time = xtim;
70a08cca
JS
128 base->clock_base[HRTIMER_BASE_MONOTONIC].softirq_time = mono;
129 base->clock_base[HRTIMER_BASE_BOOTTIME].softirq_time = boot;
90adda98
JS
130 base->clock_base[HRTIMER_BASE_TAI].softirq_time =
131 ktime_add(xtim, ktime_set(tai_offset, 0));
92127c7a
TG
132}
133
c0a31329
TG
134/*
135 * Functions and macros which are different for UP/SMP systems are kept in a
136 * single place
137 */
138#ifdef CONFIG_SMP
139
c0a31329
TG
140/*
141 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
142 * means that all timers which are tied to this base via timer->base are
143 * locked, and the base itself is locked too.
144 *
145 * So __run_timers/migrate_timers can safely modify all timers which could
146 * be found on the lists/queues.
147 *
148 * When the timer's base is locked, and the timer removed from list, it is
149 * possible to set timer->base = NULL and drop the lock: the timer remains
150 * locked.
151 */
3c8aa39d
TG
152static
153struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
154 unsigned long *flags)
c0a31329 155{
3c8aa39d 156 struct hrtimer_clock_base *base;
c0a31329
TG
157
158 for (;;) {
159 base = timer->base;
160 if (likely(base != NULL)) {
ecb49d1a 161 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
c0a31329
TG
162 if (likely(base == timer->base))
163 return base;
164 /* The timer has migrated to another CPU: */
ecb49d1a 165 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
c0a31329
TG
166 }
167 cpu_relax();
168 }
169}
170
6ff7041d
TG
171/*
172 * With HIGHRES=y we do not migrate the timer when it is expiring
173 * before the next event on the target cpu because we cannot reprogram
174 * the target cpu hardware and we would cause it to fire late.
175 *
176 * Called with cpu_base->lock of target cpu held.
177 */
178static int
179hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
180{
181#ifdef CONFIG_HIGH_RES_TIMERS
182 ktime_t expires;
183
184 if (!new_base->cpu_base->hres_active)
185 return 0;
186
187 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
188 return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
189#else
190 return 0;
191#endif
192}
193
c0a31329
TG
194/*
195 * Switch the timer base to the current CPU when possible.
196 */
3c8aa39d 197static inline struct hrtimer_clock_base *
597d0275
AB
198switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
199 int pinned)
c0a31329 200{
3c8aa39d
TG
201 struct hrtimer_clock_base *new_base;
202 struct hrtimer_cpu_base *new_cpu_base;
6ff7041d 203 int this_cpu = smp_processor_id();
6201b4d6 204 int cpu = get_nohz_timer_target(pinned);
ab8177bc 205 int basenum = base->index;
c0a31329 206
eea08f32
AB
207again:
208 new_cpu_base = &per_cpu(hrtimer_bases, cpu);
e06383db 209 new_base = &new_cpu_base->clock_base[basenum];
c0a31329
TG
210
211 if (base != new_base) {
212 /*
6ff7041d 213 * We are trying to move timer to new_base.
c0a31329
TG
214 * However we can't change timer's base while it is running,
215 * so we keep it on the same CPU. No hassle vs. reprogramming
216 * the event source in the high resolution case. The softirq
217 * code will take care of this when the timer function has
218 * completed. There is no conflict as we hold the lock until
219 * the timer is enqueued.
220 */
54cdfdb4 221 if (unlikely(hrtimer_callback_running(timer)))
c0a31329
TG
222 return base;
223
224 /* See the comment in lock_timer_base() */
225 timer->base = NULL;
ecb49d1a
TG
226 raw_spin_unlock(&base->cpu_base->lock);
227 raw_spin_lock(&new_base->cpu_base->lock);
eea08f32 228
6ff7041d
TG
229 if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
230 cpu = this_cpu;
ecb49d1a
TG
231 raw_spin_unlock(&new_base->cpu_base->lock);
232 raw_spin_lock(&base->cpu_base->lock);
6ff7041d
TG
233 timer->base = base;
234 goto again;
eea08f32 235 }
c0a31329
TG
236 timer->base = new_base;
237 }
238 return new_base;
239}
240
241#else /* CONFIG_SMP */
242
3c8aa39d 243static inline struct hrtimer_clock_base *
c0a31329
TG
244lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
245{
3c8aa39d 246 struct hrtimer_clock_base *base = timer->base;
c0a31329 247
ecb49d1a 248 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
c0a31329
TG
249
250 return base;
251}
252
eea08f32 253# define switch_hrtimer_base(t, b, p) (b)
c0a31329
TG
254
255#endif /* !CONFIG_SMP */
256
257/*
258 * Functions for the union type storage format of ktime_t which are
259 * too large for inlining:
260 */
261#if BITS_PER_LONG < 64
262# ifndef CONFIG_KTIME_SCALAR
263/**
264 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
c0a31329
TG
265 * @kt: addend
266 * @nsec: the scalar nsec value to add
267 *
268 * Returns the sum of kt and nsec in ktime_t format
269 */
270ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
271{
272 ktime_t tmp;
273
274 if (likely(nsec < NSEC_PER_SEC)) {
275 tmp.tv64 = nsec;
276 } else {
277 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
278
51fd36f3
DE
279 /* Make sure nsec fits into long */
280 if (unlikely(nsec > KTIME_SEC_MAX))
281 return (ktime_t){ .tv64 = KTIME_MAX };
282
c0a31329
TG
283 tmp = ktime_set((long)nsec, rem);
284 }
285
286 return ktime_add(kt, tmp);
287}
b8b8fd2d
DH
288
289EXPORT_SYMBOL_GPL(ktime_add_ns);
a272378d
ACM
290
291/**
292 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
293 * @kt: minuend
294 * @nsec: the scalar nsec value to subtract
295 *
296 * Returns the subtraction of @nsec from @kt in ktime_t format
297 */
298ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec)
299{
300 ktime_t tmp;
301
302 if (likely(nsec < NSEC_PER_SEC)) {
303 tmp.tv64 = nsec;
304 } else {
305 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
306
307 tmp = ktime_set((long)nsec, rem);
308 }
309
310 return ktime_sub(kt, tmp);
311}
312
313EXPORT_SYMBOL_GPL(ktime_sub_ns);
c0a31329
TG
314# endif /* !CONFIG_KTIME_SCALAR */
315
316/*
317 * Divide a ktime value by a nanosecond value
318 */
4d672e7a 319u64 ktime_divns(const ktime_t kt, s64 div)
c0a31329 320{
900cfa46 321 u64 dclc;
c0a31329
TG
322 int sft = 0;
323
900cfa46 324 dclc = ktime_to_ns(kt);
c0a31329
TG
325 /* Make sure the divisor is less than 2^32: */
326 while (div >> 32) {
327 sft++;
328 div >>= 1;
329 }
330 dclc >>= sft;
331 do_div(dclc, (unsigned long) div);
332
4d672e7a 333 return dclc;
c0a31329 334}
c0a31329
TG
335#endif /* BITS_PER_LONG >= 64 */
336
5a7780e7
TG
337/*
338 * Add two ktime values and do a safety check for overflow:
339 */
340ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
341{
342 ktime_t res = ktime_add(lhs, rhs);
343
344 /*
345 * We use KTIME_SEC_MAX here, the maximum timeout which we can
346 * return to user space in a timespec:
347 */
348 if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
349 res = ktime_set(KTIME_SEC_MAX, 0);
350
351 return res;
352}
353
8daa21e6
AB
354EXPORT_SYMBOL_GPL(ktime_add_safe);
355
237fc6e7
TG
356#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
357
358static struct debug_obj_descr hrtimer_debug_descr;
359
99777288
SG
360static void *hrtimer_debug_hint(void *addr)
361{
362 return ((struct hrtimer *) addr)->function;
363}
364
237fc6e7
TG
365/*
366 * fixup_init is called when:
367 * - an active object is initialized
368 */
369static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
370{
371 struct hrtimer *timer = addr;
372
373 switch (state) {
374 case ODEBUG_STATE_ACTIVE:
375 hrtimer_cancel(timer);
376 debug_object_init(timer, &hrtimer_debug_descr);
377 return 1;
378 default:
379 return 0;
380 }
381}
382
383/*
384 * fixup_activate is called when:
385 * - an active object is activated
