perf: Allow building PMU drivers as modules
[deliverable/linux.git] / kernel / hrtimer.c
CommitLineData
c0a31329
TG
1/*
2 * linux/kernel/hrtimer.c
3 *
3c8aa39d 4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
79bf2bb3 5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
54cdfdb4 6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
c0a31329
TG
7 *
8 * High-resolution kernel timers
9 *
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
13 *
14 * These timers are currently used for:
15 * - itimers
16 * - POSIX timers
17 * - nanosleep
18 * - precise in-kernel timing
19 *
20 * Started by: Thomas Gleixner and Ingo Molnar
21 *
22 * Credits:
23 * based on kernel/timer.c
24 *
66188fae
TG
25 * Help, testing, suggestions, bugfixes, improvements were
26 * provided by:
27 *
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29 * et. al.
30 *
c0a31329
TG
31 * For licencing details see kernel-base/COPYING
32 */
33
34#include <linux/cpu.h>
9984de1a 35#include <linux/export.h>
c0a31329
TG
36#include <linux/percpu.h>
37#include <linux/hrtimer.h>
38#include <linux/notifier.h>
39#include <linux/syscalls.h>
54cdfdb4 40#include <linux/kallsyms.h>
c0a31329 41#include <linux/interrupt.h>
79bf2bb3 42#include <linux/tick.h>
54cdfdb4
TG
43#include <linux/seq_file.h>
44#include <linux/err.h>
237fc6e7 45#include <linux/debugobjects.h>
eea08f32 46#include <linux/sched.h>
cf4aebc2 47#include <linux/sched/sysctl.h>
8bd75c77 48#include <linux/sched/rt.h>
aab03e05 49#include <linux/sched/deadline.h>
eea08f32 50#include <linux/timer.h>
b0f8c44f 51#include <linux/freezer.h>
c0a31329
TG
52
53#include <asm/uaccess.h>
54
c6a2a177
XG
55#include <trace/events/timer.h>
56
c0a31329
TG
57/*
58 * The timer bases:
7978672c 59 *
e06383db
JS
60 * There are more clockids then hrtimer bases. Thus, we index
61 * into the timer bases by the hrtimer_base_type enum. When trying
62 * to reach a base using a clockid, hrtimer_clockid_to_base()
63 * is used to convert from clockid to the proper hrtimer_base_type.
c0a31329 64 */
54cdfdb4 65DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
c0a31329 66{
3c8aa39d 67
84cc8fd2 68 .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
3c8aa39d 69 .clock_base =
c0a31329 70 {
3c8aa39d 71 {
ab8177bc
TG
72 .index = HRTIMER_BASE_MONOTONIC,
73 .clockid = CLOCK_MONOTONIC,
3c8aa39d 74 .get_time = &ktime_get,
54cdfdb4 75 .resolution = KTIME_LOW_RES,
3c8aa39d 76 },
68fa61c0
TG
77 {
78 .index = HRTIMER_BASE_REALTIME,
79 .clockid = CLOCK_REALTIME,
80 .get_time = &ktime_get_real,
81 .resolution = KTIME_LOW_RES,
82 },
70a08cca 83 {
ab8177bc
TG
84 .index = HRTIMER_BASE_BOOTTIME,
85 .clockid = CLOCK_BOOTTIME,
70a08cca
JS
86 .get_time = &ktime_get_boottime,
87 .resolution = KTIME_LOW_RES,
88 },
90adda98
JS
89 {
90 .index = HRTIMER_BASE_TAI,
91 .clockid = CLOCK_TAI,
92 .get_time = &ktime_get_clocktai,
93 .resolution = KTIME_LOW_RES,
94 },
3c8aa39d 95 }
c0a31329
TG
96};
97
942c3c5c 98static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
ce31332d
TG
99 [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME,
100 [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC,
101 [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME,
90adda98 102 [CLOCK_TAI] = HRTIMER_BASE_TAI,
ce31332d 103};
e06383db
JS
104
105static inline int hrtimer_clockid_to_base(clockid_t clock_id)
106{
107 return hrtimer_clock_to_base_table[clock_id];
108}
109
110
92127c7a
TG
111/*
112 * Get the coarse grained time at the softirq based on xtime and
113 * wall_to_monotonic.
114 */
3c8aa39d 115static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
92127c7a 116{
70a08cca 117 ktime_t xtim, mono, boot;
314ac371 118 struct timespec xts, tom, slp;
90adda98 119 s32 tai_offset;
92127c7a 120
314ac371 121 get_xtime_and_monotonic_and_sleep_offset(&xts, &tom, &slp);
90adda98 122 tai_offset = timekeeping_get_tai_offset();
92127c7a 123
f4304ab2 124 xtim = timespec_to_ktime(xts);
70a08cca
JS
125 mono = ktime_add(xtim, timespec_to_ktime(tom));
126 boot = ktime_add(mono, timespec_to_ktime(slp));
e06383db 127 base->clock_base[HRTIMER_BASE_REALTIME].softirq_time = xtim;
70a08cca
JS
128 base->clock_base[HRTIMER_BASE_MONOTONIC].softirq_time = mono;
129 base->clock_base[HRTIMER_BASE_BOOTTIME].softirq_time = boot;
90adda98
JS
130 base->clock_base[HRTIMER_BASE_TAI].softirq_time =
131 ktime_add(xtim, ktime_set(tai_offset, 0));
92127c7a
TG
132}
133
c0a31329
TG
134/*
135 * Functions and macros which are different for UP/SMP systems are kept in a
136 * single place
137 */
138#ifdef CONFIG_SMP
139
c0a31329
TG
140/*
141 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
142 * means that all timers which are tied to this base via timer->base are
143 * locked, and the base itself is locked too.
144 *
145 * So __run_timers/migrate_timers can safely modify all timers which could
146 * be found on the lists/queues.
147 *
148 * When the timer's base is locked, and the timer removed from list, it is
149 * possible to set timer->base = NULL and drop the lock: the timer remains
150 * locked.
151 */
3c8aa39d
TG
152static
153struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
154 unsigned long *flags)
c0a31329 155{
3c8aa39d 156 struct hrtimer_clock_base *base;
c0a31329
TG
157
158 for (;;) {
159 base = timer->base;
160 if (likely(base != NULL)) {
ecb49d1a 161 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
c0a31329
TG
162 if (likely(base == timer->base))
163 return base;
164 /* The timer has migrated to another CPU: */
ecb49d1a 165 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
c0a31329
TG
166 }
167 cpu_relax();
168 }
169}
170
6ff7041d
TG
171/*
172 * With HIGHRES=y we do not migrate the timer when it is expiring
173 * before the next event on the target cpu because we cannot reprogram
174 * the target cpu hardware and we would cause it to fire late.
175 *
176 * Called with cpu_base->lock of target cpu held.
177 */
178static int
179hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
180{
181#ifdef CONFIG_HIGH_RES_TIMERS
182 ktime_t expires;
183
184 if (!new_base->cpu_base->hres_active)
185 return 0;
186
187 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
188 return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
189#else
190 return 0;
191#endif
192}
193
c0a31329
TG
194/*
195 * Switch the timer base to the current CPU when possible.
196 */
3c8aa39d 197static inline struct hrtimer_clock_base *
597d0275
AB
198switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
199 int pinned)
c0a31329 200{
3c8aa39d
TG
201 struct hrtimer_clock_base *new_base;
202 struct hrtimer_cpu_base *new_cpu_base;
6ff7041d 203 int this_cpu = smp_processor_id();
6201b4d6 204 int cpu = get_nohz_timer_target(pinned);
ab8177bc 205 int basenum = base->index;
c0a31329 206
eea08f32
AB
207again:
208 new_cpu_base = &per_cpu(hrtimer_bases, cpu);
e06383db 209 new_base = &new_cpu_base->clock_base[basenum];
c0a31329
TG
210
211 if (base != new_base) {
212 /*
6ff7041d 213 * We are trying to move timer to new_base.
c0a31329
TG
214 * However we can't change timer's base while it is running,
215 * so we keep it on the same CPU. No hassle vs. reprogramming
216 * the event source in the high resolution case. The softirq
217 * code will take care of this when the timer function has
218 * completed. There is no conflict as we hold the lock until
219 * the timer is enqueued.
