hrtimer: Tune hrtimer_interrupt hang logic
[deliverable/linux.git] / kernel / hrtimer.c
CommitLineData
c0a31329
TG
1/*
2 * linux/kernel/hrtimer.c
3 *
3c8aa39d 4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
79bf2bb3 5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
54cdfdb4 6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
c0a31329
TG
7 *
8 * High-resolution kernel timers
9 *
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
13 *
14 * These timers are currently used for:
15 * - itimers
16 * - POSIX timers
17 * - nanosleep
18 * - precise in-kernel timing
19 *
20 * Started by: Thomas Gleixner and Ingo Molnar
21 *
22 * Credits:
23 * based on kernel/timer.c
24 *
66188fae
TG
25 * Help, testing, suggestions, bugfixes, improvements were
26 * provided by:
27 *
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29 * et. al.
30 *
c0a31329
TG
31 * For licencing details see kernel-base/COPYING
32 */
33
34#include <linux/cpu.h>
35#include <linux/module.h>
36#include <linux/percpu.h>
37#include <linux/hrtimer.h>
38#include <linux/notifier.h>
39#include <linux/syscalls.h>
54cdfdb4 40#include <linux/kallsyms.h>
c0a31329 41#include <linux/interrupt.h>
79bf2bb3 42#include <linux/tick.h>
54cdfdb4
TG
43#include <linux/seq_file.h>
44#include <linux/err.h>
237fc6e7 45#include <linux/debugobjects.h>
eea08f32
AB
46#include <linux/sched.h>
47#include <linux/timer.h>
c0a31329
TG
48
49#include <asm/uaccess.h>
50
c6a2a177
XG
51#include <trace/events/timer.h>
52
c0a31329
TG
53/*
54 * The timer bases:
7978672c
GA
55 *
56 * Note: If we want to add new timer bases, we have to skip the two
57 * clock ids captured by the cpu-timers. We do this by holding empty
58 * entries rather than doing math adjustment of the clock ids.
59 * This ensures that we capture erroneous accesses to these clock ids
60 * rather than moving them into the range of valid clock id's.
c0a31329 61 */
54cdfdb4 62DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
c0a31329 63{
3c8aa39d
TG
64
65 .clock_base =
c0a31329 66 {
3c8aa39d
TG
67 {
68 .index = CLOCK_REALTIME,
69 .get_time = &ktime_get_real,
54cdfdb4 70 .resolution = KTIME_LOW_RES,
3c8aa39d
TG
71 },
72 {
73 .index = CLOCK_MONOTONIC,
74 .get_time = &ktime_get,
54cdfdb4 75 .resolution = KTIME_LOW_RES,
3c8aa39d
TG
76 },
77 }
c0a31329
TG
78};
79
92127c7a
TG
80/*
81 * Get the coarse grained time at the softirq based on xtime and
82 * wall_to_monotonic.
83 */
3c8aa39d 84static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
92127c7a
TG
85{
86 ktime_t xtim, tomono;
ad28d94a 87 struct timespec xts, tom;
92127c7a
TG
88 unsigned long seq;
89
90 do {
91 seq = read_seqbegin(&xtime_lock);
2c6b47de 92 xts = current_kernel_time();
ad28d94a 93 tom = wall_to_monotonic;
92127c7a
TG
94 } while (read_seqretry(&xtime_lock, seq));
95
f4304ab2 96 xtim = timespec_to_ktime(xts);
ad28d94a 97 tomono = timespec_to_ktime(tom);
3c8aa39d
TG
98 base->clock_base[CLOCK_REALTIME].softirq_time = xtim;
99 base->clock_base[CLOCK_MONOTONIC].softirq_time =
100 ktime_add(xtim, tomono);
92127c7a
TG
101}
102
c0a31329
TG
103/*
104 * Functions and macros which are different for UP/SMP systems are kept in a
105 * single place
106 */
107#ifdef CONFIG_SMP
108
c0a31329
TG
109/*
110 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
111 * means that all timers which are tied to this base via timer->base are
112 * locked, and the base itself is locked too.
113 *
114 * So __run_timers/migrate_timers can safely modify all timers which could
115 * be found on the lists/queues.
116 *
117 * When the timer's base is locked, and the timer removed from list, it is
118 * possible to set timer->base = NULL and drop the lock: the timer remains
119 * locked.
120 */
3c8aa39d
TG
121static
122struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
123 unsigned long *flags)
c0a31329 124{
3c8aa39d 125 struct hrtimer_clock_base *base;
c0a31329
TG
126
127 for (;;) {
128 base = timer->base;
129 if (likely(base != NULL)) {
3c8aa39d 130 spin_lock_irqsave(&base->cpu_base->lock, *flags);
c0a31329
TG
131 if (likely(base == timer->base))
132 return base;
133 /* The timer has migrated to another CPU: */
3c8aa39d 134 spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
c0a31329
TG
135 }
136 cpu_relax();
137 }
138}
139
6ff7041d
TG
140
141/*
142 * Get the preferred target CPU for NOHZ
143 */
144static int hrtimer_get_target(int this_cpu, int pinned)
145{
146#ifdef CONFIG_NO_HZ
147 if (!pinned && get_sysctl_timer_migration() && idle_cpu(this_cpu)) {
148 int preferred_cpu = get_nohz_load_balancer();
149
150 if (preferred_cpu >= 0)
151 return preferred_cpu;
152 }
153#endif
154 return this_cpu;
155}
156
157/*
158 * With HIGHRES=y we do not migrate the timer when it is expiring
159 * before the next event on the target cpu because we cannot reprogram
160 * the target cpu hardware and we would cause it to fire late.
161 *
162 * Called with cpu_base->lock of target cpu held.
163 */
164static int
165hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
166{
167#ifdef CONFIG_HIGH_RES_TIMERS
168 ktime_t expires;
169
170 if (!new_base->cpu_base->hres_active)
171 return 0;
172
173 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
174 return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
175#else
176 return 0;
177#endif
178}
179
c0a31329
TG
180/*
181 * Switch the timer base to the current CPU when possible.
182 */
3c8aa39d 183static inline struct hrtimer_clock_base *
597d0275
AB
184switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
185 int pinned)
c0a31329 186{
3c8aa39d
TG
187 struct hrtimer_clock_base *new_base;
188 struct hrtimer_cpu_base *new_cpu_base;
6ff7041d
TG
189 int this_cpu = smp_processor_id();
190 int cpu = hrtimer_get_target(this_cpu, pinned);
c0a31329 191
eea08f32
AB
192again:
193 new_cpu_base = &per_cpu(hrtimer_bases, cpu);
3c8aa39d 194 new_base = &new_cpu_base->clock_base[base->index];
c0a31329
TG
195
196 if (base != new_base) {
197 /*
6ff7041d 198 * We are trying to move timer to new_base.
c0a31329
TG
199 * However we can't change timer's base while it is running,
200 * so we keep it on the same CPU. No hassle vs. reprogramming
201 * the event source in the high resolution case. The softirq
202 * code will take care of this when the timer function has
203 * completed. There is no conflict as we hold the lock until
204 * the timer is enqueued.