386 * - an unknown object is activated (might be a statically initialized object)
387 */
388static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
389{
390 switch (state) {
391
392 case ODEBUG_STATE_NOTAVAILABLE:
393 WARN_ON_ONCE(1);
394 return 0;
395
396 case ODEBUG_STATE_ACTIVE:
397 WARN_ON(1);
398
399 default:
400 return 0;
401 }
402}
403
404/*
405 * fixup_free is called when:
406 * - an active object is freed
407 */
408static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
409{
410 struct hrtimer *timer = addr;
411
412 switch (state) {
413 case ODEBUG_STATE_ACTIVE:
414 hrtimer_cancel(timer);
415 debug_object_free(timer, &hrtimer_debug_descr);
416 return 1;
417 default:
418 return 0;
419 }
420}
421
422static struct debug_obj_descr hrtimer_debug_descr = {
423 .name = "hrtimer",
99777288 424 .debug_hint = hrtimer_debug_hint,
237fc6e7
TG
425 .fixup_init = hrtimer_fixup_init,
426 .fixup_activate = hrtimer_fixup_activate,
427 .fixup_free = hrtimer_fixup_free,
428};
429
430static inline void debug_hrtimer_init(struct hrtimer *timer)
431{
432 debug_object_init(timer, &hrtimer_debug_descr);
433}
434
435static inline void debug_hrtimer_activate(struct hrtimer *timer)
436{
437 debug_object_activate(timer, &hrtimer_debug_descr);
438}
439
440static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
441{
442 debug_object_deactivate(timer, &hrtimer_debug_descr);
443}
444
445static inline void debug_hrtimer_free(struct hrtimer *timer)
446{
447 debug_object_free(timer, &hrtimer_debug_descr);
448}
449
450static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
451 enum hrtimer_mode mode);
452
453void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
454 enum hrtimer_mode mode)
455{
456 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
457 __hrtimer_init(timer, clock_id, mode);
458}
2bc481cf 459EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
237fc6e7
TG
460
461void destroy_hrtimer_on_stack(struct hrtimer *timer)
462{
463 debug_object_free(timer, &hrtimer_debug_descr);
464}
465
466#else
467static inline void debug_hrtimer_init(struct hrtimer *timer) { }
468static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
469static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
470#endif
471
c6a2a177
XG
472static inline void
473debug_init(struct hrtimer *timer, clockid_t clockid,
474 enum hrtimer_mode mode)
475{
476 debug_hrtimer_init(timer);
477 trace_hrtimer_init(timer, clockid, mode);
478}
479
480static inline void debug_activate(struct hrtimer *timer)
481{
482 debug_hrtimer_activate(timer);
483 trace_hrtimer_start(timer);
484}
485
486static inline void debug_deactivate(struct hrtimer *timer)
487{
488 debug_hrtimer_deactivate(timer);
489 trace_hrtimer_cancel(timer);
490}
491
54cdfdb4
TG
492/* High resolution timer related functions */
493#ifdef CONFIG_HIGH_RES_TIMERS
494
495/*
496 * High resolution timer enabled ?
497 */
498static int hrtimer_hres_enabled __read_mostly = 1;
499
500/*
501 * Enable / Disable high resolution mode
502 */
503static int __init setup_hrtimer_hres(char *str)
504{
505 if (!strcmp(str, "off"))
506 hrtimer_hres_enabled = 0;
507 else if (!strcmp(str, "on"))
508 hrtimer_hres_enabled = 1;
509 else
510 return 0;
511 return 1;
512}
513
514__setup("highres=", setup_hrtimer_hres);
515
516/*
517 * hrtimer_high_res_enabled - query, if the highres mode is enabled
518 */
519static inline int hrtimer_is_hres_enabled(void)
520{
521 return hrtimer_hres_enabled;
522}
523
524/*
525 * Is the high resolution mode active ?
526 */
527static inline int hrtimer_hres_active(void)
528{
909ea964 529 return __this_cpu_read(hrtimer_bases.hres_active);
54cdfdb4
TG
530}
531
532/*
533 * Reprogram the event source with checking both queues for the
534 * next event
535 * Called with interrupts disabled and base->lock held
536 */
7403f41f
AC
537static void
538hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
54cdfdb4
TG
539{
540 int i;
541 struct hrtimer_clock_base *base = cpu_base->clock_base;
7403f41f 542 ktime_t expires, expires_next;
54cdfdb4 543
7403f41f 544 expires_next.tv64 = KTIME_MAX;
54cdfdb4
TG
545
546 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
547 struct hrtimer *timer;
998adc3d 548 struct timerqueue_node *next;
54cdfdb4 549
998adc3d
JS
550 next = timerqueue_getnext(&base->active);
551 if (!next)
54cdfdb4 552 continue;
998adc3d
JS
553 timer = container_of(next, struct hrtimer, node);
554
cc584b21 555 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
b0a9b511
TG
556 /*
557 * clock_was_set() has changed base->offset so the
558 * result might be negative. Fix it up to prevent a
559 * false positive in clockevents_program_event()
560 */
561 if (expires.tv64 < 0)
562 expires.tv64 = 0;
7403f41f
AC
563 if (expires.tv64 < expires_next.tv64)
564 expires_next = expires;
54cdfdb4
TG
565 }
566
7403f41f
AC
567 if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
568 return;
569
570 cpu_base->expires_next.tv64 = expires_next.tv64;
571
6c6c0d5a
SH
572 /*
573 * If a hang was detected in the last timer interrupt then we
574 * leave the hang delay active in the hardware. We want the
575 * system to make progress. That also prevents the following
576 * scenario:
577 * T1 expires 50ms from now
578 * T2 expires 5s from now
579 *
580 * T1 is removed, so this code is called and would reprogram
581 * the hardware to 5s from now. Any hrtimer_start after that
582 * will not reprogram the hardware due to hang_detected being
583 * set. So we'd effectivly block all timers until the T2 event
584 * fires.
585 */
586 if (cpu_base->hang_detected)
587 return;
588
54cdfdb4
TG
589 if (cpu_base->expires_next.tv64 != KTIME_MAX)
590 tick_program_event(cpu_base->expires_next, 1);
591}
592
593/*
594 * Shared reprogramming for clock_realtime and clock_monotonic
595 *
596 * When a timer is enqueued and expires earlier than the already enqueued
597 * timers, we have to check, whether it expires earlier than the timer for
598 * which the clock event device was armed.
599 *
600 * Called with interrupts disabled and base->cpu_base.lock held
601 */
602static int hrtimer_reprogram(struct hrtimer *timer,
603 struct hrtimer_clock_base *base)
604{
41d2e494 605 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
cc584b21 606 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
54cdfdb4
TG
607 int res;
608
cc584b21 609 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
63070a79 610
54cdfdb4
TG
611 /*
612 * When the callback is running, we do not reprogram the clock event
613 * device. The timer callback is either running on a different CPU or
3a4fa0a2 614 * the callback is executed in the hrtimer_interrupt context. The
54cdfdb4
TG
615 * reprogramming is handled either by the softirq, which called the
616 * callback or at the end of the hrtimer_interrupt.
617 */
618 if (hrtimer_callback_running(timer))
619 return 0;
620
63070a79
TG
621 /*
622 * CLOCK_REALTIME timer might be requested with an absolute
623 * expiry time which is less than base->offset. Nothing wrong
624 * about that, just avoid to call into the tick code, which
625 * has now objections against negative expiry values.
626 */
627 if (expires.tv64 < 0)
628 return -ETIME;
629
41d2e494
TG
630 if (expires.tv64 >= cpu_base->expires_next.tv64)
631 return 0;
632
633 /*
634 * If a hang was detected in the last timer interrupt then we
635 * do not schedule a timer which is earlier than the expiry
636 * which we enforced in the hang detection. We want the system
637 * to make progress.
638 */
639 if (cpu_base->hang_detected)
54cdfdb4
TG
640 return 0;
641
642 /*
643 * Clockevents returns -ETIME, when the event was in the past.