220 */
54cdfdb4 221 if (unlikely(hrtimer_callback_running(timer)))
c0a31329
TG
222 return base;
223
224 /* See the comment in lock_timer_base() */
225 timer->base = NULL;
ecb49d1a
TG
226 raw_spin_unlock(&base->cpu_base->lock);
227 raw_spin_lock(&new_base->cpu_base->lock);
eea08f32 228
6ff7041d
TG
229 if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
230 cpu = this_cpu;
ecb49d1a
TG
231 raw_spin_unlock(&new_base->cpu_base->lock);
232 raw_spin_lock(&base->cpu_base->lock);
6ff7041d
TG
233 timer->base = base;
234 goto again;
eea08f32 235 }
c0a31329
TG
236 timer->base = new_base;
237 }
238 return new_base;
239}
240
241#else /* CONFIG_SMP */
242
3c8aa39d 243static inline struct hrtimer_clock_base *
c0a31329
TG
244lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
245{
3c8aa39d 246 struct hrtimer_clock_base *base = timer->base;
c0a31329 247
ecb49d1a 248 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
c0a31329
TG
249
250 return base;
251}
252
eea08f32 253# define switch_hrtimer_base(t, b, p) (b)
c0a31329
TG
254
255#endif /* !CONFIG_SMP */
256
257/*
258 * Functions for the union type storage format of ktime_t which are
259 * too large for inlining:
260 */
261#if BITS_PER_LONG < 64
262# ifndef CONFIG_KTIME_SCALAR
263/**
264 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
c0a31329
TG
265 * @kt: addend
266 * @nsec: the scalar nsec value to add
267 *
268 * Returns the sum of kt and nsec in ktime_t format
269 */
270ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
271{
272 ktime_t tmp;
273
274 if (likely(nsec < NSEC_PER_SEC)) {
275 tmp.tv64 = nsec;
276 } else {
277 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
278
51fd36f3
DE
279 /* Make sure nsec fits into long */
280 if (unlikely(nsec > KTIME_SEC_MAX))
281 return (ktime_t){ .tv64 = KTIME_MAX };
282
c0a31329
TG
283 tmp = ktime_set((long)nsec, rem);
284 }
285
286 return ktime_add(kt, tmp);
287}
b8b8fd2d
DH
288
289EXPORT_SYMBOL_GPL(ktime_add_ns);
a272378d
ACM
290
291/**
292 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
293 * @kt: minuend
294 * @nsec: the scalar nsec value to subtract
295 *
296 * Returns the subtraction of @nsec from @kt in ktime_t format
297 */
298ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec)
299{
300 ktime_t tmp;
301
302 if (likely(nsec < NSEC_PER_SEC)) {
303 tmp.tv64 = nsec;
304 } else {
305 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
306
307 tmp = ktime_set((long)nsec, rem);
308 }
309
310 return ktime_sub(kt, tmp);
311}
312
313EXPORT_SYMBOL_GPL(ktime_sub_ns);
c0a31329
TG
314# endif /* !CONFIG_KTIME_SCALAR */
315
316/*
317 * Divide a ktime value by a nanosecond value
318 */
4d672e7a 319u64 ktime_divns(const ktime_t kt, s64 div)
c0a31329 320{
900cfa46 321 u64 dclc;
c0a31329
TG
322 int sft = 0;
323
900cfa46 324 dclc = ktime_to_ns(kt);
c0a31329
TG
325 /* Make sure the divisor is less than 2^32: */
326 while (div >> 32) {
327 sft++;
328 div >>= 1;
329 }
330 dclc >>= sft;
331 do_div(dclc, (unsigned long) div);
332
4d672e7a 333 return dclc;
c0a31329 334}
c0a31329
TG
335#endif /* BITS_PER_LONG >= 64 */
336
5a7780e7
TG
337/*
338 * Add two ktime values and do a safety check for overflow:
339 */
340ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
341{
342 ktime_t res = ktime_add(lhs, rhs);
343
344 /*
345 * We use KTIME_SEC_MAX here, the maximum timeout which we can
346 * return to user space in a timespec:
347 */
348 if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
349 res = ktime_set(KTIME_SEC_MAX, 0);
350
351 return res;
352}
353
8daa21e6
AB
354EXPORT_SYMBOL_GPL(ktime_add_safe);
355
237fc6e7
TG
356#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
357
358static struct debug_obj_descr hrtimer_debug_descr;
359
99777288
SG
360static void *hrtimer_debug_hint(void *addr)
361{
362 return ((struct hrtimer *) addr)->function;
363}
364
237fc6e7
TG
365/*
366 * fixup_init is called when:
367 * - an active object is initialized
368 */
369static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
370{
371 struct hrtimer *timer = addr;
372
373 switch (state) {
374 case ODEBUG_STATE_ACTIVE:
375 hrtimer_cancel(timer);
376 debug_object_init(timer, &hrtimer_debug_descr);
377 return 1;
378 default:
379 return 0;
380 }
381}
382
383/*
384 * fixup_activate is called when:
385 * - an active object is activated
386 * - an unknown object is activated (might be a statically initialized object)
387 */
388static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
389{
390 switch (state) {
391
392 case ODEBUG_STATE_NOTAVAILABLE:
393 WARN_ON_ONCE(1);
394 return 0;
395
396 case ODEBUG_STATE_ACTIVE:
397 WARN_ON(1);
398
399 default:
400 return 0;
401 }
402}
403
404/*
405 * fixup_free is called when:
406 * - an active object is freed
407 */
408static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
409{
410 struct hrtimer *timer = addr;
411
412 switch (state) {
413 case ODEBUG_STATE_ACTIVE:
414 hrtimer_cancel(timer);
415 debug_object_free(timer, &hrtimer_debug_descr);
416 return 1;
417 default:
418 return 0;
419 }
420}
421
422static struct debug_obj_descr hrtimer_debug_descr = {
423 .name = "hrtimer",
99777288 424 .debug_hint = hrtimer_debug_hint,
237fc6e7
TG
425 .fixup_init = hrtimer_fixup_init,
426 .fixup_activate = hrtimer_fixup_activate,
427 .fixup_free = hrtimer_fixup_free,
428};
429
430static inline void debug_hrtimer_init(struct hrtimer *timer)
431{
432 debug_object_init(timer, &hrtimer_debug_descr);
433}
434
435static inline void debug_hrtimer_activate(struct hrtimer *timer)
436{
437 debug_object_activate(timer, &hrtimer_debug_descr);
438}
439
440static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
441{
442 debug_object_deactivate(timer, &hrtimer_debug_descr);
443}
444
445static inline void debug_hrtimer_free(struct hrtimer *timer)
446{
447 debug_object_free(timer, &hrtimer_debug_descr);
448}
449
450static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
451 enum hrtimer_mode mode);
452
453void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
454 enum hrtimer_mode mode)
455{
456 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
457 __hrtimer_init(timer, clock_id, mode);
458}
2bc481cf 459EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
237fc6e7
TG
460
461void destroy_hrtimer_on_stack(struct hrtimer *timer)
462{
463 debug_object_free(timer, &hrtimer_debug_descr);
464}
465
466#else
467static inline void debug_hrtimer_init(struct hrtimer *timer) { }
468static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
469static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
470#endif
471
c6a2a177
XG
472static inline void
473debug_init(struct hrtimer *timer, clockid_t clockid,
474 enum hrtimer_mode mode)
475{
476 debug_hrtimer_init(timer);
477 trace_hrtimer_init(timer, clockid, mode);
478}
479
480static inline void debug_activate(struct hrtimer *timer)
481{
482 debug_hrtimer_activate(timer);
483 trace_hrtimer_start(timer);
484}
485
486static inline void debug_deactivate(struct hrtimer *timer)
487{
488 debug_hrtimer_deactivate(timer);
489 trace_hrtimer_cancel(timer);
490}
491
54cdfdb4
TG
492/* High resolution timer related functions */
493#ifdef CONFIG_HIGH_RES_TIMERS
494
495/*
496 * High resolution timer enabled ?
497 */
498static int hrtimer_hres_enabled __read_mostly = 1;
499
500/*
501 * Enable / Disable high resolution mode
502 */
503static int __init setup_hrtimer_hres(char *str)
504{
505 if (!strcmp(str, "off"))
506 hrtimer_hres_enabled = 0;
507 else if (!strcmp(str, "on"))
508 hrtimer_hres_enabled = 1;
509 else
510 return 0;
511 return 1;
512}
513
514__setup("highres=", setup_hrtimer_hres);
515
516/*
517 * hrtimer_high_res_enabled - query, if the highres mode is enabled
518 */
519static inline int hrtimer_is_hres_enabled(void)
520{
521 return hrtimer_hres_enabled;
522}
523
524/*
525 * Is the high resolution mode active ?