205 */
54cdfdb4 206 if (unlikely(hrtimer_callback_running(timer)))
c0a31329
TG
207 return base;
208
209 /* See the comment in lock_timer_base() */
210 timer->base = NULL;
3c8aa39d
TG
211 spin_unlock(&base->cpu_base->lock);
212 spin_lock(&new_base->cpu_base->lock);
eea08f32 213
6ff7041d
TG
214 if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
215 cpu = this_cpu;
216 spin_unlock(&new_base->cpu_base->lock);
217 spin_lock(&base->cpu_base->lock);
218 timer->base = base;
219 goto again;
eea08f32 220 }
c0a31329
TG
221 timer->base = new_base;
222 }
223 return new_base;
224}
225
226#else /* CONFIG_SMP */
227
3c8aa39d 228static inline struct hrtimer_clock_base *
c0a31329
TG
229lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
230{
3c8aa39d 231 struct hrtimer_clock_base *base = timer->base;
c0a31329 232
3c8aa39d 233 spin_lock_irqsave(&base->cpu_base->lock, *flags);
c0a31329
TG
234
235 return base;
236}
237
eea08f32 238# define switch_hrtimer_base(t, b, p) (b)
c0a31329
TG
239
240#endif /* !CONFIG_SMP */
241
242/*
243 * Functions for the union type storage format of ktime_t which are
244 * too large for inlining:
245 */
246#if BITS_PER_LONG < 64
247# ifndef CONFIG_KTIME_SCALAR
248/**
249 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
c0a31329
TG
250 * @kt: addend
251 * @nsec: the scalar nsec value to add
252 *
253 * Returns the sum of kt and nsec in ktime_t format
254 */
255ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
256{
257 ktime_t tmp;
258
259 if (likely(nsec < NSEC_PER_SEC)) {
260 tmp.tv64 = nsec;
261 } else {
262 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
263
264 tmp = ktime_set((long)nsec, rem);
265 }
266
267 return ktime_add(kt, tmp);
268}
b8b8fd2d
DH
269
270EXPORT_SYMBOL_GPL(ktime_add_ns);
a272378d
ACM
271
272/**
273 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
274 * @kt: minuend
275 * @nsec: the scalar nsec value to subtract
276 *
277 * Returns the subtraction of @nsec from @kt in ktime_t format
278 */
279ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec)
280{
281 ktime_t tmp;
282
283 if (likely(nsec < NSEC_PER_SEC)) {
284 tmp.tv64 = nsec;
285 } else {
286 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
287
288 tmp = ktime_set((long)nsec, rem);
289 }
290
291 return ktime_sub(kt, tmp);
292}
293
294EXPORT_SYMBOL_GPL(ktime_sub_ns);
c0a31329
TG
295# endif /* !CONFIG_KTIME_SCALAR */
296
297/*
298 * Divide a ktime value by a nanosecond value
299 */
4d672e7a 300u64 ktime_divns(const ktime_t kt, s64 div)
c0a31329 301{
900cfa46 302 u64 dclc;
c0a31329
TG
303 int sft = 0;
304
900cfa46 305 dclc = ktime_to_ns(kt);
c0a31329
TG
306 /* Make sure the divisor is less than 2^32: */
307 while (div >> 32) {
308 sft++;
309 div >>= 1;
310 }
311 dclc >>= sft;
312 do_div(dclc, (unsigned long) div);
313
4d672e7a 314 return dclc;
c0a31329 315}
c0a31329
TG
316#endif /* BITS_PER_LONG >= 64 */
317
5a7780e7
TG
318/*
319 * Add two ktime values and do a safety check for overflow:
320 */
321ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
322{
323 ktime_t res = ktime_add(lhs, rhs);
324
325 /*
326 * We use KTIME_SEC_MAX here, the maximum timeout which we can
327 * return to user space in a timespec:
328 */
329 if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
330 res = ktime_set(KTIME_SEC_MAX, 0);
331
332 return res;
333}
334
8daa21e6
AB
335EXPORT_SYMBOL_GPL(ktime_add_safe);
336
237fc6e7
TG
337#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
338
339static struct debug_obj_descr hrtimer_debug_descr;
340
341/*
342 * fixup_init is called when:
343 * - an active object is initialized
344 */
345static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
346{
347 struct hrtimer *timer = addr;
348
349 switch (state) {
350 case ODEBUG_STATE_ACTIVE:
351 hrtimer_cancel(timer);
352 debug_object_init(timer, &hrtimer_debug_descr);
353 return 1;
354 default:
355 return 0;
356 }
357}
358
359/*
360 * fixup_activate is called when:
361 * - an active object is activated
362 * - an unknown object is activated (might be a statically initialized object)
363 */
364static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
365{
366 switch (state) {
367
368 case ODEBUG_STATE_NOTAVAILABLE:
369 WARN_ON_ONCE(1);
370 return 0;
371
372 case ODEBUG_STATE_ACTIVE:
373 WARN_ON(1);
374
375 default:
376 return 0;
377 }
378}
379
380/*
381 * fixup_free is called when:
382 * - an active object is freed
383 */
384static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
385{
386 struct hrtimer *timer = addr;
387
388 switch (state) {
389 case ODEBUG_STATE_ACTIVE:
390 hrtimer_cancel(timer);
391 debug_object_free(timer, &hrtimer_debug_descr);
392 return 1;
393 default:
394 return 0;
395 }
396}
397
398static struct debug_obj_descr hrtimer_debug_descr = {
399 .name = "hrtimer",
400 .fixup_init = hrtimer_fixup_init,
401 .fixup_activate = hrtimer_fixup_activate,
402 .fixup_free = hrtimer_fixup_free,
403};
404
405static inline void debug_hrtimer_init(struct hrtimer *timer)
406{
407 debug_object_init(timer, &hrtimer_debug_descr);
408}
409
410static inline void debug_hrtimer_activate(struct hrtimer *timer)
411{
412 debug_object_activate(timer, &hrtimer_debug_descr);
413}
414
415static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
416{
417 debug_object_deactivate(timer, &hrtimer_debug_descr);
418}
419
420static inline void debug_hrtimer_free(struct hrtimer *timer)
421{
422 debug_object_free(timer, &hrtimer_debug_descr);
423}
424
425static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
426 enum hrtimer_mode mode);
427
428void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
429 enum hrtimer_mode mode)
430{
431 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
432 __hrtimer_init(timer, clock_id, mode);
433}
2bc481cf 434EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
237fc6e7
TG
435
436void destroy_hrtimer_on_stack(struct hrtimer *timer)
437{
438 debug_object_free(timer, &hrtimer_debug_descr);
439}
440
441#else
442static inline void debug_hrtimer_init(struct hrtimer *timer) { }
443static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
444static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
445#endif
446
c6a2a177
XG
447static inline void
448debug_init(struct hrtimer *timer, clockid_t clockid,
449 enum hrtimer_mode mode)
450{
451 debug_hrtimer_init(timer);
452 trace_hrtimer_init(timer, clockid, mode);
453}
454
455static inline void debug_activate(struct hrtimer *timer)
456{
457 debug_hrtimer_activate(timer);
458 trace_hrtimer_start(timer);
459}
460
461static inline void debug_deactivate(struct hrtimer *timer)
462{
463 debug_hrtimer_deactivate(timer);
464 trace_hrtimer_cancel(timer);
465}
466
54cdfdb4
TG
467/* High resolution timer related functions */
468#ifdef CONFIG_HIGH_RES_TIMERS
469
470/*
471 * High resolution timer enabled ?
472 */
473static int hrtimer_hres_enabled __read_mostly = 1;
474
475/*
476 * Enable / Disable high resolution mode
477 */
478static int __init setup_hrtimer_hres(char *str)
479{
480 if (!strcmp(str, "off"))
481 hrtimer_hres_enabled = 0;
482 else if (!strcmp(str, "on"))
483 hrtimer_hres_enabled = 1;
484 else
485 return 0;
486 return 1;
487}
488
489__setup("highres=", setup_hrtimer_hres);
490
491/*
492 * hrtimer_high_res_enabled - query, if the highres mode is enabled
493 */
494static inline int hrtimer_is_hres_enabled(void)
495{
496 return hrtimer_hres_enabled;
497}
498
499/*
500 * Is the high resolution mode active ?