644 */
645 res = tick_program_event(expires, 0);
646 if (!IS_ERR_VALUE(res))
41d2e494 647 cpu_base->expires_next = expires;
54cdfdb4
TG
648 return res;
649}
650
54cdfdb4
TG
651/*
652 * Initialize the high resolution related parts of cpu_base
653 */
654static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
655{
656 base->expires_next.tv64 = KTIME_MAX;
657 base->hres_active = 0;
54cdfdb4
TG
658}
659
54cdfdb4
TG
660/*
661 * When High resolution timers are active, try to reprogram. Note, that in case
662 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
663 * check happens. The timer gets enqueued into the rbtree. The reprogramming
664 * and expiry check is done in the hrtimer_interrupt or in the softirq.
665 */
666static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
b22affe0 667 struct hrtimer_clock_base *base)
54cdfdb4 668{
b22affe0 669 return base->cpu_base->hres_active && hrtimer_reprogram(timer, base);
54cdfdb4
TG
670}
671
5baefd6d
JS
672static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
673{
674 ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
675 ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
90adda98 676 ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
5baefd6d 677
90adda98 678 return ktime_get_update_offsets(offs_real, offs_boot, offs_tai);
5baefd6d
JS
679}
680
9ec26907
TG
681/*
682 * Retrigger next event is called after clock was set
683 *
684 * Called with interrupts disabled via on_each_cpu()
685 */
686static void retrigger_next_event(void *arg)
687{
688 struct hrtimer_cpu_base *base = &__get_cpu_var(hrtimer_bases);
9ec26907
TG
689
690 if (!hrtimer_hres_active())
691 return;
692
9ec26907 693 raw_spin_lock(&base->lock);
5baefd6d 694 hrtimer_update_base(base);
9ec26907
TG
695 hrtimer_force_reprogram(base, 0);
696 raw_spin_unlock(&base->lock);
697}
b12a03ce 698
54cdfdb4
TG
699/*
700 * Switch to high resolution mode
701 */
f8953856 702static int hrtimer_switch_to_hres(void)
54cdfdb4 703{
b12a03ce 704 int i, cpu = smp_processor_id();
820de5c3 705 struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
54cdfdb4
TG
706 unsigned long flags;
707
708 if (base->hres_active)
f8953856 709 return 1;
54cdfdb4
TG
710
711 local_irq_save(flags);
712
713 if (tick_init_highres()) {
714 local_irq_restore(flags);
820de5c3
IM
715 printk(KERN_WARNING "Could not switch to high resolution "
716 "mode on CPU %d\n", cpu);
f8953856 717 return 0;
54cdfdb4
TG
718 }
719 base->hres_active = 1;
b12a03ce
TG
720 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
721 base->clock_base[i].resolution = KTIME_HIGH_RES;
54cdfdb4
TG
722
723 tick_setup_sched_timer();
54cdfdb4
TG
724 /* "Retrigger" the interrupt to get things going */
725 retrigger_next_event(NULL);
726 local_irq_restore(flags);
f8953856 727 return 1;
54cdfdb4
TG
728}
729
5ec2481b
TG
730static void clock_was_set_work(struct work_struct *work)
731{
732 clock_was_set();
733}
734
735static DECLARE_WORK(hrtimer_work, clock_was_set_work);
736
f55a6faa 737/*
5ec2481b
TG
738 * Called from timekeeping and resume code to reprogramm the hrtimer
739 * interrupt device on all cpus.
f55a6faa
JS
740 */
741void clock_was_set_delayed(void)
742{
5ec2481b 743 schedule_work(&hrtimer_work);
f55a6faa
JS
744}
745
54cdfdb4
TG
746#else
747
748static inline int hrtimer_hres_active(void) { return 0; }
749static inline int hrtimer_is_hres_enabled(void) { return 0; }
f8953856 750static inline int hrtimer_switch_to_hres(void) { return 0; }
7403f41f
AC
751static inline void
752hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
54cdfdb4 753static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
b22affe0 754 struct hrtimer_clock_base *base)
54cdfdb4
TG
755{
756 return 0;
757}
54cdfdb4 758static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
9ec26907 759static inline void retrigger_next_event(void *arg) { }
54cdfdb4
TG
760
761#endif /* CONFIG_HIGH_RES_TIMERS */
762
b12a03ce
TG
763/*
764 * Clock realtime was set
765 *
766 * Change the offset of the realtime clock vs. the monotonic
767 * clock.
768 *
769 * We might have to reprogram the high resolution timer interrupt. On
770 * SMP we call the architecture specific code to retrigger _all_ high
771 * resolution timer interrupts. On UP we just disable interrupts and
772 * call the high resolution interrupt code.
773 */
774void clock_was_set(void)
775{
90ff1f30 776#ifdef CONFIG_HIGH_RES_TIMERS
b12a03ce
TG
777 /* Retrigger the CPU local events everywhere */
778 on_each_cpu(retrigger_next_event, NULL, 1);
9ec26907
TG
779#endif
780 timerfd_clock_was_set();
b12a03ce
TG
781}
782
783/*
784 * During resume we might have to reprogram the high resolution timer
7c4c3a0f
DV
785 * interrupt on all online CPUs. However, all other CPUs will be
786 * stopped with IRQs interrupts disabled so the clock_was_set() call
5ec2481b 787 * must be deferred.
b12a03ce
TG
788 */
789void hrtimers_resume(void)
790{
791 WARN_ONCE(!irqs_disabled(),
792 KERN_INFO "hrtimers_resume() called with IRQs enabled!");
793
5ec2481b 794 /* Retrigger on the local CPU */
b12a03ce 795 retrigger_next_event(NULL);
5ec2481b
TG
796 /* And schedule a retrigger for all others */
797 clock_was_set_delayed();
b12a03ce
TG
798}
799
5f201907 800static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
82f67cd9 801{
5f201907 802#ifdef CONFIG_TIMER_STATS
82f67cd9
IM
803 if (timer->start_site)
804 return;
5f201907 805 timer->start_site = __builtin_return_address(0);
82f67cd9
IM
806 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
807 timer->start_pid = current->pid;
5f201907
HC
808#endif
809}
810
811static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
812{
813#ifdef CONFIG_TIMER_STATS
814 timer->start_site = NULL;
815#endif
82f67cd9 816}
5f201907
HC
817
818static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
819{
820#ifdef CONFIG_TIMER_STATS
821 if (likely(!timer_stats_active))
822 return;
823 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
824 timer->function, timer->start_comm, 0);
82f67cd9 825#endif
5f201907 826}
82f67cd9 827
c0a31329 828/*
6506f2aa 829 * Counterpart to lock_hrtimer_base above:
c0a31329
TG
830 */
831static inline
832void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
833{
ecb49d1a 834 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
c0a31329
TG
835}
836
837/**
838 * hrtimer_forward - forward the timer expiry
c0a31329 839 * @timer: hrtimer to forward
44f21475 840 * @now: forward past this time
c0a31329
TG
841 * @interval: the interval to forward
842 *
843 * Forward the timer expiry so it will expire in the future.
8dca6f33 844 * Returns the number of overruns.
c0a31329 845 */
4d672e7a 846u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
c0a31329 847{
4d672e7a 848 u64 orun = 1;
44f21475 849 ktime_t delta;
c0a31329 850
cc584b21 851 delta = ktime_sub(now, hrtimer_get_expires(timer));
c0a31329
TG
852
853 if (delta.tv64 < 0)
854 return 0;
855
c9db4fa1
TG
856 if (interval.tv64 < timer->base->resolution.tv64)
857 interval.tv64 = timer->base->resolution.tv64;
858
c0a31329 859 if (unlikely(delta.tv64 >= interval.tv64)) {
df869b63 860 s64 incr = ktime_to_ns(interval);
c0a31329
TG
861
862 orun = ktime_divns(delta, incr);
cc584b21
AV
863 hrtimer_add_expires_ns(timer, incr * orun);
864 if (hrtimer_get_expires_tv64(timer) > now.tv64)
c0a31329
TG
865 return orun;
866 /*
867 * This (and the ktime_add() below) is the
868 * correction for exact:
869 */
870 orun++;
871 }
cc584b21 872 hrtimer_add_expires(timer, interval);
c0a31329
TG
873
874 return orun;
875}
6bdb6b62 876EXPORT_SYMBOL_GPL(hrtimer_forward);
c0a31329
TG
877
878/*
879 * enqueue_hrtimer - internal function to (re)start a timer
880 *
881 * The timer is inserted in expiry order. Insertion into the
882 * red black tree is O(log(n)). Must hold the base lock.
a6037b61
PZ
883 *
884 * Returns 1 when the new timer is the leftmost timer in the tree.
c0a31329 885 */
a6037b61
PZ
886static int enqueue_hrtimer(struct hrtimer *timer,
887 struct hrtimer_clock_base *base)
c0a31329 888{
c6a2a177 889 debug_activate(timer);
237fc6e7 890
998adc3d 891 timerqueue_add(&base->active, &timer->node);
ab8177bc 892 base->cpu_base->active_bases |= 1 << base->index;
54cdfdb4 893
303e967f
TG
894 /*
895 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
896 * state of a possibly running callback.