526 */
527static inline int hrtimer_hres_active(void)
528{
909ea964 529 return __this_cpu_read(hrtimer_bases.hres_active);
54cdfdb4
TG
530}
531
532/*
533 * Reprogram the event source with checking both queues for the
534 * next event
535 * Called with interrupts disabled and base->lock held
536 */
7403f41f
AC
537static void
538hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
54cdfdb4
TG
539{
540 int i;
541 struct hrtimer_clock_base *base = cpu_base->clock_base;
7403f41f 542 ktime_t expires, expires_next;
54cdfdb4 543
7403f41f 544 expires_next.tv64 = KTIME_MAX;
54cdfdb4
TG
545
546 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
547 struct hrtimer *timer;
998adc3d 548 struct timerqueue_node *next;
54cdfdb4 549
998adc3d
JS
550 next = timerqueue_getnext(&base->active);
551 if (!next)
54cdfdb4 552 continue;
998adc3d
JS
553 timer = container_of(next, struct hrtimer, node);
554
cc584b21 555 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
b0a9b511
TG
556 /*
557 * clock_was_set() has changed base->offset so the
558 * result might be negative. Fix it up to prevent a
559 * false positive in clockevents_program_event()
560 */
561 if (expires.tv64 < 0)
562 expires.tv64 = 0;
7403f41f
AC
563 if (expires.tv64 < expires_next.tv64)
564 expires_next = expires;
54cdfdb4
TG
565 }
566
7403f41f
AC
567 if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
568 return;
569
570 cpu_base->expires_next.tv64 = expires_next.tv64;
571
54cdfdb4
TG
572 if (cpu_base->expires_next.tv64 != KTIME_MAX)
573 tick_program_event(cpu_base->expires_next, 1);
574}
575
576/*
577 * Shared reprogramming for clock_realtime and clock_monotonic
578 *
579 * When a timer is enqueued and expires earlier than the already enqueued
580 * timers, we have to check, whether it expires earlier than the timer for
581 * which the clock event device was armed.
582 *
583 * Called with interrupts disabled and base->cpu_base.lock held
584 */
585static int hrtimer_reprogram(struct hrtimer *timer,
586 struct hrtimer_clock_base *base)
587{
41d2e494 588 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
cc584b21 589 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
54cdfdb4
TG
590 int res;
591
cc584b21 592 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
63070a79 593
54cdfdb4
TG
594 /*
595 * When the callback is running, we do not reprogram the clock event
596 * device. The timer callback is either running on a different CPU or
3a4fa0a2 597 * the callback is executed in the hrtimer_interrupt context. The
54cdfdb4
TG
598 * reprogramming is handled either by the softirq, which called the
599 * callback or at the end of the hrtimer_interrupt.
600 */
601 if (hrtimer_callback_running(timer))
602 return 0;
603
63070a79
TG
604 /*
605 * CLOCK_REALTIME timer might be requested with an absolute
606 * expiry time which is less than base->offset. Nothing wrong
607 * about that, just avoid to call into the tick code, which
608 * has now objections against negative expiry values.
609 */
610 if (expires.tv64 < 0)
611 return -ETIME;
612
41d2e494
TG
613 if (expires.tv64 >= cpu_base->expires_next.tv64)
614 return 0;
615
616 /*
617 * If a hang was detected in the last timer interrupt then we
618 * do not schedule a timer which is earlier than the expiry
619 * which we enforced in the hang detection. We want the system
620 * to make progress.
621 */
622 if (cpu_base->hang_detected)
54cdfdb4
TG
623 return 0;
624
625 /*
626 * Clockevents returns -ETIME, when the event was in the past.
627 */
628 res = tick_program_event(expires, 0);
629 if (!IS_ERR_VALUE(res))
41d2e494 630 cpu_base->expires_next = expires;
54cdfdb4
TG
631 return res;
632}
633
54cdfdb4
TG
634/*
635 * Initialize the high resolution related parts of cpu_base
636 */
637static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
638{
639 base->expires_next.tv64 = KTIME_MAX;
640 base->hres_active = 0;
54cdfdb4
TG
641}
642
54cdfdb4
TG
643/*
644 * When High resolution timers are active, try to reprogram. Note, that in case
645 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
646 * check happens. The timer gets enqueued into the rbtree. The reprogramming
647 * and expiry check is done in the hrtimer_interrupt or in the softirq.
648 */
649static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
b22affe0 650 struct hrtimer_clock_base *base)
54cdfdb4 651{
b22affe0 652 return base->cpu_base->hres_active && hrtimer_reprogram(timer, base);
54cdfdb4
TG
653}
654
5baefd6d
JS
655static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
656{
657 ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
658 ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
90adda98 659 ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
5baefd6d 660
90adda98 661 return ktime_get_update_offsets(offs_real, offs_boot, offs_tai);
5baefd6d
JS
662}
663
9ec26907
TG
664/*
665 * Retrigger next event is called after clock was set
666 *
667 * Called with interrupts disabled via on_each_cpu()
668 */
669static void retrigger_next_event(void *arg)
670{
671 struct hrtimer_cpu_base *base = &__get_cpu_var(hrtimer_bases);
9ec26907
TG
672
673 if (!hrtimer_hres_active())
674 return;
675
9ec26907 676 raw_spin_lock(&base->lock);
5baefd6d 677 hrtimer_update_base(base);
9ec26907
TG
678 hrtimer_force_reprogram(base, 0);
679 raw_spin_unlock(&base->lock);
680}
b12a03ce 681
54cdfdb4
TG
682/*
683 * Switch to high resolution mode
684 */
f8953856 685static int hrtimer_switch_to_hres(void)
54cdfdb4 686{
b12a03ce 687 int i, cpu = smp_processor_id();
820de5c3 688 struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
54cdfdb4
TG
689 unsigned long flags;
690
691 if (base->hres_active)
f8953856 692 return 1;
54cdfdb4
TG
693
694 local_irq_save(flags);
695
696 if (tick_init_highres()) {
697 local_irq_restore(flags);
820de5c3
IM
698 printk(KERN_WARNING "Could not switch to high resolution "
699 "mode on CPU %d\n", cpu);
f8953856 700 return 0;
54cdfdb4
TG
701 }
702 base->hres_active = 1;
b12a03ce
TG
703 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
704 base->clock_base[i].resolution = KTIME_HIGH_RES;
54cdfdb4
TG
705
706 tick_setup_sched_timer();
54cdfdb4
TG
707 /* "Retrigger" the interrupt to get things going */
708 retrigger_next_event(NULL);
709 local_irq_restore(flags);
f8953856 710 return 1;
54cdfdb4
TG
711}
712
5ec2481b
TG
713static void clock_was_set_work(struct work_struct *work)
714{
715 clock_was_set();
716}
717
718static DECLARE_WORK(hrtimer_work, clock_was_set_work);
719
f55a6faa 720/*
5ec2481b
TG
721 * Called from timekeeping and resume code to reprogramm the hrtimer
722 * interrupt device on all cpus.
f55a6faa
JS
723 */
724void clock_was_set_delayed(void)
725{
5ec2481b 726 schedule_work(&hrtimer_work);
f55a6faa
JS
727}
728
54cdfdb4
TG
729#else
730
731static inline int hrtimer_hres_active(void) { return 0; }
732static inline int hrtimer_is_hres_enabled(void) { return 0; }
f8953856 733static inline int hrtimer_switch_to_hres(void) { return 0; }
7403f41f
AC
734static inline void
735hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
54cdfdb4 736static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
b22affe0 737 struct hrtimer_clock_base *base)
54cdfdb4
TG
738{
739 return 0;
740}
54cdfdb4 741static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
9ec26907 742static inline void retrigger_next_event(void *arg) { }
54cdfdb4
TG
743
744#endif /* CONFIG_HIGH_RES_TIMERS */
745
b12a03ce
TG
746/*
747 * Clock realtime was set
748 *
749 * Change the offset of the realtime clock vs. the monotonic
750 * clock.
751 *
752 * We might have to reprogram the high resolution timer interrupt. On
753 * SMP we call the architecture specific code to retrigger _all_ high
754 * resolution timer interrupts. On UP we just disable interrupts and
755 * call the high resolution interrupt code.