501 */
502static inline int hrtimer_hres_active(void)
503{
504 return __get_cpu_var(hrtimer_bases).hres_active;
505}
506
507/*
508 * Reprogram the event source with checking both queues for the
509 * next event
510 * Called with interrupts disabled and base->lock held
511 */
7403f41f
AC
512static void
513hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
54cdfdb4
TG
514{
515 int i;
516 struct hrtimer_clock_base *base = cpu_base->clock_base;
7403f41f 517 ktime_t expires, expires_next;
54cdfdb4 518
7403f41f 519 expires_next.tv64 = KTIME_MAX;
54cdfdb4
TG
520
521 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
522 struct hrtimer *timer;
523
524 if (!base->first)
525 continue;
526 timer = rb_entry(base->first, struct hrtimer, node);
cc584b21 527 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
b0a9b511
TG
528 /*
529 * clock_was_set() has changed base->offset so the
530 * result might be negative. Fix it up to prevent a
531 * false positive in clockevents_program_event()
532 */
533 if (expires.tv64 < 0)
534 expires.tv64 = 0;
7403f41f
AC
535 if (expires.tv64 < expires_next.tv64)
536 expires_next = expires;
54cdfdb4
TG
537 }
538
7403f41f
AC
539 if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
540 return;
541
542 cpu_base->expires_next.tv64 = expires_next.tv64;
543
54cdfdb4
TG
544 if (cpu_base->expires_next.tv64 != KTIME_MAX)
545 tick_program_event(cpu_base->expires_next, 1);
546}
547
548/*
549 * Shared reprogramming for clock_realtime and clock_monotonic
550 *
551 * When a timer is enqueued and expires earlier than the already enqueued
552 * timers, we have to check, whether it expires earlier than the timer for
553 * which the clock event device was armed.
554 *
555 * Called with interrupts disabled and base->cpu_base.lock held
556 */
557static int hrtimer_reprogram(struct hrtimer *timer,
558 struct hrtimer_clock_base *base)
559{
41d2e494 560 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
cc584b21 561 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
54cdfdb4
TG
562 int res;
563
cc584b21 564 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
63070a79 565
54cdfdb4
TG
566 /*
567 * When the callback is running, we do not reprogram the clock event
568 * device. The timer callback is either running on a different CPU or
3a4fa0a2 569 * the callback is executed in the hrtimer_interrupt context. The
54cdfdb4
TG
570 * reprogramming is handled either by the softirq, which called the
571 * callback or at the end of the hrtimer_interrupt.
572 */
573 if (hrtimer_callback_running(timer))
574 return 0;
575
63070a79
TG
576 /*
577 * CLOCK_REALTIME timer might be requested with an absolute
578 * expiry time which is less than base->offset. Nothing wrong
579 * about that, just avoid to call into the tick code, which
580 * has now objections against negative expiry values.
581 */
582 if (expires.tv64 < 0)
583 return -ETIME;
584
41d2e494
TG
585 if (expires.tv64 >= cpu_base->expires_next.tv64)
586 return 0;
587
588 /*
589 * If a hang was detected in the last timer interrupt then we
590 * do not schedule a timer which is earlier than the expiry
591 * which we enforced in the hang detection. We want the system
592 * to make progress.
593 */
594 if (cpu_base->hang_detected)
54cdfdb4
TG
595 return 0;
596
597 /*
598 * Clockevents returns -ETIME, when the event was in the past.
599 */
600 res = tick_program_event(expires, 0);
601 if (!IS_ERR_VALUE(res))
41d2e494 602 cpu_base->expires_next = expires;
54cdfdb4
TG
603 return res;
604}
605
606
607/*
608 * Retrigger next event is called after clock was set
609 *
610 * Called with interrupts disabled via on_each_cpu()
611 */
612static void retrigger_next_event(void *arg)
613{
614 struct hrtimer_cpu_base *base;
615 struct timespec realtime_offset;
616 unsigned long seq;
617
618 if (!hrtimer_hres_active())
619 return;
620
621 do {
622 seq = read_seqbegin(&xtime_lock);
623 set_normalized_timespec(&realtime_offset,
624 -wall_to_monotonic.tv_sec,
625 -wall_to_monotonic.tv_nsec);
626 } while (read_seqretry(&xtime_lock, seq));
627
628 base = &__get_cpu_var(hrtimer_bases);
629
630 /* Adjust CLOCK_REALTIME offset */
631 spin_lock(&base->lock);
632 base->clock_base[CLOCK_REALTIME].offset =
633 timespec_to_ktime(realtime_offset);
634
7403f41f 635 hrtimer_force_reprogram(base, 0);
54cdfdb4
TG
636 spin_unlock(&base->lock);
637}
638
639/*
640 * Clock realtime was set
641 *
642 * Change the offset of the realtime clock vs. the monotonic
643 * clock.
644 *
645 * We might have to reprogram the high resolution timer interrupt. On
646 * SMP we call the architecture specific code to retrigger _all_ high
647 * resolution timer interrupts. On UP we just disable interrupts and
648 * call the high resolution interrupt code.
649 */
650void clock_was_set(void)
651{
652 /* Retrigger the CPU local events everywhere */
15c8b6c1 653 on_each_cpu(retrigger_next_event, NULL, 1);
54cdfdb4
TG
654}
655
995f054f
IM
656/*
657 * During resume we might have to reprogram the high resolution timer
658 * interrupt (on the local CPU):
659 */
660void hres_timers_resume(void)
661{
1d4a7f1c
PZ
662 WARN_ONCE(!irqs_disabled(),
663 KERN_INFO "hres_timers_resume() called with IRQs enabled!");
664
995f054f
IM
665 retrigger_next_event(NULL);
666}
667
54cdfdb4
TG
668/*
669 * Initialize the high resolution related parts of cpu_base
670 */
671static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
672{
673 base->expires_next.tv64 = KTIME_MAX;
674 base->hres_active = 0;
54cdfdb4
TG
675}
676
677/*
678 * Initialize the high resolution related parts of a hrtimer
679 */
680static inline void hrtimer_init_timer_hres(struct hrtimer *timer)
681{
54cdfdb4
TG
682}
683
ca109491 684
54cdfdb4
TG
685/*
686 * When High resolution timers are active, try to reprogram. Note, that in case
687 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
688 * check happens. The timer gets enqueued into the rbtree. The reprogramming
689 * and expiry check is done in the hrtimer_interrupt or in the softirq.
690 */
691static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
7f1e2ca9
PZ
692 struct hrtimer_clock_base *base,
693 int wakeup)
54cdfdb4
TG
694{
695 if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) {
7f1e2ca9
PZ
696 if (wakeup) {
697 spin_unlock(&base->cpu_base->lock);
698 raise_softirq_irqoff(HRTIMER_SOFTIRQ);
699 spin_lock(&base->cpu_base->lock);
700 } else
701 __raise_softirq_irqoff(HRTIMER_SOFTIRQ);
702
ca109491 703 return 1;
54cdfdb4 704 }
7f1e2ca9 705
54cdfdb4
TG
706 return 0;
707}
708
709/*
710 * Switch to high resolution mode
711 */
f8953856 712static int hrtimer_switch_to_hres(void)
54cdfdb4 713{
820de5c3
IM
714 int cpu = smp_processor_id();
715 struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
54cdfdb4
TG
716 unsigned long flags;
717
718 if (base->hres_active)
f8953856 719 return 1;
54cdfdb4
TG
720
721 local_irq_save(flags);
722
723 if (tick_init_highres()) {
724 local_irq_restore(flags);
820de5c3
IM
725 printk(KERN_WARNING "Could not switch to high resolution "
726 "mode on CPU %d\n", cpu);
f8953856 727 return 0;
54cdfdb4
TG
728 }
729 base->hres_active = 1;
730 base->clock_base[CLOCK_REALTIME].resolution = KTIME_HIGH_RES;
731 base->clock_base[CLOCK_MONOTONIC].resolution = KTIME_HIGH_RES;
732
733 tick_setup_sched_timer();
734
735 /* "Retrigger" the interrupt to get things going */
736 retrigger_next_event(NULL);
737 local_irq_restore(flags);
f8953856 738 return 1;
54cdfdb4
TG
739}
740
741#else
742
743static inline int hrtimer_hres_active(void) { return 0; }
744static inline int hrtimer_is_hres_enabled(void) { return 0; }
f8953856 745static inline int hrtimer_switch_to_hres(void) { return 0; }
7403f41f
AC
746static inline void
747hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
54cdfdb4 748static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
7f1e2ca9
PZ
749 struct hrtimer_clock_base *base,
750 int wakeup)
54cdfdb4
TG
751{
752 return 0;
753}
54cdfdb4
TG
754static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
755static inline void hrtimer_init_timer_hres(struct hrtimer *timer) { }
756
757#endif /* CONFIG_HIGH_RES_TIMERS */
758
82f67cd9
IM
759#ifdef CONFIG_TIMER_STATS
760void __timer_stats_hrtimer_set_start_info(struct hrtimer *timer, void *addr)
761{
762 if (timer->start_site)
763 return;
764
765 timer->start_site = addr;
766 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
767 timer->start_pid = current->pid;
768}
769#endif
770
c0a31329 771/*
6506f2aa 772 * Counterpart to lock_hrtimer_base above:
c0a31329
TG
773 */
774static inline
775void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
776{
3c8aa39d 777 spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
c0a31329
TG
778}
779
780/**
781 * hrtimer_forward - forward the timer expiry
c0a31329 782 * @timer: hrtimer to forward
44f21475 783 * @now: forward past this time
c0a31329
TG
784 * @interval: the interval to forward
785 *
786 * Forward the timer expiry so it will expire in the future.