897 */
898 timer->state |= HRTIMER_STATE_ENQUEUED;
a6037b61 899
998adc3d 900 return (&timer->node == base->active.next);
288867ec 901}
c0a31329
TG
902
903/*
904 * __remove_hrtimer - internal function to remove a timer
905 *
906 * Caller must hold the base lock.
54cdfdb4
TG
907 *
908 * High resolution timer mode reprograms the clock event device when the
909 * timer is the one which expires next. The caller can disable this by setting
910 * reprogram to zero. This is useful, when the context does a reprogramming
911 * anyway (e.g. timer interrupt)
c0a31329 912 */
3c8aa39d 913static void __remove_hrtimer(struct hrtimer *timer,
303e967f 914 struct hrtimer_clock_base *base,
54cdfdb4 915 unsigned long newstate, int reprogram)
c0a31329 916{
27c9cd7e 917 struct timerqueue_node *next_timer;
7403f41f
AC
918 if (!(timer->state & HRTIMER_STATE_ENQUEUED))
919 goto out;
920
27c9cd7e
JO
921 next_timer = timerqueue_getnext(&base->active);
922 timerqueue_del(&base->active, &timer->node);
923 if (&timer->node == next_timer) {
7403f41f
AC
924#ifdef CONFIG_HIGH_RES_TIMERS
925 /* Reprogram the clock event device. if enabled */
926 if (reprogram && hrtimer_hres_active()) {
927 ktime_t expires;
928
929 expires = ktime_sub(hrtimer_get_expires(timer),
930 base->offset);
931 if (base->cpu_base->expires_next.tv64 == expires.tv64)
932 hrtimer_force_reprogram(base->cpu_base, 1);
54cdfdb4 933 }
7403f41f 934#endif
54cdfdb4 935 }
ab8177bc
TG
936 if (!timerqueue_getnext(&base->active))
937 base->cpu_base->active_bases &= ~(1 << base->index);
7403f41f 938out:
303e967f 939 timer->state = newstate;
c0a31329
TG
940}
941
942/*
943 * remove hrtimer, called with base lock held
944 */
945static inline int
3c8aa39d 946remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
c0a31329 947{
303e967f 948 if (hrtimer_is_queued(timer)) {
f13d4f97 949 unsigned long state;
54cdfdb4
TG
950 int reprogram;
951
952 /*
953 * Remove the timer and force reprogramming when high
954 * resolution mode is active and the timer is on the current
955 * CPU. If we remove a timer on another CPU, reprogramming is
956 * skipped. The interrupt event on this CPU is fired and
957 * reprogramming happens in the interrupt handler. This is a
958 * rare case and less expensive than a smp call.
959 */
c6a2a177 960 debug_deactivate(timer);
82f67cd9 961 timer_stats_hrtimer_clear_start_info(timer);
54cdfdb4 962 reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
f13d4f97
SQ
963 /*
964 * We must preserve the CALLBACK state flag here,
965 * otherwise we could move the timer base in
966 * switch_hrtimer_base.
967 */
968 state = timer->state & HRTIMER_STATE_CALLBACK;
969 __remove_hrtimer(timer, base, state, reprogram);
c0a31329
TG
970 return 1;
971 }
972 return 0;
973}
974
7f1e2ca9
PZ
975int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
976 unsigned long delta_ns, const enum hrtimer_mode mode,
977 int wakeup)
c0a31329 978{
3c8aa39d 979 struct hrtimer_clock_base *base, *new_base;
c0a31329 980 unsigned long flags;
a6037b61 981 int ret, leftmost;
c0a31329
TG
982
983 base = lock_hrtimer_base(timer, &flags);
984
985 /* Remove an active timer from the queue: */
986 ret = remove_hrtimer(timer, base);
987
988 /* Switch the timer base, if necessary: */
597d0275 989 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
c0a31329 990
597d0275 991 if (mode & HRTIMER_MODE_REL) {
5a7780e7 992 tim = ktime_add_safe(tim, new_base->get_time());
06027bdd
IM
993 /*
994 * CONFIG_TIME_LOW_RES is a temporary way for architectures
995 * to signal that they simply return xtime in
996 * do_gettimeoffset(). In this case we want to round up by
997 * resolution when starting a relative timer, to avoid short
998 * timeouts. This will go away with the GTOD framework.
999 */
1000#ifdef CONFIG_TIME_LOW_RES
5a7780e7 1001 tim = ktime_add_safe(tim, base->resolution);
06027bdd
IM
1002#endif
1003 }
237fc6e7 1004
da8f2e17 1005 hrtimer_set_expires_range_ns(timer, tim, delta_ns);
c0a31329 1006
82f67cd9
IM
1007 timer_stats_hrtimer_set_start_info(timer);
1008
a6037b61
PZ
1009 leftmost = enqueue_hrtimer(timer, new_base);
1010
935c631d
IM
1011 /*
1012 * Only allow reprogramming if the new base is on this CPU.
1013 * (it might still be on another CPU if the timer was pending)
a6037b61
PZ
1014 *
1015 * XXX send_remote_softirq() ?
935c631d 1016 */
b22affe0
LS
1017 if (leftmost && new_base->cpu_base == &__get_cpu_var(hrtimer_bases)
1018 && hrtimer_enqueue_reprogram(timer, new_base)) {
1019 if (wakeup) {
1020 /*
1021 * We need to drop cpu_base->lock to avoid a
1022 * lock ordering issue vs. rq->lock.