756 */
757void clock_was_set(void)
758{
90ff1f30 759#ifdef CONFIG_HIGH_RES_TIMERS
b12a03ce
TG
760 /* Retrigger the CPU local events everywhere */
761 on_each_cpu(retrigger_next_event, NULL, 1);
9ec26907
TG
762#endif
763 timerfd_clock_was_set();
b12a03ce
TG
764}
765
766/*
767 * During resume we might have to reprogram the high resolution timer
7c4c3a0f
DV
768 * interrupt on all online CPUs. However, all other CPUs will be
769 * stopped with IRQs interrupts disabled so the clock_was_set() call
5ec2481b 770 * must be deferred.
b12a03ce
TG
771 */
772void hrtimers_resume(void)
773{
774 WARN_ONCE(!irqs_disabled(),
775 KERN_INFO "hrtimers_resume() called with IRQs enabled!");
776
5ec2481b 777 /* Retrigger on the local CPU */
b12a03ce 778 retrigger_next_event(NULL);
5ec2481b
TG
779 /* And schedule a retrigger for all others */
780 clock_was_set_delayed();
b12a03ce
TG
781}
782
5f201907 783static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
82f67cd9 784{
5f201907 785#ifdef CONFIG_TIMER_STATS
82f67cd9
IM
786 if (timer->start_site)
787 return;
5f201907 788 timer->start_site = __builtin_return_address(0);
82f67cd9
IM
789 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
790 timer->start_pid = current->pid;
5f201907
HC
791#endif
792}
793
794static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
795{
796#ifdef CONFIG_TIMER_STATS
797 timer->start_site = NULL;
798#endif
82f67cd9 799}
5f201907
HC
800
801static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
802{
803#ifdef CONFIG_TIMER_STATS
804 if (likely(!timer_stats_active))
805 return;
806 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
807 timer->function, timer->start_comm, 0);
82f67cd9 808#endif
5f201907 809}
82f67cd9 810
c0a31329 811/*
6506f2aa 812 * Counterpart to lock_hrtimer_base above:
c0a31329
TG
813 */
814static inline
815void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
816{
ecb49d1a 817 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
c0a31329
TG
818}
819
820/**
821 * hrtimer_forward - forward the timer expiry
c0a31329 822 * @timer: hrtimer to forward
44f21475 823 * @now: forward past this time
c0a31329
TG
824 * @interval: the interval to forward
825 *
826 * Forward the timer expiry so it will expire in the future.
8dca6f33 827 * Returns the number of overruns.
c0a31329 828 */
4d672e7a 829u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
c0a31329 830{
4d672e7a 831 u64 orun = 1;
44f21475 832 ktime_t delta;
c0a31329 833
cc584b21 834 delta = ktime_sub(now, hrtimer_get_expires(timer));
c0a31329
TG
835
836 if (delta.tv64 < 0)
837 return 0;
838
c9db4fa1
TG
839 if (interval.tv64 < timer->base->resolution.tv64)
840 interval.tv64 = timer->base->resolution.tv64;
841
c0a31329 842 if (unlikely(delta.tv64 >= interval.tv64)) {
df869b63 843 s64 incr = ktime_to_ns(interval);
c0a31329
TG
844
845 orun = ktime_divns(delta, incr);
cc584b21
AV
846 hrtimer_add_expires_ns(timer, incr * orun);
847 if (hrtimer_get_expires_tv64(timer) > now.tv64)
c0a31329
TG
848 return orun;
849 /*
850 * This (and the ktime_add() below) is the
851 * correction for exact:
852 */
853 orun++;
854 }
cc584b21 855 hrtimer_add_expires(timer, interval);
c0a31329
TG
856
857 return orun;
858}
6bdb6b62 859EXPORT_SYMBOL_GPL(hrtimer_forward);
c0a31329
TG
860
861/*
862 * enqueue_hrtimer - internal function to (re)start a timer
863 *
864 * The timer is inserted in expiry order. Insertion into the
865 * red black tree is O(log(n)). Must hold the base lock.
a6037b61
PZ
866 *
867 * Returns 1 when the new timer is the leftmost timer in the tree.
c0a31329 868 */
a6037b61
PZ
869static int enqueue_hrtimer(struct hrtimer *timer,
870 struct hrtimer_clock_base *base)
c0a31329 871{
c6a2a177 872 debug_activate(timer);
237fc6e7 873
998adc3d 874 timerqueue_add(&base->active, &timer->node);
ab8177bc 875 base->cpu_base->active_bases |= 1 << base->index;
54cdfdb4 876
303e967f
TG
877 /*
878 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
879 * state of a possibly running callback.
880 */
881 timer->state |= HRTIMER_STATE_ENQUEUED;
a6037b61 882
998adc3d 883 return (&timer->node == base->active.next);
288867ec 884}
c0a31329
TG
885
886/*
887 * __remove_hrtimer - internal function to remove a timer
888 *
889 * Caller must hold the base lock.
54cdfdb4
TG
890 *
891 * High resolution timer mode reprograms the clock event device when the
892 * timer is the one which expires next. The caller can disable this by setting
893 * reprogram to zero. This is useful, when the context does a reprogramming
894 * anyway (e.g. timer interrupt)
c0a31329 895 */
3c8aa39d 896static void __remove_hrtimer(struct hrtimer *timer,
303e967f 897 struct hrtimer_clock_base *base,
54cdfdb4 898 unsigned long newstate, int reprogram)
c0a31329 899{
27c9cd7e 900 struct timerqueue_node *next_timer;
7403f41f
AC
901 if (!(timer->state & HRTIMER_STATE_ENQUEUED))
902 goto out;
903
27c9cd7e
JO
904 next_timer = timerqueue_getnext(&base->active);
905 timerqueue_del(&base->active, &timer->node);
906 if (&timer->node == next_timer) {
7403f41f
AC
907#ifdef CONFIG_HIGH_RES_TIMERS
908 /* Reprogram the clock event device. if enabled */
909 if (reprogram && hrtimer_hres_active()) {
910 ktime_t expires;
911
912 expires = ktime_sub(hrtimer_get_expires(timer),
913 base->offset);
914 if (base->cpu_base->expires_next.tv64 == expires.tv64)
915 hrtimer_force_reprogram(base->cpu_base, 1);
54cdfdb4 916 }
7403f41f 917#endif
54cdfdb4 918 }
ab8177bc
TG
919 if (!timerqueue_getnext(&base->active))
920 base->cpu_base->active_bases &= ~(1 << base->index);
7403f41f 921out:
303e967f 922 timer->state = newstate;
c0a31329
TG
923}
924
925/*
926 * remove hrtimer, called with base lock held
927 */
928static inline int
3c8aa39d 929remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
c0a31329 930{
303e967f 931 if (hrtimer_is_queued(timer)) {
f13d4f97 932 unsigned long state;
54cdfdb4
TG
933 int reprogram;
934
935 /*
936 * Remove the timer and force reprogramming when high
937 * resolution mode is active and the timer is on the current
938 * CPU. If we remove a timer on another CPU, reprogramming is
939 * skipped. The interrupt event on this CPU is fired and
940 * reprogramming happens in the interrupt handler. This is a
941 * rare case and less expensive than a smp call.
942 */
c6a2a177 943 debug_deactivate(timer);
82f67cd9 944 timer_stats_hrtimer_clear_start_info(timer);
54cdfdb4 945 reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
f13d4f97
SQ
946 /*
947 * We must preserve the CALLBACK state flag here,
948 * otherwise we could move the timer base in
949 * switch_hrtimer_base.
950 */
951 state = timer->state & HRTIMER_STATE_CALLBACK;
952 __remove_hrtimer(timer, base, state, reprogram);
c0a31329
TG
953 return 1;
954 }
955 return 0;
956}
957
7f1e2ca9
PZ
958int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
959 unsigned long delta_ns, const enum hrtimer_mode mode,
960 int wakeup)
c0a31329 961{
3c8aa39d 962 struct hrtimer_clock_base *base, *new_base;
c0a31329 963 unsigned long flags;
a6037b61 964 int ret, leftmost;
c0a31329
TG
965
966 base = lock_hrtimer_base(timer, &flags);
967
968 /* Remove an active timer from the queue: */
969 ret = remove_hrtimer(timer, base);
970
971 /* Switch the timer base, if necessary: */
597d0275 972 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
c0a31329 973
597d0275 974 if (mode & HRTIMER_MODE_REL) {
5a7780e7 975 tim = ktime_add_safe(tim, new_base->get_time());
06027bdd
IM
976 /*
977 * CONFIG_TIME_LOW_RES is a temporary way for architectures
978 * to signal that they simply return xtime in
979 * do_gettimeoffset(). In this case we want to round up by
980 * resolution when starting a relative timer, to avoid short
981 * timeouts. This will go away with the GTOD framework.
982 */
983#ifdef CONFIG_TIME_LOW_RES
5a7780e7 984 tim = ktime_add_safe(tim, base->resolution);
06027bdd
IM
985#endif
986 }
237fc6e7 987
da8f2e17 988 hrtimer_set_expires_range_ns(timer, tim, delta_ns);
c0a31329 989
82f67cd9
IM
990 timer_stats_hrtimer_set_start_info(timer);
991
a6037b61
PZ
992 leftmost = enqueue_hrtimer(timer, new_base);
993
935c631d
IM
994 /*
995 * Only allow reprogramming if the new base is on this CPU.
996 * (it might still be on another CPU if the timer was pending)
a6037b61
PZ
997 *
998 * XXX send_remote_softirq() ?