8dca6f33 787 * Returns the number of overruns.
c0a31329 788 */
4d672e7a 789u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
c0a31329 790{
4d672e7a 791 u64 orun = 1;
44f21475 792 ktime_t delta;
c0a31329 793
cc584b21 794 delta = ktime_sub(now, hrtimer_get_expires(timer));
c0a31329
TG
795
796 if (delta.tv64 < 0)
797 return 0;
798
c9db4fa1
TG
799 if (interval.tv64 < timer->base->resolution.tv64)
800 interval.tv64 = timer->base->resolution.tv64;
801
c0a31329 802 if (unlikely(delta.tv64 >= interval.tv64)) {
df869b63 803 s64 incr = ktime_to_ns(interval);
c0a31329
TG
804
805 orun = ktime_divns(delta, incr);
cc584b21
AV
806 hrtimer_add_expires_ns(timer, incr * orun);
807 if (hrtimer_get_expires_tv64(timer) > now.tv64)
c0a31329
TG
808 return orun;
809 /*
810 * This (and the ktime_add() below) is the
811 * correction for exact:
812 */
813 orun++;
814 }
cc584b21 815 hrtimer_add_expires(timer, interval);
c0a31329
TG
816
817 return orun;
818}
6bdb6b62 819EXPORT_SYMBOL_GPL(hrtimer_forward);
c0a31329
TG
820
821/*
822 * enqueue_hrtimer - internal function to (re)start a timer
823 *
824 * The timer is inserted in expiry order. Insertion into the
825 * red black tree is O(log(n)). Must hold the base lock.
a6037b61
PZ
826 *
827 * Returns 1 when the new timer is the leftmost timer in the tree.
c0a31329 828 */
a6037b61
PZ
829static int enqueue_hrtimer(struct hrtimer *timer,
830 struct hrtimer_clock_base *base)
c0a31329
TG
831{
832 struct rb_node **link = &base->active.rb_node;
c0a31329
TG
833 struct rb_node *parent = NULL;
834 struct hrtimer *entry;
99bc2fcb 835 int leftmost = 1;
c0a31329 836
c6a2a177 837 debug_activate(timer);
237fc6e7 838
c0a31329
TG
839 /*
840 * Find the right place in the rbtree:
841 */
842 while (*link) {
843 parent = *link;
844 entry = rb_entry(parent, struct hrtimer, node);
845 /*
846 * We dont care about collisions. Nodes with
847 * the same expiry time stay together.
848 */
cc584b21
AV
849 if (hrtimer_get_expires_tv64(timer) <
850 hrtimer_get_expires_tv64(entry)) {
c0a31329 851 link = &(*link)->rb_left;
99bc2fcb 852 } else {
c0a31329 853 link = &(*link)->rb_right;
99bc2fcb
IM
854 leftmost = 0;
855 }
c0a31329
TG
856 }
857
858 /*
288867ec
TG
859 * Insert the timer to the rbtree and check whether it
860 * replaces the first pending timer
c0a31329 861 */
a6037b61 862 if (leftmost)
54cdfdb4 863 base->first = &timer->node;
54cdfdb4 864
c0a31329
TG
865 rb_link_node(&timer->node, parent, link);
866 rb_insert_color(&timer->node, &base->active);
303e967f
TG
867 /*
868 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
869 * state of a possibly running callback.
870 */
871 timer->state |= HRTIMER_STATE_ENQUEUED;
a6037b61
PZ
872
873 return leftmost;
288867ec 874}
c0a31329
TG
875
876/*
877 * __remove_hrtimer - internal function to remove a timer
878 *
879 * Caller must hold the base lock.
54cdfdb4
TG
880 *
881 * High resolution timer mode reprograms the clock event device when the
882 * timer is the one which expires next. The caller can disable this by setting
883 * reprogram to zero. This is useful, when the context does a reprogramming
884 * anyway (e.g. timer interrupt)
c0a31329 885 */
3c8aa39d 886static void __remove_hrtimer(struct hrtimer *timer,
303e967f 887 struct hrtimer_clock_base *base,
54cdfdb4 888 unsigned long newstate, int reprogram)
c0a31329 889{
7403f41f
AC
890 if (!(timer->state & HRTIMER_STATE_ENQUEUED))
891 goto out;
892
893 /*
894 * Remove the timer from the rbtree and replace the first
895 * entry pointer if necessary.
896 */
897 if (base->first == &timer->node) {
898 base->first = rb_next(&timer->node);
899#ifdef CONFIG_HIGH_RES_TIMERS
900 /* Reprogram the clock event device. if enabled */
901 if (reprogram && hrtimer_hres_active()) {
902 ktime_t expires;
903
904 expires = ktime_sub(hrtimer_get_expires(timer),
905 base->offset);
906 if (base->cpu_base->expires_next.tv64 == expires.tv64)
907 hrtimer_force_reprogram(base->cpu_base, 1);
54cdfdb4 908 }
7403f41f 909#endif
54cdfdb4 910 }
7403f41f
AC
911 rb_erase(&timer->node, &base->active);
912out:
303e967f 913 timer->state = newstate;
c0a31329
TG
914}
915
916/*
917 * remove hrtimer, called with base lock held
918 */
919static inline int
3c8aa39d 920remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
c0a31329 921{
303e967f 922 if (hrtimer_is_queued(timer)) {
54cdfdb4
TG
923 int reprogram;
924
925 /*
926 * Remove the timer and force reprogramming when high
927 * resolution mode is active and the timer is on the current
928 * CPU. If we remove a timer on another CPU, reprogramming is
929 * skipped. The interrupt event on this CPU is fired and
930 * reprogramming happens in the interrupt handler. This is a
931 * rare case and less expensive than a smp call.
932 */
c6a2a177 933 debug_deactivate(timer);
82f67cd9 934 timer_stats_hrtimer_clear_start_info(timer);
54cdfdb4
TG
935 reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
936 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE,
937 reprogram);
c0a31329
TG
938 return 1;
939 }
940 return 0;
941}
942
7f1e2ca9
PZ
943int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
944 unsigned long delta_ns, const enum hrtimer_mode mode,
945 int wakeup)
c0a31329 946{
3c8aa39d 947 struct hrtimer_clock_base *base, *new_base;
c0a31329 948 unsigned long flags;
a6037b61 949 int ret, leftmost;
c0a31329
TG
950
951 base = lock_hrtimer_base(timer, &flags);
952
953 /* Remove an active timer from the queue: */
954 ret = remove_hrtimer(timer, base);
955
956 /* Switch the timer base, if necessary: */
597d0275 957 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
c0a31329 958
597d0275 959 if (mode & HRTIMER_MODE_REL) {
5a7780e7 960 tim = ktime_add_safe(tim, new_base->get_time());
06027bdd
IM
961 /*
962 * CONFIG_TIME_LOW_RES is a temporary way for architectures
963 * to signal that they simply return xtime in
964 * do_gettimeoffset(). In this case we want to round up by
965 * resolution when starting a relative timer, to avoid short
966 * timeouts. This will go away with the GTOD framework.
967 */
968#ifdef CONFIG_TIME_LOW_RES
5a7780e7 969 tim = ktime_add_safe(tim, base->resolution);
06027bdd
IM
970#endif
971 }
237fc6e7 972
da8f2e17 973 hrtimer_set_expires_range_ns(timer, tim, delta_ns);
c0a31329 974
82f67cd9
IM
975 timer_stats_hrtimer_set_start_info(timer);
976
a6037b61
PZ
977 leftmost = enqueue_hrtimer(timer, new_base);
978
935c631d
IM
979 /*
980 * Only allow reprogramming if the new base is on this CPU.