1023 */
1024 raw_spin_unlock(&new_base->cpu_base->lock);
1025 raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1026 local_irq_restore(flags);
1027 return ret;
1028 } else {
1029 __raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1030 }
1031 }
c0a31329
TG
1032
1033 unlock_hrtimer_base(timer, &flags);
1034
1035 return ret;
1036}
7f1e2ca9
PZ
1037
1038/**
1039 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
1040 * @timer: the timer to be added
1041 * @tim: expiry time
1042 * @delta_ns: "slack" range for the timer
8ffbc7d9
DD
1043 * @mode: expiry mode: absolute (HRTIMER_MODE_ABS) or
1044 * relative (HRTIMER_MODE_REL)
7f1e2ca9
PZ
1045 *
1046 * Returns:
1047 * 0 on success
1048 * 1 when the timer was active
1049 */
1050int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1051 unsigned long delta_ns, const enum hrtimer_mode mode)
1052{
1053 return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1);
1054}
da8f2e17
AV
1055EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1056
1057/**
e1dd7bc5 1058 * hrtimer_start - (re)start an hrtimer on the current CPU
da8f2e17
AV
1059 * @timer: the timer to be added
1060 * @tim: expiry time
8ffbc7d9
DD
1061 * @mode: expiry mode: absolute (HRTIMER_MODE_ABS) or
1062 * relative (HRTIMER_MODE_REL)
da8f2e17
AV
1063 *
1064 * Returns:
1065 * 0 on success
1066 * 1 when the timer was active
1067 */
1068int
1069hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
1070{
7f1e2ca9 1071 return __hrtimer_start_range_ns(timer, tim, 0, mode, 1);
da8f2e17 1072}
8d16b764 1073EXPORT_SYMBOL_GPL(hrtimer_start);
c0a31329 1074
da8f2e17 1075
c0a31329
TG
1076/**
1077 * hrtimer_try_to_cancel - try to deactivate a timer
c0a31329
TG
1078 * @timer: hrtimer to stop
1079 *
1080 * Returns:
1081 * 0 when the timer was not active
1082 * 1 when the timer was active
1083 * -1 when the timer is currently excuting the callback function and
fa9799e3 1084 * cannot be stopped
c0a31329
TG
1085 */
1086int hrtimer_try_to_cancel(struct hrtimer *timer)
1087{
3c8aa39d 1088 struct hrtimer_clock_base *base;
c0a31329
TG
1089 unsigned long flags;
1090 int ret = -1;
1091
1092 base = lock_hrtimer_base(timer, &flags);
1093
303e967f 1094 if (!hrtimer_callback_running(timer))
c0a31329
TG
1095 ret = remove_hrtimer(timer, base);
1096
1097 unlock_hrtimer_base(timer, &flags);
1098
1099 return ret;
1100
1101}
8d16b764 1102EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
c0a31329
TG
1103
1104/**
1105 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
c0a31329
TG
1106 * @timer: the timer to be cancelled
1107 *
1108 * Returns:
1109 * 0 when the timer was not active
1110 * 1 when the timer was active
1111 */
1112int hrtimer_cancel(struct hrtimer *timer)
1113{
1114 for (;;) {
1115 int ret = hrtimer_try_to_cancel(timer);
1116
1117 if (ret >= 0)
1118 return ret;
5ef37b19 1119 cpu_relax();
c0a31329
TG
1120 }
1121}
8d16b764 1122EXPORT_SYMBOL_GPL(hrtimer_cancel);
c0a31329
TG
1123
1124/**
1125 * hrtimer_get_remaining - get remaining time for the timer
c0a31329
TG
1126 * @timer: the timer to read
1127 */
1128ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
1129{
c0a31329
TG
1130 unsigned long flags;
1131 ktime_t rem;
1132
b3bd3de6 1133 lock_hrtimer_base(timer, &flags);
cc584b21 1134 rem = hrtimer_expires_remaining(timer);
c0a31329
TG
1135 unlock_hrtimer_base(timer, &flags);
1136
1137 return rem;
1138}
8d16b764 1139EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
c0a31329 1140
3451d024 1141#ifdef CONFIG_NO_HZ_COMMON
69239749
TL
1142/**
1143 * hrtimer_get_next_event - get the time until next expiry event
1144 *
1145 * Returns the delta to the next expiry event or KTIME_MAX if no timer
1146 * is pending.
1147 */
1148ktime_t hrtimer_get_next_event(void)
1149{
3c8aa39d
TG
1150 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1151 struct hrtimer_clock_base *base = cpu_base->clock_base;
69239749
TL
1152 ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
1153 unsigned long flags;
1154 int i;
1155
ecb49d1a 1156 raw_spin_lock_irqsave(&cpu_base->lock, flags);
3c8aa39d 1157
54cdfdb4
TG
1158 if (!hrtimer_hres_active()) {
1159 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
1160 struct hrtimer *timer;
998adc3d 1161 struct timerqueue_node *next;
69239749 1162
998adc3d
JS
1163 next = timerqueue_getnext(&base->active);
1164 if (!next)
54cdfdb4 1165 continue;
3c8aa39d 1166
998adc3d 1167 timer = container_of(next, struct hrtimer, node);
cc584b21 1168 delta.tv64 = hrtimer_get_expires_tv64(timer);
54cdfdb4
TG
1169 delta = ktime_sub(delta, base->get_time());
1170 if (delta.tv64 < mindelta.tv64)
1171 mindelta.tv64 = delta.tv64;
1172 }
69239749 1173 }
3c8aa39d 1174
ecb49d1a 1175 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
3c8aa39d 1176
69239749
TL
1177 if (mindelta.tv64 < 0)
1178 mindelta.tv64 = 0;
1179 return mindelta;
1180}
1181#endif
1182
237fc6e7
TG
1183static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1184 enum hrtimer_mode mode)
c0a31329 1185{
3c8aa39d 1186 struct hrtimer_cpu_base *cpu_base;
e06383db 1187 int base;
c0a31329 1188
7978672c
GA
1189 memset(timer, 0, sizeof(struct hrtimer));
1190
3c8aa39d 1191 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
c0a31329 1192
c9cb2e3d 1193 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
7978672c
GA
1194 clock_id = CLOCK_MONOTONIC;
1195
e06383db
JS
1196 base = hrtimer_clockid_to_base(clock_id);
1197 timer->base = &cpu_base->clock_base[base];
998adc3d 1198 timerqueue_init(&timer->node);
82f67cd9
IM
1199
1200#ifdef CONFIG_TIMER_STATS
1201 timer->start_site = NULL;
1202 timer->start_pid = -1;
1203 memset(timer->start_comm, 0, TASK_COMM_LEN);
1204#endif
c0a31329 1205}
237fc6e7
TG
1206
1207/**
1208 * hrtimer_init - initialize a timer to the given clock
1209 * @timer: the timer to be initialized
1210 * @clock_id: the clock to be used
1211 * @mode: timer mode abs/rel
1212 */
1213void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1214 enum hrtimer_mode mode)
1215{
c6a2a177 1216 debug_init(timer, clock_id, mode);
237fc6e7
TG
1217 __hrtimer_init(timer, clock_id, mode);
1218}
8d16b764 1219EXPORT_SYMBOL_GPL(hrtimer_init);
c0a31329
TG
1220
1221/**
1222 * hrtimer_get_res - get the timer resolution for a clock
c0a31329
TG
1223 * @which_clock: which clock to query
1224 * @tp: pointer to timespec variable to store the resolution
1225 *
72fd4a35
RD
1226 * Store the resolution of the clock selected by @which_clock in the
1227 * variable pointed to by @tp.
c0a31329
TG
1228 */
1229int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
1230{
3c8aa39d 1231 struct hrtimer_cpu_base *cpu_base;
e06383db 1232 int base = hrtimer_clockid_to_base(which_clock);
c0a31329 1233
3c8aa39d 1234 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
e06383db 1235 *tp = ktime_to_timespec(cpu_base->clock_base[base].resolution);
c0a31329
TG
1236
1237 return 0;
1238}
8d16b764 1239EXPORT_SYMBOL_GPL(hrtimer_get_res);
c0a31329 1240
c6a2a177 1241static void __run_hrtimer(struct hrtimer *timer, ktime_t *now)
d3d74453
PZ
1242{
1243 struct hrtimer_clock_base *base = timer->base;
1244 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
1245 enum hrtimer_restart (*fn)(struct hrtimer *);
1246 int restart;
1247
ca109491
PZ
1248 WARN_ON(!irqs_disabled());
1249
c6a2a177 1250 debug_deactivate(timer);
d3d74453
PZ
1251 __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
1252 timer_stats_account_hrtimer(timer);
d3d74453 1253 fn = timer->function;
ca109491
PZ
1254
1255 /*
1256 * Because we run timers from hardirq context, there is no chance
1257 * they get migrated to another cpu, therefore its safe to unlock
1258 * the timer base.