935c631d 999 */
b22affe0
LS
1000 if (leftmost && new_base->cpu_base == &__get_cpu_var(hrtimer_bases)
1001 && hrtimer_enqueue_reprogram(timer, new_base)) {
1002 if (wakeup) {
1003 /*
1004 * We need to drop cpu_base->lock to avoid a
1005 * lock ordering issue vs. rq->lock.
1006 */
1007 raw_spin_unlock(&new_base->cpu_base->lock);
1008 raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1009 local_irq_restore(flags);
1010 return ret;
1011 } else {
1012 __raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1013 }
1014 }
c0a31329
TG
1015
1016 unlock_hrtimer_base(timer, &flags);
1017
1018 return ret;
1019}
7f1e2ca9
PZ
1020
1021/**
1022 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
1023 * @timer: the timer to be added
1024 * @tim: expiry time
1025 * @delta_ns: "slack" range for the timer
8ffbc7d9
DD
1026 * @mode: expiry mode: absolute (HRTIMER_MODE_ABS) or
1027 * relative (HRTIMER_MODE_REL)
7f1e2ca9
PZ
1028 *
1029 * Returns:
1030 * 0 on success
1031 * 1 when the timer was active
1032 */
1033int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1034 unsigned long delta_ns, const enum hrtimer_mode mode)
1035{
1036 return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1);
1037}
da8f2e17
AV
1038EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1039
1040/**
e1dd7bc5 1041 * hrtimer_start - (re)start an hrtimer on the current CPU
da8f2e17
AV
1042 * @timer: the timer to be added
1043 * @tim: expiry time
8ffbc7d9
DD
1044 * @mode: expiry mode: absolute (HRTIMER_MODE_ABS) or
1045 * relative (HRTIMER_MODE_REL)
da8f2e17
AV
1046 *
1047 * Returns:
1048 * 0 on success
1049 * 1 when the timer was active
1050 */
1051int
1052hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
1053{
7f1e2ca9 1054 return __hrtimer_start_range_ns(timer, tim, 0, mode, 1);
da8f2e17 1055}
8d16b764 1056EXPORT_SYMBOL_GPL(hrtimer_start);
c0a31329 1057
da8f2e17 1058
c0a31329
TG
1059/**
1060 * hrtimer_try_to_cancel - try to deactivate a timer
c0a31329
TG
1061 * @timer: hrtimer to stop
1062 *
1063 * Returns:
1064 * 0 when the timer was not active
1065 * 1 when the timer was active
1066 * -1 when the timer is currently excuting the callback function and
fa9799e3 1067 * cannot be stopped
c0a31329
TG
1068 */
1069int hrtimer_try_to_cancel(struct hrtimer *timer)
1070{
3c8aa39d 1071 struct hrtimer_clock_base *base;
c0a31329
TG
1072 unsigned long flags;
1073 int ret = -1;
1074
1075 base = lock_hrtimer_base(timer, &flags);
1076
303e967f 1077 if (!hrtimer_callback_running(timer))
c0a31329
TG
1078 ret = remove_hrtimer(timer, base);
1079
1080 unlock_hrtimer_base(timer, &flags);
1081
1082 return ret;
1083
1084}
8d16b764 1085EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
c0a31329
TG
1086
1087/**
1088 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
c0a31329
TG
1089 * @timer: the timer to be cancelled
1090 *
1091 * Returns:
1092 * 0 when the timer was not active
1093 * 1 when the timer was active
1094 */
1095int hrtimer_cancel(struct hrtimer *timer)
1096{
1097 for (;;) {
1098 int ret = hrtimer_try_to_cancel(timer);
1099
1100 if (ret >= 0)
1101 return ret;
5ef37b19 1102 cpu_relax();
c0a31329
TG
1103 }
1104}
8d16b764 1105EXPORT_SYMBOL_GPL(hrtimer_cancel);
c0a31329
TG
1106
1107/**
1108 * hrtimer_get_remaining - get remaining time for the timer
c0a31329
TG
1109 * @timer: the timer to read
1110 */
1111ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
1112{
c0a31329
TG
1113 unsigned long flags;
1114 ktime_t rem;
1115
b3bd3de6 1116 lock_hrtimer_base(timer, &flags);
cc584b21 1117 rem = hrtimer_expires_remaining(timer);
c0a31329
TG
1118 unlock_hrtimer_base(timer, &flags);
1119
1120 return rem;
1121}
8d16b764 1122EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
c0a31329 1123
3451d024 1124#ifdef CONFIG_NO_HZ_COMMON
69239749
TL
1125/**
1126 * hrtimer_get_next_event - get the time until next expiry event
1127 *
1128 * Returns the delta to the next expiry event or KTIME_MAX if no timer
1129 * is pending.
1130 */
1131ktime_t hrtimer_get_next_event(void)
1132{
3c8aa39d
TG
1133 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1134 struct hrtimer_clock_base *base = cpu_base->clock_base;
69239749
TL
1135 ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
1136 unsigned long flags;
1137 int i;
1138
ecb49d1a 1139 raw_spin_lock_irqsave(&cpu_base->lock, flags);
3c8aa39d 1140
54cdfdb4
TG
1141 if (!hrtimer_hres_active()) {
1142 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
1143 struct hrtimer *timer;
998adc3d 1144 struct timerqueue_node *next;
69239749 1145
998adc3d
JS
1146 next = timerqueue_getnext(&base->active);
1147 if (!next)
54cdfdb4 1148 continue;
3c8aa39d 1149
998adc3d 1150 timer = container_of(next, struct hrtimer, node);
cc584b21 1151 delta.tv64 = hrtimer_get_expires_tv64(timer);
54cdfdb4
TG
1152 delta = ktime_sub(delta, base->get_time());
1153 if (delta.tv64 < mindelta.tv64)
1154 mindelta.tv64 = delta.tv64;
1155 }
69239749 1156 }
3c8aa39d 1157
ecb49d1a 1158 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
3c8aa39d 1159
69239749
TL
1160 if (mindelta.tv64 < 0)
1161 mindelta.tv64 = 0;
1162 return mindelta;
1163}
1164#endif
1165
237fc6e7
TG
1166static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1167 enum hrtimer_mode mode)
c0a31329 1168{
3c8aa39d 1169 struct hrtimer_cpu_base *cpu_base;
e06383db 1170 int base;
c0a31329 1171
7978672c
GA
1172 memset(timer, 0, sizeof(struct hrtimer));
1173
3c8aa39d 1174 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
c0a31329 1175
c9cb2e3d 1176 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
7978672c
GA
1177 clock_id = CLOCK_MONOTONIC;
1178
e06383db
JS
1179 base = hrtimer_clockid_to_base(clock_id);
1180 timer->base = &cpu_base->clock_base[base];
998adc3d 1181 timerqueue_init(&timer->node);
82f67cd9
IM
1182
1183#ifdef CONFIG_TIMER_STATS
1184 timer->start_site = NULL;
1185 timer->start_pid = -1;
1186 memset(timer->start_comm, 0, TASK_COMM_LEN);
1187#endif
c0a31329 1188}
237fc6e7
TG
1189
1190/**
1191 * hrtimer_init - initialize a timer to the given clock
1192 * @timer: the timer to be initialized
1193 * @clock_id: the clock to be used
1194 * @mode: timer mode abs/rel
1195 */
1196void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1197 enum hrtimer_mode mode)
1198{
c6a2a177 1199 debug_init(timer, clock_id, mode);
237fc6e7
TG
1200 __hrtimer_init(timer, clock_id, mode);
1201}
8d16b764 1202EXPORT_SYMBOL_GPL(hrtimer_init);
c0a31329
TG
1203
1204/**
1205 * hrtimer_get_res - get the timer resolution for a clock
c0a31329
TG
1206 * @which_clock: which clock to query
1207 * @tp: pointer to timespec variable to store the resolution
1208 *
72fd4a35
RD
1209 * Store the resolution of the clock selected by @which_clock in the
1210 * variable pointed to by @tp.
c0a31329
TG
1211 */
1212int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
1213{
3c8aa39d 1214 struct hrtimer_cpu_base *cpu_base;
e06383db 1215 int base = hrtimer_clockid_to_base(which_clock);
c0a31329 1216
3c8aa39d 1217 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
e06383db 1218 *tp = ktime_to_timespec(cpu_base->clock_base[base].resolution);
c0a31329
TG
1219
1220 return 0;
1221}
8d16b764 1222EXPORT_SYMBOL_GPL(hrtimer_get_res);
c0a31329 1223
c6a2a177 1224static void __run_hrtimer(struct hrtimer *timer, ktime_t *now)
d3d74453
PZ
1225{
1226 struct hrtimer_clock_base *base = timer->base;
1227 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
1228 enum hrtimer_restart (*fn)(struct hrtimer *);
1229 int restart;
1230
ca109491
PZ
1231 WARN_ON(!irqs_disabled());
1232
c6a2a177 1233 debug_deactivate(timer);
d3d74453
PZ
1234 __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
1235 timer_stats_account_hrtimer(timer);
d3d74453 1236 fn = timer->function;
ca109491
PZ
1237
1238 /*
1239 * Because we run timers from hardirq context, there is no chance
1240 * they get migrated to another cpu, therefore its safe to unlock
1241 * the timer base.