981 * (it might still be on another CPU if the timer was pending)
a6037b61
PZ
982 *
983 * XXX send_remote_softirq() ?
935c631d 984 */
a6037b61 985 if (leftmost && new_base->cpu_base == &__get_cpu_var(hrtimer_bases))
7f1e2ca9 986 hrtimer_enqueue_reprogram(timer, new_base, wakeup);
c0a31329
TG
987
988 unlock_hrtimer_base(timer, &flags);
989
990 return ret;
991}
7f1e2ca9
PZ
992
993/**
994 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
995 * @timer: the timer to be added
996 * @tim: expiry time
997 * @delta_ns: "slack" range for the timer
998 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
999 *
1000 * Returns:
1001 * 0 on success
1002 * 1 when the timer was active
1003 */
1004int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1005 unsigned long delta_ns, const enum hrtimer_mode mode)
1006{
1007 return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1);
1008}
da8f2e17
AV
1009EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1010
1011/**
e1dd7bc5 1012 * hrtimer_start - (re)start an hrtimer on the current CPU
da8f2e17
AV
1013 * @timer: the timer to be added
1014 * @tim: expiry time
1015 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
1016 *
1017 * Returns:
1018 * 0 on success
1019 * 1 when the timer was active
1020 */
1021int
1022hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
1023{
7f1e2ca9 1024 return __hrtimer_start_range_ns(timer, tim, 0, mode, 1);
da8f2e17 1025}
8d16b764 1026EXPORT_SYMBOL_GPL(hrtimer_start);
c0a31329 1027
da8f2e17 1028
c0a31329
TG
1029/**
1030 * hrtimer_try_to_cancel - try to deactivate a timer
c0a31329
TG
1031 * @timer: hrtimer to stop
1032 *
1033 * Returns:
1034 * 0 when the timer was not active
1035 * 1 when the timer was active
1036 * -1 when the timer is currently excuting the callback function and
fa9799e3 1037 * cannot be stopped
c0a31329
TG
1038 */
1039int hrtimer_try_to_cancel(struct hrtimer *timer)
1040{
3c8aa39d 1041 struct hrtimer_clock_base *base;
c0a31329
TG
1042 unsigned long flags;
1043 int ret = -1;
1044
1045 base = lock_hrtimer_base(timer, &flags);
1046
303e967f 1047 if (!hrtimer_callback_running(timer))
c0a31329
TG
1048 ret = remove_hrtimer(timer, base);
1049
1050 unlock_hrtimer_base(timer, &flags);
1051
1052 return ret;
1053
1054}
8d16b764 1055EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
c0a31329
TG
1056
1057/**
1058 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
c0a31329
TG
1059 * @timer: the timer to be cancelled
1060 *
1061 * Returns:
1062 * 0 when the timer was not active
1063 * 1 when the timer was active
1064 */
1065int hrtimer_cancel(struct hrtimer *timer)
1066{
1067 for (;;) {
1068 int ret = hrtimer_try_to_cancel(timer);
1069
1070 if (ret >= 0)
1071 return ret;
5ef37b19 1072 cpu_relax();
c0a31329
TG
1073 }
1074}
8d16b764 1075EXPORT_SYMBOL_GPL(hrtimer_cancel);
c0a31329
TG
1076
1077/**
1078 * hrtimer_get_remaining - get remaining time for the timer
c0a31329
TG
1079 * @timer: the timer to read
1080 */
1081ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
1082{
3c8aa39d 1083 struct hrtimer_clock_base *base;
c0a31329
TG
1084 unsigned long flags;
1085 ktime_t rem;
1086
1087 base = lock_hrtimer_base(timer, &flags);
cc584b21 1088 rem = hrtimer_expires_remaining(timer);
c0a31329
TG
1089 unlock_hrtimer_base(timer, &flags);
1090
1091 return rem;
1092}
8d16b764 1093EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
c0a31329 1094
ee9c5785 1095#ifdef CONFIG_NO_HZ
69239749
TL
1096/**
1097 * hrtimer_get_next_event - get the time until next expiry event
1098 *
1099 * Returns the delta to the next expiry event or KTIME_MAX if no timer
1100 * is pending.
1101 */
1102ktime_t hrtimer_get_next_event(void)
1103{
3c8aa39d
TG
1104 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1105 struct hrtimer_clock_base *base = cpu_base->clock_base;
69239749
TL
1106 ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
1107 unsigned long flags;
1108 int i;
1109
3c8aa39d
TG
1110 spin_lock_irqsave(&cpu_base->lock, flags);
1111
54cdfdb4
TG
1112 if (!hrtimer_hres_active()) {
1113 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
1114 struct hrtimer *timer;
69239749 1115
54cdfdb4
TG
1116 if (!base->first)
1117 continue;
3c8aa39d 1118
54cdfdb4 1119 timer = rb_entry(base->first, struct hrtimer, node);
cc584b21 1120 delta.tv64 = hrtimer_get_expires_tv64(timer);
54cdfdb4
TG
1121 delta = ktime_sub(delta, base->get_time());
1122 if (delta.tv64 < mindelta.tv64)
1123 mindelta.tv64 = delta.tv64;
1124 }
69239749 1125 }
3c8aa39d
TG
1126
1127 spin_unlock_irqrestore(&cpu_base->lock, flags);
1128
69239749
TL
1129 if (mindelta.tv64 < 0)
1130 mindelta.tv64 = 0;
1131 return mindelta;
1132}
1133#endif
1134
237fc6e7
TG
1135static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1136 enum hrtimer_mode mode)
c0a31329 1137{
3c8aa39d 1138 struct hrtimer_cpu_base *cpu_base;
c0a31329 1139
7978672c
GA
1140 memset(timer, 0, sizeof(struct hrtimer));
1141
3c8aa39d 1142 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
c0a31329 1143
c9cb2e3d 1144 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
7978672c
GA
1145 clock_id = CLOCK_MONOTONIC;
1146
3c8aa39d 1147 timer->base = &cpu_base->clock_base[clock_id];
54cdfdb4 1148 hrtimer_init_timer_hres(timer);
82f67cd9
IM
1149
1150#ifdef CONFIG_TIMER_STATS
1151 timer->start_site = NULL;
1152 timer->start_pid = -1;
1153 memset(timer->start_comm, 0, TASK_COMM_LEN);
1154#endif
c0a31329 1155}
237fc6e7
TG
1156
1157/**
1158 * hrtimer_init - initialize a timer to the given clock
1159 * @timer: the timer to be initialized
1160 * @clock_id: the clock to be used
1161 * @mode: timer mode abs/rel
1162 */
1163void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1164 enum hrtimer_mode mode)
1165{
c6a2a177 1166 debug_init(timer, clock_id, mode);
237fc6e7
TG
1167 __hrtimer_init(timer, clock_id, mode);
1168}
8d16b764 1169EXPORT_SYMBOL_GPL(hrtimer_init);
c0a31329
TG
1170
1171/**
1172 * hrtimer_get_res - get the timer resolution for a clock
c0a31329
TG
1173 * @which_clock: which clock to query
1174 * @tp: pointer to timespec variable to store the resolution
1175 *
72fd4a35
RD
1176 * Store the resolution of the clock selected by @which_clock in the
1177 * variable pointed to by @tp.
c0a31329
TG
1178 */
1179int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
1180{
3c8aa39d 1181 struct hrtimer_cpu_base *cpu_base;
c0a31329 1182
3c8aa39d
TG
1183 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1184 *tp = ktime_to_timespec(cpu_base->clock_base[which_clock].resolution);
c0a31329
TG
1185
1186 return 0;
1187}
8d16b764 1188EXPORT_SYMBOL_GPL(hrtimer_get_res);
c0a31329 1189
c6a2a177 1190static void __run_hrtimer(struct hrtimer *timer, ktime_t *now)
d3d74453
PZ
1191{
1192 struct hrtimer_clock_base *base = timer->base;
1193 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
1194 enum hrtimer_restart (*fn)(struct hrtimer *);
1195 int restart;
1196
ca109491
PZ
1197 WARN_ON(!irqs_disabled());
1198
c6a2a177 1199 debug_deactivate(timer);
d3d74453
PZ
1200 __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
1201 timer_stats_account_hrtimer(timer);
d3d74453 1202 fn = timer->function;
ca109491
PZ
1203
1204 /*
1205 * Because we run timers from hardirq context, there is no chance
1206 * they get migrated to another cpu, therefore its safe to unlock
1207 * the timer base.