1259 */
ecb49d1a 1260 raw_spin_unlock(&cpu_base->lock);
c6a2a177 1261 trace_hrtimer_expire_entry(timer, now);
ca109491 1262 restart = fn(timer);
c6a2a177 1263 trace_hrtimer_expire_exit(timer);
ecb49d1a 1264 raw_spin_lock(&cpu_base->lock);
d3d74453
PZ
1265
1266 /*
e3f1d883
TG
1267 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
1268 * we do not reprogramm the event hardware. Happens either in
1269 * hrtimer_start_range_ns() or in hrtimer_interrupt()
d3d74453
PZ
1270 */
1271 if (restart != HRTIMER_NORESTART) {
1272 BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
a6037b61 1273 enqueue_hrtimer(timer, base);
d3d74453 1274 }
f13d4f97
SQ
1275
1276 WARN_ON_ONCE(!(timer->state & HRTIMER_STATE_CALLBACK));
1277
d3d74453
PZ
1278 timer->state &= ~HRTIMER_STATE_CALLBACK;
1279}
1280
54cdfdb4
TG
1281#ifdef CONFIG_HIGH_RES_TIMERS
1282
1283/*
1284 * High resolution timer interrupt
1285 * Called with interrupts disabled
1286 */
1287void hrtimer_interrupt(struct clock_event_device *dev)
1288{
1289 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
41d2e494
TG
1290 ktime_t expires_next, now, entry_time, delta;
1291 int i, retries = 0;
54cdfdb4
TG
1292
1293 BUG_ON(!cpu_base->hres_active);
1294 cpu_base->nr_events++;
1295 dev->next_event.tv64 = KTIME_MAX;
1296
196951e9 1297 raw_spin_lock(&cpu_base->lock);
5baefd6d 1298 entry_time = now = hrtimer_update_base(cpu_base);
41d2e494 1299retry:
54cdfdb4 1300 expires_next.tv64 = KTIME_MAX;
6ff7041d
TG
1301 /*
1302 * We set expires_next to KTIME_MAX here with cpu_base->lock
1303 * held to prevent that a timer is enqueued in our queue via
1304 * the migration code. This does not affect enqueueing of
1305 * timers which run their callback and need to be requeued on
1306 * this CPU.
1307 */
1308 cpu_base->expires_next.tv64 = KTIME_MAX;
1309
54cdfdb4 1310 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
ab8177bc 1311 struct hrtimer_clock_base *base;
998adc3d 1312 struct timerqueue_node *node;
ab8177bc
TG
1313 ktime_t basenow;
1314
1315 if (!(cpu_base->active_bases & (1 << i)))
1316 continue;
54cdfdb4 1317
ab8177bc 1318 base = cpu_base->clock_base + i;
54cdfdb4
TG
1319 basenow = ktime_add(now, base->offset);
1320
998adc3d 1321 while ((node = timerqueue_getnext(&base->active))) {
54cdfdb4
TG
1322 struct hrtimer *timer;
1323
998adc3d 1324 timer = container_of(node, struct hrtimer, node);
54cdfdb4 1325
654c8e0b
AV
1326 /*
1327 * The immediate goal for using the softexpires is
1328 * minimizing wakeups, not running timers at the
1329 * earliest interrupt after their soft expiration.
1330 * This allows us to avoid using a Priority Search
1331 * Tree, which can answer a stabbing querry for
1332 * overlapping intervals and instead use the simple
1333 * BST we already have.
1334 * We don't add extra wakeups by delaying timers that
1335 * are right-of a not yet expired timer, because that
1336 * timer will have to trigger a wakeup anyway.
1337 */
1338
1339 if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) {
54cdfdb4
TG
1340 ktime_t expires;
1341
cc584b21 1342 expires = ktime_sub(hrtimer_get_expires(timer),
54cdfdb4 1343 base->offset);
8f294b5a
PB
1344 if (expires.tv64 < 0)
1345 expires.tv64 = KTIME_MAX;
54cdfdb4
TG
1346 if (expires.tv64 < expires_next.tv64)
1347 expires_next = expires;
1348 break;
1349 }
1350
c6a2a177 1351 __run_hrtimer(timer, &basenow);
54cdfdb4 1352 }
54cdfdb4
TG
1353 }
1354
6ff7041d
TG
1355 /*
1356 * Store the new expiry value so the migration code can verify
1357 * against it.
1358 */
54cdfdb4 1359 cpu_base->expires_next = expires_next;
ecb49d1a 1360 raw_spin_unlock(&cpu_base->lock);
54cdfdb4
TG
1361
1362 /* Reprogramming necessary ? */
41d2e494
TG
1363 if (expires_next.tv64 == KTIME_MAX ||
1364 !tick_program_event(expires_next, 0)) {
1365 cpu_base->hang_detected = 0;
1366 return;
54cdfdb4 1367 }
41d2e494
TG
1368
1369 /*
1370 * The next timer was already expired due to:
1371 * - tracing
1372 * - long lasting callbacks
1373 * - being scheduled away when running in a VM
1374 *
1375 * We need to prevent that we loop forever in the hrtimer
1376 * interrupt routine. We give it 3 attempts to avoid
1377 * overreacting on some spurious event.
5baefd6d
JS
1378 *
1379 * Acquire base lock for updating the offsets and retrieving
1380 * the current time.
41d2e494 1381 */
196951e9 1382 raw_spin_lock(&cpu_base->lock);
5baefd6d 1383 now = hrtimer_update_base(cpu_base);
41d2e494
TG
1384 cpu_base->nr_retries++;
1385 if (++retries < 3)
1386 goto retry;
1387 /*
1388 * Give the system a chance to do something else than looping
1389 * here. We stored the entry time, so we know exactly how long
1390 * we spent here. We schedule the next event this amount of
1391 * time away.
1392 */
1393 cpu_base->nr_hangs++;
1394 cpu_base->hang_detected = 1;
196951e9 1395 raw_spin_unlock(&cpu_base->lock);
41d2e494
TG
1396 delta = ktime_sub(now, entry_time);
1397 if (delta.tv64 > cpu_base->max_hang_time.tv64)
1398 cpu_base->max_hang_time = delta;
1399 /*
1400 * Limit it to a sensible value as we enforce a longer
1401 * delay. Give the CPU at least 100ms to catch up.
1402 */
1403 if (delta.tv64 > 100 * NSEC_PER_MSEC)
1404 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1405 else
1406 expires_next = ktime_add(now, delta);
1407 tick_program_event(expires_next, 1);
1408 printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
1409 ktime_to_ns(delta));
54cdfdb4
TG
1410}
1411
8bdec955
TG
1412/*
1413 * local version of hrtimer_peek_ahead_timers() called with interrupts
1414 * disabled.
1415 */
1416static void __hrtimer_peek_ahead_timers(void)
1417{
1418 struct tick_device *td;
1419
1420 if (!hrtimer_hres_active())
1421 return;
1422
1423 td = &__get_cpu_var(tick_cpu_device);
1424 if (td && td->evtdev)
1425 hrtimer_interrupt(td->evtdev);
1426}
1427
2e94d1f7
AV
1428/**
1429 * hrtimer_peek_ahead_timers -- run soft-expired timers now
1430 *
1431 * hrtimer_peek_ahead_timers will peek at the timer queue of
1432 * the current cpu and check if there are any timers for which
1433 * the soft expires time has passed. If any such timers exist,
1434 * they are run immediately and then removed from the timer queue.
1435 *
1436 */
1437void hrtimer_peek_ahead_timers(void)
1438{
643bdf68 1439 unsigned long flags;
dc4304f7 1440
2e94d1f7 1441 local_irq_save(flags);
8bdec955 1442 __hrtimer_peek_ahead_timers();
2e94d1f7
AV
1443 local_irq_restore(flags);
1444}
1445
a6037b61
PZ
1446static void run_hrtimer_softirq(struct softirq_action *h)
1447{
1448 hrtimer_peek_ahead_timers();
1449}
1450
82c5b7b5
IM
1451#else /* CONFIG_HIGH_RES_TIMERS */
1452
1453static inline void __hrtimer_peek_ahead_timers(void) { }
1454
1455#endif /* !CONFIG_HIGH_RES_TIMERS */
82f67cd9 1456
d3d74453
PZ
1457/*
1458 * Called from timer softirq every jiffy, expire hrtimers:
1459 *
1460 * For HRT its the fall back code to run the softirq in the timer
1461 * softirq context in case the hrtimer initialization failed or has
1462 * not been done yet.
1463 */
1464void hrtimer_run_pending(void)
1465{
d3d74453
PZ
1466 if (hrtimer_hres_active())
1467 return;
54cdfdb4 1468
d3d74453
PZ
1469 /*
1470 * This _is_ ugly: We have to check in the softirq context,
1471 * whether we can switch to highres and / or nohz mode. The
1472 * clocksource switch happens in the timer interrupt with
1473 * xtime_lock held. Notification from there only sets the
1474 * check bit in the tick_oneshot code, otherwise we might
1475 * deadlock vs. xtime_lock.