1242 */
ecb49d1a 1243 raw_spin_unlock(&cpu_base->lock);
c6a2a177 1244 trace_hrtimer_expire_entry(timer, now);
ca109491 1245 restart = fn(timer);
c6a2a177 1246 trace_hrtimer_expire_exit(timer);
ecb49d1a 1247 raw_spin_lock(&cpu_base->lock);
d3d74453
PZ
1248
1249 /*
e3f1d883
TG
1250 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
1251 * we do not reprogramm the event hardware. Happens either in
1252 * hrtimer_start_range_ns() or in hrtimer_interrupt()
d3d74453
PZ
1253 */
1254 if (restart != HRTIMER_NORESTART) {
1255 BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
a6037b61 1256 enqueue_hrtimer(timer, base);
d3d74453 1257 }
f13d4f97
SQ
1258
1259 WARN_ON_ONCE(!(timer->state & HRTIMER_STATE_CALLBACK));
1260
d3d74453
PZ
1261 timer->state &= ~HRTIMER_STATE_CALLBACK;
1262}
1263
54cdfdb4
TG
1264#ifdef CONFIG_HIGH_RES_TIMERS
1265
1266/*
1267 * High resolution timer interrupt
1268 * Called with interrupts disabled
1269 */
1270void hrtimer_interrupt(struct clock_event_device *dev)
1271{
1272 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
41d2e494
TG
1273 ktime_t expires_next, now, entry_time, delta;
1274 int i, retries = 0;
54cdfdb4
TG
1275
1276 BUG_ON(!cpu_base->hres_active);
1277 cpu_base->nr_events++;
1278 dev->next_event.tv64 = KTIME_MAX;
1279
196951e9 1280 raw_spin_lock(&cpu_base->lock);
5baefd6d 1281 entry_time = now = hrtimer_update_base(cpu_base);
41d2e494 1282retry:
54cdfdb4 1283 expires_next.tv64 = KTIME_MAX;
6ff7041d
TG
1284 /*
1285 * We set expires_next to KTIME_MAX here with cpu_base->lock
1286 * held to prevent that a timer is enqueued in our queue via
1287 * the migration code. This does not affect enqueueing of
1288 * timers which run their callback and need to be requeued on
1289 * this CPU.
1290 */
1291 cpu_base->expires_next.tv64 = KTIME_MAX;
1292
54cdfdb4 1293 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
ab8177bc 1294 struct hrtimer_clock_base *base;
998adc3d 1295 struct timerqueue_node *node;
ab8177bc
TG
1296 ktime_t basenow;
1297
1298 if (!(cpu_base->active_bases & (1 << i)))
1299 continue;
54cdfdb4 1300
ab8177bc 1301 base = cpu_base->clock_base + i;
54cdfdb4
TG
1302 basenow = ktime_add(now, base->offset);
1303
998adc3d 1304 while ((node = timerqueue_getnext(&base->active))) {
54cdfdb4
TG
1305 struct hrtimer *timer;
1306
998adc3d 1307 timer = container_of(node, struct hrtimer, node);
54cdfdb4 1308
654c8e0b
AV
1309 /*
1310 * The immediate goal for using the softexpires is
1311 * minimizing wakeups, not running timers at the
1312 * earliest interrupt after their soft expiration.
1313 * This allows us to avoid using a Priority Search
1314 * Tree, which can answer a stabbing querry for
1315 * overlapping intervals and instead use the simple
1316 * BST we already have.
1317 * We don't add extra wakeups by delaying timers that
1318 * are right-of a not yet expired timer, because that
1319 * timer will have to trigger a wakeup anyway.
1320 */
1321
1322 if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) {
54cdfdb4
TG
1323 ktime_t expires;
1324
cc584b21 1325 expires = ktime_sub(hrtimer_get_expires(timer),
54cdfdb4 1326 base->offset);
8f294b5a
PB
1327 if (expires.tv64 < 0)
1328 expires.tv64 = KTIME_MAX;
54cdfdb4
TG
1329 if (expires.tv64 < expires_next.tv64)
1330 expires_next = expires;
1331 break;
1332 }
1333
c6a2a177 1334 __run_hrtimer(timer, &basenow);
54cdfdb4 1335 }
54cdfdb4
TG
1336 }
1337
6ff7041d
TG
1338 /*
1339 * Store the new expiry value so the migration code can verify
1340 * against it.
1341 */
54cdfdb4 1342 cpu_base->expires_next = expires_next;
ecb49d1a 1343 raw_spin_unlock(&cpu_base->lock);
54cdfdb4
TG
1344
1345 /* Reprogramming necessary ? */
41d2e494
TG
1346 if (expires_next.tv64 == KTIME_MAX ||
1347 !tick_program_event(expires_next, 0)) {
1348 cpu_base->hang_detected = 0;
1349 return;
54cdfdb4 1350 }
41d2e494
TG
1351
1352 /*
1353 * The next timer was already expired due to:
1354 * - tracing
1355 * - long lasting callbacks
1356 * - being scheduled away when running in a VM
1357 *
1358 * We need to prevent that we loop forever in the hrtimer
1359 * interrupt routine. We give it 3 attempts to avoid
1360 * overreacting on some spurious event.
5baefd6d
JS
1361 *
1362 * Acquire base lock for updating the offsets and retrieving
1363 * the current time.
41d2e494 1364 */
196951e9 1365 raw_spin_lock(&cpu_base->lock);
5baefd6d 1366 now = hrtimer_update_base(cpu_base);
41d2e494
TG
1367 cpu_base->nr_retries++;
1368 if (++retries < 3)
1369 goto retry;
1370 /*
1371 * Give the system a chance to do something else than looping
1372 * here. We stored the entry time, so we know exactly how long
1373 * we spent here. We schedule the next event this amount of
1374 * time away.
1375 */
1376 cpu_base->nr_hangs++;
1377 cpu_base->hang_detected = 1;
196951e9 1378 raw_spin_unlock(&cpu_base->lock);
41d2e494
TG
1379 delta = ktime_sub(now, entry_time);
1380 if (delta.tv64 > cpu_base->max_hang_time.tv64)
1381 cpu_base->max_hang_time = delta;
1382 /*
1383 * Limit it to a sensible value as we enforce a longer
1384 * delay. Give the CPU at least 100ms to catch up.
1385 */
1386 if (delta.tv64 > 100 * NSEC_PER_MSEC)
1387 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1388 else
1389 expires_next = ktime_add(now, delta);
1390 tick_program_event(expires_next, 1);
1391 printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
1392 ktime_to_ns(delta));
54cdfdb4
TG
1393}
1394
8bdec955
TG
1395/*
1396 * local version of hrtimer_peek_ahead_timers() called with interrupts
1397 * disabled.
1398 */
1399static void __hrtimer_peek_ahead_timers(void)
1400{
1401 struct tick_device *td;
1402
1403 if (!hrtimer_hres_active())
1404 return;
1405
1406 td = &__get_cpu_var(tick_cpu_device);
1407 if (td && td->evtdev)
1408 hrtimer_interrupt(td->evtdev);
1409}
1410
2e94d1f7
AV
1411/**
1412 * hrtimer_peek_ahead_timers -- run soft-expired timers now
1413 *
1414 * hrtimer_peek_ahead_timers will peek at the timer queue of
1415 * the current cpu and check if there are any timers for which
1416 * the soft expires time has passed. If any such timers exist,
1417 * they are run immediately and then removed from the timer queue.
1418 *
1419 */
1420void hrtimer_peek_ahead_timers(void)
1421{
643bdf68 1422 unsigned long flags;
dc4304f7 1423
2e94d1f7 1424 local_irq_save(flags);
8bdec955 1425 __hrtimer_peek_ahead_timers();
2e94d1f7
AV
1426 local_irq_restore(flags);
1427}
1428
a6037b61
PZ
1429static void run_hrtimer_softirq(struct softirq_action *h)
1430{
1431 hrtimer_peek_ahead_timers();
1432}
1433
82c5b7b5
IM
1434#else /* CONFIG_HIGH_RES_TIMERS */
1435
1436static inline void __hrtimer_peek_ahead_timers(void) { }
1437
1438#endif /* !CONFIG_HIGH_RES_TIMERS */
82f67cd9 1439
d3d74453
PZ
1440/*
1441 * Called from timer softirq every jiffy, expire hrtimers:
1442 *
1443 * For HRT its the fall back code to run the softirq in the timer
1444 * softirq context in case the hrtimer initialization failed or has
1445 * not been done yet.