1208 */
1209 spin_unlock(&cpu_base->lock);
c6a2a177 1210 trace_hrtimer_expire_entry(timer, now);
ca109491 1211 restart = fn(timer);
c6a2a177 1212 trace_hrtimer_expire_exit(timer);
ca109491 1213 spin_lock(&cpu_base->lock);
d3d74453
PZ
1214
1215 /*
e3f1d883
TG
1216 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
1217 * we do not reprogramm the event hardware. Happens either in
1218 * hrtimer_start_range_ns() or in hrtimer_interrupt()
d3d74453
PZ
1219 */
1220 if (restart != HRTIMER_NORESTART) {
1221 BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
a6037b61 1222 enqueue_hrtimer(timer, base);
d3d74453
PZ
1223 }
1224 timer->state &= ~HRTIMER_STATE_CALLBACK;
1225}
1226
54cdfdb4
TG
1227#ifdef CONFIG_HIGH_RES_TIMERS
1228
1229/*
1230 * High resolution timer interrupt
1231 * Called with interrupts disabled
1232 */
1233void hrtimer_interrupt(struct clock_event_device *dev)
1234{
1235 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1236 struct hrtimer_clock_base *base;
41d2e494
TG
1237 ktime_t expires_next, now, entry_time, delta;
1238 int i, retries = 0;
54cdfdb4
TG
1239
1240 BUG_ON(!cpu_base->hres_active);
1241 cpu_base->nr_events++;
1242 dev->next_event.tv64 = KTIME_MAX;
1243
41d2e494
TG
1244 entry_time = now = ktime_get();
1245retry:
54cdfdb4
TG
1246 expires_next.tv64 = KTIME_MAX;
1247
6ff7041d
TG
1248 spin_lock(&cpu_base->lock);
1249 /*
1250 * We set expires_next to KTIME_MAX here with cpu_base->lock
1251 * held to prevent that a timer is enqueued in our queue via
1252 * the migration code. This does not affect enqueueing of
1253 * timers which run their callback and need to be requeued on
1254 * this CPU.
1255 */
1256 cpu_base->expires_next.tv64 = KTIME_MAX;
1257
54cdfdb4
TG
1258 base = cpu_base->clock_base;
1259
1260 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1261 ktime_t basenow;
1262 struct rb_node *node;
1263
54cdfdb4
TG
1264 basenow = ktime_add(now, base->offset);
1265
1266 while ((node = base->first)) {
1267 struct hrtimer *timer;
1268
1269 timer = rb_entry(node, struct hrtimer, node);
1270
654c8e0b
AV
1271 /*
1272 * The immediate goal for using the softexpires is
1273 * minimizing wakeups, not running timers at the
1274 * earliest interrupt after their soft expiration.
1275 * This allows us to avoid using a Priority Search
1276 * Tree, which can answer a stabbing querry for
1277 * overlapping intervals and instead use the simple
1278 * BST we already have.
1279 * We don't add extra wakeups by delaying timers that
1280 * are right-of a not yet expired timer, because that
1281 * timer will have to trigger a wakeup anyway.
1282 */
1283
1284 if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) {
54cdfdb4
TG
1285 ktime_t expires;
1286
cc584b21 1287 expires = ktime_sub(hrtimer_get_expires(timer),
54cdfdb4
TG
1288 base->offset);
1289 if (expires.tv64 < expires_next.tv64)
1290 expires_next = expires;
1291 break;
1292 }
1293
c6a2a177 1294 __run_hrtimer(timer, &basenow);
54cdfdb4 1295 }
54cdfdb4
TG
1296 base++;
1297 }
1298
6ff7041d
TG
1299 /*
1300 * Store the new expiry value so the migration code can verify
1301 * against it.
1302 */
54cdfdb4 1303 cpu_base->expires_next = expires_next;
6ff7041d 1304 spin_unlock(&cpu_base->lock);
54cdfdb4
TG
1305
1306 /* Reprogramming necessary ? */
41d2e494
TG
1307 if (expires_next.tv64 == KTIME_MAX ||
1308 !tick_program_event(expires_next, 0)) {
1309 cpu_base->hang_detected = 0;
1310 return;
54cdfdb4 1311 }
41d2e494
TG
1312
1313 /*
1314 * The next timer was already expired due to:
1315 * - tracing
1316 * - long lasting callbacks
1317 * - being scheduled away when running in a VM
1318 *
1319 * We need to prevent that we loop forever in the hrtimer
1320 * interrupt routine. We give it 3 attempts to avoid
1321 * overreacting on some spurious event.
1322 */
1323 now = ktime_get();
1324 cpu_base->nr_retries++;
1325 if (++retries < 3)
1326 goto retry;
1327 /*
1328 * Give the system a chance to do something else than looping
1329 * here. We stored the entry time, so we know exactly how long
1330 * we spent here. We schedule the next event this amount of
1331 * time away.
1332 */
1333 cpu_base->nr_hangs++;
1334 cpu_base->hang_detected = 1;
1335 delta = ktime_sub(now, entry_time);
1336 if (delta.tv64 > cpu_base->max_hang_time.tv64)
1337 cpu_base->max_hang_time = delta;
1338 /*
1339 * Limit it to a sensible value as we enforce a longer
1340 * delay. Give the CPU at least 100ms to catch up.
1341 */
1342 if (delta.tv64 > 100 * NSEC_PER_MSEC)
1343 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1344 else
1345 expires_next = ktime_add(now, delta);
1346 tick_program_event(expires_next, 1);
1347 printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
1348 ktime_to_ns(delta));
54cdfdb4
TG
1349}
1350
8bdec955
TG
1351/*
1352 * local version of hrtimer_peek_ahead_timers() called with interrupts
1353 * disabled.
1354 */
1355static void __hrtimer_peek_ahead_timers(void)
1356{
1357 struct tick_device *td;
1358
1359 if (!hrtimer_hres_active())
1360 return;
1361
1362 td = &__get_cpu_var(tick_cpu_device);
1363 if (td && td->evtdev)
1364 hrtimer_interrupt(td->evtdev);
1365}
1366
2e94d1f7
AV
1367/**
1368 * hrtimer_peek_ahead_timers -- run soft-expired timers now
1369 *
1370 * hrtimer_peek_ahead_timers will peek at the timer queue of
1371 * the current cpu and check if there are any timers for which
1372 * the soft expires time has passed. If any such timers exist,
1373 * they are run immediately and then removed from the timer queue.
1374 *
1375 */
1376void hrtimer_peek_ahead_timers(void)
1377{
643bdf68 1378 unsigned long flags;
dc4304f7 1379
2e94d1f7 1380 local_irq_save(flags);
8bdec955 1381 __hrtimer_peek_ahead_timers();
2e94d1f7
AV
1382 local_irq_restore(flags);
1383}
1384
a6037b61
PZ
1385static void run_hrtimer_softirq(struct softirq_action *h)
1386{
1387 hrtimer_peek_ahead_timers();
1388}
1389
82c5b7b5
IM
1390#else /* CONFIG_HIGH_RES_TIMERS */
1391
1392static inline void __hrtimer_peek_ahead_timers(void) { }
1393
1394#endif /* !CONFIG_HIGH_RES_TIMERS */
82f67cd9 1395
d3d74453
PZ
1396/*
1397 * Called from timer softirq every jiffy, expire hrtimers:
1398 *
1399 * For HRT its the fall back code to run the softirq in the timer
1400 * softirq context in case the hrtimer initialization failed or has
1401 * not been done yet.