1476 */
1477 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1478 hrtimer_switch_to_hres();
54cdfdb4
TG
1479}
1480
c0a31329 1481/*
d3d74453 1482 * Called from hardirq context every jiffy
c0a31329 1483 */
833883d9 1484void hrtimer_run_queues(void)
c0a31329 1485{
998adc3d 1486 struct timerqueue_node *node;
833883d9
DS
1487 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1488 struct hrtimer_clock_base *base;
1489 int index, gettime = 1;
c0a31329 1490
833883d9 1491 if (hrtimer_hres_active())
3055adda
DS
1492 return;
1493
833883d9
DS
1494 for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
1495 base = &cpu_base->clock_base[index];
b007c389 1496 if (!timerqueue_getnext(&base->active))
d3d74453 1497 continue;
833883d9 1498
d7cfb60c 1499 if (gettime) {
833883d9
DS
1500 hrtimer_get_softirq_time(cpu_base);
1501 gettime = 0;
b75f7a51 1502 }
d3d74453 1503
ecb49d1a 1504 raw_spin_lock(&cpu_base->lock);
c0a31329 1505
b007c389 1506 while ((node = timerqueue_getnext(&base->active))) {
833883d9 1507 struct hrtimer *timer;
54cdfdb4 1508
998adc3d 1509 timer = container_of(node, struct hrtimer, node);
cc584b21
AV
1510 if (base->softirq_time.tv64 <=
1511 hrtimer_get_expires_tv64(timer))
833883d9
DS
1512 break;
1513
c6a2a177 1514 __run_hrtimer(timer, &base->softirq_time);
833883d9 1515 }
ecb49d1a 1516 raw_spin_unlock(&cpu_base->lock);
833883d9 1517 }
c0a31329
TG
1518}
1519
10c94ec1
TG
1520/*
1521 * Sleep related functions:
1522 */
c9cb2e3d 1523static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
00362e33
TG
1524{
1525 struct hrtimer_sleeper *t =
1526 container_of(timer, struct hrtimer_sleeper, timer);
1527 struct task_struct *task = t->task;
1528
1529 t->task = NULL;
1530 if (task)
1531 wake_up_process(task);
1532
1533 return HRTIMER_NORESTART;
1534}
1535
36c8b586 1536void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
00362e33
TG
1537{
1538 sl->timer.function = hrtimer_wakeup;
1539 sl->task = task;
1540}
2bc481cf 1541EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
00362e33 1542
669d7868 1543static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
432569bb 1544{
669d7868 1545 hrtimer_init_sleeper(t, current);
10c94ec1 1546
432569bb
RZ
1547 do {
1548 set_current_state(TASK_INTERRUPTIBLE);
cc584b21 1549 hrtimer_start_expires(&t->timer, mode);
37bb6cb4
PZ
1550 if (!hrtimer_active(&t->timer))
1551 t->task = NULL;
432569bb 1552
54cdfdb4 1553 if (likely(t->task))
b0f8c44f 1554 freezable_schedule();
432569bb 1555
669d7868 1556 hrtimer_cancel(&t->timer);
c9cb2e3d 1557 mode = HRTIMER_MODE_ABS;
669d7868
TG
1558
1559 } while (t->task && !signal_pending(current));
432569bb 1560
3588a085
PZ
1561 __set_current_state(TASK_RUNNING);
1562
669d7868 1563 return t->task == NULL;
10c94ec1
TG
1564}
1565
080344b9
ON
1566static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1567{
1568 struct timespec rmt;
1569 ktime_t rem;
1570
cc584b21 1571 rem = hrtimer_expires_remaining(timer);
080344b9
ON
1572 if (rem.tv64 <= 0)
1573 return 0;
1574 rmt = ktime_to_timespec(rem);
1575
1576 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1577 return -EFAULT;
1578
1579 return 1;
1580}
1581
1711ef38 1582long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
10c94ec1 1583{
669d7868 1584 struct hrtimer_sleeper t;
080344b9 1585 struct timespec __user *rmtp;
237fc6e7 1586 int ret = 0;
10c94ec1 1587
ab8177bc 1588 hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
237fc6e7 1589 HRTIMER_MODE_ABS);
cc584b21 1590 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
10c94ec1 1591
c9cb2e3d 1592 if (do_nanosleep(&t, HRTIMER_MODE_ABS))
237fc6e7 1593 goto out;
10c94ec1 1594
029a07e0 1595 rmtp = restart->nanosleep.rmtp;
432569bb 1596 if (rmtp) {
237fc6e7 1597 ret = update_rmtp(&t.timer, rmtp);
080344b9 1598 if (ret <= 0)
237fc6e7 1599 goto out;
432569bb 1600 }
10c94ec1 1601
10c94ec1 1602 /* The other values in restart are already filled in */
237fc6e7
TG
1603 ret = -ERESTART_RESTARTBLOCK;
1604out:
1605 destroy_hrtimer_on_stack(&t.timer);
1606 return ret;
10c94ec1
TG
1607}
1608
080344b9 1609long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
10c94ec1
TG
1610 const enum hrtimer_mode mode, const clockid_t clockid)
1611{
1612 struct restart_block *restart;
669d7868 1613 struct hrtimer_sleeper t;
237fc6e7 1614 int ret = 0;
3bd01206
AV
1615 unsigned long slack;
1616
1617 slack = current->timer_slack_ns;
aab03e05 1618 if (dl_task(current) || rt_task(current))
3bd01206 1619 slack = 0;
10c94ec1 1620
237fc6e7 1621 hrtimer_init_on_stack(&t.timer, clockid, mode);
3bd01206 1622 hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
432569bb 1623 if (do_nanosleep(&t, mode))
237fc6e7 1624 goto out;
10c94ec1 1625
7978672c 1626 /* Absolute timers do not update the rmtp value and restart: */
237fc6e7
TG
1627 if (mode == HRTIMER_MODE_ABS) {
1628 ret = -ERESTARTNOHAND;
1629 goto out;
1630 }
10c94ec1 1631
432569bb 1632 if (rmtp) {
237fc6e7 1633 ret = update_rmtp(&t.timer, rmtp);
080344b9 1634 if (ret <= 0)
237fc6e7 1635 goto out;
432569bb 1636 }
10c94ec1
TG
1637
1638 restart = &current_thread_info()->restart_block;
1711ef38 1639 restart->fn = hrtimer_nanosleep_restart;
ab8177bc 1640 restart->nanosleep.clockid = t.timer.base->clockid;
029a07e0 1641 restart->nanosleep.rmtp = rmtp;
cc584b21 1642 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
10c94ec1 1643
237fc6e7
TG
1644 ret = -ERESTART_RESTARTBLOCK;
1645out:
1646 destroy_hrtimer_on_stack(&t.timer);
1647 return ret;
10c94ec1
TG
1648}
1649
58fd3aa2
HC
1650SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1651 struct timespec __user *, rmtp)
6ba1b912 1652{
080344b9 1653 struct timespec tu;
6ba1b912
TG
1654
1655 if (copy_from_user(&tu, rqtp, sizeof(tu)))
1656 return -EFAULT;
1657
1658 if (!timespec_valid(&tu))
1659 return -EINVAL;
1660
080344b9 1661 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
6ba1b912
TG
1662}
1663
c0a31329
TG
1664/*
1665 * Functions related to boot-time initialization:
1666 */
0db0628d 1667static void init_hrtimers_cpu(int cpu)
c0a31329 1668{
3c8aa39d 1669 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
c0a31329
TG
1670 int i;
1671
998adc3d 1672 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
3c8aa39d 1673 cpu_base->clock_base[i].cpu_base = cpu_base;
998adc3d
JS
1674 timerqueue_init_head(&cpu_base->clock_base[i].active);
1675 }
3c8aa39d 1676
54cdfdb4 1677 hrtimer_init_hres(cpu_base);
c0a31329
TG
1678}
1679
1680#ifdef CONFIG_HOTPLUG_CPU
1681
ca109491 1682static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
37810659 1683 struct hrtimer_clock_base *new_base)
c0a31329
TG
1684{
1685 struct hrtimer *timer;
998adc3d 1686 struct timerqueue_node *node;
c0a31329 1687
998adc3d
JS
1688 while ((node = timerqueue_getnext(&old_base->active))) {
1689 timer = container_of(node, struct hrtimer, node);
54cdfdb4 1690 BUG_ON(hrtimer_callback_running(timer));
c6a2a177 1691 debug_deactivate(timer);
b00c1a99
TG
1692
1693 /*
1694 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
1695 * timer could be seen as !active and just vanish away
1696 * under us on another CPU
1697 */
1698 __remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
c0a31329 1699 timer->base = new_base;
54cdfdb4 1700 /*
e3f1d883
TG
1701 * Enqueue the timers on the new cpu. This does not
1702 * reprogram the event device in case the timer
1703 * expires before the earliest on this CPU, but we run
1704 * hrtimer_interrupt after we migrated everything to
1705 * sort out already expired timers and reprogram the
1706 * event device.