1446 */
1447void hrtimer_run_pending(void)
1448{
d3d74453
PZ
1449 if (hrtimer_hres_active())
1450 return;
54cdfdb4 1451
d3d74453
PZ
1452 /*
1453 * This _is_ ugly: We have to check in the softirq context,
1454 * whether we can switch to highres and / or nohz mode. The
1455 * clocksource switch happens in the timer interrupt with
1456 * xtime_lock held. Notification from there only sets the
1457 * check bit in the tick_oneshot code, otherwise we might
1458 * deadlock vs. xtime_lock.
1459 */
1460 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1461 hrtimer_switch_to_hres();
54cdfdb4
TG
1462}
1463
c0a31329 1464/*
d3d74453 1465 * Called from hardirq context every jiffy
c0a31329 1466 */
833883d9 1467void hrtimer_run_queues(void)
c0a31329 1468{
998adc3d 1469 struct timerqueue_node *node;
833883d9
DS
1470 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1471 struct hrtimer_clock_base *base;
1472 int index, gettime = 1;
c0a31329 1473
833883d9 1474 if (hrtimer_hres_active())
3055adda
DS
1475 return;
1476
833883d9
DS
1477 for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
1478 base = &cpu_base->clock_base[index];
b007c389 1479 if (!timerqueue_getnext(&base->active))
d3d74453 1480 continue;
833883d9 1481
d7cfb60c 1482 if (gettime) {
833883d9
DS
1483 hrtimer_get_softirq_time(cpu_base);
1484 gettime = 0;
b75f7a51 1485 }
d3d74453 1486
ecb49d1a 1487 raw_spin_lock(&cpu_base->lock);
c0a31329 1488
b007c389 1489 while ((node = timerqueue_getnext(&base->active))) {
833883d9 1490 struct hrtimer *timer;
54cdfdb4 1491
998adc3d 1492 timer = container_of(node, struct hrtimer, node);
cc584b21
AV
1493 if (base->softirq_time.tv64 <=
1494 hrtimer_get_expires_tv64(timer))
833883d9
DS
1495 break;
1496
c6a2a177 1497 __run_hrtimer(timer, &base->softirq_time);
833883d9 1498 }
ecb49d1a 1499 raw_spin_unlock(&cpu_base->lock);
833883d9 1500 }
c0a31329
TG
1501}
1502
10c94ec1
TG
1503/*
1504 * Sleep related functions:
1505 */
c9cb2e3d 1506static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
00362e33
TG
1507{
1508 struct hrtimer_sleeper *t =
1509 container_of(timer, struct hrtimer_sleeper, timer);
1510 struct task_struct *task = t->task;
1511
1512 t->task = NULL;
1513 if (task)
1514 wake_up_process(task);
1515
1516 return HRTIMER_NORESTART;
1517}
1518
36c8b586 1519void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
00362e33
TG
1520{
1521 sl->timer.function = hrtimer_wakeup;
1522 sl->task = task;
1523}
2bc481cf 1524EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
00362e33 1525
669d7868 1526static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
432569bb 1527{
669d7868 1528 hrtimer_init_sleeper(t, current);
10c94ec1 1529
432569bb
RZ
1530 do {
1531 set_current_state(TASK_INTERRUPTIBLE);
cc584b21 1532 hrtimer_start_expires(&t->timer, mode);
37bb6cb4
PZ
1533 if (!hrtimer_active(&t->timer))
1534 t->task = NULL;
432569bb 1535
54cdfdb4 1536 if (likely(t->task))
b0f8c44f 1537 freezable_schedule();
432569bb 1538
669d7868 1539 hrtimer_cancel(&t->timer);
c9cb2e3d 1540 mode = HRTIMER_MODE_ABS;
669d7868
TG
1541
1542 } while (t->task && !signal_pending(current));
432569bb 1543
3588a085
PZ
1544 __set_current_state(TASK_RUNNING);
1545
669d7868 1546 return t->task == NULL;
10c94ec1
TG
1547}
1548
080344b9
ON
1549static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1550{
1551 struct timespec rmt;
1552 ktime_t rem;
1553
cc584b21 1554 rem = hrtimer_expires_remaining(timer);
080344b9
ON
1555 if (rem.tv64 <= 0)
1556 return 0;
1557 rmt = ktime_to_timespec(rem);
1558
1559 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1560 return -EFAULT;
1561
1562 return 1;
1563}
1564
1711ef38 1565long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
10c94ec1 1566{
669d7868 1567 struct hrtimer_sleeper t;
080344b9 1568 struct timespec __user *rmtp;
237fc6e7 1569 int ret = 0;
10c94ec1 1570
ab8177bc 1571 hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
237fc6e7 1572 HRTIMER_MODE_ABS);
cc584b21 1573 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
10c94ec1 1574
c9cb2e3d 1575 if (do_nanosleep(&t, HRTIMER_MODE_ABS))
237fc6e7 1576 goto out;
10c94ec1 1577
029a07e0 1578 rmtp = restart->nanosleep.rmtp;
432569bb 1579 if (rmtp) {
237fc6e7 1580 ret = update_rmtp(&t.timer, rmtp);
080344b9 1581 if (ret <= 0)
237fc6e7 1582 goto out;
432569bb 1583 }
10c94ec1 1584
10c94ec1 1585 /* The other values in restart are already filled in */
237fc6e7
TG
1586 ret = -ERESTART_RESTARTBLOCK;
1587out:
1588 destroy_hrtimer_on_stack(&t.timer);
1589 return ret;
10c94ec1
TG
1590}
1591
080344b9 1592long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
10c94ec1
TG
1593 const enum hrtimer_mode mode, const clockid_t clockid)
1594{
1595 struct restart_block *restart;
669d7868 1596 struct hrtimer_sleeper t;
237fc6e7 1597 int ret = 0;
3bd01206
AV
1598 unsigned long slack;
1599
1600 slack = current->timer_slack_ns;
aab03e05 1601 if (dl_task(current) || rt_task(current))
3bd01206 1602 slack = 0;
10c94ec1 1603
237fc6e7 1604 hrtimer_init_on_stack(&t.timer, clockid, mode);
3bd01206 1605 hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
432569bb 1606 if (do_nanosleep(&t, mode))
237fc6e7 1607 goto out;
10c94ec1 1608
7978672c 1609 /* Absolute timers do not update the rmtp value and restart: */
237fc6e7
TG
1610 if (mode == HRTIMER_MODE_ABS) {
1611 ret = -ERESTARTNOHAND;
1612 goto out;
1613 }
10c94ec1 1614
432569bb 1615 if (rmtp) {
237fc6e7 1616 ret = update_rmtp(&t.timer, rmtp);
080344b9 1617 if (ret <= 0)
237fc6e7 1618 goto out;
432569bb 1619 }
10c94ec1
TG
1620
1621 restart = &current_thread_info()->restart_block;
1711ef38 1622 restart->fn = hrtimer_nanosleep_restart;
ab8177bc 1623 restart->nanosleep.clockid = t.timer.base->clockid;
029a07e0 1624 restart->nanosleep.rmtp = rmtp;
cc584b21 1625 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
10c94ec1 1626
237fc6e7
TG
1627 ret = -ERESTART_RESTARTBLOCK;
1628out:
1629 destroy_hrtimer_on_stack(&t.timer);
1630 return ret;
10c94ec1
TG
1631}
1632
58fd3aa2
HC
1633SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1634 struct timespec __user *, rmtp)
6ba1b912 1635{
080344b9 1636 struct timespec tu;
6ba1b912
TG
1637
1638 if (copy_from_user(&tu, rqtp, sizeof(tu)))
1639 return -EFAULT;
1640
1641 if (!timespec_valid(&tu))
1642 return -EINVAL;
1643
080344b9 1644 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
6ba1b912
TG
1645}
1646
c0a31329
TG
1647/*
1648 * Functions related to boot-time initialization:
1649 */
0db0628d 1650static void init_hrtimers_cpu(int cpu)
c0a31329 1651{
3c8aa39d 1652 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
c0a31329
TG
1653 int i;
1654
998adc3d 1655 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
3c8aa39d 1656 cpu_base->clock_base[i].cpu_base = cpu_base;
998adc3d
JS
1657 timerqueue_init_head(&cpu_base->clock_base[i].active);
1658 }
3c8aa39d 1659
54cdfdb4 1660 hrtimer_init_hres(cpu_base);
c0a31329
TG
1661}
1662
1663#ifdef CONFIG_HOTPLUG_CPU
1664
ca109491 1665static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
37810659 1666 struct hrtimer_clock_base *new_base)
c0a31329
TG
1667{
1668 struct hrtimer *timer;
998adc3d 1669 struct timerqueue_node *node;
c0a31329 1670
998adc3d
JS
1671 while ((node = timerqueue_getnext(&old_base->active))) {
1672 timer = container_of(node, struct hrtimer, node);
54cdfdb4 1673 BUG_ON(hrtimer_callback_running(timer));
c6a2a177 1674 debug_deactivate(timer);
b00c1a99
TG
1675
1676 /*
1677 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
1678 * timer could be seen as !active and just vanish away
1679 * under us on another CPU
1680 */
1681 __remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
c0a31329 1682 timer->base = new_base;
54cdfdb4 1683 /*
e3f1d883
TG
1684 * Enqueue the timers on the new cpu. This does not
1685 * reprogram the event device in case the timer
1686 * expires before the earliest on this CPU, but we run
1687 * hrtimer_interrupt after we migrated everything to
1688 * sort out already expired timers and reprogram the
1689 * event device.