1402 */
1403void hrtimer_run_pending(void)
1404{
d3d74453
PZ
1405 if (hrtimer_hres_active())
1406 return;
54cdfdb4 1407
d3d74453
PZ
1408 /*
1409 * This _is_ ugly: We have to check in the softirq context,
1410 * whether we can switch to highres and / or nohz mode. The
1411 * clocksource switch happens in the timer interrupt with
1412 * xtime_lock held. Notification from there only sets the
1413 * check bit in the tick_oneshot code, otherwise we might
1414 * deadlock vs. xtime_lock.
1415 */
1416 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1417 hrtimer_switch_to_hres();
54cdfdb4
TG
1418}
1419
c0a31329 1420/*
d3d74453 1421 * Called from hardirq context every jiffy
c0a31329 1422 */
833883d9 1423void hrtimer_run_queues(void)
c0a31329 1424{
288867ec 1425 struct rb_node *node;
833883d9
DS
1426 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1427 struct hrtimer_clock_base *base;
1428 int index, gettime = 1;
c0a31329 1429
833883d9 1430 if (hrtimer_hres_active())
3055adda
DS
1431 return;
1432
833883d9
DS
1433 for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
1434 base = &cpu_base->clock_base[index];
c0a31329 1435
833883d9 1436 if (!base->first)
d3d74453 1437 continue;
833883d9 1438
d7cfb60c 1439 if (gettime) {
833883d9
DS
1440 hrtimer_get_softirq_time(cpu_base);
1441 gettime = 0;
b75f7a51 1442 }
d3d74453 1443
833883d9 1444 spin_lock(&cpu_base->lock);
c0a31329 1445
833883d9
DS
1446 while ((node = base->first)) {
1447 struct hrtimer *timer;
54cdfdb4 1448
833883d9 1449 timer = rb_entry(node, struct hrtimer, node);
cc584b21
AV
1450 if (base->softirq_time.tv64 <=
1451 hrtimer_get_expires_tv64(timer))
833883d9
DS
1452 break;
1453
c6a2a177 1454 __run_hrtimer(timer, &base->softirq_time);
833883d9
DS
1455 }
1456 spin_unlock(&cpu_base->lock);
1457 }
c0a31329
TG
1458}
1459
10c94ec1
TG
1460/*
1461 * Sleep related functions:
1462 */
c9cb2e3d 1463static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
00362e33
TG
1464{
1465 struct hrtimer_sleeper *t =
1466 container_of(timer, struct hrtimer_sleeper, timer);
1467 struct task_struct *task = t->task;
1468
1469 t->task = NULL;
1470 if (task)
1471 wake_up_process(task);
1472
1473 return HRTIMER_NORESTART;
1474}
1475
36c8b586 1476void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
00362e33
TG
1477{
1478 sl->timer.function = hrtimer_wakeup;
1479 sl->task = task;
1480}
2bc481cf 1481EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
00362e33 1482
669d7868 1483static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
432569bb 1484{
669d7868 1485 hrtimer_init_sleeper(t, current);
10c94ec1 1486
432569bb
RZ
1487 do {
1488 set_current_state(TASK_INTERRUPTIBLE);
cc584b21 1489 hrtimer_start_expires(&t->timer, mode);
37bb6cb4
PZ
1490 if (!hrtimer_active(&t->timer))
1491 t->task = NULL;
432569bb 1492
54cdfdb4
TG
1493 if (likely(t->task))
1494 schedule();
432569bb 1495
669d7868 1496 hrtimer_cancel(&t->timer);
c9cb2e3d 1497 mode = HRTIMER_MODE_ABS;
669d7868
TG
1498
1499 } while (t->task && !signal_pending(current));
432569bb 1500
3588a085
PZ
1501 __set_current_state(TASK_RUNNING);
1502
669d7868 1503 return t->task == NULL;
10c94ec1
TG
1504}
1505
080344b9
ON
1506static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1507{
1508 struct timespec rmt;
1509 ktime_t rem;
1510
cc584b21 1511 rem = hrtimer_expires_remaining(timer);
080344b9
ON
1512 if (rem.tv64 <= 0)
1513 return 0;
1514 rmt = ktime_to_timespec(rem);
1515
1516 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1517 return -EFAULT;
1518
1519 return 1;
1520}
1521
1711ef38 1522long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
10c94ec1 1523{
669d7868 1524 struct hrtimer_sleeper t;
080344b9 1525 struct timespec __user *rmtp;
237fc6e7 1526 int ret = 0;
10c94ec1 1527
237fc6e7
TG
1528 hrtimer_init_on_stack(&t.timer, restart->nanosleep.index,
1529 HRTIMER_MODE_ABS);
cc584b21 1530 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
10c94ec1 1531
c9cb2e3d 1532 if (do_nanosleep(&t, HRTIMER_MODE_ABS))
237fc6e7 1533 goto out;
10c94ec1 1534
029a07e0 1535 rmtp = restart->nanosleep.rmtp;
432569bb 1536 if (rmtp) {
237fc6e7 1537 ret = update_rmtp(&t.timer, rmtp);
080344b9 1538 if (ret <= 0)
237fc6e7 1539 goto out;
432569bb 1540 }
10c94ec1 1541
10c94ec1 1542 /* The other values in restart are already filled in */
237fc6e7
TG
1543 ret = -ERESTART_RESTARTBLOCK;
1544out:
1545 destroy_hrtimer_on_stack(&t.timer);
1546 return ret;
10c94ec1
TG
1547}
1548
080344b9 1549long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
10c94ec1
TG
1550 const enum hrtimer_mode mode, const clockid_t clockid)
1551{
1552 struct restart_block *restart;
669d7868 1553 struct hrtimer_sleeper t;
237fc6e7 1554 int ret = 0;
3bd01206
AV
1555 unsigned long slack;
1556
1557 slack = current->timer_slack_ns;
1558 if (rt_task(current))
1559 slack = 0;
10c94ec1 1560
237fc6e7 1561 hrtimer_init_on_stack(&t.timer, clockid, mode);
3bd01206 1562 hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
432569bb 1563 if (do_nanosleep(&t, mode))
237fc6e7 1564 goto out;
10c94ec1 1565
7978672c 1566 /* Absolute timers do not update the rmtp value and restart: */
237fc6e7
TG
1567 if (mode == HRTIMER_MODE_ABS) {
1568 ret = -ERESTARTNOHAND;
1569 goto out;
1570 }
10c94ec1 1571
432569bb 1572 if (rmtp) {
237fc6e7 1573 ret = update_rmtp(&t.timer, rmtp);
080344b9 1574 if (ret <= 0)
237fc6e7 1575 goto out;
432569bb 1576 }
10c94ec1
TG
1577
1578 restart = &current_thread_info()->restart_block;
1711ef38 1579 restart->fn = hrtimer_nanosleep_restart;
029a07e0
TG
1580 restart->nanosleep.index = t.timer.base->index;
1581 restart->nanosleep.rmtp = rmtp;
cc584b21 1582 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
10c94ec1 1583
237fc6e7
TG
1584 ret = -ERESTART_RESTARTBLOCK;
1585out:
1586 destroy_hrtimer_on_stack(&t.timer);
1587 return ret;
10c94ec1
TG
1588}
1589
58fd3aa2
HC
1590SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1591 struct timespec __user *, rmtp)
6ba1b912 1592{
080344b9 1593 struct timespec tu;
6ba1b912
TG
1594
1595 if (copy_from_user(&tu, rqtp, sizeof(tu)))
1596 return -EFAULT;
1597
1598 if (!timespec_valid(&tu))
1599 return -EINVAL;
1600
080344b9 1601 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
6ba1b912
TG
1602}
1603
c0a31329
TG
1604/*
1605 * Functions related to boot-time initialization:
1606 */
0ec160dd 1607static void __cpuinit init_hrtimers_cpu(int cpu)
c0a31329 1608{
3c8aa39d 1609 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
c0a31329
TG
1610 int i;
1611
3c8aa39d 1612 spin_lock_init(&cpu_base->lock);
3c8aa39d
TG
1613
1614 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
1615 cpu_base->clock_base[i].cpu_base = cpu_base;
1616
54cdfdb4 1617 hrtimer_init_hres(cpu_base);
c0a31329
TG
1618}
1619
1620#ifdef CONFIG_HOTPLUG_CPU
1621
ca109491 1622static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
37810659 1623 struct hrtimer_clock_base *new_base)
c0a31329
TG
1624{
1625 struct hrtimer *timer;
1626 struct rb_node *node;
1627
1628 while ((node = rb_first(&old_base->active))) {
1629 timer = rb_entry(node, struct hrtimer, node);
54cdfdb4 1630 BUG_ON(hrtimer_callback_running(timer));
c6a2a177 1631 debug_deactivate(timer);
b00c1a99
TG
1632
1633 /*
1634 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
1635 * timer could be seen as !active and just vanish away
1636 * under us on another CPU
1637 */
1638 __remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
c0a31329 1639 timer->base = new_base;
54cdfdb4 1640 /*
e3f1d883
TG
1641 * Enqueue the timers on the new cpu. This does not
1642 * reprogram the event device in case the timer
1643 * expires before the earliest on this CPU, but we run
1644 * hrtimer_interrupt after we migrated everything to
1645 * sort out already expired timers and reprogram the
1646 * event device.