54cdfdb4 1707 */
a6037b61 1708 enqueue_hrtimer(timer, new_base);
41e1022e 1709
b00c1a99
TG
1710 /* Clear the migration state bit */
1711 timer->state &= ~HRTIMER_STATE_MIGRATE;
c0a31329
TG
1712 }
1713}
1714
d5fd43c4 1715static void migrate_hrtimers(int scpu)
c0a31329 1716{
3c8aa39d 1717 struct hrtimer_cpu_base *old_base, *new_base;
731a55ba 1718 int i;
c0a31329 1719
37810659 1720 BUG_ON(cpu_online(scpu));
37810659 1721 tick_cancel_sched_timer(scpu);
731a55ba
TG
1722
1723 local_irq_disable();
1724 old_base = &per_cpu(hrtimer_bases, scpu);
1725 new_base = &__get_cpu_var(hrtimer_bases);
d82f0b0f
ON
1726 /*
1727 * The caller is globally serialized and nobody else
1728 * takes two locks at once, deadlock is not possible.
1729 */
ecb49d1a
TG
1730 raw_spin_lock(&new_base->lock);
1731 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
c0a31329 1732
3c8aa39d 1733 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
ca109491 1734 migrate_hrtimer_list(&old_base->clock_base[i],
37810659 1735 &new_base->clock_base[i]);
c0a31329
TG
1736 }
1737
ecb49d1a
TG
1738 raw_spin_unlock(&old_base->lock);
1739 raw_spin_unlock(&new_base->lock);
37810659 1740
731a55ba
TG
1741 /* Check, if we got expired work to do */
1742 __hrtimer_peek_ahead_timers();
1743 local_irq_enable();
c0a31329 1744}
37810659 1745
c0a31329
TG
1746#endif /* CONFIG_HOTPLUG_CPU */
1747
0db0628d 1748static int hrtimer_cpu_notify(struct notifier_block *self,
c0a31329
TG
1749 unsigned long action, void *hcpu)
1750{
b2e3c0ad 1751 int scpu = (long)hcpu;
c0a31329
TG
1752
1753 switch (action) {
1754
1755 case CPU_UP_PREPARE:
8bb78442 1756 case CPU_UP_PREPARE_FROZEN:
37810659 1757 init_hrtimers_cpu(scpu);
c0a31329
TG
1758 break;
1759
1760#ifdef CONFIG_HOTPLUG_CPU
94df7de0
SD
1761 case CPU_DYING:
1762 case CPU_DYING_FROZEN:
1763 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING, &scpu);
1764 break;
c0a31329 1765 case CPU_DEAD:
8bb78442 1766 case CPU_DEAD_FROZEN:
b2e3c0ad 1767 {
37810659 1768 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu);
d5fd43c4 1769 migrate_hrtimers(scpu);
c0a31329 1770 break;
b2e3c0ad 1771 }
c0a31329
TG
1772#endif
1773
1774 default:
1775 break;
1776 }
1777
1778 return NOTIFY_OK;
1779}
1780
0db0628d 1781static struct notifier_block hrtimers_nb = {
c0a31329
TG
1782 .notifier_call = hrtimer_cpu_notify,
1783};
1784
1785void __init hrtimers_init(void)
1786{
1787 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1788 (void *)(long)smp_processor_id());
1789 register_cpu_notifier(&hrtimers_nb);
a6037b61
PZ
1790#ifdef CONFIG_HIGH_RES_TIMERS
1791 open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
1792#endif
c0a31329
TG
1793}
1794
7bb67439 1795/**
351b3f7a 1796 * schedule_hrtimeout_range_clock - sleep until timeout
7bb67439 1797 * @expires: timeout value (ktime_t)
654c8e0b 1798 * @delta: slack in expires timeout (ktime_t)
7bb67439 1799 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
351b3f7a 1800 * @clock: timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
7bb67439 1801 */
351b3f7a
CE
1802int __sched
1803schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta,
1804 const enum hrtimer_mode mode, int clock)
7bb67439
AV
1805{
1806 struct hrtimer_sleeper t;
1807
1808 /*
1809 * Optimize when a zero timeout value is given. It does not
1810 * matter whether this is an absolute or a relative time.
1811 */
1812 if (expires && !expires->tv64) {
1813 __set_current_state(TASK_RUNNING);
1814 return 0;
1815 }
1816
1817 /*
43b21013 1818 * A NULL parameter means "infinite"
7bb67439
AV
1819 */
1820 if (!expires) {
1821 schedule();
1822 __set_current_state(TASK_RUNNING);
1823 return -EINTR;
1824 }
1825
351b3f7a 1826 hrtimer_init_on_stack(&t.timer, clock, mode);
654c8e0b 1827 hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
7bb67439
AV
1828
1829 hrtimer_init_sleeper(&t, current);
1830
cc584b21 1831 hrtimer_start_expires(&t.timer, mode);
7bb67439
AV
1832 if (!hrtimer_active(&t.timer))
1833 t.task = NULL;
1834
1835 if (likely(t.task))
1836 schedule();
1837
1838 hrtimer_cancel(&t.timer);
1839 destroy_hrtimer_on_stack(&t.timer);
1840
1841 __set_current_state(TASK_RUNNING);
1842
1843 return !t.task ? 0 : -EINTR;
1844}
351b3f7a
CE
1845
1846/**
1847 * schedule_hrtimeout_range - sleep until timeout
1848 * @expires: timeout value (ktime_t)
1849 * @delta: slack in expires timeout (ktime_t)
1850 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1851 *
1852 * Make the current task sleep until the given expiry time has
1853 * elapsed. The routine will return immediately unless
1854 * the current task state has been set (see set_current_state()).
1855 *
1856 * The @delta argument gives the kernel the freedom to schedule the
1857 * actual wakeup to a time that is both power and performance friendly.
1858 * The kernel give the normal best effort behavior for "@expires+@delta",
1859 * but may decide to fire the timer earlier, but no earlier than @expires.
1860 *
1861 * You can set the task state as follows -
1862 *
1863 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1864 * pass before the routine returns.
1865 *
1866 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1867 * delivered to the current task.
1868 *
1869 * The current task state is guaranteed to be TASK_RUNNING when this
1870 * routine returns.
1871 *
1872 * Returns 0 when the timer has expired otherwise -EINTR
1873 */
1874int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
1875 const enum hrtimer_mode mode)
1876{
1877 return schedule_hrtimeout_range_clock(expires, delta, mode,
1878 CLOCK_MONOTONIC);
1879}
654c8e0b
AV
1880EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1881
1882/**
1883 * schedule_hrtimeout - sleep until timeout
1884 * @expires: timeout value (ktime_t)
1885 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1886 *
1887 * Make the current task sleep until the given expiry time has
1888 * elapsed. The routine will return immediately unless
1889 * the current task state has been set (see set_current_state()).
1890 *
1891 * You can set the task state as follows -
1892 *
1893 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1894 * pass before the routine returns.
1895 *
1896 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1897 * delivered to the current task.
1898 *
1899 * The current task state is guaranteed to be TASK_RUNNING when this
1900 * routine returns.
1901 *
1902 * Returns 0 when the timer has expired otherwise -EINTR
1903 */
1904int __sched schedule_hrtimeout(ktime_t *expires,
1905 const enum hrtimer_mode mode)
1906{
1907 return schedule_hrtimeout_range(expires, 0, mode);
1908}
7bb67439 1909EXPORT_SYMBOL_GPL(schedule_hrtimeout);
This page took 0.727834 seconds and 5 git commands to generate.