54cdfdb4 1690 */
a6037b61 1691 enqueue_hrtimer(timer, new_base);
41e1022e 1692
b00c1a99
TG
1693 /* Clear the migration state bit */
1694 timer->state &= ~HRTIMER_STATE_MIGRATE;
c0a31329
TG
1695 }
1696}
1697
d5fd43c4 1698static void migrate_hrtimers(int scpu)
c0a31329 1699{
3c8aa39d 1700 struct hrtimer_cpu_base *old_base, *new_base;
731a55ba 1701 int i;
c0a31329 1702
37810659 1703 BUG_ON(cpu_online(scpu));
37810659 1704 tick_cancel_sched_timer(scpu);
731a55ba
TG
1705
1706 local_irq_disable();
1707 old_base = &per_cpu(hrtimer_bases, scpu);
1708 new_base = &__get_cpu_var(hrtimer_bases);
d82f0b0f
ON
1709 /*
1710 * The caller is globally serialized and nobody else
1711 * takes two locks at once, deadlock is not possible.
1712 */
ecb49d1a
TG
1713 raw_spin_lock(&new_base->lock);
1714 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
c0a31329 1715
3c8aa39d 1716 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
ca109491 1717 migrate_hrtimer_list(&old_base->clock_base[i],
37810659 1718 &new_base->clock_base[i]);
c0a31329
TG
1719 }
1720
ecb49d1a
TG
1721 raw_spin_unlock(&old_base->lock);
1722 raw_spin_unlock(&new_base->lock);
37810659 1723
731a55ba
TG
1724 /* Check, if we got expired work to do */
1725 __hrtimer_peek_ahead_timers();
1726 local_irq_enable();
c0a31329 1727}
37810659 1728
c0a31329
TG
1729#endif /* CONFIG_HOTPLUG_CPU */
1730
0db0628d 1731static int hrtimer_cpu_notify(struct notifier_block *self,
c0a31329
TG
1732 unsigned long action, void *hcpu)
1733{
b2e3c0ad 1734 int scpu = (long)hcpu;
c0a31329
TG
1735
1736 switch (action) {
1737
1738 case CPU_UP_PREPARE:
8bb78442 1739 case CPU_UP_PREPARE_FROZEN:
37810659 1740 init_hrtimers_cpu(scpu);
c0a31329
TG
1741 break;
1742
1743#ifdef CONFIG_HOTPLUG_CPU
94df7de0
SD
1744 case CPU_DYING:
1745 case CPU_DYING_FROZEN:
1746 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING, &scpu);
1747 break;
c0a31329 1748 case CPU_DEAD:
8bb78442 1749 case CPU_DEAD_FROZEN:
b2e3c0ad 1750 {
37810659 1751 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu);
d5fd43c4 1752 migrate_hrtimers(scpu);
c0a31329 1753 break;
b2e3c0ad 1754 }
c0a31329
TG
1755#endif
1756
1757 default:
1758 break;
1759 }
1760
1761 return NOTIFY_OK;
1762}
1763
0db0628d 1764static struct notifier_block hrtimers_nb = {
c0a31329
TG
1765 .notifier_call = hrtimer_cpu_notify,
1766};
1767
1768void __init hrtimers_init(void)
1769{
1770 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1771 (void *)(long)smp_processor_id());
1772 register_cpu_notifier(&hrtimers_nb);
a6037b61
PZ
1773#ifdef CONFIG_HIGH_RES_TIMERS
1774 open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
1775#endif
c0a31329
TG
1776}
1777
7bb67439 1778/**
351b3f7a 1779 * schedule_hrtimeout_range_clock - sleep until timeout
7bb67439 1780 * @expires: timeout value (ktime_t)
654c8e0b 1781 * @delta: slack in expires timeout (ktime_t)
7bb67439 1782 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
351b3f7a 1783 * @clock: timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
7bb67439 1784 */
351b3f7a
CE
1785int __sched
1786schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta,
1787 const enum hrtimer_mode mode, int clock)
7bb67439
AV
1788{
1789 struct hrtimer_sleeper t;
1790
1791 /*
1792 * Optimize when a zero timeout value is given. It does not
1793 * matter whether this is an absolute or a relative time.
1794 */
1795 if (expires && !expires->tv64) {
1796 __set_current_state(TASK_RUNNING);
1797 return 0;
1798 }
1799
1800 /*
43b21013 1801 * A NULL parameter means "infinite"
7bb67439
AV
1802 */
1803 if (!expires) {
1804 schedule();
1805 __set_current_state(TASK_RUNNING);
1806 return -EINTR;
1807 }
1808
351b3f7a 1809 hrtimer_init_on_stack(&t.timer, clock, mode);
654c8e0b 1810 hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
7bb67439
AV
1811
1812 hrtimer_init_sleeper(&t, current);
1813
cc584b21 1814 hrtimer_start_expires(&t.timer, mode);
7bb67439
AV
1815 if (!hrtimer_active(&t.timer))
1816 t.task = NULL;
1817
1818 if (likely(t.task))
1819 schedule();
1820
1821 hrtimer_cancel(&t.timer);
1822 destroy_hrtimer_on_stack(&t.timer);
1823
1824 __set_current_state(TASK_RUNNING);
1825
1826 return !t.task ? 0 : -EINTR;
1827}
351b3f7a
CE
1828
1829/**
1830 * schedule_hrtimeout_range - sleep until timeout
1831 * @expires: timeout value (ktime_t)
1832 * @delta: slack in expires timeout (ktime_t)
1833 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1834 *
1835 * Make the current task sleep until the given expiry time has
1836 * elapsed. The routine will return immediately unless
1837 * the current task state has been set (see set_current_state()).
1838 *
1839 * The @delta argument gives the kernel the freedom to schedule the
1840 * actual wakeup to a time that is both power and performance friendly.
1841 * The kernel give the normal best effort behavior for "@expires+@delta",
1842 * but may decide to fire the timer earlier, but no earlier than @expires.
1843 *
1844 * You can set the task state as follows -
1845 *
1846 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1847 * pass before the routine returns.
1848 *
1849 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1850 * delivered to the current task.
1851 *
1852 * The current task state is guaranteed to be TASK_RUNNING when this
1853 * routine returns.
1854 *
1855 * Returns 0 when the timer has expired otherwise -EINTR
1856 */
1857int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
1858 const enum hrtimer_mode mode)
1859{
1860 return schedule_hrtimeout_range_clock(expires, delta, mode,
1861 CLOCK_MONOTONIC);
1862}
654c8e0b
AV
1863EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1864
1865/**
1866 * schedule_hrtimeout - sleep until timeout
1867 * @expires: timeout value (ktime_t)
1868 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1869 *
1870 * Make the current task sleep until the given expiry time has
1871 * elapsed. The routine will return immediately unless
1872 * the current task state has been set (see set_current_state()).
1873 *
1874 * You can set the task state as follows -
1875 *
1876 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1877 * pass before the routine returns.
1878 *
1879 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1880 * delivered to the current task.
1881 *
1882 * The current task state is guaranteed to be TASK_RUNNING when this
1883 * routine returns.
1884 *
1885 * Returns 0 when the timer has expired otherwise -EINTR
1886 */
1887int __sched schedule_hrtimeout(ktime_t *expires,
1888 const enum hrtimer_mode mode)
1889{
1890 return schedule_hrtimeout_range(expires, 0, mode);
1891}
7bb67439 1892EXPORT_SYMBOL_GPL(schedule_hrtimeout);
This page took 0.945829 seconds and 5 git commands to generate.