54cdfdb4 1647 */
a6037b61 1648 enqueue_hrtimer(timer, new_base);
41e1022e 1649
b00c1a99
TG
1650 /* Clear the migration state bit */
1651 timer->state &= ~HRTIMER_STATE_MIGRATE;
c0a31329
TG
1652 }
1653}
1654
d5fd43c4 1655static void migrate_hrtimers(int scpu)
c0a31329 1656{
3c8aa39d 1657 struct hrtimer_cpu_base *old_base, *new_base;
731a55ba 1658 int i;
c0a31329 1659
37810659 1660 BUG_ON(cpu_online(scpu));
37810659 1661 tick_cancel_sched_timer(scpu);
731a55ba
TG
1662
1663 local_irq_disable();
1664 old_base = &per_cpu(hrtimer_bases, scpu);
1665 new_base = &__get_cpu_var(hrtimer_bases);
d82f0b0f
ON
1666 /*
1667 * The caller is globally serialized and nobody else
1668 * takes two locks at once, deadlock is not possible.
1669 */
731a55ba 1670 spin_lock(&new_base->lock);
8e60e05f 1671 spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
c0a31329 1672
3c8aa39d 1673 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
ca109491 1674 migrate_hrtimer_list(&old_base->clock_base[i],
37810659 1675 &new_base->clock_base[i]);
c0a31329
TG
1676 }
1677
8e60e05f 1678 spin_unlock(&old_base->lock);
731a55ba 1679 spin_unlock(&new_base->lock);
37810659 1680
731a55ba
TG
1681 /* Check, if we got expired work to do */
1682 __hrtimer_peek_ahead_timers();
1683 local_irq_enable();
c0a31329 1684}
37810659 1685
c0a31329
TG
1686#endif /* CONFIG_HOTPLUG_CPU */
1687
8c78f307 1688static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
c0a31329
TG
1689 unsigned long action, void *hcpu)
1690{
b2e3c0ad 1691 int scpu = (long)hcpu;
c0a31329
TG
1692
1693 switch (action) {
1694
1695 case CPU_UP_PREPARE:
8bb78442 1696 case CPU_UP_PREPARE_FROZEN:
37810659 1697 init_hrtimers_cpu(scpu);
c0a31329
TG
1698 break;
1699
1700#ifdef CONFIG_HOTPLUG_CPU
94df7de0
SD
1701 case CPU_DYING:
1702 case CPU_DYING_FROZEN:
1703 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING, &scpu);
1704 break;
c0a31329 1705 case CPU_DEAD:
8bb78442 1706 case CPU_DEAD_FROZEN:
b2e3c0ad 1707 {
37810659 1708 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu);
d5fd43c4 1709 migrate_hrtimers(scpu);
c0a31329 1710 break;
b2e3c0ad 1711 }
c0a31329
TG
1712#endif
1713
1714 default:
1715 break;
1716 }
1717
1718 return NOTIFY_OK;
1719}
1720
8c78f307 1721static struct notifier_block __cpuinitdata hrtimers_nb = {
c0a31329
TG
1722 .notifier_call = hrtimer_cpu_notify,
1723};
1724
1725void __init hrtimers_init(void)
1726{
1727 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1728 (void *)(long)smp_processor_id());
1729 register_cpu_notifier(&hrtimers_nb);
a6037b61
PZ
1730#ifdef CONFIG_HIGH_RES_TIMERS
1731 open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
1732#endif
c0a31329
TG
1733}
1734
7bb67439 1735/**
654c8e0b 1736 * schedule_hrtimeout_range - sleep until timeout
7bb67439 1737 * @expires: timeout value (ktime_t)
654c8e0b 1738 * @delta: slack in expires timeout (ktime_t)
7bb67439
AV
1739 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1740 *
1741 * Make the current task sleep until the given expiry time has
1742 * elapsed. The routine will return immediately unless
1743 * the current task state has been set (see set_current_state()).
1744 *
654c8e0b
AV
1745 * The @delta argument gives the kernel the freedom to schedule the
1746 * actual wakeup to a time that is both power and performance friendly.
1747 * The kernel give the normal best effort behavior for "@expires+@delta",
1748 * but may decide to fire the timer earlier, but no earlier than @expires.
1749 *
7bb67439
AV
1750 * You can set the task state as follows -
1751 *
1752 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1753 * pass before the routine returns.
1754 *
1755 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1756 * delivered to the current task.
1757 *
1758 * The current task state is guaranteed to be TASK_RUNNING when this
1759 * routine returns.
1760 *
1761 * Returns 0 when the timer has expired otherwise -EINTR
1762 */
654c8e0b 1763int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
7bb67439
AV
1764 const enum hrtimer_mode mode)
1765{
1766 struct hrtimer_sleeper t;
1767
1768 /*
1769 * Optimize when a zero timeout value is given. It does not
1770 * matter whether this is an absolute or a relative time.
1771 */
1772 if (expires && !expires->tv64) {
1773 __set_current_state(TASK_RUNNING);
1774 return 0;
1775 }
1776
1777 /*
1778 * A NULL parameter means "inifinte"
1779 */
1780 if (!expires) {
1781 schedule();
1782 __set_current_state(TASK_RUNNING);
1783 return -EINTR;
1784 }
1785
1786 hrtimer_init_on_stack(&t.timer, CLOCK_MONOTONIC, mode);
654c8e0b 1787 hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
7bb67439
AV
1788
1789 hrtimer_init_sleeper(&t, current);
1790
cc584b21 1791 hrtimer_start_expires(&t.timer, mode);
7bb67439
AV
1792 if (!hrtimer_active(&t.timer))
1793 t.task = NULL;
1794
1795 if (likely(t.task))
1796 schedule();
1797
1798 hrtimer_cancel(&t.timer);
1799 destroy_hrtimer_on_stack(&t.timer);
1800
1801 __set_current_state(TASK_RUNNING);
1802
1803 return !t.task ? 0 : -EINTR;
1804}
654c8e0b
AV
1805EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1806
1807/**
1808 * schedule_hrtimeout - sleep until timeout
1809 * @expires: timeout value (ktime_t)
1810 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1811 *
1812 * Make the current task sleep until the given expiry time has
1813 * elapsed. The routine will return immediately unless
1814 * the current task state has been set (see set_current_state()).
1815 *
1816 * You can set the task state as follows -
1817 *
1818 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1819 * pass before the routine returns.
1820 *
1821 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1822 * delivered to the current task.
1823 *
1824 * The current task state is guaranteed to be TASK_RUNNING when this
1825 * routine returns.
1826 *
1827 * Returns 0 when the timer has expired otherwise -EINTR
1828 */
1829int __sched schedule_hrtimeout(ktime_t *expires,
1830 const enum hrtimer_mode mode)
1831{
1832 return schedule_hrtimeout_range(expires, 0, mode);
1833}
7bb67439 1834EXPORT_SYMBOL_GPL(schedule_hrtimeout);
This page took 0.522175 seconds and 5 git commands to generate.